ADAPTIVE PROGRAMMING
Mohamed G. Gouda and Ted Herman

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-89-29 October 1989

Abstract

An adaptive program is one that changes its behavior based on the current state of its envi-
ronment. The environment state is assumed to go through successive periods of change and
stability, and the adaptive program is only required to perform its intended function during peri-
ods of stability. In this paper, this notion of adaptivity is formalized and a logic for reasoning
about adaptive programs is presented. The logic includes several composition operators that can
be used to define an adaptive program in terms of given constituent programs; programs resulting
from these compositions retain all the adaptive properties of their constituent programs.



i. Introduction

An adaptive program is one that changes its behavior according to its environment: for each en-
vironment state one behavior is most appropriate. One way 1o think about adaptivity is to view
the different behaviors of an adaptive program as a belonging to different programs. An adaptive
program may behave like one program S in one environment state and like another program T in
another environment state. Tor instance, S can be a sequential program that uses only one
processor, whereas T can be a parallel program that uses two or more processors. In this case, the
adaptive program behaves like S in any environment state where only one processor is available,
and like T in any state where the number of available processors is two or more. In an environment
where the number of available processors changes over time, the adaptive program changes its be-

havior between S and T depending on the current number of available processors.

Viewing the different behaviors of an adaptive program as belonging to different programs can be
exploited in a modular methodology for program composition. An adaptive program that bebaves
like S in one environment state and like T in another environment state can in many cases be de-
veloped in two steps. First, the two programs S and T are developed as separate independent
programs, possibly in parallel. Second, the developed programs are later combined to form the

required adaptive program.

Our aim in this paper is to formalize this notion of program adaptivity and to present a formal basis

for composing adaptive programs.

Central to our presentation is the notion of an “environment.” Informally, the environment of a
program is defined by a set of input variables that can be read, but never written by the program.
The values of these variables may change arbitrarily over time by an outside agent. We assume,
nevertheless, that periods of change are relatively short and are usually followed by long periods of
stability where the values of the nput variables are constant. Tt is during these long periods of
stability that the program is required to perform its useful function as dictated by the current de-
mands of the environment. There are no requirements on the program’s behavior during periods

of change.



The relationship between a program and its environment has been investigated by many researchers
before. See for instance, Hoare’s CSP [5], Milner’s CCS [9], Lamport’s modules [7], Pnueli’s
reactive systems [ 10], Chandy and Misra’s conditional properties [2], Lam and Shankar’s inter-
faces [ 6], Lynch’s 1/O automata [8], etc. Most of these investigations are based on the assumption
that the environment’s behavior, especially its interaction with the program, can be fully predicted
in advance, and in some instances fully planned. Under this assumption, the program can be de-
signed to always perform its intended function. By contrast, our work is based on the assumption
that the environment’s behavior cannot be fully predicted. In particular, the input variables of the
program may assume changing values for some time provided that they eventually stabilize into
fixed values. In this case, it is not reasonable to expect that the program will always perform its
intended function. The best that one can hope for is that the program performs its function only
after the values of all input variables have stabilized. Tt is this premise and its implications that

distinguish our study from previous investigations.

The rest of this paper is organized as follows. In Section 2, we define adaptive sequential programs
and present rules for reasoning about the adaptive properties of such programs; rules for composing
adaptive sequential programs are presented in Section 3. Next, we extend the discussion to con-
current programs (Section 4), and introduce rules for composing adaptive concurrent programs
(Section 5). In Section 6, we exercise the composition rules presented earlier to develop an adaptive
token program, and in Section 7, we discuss the relationship between adaptivity and self-
stabilization. Concluding remarks are in Section 8. Proofs for most of the rules appear in the ap-

pendix in Section 9.

2. Adaptivity of Sequential Programs

Tet S be a sequential program defined by S= (I, 4), where VVis a set of variables and 4 is a
set of actions. Fvery variable in 7 has a prescribed domain and is either an input variable or an
internal variable. Fach action in A4 is a guarded assignment of the form P — C, where P is a
predicate over the variables in ¥, and C is an assignment staternent that assigns values to internal

variables only.



The state-space of S is the cartesian product of the domains of all variables in V. A state of §'is
an element of the state-space; it thus denotes a value for each variable in V. A state predicate is a
boolean function of the state-space. If the value of a state predicate P is true at some state 7, then

we say P holds at 7.

A state predicate P is an input predicate in program S5, denoted input 7 in § {or simply input P

when § is understood)  iff P is a predicate whose definition makes no reference to any internal

variable of S.

A transition of S is an ordered pair of states (r,5) such that S has an action P - C, where I’ holds
at r, and s is obtained from r by replacing the values of internal variables as indicated by the as-

signment statement C. If (r,5) is a transition and 7 holds at », then we say P — C is enabled

at r.

