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ABSTRACT

In the past decade highly successful algebraic methods for mechanical geometry theorem
proving have been developed. The first step in these methods is to assign (variable) coordinates
to key points, and then translate the hypotheses and conclusion of a geometric proposition into
(multivariate) polynomial equations and inequalities, Next, the algebraic provers apply either the
“Wu-Ritt” or “Grébner Basis” method to analyze zeros of polynomials. To date, the manner in
which the Wu-Ritt and Grébner Basis methods have been employed has limited the algebraic
provers to propositions that can be encoded entirely with polynomial equations, i.e. without
inequalities. In this paper we explore two techniques for extending Wu-Ritt and Grobner provers
to handle propositions involving inequalities: reduction of polynomials to canonical form modulo
a (polynomial) ideal, and the Rabinowitsch/Seidenberg device of converting (polynomial)
inequalities to equations by introducing new variables. We illustrate the practical value of these
techniques by numerous examples of their use in conjunction with a Wu-Ritt prover.
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i. Introduction

In 1977 Wu Wen-tsiin introduced an algebraic method that he used to prove quite nontrivial
theorems of Euclidean geometry [33]. Wu's own further investigations of the method ([35],
[34]), which we refer to as the Wu-Ritt method in this paper, have yielded proofs of numerous
statements in both unordered and ordered geometries. The method is most clearly applicable
to geometric propositions in which all variables are universally quantified, and whose algebraic
encodings involve polynomial equations and inequations! (as opposed to inequalities). The Wu—
Ritt method is complete for such statements in geometries whose associated fields are algebraically
closed. In ordered geometries, whose associated fields are not algebraically closed, it can, in
general, only confirm such statements. However, it can disprove an ordered geometry assertion
provided the hypotheses have certain properties (e.g. they are “irreducible” and have real generic
solutions). These properties are explained fully in [13].

All told, hundreds of theorems of Euclidean geometry have been proved to date by the Wu-Ritt
method [6], [12], [13], [21], as well as numerous theorems from various non-Euclidean geometries
[9], [20], [22]. Yet in spite of its success for “universally quantified, equational” propositions, it has
so far seemed unable to handle geometric statements involving existential quantifiers (although
[25] offers some preliminary ideas on this issue) or inequalities. A typical example of a statement
involving inequalities is: “in a triangle, a greater side is opposite to a greater angle”.

Besides the Wu-Ritt method, there are also algebraic methods for geometry theorem proving
that rely on Grobner Bases [3], [5]. The success of these methods for “universally quantified,
equational” propositions has been similar to that of the Wu-Ritt method, as has their confinement
so far to “universally quantified, equational” propositions. On the other hand, Tarski’s decision
procedure for real closed fields [31] gives a complete algorithm for proving or disproving (i.e.
deciding) any statement (including one involving inequalities and existential quantifiers) in what
Tarski called “elementary geometry” [32]. But in spite of the discovery of new and much more
efficient decision procedures for real closed fields by G. Collins [18]and others, this approach
(and its implementations) needs further improvement to be able to prove a significant number of
nontrivial geometry theorems in practice.? For the interested reader, we note that [4] provides a
“one-stop” survey of the Wu-Ritt method, Grébner Bases, and the Collins method.

The present paper explores two techniques for proving (universally quantified) geometric state-
ments whose algebraic formulations involve inequalities: reduction of polynomials to canonical
form modulo a (polynomial) ideal, and the Rabinowitsch/Seidenberg device of converting (poly-
nomial) inequalities to equations by introducing new variables. Of course, the statements that
come within the scope of these techniques are a proper subset of those amenable to a decision
procedure for real closed fields. But for those statements that we can treat (and which hap-
pen to be true), our techniques often lead to straightforward confirmations, in which the major
component (of the actual computation) is an application of the Wu-Ritt method to a subsidiary
problem. For example, in an application of the “reduction to canonical form” technique, the
work remaining after completion of the Wu-Ritt method may be only to certify the definiteness

L An inequationis an instance of the “” relation; an inequalily is an instance of any of the “<”, “>7
, “<7 or “27 relations.

2 We remark however that solutions of nontrivial quantifier elimination problems of elementary geometry
and algebra have recently been obtained using an implementation of Collins’ method. See [1], [2], and
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of some “critical” polynomial, and this definiteness may turn out either to be evident, or provable
by an easy application of a decision procedure (such as Collins’).

The present paper seems to be the first published investigation of the reduction to canonical
form technique for proving statements involving inequalities. The Rabinowitsch device (for in-
equations only) originated in the 1930’s in the proof of Hilbert’s Nullstellensatz. It was first used
in geometry theorem proving (for statements involving equations) by Chou and Schelter [16] and
Kapur [24]. Most recently it has been used by Kutzler [27]. Seidenberg “extended” Rabinow-
itsch’s device to inequalities, as part of his improved (over Tarski’s) decision procedure for real
closed fields [30]. Seidenberg’s device was first used in geometry theorem proving (for statements
with inequalities) by Wu (see Section 5.3 of [34], and also [35]) and Chou (see Chapter 5 of [7] and
[11]), and subsequently by Kapur and Mundy [26]. Since for our purposes in this paper we do not
need to distinguish the two forms of the device, we call it simply the “Rabinowitsch/Seidenberg”
device.

Although the prior work we have cited contains various examples and ruminations relating to
proofs of statements involving inequalities, it may fairly be said that the present paper is the
first attempt to tackle the subject in a comprehensive fashion. We note that Wu has recently
proposed techniques different from those of the present paper, which, though incomplete in many
respects, can be used to prove quite a few nontrivial theorems involving inequalities with certain
human interactions [37].

The examples and empirical experience we report with our techniques in this paper have
all used a Wu-Ritt prover, but there are natural and evident variations of them for use in
conjunction with a Grébner Basis prover. An investigation of the use of (suitable variations of )
our techniques in conjunction with a Grobner Basis prover should be undertaken. In point of
fact, since we already use the Grobner Basis algorithm for reduction of polynomials to canonical
form modulo an ideal, the present paper may be said to offer an approach to the mechanical
proof of geometry theorems involving inequalities that blends the Wu-Ritt, Grobner Basis, and
Collins methods.

In Section 2 we will specify the geometric statements that fall within our scope and partition
them into four categories. These categories are the 2 x 2 possible combinations of (hypotheses
are/are not equations) and (conclusion is/is not an equation). We accordingly label them EE, IE,
EI, and II. In Section 3 we review the treatment of type EE statements by the original Wu-Ritt
method, thereby establishing the framework for the application of our two “inequality” techniques
to proofs of EI, IE and IE statements. In Section 4 we illustrate the use of our techniques in
proofs of EI and II statements, and in Section 5 we consider IE situations, In Section 6 we offer
some concluding observations. The Appendix explains the Wu-Ritt method in some detail. In
particular, it presents the modified form of the Wu-Ritt method that is implemented by our
computer programs.

2. Categories of Geometric Statements

We wish to address geometric statements of the following algebraic form in ordered geometries:
(2.1) Vo, (H = C),

where H is a set of polynomial equations and inequalities in variables (coordinates) v, ..., v, and



4

C is a polynomial equation or inequality of rational functions in v1,..., Vs 23 Formulation (2.1) is
not complete because it does not provide for additional nondegeneracy (or subsidiary) conditions
in the hypotheses, which typically are required for the statement to be true. If we distinguish
independent variables (parameters) and dependent variables among the v;, it becomes possible
to identify these nondegeneracy conditions. In this paper, as in the Wu-Ritt method, we will so
partition variables into these two classes. See Section 3 for details on how this is done, and on
certain unavoidable issues that arise in doing so. We will use g, ..., ug to denote the parameters
and z,...,%, to denote the dependent variables.

Definition (2.2). Let S be a geometric statement whose algebraic form is (2.1).

(A)If H contains only equations and C is also an equation, then we call S a geometric statement
of type EE.

(B) If H contains only equations and C is an inequality, then we call S5 a geometric statement
of type EL

(C) If H contains equations as well as inequalities and C is an equation, then we call S a
geometric statement of type IE.

(D) If H contains equations as well as inequalities and C is an inequality, then we call S a
geometric statement of type II.

In cases (C) and (D), the set of all equations in H is called the equality (equation) part of the
hypotheses, and the set of all inequalities in H is called the inequality part of the hypotheses.

3. Proving Statements of Type EE

In this Section we consider in more detail the algebraic formulation of geometric statements
of type EE, and the two essentially different approaches to the mechanical confirmation of such
statements that have been utilized to date. The the original method developed by Wu [33] [34]
is an instance of the first approach, and so in the course of a discussion of the first approach
in Sections 3.1 and 3.2 we will sketch its main features. In Section 3.3 we examine the second
approach. The reader who is familiar with these matters can skip this section. The reader who
wishes a more detailed presentation can consult [34], [13], [17], [15].

As in Section 2, EE statements are those which can be algebraically expressed as
(3.1) Vo, € F(H = g =0),

where H = {h; = 0,...,h, = 0} is a set (conjunction) of polynomial equations in the variables
V1, .. U} g is also a polynomial equation in the variables v; F' is the field associated with the
given geometry. We here assume that F' is an algebraically closed field containing Q; we will
specifically discuss the case when F is the field of real numbers R in Section 3.2.

Formula (3.1) can be equivalently expressed as:

(3.2) Zero(H) C Zero(g),

3 The coefficients of all polynomials occurring in H and C are in @, the field of rational numbers.
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Here Zero( H)* denotes the common zeros of hy,...,hy in the field F',ie.,
Zero(H) = {(v1, e v0) € F" | hi(v1,.0iv0) =0 for i =1, s Qe

As we have already said, (3.1) or (3.2) is generally not an exact algebraic formulation of the
original geometric statement, because nondegeneracy conditions usually need still to be added to
the hypotheses before the statement can be confirmed. Unfortunately, suitable nondegeneracy
conditions are often not obvious. For a given geometric proposition, a nondegeneracy condition
that is obvious to one person might not be obvious to a second, and a third person might refuse
to accept the condition as relevant or appropriate. A further complication, especially since much
of the activity in mechanical geometry theorem proving to date has been directed at propositions
that are well known, is the fact that most traditional geometry textbooks ignore the possible
need to add nondegeneracy conditions to the hypotheses of the theorems they prove. A final
difficulty is the fact that seemingly artificial nondegeneracy conditions must sometimes be added
for the Wu-Ritt method, or the Grébner Bases methods, to confirm a statement.

The two essentially different approaches to confirmation of geometric statements that we men-
tioned above arise as two different ways of dealing with the matter of nondegeneracy conditions:

Approach (1). Introduce parameters, dependent variables, and the notion of a “generally
true” statement, and (attempt to) prove (given) geometric statements to be generally true.
Nondegeneracy conditions are automatically constructed during the proof process.

Approach (2). Explicit nondegeneracy conditions must be added to the (hypotheses of the)
algebraic formulation of the geometric statement to be proved before the prover is invoked. Thus
it is the task of a person, or some program, to “find”, i.e. “propose”, nondegeneracy conditions.
Then the prover need only determine whether the conclusion follows from the hypothesis, and
need not produce nondegeneracy conditions. If the prover fails to confirm a statement with
the supplied nondegeneracy conditions, one can “go back to the drawing board”, propose new
nondegeneracy conditions, and run the prover again.

