SERIALIZABLE PROGRAMS,
PARALLELIZABLE ASSERTIONS:
A BASIS FOR INTERLEAVING

Mohamed G. Gouda
Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712-1188

TR-89-33 November 1989



SERIALIZABLE PROGRAMS,
PARALLELIZABLE ASSERTIONS:
A Basis for Interleaving

Mohamed G. Gouda
Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712

Abstract

In order for interleaving to be acceptable in our reasoning about the
behaviour of a concurrent program, all the assertions (concerning program
behaviour) that arise in the course of our reasoning should be paralieliz-
able. ‘This means that if these assertions hold for the program under
interleaving, i.e., when its actions are executed one at a time, then they
should also hold when the actions are executed in parallel. In this note,
we identify a large family of concurrent programs, called serializable pro-
grams, for which rich classes of assertions are shown to be parallelizable.
It follows that reasoning about the behaviour of serializable programs can
be carried out under interleaving.

Keywords: Concurrent programs, formal reasoning, parallelism, serial-
izability.

1 Imtroduction

Many formal models of concurrent programs are based on the notion of infer-
Jeaving: in executing a concurrent program, only one enabled action is executed
at each step. This notion has both its advantages and disadvantages.

The main advantage of interleaving is that it tends to simplify the verification
of concurrent programs. For instance, to verify that a given predicate is an
invariant of some program requires showing that each action of the program
preserves the invariant when executed in isolation. Were it possible for actions
to be executed in parallel, checking the same invariant would require showing
that each set of actions preserves the invariant when executed in parallel. In
other words, the number of cases needed to verify an invariant would have
increased from n to 2" — 1, where n is the number of actions in the program.



The main disadvantage of interleaving is that it does not reflect our under-
standing that multiple actions of a concurrent program may in fact be executed
at the same time. The discrepancy between our assumption of how concurrent
programs are executed (interleaving) and how they are “actually” executed can
lead to programs that, although provably correct under interleaving, do not
perform as expected when executed. This point is made clearer by the next two
examples.

Consider the following program with two boolean variables left and right
and two actions:

left # right — left = right
left # right — right =left

If this program starts in a state satisfying left # right, its next state, under
interleaving, satisfies left = right. On the other hand, if the two actions are
allowed to execute in parallel, then the program may remain within the states
satisfying left # right indefinitely. This discrepancy is caused by the fact
that the program can make a transition from left # right to left # right by
executing its two actions in parallel, but cannot make a similar transition by
executing the two actions in some sequence.

In order to avoid such a discrepancy, concurrent programs should be designed
so that any state that can be reached by executing some actions in parallel can
still be reached by executing the same actions in some sequence. We refer to
such programs as serializable. (A more formal definition of serializable programs
is given in Section 4.)

Consider the following serializable program with three boolean variables and
two actions.

lefi & middle — left:= middle
right # middle — right = middle

This program satisfles the assertion
(left #+ middle A right # middle) leads —to left # right

under interleaving, but does not satisfy it if the two actions are allowed to ex-
ecute in parallel. Thus, the correctness of this program should not be based
on this or similar assertions. Rather, it should be based on what we call par-
allelizable assertions, i.e. assertions that if satisfied under interleaving are also
satisfied when actions are executed in parallel. (A more formal definition of
parallelizable assertions is given in Section 3.)

In summary, as long as verification of concurrent programs is based on in-
terleaving (and as mentioned earlier, there are good reasons for continuing this
practice), one should design only serializable programs and base their correct-
ness only on parallelizable assertions.



In the remainder of this note, we define the notions of parallelizable asser-
tions and serializable programs and identify a reasonable set of parallelizable
assertions for the family of serializable programs.

2 Concurrent Programs

Consider a program that consists of a set of variables and a set of actions; both
sets are finite and nonempty. Each action is of the form

G—zl,..,zn:=F1,...,Fn

where G is a predicate called the guard of the action, the z.i’s are distinct
variables, and the F.i’s are total functions of the program variables.

The set of actions is partitioned into one or more (mutually exclusive) subsets
such that each variable is written by the actions of at most one subset. We call
these subsets processes.

A state is defined by one value for each variable.

A iransition is a nonempty set of actions with at most one action from each
process. A transition that has exactly one action is called a serial iransition.

A state ¢ follows a state p over a transition ¢ iff the guard of each action in
¢ is true at p, and ¢ can be computed starting from p by paralle]l execution of
all the actions in t.

This notion of “follows-over” can be extended to finite sequences of transi-
tions. A state ¢ follows a state p over (¢.1, ... ,t.r) iff there are states p.1, ..,
p.(r + 1) such that p = p.1, ¢ = p.(r + 1), and for each 4, p.(s + 1) follows p.d
over 1.1,

A (serial) computation is a maximal sequence

p.1,1.1,22,1.2,...,pr i p(r+1)

where each p.i is a state, each ¢.7 is a (serial) transition, and for each 1, pi+1)
follows p.i over t.i. The maximality condition means that either the sequence
is infinite or it is finite and the guard of every action in the program is false in
the last state of the computation.

