EVALUATION AND IMPLEMENTATION
OF PROTOCOLS IN THE LOCAL AREA
NETWORK TESTBED ENVIRONMENT

Benjamin Lewis Barnett, m

Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712-1188

TR-89-35 November 1989

Abstract

This thesis presents the results of the Local Area Network Testbed experience. The design of
the testbed, the results of several experiments and the results of a formal protocol analysis are
included. Three data link layer protocols for Carrier Sense Multiple Access with Collision
Detection (CSMA/CD) bus networks were implemented in the testbed. The performance of these
three protocols under several different artificial workloads is compared. The three protocols
were the commercially available Ethernet, the Enet II protocol proposed by Molloy, and the
Virtual Time CSMA/CD (VTCSMA/CD) protocol proposed by Molle. The three protocols repre-
sent three fundamentally different approaches to handling collisions among users of a broadcast
channel. Ethernet randomizes retransmission attempts for the conflicting packets in an attempt t0
minimize the likelihood of successive collisions. Enet IT uses a probabilistic algorithm to sched-
ule the retransmissions of conflicting packets to resolve the collision. VTCSMA/CD uses a
technique which reduces the initial likelihood of collisions. Enet II is shown to have significantly
better variance of delay than Ethernet. VTCSMA/CD has the best variance of delay of the three
protocols due to the success of its collision avoidance method.

The implementation of Enet Il demonstrates that techniques usually reserved for slotted net-
works can be beneficially employed on their unslotted counterparts. To investigate the adaptation
of slotted protocols to unslotted use, a well known slotted Collision Resolution Protocol (CRP),
the Gallager First-Come, First-Served (FCFS) protocol, is adapted to unslotted operation and
proven to have bounded delay. A second adaptation of the protocol which responds to collisions
differently is shown to deadlock. Deadlock detection and recovery methods are presented. A
new CRP based on the deadlock recovery method and using information about the location of
colliding stations is proposed.

Keywords: Broadcast Bus Protocols, Protocol performance measurement, Protocol Verifica-
tion.

EVALUATION AND IMPLEMENTATION OF PROTOCOLS IN
THE LOCAL AREA NETWORK TESTBED ENVIRONMENT

by

BENJAMIN LEWIS BARNETT II1, B.S., M.S.C.S.

DISSERTATION
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOFHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December, 1989

Copyright
by

o

Benjamin Lewis Barnett 111

1989

ACKNOWLEDGEMENTS

I am grateful for the advice and support of the members of my committee. Special thanks

go to my supervisor, Michael Molloy, for his perseverence and inspiration.

This dissertation and the work it describes owe more than I am able to express to my

parents. Their support and confidence during this effort were continuous and unwavering.
I'm very grateful to Pradeep Jain for many helpful discussions.
Thanks to Chris Edmondson-Yurkanan, who kept an eye on me.

Many thanks to the Unix and Shop staff of the University of Texas Department of
Computer Sciences; Fletcher Mattox, James Johnson, Ron Vasey, Pat Home and C. W,
Branch provided valuable help during the course of the experiments. Thanks to Boyd Mer-

worth for invaluable help with text formatting.

Thanks to Brad Blumenthal, who kept me sane through the ordeal, and to my
officemates, A. T. Campbell, Sampath Rangarajan, K. R. Subramanian, and Ramakrishna

Thurimella.

My deepest gratitude goes to Rebekah Lane, who gave me the impetus for the final

push, and who put up with me while it was going on.

This research was supported in part by grant #MCS8122039 from the National Sci-

ence Foundation.

Benjamin Lewis Barnett I

The University of Texas at Austin
August, 1989

vii

ABSTRACT

This thesis presents the results of the Local Area Network Testbed experience. The
design of the testbed, the results of several experiments and the results of a formal protocol
analysis are included. Three data link layer protocols for Carrier Sense Multiple Access
with Collision Detection (CSMA/CD) bus networks were implemented in the testbed. The
performance of these three protocols under several different artificial workloads is com-
pared. The three protocols were the commercially available Ethernet, the Enet II protocol
proposed by Molloy, and the Virtual Time CSMA/CD (VTCSMA/CD) protocol proposed
by Molle. The three protocols represent three fundamentally different approaches to han-
dling collisions among users of a broadcast channel. Ethernet randomizes retransmission
attempts for the conflicting packets in an attempt to minimize the likelihood of successive
collisions. Enet II uses a probabilistic algorithm to schedule the retransmissions of
conflicting packets to resolve the collision. VTCSMA/CD uses a technique which reduces
the initial likelihood of collisions. Enet II is shown to have significantly better variance of
delay than Ethernet. VTCSMA/CD has the best variance of delay of the three protocols due

to the success of its collision avoidance method.

The implementation of Enet II demonstrates that techniques usually reserved for slot-
ted networks can be beneficially employed on their unslotted counterparts. To investigate
the adaptation of slotted protocols to unslotted use, a well known slotted Collision Resolu-
tion Protocol (CRP), the Gallager First-Come, First-Served (FCFS) protocol, is adapted to
unslotted operation and proven to have bounded delay. A second adaptation of the protocol
which responds to collisions differently is shown to deadlock. Deadlock detection and
recovery methods are presented. A new CRP based on the deadlock recovery method and

using information about the location of colliding stations is proposed.

X

Table of Contents

Chapter 1: Introduction... 1
1.1, OVETVIEW eonveerveeeesoeuceesasssesenssessessensasssaneasssnssoseousssssrsseseosassenssssassnensess soscasesse s tontastosssossrosssnsssass 3
1.2. BACKZTOUNG . ereeurrerrerreerracuimsiarassssessessssssmasssastsase st ssastsosssnssisssshsnassassessnsssssssensstsnscasacassenssssassos 5
1.3, RESUIS woiveeereceeeeermeeussesesorsasessssssesnensassssanesenseasseonsorsonnssnsonsssassssessnsnsesnoss ancass s sosensnonsnasassasssnsssns 8
1.4, Summary Of DISSETLAION oveveecuriiruirereessssseesssassmssasmscrecsstsssststse s sstasbs s stssnssssasssascsnssssonssscnscns 9

Chapter 2: Previous Research A1
2.1 MeasureInent STIAIES ..o vreerrirerereerersasstrresscesnaossorsesserarorsossessasssssssssssssssosssssresersassonsessessnssansans 12

2.1.1. Kerox PARC EXDETITIENTS. ccevtiercniaresnseresssssasssassensnssssonsiertossnsasanssssmassncsesssssassssssssssasncs 12
2.1.2. National Bureau of Standards EXPETiMents .oirremmmeesrereensesesessencmuiiiescssessassisnsasseens 18
2.1.3. Digital Equipment Corporation EXPeriments ..cccoeeminuinennnminninnisinsssssnes oo 18
2.2, Broadcast Protoco] VErlICAtON cvuereecinrcrcrsssesnonsassnsessnssnaseessersssscsssnssoseossossoninsssssnssnnssssasass 21

Chapter 3: The Local Area Network Testbed 3
3.1, Testhed Design GOalS. e rsnsssssssesencsennscssstsetssstsntnsssssassssrsnenanens o sensssonsesnosoacses 24
372, TEStBEA HATGWATE et reeesererrerierssneseressnsssesnesossrsssssssnsssassnrosnesanassossssassesstestsstsossssansisnnsosinsaseane 25
3.3. The ILMON Network Monitoring Package ...eeeecminercranenecinsiiecesonsssiiinisssesnonssonsasess 27

33,1 TLIMION DIESIGM eueurrerrecrercerecrisssessssesssessssansssassssansesnacsssosssasesstomscatassonsnosssssesasasanssssanasasse 28
3.3.2, Limitations of ILMON ...cvecierceecncesmnscssesmessivssessssmonsssmssnsnssoscossasssmosssassessasssssssssssssssenses 32
3.3.3. IMPIETIENLAION eevecucerisrrenrsrsitsssseresssessssssassosasaesssesesstsstssasessussastasmsssssnasassassasassonseuenstuscoces 33
33,4, PErfOIINATICE ..eecieveeeeerereareesesssesssassesmessense sassessnsssnssasassnansssssnasnsssanasesnsonansansssusssssensionsans 35
3.4. The Experiment Configuration PaCKage....emecererscsesiccisiioninsisnsss st snssssssneconee 37
4.1, D8R SIIUCLUTES woevvsirrrecereersesssssessessssmensencsssssestssmsssnsssessonsssmssassssassnsnssssnonsonsossnsssacossonsansss 37
B2, FIIES trveereseeeeeerrereeceseasssssesssenesssssascnessensasssasesessosssstostssessansesssssssasassentanssnsssnes e aosssnsssorssnss 39
B3, SO WAL e oereeeerereesiseasereesssseonssssessasasesssensanasssacenesss st st saesRs R baE B AR s SR e s R S0 S e n e s tr e 39
3.5. The Experiment Execution Package. ..o insisssisssisssnencsssencucosnononss 40
3.5, 1, SUDEIVISOT courecuerecermseacrsrecumeusesensaessssesasssnssssratsssscocseresetasestotsssasncassarassasessssarasensasssasassanscs 40
3.5.2. 1.0CAT CONIOL PrOCESSES corereerercerosesccsrermsssssssssnosensessasmsssssanssosssnssansesaesmessasessssssssninssnosss 41
3.5.3. 1000 GEIIAIOT o uveseevesiseererseessessassasenssssessesossossssostssmesssnasesaasestonssucstasssnsneasessssnenssusionss 41
35,4, CONTOL FLOW.vieereiecrisimserssesessssassssrnesnmsonsssscsessnssscanssssstsansesssonsss snaonnonsosssnsasonsossesssacosy 42
3.6. The Experiment Analysis PaCKage ..o vmieirecenismeconisinitniminss et ssnssssssssenncrsssnsend 42
3.7, SYSIEMN SOTIWAIE cevoveeveccaieremienntinstsestssasanassenssas s assssssscnssssssssassssassesasassesnasasassssanssensansnasssss 44
3.8. Protocol IMmplementations. e reresrurisrmsimssnsasesseessssenocssssosshscasoes canssnsssnasss st ansasesssssssonscacac 45
3.8.1. Ethernet Implementation . nsimrsescsssssssmsissscsostississsotsismisniosiess s ssssnsasssssnsssosns 45
3.8.2. Enet I Implementation ..o mimiscmscenoronsassescsonssncssosusssastsssasassssssassansssnanessssasasasessos 48
3.8.3. Virtual Time CSMA/CD Implementalion ... ieeeimmmnessinsncssssencossrsssosasosnsrmssnsncs 52
3.0, FREINEt SIMUIALOT e errvrevereerserserssesmossossasscossassessseessoss nessnsssesnsessssassnasnssssssesouns s sasssaseseosasocsassns 55

xi

310, SUITIMATY o covoevesveseseecocsessssseseaesarassess st enssotsst st iosmssasha st s e E S0 s oR SR S n s ss s 56
Chapter 4: Measurement Methodology... 57
4.1, Modifications to UNIX Clock Managerment .ueeeresmeesrstnssssesssussasmosasassnessesioncossonsasssssnsans 57
472, Network Device Driver Instrumentation o cierescersmenresisssessinniiimsnssssoscssssoss s 59
43. Experiment Design and Analysis coe et 59
431, Production Network TraffiC. e coneeriemsmmresesmsrcnsenssessssssnssnsstsassnssssssosnsnconsssssnsnsases 59
4.3.2. Fired Packet Length LOads o cienimmonscesesscnnnnsssssisnnssnninssssenssesessssssestanssnssssss s cos 65
433, Statistical CONSIAETAIONS cveirrrrermrcrirsrsssismsessensssemsscontssssstonsssnmsmsasassssesssnestesssonsssnsons 65
Chapter 5: Protocol Performance Measurements... 67
5.1, 1500 BYLE PACKELS 1evuenrmersecrevmssemssessasnassassasssessonsessessssmsssnressssssnsassenasss st ssnsssonssiasunsssssssasnssssssns 74
5.1.1. Fixed Interpacket INTEIVALS oo ser e eneinstcnet st sttt e 74
5.1.2. Exponential Interpacket INtervalS. o esinimmnisnissssisens e sems s ianesst st 84
52, 1024 BYLE PACKELS rvvvvveeerseeesseseoneceussesesesssnsssssssssessssssesssesssssossssss s ssssssssssssssssasssssssaccnsascssnsss 90
52.1. Fixed Interpacket INTEIVALS ..covviiceirivrimssssrerenecnsrossinsssisnssnsssssssssnesssuss st s s s nnssssens 90
5.2.2. Exponential Interpacket INEIVALS..mmecrecuiimnimiinntnnicresncnsscnstcsissnsics st sns s 97
T3, PACKEE MIKLETE Lavurvereeirreersreesssesssesssmessossssisesmnnsssasssnssasssseonsatsiossamsssssassaassessissssstocssssenssasass 102
53.1. Fixed Interpacket INFEIVALS cooviiriiirrctesinrssesmcr s ssssssamanass s s smcscnace s s srs 102
5.3.2. Exponential Interpacket INTErvalS. . e conscs s senasimsiisssssssnesssnecs 107

S 4. PACKEE MIXIITE 2ureeceiresessesesseesasasesssenenomssenssessinsessassssensasassenssoss iasssnsssatassasss st sancensassssssnsssns 113
5.4.1. Fixed Interpacket INEIVALS ooccimiirriiietnms s nescneronsinsisnsnanssrssssssssnscncncnensususianasissnsacs 113
5.4.2. Exponential Interpacket INtErvals. o it 117

5 5 PACKEE MIKEIIE 3uereencrervosesvessecesersessmsseescesmestassssentasassasentasasssssarsssssorss srasasaasassassnsssscssssnsosonssoss 121
5.5.1. Fixed Interpacket INEIVals oo crr et s ecn st e o s 121
5.5.2. Exponential Interpacket INfervalS. .ot 125
5.6. Comparison t0 Other RESUIS ettt sness 129
5.6.1. SNOCH AN HUDDuwvreersrererereccsmermessissessessanssssasossonersascossisesstsistonsnasassssssesssssnsossisssassrasssos 129

5 5.0 GONSAIVES et ereereresvesessereesennasensnessossoseonsestassssnsnsassserisssonssesneonsstsssnessnssnssnesiasasnessassscessoons 130
5.6.3. GOnsalves and TODAZT cuorerrrereeireererecisireressissnrasssscrosonssessessesssismscasassssissasarassssssasesseansess 130
5.6.4. Boggs, Mogul and KeNlu. o iimsircueisrinerecansseniniassstos st ssestsessssssssescnessscsenesasansas 131
5.6.5. TobagE AN HUNL oot nenersssasse e sensinstussie bt ses s sss s st in st s s 132
5.6, ATl ereeesiessesesseeessenssassssensasensasansnesosasseossrosssinsssestabasas anTETReOoOEe s S0 SRs S LRSS SE SRS SE e RS an 20T 00250000 133
5.6.7. EnEt T RESUIS vevevveversrerierersassnrsoossasasesssossosmsssssssnsarssssnsss aaosoesaronsosassnnsansastastsnssonsaasasecss 136
5.6.8. Molle’s VICSMA/CD ANAIYSIS coveireesenrirersenorsasesscessocsssssssssmsssssnssnssssssssonsonsaces 136
Chapter 6: On Using Slotted Collision Resolution Protocols on Unslotted Media..iweeneocons 139
6.1. A Model for Reasoning about Contention ProtoCoIS.. i ensessnenencncons 141
6.1.1. THE S1ALION PIOCESS vverreervesrercearssscssorasesossissossosassassssssosonssstssaisssstassssssosassnsssnassssnessaesens 141
6.1.7. The Channe] PrOCESS .vvcuvevieonrercrsrerscossistosssssmsnisesssscontossssanessissssssssssassssssasasssensssssossons 146
6.1.3. Starion Transmission BEhaviOr.. v orsimmecmsssrmessonissmuessmsmasssnsoossassnsonsoss 148
6.2. Basic Theorems Concerning COISIONS wooviirimerimmesoenmissinacssstsasonsnecsssiises 152
6.3. An Asynchronous Specification of the FCFS ProtoCol.....viimenscscnsensimsinssnsiinsccnsenens 163
6.4. Bounded Delay of the Asynchronous FCFS ProtoC0]einnmmscsescrseniicscisisnens 167
6.5. The Aggressive Asynchronous FCFS ProfOCOL..c.vuiimimmmrssssistscnssinsesssssssniansisesssnesennes 203

xii

6.5.1. Performance of Apgressive FOES (o emssesesinasssncscrissssonsassocns 203

6.5.2. Potential DeaaloCK. i reercereecrceeseseemisessnsesmssissasmossacssssssassasssssssassssasussusessasasersasnosaasas 207
6.5.3. DeadloCk DELECHOMN cuveveiverreresseearsaseseessessasiosssessssasestsssastesmosmsssssssssanessssassssossisssanas sanssnss 214
6.5.4. DeadloCk RECOVETY wevvvurverseerreerencnremotsisssaresnssnssssessasasesscseastisamsasststssassssnsassssrossasonansenees 215
6.6. The Space Division Multiple ACCeSS PIOIOCOL .ottt s 219
Chapter 7: Conclusions.... . 23
7.1, IMeasurement RESUIS . .ovuieceraresacessonceseecssosissormosessssascssssssnsscessssssssossessonsssssnsnsssnsasassotsns 22
7.1.1. Ceneral Behavior of the ProtOCOIS weeerveunrrnsnssranessnsssssosesssaosonsossasesssssssassssrsnsasesss 224
7.1.2. The Effect of Exponential versus Fixed ATTIVAIS .o 226
7.1.3. The Effect of SMall PaCKelS .ovvcveerececeniinemstsressnsnsssssncsscsscosassssiesassssssnsssasssesssssssas 226
7.2. Adapting Unslotted Protocols t0 SIotted NetWOIKS ... orisrismosncienonnennienccimsnnsininnnn: 227
7.3. Space Division Multiple ACCESS...uirimrncererecmiimisiininsmsissis sttt et s 228
T 4. COTUTIDULIONS ceveerevenereceeromsscessaessessessasasesssssssoonsnssassssssassnsarassssseanessoostsssssssesssanessasaasssnsss trussss 228
T B, FUEUTE WOTK, e tveevreerereseressesssassessassssnsssnententescesestsnmrstassssanssontatasnsessssatsssisonsonsssnssssersantssnsasanse 229
Appendix A: ILMON Filter Structure Definition 231
Appendix B: Experiment Configuration Package File Structures 5
Appendix C: ILMON User’s Manual..... 239
Appendix D: Experiment Configuration Package User’s Manual......... 45
Bibliography . 255

xiii

List of Tables

Table 3.1: TLMON — Recognized Packet TYDES.mvemrrsmorisrsmsisrmsesmiassessensasssenssscsessactstsusssnes 31
Table 3.2: Process actions during various experiment PhaseS.....cummnurinrsresninssnsssrsensestenensesene 43
Table 4.12 XeroxX V8. ILMON uviieorrreriecsrneresesiemmssosisssssanssssssonsssssomssssssasnssasasassnssssssnssssusossassssosces 64
Table 5.1: Offered load packet generation overhead, by PrOLOCOL..cmimreriermmmsnrinisseneniccsinneenscs 71
Table 5.2: Offered load packet generatio overhead, by 102d PAttern o rceimecrerseineneccsctsssnnnsinces 73

Table 5.3: Comparison of Ethernet measurement and modeling results on maximum throughput.131

XY

Figure 2.1z
Figure 2.2:
Figure 2.3

Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 3.1:
Figure 3.2
Figure 3.3:
Figure 3.4.
Figure 3.5:
Figure 3.6:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 5.1:

Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:

Figure 5.9:

List of Figures

Measured Ethernet packet length distribution ([SH80], Figure 4) .ueveeeseineiericeisecnees 13
Measured distribution of interpacket arrival times for Ethernet ([SHR0], Figure 6)....... 14
Measured utilization of Ethernet with continuously queued sources

([SHBO0L, FAGUTE 10(D))ucvuuvusersrrsrmsssssrsssssesseessesssssonssenssssasssssases sasussssesssiasansasssssmassassnassns i5
Measured utilization of Ethernet under high load ([SH80], Figure 9) ccccvvvnvnnnncininninnac 15
Measured utilization of Ethernet under high load ([Gons85], Figure 4.8} ccvvviinninnnnnas 17
Measured delay of Ethernet under high load ({[Gons85], Figure 4.9) iiivenrananianenn 17
Measured bit rate versus number of hosts for Ethernet ((BMK88], Figure K Y T 20
Layout Of LANT SEALONS wovuurvvrseeeessemssonscessssmssasasssarssssssansssomscsis st srssasssis snsss s sosssseasonsces 26
Efficiency of packet length histogram collection and packet header 10g8ing .oovveecerecnne 36
Ethernet collision handling €xample . 47
Statement of the Enet I alg0rithm e inenescsncscsisisisnssssenins s e stnisssssssaned 49
ENEE T EXAMDIE ...vrueeseremeeecnessisseessistssatsssesstsss st soasm st s s s st ess s et 51
The VTCSMA/CD lZOTHRIM c.cirruiiiieeeeersrersnensrssnesssssasinssssssssssssnssstsnessesssssasmsussssons 53
24 hour Ethernet utilization, six minute SAMPIES..rrreercsccsinmismeisinnsnianseniasessasne 61
Packet length vs. percent Of t0tal PACKELS ettt 62
Interarrival time diStribuLON svvuiirceerreecesissnresserisneserssnsssssasssssssnsasasessanssssssaronsasannesosssnss 63
Throughput (S) versus offered load (G) for 1500 byte packets with fixed

NEETPACKEE INLETVALS...cvueveereecrsiascaresenssnrnsessens e ssrs s snsas e s s 75
Simulated Ethernet Throughput (S) versus offered load (G) for 1500 byte packets

with fixed interpacket IMEIVALS wuoiiersmrecsetscsensesemin s snnanssnseencsssesus st es 77

Queueing delay (D) versus throughput (S) for 1500 byte packets with fixed

INEEIPACKEE INEETVAIS .o cvucierirrssersesranssesetseseerecncon s ssn sttt s s e 73
Queueing delay variance (V) versus offered load (G) for 1500 byte packets with

fixed interpacket intervals. NOrmal CONAIIONS c.cuevcrrmrmrsrssisnssasessssssseennntasssonssusnasnis 80
Queueing delay variance (V) versus offered load (G) for 1500 byte packets with

fixed interpacket intervals. Overload CORGILIONS wuccvimriiircssmsmnonsinscsmsimccasississnssisassanes 21
Collisions per second (C/s) versus offered load (G) for 1500 byte packets with

fixed interpacket INEIVALS. ..o rireere e ettt et sttt 82
Collisions per packet (Coll/pke) versus offered load (G) for 1500 byte packets

with fixed INterpacket INETVALS vo.cmewrersirermrrrsssssssstisensemeissstsis st s 83
Throughput (S) versus offered load (G) for 1500 byte packess with exponentially
distributed interpacket INLEIVALS vuvivrireremosmscsmsensessasssmssnsmasisnasssmsnnensisensessisassasessussssses 85
Queueing delay (D) versus throughput (S) for 1500 byte packets with exponentially
distributed interpacket INEIVALS co.iceuesrerisuerssescrsoctseimsisismsssssssssnsncoocncsstssssssnsessens 86

Figure 5.10: Delay variance (V) versus offered load (G) for 1500 byte packets with exponentially

distributed interpacket intervals. Offered loads in normal Operating Tangewevenssrs 87