In this paper we use the first approach, which we now examine briefly in the next two Sections.
For more detailed discussions and examples, see [17], [13], and [15].

3.1. Approach (1)

With approach (1), the first thing is to determine the parameters. For a given geometric
statement, the selection of the parameters is not unique, but is determined by the meaning of
the statement. The parameters are to be those variables that can take on arbitrary, i.e. general,
values. The dependent variables are the remaining variables, whose values for any particular
choice of parameter values are determined by the hypothesis set H of polynomial equations.

According to a fundamental theorem in algebraic geometry, the algebraic set Zero(H ) can be
decomposed into (irredundant) irreducible components:

(3.3) Zero(H) =V U---uV U VIR yidese,

4 Yere H denotes the polynomial set {hh ..,,fzq}. In this paper, the notation for a set of polynomial
equations {or inequalities) can denote its corresponding polynomial set (and vice versa), depending on

the context.
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where V,...,V*, ¢ > 0, are all those components of dimension d on which the parameters u
are algebraically independent. A necessary algebraic criterion for the correctness of a particular
choice of parameters u, ..., %4 is:

Criterion (3.4). (1) ¢ > 0, ie., there is at least one component with dimension d on which
the parameters u;,...,us are algebraically independent, and (2) Zero(H) does not contain a
component of dimension > d on which the u are algebraically independent.

In the remainder of this paper we always assume that this algebraic Criterion holds. Thus, the
u are algebraically dependent on all Videge, 5

Now it is clear that all V;* correspond to nondegenerate cases of the geometric configuration
given by H and all Videg‘e correspond to degenerate cases of the given configuration. We call them
nondegenerate components (cases) and degenerate components (cases), respectively. Usually, we
don’t care whether the conclusion is valid in the degenerate cases; it may, for example, be the
case that the geometric problem is meaningless in the degenerate cases. We can now sharpen
(3.1) or (3.2) as follows: what we actually wish to establish, in order to prove a given proposition,
is that

VFU---UV}) C Zero(g),

i.e., whether g = 0 is valid on all the nondegenerate cases. If it is, then we say that the geometric
statement is generally true.

As we know, the Ritt—-Wu Decomposition Algorithm ([29], [34], [36], [13], [15]; see also Section
4 of the Appendix) realizes Decomposition (3.3). For any ascending chain ASC let us define
PD(ASC) = {g | prem(g, ASC) = 0}

(see the Appendix for definitions assumed here). If ASC is irreducible, PD(ASC) is a prime
ideal having the ascending chain ASC as an irreducible characteristic set. The Ritt—Wu Decom-
position Algorithm realizes Decomposition (3.3) as follows: for ¢ = 1,..,¢,7 = 1,...,1, there
are irreducible ascending chains ASC; and ASC;, such that V = Zero(PD(ASCY})) and

deege = Zero(PD(ASCjege)). Recall that each ascending chain ASC{®®° contains at least a
nonzero polynomial involving the u only, and that all ASC} have the following form:

fl(ul,n-,udafﬂl)

Folug, ..., uq,21,22)
(3.5)

Frltg, oo g, @1y ey Tr )
Thus we have:

Method (3.6). for Deciding a Type EE Statement to be Generally True. To decide whether a
type EE geometric statement is generally true is equivalent to deciding whether Zero( PD(ASCY))
C Zero(g), i.e., whether prem(g; ASC!)=0for alli=1,...,c. .QED.

5 Tor completeness, we note here two rather subtle facts: (1) Criterion (3.4} is a necessary but not a
. cpe . . d
sufficient condition for the parameters Uy,..., %y to be correctly chosen in geometry. 2y A ?; 8% can

have dimension > d.



Almost all of the 512 examples in [13] are irreducible in the sense that there is only one non-
degenerate component (i.e., c = 1). We call such a geometric statement an irreducible statement,
and its equation part H irreducible. For a given equation part H, such irreducibility depends
on the choice of the parameters. Having chosen parameters, one can quickly obtain their corre-
sponding ascending chains ASC} by the “triangulation” algorithm of the Wu-Ritt method (see
Section 3 of the Appendix). Depending on the problems, the computer time for calculation of
prem(g; ASC}) usually ranges from a fraction of one second to several minutes.

The general truth of g = 0 is independent of the particular algebraically closed field F. In
other words, ¢ = 0 is generally true in one algebraically closed field F if and only if it is also
generally true in any other algebraically closed field. This can be seen from (3.6). Actually we
have the following theorem:

Theorem (3.7). g = 0 is generally true under H and the parameters u if and only if there is a
nonzero polynomial s involving the u only (we will call such a polynomial a u—polynomial), such
that s - ¢ € Radical(H). In that case, we have

(3.8) Vuz € E[(HAs#0)=g=0],

where F is any eztension (including R) of Q.

For the proof of the theorem, see p.49 of [13]. Actually, let s; be a u—polynomial in ASC*9°,
then s = s; --- & is the u-polynomial mentioned in the theorem. Conditions s; # 0,..., 8 # 0
are usually connected with nondegeneracy. This is an instance of how Approach (1) identifies

nondegeneracy conditions automatically.

The following two theorems give methods for deciding the “general validity” of a geometric
statements of type EE using Grébner Bases. Let 2 be a new variable other than the u and =z.

Theorem (3.9). g = 0is generally true under H and the parameters if and only if {Ay,..., Ry, g2—
1} generates the unit ideal in Q(u1, ..., ua)[71, oy Tpy 2]

Theorem (3.10). g = 0 is generally true under X and the parameters if and only if a Grébner
basis of {hy, ..., g, g7 — 1} (in Q[uy, ..., ua, 1, ..y @y, 2]) in a compatible ordering u < z contains
a u—polynomial.

For the proofs of these two theorems, see Chapter 5 of [13]. The initial idea of the method
based on Theorem (3.10) belongs to Kapur [24]. But Kapur’s method lacks a proper theoretical
basis, and can sometimes “confirm” a geometric statement which is not generally true. Theorem
(3.10) is due to Chou. The method based on (3.10) is geometrically sound. In practice, the
method based on (3.9) is generally much faster than that based on (3.10). Among 512 theorems
in [13] proved by the Wu-Ritt method, 477 have been also proved by the method based on (3.9),
with exactly the same polynomial equations and parameters as used with Wu’s method.

3.2. The Case When F is R.

Now we generalize Approach (1) to the case when F is the field of real numbers R. Let us
begin with two observations. First, if a geometry statement is proved to be generally true when
F is an algebraically closed field, then the statement is also generally true when F' is R. Second,
if (3.8) can be inferred with the methods based on approach (1) when F'is an algebraically closed
field, then (3.8) can be inferred by the same methods when F" is R. For details, see [17]or [13].
Thus the Wu-Ritt method can be used to confirm geometric statements in Euclidean geometry.



We next introduce the following notion.

Definition (3.11). A geometric configuration defined by H and the parameters u,...,ug is
said to be generic in R if each ASC} (i = 1,...,¢) has a zero p = (f,..., %, %1,... %) € R”,
with @,..., % algebraically independent. This is equivalent to the requirement that for each
ASCy (i = 1,...,c) there are open intervals O; (j = 1, ..,d) in R, such that whenever u; € O;,
j=1,...,d, ASC} has solutions for z;,...,z, in R.

We have the following theorem.

Theorem (3.12). For a generic statement in R, to decide whether it is generally true is equiv-
alent to deciding whether prem(g; ASC}) =0forall:=1,...;c.

Intuitively, a generic configuration corresponds to a diagram which can be drawn on a paper
(the real plane). Almost all geometric statements in geometry textbooks are generic. This is
the real reason why the Wu-Ritt method, which is complete only for complex geometry, is so
successful in confirming theorems in Euclidean geometry. Assuming a geometric configuration to
be generic, the Wu—Ritt method is also a method for disproving any assertions on that configu-
ration. However, to decide that a geometric configuration defined by H and parameters us, ..., uq
is generic is beyond the Wu-Ritt method.

3.3 Approach (2).

Tet D = {dy # 0,...,d, # 0} be the set of inequations corresponding to nondegeneracy
conditions specified manually. Approach (2) is to decide whether

Vo, € F[(H A D)= g=0].

Or in a equivalent form:

Zero(H|D) C Zero(g),

where Zero(H/D) denotes Zero(H) — Zero(D). In the light of Approach (1), D should usually
be chosen in such way that (1) V> U ... U V%8 C Zero(D); and (2) No V;* is a subset of
Zero(D), unless we want purposely to exclude some general case V*. Indeed, as we will see in
Section 5, one way that inequalities arise in geometry statements is precisely for the purpose
of excluding some general cases V;*. Thus, we can use a mixture of approaches (1) and (2) to
exclude such unwanted cases V;*. See Example 6 in Section 4.3.

4. Proving Type EI and Type II Statements

We divide this section into three subsections. In Section 4.1 we give a simple working example
to illustrate how we employ our techniques. In Section 4.2 we state a general “method” for
type EI and II statements that the example motivates. Section 4.3 provides additional examples,
presented in detail to enable others to experiment with them.

4.1, An Example of Type EI

Example (4.1). Let ABCD be a parallelogram. Show that points B and D are on either
side of diagonal AC (Figure 1).



A . B
Figure 1

This “trivial” fact is repeatedly used in traditional proofs of the properties of a parallelogram,
e.g., in proving the two diagonals bisect each other. However, it seems nontrivial to find a rigorous
traditional proof of this fact. (Try it!) This example can be specified as type EI as follows.

Let A = (0,0), B = (u1,0), C = (u2,us), and D = (22,21). Then we have two equations for
the hypotheses

hy =uyzy —uus =0 AB is parallel to CD
ho = uszy — (Uy — u1)z1 =0 AD is parallel to BC.

The conclusion that B and D are on either side of AC is g < 0, where g = (uzu1 —uz-0)(uszs —
UgZ1) = U USZ2 — Uy UgU3Ty. We want to decide whether the following statement is valid under
certain nondegeneracy conditions:

Yy us sz 2[(hy = 0A Ry = 0) = g < 0]

Here u;, us, us are selected to be parameters, and z; and z; are selected to be dependent variables.
Reducing ¢ to canonical form modulo the ideal (in Q(u)[z]) generated by hy and hs (this is
called the “canonical simplification” of g with respect to this ideal by [5]), we obtain g = —ufu3.
Alternatively, we could solve z; = %y, T2 = Uz — Uy and substitute the solution into g to get
g = —u?u2. This canonical form of g modulo the ideal is only valid under the conditions u; # 0
and us # 0; in other words, u; and us occur in the denominators of the elements ¢; and ¢; of
Q(u)[z] such that ¢ = ¢1hs + c2hs. Thus we have g < 0, under the condition that uyus # 0.
Note that u;us # 0 is indeed connected with nondegeneracy, i.e. to insure that points A, B and
C are not collinear.

4.2. Methods for Proving Type EI and II Statements

As for type EE statements, we first give an exact formulation of type EI statements. The
algebraic form for EI statements can be

(4.2) Vo, € F(H = g(u,z) > 0),

where H = {h; = 0,...,h, = 0} is a set of polynomial equations, and g is a rational function in
the variables v and z.

Definition (4.3). Let the notation be the same as before, let g(u,z) be a rational function
with D,(u,«) as the denominator; let d be a polynomial. g is said to be generally semi positive
definite under a set of equations H, d # 0 and the parameters us,...,uq if



(4.4) Vuz[((u,z) € Zero(PD(ASC})) A Dy(u,z) #0Nd#0
= g(u,z) > 0], for i=1,...c.

