PROBABILISTIC SELF-STABILIZATION
Ted Herman

Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712-1188

TR-89-34 November 1989

Abstract

A probabilistic self-stabilizing algorithm for a ring of identical processes is presented; the
number of processes in the ring is odd, the processes operate synchronously, and communica-
tion is unidirectional in the ring. The normal function of the algorithm is to circulate a single to-
ken in the ring. If the initial state of the ring is abnormal, i.e. the number of tokens differs from
one, then execution of the algorithm results probabilistically in convergence to a normal state
with one token.

Keywords: Distributed Computing, Probabilistic Algorithms, Self-Stabilization, Uniform
Rings.

0 Introduction

A self-stabilizing algorithm for a ring of identical processes is required; the
algorithm is to circulate exactly one token in the ring: if, in an initial state
of ring, there are numerous tokens, then the algorithm is required to reduce
the number of tokens until there is exactly one token. Problems in a ring
of identical processes have been previously considered, for example electing a
unique leader in a ring of indistinguishable processes [7]. It is well known that for
such problems, no deterministic solution is possible [1]. Typically, probablistic
methods (using randomization) are proposed as solutions to these problems.
A probabilistic technique for self-stabilization has been proposed in [6] for an
asynchronous ring of processes. The original paper on self-stabilization [4] is
also based on asynchronous rings. Unlike previous works, the setting for this

paper is a ring of processes that operate synchronously.

Probabilistic algorithms have the drawback that there is no bound on the num-
ber of steps required to terminate. Instead, analysis derives the expected num-
ber of steps required for termination. Probabilistic algorithms do have positive
aspects. They are usually more efficient, in some respect, than corresponding
deterministic algorithms. Many probabilistic algorithms are also notable for the
simplicity of their construction. The algorithm presented in this paper is no ex-
ception — it is an extremely simple program. It also has lower space complexity

than the minimum possible for a deterministic algorithm.

Self-stabilizing systems are interesting because they prevail over some chaotic
conditions. A self-stabilizing system is one that establishes legitimacy starting
from an arbitrary, chaotic initial state; this behavior is non-trivial when system
control is distributed rather than centralized. Such behavior is desirable in real
systems that suffer from transient power fluctuations, or distributed systems

that may be locally, dynamically reconfigured from time to time. After a dose

of chaos, a self-stabilizing system recovers and operates normally. An intriguing
property of a probabilistic self-stabilizing algorithm is that it is designed to

overcome chaos, but uses randomness to do so.

The remainder of the paper consists of three sections. The first section presents
the algorithm and proves correctness. Results about the expected behavior of
the algorithm appear in the second section. The third section contains conclud-

ing remarks and open questions.

1 The Algorithm

Let n be the number of processes in the ring. We require that n be odd to
obtain an algorithm that is self-stabilizing to a single-token state. If n is even,
then the algorithm self-stabilizes to a state without tokens. The case of even n
turns out to be useful for analysis presented in the second section, so lemmas

and theorems in this section are stated for any finite, non-zero n.

The state of each process is a single bit. The state of the ring can be represented
by a vector of n bits. Suppose z is such a vector; we index & by subscripts to
refer to individual elements of the vector. Indexing is defined for any integer

subscript by residue modulo n: z; denotes the element z; where £ = i mod n.

Each process uses a random bit, denoted v; for process i. We assume that any
interrogation of 7; satisfies Pr(y; = 1) = r; and Pr(y; = 0) = (1 —r;) where g

is some fixed number in the range 0 < r; < L.

The basic step of the algorithm is procedure f, which inputs a ring state and
outputs a ring state. To describe f, let & be an input ring state and let y be the
output ring state obtained by some execution of f. For 0 < ¢ < n, ring state y

satisfies

_omie i mF
Yi = . s = xs
Vi 8y = Ty
Let y = f.z denote that y is an output of a computation of procedure f with
input z. We caution the reader that this notation can be deceptive. For in-
stance, from y = f.z and z = f.z it does not follow that y = z because f is not
a deterministic function. Qur convention is that f.x refers to one given compu-

tation of f within the scope of a definition or lemma. We use the notation frz

to denote k successive computations of f, i.e. ff.z = fF~1.(f.z).