A computation is a sequence of states such that every consecutive pair is a transition. Empty and
single-state sequences are therefore computations and any prefix or suffix of a computation is a
computation. We restrict the scope of prefix and suffix as follows. Any prefix of a computation
is a finite sequence; any suffix of a computation is a suffix with respect to a {finite) prefix; any suffix

of a non-empty computation is a non-empty computation.

A computation is maximal iff it is not a proper prefix of any computation. That is, a maximal

computation is either infinite or there exists no transition originating at the last state of the com-

putation.



The central characterization for adaptivity is the following relation “secures” between any two state
predicates.

P secures Q in S iff

P is an input predicate in S, and for each maximal computation of §: if 7 holds

at each state in the computation then there exists a suffix of the computation such that

O holds at each state in the suffix.
(adaptivity)

For convenience, we write P secures 0 when S is understood.

Operationally, we interpret P secures (  as follows. Tt is always possible for the environment to
lead the program to a state satisfying 7 by some setting of input variables. Once 7 is satisfied the
program will converge on its own accord to a situation in which @ holds and continues to hold
indefinitely, unless the environment forces the program outside by some resetting of the input

variables.

Example 1. Consider the following program that has three input variables b, ¢, and d, one
internal variable z, and two actions.

input variable b,c,d: integer;

internal variable z: integer;

actions (b=0) = z:= max{c,d) , (b=1) — z:= min(¢d).

For this program we prove (b= 0) secures (z = max(c,d)). There are two proof obligations from
the definition of secures . First, (h=0) is an input predicate because b is an input variable.
Second, consider any maximal computation where (b= 0) holds at each state. Only the first action
is enabled at each state of this computation. Thus, the first transition in the computation estab-
lishes (h=0) A (z=max(c,d)) and subsequent transitions leave the state unchanged. This

completes our proof of (b= 0) secures (z=max(c,d)).

Similarly it can be shown that (b= 1) secures (z=min(c,d)). |



The following properties of secures are stated as inference rules. (Proofs of these properties appear

in the Appendix.)

input P et
P secures {rue (truth)

P secures

P secures (P A Q) (sharpening)
P secures O, input R, R=P .
R secures ( (strengthening)
P secures 0, (=R ’
P secures R {weakening)
P secures O, R secuves T . '
(junction)

(Pv R) seeures (Qv T), (P A R) secures (O A T)

Other properties of secures can be derived by various combinations of these rules. For instance,

input B
P secures P (stability)

can be derived from the truth and sharpening rules. Similary,
false secures R (falsehood)

can be derived from the stability and weakening rules.

3.  Composition of Sequential Programs

Large adaptive programs can be composed by combining smaller adaptive programs. This section
describes two types of composition: level and hierarchical. Level composition combines two
adaptive programs so that they have equal roles in the resulting composite program. [Hierarchical
composition combines two adaptive programs so that one of the programs is subordinate to the

other. These compositions can be applied repeatedly to combine any finite number of adaptive

programs into a single program.



3.1  Level Composition

A prerequisite for level composition of two programs is their compatibility. Given two sequential
programs S and 7, S compatible 7 holds iff all variables with the same name in both S and 7T are
of the same type, and they are cither input or internal in both programs. Notice that compatibility
of two programs is not difficult to achieve: by renaming variables in one program so that no name

is common to both programs, compatibility 1s assured.

The following definition introduces notation to describe the level composition of two compatible
programs. Let S=(V,4)and 7= (W, B) be two compatible sequential programs and let e be a
fresh boolean input variable that does not occur in S or 7. Let S[el7 denote the program
(U,E) where

U= VuWu{e, and

E={(erC)y=»D]| Co>Ded} U {{(menC)—->D| Co>DeB}

Based on this definition, the following rule can be proved.

P secures Q in S, P sccures R in 7, S compatible 7'
(P re) secures Q in STel7,

(P A —e) secures R in STelT

(level composition)

Example 2. It is required to design a traffic control program. In the “morning” the program
directs traffic either right or across, and in the “evening” it directs traffic either left or across.
Consequently we propose a program that has an internal variable #raffic that can take any of the
values: left, right, or across. Inspired by our Jevel composition rule, we design two adaptive pro-
grams, a morning program S and an evening program 7. Fach of these two programs containg
assignments to the internal variable traffic. By combining the two programs using an input variable

named morning, we construct the required traffic control program as § Lmorning17T.

‘The morning program S is defined as follows.
input variable waiting: boolean;,

internal variable #raffic: (eft right across);



actions  waiting — traffic = across, T wailing - traffic = right.

It can be shown that
waiting secures (traffic = across) in 5, and — wailing secures (traffic =right) in S
The result can be reduced by the junction and sharpening rules to

true secures ((waiting A traffic = across) v (7 wailing » traffic = right)) in 5.

The evening program 7 is defined as:
input variable waiting: boolean;
internal variable traffic: (left,right,across);

actions waiting — traffic := across, T wailing - traffic = left.

By symmetry with S the adaptivity property of T1is

true secures ((waiting a traffic = across) v (7 waiting a iraffic =left)) in 7.

