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Abstract

We propose a method for the decision problem in real closed fields. The method is a combi-
nation of the Tarski-Seidenberg—Collins (TSC) method and the Ritt—-Wu method. To decide
whether a system of polynomial equations and inequations has common zeros (solutions) in a
real closed field, we first apply Ritt-Wu’s decomposition method to delete those components that
do not have common zeros in an algebraically closed field. Then we apply the TSC method to the
remaining components to complete the solution. Many non-trivial examples have been solved by
this method, including the 83 configuration problem.
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1 Introduction

The mechanical method introduced by Wu Wen-Tsiin [14], [15] has been successfully used in
proving hundreds of non-trivial theorems in Euclidean geometry [1], [2], [5], [10]. The geometry
statements that Wu’s method can address are those of equality (equation) type, and we shall
call the class of such statements the W class. In Euclidean geometry, the W class is a subclass
of the class of all elementary sentences (statements), and Wu’s method can only be used to
confirm (prove) statements in the W class. But to disprove a geometric statement S of the W
class in Euclidean geometry, additional conditions are needed, i.e., S should be generic in R (for
details, see [9]). However, Wu’s method is complete for class W in the theory of meiric geometry.
Thus the assertion in [13] that the TSC method is logically more expressive than Wu’s method
is correct in Fuclidean geometry, but not in metric geometry. This will be discussed in more
detail in Section 2.

Inspired by Wu’s work, many variants based on the Grdbner basis method, all having roughly
the same logical expressiveness, have also been successfully applied to the W class [8], [12], [11].

In Euclidean geometry, the TSC method is much more expressive than Wu’s method. How-
ever, Wu’s method can easily prove many theorems in Euclidean geometry that no implementa-
tions of Collins’ method could prove within the time and space available. Thus a combination
of the two methods could solve problems not in the scope of Wu’s method, but which cannot be
solved by the TSC method alone within the available time and space. We have been working
in this direction since 1986 [4], but solving the 83 configuration problem suggests this method
has a more promising future than previously believed.

We assume the reader is already familiar with Ritt~Wu’s Zero Decomposition Algorithm
[15], [17], [6]. At present, we see the TSC method as a black box which can solve polynomial
inequality problems in R.

2 Metric Geometry and Wu’s Method

In this section we will point out the delicate differences between the scopes of Wu’s method
and the TSC method.

2.1 A Theory of Metric Geometry

In [16], Wu presented a theory of unordered metric geometry. This geometry has four ba-
sic predicates: collinear, perpendicular, segment congruent, and angle congruent. These four
predicates satisfy five groups of axioms:

Group 1. Azioms of Incidence.

Group 2. Azioms of Parallelism and Pappus’ Aziom.
Group 3. Azioms of Perpendicularity.

Group 4. Azioms of Segment Congruence.

Group 5. Azioms of Angle Congruence.



These five groups of Axioms form a theory of metric geometry called Wu’s Metric Geometry
(WMG). Note that there are no axioms of order in WMG, so it is not possible in WMG to
express statements such as “point A is between points B and C on line {7,

In [2], all models of the theory WMG have been classified. They are Cartesian products H?
of H, where H is a Hilbert field. A Hilbert field is a field with characteristic zero in which the
sum of two squares has a square root. Euclidean geometry, R2, and complex geometry, C?, are
two typical models of the theory WMG.

2.2. A Comparison of the Scopes of Ritt-Wu’s Method and the TSC Method

Our major point is that if one wishes to determine whether a geometry statement S of the
W class is a theorem in WMG, then it is beyond the scope of the TSC method. Wu’s method
was the first to give a decision procedure for the W class in the theory WMG.

Let us look at two examples.
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Example (2.1). (Simson’s Theorem). Let D be a point on the circumscribed circle (O) of
triangle ABC. From D three perpendiculars are drawn to the three sides BC, CA and ADB of
AABC. Let E, F and G be the three feet respectively. Show that E, F and G are collinear
(Figure 1).

Let us specify the exact statement of this theorem in the theory WMG as follows
(2.2) YV AYBYCYOVDVYEVFVG[H(A,B,C,0,D,E,F,G) = collinear(E, F, G)l.

Here H(A,B,C,0,D,E,F,G) is the hypothesis consisting the conjunction of following predi-
cates:

pseudoPerpendicular(AB, DG),
pseudoPerpendicular(AC, DF),
pseudoPerpendicular(BC, DE),
collinear(4, B, G),
collinear(A4,C, F'),



collinear(B,C, E),
congruent(OA,0B),
congruent(OA,0C),
congruent(OA,0D),
~collinear(A4, B, C),
~isotropic(ARB),
~isotropic(AC),
—isotropic(BC).

where the predicate pseudoPerpendicular(AB, DG)is: A = BV D =GV (A# BAD #
G A AB L DG). An isotropic line is a line perpendicular to itself.

The statement of Simson’s theorem is in metric geometry, and thus is also a statement in
Euclidean geometry. But if we want to ask whether this statement is a theorem in WMG, that
is, whether Simson’s theorem can be inferred from WMG without using the arioms of order
(betweenness), then it is beyond the scope of the TSC method. This statement has been proved
a theorem in WMG by Wu’s method, and thus a theorem in Euclidean geometry. However, if
we delete the conditions that AB, BC, and AC are non-isotropic from the hypotheses, then
Wuw’s method proves that the statement is not a theorem in the theory WMG (see the Appendix
for details). In the following example the opposite is the case.