Figure 5.11: Delay variance (V) versus offered load (G) for 1500 byte packets with exponentially

distributed interpacket intervals. Offered loads extend to overload range.....ceceeeen. 88

xvii

Figure 5.12:
Figure 5.13:
Figure 5.14:
Figure 5.15:
Figure 5.16:
Figure 5.17:
Figure 5.18:
Figure 5.19:
Figure 5.20:
Figure 5.21:
Figure 5.22:
Figure 5.23:
Figure 5.24:
Figure 5.25:
Figure 5.26:
Figure 5.27:
Figuare 5.28:
Figure 5.29:
Figure 5.30:
Figure 5.31:
Figure 5.32:
Figure 5.33:
Figure 5.34:

Figure 5.35:

Collisions per second (C/s) versus offered load (G) for 1500 byte packets with

exponentially distributed interpacket INEEIVALS. v sesvsssiseceienis s e 89
Throughput (S) versus offered load (G) for 1024 byte packets with fixed

TS gt 1ol U TSI o 1 IR BU S S SRS 91
Queueing delay (D) versus throughput (S) for 1024 byte packets with fixed

IETPACKEE INEEIVAIS..ovucuvucineisnmissriessesasrs e cassot s s s b s 93
Delay variance (V) versus offered load (G) for 1024 byte packets with fixed
interpacket intervals. Offered loads in normal OPETANG TANEE .evereseserrorsrarsecensssescionss 94
Delay variance (V) versus offered load (G) for 1024 byte packets with fixed
interpacket intervals. Offered loads extend into overload Tange. i rerneesserinesneencs 95

Cotlisions per second (Coll/sec) versus offered 1oad (G) for 1024 byte packets

with fixed interpacket INLEIVALS covireeerssrceererersetssasnsis s sn s snsn st annes 96
Throughput (S) versus offered load (G) for 1024 byte packets with exponentially
distributed interpacket INEIVALS wovireeerscseeserrrisisessisi s sest st s snsee 97
Packet queueing delay (D) versus throughput () for 1024 byte packets with
exponentially distributed interpacket INErValS. . mrisrcreccrsissinriss s 99
Packet delay variance (V) versus offered load (G) for 1024 byte packets with
exponentially distributed interpacket IEIVAlS . covummessnmssersccmsssnscisssrmssnsi s sesensense 100
Collision rate (Collsec) versus offered load (G) for 1024 byte packets with
exponentially distributed interpacket IEIValS o mirimiscerimissnsinitinsnnisnrses e 101
Throughput (S) versus offered load (G) for packet mixture 1 with fixed

INEIPACKEE INLEIVAIS. . cvuiuersrrrrrasissreseseneesessatssrsinsr b ana st s s st s s s 103
Packet queueing delay (D) versus throughput (S) for packet mixture 1 with

fixed Interpacket INLEIVALS. o erssssrsesessecssirsunnasasbsinsasrssn et sus st s s 104
Packet queueing delay variance (V) versus offered Ioad (G) for packet mixfure 1

with fixed interpacket intervals. Normal OPErating Iange oo ieeeiecsecsenseesccusssiusanss 108
Packet queueing delay variance (V) versus offered Ioad (G) for packet mixture 1

with fixed interpacket intervals, Overload Tange....cccmminnssiesesmiiiesoscissensienense 106
Collision rate (Coll/sec) versus offered load (G) for packet mixture 1 with

fixed interpacket INEIVAS..ciimrrrornenramersenessesitsensisriasnenis s soncnsenstssmsss s sssancs 167
Throughput (S) versus offered load (G) for packet mixture 1 with exponentially
distributed interpacket INEIvals s s ena 108
Packet queueing delay (D) versus throughput (S} for packet mixture 1 with
exponentially distributed interpacket intervalS. e 110
Packet delay variance (V) versus offered load (G) for packet mixture 1 with
exponentially distributed interpacket iNEIValS. v iricsnscsciicnsennirsss e i11
Collision rate (Coll/sec) versus offered load (G) for packet mixture 1 with
exponentially distributed interpacket IEIVAIS. et s 112
Throughput (S) versus offered load (G) for packet mixture 2 with fixed

INIETPACKEE TMEEIVAIS..cuciriunirnceerisessset s s sa s sea s seb st s 114
Packet queueing delay (D) versus throughput (S) for packet mixture 2 with

fixed interpacket INIEIVAIS ..ot cn sttt st s o e e 115
Delay variance (V) versus offered load (G) for packet mixture 2 with fixed

INEIPACKEE INEETVAIS . coiimimiaerarsstessseser e e ss ot s s s 116
Throughput (S) versus offered load (G) for packet mixture 2 with exponentially
distributed interpacket INLEIVALS wouiieeiss et e sr st sen s s s s 117
Packet queueing delay (D) versus throughput (S) for packet mixture 2 with
exponentially distributed interpacket INLervValS. i 11%

xviii

Figure 5.36: Delay variance (V) versus offered load (G) for packet mixture 2 with

exponentially distributed interpacket INEETVAIS. cuvrirseeseasnosserosnssisssorsnsssassnasnssssisconanes 120
Figure 5.37: Throughput (S) versus offered load (G) for packet mixture 3 with fixed

TS T e LB Tl o'z LR RS S S 122
Figure 5.38: Packet queueing delay (D) versus throughput (S) for packet mixture 3 with

fixed INterpacket INLEIVAIS...cvireruissesser e sinsisn sttt 123
Figure 5.39: Delay variance (V) versus offered load (G) for packet mixture 3 with fixed

INEETPACKEE IMETVAIS cevvvusivseressesssee s sesessorss st s s s s s 124
Figure 5.40: Throughput (S) versus offered load (G) for packet mixture 3 with exponentially

distributed interpacket INEIVALS w.vorrerreesseusessissesisisasssssssesscnscast st s an s snas 125
Figure 5.41: Packet delay (D) vs. throughput (S) for packet mixture 3 with exponentially

distributed interpacket INEIVALS wovurrermrereserscrsesssumsmrsiessssss e cen sttt s ces 127
Figure 5.42: Delay variance (V) versus offered load (G) for packet mixture 3 with

exponentially distributed interpacket INEEIVAIS.cerirsrererressesnensnsersnessersarsssarsonnesnssscossoe 128
Figure 5.43: Packet queueing delay (D) versus throughput (S) for 1500 byte packets. Analytic

curve calculated with parameters corresponding to LANT cable configuration
(100m segment) and 1500 byte packets (1.2 millisecond transmission time).....ceeae 134

Figure 5.44: Packet queueing delay (D) versus throughput (S) for 1024 byte packets. Analytic

Figure 5.45:

Figure 6.1:
Figure 6.2:
Figure 6.3:
Figure 6.4
Figure 6.5:
Figure D.1:
Figure D.2:
Figure D.3:
Figure D.4:

curve calculated with parameters corresponding to LANT cable configuration
(100m segment) and 1024 byte packets (8 19.2 microsecond transmission time)....... 135

1500 byte fixed interval measurements for VTCSMA/CD compared with Molle’s

2SYNChIONOUS MOAEL 1uvcrmurrrmseisssresssirecisssssssinsses s ssse s s sen s s e 137
Maximum COLISION QUIAIOM v errrereecsosoossessassmnsssnsornssssssisstsssssssannasssosssanasecasesssssisarsnns 160
A NON-CONHZUOUS COMISION o ivrraiiarierserersereni st sness st son sttt s 204
Performance benefits of aggressive FCES oo, 206
Channel behavior for the aggressive FCES deadlock SCENAIO wvvievirmnvsrassscssssacnnces 208
Interval and arrival time relationship for the aggressive FCFS deadlock scenario....... 209
Experiment Configuration Package maifl MENU oecvecrievsrimcussnsiinnsiisnn s seseees 246
Experiment Configuration Package distribution list @nry SCreeflu. .o umrrmsnnrcrseninsses 247
Experiment Configuration Package topology definition entry SCIELN .uumianenirmronssncen 248
Experiment Configuration Package protocol select SCIEeTl . immieniminmmssraseesseenscees 249

XIX

Chapter 1

Introduction

This dissertation presents results in three main areas; the construction and use of per-
formance testbeds for Local Area Networks (LANSs), the implementation and measurement
of the performance of two previously unimplemented protocols, and the adaptation of slot-
ted collision resolution algorithms for use on unslotted networks. Few implementation and
performance measurement studies of data link level protocols for LANSs exist, primarily due
to the early success of the Ethernet system [MB76]. Some proposed protocols have been
shown analytically to have desirable delay and throughput characteristics. However, ana-
lytic models of such protocols often contain simplifying assumptions which do not
represent actual conditions in networks. For this reason, it is vital that the research com-
munity expand empirical studies of actual implementations of proposed protocols. Like-
wise, little attention has been paid to the possibility of adapting collision resolution tech-
niques for use on the unslotted contention bus common to LANS, in part due to the
difficulty in ensuring the correctness of such adapted protocols. Many protocols have been
formulated for slotted networks because it is less difficult to analyze the correctness and
performance of slotted protocols. Results presented here demonstrate that there is a
correspondence between one slotted collision resolution protocol and an unslotted adapta-
tion of the protocol. This presents the possibility of designing protocols for slotted net-
works and deriving correct unslotted versions for use on simpler (from a hardware

viewpoint) unslotted networks.

The Local Area Network Testbed (LANT) is a dedicated network of computers
equipped with network interfaces and load generation and performance measurement
software which is used to implement examples of Collision Resolution and Collision
Avoidance Protocols (CRPs and CAPs, respectively) for LANs and to compare these proto-
cols to the Ethernet protocol. The Ethernet protocol employs a random backoff scheme for
collision handling. The Enet II protocol [Mol185] and the Virtual Time Carrier Sense Mul-
tiplé Access with Collision Detection (VTCSMA/CD) [MK85] protocol are also imple-
mented and measured. The Enet II protocol uses a probabilistic method for subdividing the
set of colliding stations until a subset is found that contains only one active host; at this
point a successful transmission will result. This effect is similar to that of slotted CRPs.
The VTCSMA/CD protocol avoids collisions by using a second clock to spread packet
transmission attempts with respect to the end of busy periods on the network. In the meas-
urements presented here, both protocols display significant advantages over Ethernet when
loads are heavy. This result had been predicted, but could only be verified by implementa-

tion and comparison using a system such as the LANT.

The performance measurement results for Enet II demonstrate the success of resolu-
tion techniques usually associated with slotted systems on an unslotted network. Other
results on adapting slotted CRPs to work on unslotted networks are also presented. A
specification for the FCFS algorithm [Gall78] on an unslotted network is presented and for-
mally proven to have bounded delay in networks where identical arrival times are not
allowed. A version of the protocol which makes different assumptions about the treatment
of collisions is formally demonstrated to deadlock. Methods of detecting and resolving
such deadlocks are presented. These methods of handling deadlock are applicable to the
initial unslotted version of the protocol, which can also deadlock if time is kept as an
integer value. A new unslotted CRP related to the deadlock resolution method is presented.
This protocol takes advantage of positional information about stations to reduce the fength

of collision clear time and idle steps, thus reducing the overall time for resolving collisions.
This chapter contains an overview on the area of local networking, describing the
explosive growth in the area in recent years; some background information on the evalua-

tion of network performance; a summary of the results presented here; and an outline of the

organization of the dissertation.

1.1. Overview

It would be a gross understatement to say that LAN use has grown rapidly in the years
since the introduction of Ethernet. Growth in the LAN market has had an undeniably
explosive character. In the earliest reported traffic characterization study of Ethemet
[SHRO] the average utilization level was under 1%, and the principal uses for the network
were file transfers, remote database queries, and terminal access to timesharing hosts. Since
that time, LAN connectivity has gone from being something of a luxury to forming a basic
foundation for computational activity of all kinds. As evidence for this claim, consider the
fact that nearly all of the popular workstations on the market today come from the manufac-
turer with an Ethernet interface already installed and operating system software to support
its use. The current extreme of this line of developments is the diskless workstation, which
depends on the network for all aspects of its operation except CPU cycles and physical
memory access; a diskless workstation boots over the network from a remote machine
which serves as a bootstrap server, has its virtual memory paging space and file storage on a
remote file server, depends on other remote servers for communication namespace resolu-
tion, timekeeping, print spooling, system utilities, and electronic mail service. Network
congestion leads to a decrease in response time for the user of such a workstation, and a net-

work outage often means the complete suspension of computing activities.

The increasing importance of network connectivity has led to rapid and sometimes
poorly planned growth in individual network installations as well. LANs tend to grow
organically as first one working group and then another acquires equipment and a need for
connections to remote resources. There are many difficulties in keeping a large network
functioning, such as ensuring that the specification limits for segment length and total host
count are maintained, detecting malfunctioning hardware, managing congestion, and even
maintaining the physical integrity of the network cable. (For a discussion of experiences
during the evolution of the University of Texas network, see [Moli86].) Manufacturers
have responded to such problems with various network management tools ranging from

special purpose computers for network monitoring and diagnosis [Net87] to bridges and

routers for further subdividing LANs. This indicates that many installations are reaching

the design limits of the current generation of LAN protocols.

The impact of the growth in LAN usage on research in the area is twofold. First,
building tools to manage the complexity of current networks requires a well developed
understanding of the behavior of the underlying protocols and their response to a wide
variety of traffic loads. Second, as installations grow toward the design limits of current
networks and congestion becomes a more frequent problem, the question of how the next
generation of networks can address these limitations arises. The answers to this question
may encompass more efficient protocols for networks similar to existing ones as well as
networks based on different hardware configurations for which existing protocols may be
inappropriate. Good examples of the latter case are the 100 Mbps networks now being
planned. In these networks, the higher bandwidth and longer propagation times make the
ratio of packet transmission time to collision detect time too low for CSMA/CD protocols
to be practicable. Thus, it is evident that there is a critical need for greater understanding of
the performance of existing protocols and for the development of new protocols to remedy
the deficiencies of the current generation of algorithms and meet the needs of the next gen-

eration of network hardware.

A large number of alternatives to the Ethernet protocol have been proposed and
analyzed in the literature, but very few have actually been implemented and empirically

compared to the popular commercial network protocol. The reasons for this are fourfoid.

First, Ethernet provided more bandwidth than early installations could effectively util-
ize. As noted above, one of the largest installations existing in 1980 experienced a utiliza-
tion of only one or two percent on the average. The measurements of normal traffic on the
UT network presented in Chapter 4 convincingly demonstrate that this is no longer the case.
So many installations have suffered from such severe congestion on specification-compliant
networks that a whole new market has sprung up for devices to further subdivide networks

in an intelligent way.

Second, actual implementation of alternatives in a fashion that would provide mean-
ingful data for comparison is difficult and expensive. From the very beginning, the func-

tions of the Ethernet protocol were built into the network interface hardware, making it

impossible to instrument them for performance measurements or to implement alternative
protocols without expensive, specially fabricated hardware. In the meantime, this situation
has grown only worse, not better, particularly in view of the growing practice of standardiz-
ing protocols for a particular type of network before the first interface is ever built and

tested, let alone subjected to a real network environment.

Third, until recently the bottleneck in network performance in relatively small instal-
lations was clearly in the higher level protocols such as TCP. However, since 1980, many
local network installations have expanded to the point where bandwidth is becoming a
scarce commodity, while at the same time, the efficiency of higher level protocols has
improved. In a recent study, Jacobson reports a TCP sender-receiver pair generating 8.9
megabits per second throughput using an experimental version of the BSD networking

software [Jaco88].

Fourth, many of the more interesting alternative protocols are defined in terms of a
time slotted medium, making their use in the unsynchronized (unslotted) CSMA/CD
environment problematic. Though these protocols have many desirable performance pro-

perties, implementation of the algorithms without explicit slotting is very difficult.

1.2. Background

The question is often asked, “ Why bother with network [protocols/performance]?
Ethernet works fine.” The preceding section explains that while Ethernet may have “
worked fine” in the past, computing and communications needs are not static. Understand-
ing the performance of network protocols can help us manage their use more effectively and
guide the design of protocols with better performance characteristics. As Ferrari notes in
the preface to his book, Computer Systems Performance Evaluation [Ferr78], most
engineering fields do not consider performance evaluation to be a subject separate from
other design considerations; rather, it is an integrated aspect of system design. Succinct and
accurate evaluations of the performance of computer systems are vital to the entire com-
puter community, including system designers, purchasing agents, systems programmers,
systems administrators and computer users. As the discussion in the previous section

makes clear, this is even more important in the rapidly growing and changing arena of

computer networking. Often it is the case that competing products or protocols will offer
much the same functionality, leaving the performance of the alternatives as the only basis
for choosing between them. A particularly apt example is the choice between CSMA/CD
protocols and ring protocols; the functionality of the two alternatives is similar, but the per-
formance characteristics of the protocols make them appropriate for applications with

differing requirements.

Formal analyses of the performance of many varieties of CSMA and CSMA/CD pro-
tocols have been published, e.g. [CL83], [FW81], [KT75], [Lam80], [MB76], [MSVE&7],
[TK85] and [TH80]. In order to keep the analyses tractable, many assumptions must be
made concerning the behavior of packet sources, the characteristics of the protocols, and the
behavior of the medium. In each of the analyses, some or all of the following assumptions

are made:

e slotted communication medium
s infinite population of stations

e well behaved aggregate packet arrival rates (i.e., arrivals combined with
retransmissions form a poisson process)

. zero cost acknowledgements

o fixed propagation delays (the star topology assumption)

e fixed collision detect times

. fixed or limited packet sizes
Each of these assumptions affects the accuracy of modeling and does not necessarily reflect
conditions on real networks. The Xerox PARC Ethernet experiments [SH80] demonstrated
that in actual use, arrivals are not exponential in nature, and packet sizes display a distinctly
bimodal distribution. The latter point has been addressed in some of the analyses [TH80],
but the former has not. It is also clearly the case that there is never an infinite population of

stations.

Many protocols have been proposed for communication on Local Area Networks, but
few have been implemented. The protocols range from variants on the Ethernet backoff
scheme such as [FW81], [AS84], and [TT77], to collision resolution approaches such as
[Moli84], [Molle83], [Mass80], [Gall78], [Cape79], and ITV&2], to collision minimization

strategies in [MK85], [TH80], and [KK81]. The performance of these protocols has either
been approximated using the techniques mentioned above or in some cases ignored, but has

never actually been observed.

Of these protocols only Ethernet is in widespread use. While the analytic models and
simulation studies of other protocols may give a feel for their performance, these studies
can only approximate conditions of actual use. The true test of a new network protocol is in
implementation and empirical evaluation. The LANT provides an environment where these
protocols can be implemented, debugged, and tested with a minimum of effort. Often an
elegantly designed protocol may have little utility due to implementation difficulties. The
LANT provides an environment in which these difficulties can be discovered and possibly
remedied. The LANT configuration is capable of generating heavy loads on a 10 Mbps
Ethernet, providing a rare opportunity to observe the behavior of the Ethernet protocol and
other protocols under severe loads. In addition, the experiment configuration software
allows a wide range of load conditions to be specified. While heavy loading is an interest-
ing condition under which to study Ethernet, for other protocols interesting behavior may
occur under other conditions. While the difficulties in accurately modeling and simulating
protocol behavior and performance remain, direct testing provides the only accurate com-

parison between proposed approaches.

There are two approaches to measuring traffic on local networks. The most prevalent
approach, represented by [SH80], [Nabi84], [AKKPC86], [Abra87] and the varicus com-
mercial network monitoring products, measures the overall throughput characteristics of the
network from the point of view of a promiscuous receiver. This type of measurement pro-
vides information on the overall efficiency and stability of a network protocol. An alternate
approach, seen in [Gons85], [BMK88] and in the present work, is to monitor the perfor-
mance of the protocol from the point of view of the individual user, in this case, the host
attached to the network. From this perspective, the quantities of interest are the throughput
achieved by the host and the delay experienced due to the access mechanism. The latter
approach is obviously the more difficult, requiring instrumentation of the network interface
itself. At the data link layer, where functionality resides in a hardware network interface,

this approach is impossible unless the interface has been specifically designed to support

such measurements,

In the testbed described here measuring the performance of the network as viewed by
the user is facilitated by the existence of Ethernet interfaces which implemented significant
portions of the protocol as interrupt service routines in an operating system device driver.
A driver for this device was available with the 4.3BSD UNIXT operating system, which
allowed modifications to be made to instrument the transmission process and to implement
other protocols. The LANT provided a dedicated group of machines with sufficient com-
puting power to drive such implementations. This combination allowed the implementation
of several interesting protocols in a uniform environment without incurring the expense and
effort involved in the design and fabrication of custom hardware interfaces for each of the

protocols.

1.3. Resuits

Results are presented on the performance of two alternatives to Ethernet, the Enet I
protocol and the VTCSMA/CD protocol. The Enet II protocol uses probabilistic techniques
to resolve collisions on an asynchronous CSMA/CD bus. VICSMA/CD is a collision
avoidance protocol which uses a virtual clock running only during idle periods at a rate
higher than real time to determine when transmissions will be attempted. These protocols
take two different approaches to the multiple access problem for broadcast bus networks;
Enet II is a true collision resolution protocol in the style of the tree and window protocols,
while VTCSMA/CD reduces the probability of collisions initially, consequently avoiding
the additional delay of rescheduling them for later transmission. These two protocols were
implemented and tested on the LANT. Ethernet was also tested on the same equipment,
allowing a comparison of the popular commercial network and two alternatives, Ethernet
takes a third approach to collision handling by randomly rescheduling the transmission time

of packets involved in collisions.

+ UNIX is a trademark of Bell Laboratories.

The experiments revealed a consistent relationship among the three protocols
independent of the load driving the network. While Ethernet enjoyed a slight advantage in
peak throughput, both Enet I and VICSMA/CD achieved higher stable throughputs under
continuous overload conditions. Enet II also displayed a great improvement over Ethernet
in the variance of the delay experienced by packets in their transmission attempts even
though both protocols experienced similar collision rates at all offered load levels.
VTCSMA/CD experienced the lowest variance of delay and the lowest average delay for
most offered loads due to a much lower collision rate. These results strongly demonstrate
the advantages of these two protocols. Enet II reduces the variation in delay by imposing a
regular control structure on the retransmission of packets involved in collisions.

VTCSMA/CD achieves the reduction by greatly reducing the rate of initial collisions.

The Enet II protocol incorporates a technique which can be used for unslotted imple-
mentations of protocols such as the Gallager First-Come, First-Served (FCFS) protocol
[Gall78]. The FCFS protocol is a slotted CRP that uses packet arrival times as the criterion
for subdivision of the set of colliding stations. The most difficult problem in making the
transition from slotted to unslotted media occurs in protocols like FCFS which must be able
to determine the end of an idle step. Unless clocks at all the stations in the network are per-
fectly synchronized, timers cannot be used. Enet II avoids this problem by causing inten-
tional collisions, which are detectable by all stations, to signal the end of the idle step in the
algorithm. There are other complications in the adaptation from slotted to unslotted opera-
tion, not the least of which is guaranteeing the correct behavior of the resulting unslotted
protocols. An extension to the formal system of [JL88] that allows more natural modeling
of collision detection is presented. Results concerning the behavior of the broadcast bus in
the presence of collisions are developed. These results are used to prove that delay is
bounded for an asynchronous version of the FCFS protocol. A demonstration is also given
that deadlocks can occur in implementations that take an aggressive approach to interpret-
ing network events. The difficulty of recovering from such deadlocks as opposed to treating

network events more conservatively and thus avoiding the deadlocks is also considered.