The required traffic control program S [morning] T is:
input variable waiting, morning: boolean;

internal variable traffic: (left,right,across);

actions

morning A walting - traffic := across,
morning A Trwaiting — traffic = right,
= omorning A waiting — {raffic := across,
—morning ~ T wailing — traffic = left.

The adaptivity property of program S [morningl T follows from the level composition rule. After
simplification the result is
frue secures
( (waiting a traffic = across)
v (—waiting n morning n traffic = right)

v (—waiting n —morning ~ traffic = left) ). |



3.2  Hierarchical Composition

A prerequisite for hierarchical composition of two programs is the controllability of one of them
by the other. For sequential programs S and 7', the relation 7 controls S holds iff all variables
with the same name in both S and 7 are of the same type, and no internal variable of Sis a variable
in T. There is no restriction on the input variables in S: an input variable in .S may be an internal

or input variable in 7.

The following two definitions introduce notation to state the hierarchical composition rule. Define
idle.S, for a sequential program S, to be the conjunction of the negated guards of all actions of S,
ie.,

idle.S = (YactionP—D of §: —7F)

Thus, idle.S is satisfied by any state where no action of .S is enabled.

Let S=(V,4) and T= (W, B) be sequential programs where 7' controls S. Tet 738§ denote
the program (U, C') where

U= ¥F-W) u W and

C={@GdleTAPYy-D]| P->Ded} U B

Based on this definition, the following rule can be proved.

P secures Q in 7, (PAQ) = idle, Q secures K in S, T controls S
P secures R in 73S

(hierarchical composition)

Fxample 3. Let program U be defined as follows.
input variable clock: integer;

internal variable morning: boolean;

actions
clock >0 a clock <1200 A —morning — morning = lrue,
(clock<0 v clock>1200) A morning - morning = Jalse.



It is straightforward to show that program U is suitable for hierarchical composition with the

composite program S [morningd 7' of Fxample 2. The proof consists of four steps.

First, it can be shown that (clock >0 A clock < 1200) secures morning in U.
Second, it can be shown that ( clock >0 a clock < 1200 A morning ) = idle. U,
The third condition follows by the level composition rule:
morning secures (( waiting A iraffic = across) v ( —waiting ~ traffic = right})
in STmorningdT.
Fourth, the internal varable raffic of SImorningl 7 does not appear in U, therefore

U controls ( S Umorningd T').

Thus, the hierachical composition rule can be applied to combine the two programs U and
S [morning1 T into one program U3 (S Lmorningd 7T') with the result

(clock >0 n clock<1200)

secures (( waiting A traffic =across) v ( “wailing a traffic = right ))

in Uz(SImorninglT). |

4.  Adaptivity of Concurrent Programs

We define a concurrent program as a sequential program that meets some additional constraints
imposed by partitioning its variable set and its action set. Thereby, the definitions of adaptavity,
compatibility and composition in sections 2 and 3 have straightforward extensions for concurrent

programs.

A concurrent program is a pair (S, «), where S=(V, 4) is a sequential program and o satisfies
the following two conditions. First, « partitions V into disjoint sets ¥, for 0 < i< rank(a).
Second, the actions of A can be partitioned into sets A for 0<i< rank(a) so that for every

P C in A; the assignment statement C assigns values to variables of V; only.

In this definition, a concurrent program may be interpreted as a collection of processes. A process

of a concurrent program (S, «) is a sequential program S; = (V; U W,, A:), where V; and 4, are

9



corresponding sets of variables and actions defined by the partition «, such that

0 <i<rank(®), and W, is the set of all variables appearing in 4; but not n V.

We extend the definition of secures to concurrent programs as follows.
P secures O in (S, o) iff

(S, ) is a concurrent program and P secures Q in S.

(concurrency)

From this definition, the above rules for reasoning about the secures properties of sequential
programs can be extended in a straightforward way for reasoning about the secures properties of

concurrent programs,

5.  Composition of Concurrent Programs

Two concurrent programs are composed by composing their corresponding processes. To this end
we extend the definitions of level and hierarchical composition. We also define a new form of level

composition called distributed composition.

5.1 Level Composition

(8, o) compatible (7, p) holds iff rank(a) = rank(f), S compatible 7, and for every variable x
assigned by actions of both S and 7': x is assigned by an action of S; iff x is assigned by an action

of 7;, for each i, 0< i< rank(x).

The level composition of compatible concurrent programs is written (5, &) [eI(7, ), which de-
notes the concurrent program whose processes are { S;[e17; | 0<i<rank(a)}. The rule for level

composition of two concurrent programs (S, «) and (7', ) is as follows.

P secures Q0 in (S,«), P secures R in (7,f), (5, a) compatible (T, 5}
(P nre) secures @ in (S, a)[el (7, ),

(P —e) secures R in (S, 0)[el(T, )



Tt is straightforward to show that this rule can be derived from the level composition rule of section

3 and and the definition of concurrency in section 4.