Example (2.3). (The 8; Configuration Problem, see [13]).
(2.4) VY AYBYCVDVEVFYGYH[MacLane(A,B,C,D,E, F,G, H) = collinear(ABC)),
where MacLane(A, B,C,D,E,F,G,H) is:

collinear(4,B,D) A collinear(A,C,H) A collinear(A,F,G) A collinear(B,C, E)
A collinear(B, G, H) A collinear(C, D, F') A collinear(D, E, G) A collinear(E, F, H).

This is the exact statement in [13], where it is incorrectly claimed to be a theorem in Euclidean
geometry (see Figure 2 for a counterexample). The translation technique in [13] was not careful
enough to specify sufficient non-degenerate conditions.! On the contrary, what was called Wu’s
‘careless’ technique in [13] did find the following degenerate conditions: e.g., A= H, B = E,
D = F (See Figure 2). Without excluding those conditions it is not a theorem, even in Fuclidean
geometry. Are there other cases in which the formula (2.4) is also not valid? We will use our
proposed method to give a complete solution of this problem in Section 4.3. The mistake made
in [13] is another example of Wu’s assertion that non-degenerate conditions are very hard to
find; it is almost impossible for humans to identify sufficient non-degenerate conditions for
many problems such as this (for more examples see, e.g., [6].)-

Now we return to our main theme. Under the non-degenerate conditions that all 8 points
A, ..., H are distinct, we have proved that the 83 theorem is not a theorem in the theory WMG.
The TSC method is unable to reach this conclusion. On the other hand, to prove it is a
theorem in Fuclidean geometry is beyond the scopes of Wu's original method or any technigues
based on the Grobner basis method. Our proposed combination of Ritt—~Wu’s method and the
TSC method proves it is a theorem in Euclidean geometry. Like Morley’s trisector theorem,

! In our paper [7] we will explain in detail our method in [2] for generating non-degenerate
conditions in geometry forms and prove a theorem stating that for a subclass of the W class
these automatically generated non-degenerate conditions are sufficient.
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Thebault’s conjecture etc., the 83 configuration problem is one of the most challenging problem
in mechanical geometry theorem proving.

In the next Section, we propose the new method, and in Section 4 we will present the complete
proof of the 83 theorem using this method.

3. A Combination of Collins’ Method and Ritt—Wu’s Method

3.1. The Formulation of the Problem

All polynomials mentioned in this paper are over Q, and it will thus be assumed that all
fields contain Q.

The problem we want to solve can be formulated as follows. Let H.5 be a set consisting of
polynomial equations, inequations, and inequalities in the variables yi, ..., ¥,. We want to decide
whether H S has a solution in R, or in a real closed field, i.e., whether 3y,,...,y, € R(HS)
is valid. For a polynomial inequality in HS, say, ¢ > 0, we can use Seidenberg’s technique
to convert it to a polynomial equation by introducing a new variable z: in a real closed field,
g >0 <= 3z(gz* —1 =0). Thus, without loss of generality, we can assume that HS contains
equations and inequations only. Let ES be the set of all equation polynomials in 5, and IS
be the set of all inequation polynomials. Also without loss of generality, we can assume ES
and IS do not contain the zero polynomial.

We denote F~Zero( PS) as the common zeros of all polynomials in PS in the field F, i.e.,
F—Zero(PS) = {(ay,...,as) € F* |f(a1,...,a,) =0 for all f € PS}.

If we do not want F to be explicitly mentioned, we just denote F—Zero(PS) by Zero(PS).
Following Wau, for polynomial sets ES and IS we denote Zero(ES/IS5) to be the set difference
Zero(ES) — Zero(IS). Thus our problem is equivalent to deciding whether R~Zero(ES/IS)
is empty.

The rationale behind our method is the following observations:
— If C—Zero(ES/IS) is empty then R-Zero(£S/15) is empty.

— Using Wu’s method or the Grébner basis method to decide the emptiness of C-Zero(ES/IS)
is easier than using the TSC method to decide the emptiness of R—Zero(£5/15). Using Ritt—
Wu’s decomposition, we can break R-Zero(ES/IS) into many similar, but simpler problems
which hopefully can be solved using the TSC method.

Note that in our previous work [6], we wanted to decide whether
Zero(PS/DS) C Zero(g)

where PS and DS are a sets of polynomials representing the hypothesis equations and the
non-degenerate conditions of the geometry problem. This is equivalent in our new formulation
to deciding whether Zero(PS/DS U {g}) is empty. The latter is usually superior to the for-
mer because it can reduce branching in Ritt—-Wu’s decomposition. This is the case in the 8;
configuration problem.
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Now we present our method, assuming the reader is already familiar with Ritt—-Wu’s decom-
position, especially with the improved version developed by us in [6].

3.2. Proposed Method

Step 1. Use Ritt—Wu’s zero decomposition algorithm to decompose

Zero(ES[IS) = | ] Zero(PD(ASC;)/IS),

1<i<k
where the ASC; are irreducible ascending chains and PD(ASC) (see [6]) is defined by

PD(ASC) = {g | prem(g; ASC) = 0}.

Step 2. If k = 0, then C-Zero(ES/IS) is empty, hence R-Zero(ES/IS) is empty.