The algorithm consists of the computation f*.z where k is unbounded. One
possible implementation is the iteration of the (parallel) assignment ‘z := f.z’;
other methods of computing are also feasible, including non-deterministic order
in computing the elements of f*.z. We define a “token” to be any consecutive
pair (@1, ;) of equal bits in the ring. Given any ring state z, if n is odd,
then execution of the algorithm results probabilistically in a ring state with one

token.

The rest of this section is devoted to proving the correctness of the algorithm.
Correctness is shown by fulfilling three obligations. First, the safety of the
algorithm is demonstrated: safety is the property that execution of the algorithm
does not increase the number of tokens in the ring. Second, we show that the
algorithm progresses in its normal state: progress is the property that a single
token circulates in the ring. The third obligation is to show convergence to a
normal state: convergence is the property that the algorithm reduces the number
of tokens in a ring with more than one token. The progress and convergence
properties are probabilistic, whereas the safety property is not a probabilistic

property of the algorithm.

Prior to presenting the correctness arguments, some notation is introduced. Our
presentation of the algorithm (above) expresses a ring state as a vector of bits.

Alternatively, the state of the ring can be denoted by a string expression. For

instance, 17 denotes the ring state in which z; = 1 for all 4. As a notational
convenience, we let variables a and & stand for complementary bits in an expres-
sion. For instance, arguments about the expression a?? apply to either 0717 or
1P0¢. Let ¢ be an anonymous bit; we regard ¢ as a placeholder in an expression.
For instance, ace represents aaa, aba, abb, and aab; the expression ¢” represents
all ring states. The following notation is used to associate an expression with

indexed bits in a vector.
zlj:p<j<p+3] = aba

means that z, = a, 2p31 = b, and 2,49 = a. (Note that 2, and 2,42 are the

same bit if n = 2.)

The function T reports the presence of a token at a specified process:
Tei=s (2= 2i-1)

Given a ring state = we say there is a token at process ¢ if T.z. holds. The

number of tokens in the ring is denoted by S.z:

Sez=(Ni: 0<i<n: Tuzi).
Obviously, the number of tokens is constrained by the ring size: § < S < n.
The following lemma shows that if n is odd, the number of tokens is odd.

Lemma 0 S.zmod 2 = nmod 2.

Proof [due to J. Misra]. Define function o; to be the integer subtraction o; =
#; — 2;—1. Let K be the number of instances where ¢; = 0 in the ring (i.e.,
K = S.z), let L be the number of instances where 0; = 1 and let M be the

number of instances where o; = —1. Thus, X + L + M = n. Observe that
-1
doi = 0 = (Ex0) + (Ix1) + (Mx(=1)).
i=0

Therefore L = M, son = K -+ 2L. This proves the lemma since (n—2L) is even
(odd) iff n is even (odd). O

As a consequence of Lemma 0, any procedure that changes the number of tokens
will change the number by some multiple of two. It is also clear that, to require
a ring state with exactly one token, it is necessary that the ring have an odd

number of processes.

The following lemma is a first step in the proof of safety. It demonstrates a local

property suggesting that tokens do not spontaneously appear in a computation

of f.x.
Lemma 1 T(fz)i = Tei Vv Ta(i-1).

Proof of the contrapositive, by unwinding definitions. Let y = f.z. The obli-
gation is to show -T'z.i A —T.z.(i—1) = -T.yi. From the antecedent we
may write z[j : i —2 < j<i] = bab to represent all states where =7.z.i and
—T.z.(i — 1) hold. By the definition of f, % = a and y;—; = b, therefore T'y.i

is false, which proves the lemma. O

When there is a single token in the ring and n > 1, it is easy to see (the reader
is invited to construct examples) that by application of procedure f, the token
either ‘moves’ from some process j to process (j + 1) or ‘stays’ at process j.
When there are numerous tokens in a ring it is not obvious how they ‘move’ by
application of f. We introduce a function to describe token movement: M.z.y.1

is defined for ring states z and y (typically y = f.z) and a process i:
false if —-T.xzi

