PARALLELIZING TRANSFORMATIONS
FOR A CONCURRENT RULE
EXECUTION LANGUAGE"

Daniel P. Miranker, Chin-Ming Kuo, James C. Browne
Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712-1188

TR-£9-30 October 1989

* This research was supported in part by the Office of Naval Research under coniract N00014-86-K-0763 and by a
grant from Texas Instruments.

Parallelizing Transformations for A
Concurrent Rule Execution Language

Daniel P. Miranker
Chin-Ming Kuo
James C. Browne
Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712

October 25, 1989

Abstract

Mostwork on parallelizing forward-chaining production system programs may be described
as parallelizing sequential production system interpreters. We are now studying an approach
that parallelizes the entire execution of a production system program. We first modify the se-
mantics of the OPS5 production system language into a rule language suitable for parallel exe-
cution. We then define a compilation method that partitions rule systems into disjoint subsets
that execute asynchronously with respect to each other and which communicate through asyn-
chronous message passing. Within each subset rules may be fired in parallel. The approach
is similar to the methods used in parallelizing compilers for block structured languages and is
founded on the formalisms developed for assuring the correct operation of concurrent database
systems. Our primary results to date involve the definition of the syntax and semantics of a
parallel production system language and the development of an ensemble of optimizing trans-

forms. !

1 Introduction

In general, a production system is defined by a set of rules, or productions, that form the production
memory together with a database of current assertions, called the working memory (WM). Each pro-
duction has two parts, the left-hand side (LHS) and the right-hand side, (RHS). The LHS contains a
predicate over pattern elements that are matched against the working memory. Pattern elements
may be negated. The RHS contains directives that update the working memory by adding or re-
moving facts and directives that invoke external side effects, such as reading or writing an I/0O

channel.

IThis research was supported in part by the Office of Naval Research under contract N00014-86-K-0763 and by a
grant from Texas Instruments.

In operation, a production system interpreter repeatedly executes the following cycle of oper-
ations:

1. Match. For each rule, compare the LHS against the current WM. Each subset of WM elements
satisfying a rule’s LHS is called an instantiation. AH instantiations are enumerated to form
the conflict set. '

2. Select. From the conflict set, choose a subset of instantiations according to some predefined
criteria. In practice only a single instantiation is selected.

3. Act. Execute the actions in the RHS of the rules indicated by the selected instantiations.

It has been previously reported that over 90% of the execution time of a production system
program is spent in the match phase. [5] Thus, most efforts towards improving the performance
of production system environments, for both sequential and parallel computers, have focused on
improving the speed of the match portion of the cycle.[10]

A highly optimized sequential OPS5 compiler, called ops5c, has changed the characteristics of
the problem in parallel production system execution. The new compiler is based on the TREAT
matching algorithm.[11] The compiler incorporates new techniques for compiling rules into in-line
code. We have discovered that by compiling the rules and using the newer match algorithm much
more successful optimization strategies may be brought to bare than has been possible in earlier
work. Preliminary results demonstrate programs running 50 to 200 times faster than interpreted
production system environments and significant performance advantages over other production
system compilers.[8] Of greater significance is that detailed analysis of the new compiler reveals
that our compilation methods have reduced the proportion of time in match to considerably less
than 90%. All but the most match intensive programs compiled by our system spend less than
50% of their time in match. Since most of the previous parallelizing efforts have dealt with only
the match phase we can conclude from Amdahl’s law that these approaches alone will not demon-
strate significant speed-up over the programs produced by the new compiler.

1.1 Parallelism and CREL

The OPS5 execution cycle stipulates that all of the rule instantiations must be enumerated and a
single rule selected for firing. In a parallel environment selecting and firing a single rule instanti-
ation each cycle forms a double-headed bottleneck. It is contradictory in a parallel environment
to select a single anything to execute. Further, as defined, the select strategy represents a barrier
synchronization point. Barrier synchronization forces those processors that finish their workload
quickly to lay idle while waiting the processor with the longest task to complete.