Step 3.  Otherwise, use the TSC method either to decide whether each of the
Zero(PD(ASC;)/IS) is empty, or to reduce these problems to smaller subproblems which
can then be attacked by returning to Step 1.

In the next section we use the 85 theorem to illustrate how the method works. the 83
theorem is a very challenging problem and our solution of the problem marks a milestone
in our work. In our opinion, a new method is significant if it can solve many problems the
previous methods couldn’t solve within reasonable time and space limits and solve at least one
remarkable problem. About 35 problems in [3] involving equality can also be solved by this
new method.

4. A Mechanical Proof of the 8; Theorem

4.1. the Exact Statement of the 8; Theorem

As was pointed out in Section 2, the ‘careful’ technique of [13] still missed non-degenerate
conditions, as Figure 2 shows. What are the non-degenerate conditions for the 83 Theorem?
A natural choice is the condition D(A,B,C, D, E, F,G,H) that all 8 points A, B, C, D, E,
F, G and H are distinct (in Section 4.3 we show how weaker conditions can be generated
mechanically). Thus the new statement of the 85 theorem is

(4.1) VA ..-VH [(MacLane(A,---,H) A D(A,---,H) = collinear(4, B, ).

We will prove that formula (4.1) is not a theorem in the theory WMG, but is a theorem in
Fuclidean geometry.

Without loss of generality, we can let A = (0,0), B = (y1,0), D = (y2,0), C = (y3,¥s)s
E = (y4,9), ' = (ys,%10), G = (¥s,911), and H = (y7,912), and use the following variable
order y; < --- < y12. Noting that the condition collinear( A, B, D) is trivially satisfied by our
choice of coordinates, the set of equation polynomials for the hypothesis of (4.1)is ES =

{ysy12 — Yr¥s; # collinear(A,C, H)
Ysth1 — YsYio, # collinear(A, F,G)



(ys — y1)¥s + (—¥a + ¥1)¥s, # collinear(B,C, F)
(ys — y1)¥12 + (=¥7 + 91)%11, # collinear(B, G, H)
(Y5 — y2)y10 + (—¥s5 + ¥2)¥s, # collinear(C, D, F')
(Yo — y2)¥11 + (—¥s + ¥2)vo, # collinear(D, E,G)
(ys — Ya)¥12 + (=y7 + Ya)v10 + (y7 — ys)Yo }- # collinear(E, I, H)

The set of inequation polynomials for the hypothesis (all 8 points are distinct) of (4.1) is
IS = { y1, ysz + Us, Y2, Y112 + Ys, Y122 + Y7, Yo7 + Ya, Y102 + Ys, Y2 + Yz — Y1, Y112 + Y — Y1,
Y22+ Y7 — Y1, Yo2 +Ya — Y1, Y102+ Ys — Y1, Y2 — Y1, Y2+ Ys — Y2, Y112+ Ys — Y2, Y122 + Y7 — Y2,
Yoz - Ya — Yz, Y107 + Ys — Y2, (Y11 — Ys)Z + Ys — Y, (Y12 — Us)z + Y7 — ¥s, (Yo — Ys)z + Ya — Y3,
(Y10 — Ys)Z + Ys — Us, (y12 — Y11)2 + Y7 — Ys, (y11 — Yo )2 + Yo — Y4, (y11 — ¥10)2 + Ys — Us,
(Y12 — Yo )7 + Y1 — Ya» (Y12 — Y10)2 + Y7 — Us, (Y10 — Yo )Z + Y5 — Ya }-

Here z is a new (existentially quantified) variable. Thus, e.g., for the last polynomial, (y10 —
Yo)z + ys — ya # 0 for some new indeterminate z if and only if 410 — ¥ # 0 or y5 — ya # 0, i.e,,

E+#F.

The conclusion that A, B, and C are collinearis g = y1ys = 0. The formula (4.1) is equivalent
to Zero(ES[IS) C Zero(yrys), or Zero(ES/IS U {y1ys}) is empty. In the next subsection we
prove the following claims:

— C-Zero(ES/ISU {y1ys}) is not empty, thus (4.1) is not a theorem in the theory WMG. 2
— R-Zero(ES/IS U {y1ys}) is empty, thus (4.1) is a theorem in Euclidean geometry.

The geometric meaning of these claims is that (4.1) is a theorem in Euclidean geometry, but
it cannot be proved without using axioms of order.

4.2. The Proof of the 8; Theorem

Using Ritt—Wu’s zero decomposition algorithm, we have the decomposition
(4.2) Zero(ES/IS U {y1ys}) = Zero(PD(ASCy)/IS U {y1ys}),

where the irreducible ascending chain ASC; =

fr = yathe — Y7¥s

fo = (ya — ya )y + (—Ys + Y2)¥o

fs = (ys — y2)y10 + (—¥s + Y2 )Ys

f4 = (ys - yl)y9 + (—y:; -+ yl)ys

fs = ((yays — ¥192)ys + (=019 + y192)ya + (—32 + v )u2)ur + (=2 + v1)ys)ya — 12195 +
Y19293)Ys + (Y293 — Y1Y2Y3)Ya

o = (((y2 — y1)a + (=Y + 9)9s)9s + (=203 + ¥192)¥a + Y393 — 1193)¥s + (9295 — ¥3)ya —
YiYays + Y1955