Maoyi=<{ false if 0=imodn A Sz=n A 7 =0
true if O=imodn A Sz=n A yw=1

for the remaining cases, T.z.i A (0#imodn V Sz#n):

true if -Tz.(i+1) A Ty(i+1)

false if =Tz.(i+1) A -Ty(i+1)
Mazyi=
Mzy(i+1) if Ta(i+l) A Ty(i+1)

-Mzy(i+1) if Te(i+l) A -Ty(i+1)

Given a ring state z with a token at process i and a computation f.z, we say
that the token at process ¢ moves iff M.z.(f.z).7 holds. It is straightforward to
verify that the case enumeration in the definition of M is complete, that cases

are disjoint, and that M is well-founded.

The next result is concerned with a fine point in the definition of M it turns

out to be useful to prove the an important lemma that follows.
Lemma 2 ~-T.z.(i—-1) A Tzi A T.(fz)i = -Mz(fz)i

Proof by induction. Let y = f.z. We set up the induction by defining a string
expression for the lemma’s antecendent; induction is over the length of the string

expression. Our application of induction is based on the following observation.

Consider the expression aac?. In this expression, there is a token at the second
bit and possibly there are tokens within the string ¢®. By removing the second
bit of this expression we obtain a new expression ac?. Observe that tokens occur
within string ¢?, in exactly the same places, in either aac? or acf because a
precedes ¢? in both expressions. The same type of operation can also be applied
to the expression abac?: by removing the second and third bits we obtain the

expression ac”, which preserves the token occurrence within string f.

From the antecedent of the lemma, it follows that S.z # n. Therefore the
definition of M is completely determined by the token placement within z and
y. If there is a token at some process j in both # and y, then (by the argument
of the preceding paragraph) we may remove process j from both z and y, and

remaining token occurrences are unaffected; moreover, by the recurrence in the

definition of M (in the case where T.z.j and T.y.j are {rue), the evaluation of
M is unchanged for processes remaining after the removal of process j. This
removal of a process from both = and y obtains shorter string expressions, which

is our technique for induction.

A string expression representing the antecedent is
2j (-2 <j<(i+k)] = ba*

for some k > 2 (in this expression T'.z.(i — 1) is false and T.z.7 is {rue, cor-
responding to the antecedent). By the definition of f and from T.y.i (the an-

tecedent) the string expression for y is
ylj: (-2 <j< G+ k)] = cb?Fa

For convenience, we write (ba®b, cb?c¥~2a) to depict the antecedent. The proof

of the lemma is by induction on &.

Basis. k = 2. The antecedent is (ba®b, cb?a). In this expression T.y.(i + 1) is
false and —T.z.(i + 1) is false, so by definition M.z.y.i is false.

Induction. k > 2. Consider the following three cases.

Case T.y.(i + 1), which has the form (ba*b, cb®c*~3a). In this case we remove
process (i+1) from z and y to obtain (ba*~1b, cb?cF~3a). This smaller form pre-
serves the evaluation of M.z.y.7, therefore by the inductive hypothesis M.z.y.4
is false.

Case =T.y.(i +1) A T.y.(i + 2), which has the form (ba*b, cb?a’c*~*a). In
this case we remove process (i + 2) from z and y and appeal to the inductive
hypothesis as in the previous case.

Case ~T.y.(i+1) A =T.y.(i+2), which has the form (ba*b, cb*abc*~*q). In
this case we remove processes (i -+ 1) and (¢ + 2) from = and y and appeal to

the inductive hypothesis. I

Lemma 3 T.(fz)i = -Mz(fz)i V Mz(fz)(i-1)

Proof. The conclusion is trivially obtained if » = 1; henceforth we assume
n > 1. Suppose T'.(f.z).i = true and consider two cases for T.z.i:

Case —T.z.i. In this case Lemma 1 rules out the possibility that T.z.(— 1)
is false, therefore T.z.(i — 1) is true and M.z.(f.z).(i — 1) = true for this case.
Case T.z.i. Consider two subcases for T.z.(i — 1). If T.z.(i — 1) is false then
by Lemma 2, M.z.(f.z).i = false. If T.z.({ — 1) is true then by M’s definition,
M.z.(f.z)i= false or Mz.(fx).(i—1)=true. 0O

Let M be a map from the tokens of z to positions of f.z:

‘ ; if —M.z.(fx)d
M.z.(fz)i= { (i+1) if M.x.(fg-f’f');

If we combine Lemma 1 and Lemma 3, the following property of M is apparent:

if T.(f.z).i is frue, then
(Tzi A Maz(fz)i=i) o (Ta(i—-1) A Mez(fz).(i—1)=1).