These results lay a groundwork for investigating several interesting issues in protocol

design. Time slotted protocols are generally easier to prove correct and their performance

10

is easier to determine than analogous asynchronous protocols. However, the asynchronous
environment of CSMA/CD networks is attractive due to its simplicity and efficiency under
a wide range of loads. The results on adapting slotted protocols to unslotted media
presented here demonstrate that in the case of the FCFS protocol there is a correspondence
between the correct slotted protocol and a correct asynchronous implementations if certain
guidelines are followed. This observation could allow protocols to be designed in the less
hostile slotted paradigm, and then converted to operate in more practical unslotted net-

works.

1.4. Summary of Dissertation

The remainder of the dissertation is organized as follows. Chapter 2 discusses the pre-
vious research results in the area of local network measurement and broadcast protocol
verification. Chapter 3 details the design and implementation of the Local Area Network
Testbed. This chapter includes descriptions of both the hardware and the software for net-
work monitoring, experiment configuration, experiment management, and the implementa-
tion of the Ethernet, Enet II and VTCSMA/CD protocols. Chapter 4 discusses the imple-
mentation of the transmission monitoring instrumentation and the design of the measure-
ment experiments. This chapter includes results from a traffic characterization study of the
University of Texas campus ethernet using LANT software. Chapter 5 discusses the results
of the performance studies of the three protocols. Chapter 6 presents results on the correct-
ness of an asynchronous version of the Gallager FCFS protocol and discusses the applica-
tion of the conversion and analysis techniques to other slotted protocols. Chapter 7 is a
summary of the results presented in the preceding chapters. Appendices are included con-
taining programming information and instruction for the use of the various software pack-

ages which comprise the LANT suite.

Chapter 2

Previous Research

The topics presented in this dissertation fall into three main categories; first, the
design and construction of the LANT; second, the measurement and comparison of data
link level protocols for LANSs; and third, the adaptation of slotted collision resolution algo-
rithms for use on unslotted networks. This chapter reviews the relevant literature in these

areas.

Several experiments similar to the LANT experiments have been performed. In all
cases, these experiments were devoted to the investigation of a particular protocol, not
the development of generally useful tools for network performance experimentation. The
LANT environment consists of a set of tools which may be applied to many protocols. It

also provides greater load generating flexibility than any of the previous systems.

In Chapter 6, results are presented on the correct adaptation of a slotted Collision
Resolution Protocol (CRP) for use on unslotted networks. In order to prove the correctness
of the adapted CRP, a model was needed which captures essential characteristics of unslot-
ted broadcast protocols such as the propagation of signals and relative orderings of network
events. Though the literature on modeling point-to-point networks for verification purposes
is rich, very little research exists on such modeling for broadcast networks due to the essen-

tial part that timing relationships play in the correct operation of such protocols.

i1

1z

2.1. Measurement Studies

Since the existence of a testbed usually implies the existence of measurements and
vice versa, the literature on these two areas coincides. Measurement studies relevant to the
current work have been carried out by three organizations, the Xerox Palo Alto Research
Center (PARC), the National Bureau of Standards (NBS), and the Digital Equipment Cor-
poration (DEC). The Xerox PARC experiments and the DEC experiments considered vari-
ous aspects of the performance of the Ethernet Protocol. The National Bureau of Standards
experiments investigated the performance of an NBS developed CSMA/CD protocol.

2.1.1. Xerox PARC Experiments

Two sets of experiments have been conducted on the Ethernet protocol at the Xerox
PARC. The first set was conducted by Shoch and Hupp [SH80] on a 3 Mbps experimental
network. The second set was conducted by Gonsalves [Gons85] on both 3 and 10 Mbps

networks, using a modified version of the software written for the earlier experiments.

Shoch and Hupp

This work confirms the throughput capacity, stability and fairness of Ethernet under
high loads and characterizes network traffic under normal conditions. No attempt was made
to measure the delay suffered by packets as a result of queueing on the transmitting hosts.
The experimental environment consisted of a 550 meter cable with 120 hosts connected.
Important observations on the normal operating load of the installation were collected.
These observations showed that the average utilization of the network ranged from 0.60%
to 0.84%, with a one second peak utilization of 37%. Figure 2.1 shows the observed packet
length distribution. Approximately 80% of the observed packets were short, consisting of
terminal traffic and acknowledgments, with most of the remainder being large packets asso-
ciated with file transfers. The large packets accounted for the majority of actual bytes
transmitted. The observations also indicated that 99.18% packets were transmitted success-
fully on the first try, 0.79% were delayed due to deference, and 0.03% suffered collisions.
The measured interpacket arrival time is shown in Figure 2.2. The interpacket delay of nor-

mal traffic did not strongly resemble an exponential distribution. The study also pointed

13

50%

40%

Percent of Packets vs. Packet Length (in bytes)
30%

20%

i0%

l 4 LA I

0 32 64 ©& 128 160 182 224 256 288 512 544 5786

50%

40%

30% Parcent of Bytes vs. Packel Length (in bytes)

20%

10%

i ,

wew
o 32 ©4 ©6 128 160 182 224 256 288 512 544 576

Figure 2.1: Measured Ethernet packet length distribution ([SH80], Figure 4).

out the influence that some specific applications (transactions with servers and a mult-

player game were cited) had on the distribution.

The network was also subjected to heavy loads using artificial traffic generators. The
experiment management software searched the network for idle hosts and loaded them with
generator processes. Each generator produced a specified fraction of the available capacity.
Though the artificial load experiments were conducted during low utilization periods, they
were not completely free from the influence of extraneous network traffic. Figure 2.3

shows the effects on utilization of increasing the number of continuously queued hosts. This

14

Percent of
totai traffic

6% =

5% =

§] l

T T T 3
o 20 40 60 80 100 120 140 180 180 200

inter-packst arrival time {(ms.}

Figure 2.2: Measured distribution of interpacket arrival times for Ethernet ([SH80], Figure
6).

result indicates that once more than five hosts were active, the network was sensitive to the
total offered load, but not to the configuration producing the load. A peak utilization of
96% was observed for packets of 512 bytes, with little apparent degradation as offe'redioad
increased beyond 100%. The artificial load generation software was constructed on top of

the PUP protocol suite, and was thus restricted to a maximum packet size of 512 bytes.

15

100% 512 bytes
128 bytes
& bytes
80%
8 bytas
80%
Channet
4 byws
Uuhizabon
0% Packet Length
X%
%
5 2 2 8 18 a2 64

Number of Hosts

Figure 2.3: Measured utilization of Ethernet with continuously queued sources ([SH80],
Figure 10(b)).

Channel

Utilization Bytes/packet
100% 12 {~B6%)
128 {~BE%)
64 (~B3%)

50%

0%

0% 50% 100% 150%

Total Offered Load

Figure 2.4: Measured utilization of Ethernet under high load ([SH80], Figure 9).

16

Gonsalves

Recently, the results of Shoch and Hupp were extended to include packet delay meas-
urements and throughput results for the production 10 Mbps version of Ethernet. Using the
same scheme as Shoch and Hupp, Gonsalves produced traffic consisting of fixed length
packets with uniformly distributed generation times. On the 10 Mbps Ethernet, Gonsalves
found that small packets were more susceptible to delay, with most packets suffering delays
of up to 10 times the packet transmission time even with an offered load of only 19% of
capacity. At high loads, delays of up to 0.5 seconds were observed, with 25% of the small
packets transmitted suffering delays of greater than 15 times the packet transmission time.
Under the same load conditions, 25% of the large packets suffered delays greater than 10
times the packet transmission time. Figure 2.5 shows the measured throughput versus
offered load for Gonsalves’ experiments. Figure 2.6 shows the average delay versus

throughput.

17

120.¢

100. RS ol

Net Throughput, %

10. 100. 1000.
Total Offered Load, %

Figure 2.5: Measured utilization of Ethernet under high load ([Gons85], Figure 4.8).

, ms
[~
@
=)

[A)
o
)

P = 5000 byles

n
©
©

Mean Delay per packet
o
)

i5.0¢

10.0¢

5.0F

o 20 40 60 80 100
Net Throughput, %

Figure 2.6: Measured delay of Ethernet under high load (IGons85], Figure 4.9).

18

2.1.2. National Bureau of Standards Experiments

Amer [Amer82] described the design of a Local Area Network performance measure-
ment center for the National Bureau of Standards NBSNET. NBSNET is a 1 Mbps bus net-
work employing a CSMA/CD protocol similar to the Ethernet protocol. The measurement
center consisted of software for monitoring network traffic both for throughput and delay
statistics, and special hardware devices for generating artificial loads. The NBS Measure-

ment Center has been used for several studies [Stok83].

A similar facility for measuring a campus Ethernet exists at the University of
Delaware [AK85]. The results of an eight week observation of network traffic is reported in
[AKKPC86]. 104 million packets containing 10 billion bytes of data were observed during
the study. It was concluded that the traffic on the observed network was not as strongly
bimodal as that observed in other studies due to the fact that there was no heavily utilized
file server on the network. The packet arrival distribution did not resemble a poisson arrival
process. The observed peak to average ratio of arrival rate was from 5 to 1 to 10 to 1.
Finally, it was observed that network servers have a much greater influence on local net-

work traffic than user behavior.

2.1.3. Digital Equipment Corporation Experiments

Two groups within DEC have produced studies on Ethernet Behavior. Boggs, et. al.
of the DEC Western Research Laboratory performed artificial load generation studies
intended to dispel persistent misconceptions among the user community concerning the
limitations of Ethemnet. Lewis conducted a study of Ethernet usage at a large DEC facility

using a DEC built network monitoring device.

Boggs, Mogul, and Kent

Experiments aimed at dismissing persistent myths concerning the limitations of Ether-
net are described in [BMKS88]. Boggs, et. al., argue that many theoretical results have been
«taken out of context,” leading to inaccurate beliefs in the networking community about the
performance of Ethernet. As an example, they cite the widely held belief that Ethernet

saturates at an offered load of 37% of capacity. While this is true for a load composed

19

strictly of minimum sized packets, throughput remains near 100% over a wide range of

offered loads for packets of greater length.

These experiments were conducted on 2 network composed of twenty-four prototype
Titan RISC workstations. The computers were attached to four DELNI multiport repeaters,
which were spaced at 1000 foot intervals for most of the experiments. Measurements were
also made with equal clusters of computers at either end of the cable. The measurements
included the bit rate, the packet rate, the transmission delay (which includes queueing delay
due to collisions and the actual transmission time of the packet), and the excess delay.
Excess delay is the measured average delay minus the “ideal delay” for a packet to be

transmitted in 2 system with a given number of hosts.

Boggs, et. al. observed that increasing the number of hosts participating in the experi-
ments or decreasing the packet size decreased the efficiency of the network. The decrease
due to increasing the number of hosts was particularly evident in experiments where the
load consisted of small packets. Figure 2.7 shows the measured utilization versus the
number of hosts for various packet sizes. Experiments conducted with a bimodal distribu-
tion of packet lengths showed a decrease in peak utilization and the same decline in
efficiency with increasing number of hosts. Plots of the standard deviation of the bit rate
show that the Ethernet backoff scheme is inherently unfair for networks with a small
mumber of hosts, but that the fairness improves with the number of hosts. The packet rate
for the experimental network showed a peak and decline as the number of hosts increased
for packets of length smaller than 512 bytes. For larger packets, the packet rate showed 2
slight but linear decrease as the number of hosts increased. Delay was found to increase
linearly with the number of hosts participating in the experiment, as did the standard devia-
tion of delay. The worst case excess delay (for maximum sized packets and 24 hosts) was
about 3% of the measured delay, corresponding to the 97% utilization observed under the

same circumstances.

20

0 307 000
1536 2048
§ 9sL Z?E% 1024
Z 256 1
= 9+ 128 -
5 i 4
g
E 8.5+ 64 -
8 |
5 4L]
S
= B
£
S5k -
7 ! S | R T WS WU W B W S Loea o 1 NS T N S S R
0 5 10 25 30

15 20
Number of Hosts

Figure 2.7: Measured bit rate versus number of hosts for Ethernet ({BMK 881, Figure 3-3).

Lewis

Recently published figures [Lewi89] detail the utilization of a large Ethernet over a
twenty seven hour period. The Ethernet at the DEC Spit Brook Road, New Hampshire
facility was monitored using a DEC monitoring device. The network consisted of 467 com-
puters and twenty-three terminal servers with 1528 terminal lines. The network was nor-
mally partitioned by two Lanbridge 100’s, but for this experiment, the bridges were
removed. The resulting network consisted of a 500 meter backbone with eight segments
attached with repeaters. Lewis reports normal utilization between 15% and 20%, with
occasional peaks of 50%. Usage was observed to increase when employees arrived for
work, before lunch, after lunch, and before quitting time. With the bridges restored, the
utilization was normally 8% to 17%, with peaks of 35%. The intent of the study was
strictly to evaluate the utilization of the network, so no artificial loads were measured.

Additionally, traffic was broken down by protocol, indicating that most of the packets were

21

generated by the terminal servers. No breakdown in terms of packet length was discussed.
Tt is interesting to contrast the differences in both the size of the network measured and the
average utilization between this study and the original Xerox study. The differences reflect

the tremendous growth of network installations and applications in the intervening decade.

2.2. Broadcast Protocol Verification

The literature of protocol verification is rich with methodologies for the verification of
point to point communication protocols. Unfortunately, these methodologies are not partic-
ularly useful for modeling and analyzing the properties of broadcast protocols in which the
position of stations on the network, the propagation of signals, the relative position of sig-

nals on the medium, and the relative timing of events may be important.

While there have been attempts to formally analyze broadcast protocols (in particular,
approaches using finite state machines [Frat83, TBF83]), the attempts have had an unsatis-
factory level of representation or have not been general enough. However, in recent work
by Jain and Lam [JL87][JL88][JL89], a model which captures the interesting behavior of
broadcast channels in a simple yet powerful way is presented. A small extension to this
model to handle collision detection in a natural manner is proposed here and the resulting
model is used in the discussion of slotted and unslotted protocol behavior in Chapter 6. The

model is described in greater detail there.

Chapter 3
The Local Area Network Testbed

This chapter discusses the hardware and software that make up the LANT. It is of
greatest interest to those interested in the design and implementation of network testbeds.
Readers whose interest is in the protocol performance aspects of this thesis may wish to res-
trict their attention to Sections 3.7 and 3.8 which discuss the load generation process and
the protocol implementations. Section 3.1 discusses the design goals for the testbed. Sec-
tion 3.2 discusses the DEC VAXT computers and network hardware underlying the system.
The remaining sections are devoted to the various software components used in the LANT.
The network monitoring program ILMON and the associated utilities are discussed in Sec-
tion 3.3. The Experiment Configuration Package (ECP) is discussed in section 3.4. The
Experiment Execution Package (EXP) is discussed in Section 3.5. The Experiment
Analysis Package (EAP) is discussed in Section 3.6. The system software that implements
the measurement functions is discussed in section 3.7. The protocols and their implementa-
tions are discussed in Section 3.8. A simulator for the Ethernet protocol is discussed in

Section 3.9. Section 3.10 contains a summary of the chapter.

¥ DEC and VAX are trademarks of the Digital Equipment Corporation

23

24

3.1. Testbed Design Goals

The LANT provides an environment where experiments can be conducted to discover
the performance behavior of various local area network communications protocols. In this
environment, such experiments are repeatable and easy to configure. The system accommo-
dates the addition of new protocols as they are proposed. It provides extensive monitoring
capabilities, including passive monitoring of production networks and source queuing delay

monitoring on testbed hosts.

The primary goal in the design of the Local Area Network Testbed was to create an
environment where performance experiments could be run in a repeatable and reliable
fashion. Many of the previous performance measurements on local area networks have
been done on production LANS operating under real workloads [SH80][Lewi89]. Much has
been learned about typical network traffic in this way, but because of the variable nature of
day to day workloads, these measurements are not repeatable. Even when artificial work-

loads were generated, the networks were not dedicated to the experiments.

The testbed was designed to facilitate the investigation of alternative communications
protocols. Many such protocols have been suggested and analyzed mathematically or simu-
lated, but very few have been implemented and tested on actual networks. Repeatability is
especially important when investigating the performance of alternative protocols. The
experiment control software uses the standard Unix ioct/ message passing mechanism for
communication with the instrumented network interface device drivers. This provides a
single software interface to the (necessarily) device dependent instrumentation code for the
underlying network technology. Though the protocol implementation or even the interface
hardware may change from experiment to experiment, the experiment control software

remains the same.

LANT allows the user to configure experiments quickly and easily. The experiment is
described at a relatively high level of abstraction; the user need not think about the details
of writing processes to generate loads or the details of different protocols. Each experiment
description consists of a list of probability distributions and an assignment of those distribu-
tions to the generation of packet lengths and interpacket intervals on each load generation

machine. This method of specifying load generation allows a high degree of flexibility in

25

the kinds of experiments that can be created. It is possible to design an experiment that
models any observed network behavior closely. The inclusion of a user-defined, discrete
distribution allows the behavior of a wide range of computer activities such as file service,

termingl interaction with mainframes, or workstation use to be modeled.

Each host in the testbed network is furnished with monitoring software for measuring
the queueing delays incurred by each packet due to traffic conditions and the operation of
the protocol. Delay is an important characteristic of protocols which has been estimated
and simulated, but has seldom been actually measured. LANT software can also monitor
the traffic on the network passively. Quantities such as total throughput and frequency of
source/destination pairs are recorded. This capability is used to monitor the performance of

production networks to help characterize actual network traffic loads.

3.2, Testbed Hardware

The testbed hardware allows changes to the basic ethernet protocol in software to
implement the various new protocols. Five independent load generators were used in the
experiments. If a single source transmits to a single destination, no collisions can occur,
and 100% throughput is possible. Similarly, because of the process activity and interface
hardware architectures which require significant time to change modes from receiving to
transmitting, a symmetric A to B and B to A load will tend to minimize collisions. The
only way to simulate a more random load (i.e. a larger user population) is by having at least
three processors actively communicating with each other. The choice of five computers
was motivated by a combination of economic considerations and the results presented by
Shoch and Hupp. The results for utilization under continuously queued packet sources
presented in [SH80] indicated that the effect of the number of transmitting hosts on utiliza-

tion was minimal for more than 5 hosts.

The experimental network testbed consists of five VAX 11/750 machines [Moll83].

Each machine has a minimal configuration of 2 megabytes of main memory, 131 megabytes

of fixed disk storage, a 10 megabyte removable media disk and a console. A single 3Com
Ethernet board is installed in each machine with an additional Interlan board for the gate-

way. The gateway between the experimental network and the regular departmental network

26

Main Campus Ethernet

Vernon Eyebeam
VAX Monitor/ VAX
11/750 Load Controller 11/750
Generator or
3COM Load generator 3COM
90 m
—

Local Area Network Testbed

Research Network

3COM 3COM ACOM
VAX VAX VAX
11/750 11/750 11/750
Lawnurd Snuff Shortbread
Load generator Load generator Load generator

Figure 3.1: Layout of LANT stations.

was necessary to allow experiments to run in isolation from the normal traffic of the main
network and to provide access to a stable environment for the development of the testbed

sofiware.

The inherent speed of the hardware (10Mbps) requires a relatively powerful processor
to generate appropriate loads. The measurements made at the University of Delaware

[MC83], indicate that throughputs of 875,000 bytes per second (7Mbps) are possible on a

27

dedicated Unibus for small packets (250 bytes). This indicates that a testbed with five load
generators could saturate a 10 Mbps network. Special techniques, such as retransmitting
controller buffers without reloading, can be used to increase the load capacity of such
machines. The LANT load generation machines are equipped with 3Com 3C300 Unibus
Ethernet controllers [MC83]. These network interfaces, an early product offering by 3Com,
perform the Ethernet backoff algorithm in the device driver rather than in hardware or
microcode on the interface board. The design is uniquely suited for use in a performance
measurement system such as LANT. Many of the proposed protocols can be implemented
for these boards by modifying the packet transmission and collision handling routines in the

Unix device driver for the interface.

Implementation of the Virtual Time CSMA/CD protocol requires hardware
modification of the 3Com interface. The protocol requires that a “virtual clock” run only
when the network is idle. In order to implement this feature, it is necessary to modify the
interface boards so that the carrier sense signal is readable by the device driver. This

modification is detailed in Section 3.7 4.

3.3. The ILMON Network Monitoring Package
ILMON (InterLan MONitor — the software was specific to the Interlan NI-1010 Eth-

ernet interface) is a network monitoring package for Unix systems which performs promis-
cuous reception of network traffic and presents the user with reports on the observed traffic
in various formats [BMS87]. Packet reception may be conditioned on many quantities,
including hardware source and destination addresses, packet length, packet type, and the
error status of the packet. There are also tools for consolidating data from several monitor-

ing sessions and for formatting the data for graphical presentation.

ILMON runs on a DEC VAX 11/750, which is connected to the main UT Campus
Ethernet and an experimental network with Interlan NI1010 Unibus Ethernet Controllers. It
uses the promiscuous reception and receive-on-error modes provided by the NI1010 to
monitor network traffic. The 4.3BSD UNIX device driver for the NI1010 was augmented to
provide various monitoring modes which the user selects by constructing a filter for the

monitoring session. A filter identifies which of the available monitoring functions are to be

28

active during a session and under what conditions a packet should be included in the col-

lected information.

TLMON was originally conceived as the passive monitor for the Local Area Network
Testbed. In that capacity it collects information on various experimental protocols. In
practice, the package was capable of providing useful information only when low loads
were generated and was thus not an important tool in gathering data on the LANT experi-
ments. However, the program proved invaluable in two other tasks. First, ILMON was
used in debugging the experimental protocol implementations. Second, the package was
used to characterize the traffic on the main campus network to aid in the design of the

artificial traffic loads.

The remainder of this section details the design, implementation, and use of ILMON.
Section 3.3.1 discusses the organization of the system, including the method of configuring
monitoring sessions using filters, the types of reports produced, and the practical limitations
of the system. Section 3.3.2 discusses the implementation of the device driver extensions
and the user interface for ILMON. Section 3.3.3 gives some results on the efficiency of
ILMON. A user’s manual for ILMON is found in Appendix C.

3.3.1. ILMON Design

The design of ILMON centers on using filters to specify the monitoring activities
which will occur during a monitoring session. The user specifies a filter with a command
interpreter which is loosely based on the UNIX ifconfig uiility. The filter itself is a data
structure containing flags indicating which of the possible monitoring activities is enabled
for a session. There are also fields in the structure for various comparison quantities and for
storage for the data collected during a session. Appendix A contains a listing of the C struc-
ture definition used for filters. Many of the capabilities of popular commercial network

monitors are incorporated into this framework.

29

The Filter Mechanism

In general usage, the word filter suggests the desire to exclude or “filter out” some-
thing. Though ILMON also uses filters in accomplishing other tasks, the principal purpose
of a filter is to exclude uninteresting packets from the data recorded during a monitoring
session. Due to memory constraints and the large disparity between mass storage access
times and the typical interval between network events, it is not practical to record all pack-
ets in their entirety for later examination. Thus, it is necessary to be selective during the
collection of data. In ILMON, filters specify a predicate which a packet must satisfy before
information about that packet is included in the collected data. The filter also determines
which of several different data collection modes is in use during a monitoring session, and

provides storage for the collected data.

Filter predicates

ILMON allows packets to be filiered by any combination of several criteria. To be
collected packets must satisfy the conjunction of all the criteria specified in the filter used
for a session. The criteria include packet status, station addresses, length ranges and packet

types.