Here zeros of Zero( PD(ASC})) are from R. In that case we say that (4.2) is generally true under
d # 0. We can also define “generally positive definite”, replacing g > 0 by ¢ > 0. Similarly, we
can define “generally semi negative definite” and “generally negative definite”.

We now state a general “method” based on the above example. Without loss of generality, we
assume that g is asserted to be semi-definite.

Method (4.5). For Confirming Type EI statements lo be generally true.

First set polynomial d, which eventually expresses the nondegeneracy conditions of the problem,
to be 1.

Step 1. Use the Ritt—Wu Decomposition Algorithm (see (4.3) and (4.4) in the Appendix)
to decompose H to obtain all nondegenerate components with corresponding ascending chains
ASC?,..., ASCY. Since we only need nondegenerate components Zero(PD(ASC})), whenever a
u-polynomial U appears in a polynomial set to be further decomposed, we can stop decompo-
sition of that polynomial set further, setting d = d - U. This can speedup the original Ritt-Wu
algorithm greatly. We call this modified Ritt—-Wu Decomposition Algorithm the General Com-
ponent Decomposition Algorithm (see [13]).

Step 2. If the decomposition does not satisfy Criterion (3.4), stop the process. Something
might be wrong in specifying the problem or parameters.

Step 8. Reduce g{u,z) to canonical form modulo the ideal generated by each ascending chain
ASCy (with respect to the ring Q(u)[z]) to obtain a rational function g;(u,z). Such a reduction
of g was called the “evaluation” of g(u,) on PD(ASC}) in [8]. The g; are simplifications of g,
and hopefully contain the parameters only (this is indeed the case for almost all 35 examples in
[10]). We have

vuz[((u,2z) € Zero( PD(ASCY)) A d; #0) = g(u,z) = gi(u,z)], forall i=1,...c,

where each d; is some u—polynomial.

Step 4. To decide whether g;(u,z) is semi-definite on Zero(PD(ASC})) under d; # 0, we
can use Collins’ method. It is our intuition that the decision of the semi-definiteness of g; on
Zero(PD(ASC})) will be an easier problem. For example, in the linear case of ACS} (i.e., the
degree of each leading variable in ASCYT is 1), g; contains the parameters only, so g; should
be globally semi-definite, i.e., Vu € R(gi(u) 2 0) or Yu € R(g;(u) < 0). These latter sorts of
decisions we can expect to be relatively easy for the Collins method.

Step 5. If the problem is to decide whether g is generally definite under some inequation
d # 0, we can first confirm whether g is generally semi-definite. If so, we try to further confirm
that d # 0 = ¢; # 0 under PD(ASC}) and d; # 0.

Method (4.6). For Confirming Type II Statements to be Generally True.

Step 1. Use Seidenberg’s device for converting inequalities to equations by introducing new
auxiliary variables y;. For example, in 2 real closed field, A > 0 if and only if 3y(y*h — 1 = 0).
After this transformation, the hypothesis becomes a set of equations H', and the statement (2.1)
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becomes
Vu;z; [y H') = ¢ > 0]

This is equivalent to
‘v'ykung[ﬁ' = g > O},

because g is free of the variables y.

Step 2. We arrange the variables in the order y < u < z. In this order, some independent
variables will become dependent variables, renamed as . The last formula is of type EI, and we
can use the method (4.5) for type EI to tackle it.

Methods (4.5) and (4.6) turn out to be practical as illustrated by many nontrivial examples.
In the next subsection, we will give 6 examples to show how the methods can be used to prove
nontrivial theorems.

In Method (4.6), i.e. the II case, there is a potential concern that the new auxiliary variables
i, which obviously have no geometric significance, might appear in some nontrivial fashion in
nondegeneracy conditions. In our experience so far, e.g. as illustrated by the examples in Section
4.3, this has not occurred.

4.3. Examples of Type EI and II

Figure 2 Figure 3

Example 1 (Pasch). A line intersects the three sides BC, CA and AB of triangle ABC at D,
E and F, tespectively. If D is between B and C, and E is between C and A, then F is outside
segment AB (Figure 2).

We can let A = (0,0), B = (1:,0), C = (uz,us), D = (22,3:), £ = (z4,23), and F = (z5,0).
To express “D is between B and C” and “E is between C and A7, we can use (besides the equation
part) the inequalities (zy — u;)(us — 22) > 0 and (24 — u2 }(0 — z4) > 0, or alternatively, the
inequalities (z3—u1)/(us—23) > 0 and (24—0)/(us—z4) > 0, respectively. 6 Introducing two new
variables y; and y2, we can convert these two inequalities into equations {(z2 —us Yyi [(ua—2q)—1 =

5 We prefer the latter because it can reduce the degrees of leading variables. Besides, cancellation of

some commeon factors of denominators and numerators can reduce the sizes of polynomials.
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0 and (24 — 0)y2/(us —z4) —1 =0, or in polynomial forms, (y7 + 1)zs — u2 — y?u; = 0 and
(y2 + Dy —up = 0. 7 Thus the hypotheses can be expressed by the following set of equations
H:

hy = usy + (—us + u1)21 — wus =0 B, D and C are collinear
By = (42 + 1)@y — 4y —yiug =0 D is between B and C
hs = usZg — Uz = 0 A, F and C is collinear
hy=(y3+1)zs—u =0 E is between C and A
hs = (—23 + &1)%5 — T1Z4 + T2T3 = 0 D, E and F are collinear.

The conclusion that point F is outside segment AB can be expressed as zs(zs — uy) > 0, or
g = Qfs/(ivs _ul) > 0.

Using the General Component Decomposition Algorithm as stated in (4.5), ® we find that
Zero( H ) has only one nondegenerate component with the corresponding ascending chain ASCT =

fi=((02 + Dus — (¥7 4+ Dug )z — (v — U )us
fo= (¥ + Dag —uz — yim

fz = (¥3 + Duazs — usus

fa=(y5 + 1)z — U2

fo = (x5 — 21)T5 + T1%4 — T2T3.

Evaluating the expression g on PD(ASCY), we have g = y?/y2. The problem has been
reduced to deciding the positive-definiteness of expression y? /y2, which obviously can be detected
manually since y; # 0 and y, # 0.

Remark. In the above proof, we have used some nondegeneracy conditions, i.e., the leading
coefficients of the f; are nonzero. In this particular case, they are (37 + Dus — (y§ + L)uy # 0,
2 +1#0,92+1#0, and 25 — 2z, # 0. We will not list nondegeneracy conditions in the
subsequent examples, since we are using Approach (1) to confirm a geometric statement to be
generally true.

Example 2. Let O be a point, D = ABNOC,E=ACNOB, and FF= BCNOA. IHDis
between B and A, and E is between C and A, then F is between B and C (Figure 3).

Letting 4 = (0,0), B = (w,0), C = (ug,u3), D = (21,0), E = (22,33), O = (z4,25),
and F = (2¢,27), we have the following set of 7 equations: H = {hy = 0,...,h; = 0} for the
hypotheses and one inequality g <0 for the conclusion.

hy=(yi+ 1)z —u =0 D is between A and B
ho=(y2+ 1)z —uz =0 E is between A and C
hs = ugzz — Uz®y = 0 E, A and C are collinear
hs = (@9 — U1 )%s — TaTq + 13 = 0 QOison BFE
hs = (21 — ©2)%s5 + UsBy — UsTy = 0 Oison CD
he = 2427 — Ts2s = 0 Fison AO
hy = (—us + %1)%7 + usTs — U1t =0 Fis on BC
g =2+ (~us —u)ze +U1uz <0 Conclusion: F is between B and C.

7 Under Uy — 22 # 0 and Uy — T4 # 0, respectively.
® Selecting Y1, Yz, Uy, Ug and Ug to be parameters. In all subsequent examples, we have already renamed

the variables as stated in step 2 of Method (4.6). The ¥ and ¥ always form the parameter set.
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Using the General Component Decomposition Algorithm as stated in (4.5), we find Zero(H)
has only one nondegenerate component with the corresponding ascending chain ASCY =

fi=(y + 1z —w

fo=(93 + 1)z —

f3 = ugmz — us®y

fo= (=21 +u2)zs — Uy + Uy u3)Ts + (121 — U1U2 ) T3 + UsT1Ty — U UL
fs = (21 — u2)®s + u3Tq — Usly

fe= ((uz - ul)% - u3m4)x6 + U1 UzT4

fr = (—us + u1)2T7 + usTe — U1 Us3.

On PD(ASCY), g is evaluated to be g1 = —y3yi(ua —u1)* /(93 +y3)*, which is negative definite
if Uy — Uy # 0.

Example 3. Let CD and CE be the internal bisector and the median on the side AB of
triangle ABC, respectively. Then CD < CE (Figure 4).

Let C = (0,0), A = (u1,us), B = (21,22), D = (23,0), and £ = (z4,25). We can specify the
problem as follows

by = uy2g + U2z =0 C A is the reflection of CB wrpt z-axis
ho = —yizs —u2s =0 B and A are on either side of z-axis
hs = (=Zs + U2 )%z + U1 2Ty — uaz; =0 Dison AB
hy = =224+ 21 +u =0

hy = —225 + 9+ up =0 E is the midpoint of 4 and B
g=-—2i—22+23<0 Conclusion: CD < CE.

Using the General Component Decomposition Algorithm as stated in (4.5), we find Zero(H)
has only one nondegenerate component with the corresponding ascending chain ASCT =

fi = —yiuszy +usus

fa= —yfwz — Uz

fs = (=Z2 + u2)r3 + U1 Ty — U2y
fa= =224+ 21+

fs = —*2$5 -+ T -+ U

Evaluating g on PD(ASCY), we have

o= it 2y} + 1)uj + (yi + 697 + Du)( — 1)*(sn +1)°
dyi(yi +1)° ’

which is negative definite if yf # 1, meaning CA # CB.

To decide whether g; < 0, we used factorization. Since factorization is generally faster than de-
cision of definiteness. The following theorem is useful for deciding the definiteness of polynomials
produced by our method.

Theorem (4.7) Suppose polynomial f in variables u,,...,uq can be expressed as the product
of two polynomials g and h, where g and h have no common factors.

(1) Yu € R4(f > 0) if and only if
[Vu € R(h > 0) and Yu € R%(g > 0)] or
Vu € R4(h < 0) and Vu € R(g < 0)].
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(2) Vu € R4(f > 0) if and only if
Vu € R4(h > 0) and Yu € R%(g > 0)] or
[Vu € R4(h < 0) and Vu € R¥(g < 0)].

Proof. The proof of (1) is easy. Suppose Vu € R4(h > 0) or Vu € R¥(h < 0) is not true. Then
there are some wand v’ € R¢ such that A(u') < 0 and h(«”) > 0. Thus we can also conclude
that h{u) = 0 for some u € R4 by continuity of A. Thus f(u) = 0 for some u € R4, contradicting
the hypothesis.