It

2 In [13] it is claimed that Wu’s method is to solve the “finding problem”, i.e., to find a polyno-
mial d such that Zero(ES) C Zero(d-g) and Zero(ES) ¢ Zero(d). This is a misunderstanding.
In [13] it is also claimed that such a d polynomial does not exist for the 8; configuration prob-
lem, but one can easily find such a d polynomial, e.g., d= ({2 —y1)ya + (=92 + ¥1)ys)ys +
(—yo¥s + Y1929 + ¥3ys — v192 )06 + (9295 — ¥3)9s — Y1295 + y193)ys, so that d- g € ES and
Zero(ES) ¢ Zero(d).
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fi= (12 =iy + v + ((yiv2 — 2uD)ys — 20193 + ¥y2)ya + ¥i 03 — ¥7v20s + 9793 )ye +
rr ; 2.2
(=297 + v192)¥s + 11%3 — 2y792)vs + (—v19293 + (Bua3 + 3yfyz)yz3 — 3y s — yivavi —
yiylys)ys + (V3y2 — yiviys + yivd )y + (—vivays — YiY3Ys)ya + Ui Y5 Y3

Tt took 13020.8 seconds on a Symbolics 3600 to complete the above decomposition. The
above simple form (only one component) is due to the dimension theorem (see Theorem (4.4)
in [6]). Our program produced 77 components, but all other 76 components are of lower
dimensions ( < 12 — 7 = 5) than PD(ASC,); thus they are redundant. By Theorem (4.8) in
[6], C~Zero(ES/IS U {y1ys}) is non-empty, thus we have proved:

Theorem (4.3). Formula (4.1) is not a theorem in the theory of Wu’s metric geometry
WMG.

Notice that the TSC method cannot reach this conclusion because it cannot address problems
in the complex plane.

Now to decide whether (4.1) is a theorem in Euclidean geometry, we want to decide whether
R-Zero(ES/ISU{y:1ys}) = R-Zero( PD(ASC,)/IS U {y,ys}) is empty. Now we resort to the
TSC method. Let {v(f) be the highest variable in polynomial f, le(f) be the leading, or initial,
coefficient of [v(f) in f, and deg( f, z) be the degree of z in f. Thuslv(f1) = ys, deg(f1,lv(f1)) =
deg(f1,ys) = 2, and le(f1) = (43 — yaya + yD)yi + (192 — 297)ys — 20195 + y7y2)ya + y703 —
v2ysys + yiv:. I {fi,..., fr} is an ascending chain of polynomials such that deg(f;,lv(f;)) = 1
then {fi,..., fr } always has a solution in any field. In our example, since deg(fi,lv(fi)) = 1 for
i > 1, the only polynomial which can cause the emptiness of R~Zero(PD(ASC:)/ISU{y,ys})
is fi. The discriminate of fi in ys is —3(ys — ¥2)?(va — y3)*(¥s — 91)*y3y3. Thus (by the
TSC method), R-Zero( PD(ASC,)/I5 U {y:1ys}) is non-empty only when ys — y, = 0, or
Yo —ys =0,0r Yo —y; =0, 0r y3 =0, 0r yy =0, ; =lc(f1)=0. We can now use Ritt-Wu’s
zero decomposition on the resulting sets:

(4.4) Zero({ys —y2} U ES/IS U{y11s})
(4.5) Zero({ys — ys} U ES/IS U {y:14s})
(4.6) Zero({ys — v1} U ES/IS U {y19s})
(4.7) Zero({y2} U ES/IS U {y1ys})
(4.8) Zero({y,} U ES/TS U {g1ys}).
(4.9) Zero({I,} U ES/IS U {y:19s})

(4.7) and (4.8) are immediately confirmed by the program to be empty, since y; € IS for
i=1,2,s0y; # 0iff B# A, and y, # 0iff D # A. (4.5) and (4.6) have also been confirmed to
be empty in C using Ritt~Wu’s zero decomposition algorithm in 1.5 seconds and 1.7 seconds,
respectively.
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For (4.4) we have the following decomposition (in 368.4 seconds):

(4.10)  Zero({ys — y2} U ES/IS U {y1ys}) = Zero({ys — y2} U PD(ASC14)/15 U {y1ys})

where the irreducible ascending chain ASC, ; =

fis = Y212 — Yr¥s

fir = (ya — y2)yi1 + (¥ + 42)%o

fio = ((ya — ¥2)¥s)¥y10 + (—¥2¥s + Y3 )¥e

fis = (Y2 — ¥1)¥s + (=vya + y1)Ys

fia ((y1y4+y§—2y1y2)ye+(-y§+y1yz—yi’)y4+y5yz)y7+(——y1yzy4+y§y2)ya+y1y§y4—y%y§

frs = (W22 + (1192 — 393y )ya + ¥4 — 3y103 +3y1 3 ) e + (=195 — ¥ y2)vd + (=202 +4p1vs +
202y ya + y1¥E — 3Y33)Ys + (vh — 1193 + yiyd)vs + (—viys — vivs)va + YY)

fia=ys — ¥

fii=ys— Y-

As in ASC:, R-Zero(PD(ASCy /IS U {y1ys}) is non-empty only when f; 3 has real solu-
tions. fi s has discriminate —3(ys — ¥1)%(ys — y2)*y3y} and initial coefficient I3 = yiyj +
(192 — 3y2ya2)ys + ¥3 — 33195 + 3yfy;. We can again use Ritt—Wu's decomposition on the
following sets:

i

Il

(4.11) Zero({y2 — y1,9s — Y2} U ES/1S U {y19s})-
(4.12) Zero({ys — yz,ys — Y2} U ES/IS U{y19s})-
(4.13) Zero({ys,ys — y2} U ES/IS U{y1ys})-
(4.14) Zero({y1,ys — ys} U ES/IS U {y195}).
(4.15) Zero({I13,ys — Y2} U ES/IS U {y1ys})-