The user may choose to include only packets received in error, only valid packets, or
all packets. The Interlan NI1010 normally does not pass error packets to the device driver.
However, it is possible to run the interface in “receive-on-error” mode, in which case error

packets are not automatically discarded by the interface.

ILMON allows the user to filter packets on Ethernet source and destination addresses.
To do so, a list of source addresses is specified and the source address of each incoming
packet is checked against the list. If the source address does not match any of the addresses
in the list, the packet is discarded. If a match is found, the packet is logged or summarized.
A similar list is specified for destination addresses. If either list is empty, no checking on
the corresponding address is done. This type of checking is useful for monitoring the traffic

between two stations, or monitoring the network output of a troublesome host.

30

The user may specify a constant between the minimum and maximum allowable
packet lengths and one of the relational operators >, <, Of =. Packets are included which
have lengths greater than, less than, or equal to the constant respectively. It is also possible
to specify a range of lengths. In this case, packets are included in the collected data only if
their length falls within the range specified.

Packets may be filtered according to type. The possible types are shown in Table 3.1.
These types are taken from the Network Information Center’s “Assigned Numbers” report
[RP85]. Type information is often useful in characterizing the applications which contri-

bute to network load.

Collected quantities

Once a packet has satisfied the filter predicate, the storage fields of the filter are
updated with information about the packet. A number of bits in the filter flag are used to
specify what sort of information is kept during a monitoring session. Certain quantities are
kept for every session, regardless of the filter flag value. These quantities are:

1) the number of errors which occurred during the session

2) the number of collision fragments observed during the session

3) the number of packets lost during the session.

These quantities are taken from the NI1010’s onboard statistics registers. The total reported
for number of lost packets by the interface is actually a count of the number of times one or
more packets were lost before the successful reception of a packet, so estimates of actual
packet loss using this value are not completely accurate. In particular,“ any loss rate above

50% will be reported as 50% — every packet received will have the “lost” flag set.

For short periods of time, it is possible to log the headers of packets as they arrive for
later examination. Memory constraints limit the number of headers that can be retained at
any given time to approximately 5000. Given an average network utilization of around 1
Mbps, this capacity allows roughly 15 seconds of header logging. From ILMON it is possi-
ble to retrieve and store filters, thus extending the duration of a packet logging session.
However, performing this action causes some packets to be missed in the meantime. The

information stored is the arrival time of the packet, the ethernet header, and the IP header, if

Table 3.1: ILMON — Recognized Packet Types

Type Code Description
ETHERTYPE_PUP 0x200 PUP protocol
ETHERTYPE_PUPAT 0x201 PUP address transfer
ETHERTYPE_EXP 0x400 LANT experiment packet
ETHERTYPE_IP 0x800 IP protocol
ETHERTYPE_ARP 0x806 Addr. resolution protocol
ETHERTYPE_X75 0x801 X.75 Internet
ETHERTYPE_NBS 0x802 NBS Internet
ETHERTYPE_ECMA 0x803 ECMA Internet
ETHERTYPE_CHAOS 0x804 Chaosnet
ETHERTYPE_X25 0x805 X25 Level 3
ETHERTYFE_NSCOM 0x807 XNS Compatibility
ETHERTYPE_SYMF 0x81C Symbolics Private
ETHERTYPE_DMOP 0x6001 DEC MOP Dump/Load Assistance
ETHERTYPE_DRCS 0x6002 DEUNA Remote Console Server
ETHERTYPE _DNET 0x6003 DECMET
ETHERTYPE_LAT 0x6004 DECLAT
ETHERTYPE_CRVLN 0x8003 Cronus VLN
ETHERTYPE_CRDIR 0x8004 Cronus Direct
ETHERTYPE_NEST 0x8006 Mestar
ETHERTYPE_EXCL 0x8010 Excelan
ETHERTYPE_RARP 0x8035 Reverse ARP
ETHERTYPE DLE 0x8038 DEC Lanbridge 100
ETHERTYPE_LOOP 029000 Loopback support
ETHERTYPE_BRIB2 0x9001 Bridge IB2
ETHERTYPE_BR 0x9002 Bridge Status

31

32

the packet has type IP.

Histograms of the number of packets and bytes originating from or intended for each
hardware address on the network may be collected. Since maintaining the data structures
for such a histograms incurs a large amount of processing overhead, many packets may be

lost while collecting data in this mode.

A histogram on the size of observed packets may be collected. This information (the
number of packets of each size) is also used to calculate the throughput for the network and
total number of bytes observed in the monitoring session. A histogram on the types of the

packets observed may also be collected. The recognized types are shown in Table 3.1.

3.3.2. Limitations of ILMON

There are several practical limitations to ILMON’s capabilities. ILMON is not able to
log collision fragments due to the fact that the Interlan controller filters them out automati-
cally. This feature of the controller is not programmable in the way that the filtering of
error packets is. Being able to examine the fragments themselves is a desirable capability
in fault diagnosis tasks. In addition to this hardware limitation, the efficiency of the
ILMON software is less than perfect. The instrumentation of the controller device driver
introduced extra code into the time-critical receive interrupt routine. This means than when
monitoring is in progress, some packets are not processed before they are overwritten in the

controller’s buffers. A quantification of this packet loss appears in section 3.3.5.

There are also useful features which were considered but not included in the design of
ILMON. Among these are real-time display of collected data and a more flexible scheme
for specifying the “filter predicate.” ILMON is not written for a particular workstation or
graphics device, and thus does not incorporate the visual display of collected data in real
time. In light of this fact, the further reduction of efficiency which would have been
incurred by retrieving and displaying the data as it was collected was deemed counterpro-
ductive. As previously stated, the various conditions specifiable in the filter are connected
by logical and. This was convenient and sufficient for the author’s purposes, but may be

expanded in the future to incorporate grouping and disjunction.

33

3.3.3. Implementation

ILMON is implemented as an instrumented version of the 4.3BSD UNIX device
driver for the Interlan NI1010 Ethernet controller and a front end which allows the various
monitoring options to be selected by the user. There are also several programs for display-

ing the filters collected and for consolidating and reducing the data.

Driver instrumentation

Monitor functions are activated using the UNIX joc#l mechanism to communicate
between the user application and the device driver. Code was added to the ilioct! routine in
the Interlan driver to pass filters in and out of the kernel, to set and clear promiscuous mode,
and to reset and retrieve the on-board statistics registers. Whenever the interface is in
promiscuous mode (as indicated by a bit in the flag field of the ifnet structure for the inter-
face) code in the receive interrupt routine ilrint is executed to test packets against the filter
predicate. If a packet satisfies the predicate, the filters counters are updated to reflect the
reception of the packet, and the headers are stored if packet header logging is enabled.
Finally, the address of the packet is checked. If the destination is the monitor station or the
broadcast address, the packet is enqueued for the proper higher level protocol. Otherwise,

the packet is discarded.

User Interface

The ILMON package user interface is composed of several programs. The program
called ILMON is an interactive front end, loosely based on ifconfig, which allows full con-
trol of the monitoring functions. Timedmon is a non-interactive program which allows
monitoring sessions of specified duration to run at a specified time. Finally, there are

several programs for displaying and analyzing data collected by ILMON.

ILMON allows the user to specify, run, and save the results of monitoring sessions.
The filter specification process is menu-driven, presenting the user with a list of the possible
monitor functions and predicate conditions. Additionally, the user may define filter tem-
plates, which, can be saved, reloaded and used in monitoring sessions at later times. These

templates are also used in the non-interactive program timedmon. Several other utility

34

functions are available in ILMON, such as retrieving the Interlan’s onboard statistics, read-
ing the interface flags from the ifnet structure, reading and setting the driver state flags from
the ilsoftc structure, and reading the interface board’s control registers. Many of these func-
tions are left over from an earlier program used to debug the added ioctl code in the device

driver.

[LMON can be viewed as needing constant supervision. Timedmon automates the
monitoring process, taking all the information it needs to run a monitor session (or a series
of monitor sessions) as command line arguments. Timedmon requires that a filter template

have been previously defined and saved in ILMON. The syntax for timedmon is then

timedmon ~iinterface # -—ffilter -dduration -sstart time —OOulput file

—xrepetitions

Interface # is the unit number for the interface to be monitored. Filter is the name of a file
containing a filter template defined in ILMON which will be used for the monitoring ses-
sion. Duration is a string of the form hh:mm:ss specifying how many hours, minutes and
seconds the monitoring session is to last. Start time is the time (in 24 hour notation) at
which the monitoring session is to begin. Qutput file is a name to be used for saving the
resulting data, or a prefix from which file names will be built should multiple sessions be
requested. Repetitions is the number of times the monitoring task should be repeated. This
program allows monitoring session requests to be set up ahead of time and left in the back-
ground to wait for their specified starting time. It also provides the ability to run sessions for

a specified period of time, a function not provided in ILMON.

Data examination and processing

Data analysis functions are provided by the Experiment Analysis Package (EAP), a
part of the Local Area Network Testbed software. EAP provides some frequently used
plots as well as the ability to specify general plots on any field of the filter’s data. The stan-
dard plots available are: packet length histogram, a raw plot of network utilization data,
and an averaged plot of network utilization data. Definition of the axes and labeling is
under user control. The general plotting facility allows the user to choose quantities derived

from filter data such as throughput, utilization, packet size, packet loss, etc. for the axesof 2

35

plot. This facility is easily extensible. EAP works on single filters, or can consolidate the
data from many filters for plotiing. Many of the figures for in this document were generated
using EAP.

There are two other programs which are useful for viewing and analyzing filters.
Prfilter simply reads in a filter and prints out the contents in human-readable form. Logsum
produces a summary of filters containing logged packet headers. The information produced
includes the timestamps of the first and last packets logged, the number of packets logged,
the throughput, the average inter-arrival interval for the logged packets, and a histogram of

the inter-arrival time distribution.

3.3.4. Performance

The extra processing in the network interface device driver required by ILMON for
collecting data often causes the interface to miss some packets. The penalty thus incurred is

investigated for packet histogram collection and header logging.

Packet loss for various monitoring functions

Figure 3.2 shows the percentage of packets lost during the collection of packet length
histograms and packet header logging. Packet length histogram collection is the minimal
monitoring task performed by ILMON, requiring only that one array element be incre-
mented, along with the overhead incurred by any of the monitor functions. This overhead
consists of several flag comparisons and at most two Ethernet address comparisons to deter-
mine whether a packet should be discarded or passed on to the higher level protocols.
Header logging additionally requires that the packet header be copied into a log structure,
and may require additional copying depending on the packet type. The data plotted in Fig-
ure 3.2 is averaged from one minute samples, with bins of 100,000 bits and, where possible,
with 20 samples per bin. No users were logged in to the monitor computer while most of
the samples were collected, though the computer was operating in multi-user mode. Packet
loss for histogram collection remains under 10% for throughput levels up to 1.2 Mbps. At
higher throughput, more serious degradation occurs. However, since throughput levels

greater than 1.2 Mbps for one minute intervals were rarely observed, complete sets of

36

30
20 -
Loss %
10 4
Histogram — 0 i . ; . .
0 0.4 0.8 1.2
Header log -~

Throughput (Mbps)

Figure 3.2. Efficiency of packet length histogram collection and packet

header logging. Averaged from observations of the UT Campus network,

1.6

37

samples for these levels were not collected. Trials of LANT artificial load generation
software indicate that the effective resolution of the Interlan’s loss reporting mechanism
(50% reported packet loss) is reached at throughput levels of approximately 3.0 Mbps. The
loss percentage for header logging was, as expected, consistently greater than for histogram

collection, exceeding 10% at a throughput of about 1.0 Mbps.

3.4. The Experiment Configuration Package

The Experiment Configuration Package (ECF) was written to provide a means for
specifying parameters for experiments. The program allows the user to specify an experi-
ment in terms of load generating processes residing on the various nodes of the network and
the probability distributions which govern the length of packets and delay between packets.
By specifying the behavior of the load generators in terms of distributions, repeatability is

ensured. [Ferr78]

Logically, an experiment runs on a set of nodes. There is one monitor node, and the
remainder of the participating nodes (perhaps including the monitor node) are load generat-
ing nodes. The monitor node initially performs some control and synchronization tasks,
and then waits while the load generation is in progress. The load generating nodes take
active part in producing traffic on the network by generating packets according to an experi-
ment description prepared in advance. The load generating nodes also maintain local logs
of packets produced and the queueing delay suffered by each packet. When the experiment
has ended, the monitor node collects the local logs from the load generators. The ECP
allows the user to specify the load produced by the load generation nodes during an experi-

ment. A user’s manual for the ECP is found in Appendix D.

3.4.1. Data Structures

The following scheme for representing experiment descriptions ensures a high degree
of flexibility while keeping the configuration process simple. Experiment descriptions con-
ceptually have three parts: a list of distributions for packet size and interarrival time, a
topology, and a protocol selection. These three parts determine the behavior of the load

generators and the network during an experiment; altering any of the three effectively

38

creates a different experiment.

With this scheme, it is possible to run experiments with different protocols using the
same packet size, time distribution and topology. It is also possible to run experiments
using the same protocol and packet types with different topologies. Finally, it is also possi-
ble to evaluate the sensitivity of a protocol to packet size and average load for a given
topology.

The behavior of the processes which generate packets during an experiment is
governed by probability distributions for the length of packets generated and the delay
between packets. These distributions are chosen from the distribution list which contains a
number of records, each specifying a probability distribution taken from a standard list,
along with the appropriate parameters. The available distributions are exponential,
geometric, and binomial. It is also possible to specify a discrete or continuous general dis-
tribution by entering a set of x,y coordinate pairs. One distribution will be associated with a
process for the generation of packet lengths, and another distribution will be used for the

generation of delays between packets.

The distribution Hist is referred to by the topology description of an experiment. This
description contains a record for each node in the network consisting of an two indexes into
the distribution list, one for packet length generation and the other for interpacket delay
generation. This scheme allows a wide range of packet generation behaviors to be specified

in a uniform way.

The protocol selection determines which protocol will run during the experiment. The
selection is made from a list of currently available alternative protocols. Since implement-
ing and installing a new protocol requires a great deal of effort, each protocol is coded and
compiled into a separate operating system kernel. This approach makes the inclusion of
different network architectures, such as token rings, relatively painless. To the software, a

new architecture would be nothing more than another protocol selection.

39

3.4.2. Files

The experiment description is stored in two files, the header file and the configuration
file. Breaking the information into two files facilitates editing experiment descriptions,
allowing a series of experiments to be defined using the same distribution list with multiple

topology definitions or vice versa.

The header file contains general information concerning the experiment, the distribu-
tion list, and the kernel selection. The general information includes the name of the experi-
ment, a comment on its purpose, and several general housekeeping items such as creation
and last modification dates, flags indicating the completeness of the description, and infor-

mation concerning the storage of the description.

The configuration file contains the topology entries for all processes to be created by
the experiment. These records consist of a node number, the indices into the distribution
list for interpacket delay and packet length, and indices into a table of seeds for the random
number generation associated with the two distributions. The exact structure of the file is

documented in Appendix B.

3.4.3. Software

The Experiment Configuration Package (ECP) allows a user to create and edit the
experiment specifications discussed above. This front end was written using Curses, a Unix
package for terminal independent screen manipulation. In order to allow the ECP to be
used on as many different types of terminal as possible, it is menu oriented and contains
only simple graphic aids for the experiment creation process. The structure of each screen
used in the program is maintained separately from the program code. This allows the

appearance of the screens to be altered without recompilation of the front end.

A section of the ECP is dedicated to the creation of each of the three parts of the
experiment description. In addition, each part can be edited after creation, either to correct
mistakes or to create new experiments. It is also possible to dump any or all sections of a
description in printable form to a text file for later output and to update the list of available

protocols in the protocol selection section.

40

3.5. The Experiment Execution Package

The Experiment Execution Package (EXP) was written to take the description gen-
erated using the ECP and run the described experiment. An experiment is implemented in
terms of a process model. The processes fall into two classifications: processes involved in
generating traffic during the experiment and processes involved in creating and managing
the progress of an experiment. In the following sections, these processes will be described

in high-level, functional terms.

The programs which comprise the EXP form a distributed application. Communica-
tion during experiments is carried out through polling, since the network connecting the
machines is running under an experimental protocol. The processes can be thought of as
falling into two categories. The first is data generating processes. The load generating
processes fall into this category. An experiment consists of an instantiation of the load gen-
erating process running on one or more of the load generating nodes. The second category
is experiment management pProcesses. The experiment management processes are the
supervisor, on the monitor node, and its agents, the local controllers, on the load generating
nodes. In the following sections, each program will be discussed individually, then the flow

of control among the programs during an experiment will be described.

The EXP data structures are used to the translate an experiment description into input
parameters for the various processes that will be used to generate packets during the experi-
ment. There is one supervisor record which contains the information from the header file.
Using this structure, the supervisor creates records for each of the local control processes
containing the distribution list, and a process record for the load generator the local con-
woller is to create. These process records are distributed to the load generating processes

upon their creation by the local controller.

3.5.1. Supervisor

The supervisor handles overall control of the experiment. The experimenter first
chooses an experiment description and specifies a duration for the experiment. No other
user intervention is necessary. The supervisor makes contact with a previously initiated

local control process on each of the load generating nodes. These processes can be thought

41

of as local agents of the supervisor. For each of these local control processes, the monitor
extracts the pertinent information from the description and transmits it to the controller.
When this activity is completed, the supervisor waits for a signal from each of the controll-
ers. This signal indicates that the controller has received the descriptions of the load gen-
erating processes successfully and is ready to create them. When a signal has been received
from each of the controllers, the supervisor sends a ‘go’ signal to each. At that point, the
supervisor terminates. Collection of the local logs is accomplished by a Unix shell script

which copies each log into the appropriate experiment directory.

3.5.2. Local Control Processes

A local controller resides on each load generating node and performs duties specified
by the supervisor. After being initiated, the controller waits to be contacted by the supervi-
sor. Upon being contacted, the controller receives the description of the load generation
process it is to create and manage. When this description has been successfully received
and copied into the device driver, the controller sends a signal to the supervisor indicating
that it is ready to proceed. At some later time, the controller receives a *go’ signal from the

supervisor. The controller then initiates the load generator and terminates.

3.5.3. Load Generator

The experiment description specifies the distributions the load generators will follow
to generate packets and the duration of the experiment. Each load generator remains quies-
cent until it receives an activation signal from the local controller. The load generator then
generates two random numbers, according to distributions passed to it for packet length and
interpacket delay. Using the generated length, a packet is built, and after the generated
delay has elapsed, the packet is submitted for transmission. This task is repeated until a

specified amount of time has elapsed.

42

3.5.4. Control Flow

The actions of these processes can be grouped into three phases of an experiment run.
These phases are initialization, load generation and data acquisition, and cleanup. The

actions of the various processes during each phase are represented in table 3.2.

The first phase consists of the translation of an experiment description into informa-
tion relevant to each load generating node, and the transmission of this information to the
proper local controller. This translation process is carried out by the supervisor, which also
synchronizes with each local controller and transmits the information. The initialization
phase ends when the supervisor sends the ‘go’ message to the local controllers, and the con-

trollers initiate the load generation processes.

The second phase consists of the actual generation of packets at the load generating
nodes and the logging of the resulting network activity. This phase lasts unil the load gen-

erating processes shut down.

The last phase of an experiment run ocours when the load generators shut down. After
a brief interval, a shell script copies the local logs into the experiment directory on the mon-
itor node. These logs include statistics on the number and distribution of collisions
observed and on the queueing delays suffered by the packets. The successful retrieval of

the local logs marks the end of an experiment run.

3.6. The Experiment Analysis Package

The Experiment Analysis Package (EAP) is one of a set of software tools to access
and reduce the collected data. This program is briefly described in Section 3.3.3. The EAP
is able to process both data filters from the ILMON network monitoring program and logs
generated by the Experiment Execution Package. The program can produce summaries of
single experiment logs or can combine logs from a number of experiments to produce
curves of many varieties. The log files contain the following data: queueing and inter-
packet delay histograms, packet length histogram, collision histogram, total packet count,
and duration of experiment. From this data, the program calculates and allows the user to

display the throughput, offered load, average queueing delay, average interpacket delay,

43

Table 3.2: Process actions during various experiment phases
Process
Phase
Supervisor Controller Load Generator
Select experiment
Open connection {0
local control processes
Initialize
Send expt. description Rcv expt. description
Pass params o Id gen Rev params
Send synch. signal Rev synch, signal
Send "go’ Rev 'go’
Send ’start’ to Rev start’
Generate load generators
Terminate Gen. pkis.
Terminate
Retrieve logs
Cleanup
Terminate

variance of delay, average packet size, total collisions, collisions per packet, collision rate,
total packets and packet rate. Any of these quantities may be displayed on the x or y axis of
a line graph or scatter plot. Raw data or the average of a set of observations can be
displayed. The program produces input files for a program called fplot (written by Dr.
Michael Molloy) which produces files readable by Pic, the Unix picture description
language [Kern82]. The figures in Chapters 4 and 5 were produced with these programs.

44

3.7. System Software

The testbed hosts ran the 4.3 BSD version of Unix. System software was modified in
several ways. The modifications were necessary to implement the load generation and
delay monitoring functions of the testbed. Changes to the clock handling routines are dis-

cussed in Chapter 4.

Of the many interesting challenges presented by building a testbed from off the shelf
components, two of the most difficult are generating adequate throughput from each
machine (particularly in a testbed with a small number of machines) and providing accurate
timing information. Minnich reported maximum process to process throughput for TCP/IP
on 2 4.1BSD Unix VAX 11/780 using the 3Com controller to be 355 kilobits per second
[MC83]. This figure suggests that any load generation technique built on top of TCP/IP
would not be able to generate interesting loads with the equipment available for the LANT.
It was therefore necessary to modify the network device driver for the network controller to
provide both adequate generated throughput as well as delay and throughput measurements

for the artificially generated traffic loads.

The artificial load generation code is included in the device driver. Throughput for
each generator is boosted by bypassing the normal transmission process and using the
onboard packet buffers of the 3Com controller as a packet library. The 3Com has 32K of
memory which is used as 16 2K packet buffers. The normal process for transmitting a
packet is to copy the packet from main memory into the high end of one of these buffers,
write an offset to the beginning of the packet in the first word of the buffer, and then initiate
transmission by writing the buffer index into the transmit control register. Since the con-
tents of artificially generated packets is irrelevant, it was possible to preload the buffers
with one Ethernet header after another. By filling fifteen of the sixteen buffers with headers
in this way, it is possible to have a header in the proper location for transmitting a packet of
any legal size with no copying of data from main memory onto the board. Consequently, to
generate a packet of a given size, it is only necessary to look up the buffer number and
offset of the proper header in a table, write the offset to the first word of the buffer, and
write the buffer number to the control register. This technique allows a single host to gen-

erate almost 60% of network capacity for maximum sized packets.

45

Modifications were also necessary for timing purposes. The clock handling routine
and clock interrupt frequency were adjusted to provide interval timers and timestamps of
adequate resolution for the traffic measurements. During experiment execution, histograms
of the per-packet delay and packet length are collected . Delay is measured from the time at
which the packet is submitted for transmission to the time at which the transmission is suc-
cessfully completed. This is accomplished by taking a timestamp immediately before the
transmit control register of the controller is written with the transmit command and another
immediately after the “transmit done” bit in the transmit control register is set. A histo-

gram of the number of collisions suffered by packets is also collected.

3.8. Protocol Implementations

Three protocols were investigated using the LANT, the Ethernet protocol, the Enet II
protocol and the VTICSMA/CD protocol. The Ethernet experiments used the device driver
supplied with 4.3 BSD Unix for the 3Com Ethernet controller. The other two protocols

were implemented by modifying this device driver.