In other words, each token in f.z is mapped by M from some token in z.
This result finds significance in proving safety and convergence properties of the

algorithm.
Theorem 0 (Safety) Sz > S.(fx)

Proof by contradiction. Suppose S.z < S.(f.z). By Lemma 3 and the definition
of M, each token in f.z corresponds to some token in z. Therefore some token
in z is mapped by M to two tokens of f.z which contradicts the functionality
of M. O

The Safety Theorem and Lemma 0 demonstrate that if there is one token in ring
state z, then all subsequently computed states f*.z also have exactly one token.
We expect that the algorithm should also progress in such a normal state, that
is, the token should circulate in the ring. The following lemma and theorem

show that computation of f probabilistically circulates a token in the ring.

Lemma4 Twzi = (3t: 0<it<l: Pr(Maz.(fx)i)=1).

Proof. Consider some computation y = f.z; it is straightforward to show that
there is another computation z = f.z that differs from y only in the choice
of 7;, such that M.z.y.i # M.z.z.i. The probability ; therefore satisfies the

conclusion. [
Theorem 1 (Progress)

Sz=1 A Tai = Pr(3k: T.(ffa)(G+1))=1
Proof. It suffices to show

Jim Pr(Vj:0<j<k: T(f .2).(i+1) = false)= 0.

By Lemma 4 the probability that the token does not move in one computation
f.z is fixed and less than one; therefore the limit probability that the token
does not move in k consecutive computations of f tends to zero as k exceeds

any bound. [O

Convergence is the remaining issue in the proof of correctness, that is to show
with probability one, from any initial state, execution of the algorithm eventu-
ally arrives at a state with at most one token. To show convergence properties
we introduce a function D to partition the state-space of processes. D is defined

as the minimum distance between two tokens in the ring:
Dz = (mink:0<k<n A
(Fi:: Ted A Ta(i+k) A
(Vj: 0<j<k: -Te(i+7)): k).
Observe that D.z is at most n/2. The following two lemmas show that the

distance between tokens decreases probabilistically.

Lemma 5 T.zi A T.zj A (imodn)# (jmodn)
= (3t:0<t<l: Pr(Ma(fa)i# Mz (fz)j)=1).

The proof is similar to the proof of Lemma 4. [

Lemma 6 Dz=p A p>1 = Pr(3k: D.(ffz)<Daz)=1

Proof by induction on p. Observe that D.z > 1 implies (by Lemma 5) that the
probability of D.(f.z) < D.z is non-zero.

Basis p = n/2. By the same argument given in the proof of the Progress
Theorem, the probability of (Vk :: D.(f*.z) = n/2) tends to zero as k tends to
infinity.

Induction 1 < p < n/2. Suppose we have some computation that satisfies
(Vk :: D.fF.z) > D.z). By the inductive hypothesis, for every ¢ such that
D.f'.z)> D.z,

Pr(3j:j>i: D(flx)<D(flx))=1

Consequently, with probability one, there are infinitely many m such that
D™ .z = D.z. The number of states is finite, so some state z satisfying D.z =
D.z is visited infinitely often. By Lemma 5 the probability of D.(f.z) < D.z is
non-zero, therefore the limit probability of the computation we have supposed

is zero. [

The convergence obligation is fulfilled by the following two results.