3 Parallelizable Assertions

Logical properties of programs are expressed as assertions. An assertion holds
for a program iff program states, transitions, and computations satisfy some
condition called the holding condition for the assertion. Each assertion has a
“serial version”, which is also an assertion. The holding condition for the serial
version of an assertion is the same as that for the assertion except that all occur-
rences of “transition”, “computation”, and any other assertion are respectively



replaced by “serial transition”, “serial computation”, and the serial version of
the other assertion. In this note, we identify three classes of assertions: closure,
activity, and convergence. The holding conditions for the assertions in these
classes are defined next.

Closure under execution: A closure assertion has the form (P is closed); it
holds for a program iff P is a set of program states and for every p in P and
every program transition %, if ¢ follows p over £, then ¢ is in P. The serial version
of this assertion is (P is serially closed); it has the same holding condition as
that of its assertion except that “transition” is replaced by “serial transition”.

Activity within a closure: An activity assertion has the form (u is active in
P); it holds for a program iff u is a set of program actions, P is a closed set
of program states, and for every program computation that starts in a state
in P there is at least one action in u that occurs infinitely many times in the
transitions of the computation. The serial version of this assertion is {u is
serially active in P); it has the same holding condition as that of its assertion
except that “closed” and “computation” are replaced by “serially closed” and
“serial computation”, respectively.

Convergence to a Closure: A convergence assertion has the form (P is con-
vergent to @); it holds for a program iff both P and @) are closed sets of program
states and every program computation that starts in a state in P has a state
in Q. The serial version of this assertion is (P is serially convergent to Q);
it has the same holding condition as that of its assertion except that “closed”
and “computation” are replaced by “serially closed” and “serial computation”,
respectively.

One program property that can be expressed as a closure assertion is “mutual
exclusion”. A property that can be expressed as an activity assertion is “freedom
from starvation”. Examples of properties that can be expressed as convergence
assertions are “termination” and “stabilization”.

A class of assertions is called parallelizable for a program iff for each assertion
in the class, if the serial version of the assertion holds for the program, then
the assertion holds for the program. For example, closure is parallelizable for a
program iff for each P, if (P is serially closed) holds for the program, then (P
is closed) holds for the program.

We mentioned in the introduction that program correctness should be based
on parallelizable assertions. We can now be more explicit about the reason
for making this statement. The serial version of an assertion is what we prove,
under interleaving, about program execution; the assertion itself is what actually
is maintained during program execution. Thus, basing program correctness
on parallelizable assertions guarantees that what we prove is what actually is
maintained {or occurs) during execution.

1t is straightforward to show that none of our assertion classes — closure,
activity, or convergence — is parallelizable for arbitrary programs. In the next
section, we identify a large family of programs for which these three classes of
assertions are parallelizable.



4 Parallelizable Assertions for Serializable Pro-
grams

A program is called P-serializable iff P is a serially closed set of program states,
and for every p in P and every program transition ¢, if ¢ follows p over ¢, then ¢
can be partitioned into serial transitions ¢.1, ... ,i.r such that ¢ follows p over
(#.1, ... ,tr).

The family of serializable programs is reasonably large. For example, if
program variables are partitioned into shared and private, where a shared vari-
able is one that is read or written by the actions of two or more processes,
then any program in which no action both reads and writes shared variables
is P-serializable, where P is the (closed) set of all program states. This shows
that serial programs, i.e. those programs that consist of single processes, are
serializable.

The next theorem, whose proof follows from the above definitions, states
that the assertion classes closure, activity and convergence are parallelizable for
serializable programs.

Theorem 1: If a program is P-serializable, then the following three statements
are satisfied for every subset @ of P and every set u of program actions.

a. If (Q is serially closed) holds for the program,
then (@ is closed) holds for the program.

b. If (u is serially active in Q) holds for the program,
then {u is active in @) holds for the program.

c. If (P is serially convergent to ) holds for the program,
then (P is convergent to @) holds for the program.
0

As a result of Theorem 1, verification of serializable programs can be carried
out under interleaving, provided that all derivations are based solely on the
assertion classes: closure, activity, and convergence.

So far, serializable programs is the largest family of programs for which
rich classes of assertions are known to be parallelizable. This should explain
our earlier recommendations: as long as verification of concurrent programs is
based on interleaving, one should design only serializable programs and base
their correctness only on parallelizable assertions.

The main result in this note (Theorem 1) is based on the assumption that
any pair of program actions, belonging to different processes, are executed either
in sequence or in exact parallel. The validity of this assumption hinges on the
actions being “small”, with each of them accessing the shared variables in a
“minimal” way. This requirement can be achieved by resorting to the well-
known automicity condition of Gries and Owicki, namely that each action has



at most one reference to a shared variable. (A recent result of my student Jim
Anderson shows that this restriction can be relaxed somewhat.)

Acknowledgements: I would like to thank Anish Arora and James Burns for
helpful discussions concerning this work. The comments of James Anderson,
Chris Apt, David Gries, and Jayadev Misra on earlier drafts of this note are
greatly appreciated.