3.8.1. Ethernet Implementation

Fthernet is one of the classic examples of a CSMA/CD bus network protocol. Ethernet
uses a 1-persistent CSMA/CD access strategy. A ready station which senses the network
busy when attempting to transmit will transmit with probability 1 when it senses the net-
work idle at the end of the transmission in progress. This strategy results in low latency
when traffic is light, but causes some decrease in throughput under heavy loads when com-

pared to the nonpersistent and p-persistent versions of CSMA/CD.

When a station has a packet ready to transmit, it first checks to see whether the ether is
currently busy (the carrier sense). If not, the packet transmission begins immediately. If
so, the transmission is deferred until the ether is idle. If no other stations are attempting to

transmit, the packet is successfully transmitted.

Because the stations are spatially distributed, there may be a non-negligible propaga-
tion delay between stations. Hence, it is possible for two stations to begin transmission

more or less simultaneously and for these transmissions to interfere with each other,

46

corrupting the data in transit. This interference is typically referred to as a collision. If a
station at one end of the network begins transmission at time ¢, it is possible for a station at
the opposite end of the network to begin transmission as late as ¢ + 0.~ €, where o is the pro-
pagation delay of the network and ¢ is some arbitrarily small constant, The second station
will detect the collision immediately, but the first station will only see the interference at
¢ +20—¢. However, if no interference is detected by ¢ + 20, then the station is said to have
captured the ether, and the transmission is guaranteed to be successful. For a formal discus-

sion of this effect, see Theorem 6.2.

The second component of CSMA/CD is collision detection. Early protocols, such as
Aloha [Abra70] discovered collisions after the complete packet had been transmitted, thus
wasting the entire transmission time of the packet. The efficiency of a CSMA protocol is
greatly increased by detecting the interference immediately and aborting the transmission as
quickly as possible. Ethernet interfaces achieve this behavior by continuously comparing
the signal on the ether to the signal they are transmitting and aborting their transmission
when a difference is detected. A 32 to 48 bit burst of noise is then transmitted to insure that
all stations recognize the collision. (This is referred to as the collision consensus enforce-
ment policy.) An example of the operation of Ethernet collision handling is given in Figure
3.3. The figure is a time/space diagram, with time advancing downward, and the horizontal
axis representing the length of the network cable. The shaded areas indicate the propaga-
tion of signals from the stations. Darker areas indicate that signals from more than one sta-

tion are overlapping. The quantity r refers to the slot time for the network.

The Ethernet specification [DIX82][IEEE82] places restrictions on several aspects of
the network. Signal attenuation limits the effective length of a single segment of Ethernet,
but repeaters which regenerate the signal are allowed and may be used to set up a tree
configuration of segments. The maximum allowed round trip propagation delay is 464 bit
times. This is a delay limit, rather than a cable length limit; devices such as repeaters
induce some latency of their own. The specification states that the longest path between
two transceivers is to be 1500 meters. In order for collisions to be uiziformiy detectable, the
minimum packet size is 512 bits. To simplify the design of interfaces and to maintain quick

response for interactive traffic (small packets), the maximum packet size is 1536 bytes.

47

A, B, and C sense the ether
idle and transmit, causing a
collision.

A and C choose to wait 0 slots.
B chooses o wait 1 slot.

A and C begin transmission
after the minimum packet
spacing, and collide again. B
senses the channel busy and
defers.

A chooses to wait 2 slots. C
chooses to wait 3 slots. B
transmits when the channel
goes idle and completes
successfully.

A senses the channel idle
after 2 slots and transmits.

C senses the channel busy
and defers. A transmits
successfully.

C iransmits.

Figure 3.3: Ethernet collision handling example.

48

The experiments on Ethernet performance were performed using the Ethernet imple-
mentation supplied with the 4.3BSD Unix distribution (/sys/vaxiffif_ec.c). This implemen-
tation adheres to the Ethernet spec in all but one important particular. The collision inter-
rupt service routine uses only five bits of the backoff mask to generate the backoff interval,
rather than the ten bits specified. The truncated backoff interval means that the interval
from which the backoff is randomly chosen increases for the first five collisions suffered by
a packet to 32 slot times, but for all subsequent collisions the interval remains 32 slot times.
A correct implementation should increase the interval for the first ten collisions to 1024 slot
times. Communication with Keith Bostic of BSD [Bost88] indicates that this was an over-
sight in the implementation. Unfortunately, this problem was discovered only after the
measurements were completed. The truncated backoff scheme implementation improves
delay at low loads by shortening the average retransmission delay. However, under heavier
loads redistributing retransmissions over a shorter interval also increases the chances of the
retransmissions suffering subsequent collisions. The truncated backoff algorithm partially

explains the instability observed in Ethernet in the measurements presented in Chapter 5.

3.8.2. Enet II Implementation

The Epet II protocol performs collision resolution in the unslotted CSMA/CD
environment and incorporates techniques that facilitate the implementation of slotted proto-
cols in this environment. The difficulty with implementing most of the slotted collision
resolution protocols on a CSMA/CD bus is that the algorithms must be able to determine
when an idle ‘slot’ has occurred. In an unslotted medium, this determination is difficult.
To understand how Enet II accomplishes this, it is necessary to note two facts. First, the
Ethernet specification [DIX82] and the IEEE 802.% standard [IEEES82] set a maximum
length for cables in CSMA/CD bus networks. Using this limit, a protocol can assume a
fixed maximum propagation delay, a, for the network. A station listening to the ether for
 =2a after a message completes is guaranteed to hear any station which began transmitting
after the message completed transmission. Second, collision detection and the subsequent
‘jam’ (collision consensus enforcement) do not waste very much bandwidth. It is therefore

practical to use intentional collisions to gain information about the state of other

49

transmitting stations during the collision resolution period.

In Enet 1, a station can be in one of three states; inactive, active, or deferred. Inactive
stations either have no packets to send or have just successfully transmitted a packet.
Active stations are trying to transmit a packet that may have been involved in a collision.
Deferred stations have attempted a transmission but are waiting for active stations to com-
plete their transmissions. In the algorithm statement that follows, r represents twice the
propagation delay of the network. The protocol we describe here is referred to as “Naive
Enet IL,” and is described in Figure 3.4. The protocol can be improved by adding counters

as described in [Mol185] to implement an unslotted Capetanakis protocol.

Algorithm Statement

Inactive — active (new packet available for transmission)
Sense channel
Wait until idle for 3r, then transmit

Active

Successful fransmission —» inactive

If a collision occurs while transmitting, flip a coin

If heads is flipped, try to transmit again; active

If tails is flipped, monitor the channel
If channel idle for r, transmit; active
If successful transmission observed, transmit; active
If collision observed withinr — deferred

Deferred
Monitor the channel
If idle for 2r, transmit; active
Otherwise, repeat deferred action

Figure 3.4. Statement of the Enet II algorithm.

The transmit by active stations after the channel is observed idle for r produces a
guaranteed collision which signals that no stations flipped heads, so stations should flip

their coins again. Collisions observed within r of the original collision are viewed as actual

50

collisions, while collisions observed between 7 and 2r after the original collision are
viewed as signals that an idle step has just ended. The initial 37 wait serves to allow active
and deferred stations to finish their transmissions before any new packets are transmitted.

The operation of the protocol is demonstrated pictorially in Figure 3.5.

In two instances the testbed hardware and software made it impractical to implement
the Enet II protocol exactly. The Enet II specification calls for timing of events in multiples
of r, the round trip propagation delay of the network. For IEEE 802.3, r is approximately
50 microseconds. As detailed in Section 4.1.1, increasing the clock interrupt rate to meet
the 50 microsecond requirement affected the performance of the computers {0 an unaccept-
able degree. A clock resolution of 200 microseconds was finally implemented. As a result,
the specified idle periods of r, 2r, and 3r for the various protocol states are approximately
four times as long as they theoretically could be. Throughput and delay characteristics of

the resulting protocol are degraded, but not necessarily by a factor of four.

The second problem is also related to the idle monitoring periods, and is an effect of
the packet reception process of the network controller used by the load generators. In order
to monitor network events, a promiscuous receive request is issued to the controller. Any
packet which subsequently appears on the network is reported to the device driver, regard-
less of the packet’s intended destination. If a packet was received during the monitored
interval, it is indicated by a bit in the receive control register of the controller. A collision
is indicated by the reception of a packet smaller than the minimum required packet size.
An idle interval is indicated by the absence of the “receive done” bit in the receive control
register of the controller. The problem occurs when the controller receives a packet whose
transmission time is greater than the monitored interval. Since the “receive done” bit is not
set until the transmission is complete, it appears that the ether was idle when the interval
expires. This means that the protocol will occasionally mistake a successful transmission
for an idle period. The result of this situation is that some packets will join the transmission
process sooner than they should, and that some deferred packets will retransmit earlier than
they should. Very few packets reach the deferred state, so it is believed that the perfor-
mance degradation thus caused is negligible. In order to correctly implement this portion of

the algorithm, it would have been necessary for the interface to have a register bit which

51

A, B, and C attempt 10
transmit and collide. All
flip coins.

A flips heads, Band C
flip tails. A aftempts
retransmission. B and
C observe the channel.

A transmits successtully.

Success observed. B
and C transmit and
collide again.

B and C flip coins. B flips
tails and observes. C flips
heads and transmits
successiully.

o e 1 o 59 50 € 08

B observes success and
transmits successiully.

Figure 3.5: EnetIl example.

52

was set while reception was in progress. (The modifications mentioned in Section 3.7.4
would have also made this possible, but the modifications were not performed until the Enet

11 measurements were completed.)

3.8.3. Virtual Time CSMA/CD Implementation

The central idea behind the VTCSMA/CD protocol is the elimination of the synchron-
izing effect that busy periods have on transmission attempt in 1-persistent CSMA/CD pro-
tocols like Ethernet. In such protocols, all stations which experience a new packet arrival
during a busy period will attempt to transmit when the busy period ends. If there is more
than one new arrival during a busy period, a collision is guaranteed for these protocols, The
actions of the VTCSMA/CD protocol provide a mechanism for spreading such arrivals out
in time with respect to the end of the busy period. Each station maintains two clocks, a real
time clock and a virtual clock. The virtual clock runs only when the channel is idle. When
virmal time and real time coincide, the virtual clock runs at the same rate as the real time
clock. At all other times, the virtual clock runs at some rate 1 that is faster than real time,
When a packet arrives for transmission, the station marks the packet with the current real
time. When the virtual clock reaches the packet’s timestamp, the packet is transmitted.
Note that since the virtual clock is running, the channel must be idle, so VTCSMA/CD fol-
lows the CSMA discipline for channel access. However, the actual transmission time of the
packet depends both on the end of the most recent busy period and on its timestamp, avoid-
ing many of the collisions experienced by Ethernet. Figure 3.6 shows the operation of the
algorithm in C-like pseudocode. The protocol is modeled as two functions, one transmis-
sion function and one virtual clock manager. The code assumes that the actually advance-
ment of the virtual clock is taken care of in the same interrupt service routine which

advances the real clock by looking at the variables ve_rate and ve_run.

53

/* Global variables -- initialized at boot time */

unsigned long vc_rate; /* Virtual clock rate when behind real time */

boolean ve_run; /* True when virtual clock is running, false otherwise */
unsigned long rt, vi; /* Real time and virtual time clocks */

7* Protocol constants */

PENDING /* Timestamp < vt ¥/
COLLISION /% Collision occurred */
SUCCESS /¥ Packet transmitted successfully */

ve_manager()

{
/* Initially virtual clock runs at same rate as real clock */
ve_rate = 1; ve_run = TRUE;

do {
/* While carrier sense low, only check to see if vt has caught up to 1t ¥/
while (Icarrier)
if (vt==1t && v¢_rate == 1) vC_rate = 1;
/* Carrier has gone high. Stop clock, increase rate. */
ve_run = FALSE; ve_rate = 7
while (carrier)
1 forever;

}

vc_transmit (packet)
char *packet;

{
unsigned long arrival time; /% Packet’s timestamp ¥/
unsigned status; {* State of protocol */
arrival_time = rt; /* Value of real time clock */

status = PENDING;

while (status {= SUCCESS) {
/* Wait for virtual clock to reach timestamp */
while (vt < arrival_time)

%

status = transmit (packet); /* Attempting to transmit */
if (status == COLLISION }
arrival_time = backoff(}; /* Schedule retransmission */

Figure 3.6: The VTCSMA/CD algorithm.

54

Implementing the Virtual Time CSMA/CD protocol presented severe difficulties on
the LANT hardware. One of the requirements of the protocol is that the virtual clock stop
whenever the channel is busy. The first attempt at implementing this behavior using only
the promiscuous receive capability of the interface was unsatisfactory. The only indication
that a promiscuous receive has occurred is the “ receive done” interrupt. There is no indica-
tion when a promiscuous receive starts. It was therefore necessary to approximate the vir-
tual clock behavior by determining the length of the received packet and subtracting the
transmission time for a packet of that length from the virtual clock. This led to inconsisten-
cies in the implementation, since events which occurred during the reception which would

have been delayed by a correctly stopped virtual clock could not reasonably be aborted.

These difficulties led to modification of the interfaces to facilitate the operation of the
virtual clock. This modification consisted of bringing the carrier sense signal out to an
unused bit in the Receive Control Register (RCR). While this improved the situation, it
still required that the algorithm continuously keep promiscuous receive requests pending,
increasing the interrupt rate and thus decreasing the efficiency of the implementation. Since
there was nothing meaningful to be gained by examining received packets, for the other two
protocols, reception was turned off during experiments to reduce interference with the load

generation process.

The experimental packet transmission process operates as follows. The arrival time
for a packet is represented by a global variable called vealarm. When the virtual time clock
equals or exceeds the value of vtalarm, the packet transmission process is initiated. The
buffer offset for the specified packet length is loaded into the appropriate buffer, the virtual
time clock is halted, and the transmit bit in the Transmit Control Register (XCR) is set. The
virtual time clock can safely be halted since either immediate transmission or deferral both
indicate a busy channel. While the interface handles the transmission, the experimental
transmission process checks the jam bit of the XCR to see whether the packet has suffered a
collision. If a collision occurs, a backoff scheme similar to that used in Ethernet is used to
back off the retransmission. The backoff algorithm initially generates longer delays than
the Ethernet scheme since it is constrained to work in real time clock units of 200

microseconds and must still allow distinction between two stations on the first backoff. The

55

collision routine generates a delay, which it combines with the current virtual time to form a
collision alarm. The routine then waits until the virtual time clock is equal to or exceeds
this alarm value. While waiting, the carrier sense bit in the RCR is checked and the virtual
clock halted when it is high. The next arrival is generated as in the other two implementa-
tions, with the exception that the new arrival time is formed by adding a delay to the current

virtual time.

It should be noted that the necessity for continuously servicing receive interrupts dur-
ing the operation of the protocol adds significantly to the overhead of the protocol. The
Enet II implementation suffers from this problem to some extent, but the need to perform
promiscuous receptions in Enet II is limited to certain points in the resolution process,
while VTCSMA must monitor the channel at all times in order to maintain the virtual time
clock. In the Ethernet implementation, receive interrupts are disabled during artificial load

generation.

3.9, Ethernet Simulator

Some aspects of protocol behavior revealed in the LANT experiments were not
directly related to parameters under the experimenter’s control. To aid understanding in
these areas, a simulator was written for Ethernet. The simulator is of the discrete event
variety, and simulates a finite population of hosts. Since any number of hosts could be
simulated, the offered load can be calculated in a manner similar to the process of calculat-
ing the offered load for the LANT. The simulator allows specific arrangements of stations
to be simulated, rather than assuming that the stations are uniformly distributed along the
cable. Cable length, collision detect time, jam time and transmission overhead are available
to the user as input parameters. The simulator also allows the specification of discrete dis-
tributions for interarrival time and packet length in a way analogous to the ECP
specification of distributions. Special attention is paid to the modeling of collisions, taking
into account collision detection times and locations of all stations involved in each colli-
sion. Finally, versions of the simulator with both the standard and the truncated version of
the backoff algorithm were written. Use of this program gave added insight into the effects
of the truncated backoff algorithm, as indicated in Figure 5.2.

56

3.10. Summary

This chapter has described the hardware and software that is collectively referred to as
the LANT. This testbed was used to gather and interpret the data presented in Chapters 4
and 5. It differs from previously implemented testbeds in several ways. The LANT was
built completely from off-the-shelf, general-purpose hardware; 1o special purpose
hardware was required (though the network interface boards were modified to provide some
otherwise unavailable information to the device drivers). The method used for configuring
experiments proved very flexible, allowing the specification of a wide range of traffic
behaviors for experiments. Finally, the testbed was intended as a platform for the imple-
mentation and investigation of a number of protocols, not just for one specific network sys-

fem.

Chapter 4

Measurement Methodology

This chapter discusses the techniques used to measure the performance of the proto-
cols investigated in the LANT project and the describes the design of the artificial load gen-
eration experiments. The first two sections discuss modifications to the system software
which were necessary to measure the quantities of interest for the experiments. The third
section discusses the types of loads used in the experiments and the motivation for the par-
ticular loads chosen. In this section, a traffic analysis is presented of the University of
Texas campus Ethernet which demonstrates the changes in the patterns of network usage

since the pioneering studies of Shoch and Hupp [SHEO0].

4.1. Modifications to UNIX clock management

In the default configuration for the VAX 11/750 version of 4.3BSD Unix, hardware
clock interrupts are generated every 10 milliseconds. The Unix interval timer
(getitimer/setitimer) and timestamping function (gettimeofday) are built on top of this ser-
vice. It is possible to adjust the interrupt rate by changing the HZ parameter in the param.c
file and recompiling the kernel. However, since the LANT load generation software
operates at a lower level than the system calls mentioned, simply increasing the value of HZ
was not the desired solution, and in fact would have been counterproductive, since the nor-

mal tasks associated with the system clock interrupt would have been executed more often.

57

58

A second level of clock interrupt service was implemented on top of the normal clock
interrupt service in the hardclock() routine in /sys/sys/kern_clock.c. A second compiler
flag, RHZ was defined, representing the number of “ real time” clock interrupts per
hardware clock interrupt service. Clock interrupts occurred HZ*RHZ times per second, but
the normal clock interrupt service code was run only every RHZ times this happened, pro-
viding the same system interrupt service rate as the default system. A “real time clock” and

«real interval timer” were implemented using the extra clock interrupt service requests.

The real time clock was implemented as a globally accessible unsigned long integer
variable called rtc which was initialized to zero in the system’s boot time initialization rou-
tine, init_main(). This variable was then incremented each time hardclock() was executed,
providing a timestamp accessible to the network device driver code. Another globally
accessible variable, ric (real interval clock), was defined. This variable was decremented
with each hardclock() execution. When it reached 0, a real time process, riproc(), which
resided in the network interface device driver, was called. Riproc() set 2 flag which indi-
cated to the artificial load generation process that it was time to send another packet. The

load generator set ric to the delay until the next packet after each transmission.

RHZ provided an adjustable interrupt rate. As noted, the Enet I protocol should be
able to respond to events with 50 microsecond resolution. A kernel was prepared with RHZ
set to provide 50 microsecond timestamping and interval clock settings. While this kernel
ran, it apparently spent all of its time incrementing r¢c and decrementing ric; it did not
even respond to console input. The real time clock code requires only one increment and
one comparison in a typical interrupt service episode, so this was actually a problem of
reaching the limit imposed by the length of the normal hardware clock service code. Even-
tually, it was determined that 200 microsecond resolution was the best compromise between
the requirements of the algorithm and reasonable operation of the system. This comprom-
ise effectively causes the Enet II protocol to operate as though the network length is four

times the maximum length specified for Ethernet.

59

4.2. Network device driver instrumentation

The primary measurement task for the artificial load generation software was measur-
ing the queueing delay for each packet. This was achieved by keeping a descriptor for the
packet which contained the packet length and start and stop times for the transmission. The
load generation process (send_xpks()) copied rtc into the descriptor after loading the offset
word of the interface buffer and before setting the transmit bit. The ending value of ric is
copied after the transmit done bit is set in the XCR and the interface is reset. The packet
length and transmission times are then inserted into histograms, along with the number of

collisions suffered by the packet. The interpacket interval is also recorded in a histogram.

4.3. Experiment design and analysis

One of the goals of the LANT project was to measure protocols (in particular Ether-
net) under realistic traffic loads. The typical assumption in analytic studies, artificial work-
load measurements and simulations is that packet lengths are either fixed or are distributed
exponentially around some mean or uniformly over some range. Measurement of actual
traffic such as [SH80] indicated that the loads most prevalent on existing Ethernets did not
conform to any well behaved distribution, but were strongly bimodal in nature. Since these
studies were several years old at the inception of the LANT project (ca. 1984), the first task
undertaken was the construction of the ILMON network monitoring package described in
Chapter 3 for use in traffic characterization studies of the University of Texas campus Eth-
ernet. The UT network was then and remains one of the busiest networks in the world, and
provided an interesting perspective on the growth of network utilization in the years since
the PARC studies were done. Section 4.3.1 reports the results of the traffic characterization
study, which were used to guide the design of the mixed packet loads discussed in Chapter
5.

4.3.1. Production Network Traffic

ILMON was used to collect utilization data on the University of Texas campus Ether-
net. At the time of these measurements, the network connected some 80 nodes, including

mainframes, minicomputers, workstations, fileservers, laser printers and terminal

60

concentrators. Many other machines reside on subnets and contribute to the network’s
traffic. Several higher level protocols, such as the DOD/ARPA protocol suite, DECnet, and
CHAQOSNET, were in use.

During June of 1986, the network was monitored for a 24 hour period, with samples
summed over six minute intervals. The University was at that time involved in the first
Summer Session, so traffic was probably somewhat lower than would have been the case
during a regular academic session. During this period, 8.7 million packets were transmit-
ted, containing 3.8 billion bytes of information, not including the Ethernet headers, pream-
bles and frame check sequences. The average throughput was 0.358 Mbps, for a utilization
of 3.58%. The peak utilization was 11.03%, and the minimum utilization was 0.7%. The
results of this observation are shown in Figure 4.1. Figure 4.2 is 2 histogram of observed
packet lengths. This figure shows the classic bimodal distribution, with a large percentage
of small packets carrying terminal traffic, and a smaller percentage of very large packet
associated with file transfers. The second group was somewhat exaggerated in the UT
environment by the presence of a cluster of diskless SUN workstations and their file server
on the backbone network. The SUN Network Disk (ND) protocol has a block size of 1072
bytes. Most of the traffic with packet sizes larger than 1072 are generated by various appli-
cations using the User Datagram Protocol. [Post80] Figure 4.3 is a histogram of the

observed interval between packet receptions for the monitor node.

|

1.2 -
BPS |
0.8 -
0.4 ¥11‘
il 9
\
b
0:00

WIIHMMM 2: i :OO 20: |
Interval

62

50

404 |
30-
201

Pct of Pkts

104

ol b N =]
0 300 600 500 1200 1500

Length

Figure 4.2: Packet length vs. percent of total packets.

63

40

30+

20-

Pct. of total 3
104

0 10 20 30 40 50
Interval (msec)

Figure 4.3. Interarrival time distribution. Taken from one

thirty second packet logging sample.