5.2 Hierarchical Composition

(T, ) controls (S,¢) holds iff rank(e) = rank(B), 7 comtrols S, and for every variable x as-
signed by actions of both S and 7: x is assigned by an action of S; iff x is assigned by an action

of T;, for each i, 0 < i< rank(x).

The hierarchical composition of concurrent programs is written (7', )3 (S, o), which denotes the
concurrent program whose processes are { 7i35; | 0<i< rank(a) }. The rule for hierarchical

composition of two concurrent programs (S, &) and (7, ) is as follows.

P secures O in (T,f), (PrQ) = idleT, (P Q) secures R in (S,2), (7,P) controls (S, o)
P secures R in (7, 3)3(S, o)

It is straightforward to show that this rule can be derived from the hierarchical composition rule

of section 3 and and the definition of concurrency in section 4.

5.3 Distributed Composition

The level composition of concurrent programs requires that all processes in the composite program
read the same input variable to make their individual adaptive choices. This is unreasonable in a
distributed implementation. The following definitions introduce notation for a distributed com-

position rule.

Let & be a vector of boolean input variables, that is, ¢ = (¢ | 0 <i<rank(«)}. We use angular
brackets to abbreviate universal quantification over all the elements of e, ie.
<g> = (Vii 0<i<rank(e): &)

<—eg> = (Vii 0<i<rank(a): —e).

The level composition of compatible distributed programs is written

(S’ (x) {E} (T’ ;8):



which denotes the concurrent program whose processes are

{5 LedT; | 0<i<rank(e)}.

The distributed composition rule for two concurrent programs (S, a) and (7, p) is as follows.

P secures Q in (S,0), P secures R in (7,0), (S,a) compatible (7, f)
(P A <&>) secures O in (S, «)[e 1(T, B),

(P A=< —¢>) secares R in (S, ) e3(7, 9
(distributed composition)

An example of applying the distributed composition rule is discussed next.

6. Case Study: The Adaptive Token

In this section, we construct an adaptive distributed program for circulating a token in a ring of
processes. Two reasonable methods for circulating the token are “busy,” in which the token 1is
circulated continuously, and “lazy,” in which the token is circulated when and only when at least
one process needs the token. Each of these two methods is realized by a separate program; then

an adaptive token program is constructed by the distributed composition of the busy and lazy token

programs.

6.1  Busy Token

The busy token program, henceforth called Busp, continuously circulates one token among a set
of n processes:

Busy = {S/|0<i<n},
where each process S; is defined as follows.

internal variable x, : integer;

actions x;modn=1 — x = x+1, X X = X = X
In the above program and for the remainder of the case study, we adopt the following notational
convention. Let x;, for an arbitrary integer &, refer to variable x, satisfying i = (k mod n). Thus,

the second action for process Sy can be rewritten as

12



X1 > Xp - Xy = Xq.

We say that process S; holds a ioken when x; mod n = i. The appendix of this paper outlines a
proof of the following property for the busy token program.

true secures homebusy in Busy
where homebusy is a predicate that holds at any state where there is exactly one process S; satisfying
(x;modn=1) v ({x.ymodn=1i) A (X1 >x)). Informally, homebusy describes a stale

where exactly one process either has a token or will have a token immediately after its next transi-

tion.

6.2 Lazy Token

The lazy token program, henceforth called Lazp, circulates one token among a set of n processes
when and only when one or more of the processes needs a token.

Lazy = {Ti|0<i<n},
where each process 7 is defined as follows.

internal variable x; : integer;  y:: boolean;

input variable z : boolean;

actions

xmodrn=1i A Y — (X, y) = (x+ 1, false),

Xy > X X P Xy,
TP oA P AT - Y = lrue,
N — == lrue,

Fach process T; has an integer variable x; and two boolean variables y; and z. Variable z is an
input variable indicating the need for a token by its process 7, We say that process 7; holds a
token when x,mod n=1i. The following predicate is used in the guard of one action:

m o= (xmodn=i) v (xmodn=(i+1)) v (x;mod n={(i+1) n x> )
The predicate 7, holds when 7, has a token, or T}, has a token, or when there is a token between

T: and 73y

The adaptivity property for this program is

true secures homelazy in Lazy



where the Aomelazy predicate holds at any state where there is exactly one process 7, satisfying

(x;modn=1i) v ({xpoymodn=1i) rn (x.1>x)).

6.3  Adaptive Token

The busy and lazy token programs are compatible; hence they can be composed using the distrib-
uted composition rule. The resulting composite program Busy [el Lazy is then guaranteed to sat-
isfy the following properties:

<g> secures homebusy, and

<-¢> secures homelazy.
Notice that the two variables, x; in process S, and x; in process 7}, are replaced by only one variable
x, in the composite process S;[e¢;17;. Thus, the distributed composition rule tends to reduce the

number of variables in the resulting composite programs.

7.  Adaptivity and Self-Stabilization

A self-stabilizing program [ 1, 3] is a particular type of adaptive program; but before we formally
state the relationship between adaptivity and self-stabilization, we need to define self-stabilization

in our model of computation.