(4.11)—~(4.14) are all empty in C. The emptiness of (4.12) is non-trivial. Tt took 1.8 seconds to
confirm. For (4.15) we have (in 150.5 seconds):

(4.16) Zero({I1.3,ys — y2} U ES/IS U {y1ys}) = Zero(PD(ASC1.1.1)/15 U {y19s})

where the irreducible ascending chain ASCy 14 =

fiio = Yoz — Yr¥s
fiis = Ya— Y2)¥1 + (—~ys + ¥2)¥o
fiir={{ys — Y2)¥s )Y10 + (—y29s + y%)yg
frae = (y2 —y1)yo + (~ya + y1)¥s
9f§.1.5 = (12 + 92 —29192) Y6 + (~¥3 + Y192 — ¥ Wa + 97 ¥2)y7 + (= y192¥a + Y7y )¥s + 1173 s —
YiYs
Fria = (2022 — ¥3)ya + v 93 — 29792y + (—3y2uE + 24592 )ya + Y5 — 49195 + 63595 ~ 20793
fu,s = Y5 — Y2
frae =92y + (nivs — 3yiye)vs + ¥5 — 31195 + 37 Y3
f1.1A1 = Y3 — ¥Y2.
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The only polynomial which can cause the emptiness of
Zero(PD(ASCi.1.1)/1S U {y1ys})

is fi.1.2, whose discriminate is —3(y2 — y1 Y2 y2y? and whose initial coefficient is y:. We can
again use Ritt—Wu’s decomposition on the following sets:

Zero({ys — y1,l1.3,y3 — 92} U ES/IS U {108}

Zero({ya,1.3,ys — Y2} U ES/ISU{y1ys}
Zero({y:1,I1.3,ys — Y2} U ES/IS U{yys}-
All are trivially empty.

Now for (4.9), using Ritt—Wu’s decomposition, we have (in 8443.5 seconds):

Zero({I;} U ASC; UES/IS U {y:ys}) =

(4.17) Zero(PD(ASCy 5)/IS U {n1ys N Zero(PD(ASC15)/15 U {y1ys})

where ASCy 5 =

fos = Y1¥12 — Y7¥s

for = (y2 — y1)y11 + (¥s — Y2 )Yo

fos = (y2 — y1)¥10 + (ys — y2)us

fas = (YsYs — Y2Us )Y + ((—¥s + ¥2)¥s)Ys

oo = (U2~ y19s — Y192 +52)¥s —y292 + (20192 — ¥1)us )yr + (=192 + 419205 )Y + U7 V2 — V1 Y2Vs
fos = (Y2 — 1ys + yD)vE + (—y192 — yiys)vs + ¥iv3

faoo=ys— U1
For =9z — Y,
and ASCl‘g =

fas = Yaliz — Y7¥s

far = (ya — y2)y11 + (=Y + ¥2)¥s

fse = (?fs - yz)ym + (”ys + yg)ys

55 = (3 — ¥1)¥s + (—ya + 11 )Vs

faa = ((y2ys — 11y2)ys + (—919s + Y192 ) s + (~y2 + y1)¥3)yr + ((—v2 + y1)Ys)ya — 1193 +
Y1Y2Ys)¥s + (Y2935 — Y1Y2¥s)Ya

fas = (g2 — y1)0a + (=2 + 91)Y3)¥s + (=203 + 912)a + ¥3Ys — ¥193)¥s + (3295 — 43 )ya —
Yiyays + Y193 )Ys

Fao = (12 — 4y19a + 42)0a + (29192 — ¥2)ys — Y103 +29792)9s + (=93 +29192)ys + 20195 —
Yiys )ys — Y19293 — Yivs

Far = (y2 — yiye + ¥2)03 + (3192 — 202)ys — 20193 + Y7 02)¥a + Y7 V3 — YT Y20 + Y3 V3-

Now the only polynomial which can cause the emptiness of Zero(PD(ASC15)/ISU{y1ys})is
fa 5 whose initial coefficient is I».3 = (¥2 —¥1¥s+¥7) and whose discriminate is —3(ys —y1 ) y2yi.
Thus we can use Ritt—-Wu’s decomposition for the following sets:

(4.18) Zero({Iy,(ys — y1)} U ASC1, UES/IS U{y1ys})

(4.19) Zero({I,ys} U ASCy 5 U ES/IS U{y19s})
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(420) ZE?O({Ii,yl}UASCl2UES/ISU{y1y8})

(421) ZETO({Il,Ist} U ASCLQ U ES/IS U {ylyg})

Now (4.20) is empty, and (4.18) has been confirmed to be empty in 8.2 seconds, but for (4.19)
we have:

Zero({I,ys} UASC, s UES/ISU {y19s}) = Zero(PD(ASCy 2.1 )/{v1¥s})

where ASC ) 41 =

foi0 = U1Y12 — Y1Us

foi1s = (yz - 3!1)9’11 = Ya2Yo

faar= (yz - yl)ym - Y2Ys

Jor6 = ((y2 — y1)y7)Ys + ((—=2y2 + Y1 )Y7 + Y1Y2)Ys

Fors = (32 — 3y1ys + ¥3)Y2 + (=3u193 + yiv2)yr + ¥ivs

fo1a = Ys
for3=ys
foi2=Ya— W
for1=Ys — Y1

Now the only polynomial which can cause the emptiness of Zero(PD(ASC: 51)/ISU{y1ys})
is fo.1.5, whose initial coefficient is I, 1 5 = 3y2 — 3y, y» + yi and whose discriminate is —3(ys —
y, )?y2y?. We only need to decompose the set (in 16.7s):

ZGTO({IM}ZLS»?JS} UASC, 5, UES/ISU{yys}) = Zero( PD(ASCy o11)/{v1ys})

where ASC 211 =
for 110 = YiYiz — Yr¥s
foi110= (yz - yl)yli — Ya¥s
foi1s = (yz - yl)ym - Ya¥s
for17 = ({2 = y1)ye)ye + ((—2y2 + Y1)Y7 + Y1Y2)Ys
for1s = (6y2 — 3y )yr — 31y2 + y?
fa115 = Ys
fo114=Ys
fo113=Ys— ¥
fei12=Ys — U
for11 = 3y5 — 3192 + vi-

Then the emptiness of Zero( PD(ASC1.5.1.1)/{¥1¥s}) can be easily checked.

Also for (4.21) we have (in 31.8 seconds):
(4.22)  Zero({I;,L,5}UASC, , UES[ISU {y19s}) = Zero(PD(ASC1.52)/I15 U{y1ys})

where ASC 2.2 =
fa20 = Y1¥12 — Y7¥s
fozs = (Y2 — v )y + (Us — ¥2)¥s
foor = (y2 — Y1 )%10 + (¥s — Y2 )Ys
fans = (Ys¥s — Y2ys)¥e + ((—ys + Y2 )Ys )Ys
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fazs = (Y2¥s + (=2 + v1)ys — 9192)y7 + (=92 + v1)¥s — ¥7)¥% + (y1%2 — ¥7)ys + 43
fooa = (2ys — ¥1)¥6 — ¥1Y5 + y;

fons =vyZ —nys + U3

foo2=ys—

foo1 =ys — Y1-

Then the emptiness of Zero(PD(ASC; 22)/15 U {y:1ys}) can be easily checked.

Now we come to ASC; 3. The only polynomial that can cause the emptiness of
Zero(PD(ASC13)/1S U {y1ys}) is fs.1, whose discriminate is -3(ys — y1)?v2y? and whose
initial coefficient is I3 ; = y2 — y1y2 + y?. Thus we only need to decompose the follow sets:

(423) ZGTO({Il,yg—y1}UASCl_;gUES/ISU{ylyg})

(424} ZeTO({jl.,Ig'l} U A501_3 U ES/IS U {y1y8}>

For (4.23) we have (in 271.4 seconds):

Z@TO({Il,yg - yl} U ASCl.g U ES/IS U {y1y8}> e
Zero(PD(ASCy 51)/I5 U {y1ys D Zero(PD(ASC: 5.)/I5 U {y,ys}).

where ASC 31 =

faio = ¥1¥12 — Y7Ys

fais = (3,’2 - ?jl)yu — Yals

faar = (yz - yl)ylo —~ Ya¥Ys

fare = ((y2 — y1)y7)Ye + (=292 + y1)y7 + ¥192)¥s

fars = (3y3 — 3y1y2 + y1)yF + (=333 + yive)yr +9iy3
fa1.4a = Us

fs13=Us

fa12=vs— ¥

fs11 =93 — Y,

and ASC 35 =
faoe = Y1¥12 — Yr¥s
faos = (y2 — y1)y11 + (Y6 — Y2)Yo
fanr=(y2 — Y1 )¥io + (Y5 — Y2)¥s
faze = (Ys¥s — Y2¥s Yo + ((—¥s + y2)¥s)¥s
fazs = (yays + (—y2 + ¥1)¥s — y1y2)yr + ((—y2 + y1)ys — ¥ )ys + (1y2 — ¥i)ys + 45
fana = (2ys — ¥1)Ys — Y195 + U3
fans =ye —hys + 43
faoo =vya— Y1
fa21 =Yz — U1-

ASCY 54 = ASCy 5.1, s0 it has already been shown to be empty. For AS5C, 3.5, since the only
non-linear polynomial, fs 53, has discriminate —y?, it is trivial that Zero(PD(ASCy 54)/IS U

{1hys}) is empty.
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For (4.24) we have (in 3839.2 seconds):
Ze?"O({Il,Ig'l} U ASCi,g U ES/J{S U {ylyg}} foued
Zero(PD(ASCy33)/15U {rys U Zero(PD(ASC13.4)/15 U {y19s}),

where ASC 3.3 =

f3.3.9 = YzYi2 — Yrl¥s

fass = (ya —Y2)y11 + (=Ye + ¥2)¥o

fazr = (ys — Y2 Yyro + (—¥s + ¥2)¥s

fsse = (ys — Y1)¥s + (—¥s + ¥1)¥s

fass = ((y2y3 — Y192)¥s + (=v1y5 + Y192 s + (=y2 +y1)¥3 )y + (((—y2 + Y1)Ys)Ya — Y1¥3 +
Y192Ys)Ys + (Y293 — Y1Y2Y3)Ya