64

A comparison to a similar set of observations reported in [SH80] is shown in table
4.1. The Shoch data was collected on the Xerox PARC experimental Ethernet, which ran at
a rate of 3 Mbps, while the UT Campus Ethernet is a 10 Mbps network. Though this is a
less than perfect comparison, the average utilization, peak utilization, and minimum utiliza-
tion figures are of interest. These quantities indicate that though the two networks were of
roughly similar size at the time of the measurements, the UT network was significantly
busier. Though the small average packet size for the Xerox experiments is partly an artifact
of the PUP protocol in use there, the difference also indicates that subsequent protocol
designs have used the medium more efficiently. The observed differences between the two
networks also reflect the growing dependence of a broad spectrum of computer tasks on

Local Area Network communication.

Table 4.1: Xerox vs. ILMON

Quantity Shoch | ILMON
Packets/day (mil.) 2.2 8.7
Bytes/day (mil.) 300 3,800
Avg. Utilization 0.8% 3.6%
Peak Util. (6 min period) 7.5% 11%
Min, Util. (6 min period) 0.2% 0.7%
Mean packet size 122 439
Avg. inter-packet time (ms) 39.5 7

Several load patterns which make use of the bimodal distribution observed in this
study were defined and used in artifical load generation experiments. The exact composi-
tion of these loads is discussed in Chapter 5. For the sake of efficiency, the artificial loads

were abstracted to produced packets of two different sizes, one small and one large. The

65

artificial load generation software was constructed to generate this type of generation fairly
quickly, while adhering more closely to the observed distribution would have significantly
increased the packet generation overhead. Several different mixtures of two packet sizes
were used to investigate the effect of increasing the percentage of small packets on the
behavior of the protocols. Both fixed and exponentially distributed interpacket delays were

generated.

4.3.2. Fixed Packet Length Loads

Many analytic studies deal with fixed packet lengths, so several load patterns were
defined which generated only a single length. Generating this type of load was more
efficient than generating a mixture of lengths, which resulted in higher offered loads for
these patterns. As before, both fixed and exponentially distributed interpacket delays were
generated. The packet sizes chosen as well as the interpacket interval generation method

match those used in the artificial traffic generation study of Gonsalves [Gons851.

4.3.3. Statistical Considerations

Previous experimenters have determined that for Ethernet, relatively short experiment
durations are sufficient. Gonsalves’ experiment runs were 60 seconds in duration. Boggs,
et. al. used experiment runs of 20 seconds, collecting data only during the middle ten
seconds of each ran. Since the LANT experiments were concerned with software imple-
mentations of experimental protocols on a small network, experiment duration was chosen
conservatively. Each experiment lasted for ten minutes. Each host sent between 75,000
and 150,000 packets, depending on the offered load level. Each experiment was repeated

three times, and the average quantities from the runs are reported in Chapter 5.

Chapter 5

Protocol Performance Measurements

This chapter describes the use of the LANT to measure the performance of various
protocols under artificially generated network traffic loads. Three protocols, the Ethernet
protocol, the Enet II protocol, and the Virtual Time CSMA/CD protocol, are investigated.
As discussed in Chapter 3, all of these protocols were implemented for the 3Com 3C300
Unibus Ethernet interface, and in the case of the latter two protocols, the performance of the
protocol was affected by limitations related to the interface and the operating system

software.

The expressed purpose of the Ethernet local network is to provide low latency access
for interactive users while still achieving reasonable performance for bulk transfers
[MB76]. Measurement studies and analytic results suggest that Ethernet throughput should
match the offered load until the point at which the offered load exceeds the capacity of the
channel. At that point, the throughput should level off and remain stable until the load is
much larger than the capacity of the channel. Leveling off of the throughput curve is
accompanied by a sharp increase in delay, as stations are forced to wait for retransmission

of their packets.

Enet II was designed to satisfy two goals. The first was to provide a random access
alternative to Ethernet which experienced lower and less variable delays at high load than
Ethernet. The second was to demonstrate a method for implementing collision resolution
on an unslotted network. The algorithm requires an initial gating delay for packets making

their initial transmission attempt, and thus experiences a larger average delay under light

67

68

loads, but a simulation study presented in [Moll85] suggests that average delay should be
lower as loads approach the capacity of the channel. This is due the action of the collision
resolution algorithm, which prevents packets from waiting through long random delays

when transmission is attempted on a heavily loaded network.

VTCSMA/CD is an attempt to reduce the possibility of collisions in a broadcast
environment. If stations transmit successfully on their first attempt more often, then their
average delay should be lower and their throughput higher. This situation also reduces the
impact of the retransmission policy of the protocol, since it will be used less often. Ana-
lytic results presented in [MKB85] predict that VT CSMA/CD should achieve higher peak
throughput than Ethernet as well as a much lower average delay and collision rate under

heavy loads.

The measurements presented in this chapter agree with these predictions in many par-
ticulars. Ethernet and Enet IT show little loss of efficiency until the offered load approaches
the capacity of the network. The low-load delay for Enet II is higher than that of Ethernet
and VTCSMA/CD by approximately the amount of the gating delay imposed by the proto-
col. The delay variance of Enet II and VTCSMA/CD show great improvement over the
Ethernet delay variance. The average delay advantage among the three protocols typically
belongs to VTCSMA/CD, followed by Ethernet, though under some load conditions this
relationship is reversed. Where the measurements differ from the expected behavior of the

protocols, explanations are offered.

The measurements fall into two broad groups, measurements conducted using a fixed
packet size, and measurements using a mixture of packet sizes. Fixed length experiments
were run with packets of 1500 bytes and 1024 bytes. 1500 byte packets represent the most
efficient utilization of network bandwidth and allowed very heavy traffic loads to be gen-
erated. The 1024 byte packets match packets generated by many common network applica-
tions such as the Sun Network Disk protocol and also allowed the generation of heavy over-
loads. For mixed packet traffic, three different packet mixtures were used, each with a
bimodal distribution of packet sizes. Each distribution had packets of 1500 bytes and 275
bytes, with 25% small packets for mix 1, 55% small packéts for mix 2, and 65% small

packets for mix 3. Most networks do not display such a simple distribution of packet sizes,

69

but packet size distribution on real networks does tend to be strongly bimodal. The two size
distribution was chosen for efficiency reasons. For a larger number of packet sizes, the load
generation process required a binary search for packet length generation, while choosing
between two sizes requires only a single comparison. A two-size distribution still allows
reasonable traffic to be generated in a five host testbed. Within each of the groups, experi-
ments were run using both fixed interpacket intervals and exponentially distributed interar-
rival times. The fixed intervals allowed the greatest offered load to be generated, while
exponentially distributed arrivals more closely match the arrival process of real networks.
As previously stated, the actual distribution of interarrival times is not strictly exponential
in nature (see Figure 4.3), but the exponential distribution most closely models the observed

arrival process.

Throughout this discussion, the following abbreviations will be used. The offered
load will be referred to as G. The offered load for a given load pattern is calculated by mul-
tiplying the average throughput of a single generator running the pattern in the absence of
contention by the number of generators participating in the experiment. § is the observed
throughput for the network. It is calculated by summing the average throughput from each
generator. D refers to the average per-packet queueing delay. This delay is measured from
the time the packet is first submitted for transmission until it is successfully transmitted.
This figure includes the transmission time of the packet. V refers to the variance of D.
Unless otherwise stated, all experiments were run using all five of the testbed computers as

load generators.

Error statistics were not available for all of the experiments. The measurements for
the Enet II protocol driven by traffic mixture 2 had a confidence interval of 200
microseconds with a confidence level of 95% for the average delay figures. This error is

within the timekeeping resolution.

In comparing the implementations of the three protocols, it is instructive to consider
the maximum load generated by a single station. This gives us an indication of the over-
head associated with the initial transmission of a packet. In all cases, Ethernet achieves the
highest single station throughput. This should not be surprising, since the interface was

designed for Ethernet, and (in the absence of copying) there is almost no overhead involved

70

in the initial transmission of a message. Since there is no contention for a single transmit-
ting station, there is no delay for deferral. In every case Enet 1I generated the second
highest single station throughput. The initial 3r (600 microsecond) gating delay decreased
the throughput performance for the algorithm, but once again, it was never necessary to
defer while other stations resolved collisions in the single station case. The LANT imple-
mentation of VTCSMA/CD displayed the lowest single station throughput under various
load patterns. This can be accounted for by the fact that in this implementation
VTCSMA/CD required manipulation of the variables associated with the virtual clock for
every packet transmitted, and these manipulations were at times forced to wait for clock
interrupt processing to complete. This is an artifact of the software implementation of the
protocol; in a hardware implementation the effect would be eliminated. It was also the case
that both the Enet II implementation and the VTCSMA/CD implementation used promiscu-
ous receives to monitor the charmel. Enet II monitored the channel only at certain points in
the resolution process, while it was necessary for the VTCSMA/CD implementation to
monitor the channel at all times to operate the virtual time clock. This monitoring was
implemented with busy waits; attempts to use interrupt service routines for this purpose
proved unsatisfactory from a performance standpoint. Busy waiting was a practical solu-
tion for the purposes of the testbed, since the computer was expected to perform no other

computational activities during experiments.

Table 5.1 shows the throughput and delays for each protocol, arranged according to
the load pattern executed. Column a shows the protocol. Column b shows the type of the
interpacket interval distribution. Column ¢ shows the packet length distribution. Ifa
number is given, it represents the fixed number of bytes per packet. These three columns
constitute the load pattern. Column d shows the peak throughput achieved by a single host
for the load pattern. Column e shows the average queueing delay experienced by the send-
ing host for the load pattern. In this table, the queueing delay column does not include the
transmission time for the packets, only the overhead associated with the transmission.
Column f shows the average interpacket interval for the load pattern. The interpacket inter-
val includes the time to calculate and record the delay for the packet just transmitted and the

time to generate the description of the next packet to send. As expected, the load pattern

Table 5.1: Offered Load Packet Generation Overhead, by Protocol

@ (b) © (d) (e ®
Protocol Interval Length | Thruput Queueing Interpkt
Dist. (Bytes) (Mbps) | Delay (usec) | int. (usec)

1500 6.379 116 587

1024 5.537 109 576

Fixed Mix 1 4532 180 999

Mix 2 3.701 183 975
Ethernet Mix 3 3.271 183 1011
1500 3.251 61 2477
1024 2.499 67 2441
Exponential | Mix 1 2.541 127 2718
Mix 2 1.913 55 2797
Mix 3 1.664 126 2764

1500 4.672 789 603

1024 3.737 803 600

Fixed Mix 1 3.497 788 1021

Mix 2 - - -
Mix 3 2.423 787 1020
Enet 11 7500 = = =

1024 2.102 907 2224

Exponential | Mix 1 2.133 894 2681
Mix 2 1.626 886 2586
Mix 3 1.418 900 2587

1500 5.450 155 868

1024 5.152 196 985
Fixed Mix 1 3.430 183 1681
Mix 2 2.680 182 1664
Mix 3 2.379 182 1668
VICSMA 1500 2.943 126 2791
1024 2.173 175 2831
Exponential | Mix 1 2.159 77 3445
Mix 2 1.620 152 3336
Mix 3 1.413 160 3341

71

72

(packet length and interpacket interval distribution) has little effect on the queueing delay.
However, going from a fixed length packet to one of the bimodal packet mixtures adds
between 300 and 600 microseconds to the interpacket interval, while going from fixed to
exponentially distributed interpacket intervals adds between 1600 and 2000 microseconds

to the interpacket delay.

Table 5.2 shows the same data organized by the packet length distribution. The
columns are the same as those in Table 5.1, except that column a is now the length distribu-
tion and column c is the protocol. This table points out the difference between the protocol
implementations. The Ethernet and Enet II implementations show very little difference in
terms of the interpacket interval to record delay and generate new packets. The average
difference between to two implementations is less than the resolution of the timestamp
mechanism. However, the interpacket interval for the VTCSMA/CD implementation is
consistently 500 to 700 microseconds slower. This is an indication of the additional over-

head associated with virtual time clock maintenance mentioned in Section 3.7.4.

Table 5.2: Offered Load Packet Generation overhead, by Load Pattern

(a) (b) © d © ®
Length Interval Protocol | Thruput Queueing Interpkt
(bytes) Dist. (Mbps) | Delay (usec) | int. (usec)

Ethernet 6.379 116 587
Fixed Enet II 4.672 789 603
1500 VTCSMA 5.450 155 868
Ethernet 3,251 61 2477

Exponential Enet 11 - - -
VTCSMA 2.943 126 2791
Ethernet 5.537 109 576
Fixed Enet 11 3.737 803 600
1004 VTCSMA 5.152 196 985
Ethernet 2.499 67 2441
Exponential Enet I 2.102 907 2224
VTCSMA 2.173 175 2831
Ethernet 4.532 180 999
Fixed Enet II 3.497 788 1021
Mix 1 VTCSMA 3.430 183 1681
Ethernet 2.541 127 2718
Exponential Enet II 2.133 894 2681
VTCSMA 2.159 77 3445
Ethermnet 3.701 183 975

Fixed Enet I - - -
\ VTCSMA 2.680 182 1664

Mix 2

Ethernet 1.913 55 2797
Exponential Enet 1 1.626 886 2586
VTCSMA 1.620 152 3336
Ethernet 3.271 183 1011
Fixed Enet 11 2.423 787 1020
Mix 3 VTCSMA 2.379 182 1668
Ethernet 1.664 126 2764
Exponential Enet I 1.418 900 2587
YVTCSMA 1,413 160 3341

73

74

For each experiment set, plots will be presented of throughput versus offered load,
delay versus offered load, delay versus throughput, delay variance versus offered load, and
collisions per second versus offered load. Where appropriate, further analyses may be

presented.

5.1. 1500 Byte Packets

The differences between the protocols examined were in their handling of contention
among the host population. In a testbed with only five hosts, contention was not encoun-
tered with light traffic, but only when heavy loads were generated. With such a small host
population these conditions were best achieved using large packet sizes. This load pattern
was also of interest since it presents the situation where each host uses the channel with the
greatest efficiency. The load pattern composed of all hosts generating 1500 byte packets
with fixed interpacket intervals is first considered. For these experiments, each generator
delayed for a fixed period after a successful transmission before sending the next packet.
Experiments were also run where hosts generated an exponentially distributed delay after

each successful transmission.

5.1.1. Fixed Interpacket Intervals

Figure 5.1 shows the throughput versus offered load of the three protocols. The units
for both axes are megabits/second (Mbps). As expected, at low loads, the throughput
characteristics of Ethernet and Enet II are very similar. VTCSMA/CD actually suffered
fewer collisions than either of the other protocols, but overhead associated with each packet
limited the throughput achieved by the protocol. Both Ethernet and Enet II exhibit a peak
throughput of 9.8 Megabits/second. However, Enet II achieves this peak at an offered load
of 10.64 Mbps, while for Ethernet the peak appears at 11.08 Mbps offered load. This differ-
ence is attributable to the lower delay variance for Enet II. The peak for VTICSMA/CD is
8.9 Mbps at offered load of 26 Mbps. The throughput for VTCSMA/CD increases much
more gradually than that of the other two protocols. As shown in Table 5.2, the implemen-
tation suffers greater interpacket processing delay than the other two protocols. The

throughput for Ethernet and Enet II matches the offered load very closely until offered load

75

10
8-
6..
S (Mbps) 41
7 o FEthernet
= Enetll
24 s VTCSMA/CD
G H H H [¥] T H 1]]) 1 H
o 2 4 6 8 10 12 14 16 18 20 22 24

G (Mbps)

Figure 5.1: Throughput (S) versus offered load (G) for 1500 byte packets with fixed

interpacket intervals.

increases past 9 megabits per second. At that point, contention has begun to increase and
the additional delay involved in rescheduling packets which suffer collisions affects the

throughput of the protocols.

Ethernet and Enet II experience a drastic drop in throughput as queueing delays from
contention begin to dominate the transmission time. For Ethernet this occurs between

11.08 Mbps and 11.50 Mbps offered load. Enet II experienced this decrease at lower

76

offered load level, between 10.64 Mbps and 11.12 Mbps. Throughput stabilizes again at
approximately 7.5 Mbps for Ethernet and 7.8 Mbps for Enet I

It must be noted that the drop in throughput for Ethernet is in part attributable to the
truncated backoff scheme implemented in the 4.3BSD 3Com device driver, as discussed in
Section 3.7.2. However, simulations indicate that this factor alone cannot attribute for a
drop of the size observed here. The simulation studies indicate that the combination of the
truncated backoff scheme and the transmission overhead noted in Table 5.1 for the Ethernet
implementation comes closer to duplicating the observed behavior. Figure 5.2 illustrates
this point, with curves plotted for Ethernet with regular backoff, Ethernet with regular back-
off and transmission overhead included, Ethernet with truncated backoff, and Ethernet with
both truncated backoff and transmission overhead included. (Recall that the queueing delay
presented in the table did not include packet transmission time.) As load increases and more
transmission attempts become necessary before packets are successfully transmitted, the

effect is magnified, since the overhead is incurred on every attempt.

For Enet 11 the distribution of number of collisions suffered per packet indicates that
as the throughput declines, the percentage of packets which suffer two or more collisions
before transmission increases dramatically, from 4% at the peak throughput to 52% at the
point where throughput begins to stabilize again. When packets suffer only one collision
before transmission, it means that they were never in the deferred state. In cases where two
or more collisions were suffered it is possible (and likely in cases where many more than
two collisions occurred before transmission) that the packet was deferred one or more
times, thus increasing the delay significantly. Also note in Table 5.1 that Enet 11 suffers
several times the transmission overhead of Ethernet, which also contributes to the
throughput drop. VICSMA/CD does not suffer this drop in throughput, though its peak
throughput is not as large as that of the other two protocols. This indicates the success of
the collision avoidance strategy of the protocol, since the data indicates that in this imple-
mentation the backoff algorithm was not as effective as that employed by Ethernet and Enet
1.

10
8_
6-
S (Mbps) 44
T ¢ Std. Ethernet
5 e Ether w/ tx overhead
1 & Truncated Ether
¢ Trncated w/ tx overhead
0 q ¥

0 2 4 6 8 10 12 14 16 18 20
G (Mbps)

Figure 5.2: Simulated Ethernet Throughput (S) versus offered load (G) for 1500 byte
packets with fixed interpacket intervals. Effect of various factors on drop in Ethernet

throughput.

78

8000
7200 7

6400 7 Ethernet

i EnetII
5600 E s VTCSMA/CD

4800 1

L

o

4000 A

3200 +
D (usec) 2400 i

1600

800 4

o 2 4 6 3 10
S (Mbps)

Figure 5.3: Queueing delay (D) versus throughput (S) for 1500 byte packets with

fixed interpacket intervals.

Figure 5.3 shows the packet queueing delay versus the throughput. The x axis units
are Mbps and the y axis units are microseconds. As expected, Ethernet and VTCSMA/CD
outperform Enet II at low traffic loads. This is a byproduct of the initial gating delay
employed by the Enet II protocol; even in the absence of contention, each packet experi-
ences (for this implementation) a 600 microsecond delay before transmission. Ethemet and
Enet II experience little increase in delay until the offered load exceeds 100% of capacity,
while the VTCSMA/CD curve begins to increase at about 80% of capacity. It was expected
that Enet IT would show better average delay than Ethernet in the overloaded portion of the

curve. However, rather than improving upon the delay of Ethernet, Enet II merely

79

decreases the distance between the two curves. This indicates that the effect of the initial
gating delay is mitigated as the collision resolution process comes into play; however, the
average delay advantage predicted for Enet II was not observed. As throughput begins to
decline after nearing the capacity of the channel, the distance between the curves is approxi-
mately 300 microseconds. This difference can be explained by the interval timer features
discussed in Chapter 3. It should be noted that using the larger value of r increases the ini-
tial gating delay by 450 microseconds, so it is reasonable to expect that an exact implemen-
tation of the protocol would demonstrate the expected improvement under overload condi-
tions. If this extra delay is subtracted out, the Enet II protocol does achieve lower average
delay over a portion of the curve. The sharp increase in delay corresponds to the sharp
decrease in throughput shown in Figure 5.1. The VICSMA/CD curve crosses the other two
curves in the region of heavy overload. This agrees with the higher throughput of
VTCSMA/CD in this region of the curve shown in Figure 5.1.

Figures 5.4 and 5.5 show the delay variance behavior of the protocols. The x axis is
the offered load in Mbps and the y axis is the delay variance in microseconds. The curve
has been split into two graphs due the the large time range covered. Figure 5.4 shows the
curve for the region of normal operation. The curves for Ethernet and Enet II are very simi-
lar over most of this range, matching exactly in the region between 9 and 10
Megabits/second offered load. The variance of VICSMA/CD is initially worse than either
of the other two protocols, but the curves cross at around 10 Megabits/second offered load.
This low load variance behavior can be attributed to the fact that traffic from other stations
increases the variance for the VICSMA/CD implementation due to the promiscuous
receives needed for virtual clock manipulation. The Enet Il variance is also somewhat
affected by the timer resolution. When a collision occurs, the resulting delays are up to four
times longer than they need be. This accounts for the relation of the Enet II and Ethernet

figures around the knee of the curve.

80

2400
2000 -
R e Ethernet
El Enet 11
1600 - s VTCSMA/CD
1200 -
V (usec) 800 -
400 -
T 7 & 3 o 12

S (Mbps)

Figure 5.4: Queueing delay variance (V) versus offered load (G) for 1500 byte pack-

ets with fixed interpacket intervals. Normal conditions.

g1

400000
360000 7
320000

280000 -
s Ethernet
o Enetll

s VTCSMA/CD

240000

200000 -
160000 -
V (usec) 120000)
80000 -

40000 -

10 | 12 14 i 18 20
S (Mbps)

Figure 5.5: Queueing delay variance (V) versus offered load (G) for 1500 byte pack-

ets with fixed interpacket intervals. Overload conditions.

Figure 5.5 shows the curve for overload situations. Here Enet I is shown to achieve
much lower variance than Ethernet, with VTCSMA/CD showing the lowest variance. This
would indicate that both Enet II and VICSMA/CD are more stable under heavily over-
loaded conditions than Ethemet Though Enet II suffers greater variance than
VTCSMA/CD, over this range of offered loads, the throughput of the two protocols is simi-

lar.

400
360 7
320 7
280 7

7 o FEthernet
240 - o Enetll

§ s YTCSMA/CD
200

Coll/sec 160 1

120

80 -

40 4

O b d T il ¥ H)3
0 6 12 18 24 30

S (Mbps)

Figure 5.6: Collisions per second (C/s) versus offered load (G) for 1500 byte packets

with fixed interpacket intervals.

Figure 5.6 shows collisions per second versus offered load for the three protocols. As
indicated, VTCSMA/CD experiences far fewer collisions than the other two protocols. Eth-
ernet and Enet II curves are very similar, showing that both protocols experience a sharp
increase in collisions just after offered load exceeds the capacity of the channel. For Ether-
net, the knee of the curve is at 11.5 megabits/second offered load, and for Enet II the knee
occurs at 11.1 megabits/second. It should be noted that even though the two protocols gen-

erate virtually the same number of collisions under heavy loads, the variance in this region

83

35 -

3 o Ethernet
| o Enetll f"/w/n

s VTCSMA/CD
25 -

Coll/pkt 1.5 -

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
G (Mbps)

Figure 5.7: Collisions per packet (Coll/pkt) versus offered load (G) for 1500 byte
packets with fixed interpacket intervals.

is lower for Enet II, indicating that the delay associated with each collision is more regular

for Enet L.