To achieve significant improvements in the parallel execution of production system programs
we must simultaneously exploit all sources of parallelism. An effective system must demonstrate
parallelism among each of the phases as well as within each phase. Our new approach is to fire
rules as soon as they become satisfied, parallelizing the act phases and breaking the synchroniza-
tion forced by the select phase. Removing synchronization introduces nondeterminism into the

2

program. The semantics of current production-system languages are derived from their sequential
execution models and exploit synchronization heavily. It is precisely these sequential execution
semantics that have limited the success in this area. As part of our effort to exploit all possible
sources of parallelism we have specified a new concurrent production rule language, CREL. The
syntax of CREL is identical to OPS5.[4] The semantics of CREL, described in Section 2.3 and 2.3, are
derived from a combination of the theories of serializability, that underlies the correct execution
of concurrent transactions on databases and the Unity language, a seminal declarative parallel-
programming model. [2, 3] CREL programs that run correctly in a sequential environment are
guaranteed to run correctly in a parallel environment. The basic idea is to guarantee that the result
of the parallel execution of the system agrees with some serial execution of the same system and
that all serial executions reach a correct fixed point. Pragmatically we have dropped the recency
strategy of the OPS5 selection strategy but have retained specificity. The semantic constraints due
to negation disallow a pure data-driven approach that allows any rule to be fired as soon its pred-
icate has become satisfied. We say those CREL rules that cannot be fired in parallel are mutually
exclusive.

A primary problem vexing researchers in this area is that the size of the fundamental tasks that
can be executed in parallel is sufficiently small that if dynamic methods are used to the determine
which of the tasks may operate in parallel the methods must be extremely simple or else run-time
overhead becomes a dominant component of the execution of the system. Thus weare developing
techniques that may be applied statically at compile time to eliminate, and if not, to dramatically
reduce the dynamic overhead required to determine mutual exclusion.

In organization our approach is similar to the methodology employed in optimizing and vec-
torizing compilers.[1] As in these approaches, we compile the production-rule program into a
dependency graph representation, described in Section 2.2. We use a graph representation, orig-
inated by Ishida and Stolfo[6], to represent the dependency relations and interactions between
rules and working memory. Since any satisfied rule may fire at any time the graphs do not repre-
sent dataflow dependencies as do the graph representations used in vectorizing Fortran compilers
and thus do not form a strict ordering. We will give more detailed descriptions later.

We can extract statically from the rule-dependency graphs whether the side-effects of any rule
from a set of firable rules will interfere with the satisfaction of any of the other rules in that set.
Those rules that may interfere with each other are mutually exclusive.[9] We have developed com-
piler algorithms that determine independent sets of rules, called clusters, such that a rule in one
cluster is not mutually exclusive with any rule in any other cluster. Mutually exclusive rules are
connected by a cycle in the dependency graph that contains labeled edges of different sign. A
cluster is formed by calculating the closure over all such cycles over all rules in the cluster. By
construction, clusters operate asynchronously with respect to each other with no overhead. Pairs
of clusters may implicitly synchronize by passing messages. The rules within each cluster must
synchronize. The techniques for firing rules in parallel in a synchronized environment may be
applied within a cluster.

In our initial analysis we discovered that the dependency graphs are densely connected. Straight
forward application of the mutual exclusion analysis does not reveal an substantial number of
independent clusters. In response, we have developed a set of optimizing transformations, de-

scribed in Section 3 that break the mutual exclusion dependencies and thus increase the available
parallelism. These transformations involve the recognition of special rule forms that introduce se-
mantic information into the analysis, the propagation of constants and the horizontal partitioning
of the working memory.

2 Dependency analysis

2.1 Definitions

Before we give the formal definitions of terms such as Mutual Exclusion and Synchronization Set,
a brief description of the notations and the definition of serializability is given.