To prove (2), we require that h and g be polynomials. First, note that the real algebraic variety
defined by z = A{uy, ..., ua) has no singular points, and hence is a smooth manifold of dimension
d in R4+1. (Actually the variety defined by z = h(%1,...,uq) is homeomorphic to R3)

We prove the assertion by contradiction. Suppose there exist v’ € R? and u” € R? such that
h(u') > 0 and h(u") < 0. Then there must exist neighborhoods, say, U’ and U” for v’ and ",
respectively, such that A{u) > 0 forall w € U’ and h(u) < 0 for all w € U”. Thus the intersection
of » = h and z = 0 must be a d — 1-dimensional variety, since z = h is a smooth manifold, and
contains d-dimensional neighborhoods on both sides of z = 0.

We shall prove that = 0 and g = 0 intersect in a d — 1-dimensional variety. Since z = h
passes through z = 0 from 2 < 0 to z > 0 in 2 d — 1-dimensional variety, then there exists a
point Q@ in R? such that ~(Q) = 0 and for each neighborhood W of @ there exist two points
Q' € W and Q" € W satisfying h(Q') > 0 R(Q") < 0. (Le. h changes sign at Q.) Then there is
a suitably small neighborhood W' of @ such that h = 0 and W' intersect in a d — 1-dimensional
set U and each point in U has the same property as the above Q (i.e., h changes sign at it). We
have: g must be zero on U. If this is not true then there is a point P in U such that g(P) # 0.
Without loss of generallity, assume g(P) > 0. Then thereis a neighborhood V for P such that
g > 0 on V. By the assumption of U, we have points P’ € V and P” € V such that h(P') >0
and A(P") < 0. Thus we get a contradiction: h(P")g(p") < 0. Thus the intersection of A = 0
and g = 0 contains a d — 1-dimensional set U. Then the d — 1 variety containing U must be
conatained in the intersection of h =0 and g = 0,i.e., h=0and g =0 have a d — 1-dimensional
variety in common.

Since h and ¢ have no common divisors, then their resultant 7(uy, ..., ug_1) With respect to ug
is not zero. This implies there is an algebraic relation among s, ...;Ua—1- We can prove similarly
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that there is a nontrivial algebraic relation among every d — 1 distinct variables of g, ..., uq4.
Hence the dimension of the intersection of A = 0 and g = 0 is less than 4 — 1. This contradicts
the fact that » = 0 and g = 0 intersect in a d — 1-dimensional variety. .QED.

Example 4. An inscribed quadrilateral of a convex quadrilateral is convex (Figure 5).

Let A = (0,0), B = (u;,0),C = (ug,u3), D = (z1,22), E = (23,0), F = (24,25),G = (z6,77),
and H = (zs,y). Then the hypotheses and conclusion can be specified as follows

hy = —tay + usz: + yiuiug =0 B and D are on either side of AC
ho = (—us + (95 + Du)xs + sy — uguz = 0
A and C are on either side of BD

hs =(y2 +1)z3 —u; =0 F is between A and B
hg = (Y2 + 1)xa — ug — yiu; =0 F is between B and C
hs = (uy — U1 )5 — uzTg + urtuz =0 Fison BC
he = (y2 +1)zg — 21 — yius =0 G is between C and D
hy = (21 — U2)®7 + (=22 + u3)T6 + 2Ty — Uz =0 Gison CD
hs = (y¢ + L)azs — ydz1 =0 H is between D and A
hg = —x1%0 + T225 =0 Hison DA

g = ((—z6 + 23)To + 2735 — T327)/((— 26 + 4)To + (T7 — T5)Ts — TaT7 + T5T5) > 0
Conclusion: F and F are on the same side of HG,

Using the General Component Decomposition Algorithm as stated in (4.5), we find Zero(H)
has only one nondegenerate component with the corresponding ascending chain ASCY =

fi= (62 + Duus)e + ((—vf — Du)us + (93 + Dyi)ed)us
fo = (—ua + (¥ + Duy)zs + uszy — w1Us

fs=(y5 +1)zs —w

fo= (Ui + Dea—uz — yiw

fs = (ug — v )Ts — UzTq + U1 U3

Jfe = (?fg +1)zs — 21 ~ Y3 us

fr= (21 —us)xr + (=% + u3)T + Uz Ty — UsTy

fo = (y2 + s — g3z

fo=—2129 + 22%s.

Evaluating g on PD(ASCY), we have

g = (weveys + yays)ys +vaysys + 1)ui + (v3 + Dyfys +95 + D(wa + 1)
((v2y2y: + D)ys + o3 + Dyi + (03 + Dysvdvs + (8 + Do)z + 1) 7

which is positive definite.

We have also used Methods (4.5) and (4.6) to prove many other theorems such as the altitude
(median) on a greater side of a triangle is smaller than the altitude (median) on a smaller side.
However, all these examples are linear in the sense that for the characteristic set f1,..., fr obtained
from hi, ..., hy, deg(fi,z;) = 1. Thus we can reduce the problems to deciding definiteness or semi-
definiteness of polynomials of the form g(y1,...,¥s,%1,..-,%a), such that there are no relations
among th y’s and u’s (neither equations nor inequalities). This is closely related to Hilbert’s 17th
problem. If, on the other hand, for some f;, deg(fi,z:) > 2 and f; is irreducible in z;, then the
situation may be complicated. However, in many such cases, the final results from our program
are still polynomials of the form g(yi,...,¥s,1,..., ¥a) Which are definite. Now let us look at
some such examples.
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Example 5. Let AB and CD be two chords of circle (0), M and N be their midpoints,
respectively. If AB > CD, then OM < ON (Figure 6).

Let M = (Gv())v A= (ul,()), B = (35170)7 0 = (0,’&52), C = (u37$2)3 D = (5537@4), and
N = (z5,6). Then the problem can be specified as follows

hy =2,4+u =0 M is the midpoint of A and B
hgzx§-2ugx2+u§-u§:0 OC =0A
hs = yizl — 2y} za2s + Y] — 297 us®s + yizd — yial + 2yima

+yiul —y?ui+1=0 AB >CD
hy = a2 — 2uszs + 25 —ui =0 OD = 0A
hy = 2z5 — %3 —usz = 0
he = 226 — Ta — T2 =0 N is the midpoint of C and D
g=—22+2uszs — 22 <0 Conclusion: OM < ON.

Using the General Component Decomposition Algorithm as stated in (4.5), we find Zero(H)
has only one nondegenerate component with the corresponding ascending chain ASCT =

fi=z+uw

fo =2k — 2upzs + uf —ui

fa = (—4ySal +8ySusz, — dyfuf —4yful)z] + (408 ug2? — 8y usus @y — 4y us2? + 8y U1 Us T +
Ayl + (8ySud + 4y Jus )wa — y wh+AyS upd + (29527 — 4y urzs — 207 uf —dylul + dytuy — 29325 +
(“dySuy2? + Syburuae +dydusud + (=8yful +4y1)us)ea — 9928 + yfwaad + (2y7u] + dyiv; —
ayBu +2y4)a? +(—4ySuyud— 8y uyud —4yfus Jor —yfud+(—dyfus — 297 )ud + (4yfud —4y1)u o

fa = (2y23s — 2yus)ms + 207 usTs — yi3 + viot — 2yfuwies —yiuz — 1

fs = 205 — T3 — Us

f5 = 2T — Tg — 3.

i

Evaluating g on PD(ACSY), we have g1 = —1/4y?, which is negative definite.

D

Figure 6 Figure 7
Example 6. Let CF and BE be two internal bisectors of a triangle ABC. If AB > AC, then
BE > CF (Figure 7).

This problem is known to be difficult. A famous problem in elementary geometry, “A triangle
with two equal internal bisectors is an isosceles triangle”, is a direct consequence of this theorem.
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Let A = (0,0), B = (2,,0), C = (22,23), F' = (24,0), and £ = (25,26). The problem can be
specified as follows:

hy = —yl2l —yial +yjel—-1=0 AB > AC
hy = (225 — z1)T323 + (—225 — 2a3x3)zy + €123 + 22frs =0

tan(ACF) = tan(FCB)
hs =(y2+1)za -2, =0 F is between A and B
(y2 4+ Dzs —22 =0 E is between A and C
hs = z12322 + (22135 — 22} )5 — 22722 + 223)xs — 212322 + 222325 — 2373 = 0

tan(ABE) = tan(EBC)
hs = Zo%s — T3%5 = 0 E is on AC
g = a2+ 22 — 22,75 — 23 + 22,24 — 2§ — a3 + 21 >0 Conclusion: BE > CF.

el
N
il

Using the General Component Decomposition Algorithm as stated in (4.5), we find Zero(H /z5)
has only one nondegenerate component with the corresponding ascending chain ASCY =

fi=(yt —vd)yiel — o5

fo =2y%z12s + (45 — 2)yiel —ys + 1

fa = a2z} + - 22123 + (-5 + L)atz]
fa=W+ 1)z~

fs = (y§ + Dzs — 22

fﬁ = ToZs — L3Ts.

Evaluating g on PD(ASCY), we have

g = Lt D)y? + y3)((y3 +v3)v3 + (5 + 393 + Dyj +43)
vi(ys +93)(93 +1)°(y3 +1)° ’

which is positive definite.

5. Proving Type IE Statements

In Section 4 we used the Rabinowitsch/Seidenberg device to convert hypothesis inequalities to
equations, i.e. to “get rid” of the hypothesis inequalities. What is different about the examples
in this section is not so much that they are of type IE rather than EI or II, but that the equality
part of their hypotheses consists of several cases, and the conclusion holds on some, but not all,
of those cases. In these situations, far from wanting to “get 1id” of the inequality part of the
hypothesis, it has a crucial “job” to do: to “select” for us exactly those cases in the equality part
on which the conclusion holds.

First, however, we note that there are some type 1L statements that are actually of type EE,
in the sense that we can simply delete the inequalities from the hypotheses and still have a true
statement. In such cases we obtain (the proof of) a more general statement than we started with.
Let us consider the following example.

Ezample. (Feuerbach’s theorem). The nine-point circle (N ) of a triangle is tangent to the
incircle of the triangle (Figure 8).

Let us recall that the incircles and excircles of a triangle are the four circles which are each
tangent to the three lines that are coincident with the sides of the triangle. The incircle is the
unique one of these circles whose center is inside the triangle; the other three are the excircles.
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Figure 8

To select the incircle and not an excircle in Feuerbach’s theorem, i.e., to specify that the
incenter I is inside the triangle, we need inequalities. Hence this statement seems to be of type
IE. However, let us study it more closely.

We can let A = (0,0), B = (u1,0), C = (uz,u3), { = (z1,22), D = (2:,0), 4y = (3,%4),
A, = (25,25), Az = (27,0), and N = (s, ). Then the equality part of the statement can be
expressed by the following set of equations H:

hy = uiusz? + ((2usus — 2ui )2y — 2uu; + 2ud)zy — uyusa? + 2ufuszzy — uiug =0

tan(CBI) = tan(IBA)

Ry = uius®l + 201 Us T Ty — Uy UzZ] = 0 tan(C AI) = tan(IAB)
h3=2x3—~u2—-u1 =0

hy =224 —ug =0 A, is the midpoint of B and C
hy = 225 — g = 0

hg = 226 —u3 =0 A, is the midpoint of A and C
hy =2x7 —up =0 As is the midpoint of A and B
hs = 2zexs + (=27 + 225)zs + 2% — 2l —2i =0 NAs; = NA,
ho = 224@ + (=27 + 223)2s + 2% — 2] —23 =10 NAs=NA;.