For a sequential program S and predicate O, S self-stabilizes to O iff each maximal compu-
tation of § can be partitioned into a prefix and a suffix where each state in the prefix satisfies

= and each state in the suffix satisifes 0.

The relationship between self-stabilization and adaptivity is stated by the rule

S self-stabilizes to
true secures QO in S

(self-stabilization)

which can be easily proven from the defintions of “secures” and “self-stabilization.”

The converse of this rule does not hold in general. That is, true secures ¢ in a program does not

imply that the program self-stabilizes to (. For example, program Busy in section 6.1 satisfies

i4



true secures homebusy, whereas it is not the case that Busy self-stabilizes to homebusy for the
following reason. Program Busy has a maximal computation where there is only one token in the
initial state, but after some transitions more tokens appear. Thus, although the computation does

have an infinite suffix of single-token states, it does not satisfy the definition of self-stabilization.

It is tempting to conjecture that if true seeures 0 holds for a program S then
S self-stabilizes to R for some predicate R where R => (. The busy token program does satisfy
this conjecture. The rationale for the conjecture is the following. From true secures () we assert
that each maximal computation has a suffix where 0 holds at each state in the suffix. Conse-
quently, one could hope to construct some predicate R to characterize only those states in the

suffix. But the conjecture is falsified by the following example.

Let Z be the program

internal variable x © domain (0, 1, 2};

actions x=0 — x := 0,
x:l — X == 1,
x::l B . - 2,

x=2 — x = 0.
Tt is straightforward to show that true secures (x #2) in Z . Any maximal computation whose
initial state is x = 0 or x = 2 has a suffix where x = 0 at every state. Any maximal computation

whose initial state is x = 1 has a suffix where either x = 1 at every state or x = 0 at every state.

We now refute the possibility of some R satisfying Z self-stabilizes to R and R= (x#2). Ex-
pansion of R = (x % 2) yields four possibilities for R false, (x =0), (x= D, and (x#2). In
each case we exhibit a maximal computation that cannot be partitioned to satisfy
7 self-stabilizes to R. First, 7 does not self-stabilize to false because maximal compuations of Z
are non-empty. Second, Z does not self-stabilize to (x = 0) because there is a maximal computa-
tion consisting of (x = 1) for all its states. Third, Z does not self-stabilize to (x = 1) because there
is a maximal computation consisting of (x = 0) for all its states. Fourth, Z does not self-stabilize
to (x # 2) due to following maximal computation: a non-empty sequence of (x=1) states, fol-

lowed by a (x =2) state, followed by an infinite sequence of (x = 0) states. (end of refutation).

i5



8. Conclusions

The main contribution of this paper is to identify secures as the basic concept for program
adaptivity, and to present a simple, yet effective, logic for reasoning about the secures properties
of adaptive programs. The highlights of our logic are three rules for composing large adaptive
programs by combining given constituent programs. The first two rules, level and hierarchical
compositions, apply to both sequential and concurrent programs, while the last rule, distributed

composition, applies only to concurrent programs.

So far we have assumed that the values of input variables remain fixed after the environment has
stabilized. Extending the work to accomodate the important possibility that the values of these
variables may change, according to a given protocol, during periods of stability has been investi-

gated in [4].

Acknowlegements: We would like to thank Chris Lengauer, Jayadev Misra, Simon Lam, Louis

Rosier, and Ambuj Singh for reading earlier drafts of this manuscript and providing valuable advice.

9.  Appendix

9.1  Proofs of Inference Rules

Each of the proofs in this section is based on the definition of adaptivity, that is P secures ( for
some form of P and Q. From the definition of secures there arc two proof obligations. The first
obligation is to establish that P is an input predicate; this is a trivial task of verification that we omit.
The second obligation is to show that every maximal computation has an appropriate suffix where
O holds at each state -- this is the part of the proof we present in each case below. To further
streamline the presentation, we observe that there are two cases for a maximal computation, either
it is empty or non-empty. In case it is empty the definition reduces to universal quantification over
an empty range and secures holds trivially. Therefore maximal computations are assumed to be

non-empty in the proofs.

i



Truth: Consider any maximal computation such that /7 holds at each state. Observe that

P => true is a tautology, so true holds at all states.

Sharpening: Trom the antecedent, in each maximal computation where P holds at each state there

exists a suffix in which O holds at each state; therefore (P A ) holds at each state in the suffix.

Strengthening: Consider a maximal computation 7 in which R holds at each state. From
R= P it follows that P also holds at each state in 7. The antecedent 7 secures implies that

QO holds in at each state in some suffix of =. B

Junction (conjunction): Consider a maximal computation 7 in which ( P A R) holds at each state.
Observe that (P A R)=P and (P A R)= R, so both antecedents are applicable; 7 has a
suffix where O holds at each state and 7 has a suffix where 7' holds at each state, therefore = has a

suffix where (Q A 7') holds at each state.