The actions taken by protocols such as Enet II amount to a kind of binary search on
the set of ready hosts in the network. If unique addresses are used to perform the subdivi-
sion at each step, a station in a network of » continuously queued stations can expect to
suffer [log n] collisions for each successfully transmitted packet. In networks where proba-

bilistic methods are used, such as the coin flips employed in Enet II, this figure should be

84

the average number of collisions suffered by a station in a network of » continuously
queued transmitters for each success. In the LANT, this number is [log 5] = 3. Figure 5.7
indicates that as the offered load increases, the average number of collisions suffered by
each packet increases to about 3 (at an offered load of approximately 15.5 megabits per
second) and then levels off, as expected. The average collisions for Ethernet, however, con-
tinue to increase. This figure also demonstrates the effectiveness of the collision avoidance

properties of VICSMA/CD.

5.1.2. Exponential Interpacket Intervals

The situation where a LAN host generates packets with clockwork regularity must be
considered rare, though probably not nonexistent. Such a situation could conceivably occur
if the interface device driver input queue were consistently full. However, evidence from
the Xerox experiments and the study described in Chapter 4 indicates that the interpacket
time is variable. Since many studies have assumed exponentially distributed arrival times
and since it is possible to generate exponentially distributed random numbers fairly
efficiently, results were collected from experiments run with exponentially distributed inter-

packet delays. Results for the Enet II protocol were not available for this load pattern.

Figure 5.8 shows the throughput versus offered load for 1500 byte packets with
exponentially distributed interpacket intervals. Over the normal range of operation the
throughput of Ethernet is better than the that of the VICSMA/CD protocol. The peak
throughput for Ethernet has dropped from the 9.8 megabits/second level achieved with fixed
interpacket intervals to 7.84 megabits per second. Throughput for VTCSMA/CD increases
more gradually, but the peak is at 8.46 megabits per second. It should be noted that the
lower throughput is due more to the additional overhead involved in generating the
exponentially distributed arrivals rather than any property of the arrival process itself. Eth-
emnet still experiences the drop in throughput as contention becomes severe, which is attri-
buted to the truncated backoff scheme noted in Chapter 3. At offered load of 10
megabits/second, the number of collisions suffered by Ethernet begins to approach the

number of packets sent, while for VICSMA/CD only 8% of the packets suffered collisions.

85

S (Mbps)]

« FEtihernet
s YVTCSMA/CD

G ¥ L |1 H
0 2 4 6 3 10 12 14

G (Mbps)

Figure 5.8: Throughput (S) versus offered load (G) for 1500 byte packets with ex-
ponentially distributed interpacket intervals.

Though its throughput increases more slowly, VICSMA/CD exceeds the throughput of

Ethernet under heavy overloads.

86

6400

5600 4

4800 - o Ethernet
s VTCSMA/CD

4000
3200 4

D (usec) 2400 1

0 O |2 T 54 ¥ '6

S (Mbps)

ool

10

Figure 5.9: Queueing delay (D) versus throughput (S) for 1500 byte packets with ex-

ponentially distributed interpacket intervals.

Figure 5.9 shows the packet queueing delay versus the throughput for 1500 byte pack-
ets with exponentially distributed interpacket intervals. Under these circumstances
VTCSMA/CD suffers lower average delay over the entire range of throughputs. The
VTCSMA/CD curve very closely matches the curve for the protocol under a fixed interval

load for the range of throughputs gene‘rated under the exponential load.

87

40000
36000 7

32000 = FEthernet
28000 s VTCSMA/CD

24000
20000 -
16000 -
V (s 2o |
8000

4000 4

0 2 4 6 8 10
G (Mbps)

Figure 5.10: Delay variance (V) versus offered load (G) for 1500 byte packets with
exponentially distributed interpacket intervals. Offered loads in normal operating

1ange.

Figures 5.10 and 5.11 show the variance of the queueing delay versus the offered load.
Figure 5.10 shows the variance for offered loads under 10 megabits per second. The vari-
ance for Ethernet begins to increase at around 4 megabits per second, while the variance for
VTCSMA/CD increases only gradually. Figure 5.11 shows that this trend continues as the

offered load increases past the capacity of the channel.

88

360000
320000 -

280000 -

240000 ~

« FEthernet

a VTCSMA/CD
200000 A

160000 -
V (usec) 120000 -
80000 A

40000 -

10 ' 12 ' i4 16
G (Mbps)

Figure 5.11: Delay variance (V) versus offered load (G) for 1500 byte packets with
exponentially distributed interpacket intervals. Offered loads extend to overload

range.

89

320

280 -

240 - ° Ethernet
s VTCSMA/CD

200 -
160 -

Coll/sec 120 -

80 -

40 +

0 ’ _ . Wr/

0 2 4 6 8 10 12 14 16
G (Mbps)

Figure 5.12: Collisions per second (C/s) versus offered load (G) for 1500 byte pack-
ets with exponentially distributed interpacket intervals.

Figure 5.12 shows the average collisions per second versus offered load for loads gen-
erated with 1500 byte packets and exponentially distributed interpacket intervals. The mor-
phology of the curves is very similar to the variance curve, with the Ethernet curve diverg-
ing from the VTCSMA/CD curve at offered load of about 4.0 megabits per second. The
VTCSMA/CD curve increases only slightly over the entire range of offered loads. The

effect of substituting the exponential arrival process for the fixed process had a marked

90

effect on the collision rate for the Ethernet protocol. For the fixed arrival experiment, the
increase in collisions was negligible until the load approached the channel capacity, at
which time it increased very rapidly. Compared with Figure 5.6, Figure 5.12 shows that

contention for Ethernet began much earlier with exponentially distributed arrivals.

The introduction of exponentially distributed interpacket times affected the perfor-
mance of the VTCSMA/CD implementation discussed here only slightly. This behavior is
due to the fact that the VICSMA/CD protocol imposes its own structure on the actual
transmission attempts with the virtual clock, which could be far more strongly affected by
the transmission time of long packets than by the rate at which the software generated the
arrivals. Additionally, the promiscuous receives necessary for maintaining the virtual clock
provided variations in the interpacket delays even in the case where the load generation

software was instructed to provide fixed interpacket times.

5.2. 1024 Byte Packets

While 1500 byte packets allowed us to examine one endpoint of network behavior,
measurements discussed in Chapter 3 indicate that 1500 byte packets do not usually make
up a significant portion of the load. The University of Texas network carries a much larger
percentage of 1024 byte packets, due to the presence of a number of diskiess Sun worksta-
tions running the Sun Network Disk Protocol. (The actual length of these packets is 1072
bytes, consisting of a 1024 byte disk block and some header bytes. Since physical buffering
and copying played no role in these measurements, 1024 byte packets were chosen for this
load pattern for compatibility with existing studies.) The next two sections discuss the

behavior of the network under a load composed of 1024 byte packets.

5.2.1. Fixed Interpacket Intervals

Figure 5.13 shows the throughput versus offered load curves for the three protocols
transmitting fixed 1024 byte packets with fixed interpacket intervals. This graph closely
resembles Figure 5.1 in the relative behaviors of the protocols and the shapes of the curves.
Ethernet achieves a peak throughput of 9.67 megabits per second at an offered load of 10.79

megabits per second. The same throughput drop is observed, with throughput for Ethernet

91

10
8_
6-
S (Mbps) 4
y o Ethernet
s Enetll
2 » VTCSMA/CD
O H (]

76 8 10 12 14 16 18 20 22 24
G (Mbps)

Figure 5.13: Throughput (S) versus offered load (G) for 1024 byte packets with fixed

interpacket intervals.

stabilizing again at approximately 7 megabits per second. The peak throughput for Enet II
is 9.43 megabits per second, occurring at an offered load of 9.77 megabits per second. Enet
II also suffers the previously discussed drop in throughput, with throughput restabilizing at
a slightly higher level than that of Ethernet. VICSMA/CD once again experiences a slower
increase in throughput, but achieves a higher stable throughput under heavy offered loads.
The peak throughput is 8.38 megabits per second at an offered load of 21 megabits per
second. For Ethernet, throughput matches the offered load very closely until the load

reaches about 9 megabits per second. For Enet II, the dropoff occurs at slightly lower load,

92

around 8 megabits per second. These figures are lower than those observed for the 1500

byte packet case, indicating that contention is increased for the smaller packet size.

Figure 5.14 shows the queueing delay versus throughput for 1024 byte packets with
fixed interpacket intervals. Again, the form of the curves is similar to those in Figure 5.3.
Under low loads, there is approximately an 800 microsecond difference between the Enet II
curve and the curves for Ethernet and VICSMA/CD, due in part to the gating delay of the
Enet II protocol. The gap persists after loads have reached the saturation point of the chan-
nel. Enet II gains the advantage only in the extremely heavily loaded experiments. The
delay for VICSMAJ/CD begins to increase at slightly lower offered load than for the 1500
byte experiments. This is accounted for by the fact that smaller packet sizes mean more

packets are sent for a given load level thus increasing the number of collisions encountered.

93

5600
5200

4800

4400

4000

3600

3200

2800

D (usec) 2400
2000

1600

1200

s Ethernet
s FEnetll

s VTCSMA/CD

g &

PASRT T W% TR TUUE TV VA WK TN YOO TN N VWU TN WU TN WA NUNN DR W S WU U WU S DU S, S

<
[\
S
N
oo

10
S (Mbps)

Figure 5.14: Queueing delay (D) versus throughput (S) for 1024 byte packets with

fixed interpacket intervals.

94

800
720 7

640 : e Ethernet

| o Enet1I
360 - s VTCSMA/CD

480 -

400 -

V (usec) 320 ~
240

160 -

80 -

G (Mbps)

Figure 5.15: Delay variance (V) versus offered load (G) for 1024 byte packets with

fixed interpacket intervals. Offered loads in normal operating range.

Figures 5.15 and 5.16 show the variance of queueing delay versus offered load for the
three protocols over the normal range of operation and over the entire range of generated
loads, respectively. As in Figure 5.4, the curves for Ethernet and Enet IT are very similar in
this range, with Enet II holding a slight advantage over a large portion of the range.
VTCSMA/CD also shows slightly higher variance in this region of the curve, as it did in the
1500 byte packet experiments. Figure 5.16 shows characteristics very similar to Figure 5.5,

with VTCSMA/CD showing very low variance in the overloaded portion of the curve. Enet

95

300000
240000 A
o Ethernet
| s Enetll
a VTCSMA/CD
180000 -

AV ([,LSGC) 120000 -

P 5 ¥ T [i T

0. 3 4 6 8 10 12 14 16 18 20 22
G (Mbps)

Figure 5.16: Delay variance (V) versus offered load (G) for 1024 byte packets with

fixed interpacket intervals. Offered loads extend into overload range.

11 significantly improves on the behavior of Ethernet, as was the case with the 1500 byte

packet experiments.

Figure 5.17 shows the collisions per second versus the offered load for the three proto-
cols when 1024 byte packets are transmitted at fixed intervals. The curves are similar to
those shown in Figure 5.6 for 1500 byte packets, but with an expected increase in the max-
imum values. Ethernet suffers 352 collisions per second at offered load of 20 megabits per
second when transmitting 1500 byte packets, and and about 420 collisions per second when

transmitting 1024 byte packets. Enet II suffers 400 collisions per second with 1500 byte

96

430

440

400

360

320

280

240

Coll/sec 200

160

120

40 i /

00 > 4 6 8 10 12 14 16 18 20 22 24
G (Mbps)

o Ethernet
o Enet II
a2 VTCSMA/CD

PR WU NENEE TP TN NUNG TUNUNE SN VO NS SUOUN UV SN HUUR: NN SN NS SO |

[o0]
<@
L

Figure 5.17: Collisions per second (Coll/sec) versus offered load (G) for 1024 byte

packets with fixed interpacket intervals.

packets and 531 with 1024 byte packets. The collision behavior of VICSMA/CD remains
virtually unchanged. As Figure 5.16 indicates, the collisions in Enet II do not cause the
same increase in variance that collisions in Ethernet do, since the collisions produced by

Enet II are temporally “closer together” as a result of the resolution algorithm.

97

8
6-
4-
S (Mbps) i
o Ethemet
2 = Enetll
» VTCSMA/CD
0 £ L] £ [

) 2 4 6 8 10 12 14 16
G (Mbps)

Figure 5.18: Throughput (S) versus offered load (G) for 1024 byte packets with ex-
ponentially distributed interpacket intervals.

5.2.2. Exponential Interpacket Intervals

Figure 5.18 shows throughput versus offered load for 1024 byte packets with
exponentially distributed interpacket intervals. The main difference between the curves for
1500 bytes and 1024 bytes with exponential interpacket intervals is the lower peak
throughput values. For Ethernet, throughput peaks at 7.62 megabits per second at an
offered load of 9.63 megabits per second. Enet II peaks at 7.13 megabits per second at
offered load of 8.27 megabits per second. VICSMA/CD peaks at 7.18 megabits per second
at offered load 10.90 megabits per second. The peaks for Enet II and VTCSMA/CD

occurred at the highest load the generating software was capable of producing. As with

98

previous load patterns, the Enet IT and Ethernet curves were nearly identical over the nor-

mal operating range.

99

4400

s Ethernet
o Enetll

s VTCSMA/CD

PR SUUUNE SR WORN VOVRS NN NN WUNS T S |

D (usec)

L S T WO S T T |

<o
o
o

en
&0

4
S (Mbps)

Figure 5.19: Packet queueing delay (D) versus throughput (S) for 1024 byte packets

with exponentially distributed interpacket intervals.

Figure 5.19 shows packet delay versus throughput for 1024 byte packets with
exponentially distributed interpacket times. Though it was not possible to generate over-
loads for the Enet IT and VTCSMA/CD protocols, the relationships between the curves are
similar to those for fixed interpacket intervals. The gating delay for Enet II is still evident at
low loads. The distance between the two curves is approximately 800 microseconds for
loads up to 6 megabits per second. VTCSMA/CD experiences less delay over the entire
range of throughputs, with an increased advantage as Ethernet and Enet II begin to suffer

contention at higher load levels.

100

24000
22000
20000
18000
16000
14000
12000
V (usec) 10000
8000
6000
4000
2000

o Ethernet
s Enetll

s VTCSMA/CD

Olllilllllllllllilllllll

G (Mbps)

Figure 5.20: Packet delay variance (V) versus offered load (G) for 1024 byte packets

with exponentially distributed interpacket intervals.

Figure 5.20 shows the variance of packet delay versus the offered load for 1024 byte
packets with exponentially distributed interpacket times. The variance behavior of the three
protocols is clearly indicated; the three protocols display low delay variance at low loads,
but as contention begins and variance increases for Ethernet and Enet II, variance for
VTCSMA/CD remains low. Though contention increases the variance for Enet II, the
increase affects the variance of the packet delay less strongly than in the case of Ethernet.

This behavior is evident at lower offered load for the exponentially distributed arrivals.

101

400

360

320 e Ethernet

o Enetll

280 1 s VTCSMA/CD

240 -
200 -
Coll/sec 160 -
120 -

o 2 4 6 B 10 12 14 16
G (Mbps)

Figure 5.21: Collision rate (Coll/sec) versus offered load (G) for 1024 byte packets

with exponentially distributed interpacket intervals.

Figure 5.21 shows the collision rate versus the offered load for 1024 byte packets with
exponentially distributed interpacket times. The relative behaviors of the three protocols is
the same as in the fixed interval experiments; however, as noted with respect to Figure
5.20, the increase in contention for Ethernet and Enet II happens at lower offered load and
less suddenly than was the case in the fixed interval experiments. Compared to Figure 5.18,
the collision rate begins its increase at lower offered load, as was the case for the 1500 byte
packet experiments. Figure 5.21 confirms that this effect is present for the Enet II protocol

as well as the Ethemnet protocol. The collision avoidance mechanism of VICSMA/CD is

102

unaffected by the switch to exponentially distributed arrivals, as previously discussed.

£.3. Packet Mixture 1

The packet length mixture experiments demonstrate the effect of increasing the
number of small (relatively speaking) packets in the offered traffic. In order to push the
protocols as close to their capacity as possible, the small packets were 275 bytes in length.
Packet mixture 1 consists of 75% 1500 byte packets and 25% 275 byte packets, for an aver-
age packet length of 1194 bytes. Thev study described in Chapter 4 indicated that the small
packets on the UT network were just over 72 bytes on the average, but it was difficult to
push the testbed into the overloaded range using mixtures with small packets of that size.
The size used allowed overloads to be generated for two of the three packet mixtures and
also clearly demonstrated the effects of a mixture of packet sizes on the behavior of the pro-
tocols. As noted in Table 5.1, generating this mixture of packet lengths causes an extra 300
to 600 microseconds of delay in the setup for each packet. This, in addition to the higher
per byte overhead of sending smaller packets results in lower maximum offered loads for
the protocols. The peak offered load for Ethernet drops from 33 megabits per second to 22
megabits per second; for Enet II the drop is from 23 megabits per second to 17 megabits
per second; and for VTICSMA/CD the maximum offered load drops from 23 megabits per
second to 19 megabits per second. The inclusion of smaller packets also increases the
number of packet transmissions attempted per unit time, since less time is spent in actual

successful transmissions, thus increasing the possibility for collisions.

5.3.1. Fixed Interpacket Intervals

Figure 5.22 shows throughput versus offered load for the three protocols when the
traffic is composed of 75% 1500 byte packets and 25% 275 byte packets. The form of the
curves shows a resemblance to the corresponding curves in Figure 5.1, but the achieved
peak throughput is lower, and the features of the curve are less pronounced. The throughput
drop observed for previous load patterns is still evident but is not nearly so dramatic. The
peak throughput for Ethernet is 7.36 megabits per second at offered load 7.87. The peak for
Enet II is 7.43 megabits per second at an offered load of 10.06. VICSMA/CD again has a

103

8
6-
44
S (Mbps) |
» FEthemnet
2 o Enetll
' s VTCSMA/CD
0 v T T L]

0 2 4 6 8 10 12 14 16 18 20 22 24
G (Mbps)

Figure 5.22: Throughput (S) versus offered load (G) for packet mixture 1 with fixed

interpacket intervals.

more gradual increase in throughput, but achieves a stable throughput of about 8.2 megabits
per second at around 14 megabits per second offered load. Contention begins to affect the
throughput for Ethernet between 5 and 6 megabits per second offered load; up to that load
level, throughput matches offered load very closely for Ethernet. For Enet T the effect
occurs at around the same load level, though the correspondence is not quite as close at

lower levels due to the gating delay for the protocol.

Figure 5.23 shows packet queueing delay versus throughput for packet mixture 1. The

curves are very similar to those shown in figures 5.3 and 5.14, the principal difference being

104

6000
5600
5200
4800
4400
4000
3600
3200
2800
D (usec) 2400
2000
1600
1200
800
400

o Ethernet
Enetll

a VTCSMA/CD

8

<
(O S0 TN VU SN TR WO NN YN SO0 TN YOAE DU N SN SO SOU U WO JOOF VNS NN NURE JUOF WO JN D

S (Mbps)

Figure 5.23: Packet queueing delay (D) versus throughput (S) for packet mixture 1

with fixed interpacket intervals.

that the protocols did not achieve the throughput level with the packet mixture that was
observed with fixed sized packets. The bistable behavior, the gating delay, and the superior-

ity of Enet I over Ethernet under overloaded condition are still evident.

105

36000
» Ethernet
s FEnetll
20000 - a VTCSMA/CD
V (usec)
10000 -
,——M A
O 1] i L}
0 2 4 6 8 10

G (Mbps)

Figure 5.24: Packet queueing delay variance (V) versus offered load (G) for packet

mixture 1 with fixed interpacket intervals. Normal operating range.

Figures 5.24 and 5.25 show the variance of packet delay versus the offered load for
packet mixture 1 with fixed interarrival times. For this mixture of packets, there is very lit-
tle difference between the protocols for loads under 7 megabits per second. The behavior
for loads over 7 megabits per second is consistent with that observed for other loads. The
Enet II curve crosses the Ethernet curve at a lower offered load than in the experiments with
fixed packet sizes. Figure 5.25 indicates that the improved variance behavior of Enet II is
evident at lower offered loads than in the fixed packet size experiments. The introduction
of smaller packets has increased the possibility of collisions, thus increasing the variance

for Ethernet at lower offered load. As before, VTCSMA/CD demonstrates very low

106

500000
400000 A
o Ethernet
300000 H s Enetll
a VTCSMA/CD
0 l‘ T 13 ¥ L g”—’ié I) I E]
10 12 14 16 18 20 22 24
G (Mbps)

Figure 5.25: Packet queueing delay variance (V) versus offered load (G) for packet

mixture 1 with fixed interpacket intervals. Overload range.

variance due to the low collision count.

Figure 5.26 shows the collision rate versus the offered load for packet mixture 1 with
fixed interpacket intervals. This figure also indicates that contention increases at lower
offered load with the addition of smaller packets for Ethernet and Enet II. The behavior of
VTCSMA/CD is essentially unchanged.

107

400
320 -
s Ethemnet
| s Enetll
a VTCSMA/CD
240 -
Coll/sec 160 4
80 -
O (] ERad

0 2 4 6 8 10 12 14 16 18 20 22 24
G (Mbps)

Figure 5.26: Collision rate (Coll/sec) versus offered load (G) for packet mixture 1

with fixed interpacket intervals.

5.3.2. Exponential Interpacket Intervals

Figure 5.27 shows the throughput versus offered load for packet mixture 1 with
exponentially distributed interpacket intervals. The basic features of the graph are similar
to those observed for the 1024 byte packets with sxponential intervals. The peak
throughput for Ethernet is 7.53 megabits per second, which is higher than the observed peak
for fixed intervals. However, the peak for fixed intervals occurs at 7.87 megabits per
second while the peak for exponential intervals occurs at 9.53 megabits per second. Since

there are no other data points for the fixed interval case before 11.84 megabits per second

108

8
6_
4_.
S (Mbps) |
o FEthernet
21 o Enetll
a VTCSMA/CD
O T T ¥ T ¥ 13]
0 2 4 6 3 10 12 14
G (Mbps)

Figure 5.27: Throughput (S) versus offered load (G) for packet mixture 1 with ex-

ponentially distributed interpacket intervals.

offered load, it is more instructive to consider the throughput achieved at like offered load
levels. The observed throughput for exponential intervals at offered load of 7.67 megabits
per second is 6.72 megabits per second. It is also notable that the Enet II curve shows
throughput degradation at lower offered load than in the previously discussed experiments.
This effect occurs because the timer resolution for Enet IT means larger delays as contention
begins relative to the delay behavior of Ethernet in light contention. This conclusion is
borne out by the variance behavior of the two protocols for this portion of the curve. (This

effect is more readily seen in figures 5.34 and 5.36.) The VICSMA/CD curve is similar to

105

those observed for exponential intervals and fixed packet lengths. Also, very little differ-
ence is observed in the performance of VICSMA/CD with fixed and exponential inter-

packet intervals for this load pattern, as previously discussed.

110

5000
4000 - _
o Ethernet
R s Enetll
s VTCSMA/CD
3000 -
D (}JS@C) 2000 -
100G -
00 ’ 2 4 ' 6 ' g

S (Mbps)

Figure 5.28: Packet queueing delay (D) versus throughput (S) for packet mixture 1

with exponentially distributed interpacket intervals.

Figure 5.28 shows the packet queueing delay (D) versus the throughput (S) for packet
mixture 1 with exponentially distributed interpacket intervals. The shapes of the curves are
very similar to those seen in figure 5.19, with the difference that the introduction of small
packet has caused the delay to increase at lower offered load for all three protocols. The
gating delay for Enet II is still in evidence, with the average distance between the Enet II
curve and the other two curves being approximately 800 microseconds in the normal

operating range of the curve.