Definition 1 Serializability and related notations
Given a production system program P with N rules, P= {P1, P»,... Py}, define a parallel firing E, of P
in cycle x as the set of instantiations selected for firing in cycle x:

E&'C = {Ifl ” ‘[32 H te H I«”v’"m}
where m is the total number of instantiations in E,
Vi, x, I, = kth instantiations in cyclex, and
I, is an instantiation of rule P,, .
For each x,k, we further define C'S;, as the set of instantiations from rule Py, in cycle x. It can be shown

that Uy C Sy, = the Conflict Set in cycle x. E, is serinlizable if and only if there exists a serial execution
path of E,, E., such that E_ produces the exact same result as E and E, is a permutation of E,. O

Since there are multiple execution paths for a CREL program, we need to define the correctness
of our execution.

Definition 2 A CREL program is correct if and only if all eligible serial execution paths reach correct
terminal states. O

In order identify serializability, or thelack of it, among parallel rule frings, we use the following
dependency graph to facilitate the analysis.

2.2 Bipartite Data Dependency Graph

The bipartite data dependency graph adopted from Ishida and Stolfo[7] can be used to express the
interactions among rules and working memory elements. A mutual exclusion dependency rela-
tion occurs when there are conflicts between rules in accessing the same data. A mutual exclusion
dependency graph G, is defined as G, = (V, E') where

4

)
=={C ...) --> action list)

(P P2
B.)
(C.)-->(modify C...)
(modify B ...})

A

Figure 1: A bipartite data dependency graph example.

Nodes V can be classified into rule-nodes and object-nodes as:

Rules
Rules correspond to rule-nodes, represented by “circle”(()) symbols in graph G».

Objects :
A working memory object is a unit of data, referenced or updated by production rules.
A set of pattern equivalent object nodes are represented by “square” (O) symbols in graph

G-

Edges E represent the types of data dependency relations between objects and rules. Edges
can be further classified into “referenced” and “changed” types of edges as:

(+/-) referenced

A type of edges from object-nodes to rule-nodes. A referenced edge is drawn from
a working memory object Oj to a rule P; if working memory object O; appears in the
the LHS of rule P;. The edge carries a positive(negative) sign if O; appears in P;’s
positive(negative) condition elements.

(+/-) changed

A type of edges from rule-nodes to object-nodes. A changed edge is drawn from a
rule P; to a working memory object O; if the working memory object O; appears in the
the RHS of rule P;. The edge carries a positive sign if O; appears in P;’s make action
elements. The edge carries a negative sign if O; appears in P;’s modify or remove
action elements.

Figure 1 gives an example of how to construct such a bipartite data dependency graph, where
rule P; has a positive reference to data object W, (class A) and data object W5 (class B). P, also has
a negative reference to data object W3 (class C). Rule P, on the other hand, has a positive reference
and a negative change to object 1¥; and a positive reference to object W3. Figure 1 also illustrates
cases of interferences between two rules P; and P;.

Figure 2: Example of Mutual Exclusions

2.3 Mutual Exclusion Set

A mutual exclusion set is defined to be a set of rules that cannot be statically determined to be
executable in parallel. In other words, parallel firing of all rules in the same mutual exclusion
set cannot be serialized. In order to compute the mutual exclusion sets, we need to identify the
conditions prohibiting the serializability of multiple rule firing. A synchronization set of a rule
is the closure of the rule over the mutual exclusion sets. The following two cases identify the
possible situations where firing of one rule invalidates instantiations from the other rules (using
the bipartite data dependency graph representation):

A PEW SR
Rule P, is deleting or modifying an object (1), which is also positively referenced by rule
P,. In other words, the firing of P, may delete some entries of W1, which in turn is part of
the current conflict set of P.

® PEWi &P
Rule P, is making an object (W3), which is also negatively referenced by rule P;. In other
words, the firing of P; creates some entries of Wy, which in turn may invalidate some in-
stances of P1 conflict set due to negative reference.

Definition 3 Cases (A) and (B) described above are defined as two types of interference between rules Py
and Py, meaning the firing of one rule (P,) interferes the match work of the other (Py). O

Given a pair of rules P; and P, only a single one of the two cases above will not constitute a seri-
alizability problem since for parallel execution {P, || P,}, a valid serial execution such as { 1, P»}
still exists while { P, P1} is not a valid one.