The conclusion that circle (IV) is tangent to circle (I) is equivalent to g = ((8z227 — 8%, Tg)Ts—
4zoz? + 4322y )we + (—422 + 83127 + 42 — 4at)ad + (427 - 4zi22 + (822 — 4al)zr + 42F)2s —
v + (422 + 223)22 — 2} = 0. Using the Ritt-Wu Decomposition Algorithm, there is only one
nondegenerate component with the following corresponding ascending chain ASCT =

fi =4zt — 8wy 2 + (—4ud — 4ud + duyu, + 4ui)zi + (4uyud + 4uud — dufug)z; — uing
fo = (221 + 2uy — 2uy )Ta — 2U3Ty + U Uz

fa =223 — U2 — Uz

fa =224 —us

f5 = 225 — U

fo = 225 — U3

fr=2z7 —us

fa =4as — 2us — U

fo = duszy — ul + ul — Uy Us.

The fact that deg(fi,=;) = 4 means that there are four solutions for 7: one is the incenter
and the other three are the excenters. Now f; is irreducible in z;. Since z; has real solutions for
some real generic values of uy, uy and us (i.e., there are some open intervals for uy, ¢, and ua
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in R, in which #, has solutions in R),® prem(g; f1, ..., fo) must be zero by Theorem {3.12) (also
see Theorem (3.6) of Chapter 4 in [13]) if the conclusion that the incircle touches the nine-point
circle is true. Prem(g; fi, ..., fo) = 0 can be easily checked by our prover in a few seconds. Thus,
the prover actually proves that the nine point circle (V) is tangent to the incircle as well as to
the three excircles.

If the circle (V) were not tangent to one of the three excircles, f; would be reducible and
the inequality part that I is inside the triangle ABC would be essential. Thus we come to the
following important principle:

Principle (5.1). If the equality part of the hypothesis in a geometric statement of type IE is
irreducible (see Section 3.1). and has real general solutions, then the inequality part is redundant
and the statement can be confirmed by the original Wu-Ritt method, ireated as a statement of
type EE. Conversely, if the inequality part is not redundant, then the problem is reducible.

The reader can find many such examples in [13]. Now let us look at an example of type IE in
which the inequality part is essential. In the remainder of Section 5 we will repeat the three-part
format of Section 4: first a motivating example in Section 5.1, then the statement of a general
“method” in Section 5.2, followed by more examples in Section 5.2.

5.1. A Working Example

Example (5.2). On the two sides AC and BC of triangle ABC, two squares ACDE and
BCFG are drawn. M is the midpoint of AB. Line CM intersects F'D at H. Show that
DF 1 CH (Figure 9a).

Figure 9a Figure 9b

Figure 9a implicitly suggests that the statement is true in the case when both squares are
“outside” the triangle. Actually, in the other cases (Figures 9b and 10ab) the statement may

® Proving this fact, which is implicitly assumed in textbooks of geometry, is beyond the Wu-Ritt method.
Intuitively, this corresponds to the fact that given any three points A, B and C in certain general position,

one can always draw the incenter.
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or may not be true. This is a statement of type IE where the inequality part is essential if we
specify the equality part as follows.

Tet A = (ul,O), B = (ug,ug), C = (0,0), D = (O,u1}3 F = (3319%}, M = (3:3,@4), and
H = (z5,z¢), then the equality part of the hypotheses and the conclusion can be expressed by
the following equations:

hi=22 4z} —ul—-ui=0 CF = BC
hz = UgTqg 4 UeTy = 0 CF 1 BC
hg =223 — g —u; =0

heg =224 —uz =0 M is the midpoint of A and B
hy = Zag — TaZs =0 Hison CM
he = 2126 — (T2 — U1 )25 — 121 =0 Hison DF
g = (zy — u1)Ts + T1T5 Conclusion: DF L CH.

The ascending chain (characteristic set) obtained from Ay, ..., ke is

fi = (uf +u3)et — uz — w33

fo = uzzy + U2y

fa=2z3 — Uz — U

fa =234 —us

fs = (371594 - (zg — ul)%)xs - U123
fo = 2176 — (T2 — U1 )T5 — U1 T3,

To confirm whether ¢ = 0 follows from h;,= 0,...,hs = 0 under some nondegeneracy condi-
tions, we can compute prem(g; fi,..., fs) to see whether it is zero. The result on computers shows
that prem(g; f1,..., fs) # 0. If the conclusion is true, this means that hq, ..., hg is reducible and the
inequality part is essential. Actually, fi = (ud+u3)(¢1 —us)(21 +us), and we have two nondegen-
erate components for Ay, ...,hg with corresponding ascending chains ASCY = fi, fa, fas fas f54, J6
and ASCs = f{, fa, fs, fa, f5, fo, where f] = 21 — us, f" = z; + us. The results on computers

show that prem(g; ASC:) = 0, but prem(g; ASC3) # 0. To decide which component corresponds
to the case in the original statement, we need the inequality part:

[(D and B on either side of AC) A (A and F on either side of BCH) v
[(D and B on the same side of AC) A (A and F on the same side of BC).

Let § = —ulul/(vluszs — uviusz;), then & > 0 is its algebraic form.

Much as we did in Section 4, we can reduce § modulo the ideals generated by ASCT and ASCY,
respectively. § = ul/(u2 + u}) for component ASC}, and § = —uj/(ui + uj) for component
ASCy. We can “see” § > 0 for component ASCY if we assume A4, B and C are not collinear
(i.e., uyus # 0). Thus component ASCT corresponds to the cases in Figures 9a and 9b, in
which the conclusion is generally true. The proof is completed. However, to decide whether
w2 /(uk + u2) > 0 (under uyus # 0) is beyond the scope of our method.

Remark. As we have seen, component ASC} corresponds to the cases in Figures 10a and
10b, in which the conclusion is generally false. Decomposition of the equality part of H (when it
is reducible) into several nondegenerate components is actually a case study approach. It gives
more insight into the given geometric configuration defined by the equality part. For example, if
we want to decide whether, say, DF L AB, we will find that it is generally true for component
ASC; (Figures 10ab) but not true for component PD(ASCS).
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Figure 10a Figure 10b

5.2. The Method for Type IE Statements

Let the conclusion C be g = 0 where ¢ is a polynomial in the parameters u; and dependent
variables ;.

Step 1. Triangulize the equation part of the hypothesis H to obtain an ascending chain ASC.

Step 2. Calculate prem(g; ASC), the successive pseudo remainder of g with respect to ASC.
If prem(g; ASC) is zero, then the statement is confirmed to be generally true and the inequality
part of H is redundant (as in the example of Feuerbach’s theorem). The statement is actually a

statement of type EE.
Now assume prem(g; ASC) # 0. Then we check whether triangular form ASC is irreducible.

Step 3. Suppose ASC is irreducible. If we assume that the real generic zeros exist for ASC
(as most problems in textbooks of geometry implicitly assume), then the statement is generally
false.

Step 4. Otherwise, decompose the equation part of H into several nondegenerate (irreducible)
components with corresponding ascending chains ASCY,..,ASCy (¢ 2 2). Assume the real
generic zeros exist for the equation part of H.

(1) If prem(g; ASC;) # 0 for all 4, then the statement is generally false.
(2) If prem(g; ASC}) = 0 for all 4, then the statement is generally true.

(3) Suppose prem(g; ASC?) = 0 for some ¢ and prem(g; ASC}) # 0 for the other 7/. Let 4 > 0
be a member of the inequality part of the hypothesis H. Then evaluate § for each ASC; to see
whether § < 0 is valid for each §, using the method for type EIL If it is, then the statement is
generally true.

5.3. More Examples for Type IE Statements

Example 7. Let A and B be two points on a side of an angle £0. Let A; and B; be two
points on the two sides OA and OB of the angle such that OA; = OA and OB; = OB. I is the
intersection of AB; and A;B. Show that O is the bisector of £O (Figure 11a).
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Let O = (0,0), A = (u1,0), B = (us,0), Ay = (us,21), B1 = (z2,23), and I = (z4,25). Then
the equality part of the problem can be specified as follows:

hy =22 4+ui—ul=0 OA; =0A
h2:$§+$§wu§:—“0 OB, =0B
hy = usrs — 129 = 0 B, ison OA,
he = (25 — ¥ )T5 — T3Ts + U3 =0 ITison AB,
hs = (u3 — g )Ts — T124 + UaZy = 0 Iison BA,

= U 1T + QUi Uz TaTs — w1zl =0
g 5 4
Conclusion: tan(AOT) = tan(IOA;).

Triangulizing A1, ..., ks, we have the following ascending chain

fr =2} +ui-uj

fo = (af +uf)al — vjug

fs = usxs — T1%2

f4 = (('LL3 — U2>$3 — X1 + ?1,1331)@4 *§" (——Hl’ﬂ,g + ?i;ug)afg "i- UsT1Tg — U U T
fs = (us — u2)T5 — T1 T4 + UzZ1.

However, prem(g; fi,..., fs) # 0. Actually, the polynomial set hy,...,hs can be decomposed
into two nondegenerate components: ASCY = f1,f3, f3, f4, fs and ASCs = fi, f5, fs, fa» Js,
where fi = w122 + uguz and f3' = w12 — Uz us.

Computer results have shown that prem(g; ASCY) # 0 and prem{g; ASC3) = 0. The inequal-
ity part of the statement is

[0 is between A and B, and between A; and Byl Vv

[O is not between A and B, and not between A; and By},

or in its algebraic form, § = ujusz/(uzz2) > 0 (see Figures 11ab). Evaluating §, we have é =
—u? Ju} for component ASC} and § = u? Ju} for component ASC}. Thus the statement has been
confirmed.

Example 8. Three equilateral triangles A, BC, AB,C and ABC, are erected on the three
respective sides, BC, CA and AB, of 2 triangle ABC, then lines AA;, BB, and CC, are
concurrent (Figure 12a).
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Let A = (0 0), = (ul,O), = (ag’ug% Bj_ = (3)1,5{‘2) Cl == (5333334)? 41 = ($5?$6> and

= (24, 73). If we specify the equality part of the problem as follows, then it is a statement of
type IE. 1°

hi=-2}—ai4+ui+ui=0 AC = AB,
hg = 2U3Z2 + 2uszy — u§ - u% =0 BlA = B1C
}L3 :21513?3—’!13 =0 ClA:ClB
hy=—22—-2zi+ul=0 AB = AC,
hs = —22 — a2 + 2ui s + ud + uf — 2uyu; = 0 BC =A,B
hs = 2usze + (2us — 2uy)zs —ul —uj +ui =0 A;B = A, C

hr = (—z3 + v )xs + (24 — U3 )Ty — UsZs + Uzt =0

C, Cy and O are collinear
hg = (=z1 + u1)Zs + T2T7 — U1 Ty = 0 B, By and O are collinear
g = 2523 — TeT7 =0 Conclusion: A, O and A, are collinear.