Junction (disjunction): Consider a maximal computation = in which ( P v R) holds at each state.
Let (r,s) be some transition in 7. There are three cases forr, either (1) P A 7R holdsatr, (i)
=P AR boldsatr, or (iii) P A R holds at r. The predicates P and R are input predicates, 50
the case (i-iii) for state s is the same as the case for 7 -- input variable values do not change due to
transitions. Moreover, one case (i-iii) holds for all states in 7. For case (i), P holds at each state
in 7, and the antecendent asserts there is a suffix where @ holds at each state, hence Q v 7" holds
at each state of the suffix. The treatment of case (ii) follows by symmetry. Case (i) follows from

conjunction, shown above, and the fact (@ a 7) = (Qv 7). |

9.2 Proofs of Composition Rules

For proofs of the composition rules we define state projections. A projection maps a state of a

composite program to a state of one of its constituent programs. For instance, let So7 be some

i7



composition of the two programs S and T:  let /& be the projection from a state of So7 to a state
of §: h excludes variables that appear in So7 but not in S. We extend projections to operate
on sequences of states by element-wise application. Observe that if p is a sequence of states of
SoT and P is a predicate over the variables of S, then P holds at each state in p iff P holds at

each state in A{p).

Level Composition: The two parts of the rule’s conclusion are symmetric, so we demonstrate one
part only. Let / be the projection from a state of S[el17 to a state of S. It can be shown that
if © is a maximal computation of S[el 7T where e is true at all states, then f{r) is a maximal com-
putation of S. To complete the proof, let @ be a maximal computation of ST{el T such that
P A e holds at each state. By the antecedent (P secures ) in ), the maximal computation fle)
therefore has a suffix where Q holds at each state. Therefore o has a suffix where Q holds at each

state.

Hierarchical Composition: Let  be an arbitrary maximal computation of 73 S. The proof obli-
gation is to show that if P holds at each state in 7, then there is a suffix in which R holds at each
state. We show this in two steps. First, 7 can be partitioned into a prefix and suffix so that O holds
at each state in the suffix. Second, this suffix is a maximal computation which has, in turn, a suffix

in which R holds at each state. For the remainder of the proof we assume P holds at each state in

First step. A small sublemma is needed for this step: if T contains three consecutive states
(a,b,c), it is not the case that (fla), /b)) is a transition of § and (g(h), g(0)) is a transition of
7. This sublemma can be proved by contradiction. From the sublemma it follows that 7 can be
partitioned into 7 = dw so that g(6) is a computation of T and f{w) is a computation of § (note
that 6 or w may be empty). Further, it is simple to show (by contradiction) that g(8) is a maximal
computation of 7" and flw) is a maximal computation of §. Since g(6) s a maximal computation
of T and P holds at each state in g(5), then by the antecedent (P secures Qin T) there exists a
suffix of g(3) such that 0 holds at each state in the suffix; consequently (P A Q) holds at each state

in this suffix of g(8). On account of (P A Q) = idle.T we conclude that g(8) is finite. We now

i8



consider two cases for 8, either § is empty or § is finite and non-empty. In case § is empty, we
claim that (P A Q) holds at the initial state of w (recall that = is assumed non-empty, hence w is
non-empty for this case). The claim can be proved by contradiction. In case § is non-empty, we
observe that (P A Q) holds at the final state of d, as established above. In either case, we have
established that t has a suffix with an initial state satisfying (P » Q); call this suffix rho. F'rom
(P A Q)=idle.T and input Qin S, observe that (7 A Q) holds at each state in g(p), hence

(P A Q) holds at each state in p, and therefore O holds at each state in flp). (end of first step).

Second step. We assert that p, as constructed in the first step, is a maximal computation of
T3S and flp) is a maximal computation of S. This assertion can be proved by contradiction.
Since Q holds at each state of flp) and Q secures Rin S, flp) has a suffix in which R holds at

each state. Consequently, p has a suffix in which R holds at each state. {end of second step).

9.3  Proofs of Case Study

The proof obligation from section 6.1 is to show true secures homebusy in Busy. We prove this
by showing  Busy scif-stabilizes to home, where home is a predicate satisfying
home = homebusp.  Then, by the self-stabilization and weakening rules, our proof obligation is

fulfilled.

A state of Busy can be represented by a string of integers: each integer in the string specifies a value
for an x-variable and thus the state of a process. Consequently, referring to an integer in a string
is equivalent to referring to a process. We find it convenient to use string expressions as shorthand
for some state predicates. Tor instance, the expression bam™!  denotes states that satisfy
(xp = b) n (Vitk<i<k+n:x=a)

Recall that we index x modulo 7, so there are 7 states corresponding to the expression ba"*. In
string expressions, we use uppercase letters for arbitrary strings. The notation [R] refers to the
length of the string R. A string of unit length ( that is, an individual item) may be denoted by a
lowercase letter. We use addition in string expressions to denote integer addition. Thus,

b1(b +1) depicts states in which 7 — 1 processes have the value b, and the remaining process has

19



the value (b +1). For a non-empty string R, the notation  first(R) denotes the first nteger of R

and last(R) denotes the last integer of R.