Therefore, the two types of interference impose a total ordering on the serial execution ordering
of the rules involved in the interference. If interference exists between Py and P, suchas (P &
W; & P,), any valid serial execution should follow the ordering that Py proceeds P». Notice that
such ordering is transitive.

The following algorithm can be used to compute all mutual exclusion sets in a production
system:

Algorithm 1 Given a bipartite data dependency graph G, of a production system, traverse G, starting
from any rule-node. A mutual exclusion set is formed if and only if

1 the mutual exclusion set forms a minimum cycle in G ,, and

2 there are conflicts in the serial ordering of all rules in the cycle due to interferences. O

Figure 2 gives examples of opposite cases of cycles where rules within clusters are mutually ex-
clusive, while the cycle between P, P», Ps, and P4 does not constitute a mutual exclusion set.

Theorem 1 Parallel firing of all rules in a mutual exclusion set is not serializable without run—time check-
ing.

Proof: Given a mutual exclusion set {P1,..., Pxv}, we first prove by the case where N, the size
of the mutual exclusion set, is 2. For N=2, assuming the two conflicting instances of interferences
are (P & W3 & PYand (P, < W P, we prove that for all possible instantiations from the
conflict set, without run—time checking, there exists no valid serial execution of { P1, P;} such that
Py proceeds P, and P; proceeds P; simultaneously. '

Assume at time t=0 the conflict set is C'So = C'S§ U C' 53, where C S} and C 52 are the subsets of
conflict set from rule P; and P, respectively. To insure serializability without run—time checking,
a parallel firing of any pair of instantiations,{/1, Io}, from {C 53, C 53} should be serializable.

Let A7 and A, be the RHSs of rule P; and Py, and let conflict set C'S; represent the state of the
system at cycle i. The effect of individually firing of I1, I is

Acs? = Ay(Ih) and

Nest = Ax(I)

where Acs! and Acs? are the updates to the conflict set from the firings of the other rule. Since
interferences exist between P; and P, in both directions, without run—time checking, interference

(P, = W1 & P,) implies Acs' # 0 and (P, = W3 & Pp) implies Acs? # (. The new state of the
system, after parallel firing of {h,I;},1s

C81 = (CS§ — Des YU (CS3 — Acs?)
On the other hand, for serial firing of {I1, I}, the changes of state variable is?

CSo <L [C81 = CSp — Acs?] 25 [CSy = CSy — Acs'™]

2Notice again the cycle count index!

Figure 3: The example used in Theorem 3.

Again without run~time checking, Aces? # § due to interferences from P to P, thus a partic-
ular instantiation I may be removed from C S1 before I even being selected for firing. The same
analogy goes to the cases of {I, I1}, thus concludes the proof of N=2.

In the general case where the mutual exclusionsetis { Py, ..., Py} and the cycle in dependency
is
pEewiE R SW,. & Py
the same analogy can be made that any serialized execution of instances from all rules in
{P1,..., Py} will invalidate some of these instances along the serial execution due to the cycle of
interferences. O

Theorem 1 establishes the basis for parallel rule firings of production system programs. To
correctly execute multiple rule firing, we have to first compute the mutual exclusion sets using
Algorithm 1, and then repeat the execution cycle where selections from the conflict set satisfy the
mutual exclusion constraints, i.e., selection of multiple rules from the same mutual exclusion set
should not form a cycle with conflicting interferences.

Theorem 2 A correct CREL program is guaranteed to reach a correct terminal state under the execution
scheme described above.

Proof: From Theorem 1, we know all parallel rule firings of the same mutual exclusion set con-
firming the mutual exclusion constraints and are serializable. As for parallel firings of rules across
multiple mutual exclusion sets, since there exists no cycle with conflicting interference between
rules from different mutual exclusion sets, any arbitrary interleaving of these rules is a valid serial
execution. Thus, any parallel execution confirming the execution scheme is serializable.