The polynomial set hy, ..., hg can be decomposed into four nondegenerate components: ASCT =

flyf?vaafé:fé?fﬁaf’h f89 ASC; = f17f27f3) !;l?fé’fﬁ?f?? fS? ASC; = fl?f?v fS, fé?fga fSa f?vaa
and ASC} = f1, fa, f5, fi s i fes fr, fs, Where

£io= (—4u? — 4ud)2? + (dugud + 4ud)zy + 3uf + 2uiu; — u3
fo = 2uay + 2uazy — ul — U}
fs = 2uy x5 — u?
f4 = (2ud + 2ulus)zs + (2usud + 2ug i)z —~ Up U Ul — Uy U3
= (20 + 2udus)zs + (- 2uiul — 2uyud)wy + ugusud + ugud
f5 = (2u} + 2ul)zs + (203 + 2u3)z + (- 2u2 - ’al)ug — 2ud — ugud
= (2u} + 2ud)as + (—2uj — Zuz)xl u1u3 — uyul
fg = 2’&3.’}35 -+ (2’&‘,2 — 2&1)$ — u3 — ’{i2 ~+ 261
fr=({~z1 +u1)2g + T2T3 — U282 + U3y — wius)rr + (U — Ui Uz )Ts + (—us Ty — usT; +
U3 U3 )T + U U2 T2
fo = (—z1 + u1)Ts + 22T7 — U1 T2

we found that prem(g; ASC%) = 0, but prem(g; ASCY) # O, prem(g; ASCL) # 0, and
prem(g; ASC3) # 0. In order to clarify the situation, we introduce two inequality conditions.

10 This problem can also specified as an type EE statement. See example (5.7) of Chapter 4 in [13].
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Let A be

[(C and C, are on the same side of AB) A (B and B; are on the same side of AC)] v [(C and
C, are on either side of AB) A (B and B; are on either side of AC)].

and let A, be

[(C and C, are on the same side of AB) A (A and A; are on the same side of BC)] v [(C and
C, are on either side of AB) A (A and A, are on either side of BC)].

Let 6; = —ulul/(u1ua®s—us us: )as, and let & = uiu/((v1us—u})Ta®e—us UsTaTs+ Ul uzTs).

A, holds iff 6 > 0; A, holds iff §; > 0. Thus, the inequality part of the hypotheses is
b, >0A8, > 0.

Evaluating 6, and §, for various components, we have
For component ASCy, 6 = —4u}/(3u2 + 3u3) and 6, = —4u3/3(u] + v — 2usus + u?).
For component ASCy, & = 4u3/(3u} + 3u?) and & = 4u3/3(ui + uf — 2uius + ui).
For component ASCS, 6, = —4u2/(3u? + 3u3) and 6, = 4ud/3(uf + v — 2usus + ul).
For component ASC}, 6 = 4ul/(3u3 + 3u3) and 6, = —4ud/3(u} + uj — 2urus + u}).

Thus, the conclusion is true if and only if the three triangles are all outside AABC (Figure
12a), or all “inside” AABC (Figure 12b). The proof is completed.

A Challenge Problem for IE Type Statements. A {riangle with two equal internal
bisectors is an isosceles triangle.

This problem was solved in [34] with more human-machine interaction than was required for the
examples in this paper. We would like to see a mechanical solution with less human involvement.

6. Conclusions

It is a curious fact that, to date, all examples in which we have successfully applied the
Rabinowitsch/Seidenberg device have been of type II, and not of type IE!! Tt is equally curious
that, to date, all examples with an essential inequality part in their hypotheses have been of
type IE, and not II. Recall from Section 5 that these are statements whose equality part has
multiple irreducible nondegenerate components, the conclusion holds on some but not on others,
and the inequality part of the hypothesis serves to identify those components of the equality part
on which the conclusion holds. So far we know of no reason why we have had this experience.

Proofs of all examples appearing in this paper have been produced mechanically, except pos-
sibly for steps in which it is necessary to decide the definiteness or semi-definiteness of some
polynomial (possibly in the presence of additional polynomial constraints). The problem whose
proof (exclusive of such definiteness decisions) required the most time was Example 6, which

11 Y, note that there seems $o be an intrinsic obstacle to 2pplying the Rabinowiisch/Seidenberg device to the conclusion
of 2 type EI statement, for there seems no way to remove the new existential quaniifier we would then have there, nor

any way to convesrt it to a universal guantifier. However see [26] for some thoughts on this subject.
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took about 5 minutes on a Symbolics 3600. The reader can find a collection of 35 examples in
[10], including nearly all those in the present paper. Deciding the definiteness of polynomials is,
strictly speaking, outside the scope of the techniques presented in this paper. As we have seen
in all examples in this paper, however, we have found it often possible to accomplish definiteness
decisions by inspection. For certain examples in [10]this is not the case. However, the third
author was able to use an implementation of the Collins method to carry out the definiteness
decisions for all those examples except one (which does not appear in the present paper) in five
minutes or less on a Vax 785.

In the future we will seek new blends of the Collins decision procedure, the Wu~Ritt method,
the Grébner basis method, and the techniques presented in this paper, that can mechanically
prove geometry theorems involving inequalities, and that fruitfully balance speed with generality.

Acknowledgment The authors wish to thank Dianne King for careful editing of the manuscript
and Professor Christoph Hoffmann and the referees for helpful advice.

References

[1] D.Arnon and M. Mignotte, “On Mechanical Quantifier Elimination for Elementary Algebra
and Geometry”, J. Symbolic Computation, 5 (1988), 237-259.

[2] D. Arnon, “Geometric Reasoning with Logic and Algebra”, Artificial Intelligence Journal,
V. 37 (1988), pp. 37-60.

[3] B. Buchberger, “Grobner Bases: An Algorithmic Method in Polynomial Ideal Theory”,
Chapter 6 in Recent Trends in Multidimensional Systems Theory, N.K. Bose (ed.) D.
Reidel Publ. Comp. 1985.

[4] B.Buchberger, G. E. Collins, and B. Kutzler, “Algebraic Methods for Geometric Reasoning”,
Ann. Rev. Comput. Sci. 3 (1988}, 85-119.

[5] B. Buchberger, “Applications of Gobner Bases in Non-linear Computational Geometry”, in
Geometric Reasoning, Ed. by D. Kapur and J. Mundy, MIT Press, 413-446, 1989.

[6] S.C. Chou, “Proving Elementary Geometry Theorems Using Wu’s Algorithm”, in Aufo-
mated Theorem Proving: After 25 years, Ed. By W.W. Bledsoe and D. Loveland, AMS
Contemporary Mathematics Series 29 (1984), 243-286.

[7] S.C. Chou, “Proving and Discovering Theorems in Elementary Geometries Using Wu’s
Method”, PhD Thesis, Department of Mathematics, University of Texas, Austin (1985).

[8] S.C. Chou, “A Method for Mechanical Derivation of Formulas in Elementary Geometry”,
Journal of Automated Reasoning, 3(1987), 291-299.

[9] S.C. Chou and H.P. Ko, “On Mechanical Theorem Proving in Minkowskian Plane Geome-
try”, Proc. of Symp. of Logic in Computer Science, pp187-192, 1986,

[10] S.C. Chou, “A Step toward Mechanically Proving Geometry Theorems Involving Inequality
— Experimental Results”, Preprint, March 1986, Institute for Computing Science, Univer-
sity of Texas at Austin.



[11]

[12]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

26

S.C. Chou, “A Step toward Mechanical Proving Geometry Theorems Involving Inequal-
ity”, Preprint, May 1986, Institute for Computing Science, University of Texas at Austin,
circulated at Oxford Workshop on Geometric Reasoning (June 30-July 3, 1986).

S.C. Chou, “ Proving Geometry Theorems Using Wu’s Method: A Collection of Geometry
Theorems Proved Mechanically”, Technical Report 50, Institute for Computing Science,
University of Texas at Austin, July 1986.

S.C. Chou, Mechanical Geometry Theorem Proving, D. Reidel Publishing Company, Dor-
drecht, Netherlands, 1988.

S.C. Chou, W. F. Schelter, and J. G. Yang, “An Algorithm for Constructing Grobner
Bases from Characteristic Sets and its Application to Geometry”, 1987, to appear in
Algorithmica.

S. C. Chou and X. S. Gao, “Ritt-Wu’s Decomposition Algorithm and Geometry Theorem
Proving”, Technical Report 89-09, Department of Computer Sciences, University of Texas
at Austin, 1989.

S.C. Chou and W.F. Schelter, “Proving Geometry Theorems with Rewrite Rules”, Journal
of Automated Reasoning, 2(4) (1986), 253-273.

S.C. Chou and G.J. Yang, “On the Algebraic Formulation of Certain Geometry Statements
and Mechanical Geometry Theorem Proving”, Algorithmica, Vol. 4, 1989, 237-262.

G.E. Collins, “Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic De-
composition”, Lecture Notes In Computer Science, 33 (1975), Springer-Verlag, Berlin,
134-183.

G.E. Collins and J. Johnson, “Quantifier Elimination and the Sign Variation Method for
Real Root Isolation”, in Proceedings of the 1989 Symposium on Symbolic and Algebraic
Computation, ACM, New York, 264-271.

Xiaoshan Gao, “Transcendental functions and Mechanical Theorem Proving in Elementary
Geometries”, 1988, to appear in Journal of Automated Reasoning.

Xiaoshan Gao and Dongming Wang, “Geometry Theorems Proved Mechanically Using
Wu’s Method”, Part on Elementary Geometries, MM preprint No2, 1987.

Xiaoshan Gao, “Constructive Methods for Polynomial Set and Their Application”, PhD
Thesis, Institute of Systems Science, Academia Sinica, 19838 (in Chinese).

R. Hartshorne, Algebraic Geometry, Springer-Verlag, 1978.

D. Kapur, “Geometry Theorem Proving Using Hilbert’s Nullstellensatz”, in Proceedings of
the 1986 Symposium on Symbolic and Algebraic Computation, 202-208.

D. Kapur, “A Refutational Approach to Geometry Theorem Proving”, Artificial Intelli-
gence, Vol. 37, (1988) pp61-93.

D. Kapur and J. Mundy, “Wu’s Method and its Application to Perspective Viewing”,
Artificial Intelligence Journal, V. 37 (1988), pp.15-36.



27

(27]

[36]

[37]

B. Kutzler, “Algebraic Approaches to Automated Geometry Theorem Proving”, PhD The-
sis, Johannes Kepler University, Linz, Austria, 1988,

1. F. Ritt, Differential Equation from Algebraic Standpoint, AMS Colloquium Publications
Volume 14, New York, 1938.

1. F. Ritt, Differential Algebra, AMS Colloquium Publications, New York, 1950.

A. Seidenberg, “A New Decision Method for Elementary Algebra”, Annals of Math., 60
(1954), 365-371.

A. Tarski, A Decision Method for Elementary Algebra and Geometry, Report R-109, second
revised ed. Santa Monica, CA: The Rand Corporation, 1951.

A. Tarski, “What is Elementary Geometry”, Proc. Intl. Symp. on the Axiomatic Method,
with special reference to geometry and physics, University of California, Berkeley, Dec.
1957 - Jan. 1958, Studies in Logic and the Foundations of Mathematics, (L. Henkin, P.
Suppes, A. Tarski eds.), North Holland, Amsterdam, 1959, pp. 16-29.

Wua Wen-tsiin, “On the Decision Problem and the Mechanization of Theorem Proving in
Elementary Geometry”, Scientie Sinica 21 (1978), 157-179.

Wua Wen-tsiin, “Basic Principles of Mechanical Theorem Proving in Geometries”, J. of Sys.
Sci. and Math. Sci. 4(3), 1984, 207-235, republished in Journal of Automated Reasoning
2(4) (1986), 221-252.