Several definitions in this section contain terms of the form x;modn = kmodn We abbre-
viate such terms with the notation x; =, k. Throughout the proof we assume 7 > 1 to simplify the

presentation.

To clarify references to actions of Busy, we annotate the actions of a process 5; as follows:
{rel} Xi=,1i — x:=x+1l,

{pl’op} X1 > X — X = Xy .

Definition. For integers k and m, the sequence of x-variable values [x: kA<i<k+m] isa

rising string ff (Vi k<i<k+m: xq+1=x) A x =, (k+1).

Definition. For integers k and m, the sequence of x-vatiable values [x: k<i<k+m] isa

falling string iff (Y in k<i<k+m x.,2x)

Definition. For integer k the sequence of x-variable values [x: k<i<k-+n] is a centered
stringiff (Vi ju xi>x = (X #.] v Xi=X))
Informally, for the state of Busy to satisfy the definition of centered string, the outcome of any se-

quence of prop actions creates at most one token -- a token at process x;.

Definition. The home predicate is satisfied by a state of Busy iff the state is of the form pFU,
where pI'U is a centered string, F is a falling string, Up is a rising string, and

[F|>0 = ( last(Up) > first(F) n las(¥) = firsi(Up) ).

Lemma. home = homebusy.

Proof. The definition of the homebusy predicate consists of a disjunct that holds for exactly one
process of Busy: either that process holds a token or holds a token after a prop action. Using the
string representation pFU of the home predicate and expanding definitions of centered, rising, and
falling strings, it follows that firsf(FU) corresponds to the process satisfying the definition of

homebusy. |

20



Lemma. Any transition from a state satisfying home results in a state satisfying home.

Proof by structural induction. We examine the string pFU and the outcome of any transition.
There are two cases for a transition, either a rel action or a prop action induces the transition. For
a rel transition, no process in the rising string is eligible; the centered string condition implies that
the rel transition is due to the first process in the falling string. It is straightforward to verify that
this case satisfies home. For a prop transition, there are two possibilities. The transition either oc-
curs in the falling string or at the first process in the rising string. A prop transition due to a process
in the falling string yields a result for which it is easy to verify home’s satisfaction. A prop transition
at first(Up) requires more detailed examination. Conditions for this case imply |U| > 0. There are

subcases for |F| =0 and |F| > 0. For each subcase fome s satisfaction can be verified.

Lemma. In every computation of Busy there is a state satisfying
@ ox = G+D) A (Vi j#r = 5>%)
Proof. Let  be an arbitrary computation of Busy. We define I to be a function from a state of
Busy to an integer:
F(e) = (max i 0<i<m x{c))
where x{c) denotes the value of the variable x; at state ¢. Let z = F(e) where e is the initial state
of 7. We define G to be a function from a state of Busy to an integer:
Gle) = (sumi: 0<i<n z—x(c)).
To prove the lemma, we examine the sequence of integers o obtained by applying I to each state
of the sequence . The following three observations, which are provable from the definitions above
and the actions of Busy, establish that o has a prefix of the form y7(y + Iy
(i) For any transition (r,s) in 2 (F(r)=p 2 Fs)=p) = (G >G(s) A Gls)=0).
(i) For any transition (rs) in 1 (F( =y » GH=0) = Is=+1).
(iiiy At any state of Busy a transition is possible, therefore 7 is infinite.
Having established that w has a prefix ym(y + 1), we examine the transition (p,q) where F(p) =y
and F(g) = (y + 1). This transition is induced by a rel action in incrementing x, for some k satis-
fying x, = y. The notation x, is shorthand for specifying x, where k=,y; hence existence of the

state ¢ constitutes proof of the lemma.

21



Definition. Let C be a string of integers identified with a sequence of processes. A
subcomputation with tespect to C is a computation such that the initial state satisfies C and wherein
each transition corresponds to some action by a process in C with one restriction: there is no

prop action by the first process in C.

Lemma. For any string C, every subcomputation with respect to C is finite.

Proof by induction on |C|.

(basis) We take |C| =1 for the base case. By definition any subcomputation with respect to C
contains only transitions due to rel actions of the single process in C. After one such transition no
further actions are possible (end of basis).

(induction) Let bB = C where [B|>0, and consider an arbitrary subcomputation with respect
to bB. The subcomputation contains at most one transition due to a rel action at process b.
Therefore consider a suffix = that contains no such rel transition. The suffix = contains at most one
prop transition due to the first process in B. Consider a suffix of + that contains no such prop
transition. This suffix satisfies the definition of a subcomputation with respect to B. By the in-

ductive hypothesis, any subcomputation with respect to B is finite. B

Definition.  The Aomeward predicate is satisfied by a state of Busy iff the state is of the form AC
where |AC| =7, |A]>1, ArY satisfies home where r = last(A),  and C satisfies the following
constraint. Bvery subcomputation = with respect to C satisfies: at each state in 7 all x-variable

values of processes in C are smaller than any value in A.