From Definition 2, any serial paths in a correct CREL program is guaranteed to reach a correct
terminal state, thus the serial execution corresponding to the parallel execution is also assured to
reach a correct terminal state. o

2.4 Global vs. Local Synchronization

Given parallel execution, If we carefully examine the process of finding a valid serial execution
path in that execution, there exists no sequencing constraint on rules that do not interfere with one
another. Thus, we can relax the requirement of all rules be synchronized globally. Among rules
interfering with each other, however, synchronization is still required to insure the correctness of
parallel execution.

Theorem 3 A parallel execution which observes mutual exclusion constraints as defined in Theorem 2 and
has asynchronous execution cycles among mutual exclusion sets always reaches a correct terminal state if
the given CREL program is correct.

Proof: The correctness part can be derived from Definition 2, so we only need to prove that
such parallel execution is always serializable. Without loss of generality®, we assume the system
contains two mutual exclusion sets, M7 and My, as illustrated in Figure 3. The mutual exclusion
constraints exists between P; P; and P} P pairs.

Any parallel execution without global synchronization between M7 and M can be expressed as a
regular expression *
E=(F|F) || (B | B)

meaning the execution path can be arbitrary occurrences of one rule from each set of M7 and M>. It
can be shown that E is serializable since there is no constraint between rules from different mutual
exclusion sets, not to mention the number of occurrences. O

We define a Synchronization Set as a set of rules where global synchronization is needed to
insure serializability. From the proof of 3, it can be shown that a synchronization set is the maxi-
mum cycle among mutual exclusion sets where all synchronization is needed. Also note that the
class relation of Synchronization Set is transitive. This guarantees the property that the partitions
of rules by Synchronization Set are mutually exclusive, which is crucial to our mapping and load
balancing strategy.

The implications of Theorem 3 are that global synchronization among execution cycles is no
longer required to insure the correctness of the execution model, and that the effect of large match—
time variances on overall system utilization can be reduced to a minimum. Such observation can
also help the scheduling/mapping problem by condensing the computation graph into clusters
of mutual exclusion sets where synchronization boundaries meet with rule partitions boundaries.

3 Optimizing Transformations

3.1 Control Variables

In writing production system programs, a common strategy called “secret-messaging” [13]is used
to emulate the block structures in conventional languages. Such a strategy uses a designated class,

3This will also be true for cases of more than two synchronization sets.

9

...

Rules: (PPl
{A ~al <x> 2a2= constl}
B 2bl <y> b2 <z> }-->
{modify 2 Ab2 [Fl<z>+<y>])]}

rPr2
{A "aZ=consi2)
(B Ab3=<u>]) -->
{modify 1 a2 const3 })

e e o 0 e S e 2 0 42 B T e o e e 2 2 5 0 0 K B B B B S 0 Y B 0 5 " 2 o e o 0 2 5 e o 1 e e e 5

T
0 T P A P A A A S

4
¢
4
4
ks
H
]
4
¥
i
4
[}
E
q
4
4
L]
4
]
4
4
4
¢
¥
¢
¢
4
4
é
4
¢
§
¢
i
é
4
4
]
4
L]
¢
4
¢
[}
é
4
¢
]
é
¢
4
]
é
¢
d
[}
¢
¢
¢
¢
]
[}
[}
[}
¢
]
4
é
¢
4
[}
¢
¢
¢
4
4
é
4
¥
¢
¢
]
¢
I
¢
¢
¥
i
i
¥
i
4
i
4
4
4
4
¢
i
¢
]
H
¢
é
¢
¢
¢
4
i
]
]
i

Figure 4: An Example Tranformation by Constant Propagation and Detecting Disjoint Attribute
Sets

(usually named goal), to constrain the range of active rules to a certain set so that different stages
of problem solving are partitioned into different sets of rules. In general programs that use secret
messages have only one such message in existence at a time, thus forcing disjunctive sets of rules
to be active at any one time. When we can identify classes that represent secret messages we can
eliminate those graph edges that represent dependencies between disjoint subsets.* We call this
transform control-variable smart (CVS).