Wu Wen-tsiin, Basic Principles of Mechanical Theorem Proving in Geometries, (in Chi-
nese) Peking 1984.

Wy Wen-tsiin, “On Zeros of Algebraic Equations —An Application of Ritt’s Principle”,
Kezue Tongbao 31(1) (1986), 1-5.

Wu Wen-tsiin, “A Mechanization Method of Geometry and its Applications — III: Me-
chanical Proving of Polynomial Inequality and Equations-Solving”, Research Preprints,
Mathematics—Mechanization No.2, ppl-17, 1987.



28

Appendix: The Ritt—Wu Decomposition Algorithm

1. Introduction

As already mentioned, Wu introduced his algebraic method for geometry theorem proving in 1977
[33]. In the course of Wu’s further investigation of the method [35], [34] he discovered that its
algebraic "machinery” was already known in the work of J. F. Ritt [28], [29]. Wu revised Ritt’s
work to better suit his objective of mechanically proving geometry theorems. The outcome of this
developmental process is that we may describe the Wu-Ritt geometry theorem proving method as
consisting of two key components: the Ritt—Wu Principle [34], and the Ritt—Wu Decomposition
Algorithm [34], [36]. If one implements these algorithms directly from the descriptions of Ritt
and Wu, one encounters drastic growth in the sizes of polynomials generated. Thus researchers
have developed modified versions of Wu’s and Ritt’s original algorithms. Wu himself uses the
notion of an ”ascending chain in the weak sense” [34]However, ascending chains in Wu’s weak
sense still do not definitively deal with the problem of size growth.

This appendix is an abbreviation of the first part of the paper [15]. It presents yet another
modified version of Ritt—~Wu decomposition algorithm, essentially the version implemented in
our computer programs. We omit many proofs, which can be found in [15].

2. Preliminary Definitions and Algorithms

Let K be a computable field such as Q, the field of rational numbers, and ¥ = y1,¥2,-. -, Um
be indeterminates. Unless stated otherwise, all polynomials mentioned in this section are in
A=K[yi,...,ym] = K[y]. We fix the order of the indeterminates as y; < y2 < -+ < Ym, Which
is essential for the subsequent discussion. Unless stated otherwise, we assume this order among
the variables ¥1y .y Um -

Let f be a polynomial. Denote the degree of f in the variable y;, i.e., the highest degree of y;
occurring in f, by deg(f, y;). The class of f is the smallest integer ¢ such that fisin Ky:,...,7.].
We denote it by class(f). If f is in K we define class(f) = 0. Let ¢ = class(f) be nonzero and
Iv(f) denote the leading variable y. of f. Considering f as a polynomial in y., we can write f as

Ay + Gy ot ag

where a,,,...,a0 are in K[y;,...,¥.-1], » > 0, and @, # 0. We call a, the initial or leading
coefficient of f and n the leading degree of f, denoting them as le(f) and Id(f), respectively.

Now we present the pseudo division algorithm, a basic building block for subsequent algorithms.
Let f and g bein K[y] and v be one of the yi, ..., ¥m. Suppose that deg(f,v) > 0. Considering f
and g as polynomials in v, we can write g and [ as g = a,v" +---+ ag, f=0byv* + ... 4 by. First
set r = g. Then repeat the following process until m = deg(r,v) < k: 7:=bpr—cm v~k f where
¢, is the leading coefficient of 7 in the variable v. It is easy to see that m strictly decreases after
each iteration. Thus the process terminates. At the end, we have the pseudo remainder 7 = 1o,
which we write as prem(g, f,v), and the following formula:

big=gqf +ro, wheres<n-—Fk+1and deg(ro,v) < deg( f,v).

Let f and g be two polynomials. A polynomial g is reduced with respect to fif deglg,v.) <
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deg(f,y.), where ¢ = class(f) > 0. Let ¢ = class(f) > 0, then prem(g, f,y.) is reduced with
respect to f; we denote prem(g, f,y.) simply by prem{g; f)-

Definition (2.1). Let C = fi, fay..., f- be a sequence of polynomials in K[y]. We call it
a quasi-ascending chain or a triangular form if either r = 1 and f, # 0,orr>1and 0 <
class(f1) < class(fa) <--- < class( f,) for i < j.

Let fi,..., [ be a quasi-ascending chain with class(f,) > 0. We define prem(g; f1, ... , fr) in-
ductively to be prem((prem(g; fa,---. [+ )i f1). Let it be R. Then we have the following important
Remainder Formula:

Ifl "'Iﬁrg = Qifl + +Qrfr +R

where the I; are the initials of the f;, s1,...,s, are some nonnegative integers, Q1,...,{, are
polynomials. Furthermore, deg(R,z;) < deg(fi,z:),for e =1,...,7, where z; = lv(f;).

(i) A quasi-ascending chain is called an ascending chain in Ritt’s sense if f; are reduced with
respect to f; for i < j.

(ii) A quasi-ascending chain is called an ascending chain in Wu’s sense if the initials I; of the
f; are reduced with respect to f; for 7 < j.

(iii) A quasi—ascending chain is called an ascending chain in the weak sense if prem(IL; fi,..., fr)
#£0,fori=1,..,7.

Obviously, an ascending chain in Ritt’s sense is an ascending chain in Wu’s sense; an ascending
chain in Wu’s sense is an ascending chain in the weak sense. The key to our improved version of
the algorithm is to use ascending chains in the weak sense. As Wu correctly pointed out, using
quasi-ascending chains without any restrictions, one cannot insure the termination of algorithms
(3.1), and (4.1) or (4.3). Omne of the main tasks of our improved version is to use ascending
chains in the weak sense in a proper way, insuring both the termination of the algorithm and the
reduction of the size growth of polynomials. From now on, we will call an ascending chain in the
weak sense simply an ‘ascending chain’.

We define a partial order < in K[y]: f < g (g is of higher rank or higher than f) if class(f) <
class(g) or class(f) = class(g) > 0 and 1d(f) < ld(g). If neither f < g nor g < f, then we say
f and g are of the same rank. Obviously, this partial order is well founded, i.e., every nonempty
polynomial set S has a minimal element, i.e., the one which is not higher than any other element
in 5.12

Definition (2.2). Let C = s frand C1 = G150, 9m be two ascending chains. We define
C < C, if there is an s such that s < min(r,m) and f; and g; are of the same rank for ¢ < s and
that f, < g,, ot m < 7 and f; and g; are of the same rank for ¢ < m.

Proposition (2.3). The partial order < among the set of all ascending chains is well-founded, i.e,
there are no infinite, strictly decreasing sequences of ascending chains C; > Cy > -+ - > Cp > -+

Proof. See Lemma 1 of [34].

Definition (2.4). Let § be a nonempty polynomial set. A minimal ascending chain in the set
of all chains formed from polynomials in 5 is called a basic setof 5.

In practice, one can further order polynomials with the same rank to enhance the efficiency while
preserving the well foundedness.
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Unless stated otherwise, whenever we talk about a finite polynomial set S, we assume 5 does
not contain zero. By (2.3), every nonempty polynomial set S has a basic set.

Algorithm (2.5). Let S be a finite, nonempty polynomial set. The algorithm is to construct a
basic set of S.

Algorithm and Proof. Let f; be a polynomial with minimal rank in 5. If f, is of class zero, then
it is a basic set of §. Now let f; be of positive class. Let S; be the set of all polynomials in 5,
whose classes are higher than class(f;) and whose initials I are such that prem([; fi) # 0. If 5
is empty, then f; forms a basic set of S. Now suppose 5, is nonempty. Continuing this way, at
step k, we have an ascending chain C = fi,...,f in S. Let Sy be the set of all polynomials in 5,
whose classes are higher than class(fi) and whose initials I are such that prem(l; fi,..., fr) # 0.
If S, is empty, then fi,..., fz is a basic set of S. Otherwise, choose an element fi41 with minimal
rank in Sp. fi, .. fr, fee1 form an ascending chain again. Eventually, we arrive at a basic set of
S in no more than m steps. .QED.

In the original presentation of the Ritt—~Wu Principle (cf. [29], [34]) the key operation prem(f;
ASC) is repeatedly used. Since the main purpose of triangulation is to reduce the class or the
leading degree of f, we need only take fewer pseudo remainders than prem(f; ASC) takes. This
can reduce the size growth of polynomials produced. The following W-prem is one of our key
steps to control the size growth of polynomials.

Algorithm W-—prem (2.8). Given a polynomial ¢ and an ascending chain ASC = fiyeen fr
with nonconstant f,. We define W-prem(g; ASC) to be:

Case 1. prem(g; f1, ..., f») if prem(initial(g); f1,..., ;) = 0.

Case 2. g if class(f,) < class(g).

Case 3. W—prem(prem(g; f,); f1, .., fro1) if class(f,) = class(g).
Case 4. W—prem(g; fi, ..., fr_1) if class(f,) > class(g).

The remainder formula is still valid for W-prem, except deg(R,z;) < deg(fi, ;) (where z; =
Iv(f;)) is not necessarily true.

Proposition (2.7). For a nontrivial ascending chain ASC = fi,.., f; and a polynomial g, if
W-prem(g; ASC) = 0, then prem(g; ASC) = 0.

Proof. See [15]. QED.
We introduce a new notation extremely important for the rest of the paper:
PD(ASC) = {g | prem(g; ASC) = 0}.

Thus, (2.7) says that if W—prem(g; ASC) = 0, then g € PD(ASC). The following proposition
insures the termination of the triangulation procedure of the Ritt—Wu Principle, when it uses
W—prem.

Proposition (2.8). Let B = fi,..., f, be a basic set of polynomial set § with 0 < class(fi),
and h be a polynomial. Suppose g = W-prem(h; f1,...,f.) is not zero. Then the set 5; =
S U {g} has a basic set lower than B.

Proof. See [15]. .QED.
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Let ASC = fi,...,f, be an ascending chain, not consisting of a constant. After a suitable
renaming '3 of the y;, we may assume that class(f1) = d+1 and m = d +r = class(f, ), where
d > 0. We distinguish the y; for i < d by calling them v and use z; to denote lv(f;). We call
{uy,..,uq} the parameter set of the ascending chain ASC.

Thus ASC has the following “triangular” form:
filug, ... ug, 1)
folua,.. ., ud,21,%2)

(T)
oty 8as Ty, T )

Definition (2.9). An ascending chain fi, ..y f» of the form (T) is called irreducible if each f; is
irreducible in the polynomial ring K(u)[z1,...,%:]/(f1, -, fio1). Thus the sequence Fy, = K(u),
Fy = Folz1l/(f1), - Fr = Froal2 /() = Fo[z]/(f1, s [+) is & tower of field extensions.'*

Theorem (2.10). Let ascending chain ASC of the form (T) be irreducible, g be a polynomial.
Then PD(ASC) is a prime ideal and the following are equivalent:

(i) g € PD(ASC), ie., prem(g; ASC) = 0.

(ii) Zero(PD(ASC)) C Zero(g), where the zeros are taken to lie in an algebraically closed
extension of the field K.

Proof. See lemma 3, page 234 in [34] and Theorem (3.7) on page 31 of [13]. .QED.

Theorem (2.11). Let ascending chain ASC be irreducible and g be a polynomial. If prem(g; ASC)
# 0 then there exist a polynomial p and a nonzero polynomial h € K[u] such that pg - h €
Ideal( ASC).