Lemma 7

Ta(i-1) A Tzi A Ma(fz).(i-1) A ~Mz.(fz)i = S(fz)<Sz

Proof by contradiction, using a similar argument to that of the proof of the

Safety Theorem. O
Theorem 2 (Convergence) Sz>1 = Pr(3k: S(ffzx)<Sz)=1

Proof. Lemma 6 can be applied repetitively to conclude, with probability one,
D.(f".z) = 1 for some m. Observe that D.(f™.z) = 1 implies (Lemmas 7 and
5) there is a non-zero probability that S.(f™*'.z) < S.(f™.z). By a similar

10

argument to that given in the proof of Lemuma 6 it can be shown that the limit

probability of S.(f*.2) > S.z is zero. [

2 Analysis

Two of the correctness issues resolved in the previous section have parallels in
this section. Corresponding to the issue of progress, we calculate the expected
time for a single token to circulate in a ring; corresponding to the issue of conver-
gence, we obtain a bound for the expected time for the algorithm to minimize
the number of tokens in the ring. By ‘expected time’ we mean the average
number k for which f*.z establishes progress or convergence. For convergence,
the initial state z should be the case for which the expected convergence is
maximum (the worst case). In order to calculate expected time bounds for the
algorithm we assume that all random bit generators behave like fair coin tosses;

that is, »; = 1/2 for each process 1.

Lemma 8 For z a state of a ring with exactly one token, the expected

minimum value of & such that f*.2 advances the token exactly n times is 2n.

Proof. We are interested in calculating the probability for each number k such
that f*.z has the following behavior: in the computation f*~1.z the token does
not move, whereas the token moves in the computation f.(f*~!.z). There are
two possible outcomes, equally likely, of a computation of f.z: either the token
will move or the token will stay. The probability that the token will move by a
computation of f.z is 1/2. The probability that the token will stay by f.z but
move by f.(f.@) is 1/4. Thus the probability that the token first moves in the
kR jteration of fis 27%. The expected value for the number of iterations of f

to move a token is therefore

[ee)

Z 278,

=0

i1

To compute this sum we use the technique of transform analysis. The sum is

equivalent to P(1) where
P(z)=> i27'7.
i=0
To obtain a closed form for P(z) let R(z) be defined as
R(z) = Z?ﬁ'izi.
i=0
Then P(z) = zR'(z). The closed form for R(z) is (1 —2/2)"%, so

Z2R(2) = (2/2)(1 — 2/2)"2.

Hence the value for P(1) is 2, which is the expected number of iterations of f
to move a token. The expected number of iterations to rotate the token around

the ring is therefore 2n. O

To analyze the expected time for convergence we consider first a simpler prob-
lem. In a ring with exactly two tokens, what is the expected time to reach a
state without tokens? Our analysis is based on the observation that a ring state
z with exactly two tokens has four equally likely outcomes from the computa-
tion f.z. Either both tokens move, both tokens stay, the first moves while the

second stays, or the first token stays and the second moves.

The distance partition D introduced for the proof of convergence provides a
useful framework for calculating the probabilities for outcomes of f.z. Let m =
n/2 and observe that 0 < D.z < m for a ring with two tokens. Let A be the
m x m matrix of transitional probabilities between classes of D. An element
a;; in the matrix is the probability that D.(f.z) = j given that D.z = ¢. The

matrix is

1/2 1/4
1/4 1/2 1/4

14 12 1/4
1/2 1/2

Explanation for this matrix follows. The rows corresponding to z satisfying
1 < D.z < m have a regular pattern: consider the four possible outcomes
from f.z. If both tokens move or if both tokens stay, then D.x = D.(f.z); the
probability of this event is therefore 1/2. If one token moves and the other stays

then either
D(fe)=Daxz+1 o D(fz)=Dez-1

These events occur with probability 1/4. The exceptional cases in the matrix
are D.e = 1 and Dz = m. If D.x = 1 then convergence (D.(fz) =0} isa
possible outcome, with probability 1/4. This event is excluded from the matrix
A, which is defined only for ring states with two tokens. The other exception
is D.z = m, for which D.(f.z) = m with probability 1/2 and D.(f.z) = m—1
with probability 1/2.

Lemma 9 For z a state of a ring with exactly two tokens, the expected

minimum value of k such that f¥.z has no tokens is at most n?/2.