faza = (((y2 —y1)ya + (—y2 + y1)¥s)ys + (—Yays + ¥1%2)Ya + (Y192 — ¥3)¥s — Yive + ¥ )Ye +
((Y2ys — Y1Y2 + U7 )Ya — Y1Y2Ys + Yiys — 43)Ys

fass = (3yz — 3y1)ys + (—4y2 + 29, )Ys + 1Yz — 297

Faso = (y2 +y1)V3 + (=6y1ys + 397 )ys + 2y7y2 — 447

fas1 = ¥3 — Y + Ui

and .ASCLSA =

faa0 = YaYiz — Yr¥s

faas = (ys — Y2 )y11 + (—ys + Y2 )Yo

faar = (Ys — Y2)Y10 + (~ys + y2)vs

faae = (ys — y1)¥o + (—¥a + Y1)Ys ‘

Foas = (4295 — 9192)¥s + (=9193 + ¥192)ya + (=¥2 + 91)93 )97 + (=92 + ¥1)9s)ys — 9195 +
Y1Y2Y3)Ys + (Y293 — Y1Y2Y3)Ys

Foa = (((y2 — y1)9a + (=y2 + y1)¥3)¥s + (=925 + 9192 )9a + (Y192 — ¥3)¥s — ¥iv2 + 47)ve +
({yoys — Y192 + Y2 )ys — 11Y2Ys + YiYs — U2 )Us

Foas = ((y2 +91)82 + (—6y192 + 393 )ys + 202 y2 — 493 )ys — y295 + (25192 — 397 )v3 + (3yiyz —
v )ys + 201

faas = (Yo — 291 )Ys + V1Ys — Y1y2 + y?

faa1 = Y2 =y + i

The last polynomial in both ASC; 33 and ASC; 34 1s y2 — 4192 + yi which does not have a
real solution when y; # 0. Hence (4.24) is also empty.

Thus Zero( ES/ISU{y1ys}) = Zero(PD(ASCy)/IS U{y1ys}) is empty, and we have finally
proved:

Theorem (4.25). Formula (4.1) is a theorem in Euclidean geometry. Since it is not a
theorem in WMG, it cannot be proved without using the axioms of order.

(4.26). Remark about the proof. The first decomposition (4.2) took 13,020.8 seconds. The
next two most time-consuming are (4.9) (in 8443.5 seconds) and (4.24) (in 3839.2 seconds),
but these two computations were already done in (4.2). Besides, if one first recognizes that the

discriminate of I = (32 =512 +¥2 )93 + (192 — 247 s — 20195 + ¥i2)¥a + V103 — 41295 + 473
is —3(ys — y1)?y3y?, then (4.9) would be much easier. The same holds for (4.24).

Alternatively, we can use the decomposition forms (in 15,439.3 seconds):

(4.27) Zero(ESJIS U {pys}) = | Zero(ASCL/ISUJx U{yiys}),

1<ELTT
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where the .J, are the initial sets of the ascending chains ASC}, ASC) is the same as in (4.2),
the rest 76 ascending chains have lengths > 7, and each of them has at least one quadratic
polynomial (in the leading variable). For each quadratic polynomial az? + bz + ¢, we only need
to check whether 4% — 4ac < 0, and don’t have to take care of the case when ¢ = 0.

4.3. Finding the Weakest Non-Degenerate Conditions

One might think that condition that all eight A, ..., H points are distinct are too strong and
try to find some weaker conditions. We can use our proposed method to solve this problem.
Our goal now is to find the “weakest” conditions to make Formula (2.4) a theorem in Euclidean
geometry. Thus, now we try to decide whether R—Zero(ES/{y,ys}) is empty. Using our
program for Ritt—Wu’s zero decomposition again (in 15911.1 seconds) we have:

(4.28) Zero(ES/{niys}) = | Zero(PD(ASCy)/{nys}),

1<k<4

where the ascending chain ASC, is the same as the previous subsection, and
ASCy =

Yiz
Y11
Yio
Yo
Y
Ys — Y2
Ya — Y1,

ASCy =
YsYiz — YslYs
YaY11 — Ys¥s
YsYio — YslUs
Yo — Ys
Yyr — Ys
Ya — Yz
Yz,
ASC, =
Yi2 — YUs
(ya — y1)y11 + (—¥s + ¥1)¥s
(ys — Y1 )v10 + (—ys + Y1)Ys
(y3 — ¥1)¥o + (=Y + 91)¥s

Yr — Ys
UYs — Ys
Y2 — Y1-

Note that our program produced 185 irreducible ascending chains. The dimension theorem
[6] cut 185 to 4. By human inspection, it is easy to see that the ASC,, ASC3, and ASCy
correspond to the cases:

Case 1. Dy(A,---,H): A=H,B=F,D=F; A, B, D, and G are collinear (Figure 3).
Case 2. Dy(A,---,H): A=D,C=E H=G;A,C,G,and F are collinear (Figure 4).
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Figure 3 Figure 4

Case 3. Ds(A,---,H): B=D,C=H,F=G;B,C,E,and I are collinear (Figure 5).