3.2 Constant Propagation and Hash Partitioning

Ishida and Stolfo’s earlier work on forming dependency graphs of OPS5 systems used only the
record/class type to form pattern equivalent sets of working memory elements, represented by
squares. However, additional constants in the patterns may be used to create finer sets of working
memory with which to develop the dependency graphs and thus reduce the connectivity of the
graph. We have identified several transformations that introduce additional constants and thus
divide the square nodes in the graph. The first is constant propagation. In OPS5 the RHS mod-
ify command may specify a subset set of the attributes of a working memory element matched

“Currently we use pragmas to determine the presence of goal elements.

10

on the LHS. Those constants appearing in the LHS and not modified by the RHS may be safely
propagated to the square representing the newly modified working memory element. Second,
if condition elements access disjoint attributes of the working memory we can represent those
working memory elements as disjoint.

Figure 4 illustrates the partitioning of a dependency graph as a result of constant propagation
and detection of disjoint attribute sets.

When additional constants can not be determined through constant propagation the pattern
equivalent sets of working memory may be partitioned using hash functions. This technique,
called copy-and-constrain, has already been used to increase the discernible parallelism in pro-
duction system programs.[14, 12, 15] The basic idea is to find a convenient variable in the LHS of
the rule and to hash its domain into a number of disjoint sets. The representation of the rules that
access the partition working memory set are replicated once for each partition. If the variable is
selected correctly the rule copies may result in additional synchronization sets.

4 Preliminary Results

4.1 Benchmarks

We have completed software to generate dependency graph representations of rule systems, to
perform mutual exclusion analysis and form rule clusters and to apply our optimizing transforms.
The transforms are enumerated as follows

1. Propagating LHS constants into RHS.
2. Find out disjoint attributes among CEs.
3. Control Variable Smart. (CVS)

4. Constrained Copying with Propagation. (CCP)

In the table, the first column lists the benchmark program. The three entries with CCP are cases
where techniques of CCP is applied to LIFE-NR (life-nr-4) and TORUWALTZ (toru3 and toru4).
The second column lists the total number of rules in a system. The 3rd column belongs to depen-
dency analysis without tracing control variable. The results are expressed as pairs, (x,y), where x
is the number of clusters and y is the maximum number of rules per cluster. The number of clus-
ters in a system gives us a sense of the parallelism in the system and the max. number of rules in
a cluster can usually show whether the system is heavily concentrated in some dominant clusters.
The 4th through 7th columns are cases where various combinations of transformations are taken
into consideration. For instance, without control variable, the dependency analysis on Rubik (No.
8) generates 11 clusters, while the largest cluster contains 54 rules. With control variable, the same
Rubik program can be partitioned into 18 clusters, while the largest cluster contains only 13 rules.

11

r Compile-Time Dependency Analysis (# Clusters, Max # Rules per Cluster g

Program # of rules | No Optimization | Optimization
1 2 1+2 1+2+3
Life-NR 10 (3,8) 3,8) 3,8 (3,8) (8,2)
Life-NR-4
(with CCPx4) 18 (3,16 (3,16) | 3,16) | 316) | (142)
Tourney 16 2,9) 4,8) 2.9 115 | (13,4
Waltz 32 (3,30) (528 | (330 | (528 | (111 8)
Toru-Waltz 27 (226 | @260 | @260 | 424 | 429
Toru-Waltz-3
(with CCPx3) 63 (2,62) (2,62) | (2,62) | 429 (4,24)
Toru-Waltz-4
(with CCPx4) 99 (3,85) (385) | (385 | (724 | (7.24)
Rubik 66 (2,64) 4,60) | 2,64) | (11,54) | (18,13)
Judge 245 (48,41) (48,41) | (48,41) | (58,31) | (60,26)

As we can see from the table, the performance of a particular optimization depends heavily
on the nature of the problem itself, as well as the programming style involved. For instance, Opti-
mization (1) performs well in cases like Tourney and Rubik, but notin Life, Judge, etc. The second
observation is that combinations of (1) and (2) improve the connectivity of the systems slightly. We
believe the reason is that optimizations (1) and (2) canidentify disjoint rule subsets when there are
many unbounded variables. Notice that the combination of (1), (2), and (3) can usually produce
vast improvements in graph connectivity.