Proof. See [15]. .QED.

Theorem (2.12). Let fi,...,f, be an ascending chain. Suppose that fi,...,fi-1 (0< k< 7)
is irreducible, but fi,..., fi is wreducible. Then there are polynomials g and h in K{u, z] reduced
with respect to fi,..., fr such that class(g) = class(h) = class(f ) and gh € the ideal generated

by fl, ?fk
Proof. See Theorem (3.6) on page 30 of [13]. QED.
3. The Ritt—Wu Principle (a Modified Version)

A complete triangulation algorithm was implicit in Ritt’s work ([28], [29]) and was rewritten
by Wu in detail ([35], [34]). It was called Ritt’s Principle, and considered the basis of his own

13 This renaming changes the ordering of the y in a way that the variables y; not occurring in ASC
are less than the variables occurring in ASC. The ordering among the variables occurring in
ASC are the same as before; The variables not occurring in AS C can be in any order.

14 Yere (fi,..., fr) etc. denotes the polynomial ideal of K(u)[z] (not of K[u,z]), generated by

f?w"'?f?‘-
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method, by Wu. The following modification is an improvement and used in our prover.

Theorem (3.1). (Ritt-Wu Principle). Let § = {hy,...,h,} be 2 finite nonempty polynomial
set in A = K[¥1,...,Ym), and I be the ideal (hy,...,h,) of A. The algorithm is to construct an
ascending chain ASC such that either

(3.2). ASC consists of a nonzero constant in K N 1.

(3.3). ASC = fi,...,f, with class(fi) > 0 and such that f; € [ and W-prem(h;; fiy.., fr) =0
foralli=1,...,rand 7 =1,...,7n.

Proof. By (2.5), we can construct a basic set B, of 8, = §. If By consists of only one nonzero con-
stant, then we have (3.2). Otherwise, we can expand §; to S, by adding nonzero W-prem(g; B, )
of all ¢ elements of S;. If S; = 51, then we have (3.3). Otherwise, we can construct a basic set
B, of S5. By (2.8), By > B,. If By does not consist of one nonzero constant, then we can expand
S, to S3 using the same procedure. Thus we have a strictly increasing sequence of polynomial
sets:

51 C8 C---,

with the corresponding strictly decreasing sequence of characteristicnon sets
By > By > ..

By (2.3), this decreasing sequence can be only finite. Thus, there is an integer £ > 1 such
that either B, consists of a nonzero constant or Sy = Sy41; then we have either (3.2) or (3.3),
respectively. QED.

Now let us fix an extension E of the base field K. We denote Zero(S) the common zeros of
polynomials in 5, i.e., the set

{(a1y.er@m ) € E™ | (a1, ...,am ) =0, for all h € S}.

Let G be another polynomial set. Following Wu, we denote Zero(S/G) to be Zero(§)— Zero(G).
Note that all zeros are taken from the (fized) extension E. Unless essential, we will not mention
this field explicitly. We have Zero(S/{1}) = Zero(S5).

Let ASC be a nontrivial ascending chain and G be a polynomial set. Weintroduce a new notation
pfactors(G; ASC) =

Case 1. 0 if prem(g; ASC) = 0 for some g € G.
Case 2. |J{all prime factors of prem(g; ASC)| for all g € G}.

In the case of (3.2), the polynomial set S is said to be contradictory and does not have a common
zeros. Otherwise we have the following:

Theorem (3.4). Suppose § in (3.1) is not contradictory. Let ASC = fiy..., fr bethe ascending
chain obtained in (3.3), I; be the initials of the fi, I = {I;,...,I, } (I is called the initial sei of
ASC) and J = pfactors(I; ASC) (note that J is nonzero).

(i) Zero(ASC/[I)= Zero(ASC/[J).
(i) Zero(ASC/I) C Zero(PD(ASC)) C Zero(S) C Zero(ASC).
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(iii) Zero(S)= Zero(ASC[T)uU, {Zero(SU {p}) | peI}.

(iv) Zero(S) = Zero(ASC[J)ul, {Zero(5U {pHlpeJ}.

Proof. See [15]. .QED.
4. The Ritt—Wu Decomposition Algorithm (a Modified Version)

Algorithm (4.1). Ritt—-Wu Zero Decomposition Algorithm (Refined Form). Let S and G be

two nonempty polynomial sets. The algorithm is either to detect the emptiness of Zero(S/G) or
to decompose Zero(S/G) in the following form:

(4.1.1) Zero(S|G)= | Zero(ASC;/I;UG)
(412) Zero(§/G)= | ) Zero(PD(ASC;)/G)

where each ASC; is a nontrivial irreducible ascending chain, the I; are the initial sets of the
ascending chains ASC;, and prem(g; ASC;) #0forallg€ Gandi=1,...,k.

Proof Let ASCs be a set of ascending chains, initialized to be empty at the beginning.

Step 1. According to (3.1) we can construct an ascending chain having the property of either
(3.2) or (3.3). In the case of (3.2), Zero(§/G) is empty. In the case of (3.3), we have an ascending
chain ASC and a polynomial set §’ (i.e., S; in the proof of (3.1)) having ASC as one of its basic
sets. Zero(S) = Zero(S').

Step 2. Check whether the ascending chain ASC = fi,..., f» is reducible. If it is, then there is
an integer k > 0 such that fi,..., fy_1 is irreducible, but fi, ..., f3 is reducible. By (2.12), we can
find two polynomials g and h with class(f) = class(g) = class(h) and gh € Ideal(fi,..., fr)-
We have decomposition: Zero(8') = Zero(S' U{g}) U Zero(S’ U {h}). Obviously, 5" U {g} and
5’ U {h} have basic sets strictly lower than that of 5'. We can take each of §'U{g} and S"U {h}
as a new 5, and go to step 1.

Step 3. Let I be the initial set of of ASC. By (3.4) we have:

(4.1.3)  Zero(S/G) = Zero(S'|G) = Zero(ASC[IUG)U U {Zero(5" U{p}/G):p e I}.

P

Step 4. If prem(g; ASC) = 0 for some g € G, then Zero(ASC /I UG) is empty. Otherwise, we
add this ascending chain to ASC's.

Step 5. For each pin I, let p/ = prem(p; ASC). Note that 7 # 0. For each Zero(S' U{p}/G) =
Zero(S' U {p,p'}/G) in (4.1.3), take §' U {p,7'} as a new S, then go to step 1. Repeat this
process recursively. Since §' U {p,p'} has a basic set sirictly lower than that of §' by (2.8),
this recursive process will finally terminate. For otherwise, we would have a strictly decreasing
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sequence of ascending chains, contradicting to (2.3). The termination of each branch happens
when I consists of constant polynomials.

Upon termination, we have two cases:
(i) ASCs is empty. This means that 5 does not have common zeros.

(i) ACSs = {ASCy,..,ASCy} (1 < k), then we have the decomposition (4.1.1). Since
Zero(ASC; | I,) C Zero(PD(ASC;)) C Zero(S), (4.1.2) follows from (4.1.1). .QED.

Remark. The branches produced in the recursive step 5 can number in the thousands and most
of them are redundant. For G = 1, we still lack a satisfactory strategy to control the growth of
the branches and make termination occur earlier. In Part II of [15], G is a set of polynomials
expressing degenerate cases. In this case we do have a modification to control the growth of
branches effectively (see [15]).

Theorem (4.2). Let E be an algebraically closed extension of the base field K and G = {1}.
Then (4.1.2) becomes

(4.2.1) Zero(S)= | ) Zero(PD(ASCY))

1<i<k
which is a decomposition of algebraic set Zero(S) into the union of the irreducible varieties
Zero(PD(ASC;)). Here each PD(ASC;) is a prime ideal by (2.10). Or alternatively,

(4.2.2) Radical(S)= () PD(ASC:).

1<i<k

Step 2 in (4.1) generally requires factorization of polynomials over successive algebraic extensions
of the field of rational functions. The following variant of (4.1) does not require factorization
over extension fields.

Algorithm (4.3). Ritt-Wu Zero Decomposition Algorithm (Coarse Form). The same statement
as in (4.1), except we do not require that each ascending ASC; be irreducible.

Proof. The only thing needing change in Algorithm (4.1) is to drop step 2 in the proof of (4.1).
However, since multivariate factorization is available in many computer algebra systems, we
suggest keeping step 2 and checking the reducibility of prem(fx; f1, vy JEo1) .QED.

In the coarse form, PD(ASC;) may not even be an ideal. Thus, decomposition (4.2.2) is generally
not valid.

The decompositions in (4.1)~(4.3) are generally redundant, i.e., some components may be con-
tained in others. To remove all such redundancy is time-consuming. However, the following
theorem removes some redundancy at no cost.

Theorem (4.4). Let n = length(5) be the number of polynomials in 5. Suppose that the
emptiness of Zero(S) is not detected in algorithm (4.1) or (4.3) and the set unions in (4.1.1)
and (4.1.2) (either in the refined form or in the coarse form) are arranged in such a way that
length(ASC;) < nfor i <[, and length(ASC;) > n for i > I for some integer 0 <1 < k, then
0 < [ we have the decomposition

(4.4.1) Zero(5/G)= | Zero(PD(ASC;)/G).

1<l
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Proof. The theorem is based on the Affine Dimension Theorem (page 48 in [23]) and the following
Lemma (4.5). For details see the proof of Theorem (4.4) in [15]. .QED.

Lemma (4.5). Let ASC = fi,...,f, be a nontrivial quasi ascending chain, I; be the ini-
tials of f;, and J = {[1,...,I,}. Then Zero(ASC/J) is contained in the union of varieties
C Zero(PD(ASC)) with dimensions < m — 7.

Proof. See (9.7) of [15]. .QED.

Remark. This lemma is difficult to prove. Notice that if ASC is irreducible, then Lemma (4.5)
is obviously true by the Affine Dimension Theorem. Thus Theorem (4.4) under the refined form
(4.1) is true, independently of Lemma (4.5). The practical importance of Lemma (4.5) is that
we can use Theorem (4.4) without factorization. Notice also that the formula:

Zero(S/G) = |J Zero(ASC;/I; UG)

1<i<i

is generally not true even for the refined form. This is the key advantage to use Zero( PD(ASC;))
instead of Zero(ASC;/I;).

Theorem (4.6). There is an algorithm to remove the redundancy in the decomposition (4.2.1)
completely.

Proof.
Step 1. First we can use Theorem (4.4) to remove some redundancy in (4.2.1) at no cost.
Step 2. Use Theorems (9.5) and (9.6) in [15] to remove further redundancy.

Step 3. For each remaining prime ideal PD(ASC;), we can obtain its Grobner basis from the
ascending chain ASC;, using the algorithm in [14].'® Having the Grobner bases, we can decide
the inclusionship among these prime ideals, thus removing the remaining redundancy. QED.

Remark. Steps 1 and 2 are not necessary, but they are much cheaper than step 3. Thus the
algorithm is more efficient based on Theorem (4.4), and Theorems (9.5) an (9.6) in [15].

Let ASC = fi,...,f, be an irreducible ascending chain. Then GB(PD(ASC)) = K[yl n
GB(fu, e, fry -2 —1), where I is the product of all initials of ASC and z is a new variable. Here
the compatible ordering among monomials can be any ordering satisfying u'z? < z. For details,
see [14].