Figure 5 Figure 6

As in Section 4.2, we can continue to decompose

(4.29) Zero({ys — 2} U ES/{:3s})
(4.30) Zero({ys — ys} U ES/{y1ys})
(4.31) Zero({ys — y1} U ES/{y19s})

(4.32) Zero({y2} U ES/{y1ys})
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(4.33) Zero({y:} U ES[{y19s})-

(4.34) Zero({1,} U ES/{113s})-

We can repeat the Ritt—-Wu’s decomposition and the TSC method recursively. Since the above
polynomial sets have basic sets of lower ranks than that of ES (see [6]), the process will
terminate. The final result is:

(4.35) R—Zero(ES/{yiys}) = U R—Zero(PD(ASCy)/{v1ys}),
2<k<T
where
ASCy =
Yi2 — Ys
Y11 — Ys
Yo — Ys
Yo — Ys
Y7 — Y3
Ys — Y3
Ys — Ys
Ya — Y3,
o
c
E H
F G
F G 5
D H g A B
Figure 7 Figure 8
'4506 =
Y12
Y11
Y10
(ys — 91)%0 + (—¥a + ¥1)¥s
Y7
Ys
Ys
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and ASC7 =

YaYiz — Yr¥s
Yi1

Yio

Yo

Ys — U1

Ys — Y1

Ya — N

Yz — Y1

By human inspection, it is easy to find that ASC; (i = 5,6,7) correspond to the following
geometric cases.

Case 4. Dy(A,---,H): C=E=F=G=H; A, Band D are collinear. (Figure 6).
Case 5. Ds(A,---,H): A=D=F=G=H; B, Fand C are collinear. (Figure 7).
Case 6. Dg(A,---,H): B=D=FE=F=G; A, C and H are collinear. (Figure 8).
Thus we have found the “weakest” non-degenerate conditions for the 85 theorem:
D[(A,--',H) = —,[D1<A,...7H)\/ ~--\/D5(A,--~,H)],
and proved the following theorem.

Theorem (4.36). The formula
VA ---VYH [(MacLane(A,---,H)A D'(A,---,H) = collinear(4, B, C)],
is a theorem in Fuclidean geometry.
Since (C # EAD # FAB# D)= D'(A,..., H), we have the following ‘simpler’ form:
Theorem (4.37). The formula
VA ...VH [(MacLane(A,---,HYAC # EAD # F A B # D) = collinear(4, B, C)],
is a theorem in Euclidean geometry.

We have verified Theorem (4.37) using the same method as described in Section 4.2. The
proof led to the same decomposition (4.2) with a different IS = {(yo — ys3)z + ya — Y3, %102 +
Ys — Y2,Y2 — Y1} (in 8804.1 seconds). This was more complicated than the proof of Theorem
(4.1).

Remark (4.38). We have been discussing the 8; configuration problem in the form given
by [13]. Another way to see this 83 configuration is [MacLane(A,B,C,D,E, F,G,H) = (at
least one of the other 3-tuples of points is collinear)]. There are 48 other 3-tuples of points, and
in this formulation of the problem IS consists of 48 line equations. It took 12,709.0 seconds to
complete the decomposition of Zero(ES/IS):

Zero(ES[IS) = Zero(PD(ASC:)/15),

where the irreducible ascending ASC) is the same as in (4.2).



5., Conclusions

We propose a new method to combine Ritt—Wu’s method with the Tarski-Seidenberg—Collins
method, and use it to solve the 8; configuration problem. Our solution shows:

(1) Formula (4.1) (the exact statement of MacLane theorem) is not a theorem in the theory of
metric geometry WMG. We use Ritt—Wu’s method to reach this conclusion. The TSC method
cannot reach this conclusion.

(2) Formula (4.1) is a theorem in Euclidean geometry. In geometry, this means that it cannot
be proved without using the axioms of order. We use a combination of Ritt—Wu’s method with
the TSC method to solve it.

There is no inclusion relationship between the scopes of Ritt-Wu’s method and the TSC
method. However, in Euclidean geometry the W class is a subset of all statements that the
TSC method can address.

In [13], a set of ‘careful’ translations (of geometry statements into algebraic expressions) was
described, and it was claimed that “provers based on (Ritt—Wu’s) characteristic set method
cannot take advantage of the careful translations.” This claim was incorrect. As shown by this
paper and [6], Ritt—Wu’s method can deal with inequations easily and efficiently. Especially
in Section 4.2 and Remark (4.38), the IS consist of 28 and 48 inequations, respectively. It is
far beyond the time and space limits available for any known techniques based on the Grobner
basis method. Furthermore, many theorems, such as Thébault’s theorem, Morley’s trisector
theorem specified in Chapter 4 of [5], cannot be solved by the present techniques based on the
Grobner basis method.

In this paper we only cutlined the proposed method. Being not experts in Collins’ method,
we could not go into the details of Collins’ method. Many things need to be done to make the
method complete and feasible in implementation.
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YzYr — Yala
2Ys — Y1
2y3ys + Y192
Y3 + 93,

and ASC3 =

YsY11 — Y2¥i0

(2y1Y2 — U3 )10 — Y2¥slr + (U3 — 2912 + Y7 )va
Ysyo + (=2 + ¥1)¥s — Y13

Yayr + (=92 + Y1)¥s — 1193

2Ys — 1

2ysys — Y1¥2 + ¥i

ys + U5 — 201ys + i

Thus C~Zero( ES/{y1ys,¢}) is not empty. Therefore Simson’s theorem without the assumption
that AB, AC, and BC are non-isotropic is not a theorem in the theory WMG. However, since
isotropic lines do not exist in Euclidean geometry, it is still a theorem in Euclidean geometry.