In terms of CCP results, the Table shows results of applying CCP on LIFE with the hash size
of 4(life-nr-4), on ToruWaltz with two different free variables with hash sizes of 3and 4 each. To
decide the criteria of choosing a good variable to perform CCP is difficult and we are looking into
this area. ‘

Note that we did not present these preliminary results in terms of “speedup” or “degree of
parallelism” because the computation cost of a rule is not included in the static analysis, thus it
can not be justified that we can derive some real speedup numbers from the static analysis. What
this table does show is that by combining various techniques discussed in this paper, we can have
a balanced computation graph for load-time task assignment and asynchronous executionamong
different clusters. Any imbalance between clusters, be it in a single rule cluster or in the cluster
with max. number of rules, will be taken into consideration during load-time task assignment,
where computation and communication costs will be associated with clusters. Run-time load
balancing will also reduce such imbalance.

12

5 Future Work

Implementation of the compiled CREL system with asynchronous parallel execution on shared
memory multi-processor systems (Sequent Symmetry) is currently underway. Future work in-
cludes behavior analysis of the CREL system, load-time cluster scheduling, and run-time load

balancing.

References

[1] Allenand Kennedy. Automatic translation of fortran programs to vector form. ACM TOPLAS,
9(4), October 1987.

[2] P. A.Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

[3] K.M. Chandy and]. Misra. Parallel Program Design: A Foundation. Addison Wesley, Reading,
Massachusetts, 1988.

[4] C.L.Forgy. Ops5 user’s manual. Technical Report CMU-CS-81-135, Department of Computer
Science, Carnegie Mellon University, July 1981.

[5] A.Gupta. Measurements on production systems. Technical report, Carnegie-Mellon Univer-
sity, 1984.

[6] T. Ishida and S. J. Stolfo. Toward the Parallel Execution of Rules in Production Systems Pro-
grams. In Proceedings of the IEEE International Conference on Parallel Processing, pages 568—-575.
IEEE, 1985.

[7] ToruIshida and Salvatore J. Stolfo. Simultaneous firing of production rules on tree structured
machines. ICPP, 84. Perform dependency analysis and concludes with synchronization set
for multiple firings

[8] B. J. Lofaso Jr. On Join Optimization for an OPS5 Compiler. Master’s thesis, Unviersity of
Texas at Austin, 1988.)

'[9] H.E Korth and A. Silberschatz. Database System Concepts. McGraw-Hill, 1986.

[10] Russell C. Mills. An Algorthimic Taxonomy of Production System Machines. Technical Re-
port CUCS-340-88, Columbia University, Computer Science Department, April 1988.

[11] Daniel P. Miranker. TREAT:A Better Match Algorithm for Al Production Systems. In Pro-
ceedings of the National Conference on Artificial Intelligence. American Association for Artificial
Intelligence, August 1987.

[12] A.Pasik and S.J. Stolfo. Improving Production System Performance on Parallel Architectures
by Creating Constrained Copies of Rules. Technical report, Columbia University, 1987.

13

[13] Alexander J. Pasik. A methodology for programming production systems and its implemen-
tations on parallelism. Technical report, Columbia University, Department of C5, 1988. Ph.D.

Thesis Proposal.

[14] S.J. Stolfo, D.P. Miranker, and R. Mills. A Simple Preprocessing Scheme to Extract and Load
Balance Implicit Parallelism in the Concurrent Match of Production Rules. In Proceedings of
the AFIPS Symposium on Fifth Generation Computing. AFIPS, 1985.

[15] Eugene Wong and K. Youssefi. Decomposition —a strategy for query processing. ACM Trans.
on DataBase Systems, 1(3), Sep 1976. methodology of Tuple Substitution !

14