Proof. Let e; denote the 1 X m vector equal to the ™! row of the m x m identity
matrix I. Let j = D.z. The vector e; represents states satisfying D.z = j
(that is, the initial probability Pr(D.z = j) = 1). The vector ¢; A contains the
probabilities for D.(f.z), and e; A* contains the probabilities for D.(f*.z).

The probability that D.(f*.z) = 1is

Ck= 6jAk€{.

13

The probability that f*+1.z has zero tokens is computed from C.k by C.k/4
because convergence is one of the four equally likely outcomes of f applied to a

state with adjacent tokens. The expected value of k such that D.(f*.z) = 1 is

o0 o
E(kCE) = iejAle] = &> id)e].
=0 i=0

The closed form for the summation can be obtained by transform analysis [5].

The expected value for is given by
E(kCk) = e;(I — A)TTA(I — A)~teT.

The matrix (I — A)~! has a regular structure:

4 4 4 4 4 2
48 8 8 ... 8 4
48 12 12 . . . 12 6
Be(l_ayi=|% 8 1216 16 8
48 12 16 . . . 4m-1) 2m

The matrix BAB also has a regular structure, but it is not necessary to compute

it entirely; only the first column is of interest:
E(kC.k) = e;(BABeT).

Let h = BABe? (the first column of BAB). By straightforward calculation,

the elements of the m x 1 vector h are
h; = 16mi — 8i* — 4.

Since E(kC.k) = ejh = h;, we are interested in
(max j:0<j<m: hy)

to obtain the worst case for an initial state z. In the range 0 < i < m, the
formula for h; is an increasing function of ¢, so the worst casefor z is Dz =m
— when the tokens are initially as far apart as possible. Evaluation of E(kC.k)

for this case is

14

E(kCk) = by = 8m? — 4.

This result is an upper bound for the expected time to reach a state satisfying

D.(f*.z) = 1; the expected time for convergence is bounded by

E(14+kCk/4) =14+ EkCE)/4=n?/2. O

Lemma 10 The expected minimum value of k such that S.(f*.z) < 2 is at
most n?[logn]/2.

Proof. We define three intermediate procedures that are based on procedure f.
The last of these procedures halves the number of tokens in expected time n?/2;
repeated application of this procedure models the behavior of f, and thereby

we obtain the bound n?[logn]/2 for convergence of f.

We define F to be a procedure for a ring with two or zero tokens. To compute
F.z, y = f.ris computed first. If S.y = 0 then y is the output of F.z. If
S.y > 0 then some two-token state z satisfying D.z = D.y is chosen arbitrarily
to be the output of F.z. Observe that Lemma 9 holds for F: the expected

minimum value of k such that F*.z has no tokens is at most n?/2.

We define G to be a procedure for a ring with two or zero tokens. To compute
G.z, y = f.x is computed first. If S,y = 0 then y is the output of G.z. If
S.y > 0 then some two-token state z satisfying D.z < D.y is chosen arbitrarily
to be the output of G.z. Observe that, with probability one, there exists &£ so
that D.(G.z) = D.(F*.z). Therefore G converges at least as quickly as F; the

expected minimum value of k such that G*.2 has no tokens is bounded by n?/2.

We define H to be the following procedure, defined for any state x such that
S.z > 2. The computation of H consists of an initial step followed by an

iteration.

15

The initial step is a coloring of two of the tokens of 2: two tokens are selected,
one is colored yellow and the other is colored green, so that 1+ [S.z/2] tokens
are on the (clockwise) path from green to yellow, and 1+ [S.z/2] tokens are on
the (clockwise) path from yellow to green. Some choice of two tokens to color
green and yellow is clearly possible for any z with at least two tokens; there
may be many possible choices for the two tokens, and any choice is satisfactory

for the initial step.

The iterated step consists of an application of procedure f followed by a coloring
of tokens, described below. The iteration terminates when the ring does not have

a green token and a yellow token.