Lemma. Every computation of Busy contains a state satisfying homeward.

Proof. Consider an arbitrary computation of Busy. By previous lemma, the computation contains
a state satisfying the form (y + DW such that x, = (y + 1) and (y + 1) is the mazimum x-value.
Let = be a suffix of the computation with (y + )W as initial state. The suffix = has a prefix (pos-
sibly empty) that is a subcomputation with respect to W. Let p be the longest prefix of that is
a subcomputation with respect to W. Fach state of p is of the form (v + DW’, from which no
transition due to an action at x, is possible. Therefore, the state in = immediately following 1 is
due to a prop action at x,,, with the resulting state of the form (y 4+ 1)(y + DU, which satisfies the

definition of Aomeward. |

22



Lemma. Any transition from a state satisfying homeward results in a state satisfying Aomeward.

Proof. We examine the string AC from homeward's definition and the outcome of any transition.
The case |C| = 0 satisfies ome and a previous lemma establishes the invariance of Aome. Therefore
we assume |C| > 0 for the remainder of the proof. There are three forms for the outcome of a
transition: either A’C, AC’, or A’C” where |A"] = |A] + 1. The first form A'C 1s due to an
action within A but not due to a prop action by the first process of A because C is non-empty and
all values in C are smaller than any value in A. Consequently A’C satisfies homeward. The second
form AC” is due to an action within C but not due to a prop action by the first process of C. By
homeward's definition and the fact that C’ is the result of a subcomputation with respect to C, the

result AC” satisfies homeward. The third form A“C” is due to a prop action by the first process in

C, and also satisfies homeward. g

Lemma. Any computation containing a state of the form AC where |C| > 0 and AC satisfies
homeward also contains a state of the form A“C” where A"C” satisfies homeward and |C} > |C”].

Proof. The proof of the previous lemma outlines the case analysis needed for this proof. Observe
that the forms A’C and AC’ are due to subcomputations. Consequently, such transitions appear
a finite number of times in a computation. The computation therefore contains a state of the form

A”C” satisfying the conclusion. B

Lemma, Fvery computation of Busy contains a state satisfying home.
Proof. Bvery computation contains a state satisfying homeward; such a state is of the form AC.
Using the previous lemma, it follows by induction on |C] that a state of the form A"C” is in the

computation where |C”] = 0. This state satisfies home. B

The preceeding lemmas show that Busy self-stabilizes to home. The definition of Aome can also be
used to show that each process of Busy has a token infinitely often in any computation, thereby

justifying the name “busy.”

The proof obligation from section 6.2 is to show true secures homelazy in Lazy. The homelazy
predicate and the homebusy predicate have the same structure; the proof of frue secures homebusy
consists of arguments about prop and rel actions n computations; Busy and Lazy have identically

structured prop actions, while the rel action of Lazy has a stronger precondition. The stronger

23



precondition does not complicate the analysis of Lazy. The definitions and lemmas used to prove
true secures homebusy in Busy can, with small modifications, be applied to show
true secures homelazy in Lazy. The structure of the Lazy version of the home predicate can also
be used to prove that if no process needs a token then any computation is finite, thereby justifying

the name “lazy.”

References

[11 G. M. Brown, M. G. Gouda, and C. L. Wu, “Token Systems that Self-Stabilize,” [ELE
Transactions on Computers 38, (6 1989).

[2] K. Mani Chandy and Jayadev Misra, Parallel Program Design: a Foundation, Reading,
Massachusets: Addison-Wesley Publishing Company, 1988.

[3] Edsger W. Dijkstra, “Self-stabilizing Systems in Spite of Distributed Control,” CACM /7, (11
1974), pp. 643-644.

[4] Ted Herman, Ph. D. Dissertation, Dept. of Computer Sciences, University of Texas at Austin,
in preparation, 1989.

[5] C. A. R. Hoare, “Communicating Sequential Processes,” Comm. ACM 2/, (& Aug 1978).

[6]S. Lam and A. Shankar, “Specifying Implementations to Satisfy Interfaces: A State Transition
System Approach,” presented at the 26th Lake Arrowhead Workshop, Sept. 1987.

[7] L. Lamport, “Specifying Concurrent Program Modules,” ACM TOPLAS 5, (2 April 1983).

[8] N. Lynch, “I/O Automata: A Model for Discrete Event Systems,” Proc. of 22nd Annual Conf.
on Information Sciences and Systems, 1988.

[9] R. Milner, A Calculus of Communicating Systems, LNCS 92, Springer-Verlag, New York, 1980.

[10] A. Pnueli, “Linear and Branching Structures in the Semantics and Logics of Reactive
Systems,” Proc. of the 12th ICALP, 1985.

24