To describe the iterated step, let i be the process holding the green token, let j
be the process holding the yellow token, let y = f.z, let ¢/ = M.z.y.4, and let
i = M.z.y.j. Initially, all tokens in y are uncolored; then tokens are colored
as follows. Let v denote the shortest path between ¢ and j7, that is v is either
the (clockwise) path from ¢ to 7/ or the (clockwise) path from j’ to #/; in case
both paths are the same length, one is chosen arbitrarily to be v. If there are at
least two tokens in v, then the token closest to ¢ in v is colored green (if there is
a token at ¢ then it is colored green) and the token closest to j/ in v is colored

yellow.

We claim that the expected number of iterations before H terminates is at
most n?/2. To see this, observe that for all but the final step of , the step
either emulates f for the colored tokens, or obtains some state having two
colored tokens with reduced distance. The colored tokens therefore describe a
computation of G (except that H may terminate before G would terminate).

Thus the expected time for convergence of 7 is at most n?/2.

Let z be the final state from a terminating computation of H with input state

z. In initial state = there are at least 1+ |S.x/2] tokens on any path from one

16

colored token to the other. In final state z there are no colored tokens, so there

is a path between ¢’ and j’ with at most one token. Therefore

Sz < Sz—(1+[Sz/2))+1 = [S=/2].

To complete the proof, consider the computation H?P.z. We seek the minimum
p so that the ring state has fewer than two tokens. The previous paragraph
shows that S.(H.z) < [S.z/2]. Consequently [logn] is a bound on p. Each
application of H terminates in at most n?/2 expected iterations of f, thereby
the expected number of iterations of f to reach a state with fewer than two

tokens is at most n%[logn]/2. O

3 Conclusion

It is difficult to compare the algorithm presented here to other work because
the traditional model of computation for self-stabilization is an asynchronous
network. Some of the asynchronous algorithms do admit the possibility of syn-
chronous execution. For instance, the original unidirectional algorithm [4] can
be used in a synchronous setting [3], but a distinguished process is required,;
moreover O{logn) bits per process are needed to represent a process state (the
paper [2] cites O(logn) as a lower bound on any deterministic, unidirectional

algorithm with indistinguishable processes).

In [2] there is an algorithm for uniform rings, which are rings of indistinguishable
processes in an asynchronous model. That algorithm is deterministic and self-
stabilizes for the case of prime n, however the algorithm fails if neighboring
processes execute simultaneously and is unsuitable for the synchronous model.
The probabilistic seli-stabilizing algorithm in [6] is bidirectional; it is unclear if

the algorithm admits synchronous execution.

Some interesting questions arise in connection with the algorithm presented

17

here. Does there exist a similar probabilistic algorithm, self-stabilizing to a

single token, for the case of even n? Is it possible to devise a deterministic

pattern for the inputs -; so that the same program can be used to achieve

self-stabilization, but converge faster? Can the bound n?[logn]/2 be lowered?

Acknowledgement. The author is grateful for criticisms from Edsger W.

Dijkstra and Jayadev Misra.

References

[1] D. Angluin, “Local and Global Properties in Networks of Processes,” 12th

Annual ACM Symposium on Theory of Computing, pp. 82-93, April 1980.

[2] James E. Burns and Jan Pachl, “Uniform Self-Stabilizing Rings,” ACM

Transactions on Programming Languages and Systems 11, 2(April 1989),
pp. 330-344.

J. E. Burns, M. G. Gouda, and R. E. Miller, “On Relaxing Interleaving
Assumptions,” Technical Report GIT-ICS-87/36, Georgia Institute of Tech-
nology, Atlanta, Georgia, August 1988.

Edsger W. Dijkstra, “Self-Stabilizing Systems in Spite of Distributed Con-
trol,” CACHM 17, 11{1974), pp. 643-644.

Ronald A. Howard, Dynamic Probabilisiic Systems Volume I: Markov Mod-
els, John Wiley & Sons, Inc., New York, 1971, pp. 53-54.

Amos Israeli and Marc Jalfon, “Self-Stabilizing Ring Orientation,” Depart-

ment of Electrical Engineering, Technion—Israel, September 25, 1989.

Alon Itai and Michael Rodeh, “Symmetry Breaking in Distributive Net-
works,” 22nd Annual Symposium on Foundations of Computer Science, pp.

150-158, 1981.

18