111

300000
240000 -
o Ethernet
i « Enetll
s VYTCSMA/CD
180000 -
Y (!.LS@C) 120000 -
60000 -
0 —W ol ¥

o
S
o
(=35
e
8

12 14
G (Mbps)

Figure 5.29: Packet delay variance (V) versus offered load (G) for packet mixture 1
with exponentially distributed interpacket intervals.

Figure 5.29 shows the delay variance versus the offered load for packet mixture 1 with
exponentially distributed interpacket times. The exponentially distributed interpacket
delays have caused a more gradual increase in variance for Ethernet and Enet 11, though
Ethernet still experiences a very sharp increase in delay variance at approximately 9.5
megabits per second offered load. As for the other load patterns, VICSMA/CD suffers

only a slight increase in delay variance as the load increases.

300
240 -
o Ethernet
i o Enet1l
s VTCSMA/CD
180
Coll/s 120 4
60 -
{) @ i ¥ T]] i)]
0 2 4 6 8 10 12 14
G (Mbps)

Figure 5.30: Collision rate (Coll/sec) versus offered load (G) for packet mixture 1

with exponentially distributed interpacket intervals.

Figure 5.30 shows the collision rate for packet mixture 1 with exponentially distri-
buted interpacket times. The relation of the curves is the same as for the previous loads.
This figure also indicates that the effect noted for fixed length packets, i.e. that contention
begins for Ethernet and Enet II at lower loads with exponential arrivals, is still evident

when a mixture of packet lengths are present.

113

5.4, Packet Mixture 2

Packet mixture 2 consists of 45% 1500 byte packets and 55% 275 byte packets, for an
average length of 826 bytes. This mixture most closely resembles the actual traffic dis-
cussed in Chapter 4. This mixture is expected to demonstrate an intensification of the

effects shown in Section 5.3.

5.4.1. Fixed Interpacket Intervals

Figure 5.31 shows the throughput versus offered load for packet mixture 2 with fixed
interpacket intervals. Results were not available for the Enet II protocol for this load pat-
tern. Under this offered load, Ethernet throughput peaks at 7 megabits per second at an
offered load level of 9.5 megabits per second. Throughput is relatively stable as the offered
load increases into the overload region. VICSMA/CD displays a pattern similar to that
observed in other experiments, with throughput increasing more slowly. VITCSMA/CD
peaks at 6.8 megabits per second at the maximum generated offered load of 14.5 megabits
per second. For Ethernet, contention begins to affect the throughput between 4 and 5 mega-
bits per second offered load. As expected, contention begins at a lower offered load for this

mixture than for mixture 3.

114

8

6_

4.
S (Mbps)]

) o FEthernet

i s VTCSMA/CD
0 T £} 1] q H I}
0 4 g 12 16 20

G (Mbps)

Figure 5.31: Throughput (S) versus offered load (G) for packet mixture 2 with fixed

interpacket intervals.

115

4000

3200: « Ethernet
2800 - s VTCSMA/ D

2400 -
2000 -
1600 -

D (usec) 1200 |

800 -
400 -

0 4 & 8
S (Mbps)

Figure 5.32: Packet queueing delay (D) versus throughput (S) for packet mixture 2
with fixed interpacket intervals.

Figure 5.32 shows the packet gueneing delay versus the throughput for the two proto-
cols. As for previous load patterns, VTCSMA/CD has a lower average delay over most of
the range of throughput. However, unlike the other load patterns, when contention causes
the delay to begin increasing for Ethernet, the delay begins increasing for VICSMA/CD as
well, and follows the Ethernet curve very closely over the range of generated throughputs.
This indicates that increasing the percentage of small packets in the mix also increases con-
tention in VICSMA/CD.

116

240000
220000

200000

180000

160000

140000

120000

100000

V (usec) 80000
60000

40000

20000

s Ethernet
2 VTCSMA/CD

[TR T YD NN YOOORS TN WU RIS WO VO WONNN UL SOVINC NN SR SUE SUUN: EOU JUUE SO S |

0 2 4 6 B i 10 12 14 16
G (Mbps)

Figure 5.33: Delay variance (V) versus offered load (G) for packet mixture 2 with

fixed interpacket intervals.

Figure 5.33 shows the delay variance (V) versus the offered load (G) for this load pat-
tern. As before, VTCSMA/CD shows only a slight increase in delay variance relative to
Ethernet. However, the increase in variance under heavy load for VICSMA/CD is more
pronounced for mix 2 than for mix 1. At the maximum generated load (14.5 megabits per
second), the variance is nearly twice that observed at the same load level for mix 1. This is
not surprising, since the number of small packets in the mixture has more than doubled,
thus increasing the chances for collision even for VICSMA/CD. For Ethernet, the increase
in variance begins at a lower offered load and increases more steadily until the channel

becomes saturated, at which point the same rapid increase in variance is observed.

117

g
6
4-
S (Mbps) .
o Ethernet
21 s Enetll
a VTCSMA/CD
O H 1] L L L I L L
0 2 4 6 8 10 12 14
G (Mbps)

Figure 5.34: Throughput (S) versus offered load (G) for packet mixture 2 with ex-
ponentially distributed interpacket intervals.

5.4.2. Exponential Interpacket Intervals

Figure 5.34 shows the throughput (S) versus offered load (G) for packet mix 2 with
exponentially distributed interpacket intervals. The relationship between the curves is as
before, with the Enet II throughput deviating from the offered load at a lower level than is
the case for Ethernet. Ethernet achieves a peak of 7.0 megabits per second throughput at
offered load of 9.34 megabits per second. The Ethernet throughput declines slightly for

higher offered loads, but it was not possible to generate high enough loads to discover

118

whether this is due to the abbreviated backoff of the implementation or is merely the sort of
fluctuation observed in figure 5.31. The Ethernet throughput matches the offered load
closely up to load levels of about 3.5 inegabii;s per second, while the throughput for Enet I
begins deviating from the offered load at levels around 3 megabits per second. Though it
was not possible to generate overloads for Enet II or VTCSMA/CD, it appears that Enet I
would not have matched the peak throughput of Ethernet for this load pattern.

119

3000
2400 -
1800 -
D (usec) 1200 4 «
] a_____k/(’wr“t Ethernet
s Enetll

600 + » VTCSMA/CD
O E L) E)
0 5 4 5 8

S (Mbps)

Figure 5.35: Packet queueing delay (D) versus throughput (S) for packet mixture 2

with exponentially distributed interpacket intervals.

Figure 5.35 shows the packet queueing delay versus throughput for packet mixture 2
with exponentially distributed interpacket intervals. The relationship between the curves
has not changed; however, since overload traffic could not be generated for Enet I or
VTCSMA/CD it is impossible to say what the behavior would have been in the region
where the curves cross. The average distance between the Enet II curve and the Ethernet
curve is slightly more than 700 microseconds, corresponding once more to the gating delay
for Enet 1. Again, VTCSMA/CD has a lower average delay over the range of generated
throughputs.

120

80000
64000 A
« Ethernet
. s Enetll
a2 VICSMA/CD
48000
A (L,LSSC) 32000 -
16000 -
0
0 10

G (Mbps)

Figure 5.36: Delay variance (V) versus offered load (G) for packet mixture 2 with

exponentially distributed interpacket intervals.

Figure 5.36 shows the delay variance versus the offered load for packet mixture 2 with
exponentially distributed interpacket delays. The variance for VTCSMA/CD is lowest over
the range of generated loads. Enet II suffers the highest variance until approximately 6.5
megabits per second offered load. For loads greater than 6.5 megabits per second, the delay

variance for Ethernet increases very rapidly.

121

5.5, Packet Mixture 3

Packet mixture 3 consists of 35% 1500 byte packets and 65% 275 byte packets. Aver-
age packet size was 704 bytes.

5.5.1. Fixed Interpacket Intervals

Figure 5.37 shows the throughput versus offered load for packet mixture 3 with fixed
interpacket times. The relationship among the curves is similar to that observed for the
other two mixtures, except that for this mixture it appears that Enet I would not achieve the
same maximum throughput level as Ethernet. Ethernet peaks at 6.9 megabits per second at
a load of 8.6 megabits per second. The decrease in throughput after saturation is reached is
evident, but less pronounced than for other load patterns. The peak for Enet 11 is 6.5 mega-
bits per second at an offered load of 12.1 megabits per second. VTCSMA/CD peaks at 6.2
megabits per second at an offered load of 13 megabits per second. Continuing the trend
observed for the other load patterns, throughput diverges from offered load for Ethemet
between 3.5 and 4.5 megabits per second offered load and for Enet II between 2.5 and 3.5

megabits per second offered load.

122

8
6_
4
S (Mbps) i
» FEthernet
2 / = Enetll
; s VTCSMA/CD
0] 1] 13] i ¥ 7 1] T 7 T E]

0 2 4 6 8 10 12 14 16
G (Mbps)

Figure 5.37: Throughput (8) versus offered load (G) for packet mixture 3 with fixed

interpacket intervals,

123

3200
2800 |
2400 : = Ethernet
| s Enetll
2000 - s VTCSMA/CD
1600 |
D (usec) 1200 1
800:
400 -
L S ; 8

G (Mbps)

Figure 5.38: Packet queueing delay (D) versus throughput (S) for packet mixture 3

with fized interpacket intervals.

Figure 5.38 shows packet delay versus throughput for packet mixture 2 with fixed
interpacket intervals. The distance between the Ethernet and Enet II curves is approxi-
mately 750 microseconds, commensurate with the Enet II gating delay. The most notable
feature of this graph is the VITCSMA/CD delay curve, which matches the Ethernet curve
very closely over the entire range of generated throughputs. This indicates that the delay
for VICSMA/CD is also sensitive to the percentage of small packets present in the traffic

mix, though perhaps less so than the other two protocols.

124

220000
200000
180000
160000
140000
120000
100000
80000
60000
40000
20000

o FEthernet
a EnetII

a VTCSMA/CD

V (usec)

F YRS RN SR T SUNES SO JOUPNE U SO U U WA WK S WU SN S WU SO S

<

12 16

o
=N
o0

G (Mbps)

Figure 5.39: Delay variance (V) versus offered load (G} for packet mixture 3 with

fixed interpacket intervals.

Figure 5.39 shows the delay variance versus the offered load for packet mixture 3 with
fixed interpacket delays. The curves are very similar to those shown for the other mixtures,

with the rapid increase in variance for Ethernet occurring at a lower offered load.

8

6-

4-

S (Mbps)]

¢ FEthernet

2 = Enetll
s VTCSMA/CD

G t 1] T t 1) ¥ 1

0 2 4 6 8 10

G (Mbps)

Figure 5.40: Throughput (8) versus offered locad (G) for packet mixture 3 with ex-
ponentially distributed interpacket intervals.

5.5.2. Exponential Interpacket Intervals

Figure 5.40 shows the throughput versus offered load for packet mixture 3 with
exponentially distributed interpacket times. For this load pattern none of the protocols
allowed the generation of overloads, so the peak throughput for each protocol occurs at the
highest generated load. For Ethernet, the peak is 6.6 megabits per second at 8.3 megabits
per second offered load . For Enet I, the peak is 5.65 megabiis per second at 7.1 megabits
per second offered load. For VICSMA/CD the peak is 4.8 megabits per second at 7.1

megabits per second offered load. The relationship among the curves is the same as seen in

126

Figure 5.34 and 5.27 for the range of loads generated. Significant differences between

throughput and offered load begin at loads of about 2.5 megabits per second for both Ether-

net and Enet I1.

127

3000
2000 -
D (usec)
1000 4
s Ethernet
s Enetll
; » VTCSMA/CD
O 3 L L] ¥
0 2 4 6 8
S (Mbps)

Figure 5.41: Packet delay (D) vs. throughput (S) for packet mixture 3 with exponen-

tially distributed interpacket intervals.

The delay versus throughput behavior for this load pattern is shown in figure 5.41.
Again, the VTCSMA/CD protocol displays the best average delay, though the behavior is
very similar to that observed for Ethernet under this traffic load. The difference between
the Fthernet and Enet II curves is about 750 microseconds under low loads, but the delay
increases more rapidly for Enet Il under heavier loads. This differs from previous load pat-
terns; as the percentage of small packets increases, Enet II sends fewer data bits per

resolved collision.

128

16000
14000 -
12000 - s Ethernet
| o Enet 11
VTCSMA/CD
10000 - ¢
8000 -
6000 -
V (usec) i
4000 -
2000 -
7 % T § "

G (Mbps)

Figure 5.42: Delay variance (V) versus offered load (G) for packet mixture 3 with

exponentially distributed interpacket intervals.

Variance versus offered load for this load pattern is shown in Figure 5.42. Though the
rate of increase of the two protocols is similar, the variance of delay is somewhat higher for
Enet 1I than for Ethernet under this traffic load. For other load patterns, Enet I showed its
greatest improvement over Ethernet after channel saturation. Since it was not possible to
saturate the channel for this load pattern, it is not possible to determine whether this trend
would be repeated. The variance feerTCSMAjCD increases only slightly over the range

of generated loads.

129

5.6. Comparison to Other Results

As mentioned in Chapter 2, there are a few other measurement studies of the Ethernet
protocol in the literature [SH801[Gons85][BMKS88]. Though some of these studies consider
a different network, or different topologies, some conclusions concerning the relationship of
the studies can be made. As the current work is the only example of implementation and
measurement of the Enet II and VTCSMA/CD protocols to date, no such comparisons are
possible. However, the agreement of the measurements with analytic models of these two

protocols will be discussed.

5.6.1. Shoch and Hupp

The original Ethernet measurements carried out by Shoch and Hupp [SH80] were per-
formed on the experimental 3 Megabit/second version of Ethernet. The maximum packet
size available on that network was 512 bytes. As noted in Chapter 2, the aims of the study
were principally to determine the overall behavior of the network under normal and heavy
loads. The artificially generated loads were produced by host populations ranging from 5
hosts to 64 hosts. Obviously, there are significant differences between the conditions of the
Xerox study and the present study. Yet there are some parallels. The Xerox study reports
peak utilization of 97% with a generating population of five continuously queued hosts
sending 512 byte packets. In our experiments, sustained throughput with continuously
queued hosts sending 1500 and 1024 byte packets also remained above 97%. Attempts to
load the network with smaller sized packets were not successful. The experiments per-
formed at Xerox by varying the offered load also observed sustained utilization rates of
approximately 96% with 512 byte packets. This agrees well with the current results with
1500 and 1024 byte packets. Shoch and Hupp reported that little degradation was observed
as the offered load was increased to 150% of capacity. While our results indicate a problem
in stability at loads greater than 100% of capacity, this is clearly related to the truncated

backoff algorithm employed in the device driver.

130

5.6.2. Gonsalves

In 1985, results of experiments similar to those of Shoch and Hupp were presented by
Gonsalves [Gons85]. The principal differences in the studies were that Gonsalves included
queueing delay as one of his metrics and investigated both the experimental 3-Mbps Ether-
net and the production 10-Mbps Ethemnet. Offered load, delay, and interpacket time were
calculated in the same manner for both these experiments and the LANT experiments.
Comparison between the two is somewhat strained, however, by the fact that the host popu-

lation for Gonsalves’ experiments was from 30 to 38 hosts.

The pertinent set of Gonsalves’ experiments were run with a fixed packet size of 1500
bytes and uniformly distributed delays. The peak measured throughput for this load was
between 80% and 835%. This compares to a peak of 98% and stable utilization of 75% for
fixed intervals and peak of 78% utilization and stable level of about 72% for exponentially
distributed intervals observed in the analogous LANT experiments. Due to the heavy
penalty in overhead incurred to generate the exponential intervals in the LANT experi-
ments, the fixed interval experiments are probably the better comparison. There was also
one set of runs performed with the LANT for 500 byte packets, which achieved a peak utili-
zation of 84%, compared to 72% for Gonsalves” measurements for 512 byte packets. (This
set of LANT experiments was not discussed because the figures were not available for the
other two protocols investigated.) These figures appear in Table 5.3. It is obvious from the
delay curves presented in [Gons85] that with the larger host population, contention begins
at much lower offered load, and this accounts for the lower peak figure. The delay curves
for the Gonsalves experiments show a more gradual increase in delay, but also display the
very sharp increase in delay after offered load exceeds channel capacity. Gonsalves’ exper-
iments were conducted on a longer wire than the LANT experiments, which would also

reduce the peak throughput.

5.6.3. Gonsalves and Tobagi

In [GT88], Gonsalves and Tobagi present 2 simulation study of Ethernet which differs
from previous simulation results presented in [AL79] and elsewhere in that it examines net-

works where stations are not uniformly distributed along the wire. These results indicate

Table 5.3: Comparison of Ethernet Measurement and Modeling Results
on Maximum Throughput
Measured Modeled

Length | Slotsize | LANT | Gonsalves | BMK | Tobagi | Lam
{bytes) (usec) & Hunt

0.43 98.19 98.81 99.77

4.00 99 97.74 97.90

1500 11.75 86 95.50 94.07

15.00 85 94.60 92.55

23.20 92.37 88.93

1024 0.43 96.79 98.26 99.66

4.00 99 96.72 96.95

0.43 84.11 96.58 99.33

4.00 98 93.64 94.09

512 11.75 72 87.86 84.41

15.00 72 85.64 80.92

23.20 80.54 73.28

275 0.43 71.30 93.82 98.76

that in networks arranged as the LANT was (see Figure 3.1), with a cluster of stations at one
end and a single station at the other end, the single station achieves lower throughput and
experiences higher delay than the stations in the cluster. In the LANT experiments, though
the effect was not as marked as in [GT88] (where very small packets, a longer network and
a larger host population were used), Eyebeam, the isolated station, consistently achieved
slightly lower throughput and experienced higher delay than the clustered stations over the

entire range of generated load for every load pattern investigated.

5.6.4. Boggs, Mogul and Kent

Results of experiments run with various packet sizes and host populations are
presented in in [BMK88]. For the most part, only the peak figures for each combination of
packet size and host count are reported. The relevant numbers are included in Table 5.3.
The numbers shown are for experiments run with 5 hosts, matching the LANT host popula-

tion. It is inmteresting to note that the peak throughput observations from this study

132

consistently exceed the Tobagi and Hunt predictions. One contributing factor is that Boggs,
et. al. include the preamble, checksum, and interpacket gap in their throughput calculations.
The packet generation software also queued packets while waiting for transmissions to
complete, allowing true “continuously queued” loads to be generated, while the LANT gen-
eration software incurred some overhead after transmission was complete before generating
the next packet. This study also varies from the others in that the stations are attached to
the network using multiport repeaters rather than with simple taps. It is not clear whether
this helps account for the difference between data gathered with similar parameters in the
different studies. Experiments with bimodal packet distributions achieved much higher
throughput than similar packet mixtures in the LANT study. The observation concerning
continuously queued loads is applicable in this case, as well. One interesting observation
put forth in this study is that fairness as characterized by the standard deviation of the bit
rate of individual hosts increases as the number of hosts increases. This casts some doubt
on the appropriateness of evaluating the fairness of Ethernet in a testbed the size of the
LANT.

5.6.5. Tobagi and Hunt

In [TH80], Tobagi and Hunt extend the CSMA analysis originally presented in
[KT75] 1o networks with collision detection. The main intent of this study was to charac-
terize the improvement in throughput achieved by using collision detection. The analysis
assumes a slotted time axis, with the slot size equal to the end-to-end propagation delay and
an infinite host population with an aggregate arrival process which is Poisson in nature.
Finite population results are also presented for Non-persistent CSMA/CD with fixed and
variable packet sizes. The infinite population results for 1-persistent CSMA/CD are con-
sidered. Table 5.3 shows a comparison of Tobagi and Hunt’s results for maximum
throughput with measurements from both the LANT experiments and Gonsalves’s experi-
ments, The LANT network spanned a distance of approximately 100 meters, which
translates to a propagation delay of 430 nanoseconds given nominal Ethemnet specification
compliant hardware and wiring. Gonsalves presents results for a 750 meter network includ-

ing one repeater {11.75 microseconds) and 2 1500 meter network including 2 repeaters (15

133

microseconds). Also included are Tobagi and Hunt’s figures for a fully configured Ethernet
with propagation delay of 23.2 microseconds. As Gonsalves notes, the analytic model tends
to overestimate the maximum throughput, particularly as the packet size decreases, though
the agreement with LANT measurements for 1500 and 1024 byte packets is fairly close.
This indicates that the Tobagi-Hunt model either does not place sufficient emphasis on the
effect of contention and the resulting retransmission on throughput, or simply does not
model the retransmission policy used by Ethernet very closely. Note that the peak
throughput reported for the LANT measurements was generated at the highest offered load
before the truncated backoff algorithm began to affect the performance of the protocol.

Coyle and Liu [CL83] investigated CSMA/CD performance in networks with a finite

number of hosts, but limited their investigation to the non-persistent version of the protocol.

5.6.6. Lam

In [Lam80], Lam presented closed form solutions for the size of the “distributed
queue” (i.e. the number of ready users in the system) and the average message delay for
CSMA/CD networks. As in [THS80], the channel is assumed to be time slotted with the slot
size equal to the round-trip propagation delay for the network. The variant of CSMA/CD
modeled is 1-persistent, which corresponds to the Ethernet protocol. The model assumes an
adaptive retransmission algorithm for packets which suffer collisions. The numerical
results presented by Lam and the calculations presented here assume that the retransmission
algorithm results in a probability of success is a slot during a contention episode to be 1/e.
As in other studies, Lam presents curves for various values of the parameter o, which is the
ratio of one-way propagation time to packet transmission time. Lam notes that CSMA/CD

performance improves as o decreases in size.

Table 5.3 also contains the maximum throughput figures from Lam’s model. Relative
to the measurements, the model consistently overestimates the maximum throughput except
for the measurements of Boggs, et. al. (The relation of these measurements to the other stu-
dies is discussed in Section 5.6.4.) For very small values of o, the overestimation is slightly
worse for Lam’s model than for the Tobagi and Hunt model, but as o increases, Lam’s

figure for maximum throughput is closer to the measured values. This is readily seen by

134

8000

7200 T

6400 .
- o LANT Ethernet, fixed interval

5600 s LANT Ethernet, exponential inteval
Lam’s model, O = .000358

B

4800 -
D (usec) 4000 -
3200 A
2400 A

1600 4

800 ~

[ae]
]
=Y
o
o
=

S (Mbps)

Figure 5.43: Packet queueing delay (D) versus throughput (S) for 1500 byte packets. Ana-
lytic curve calculated with o = 0.000358, corresponding to LANT cable configuration

(100m segment) and 1500 byte packets (1.2 millisecond transmission time).

comparing the figures for the two models for 1500 byte packets as the slot size increases.

The mean delay figures for Lam’s model with input parameters matching the LANT
setup are also shown in Figures 5.43 and 5.44. Figure 5.43 shows the delay versus the
throughput for 1500 byte packets. The LANT Ethernet measurement curves for both fixed
and exponentially distributed interpacket times are shown. The analytic curve was calcu-

lated with propagation time of 430 nanoseconds, making the value of o 0.000358. As

135

expected, the agreement is not particularly good with the fixed interpacket time curve, but
for low loads, the analytic curve and the exponentially distributed interpacket curve show
fairly good agreement. In this case, the infinite population assumption led to slightly higher
delays around the knee of the curve. The agreement lessens as the truncated backoff algo-
rithm and the small host population combine to reduce the throughput of the LANT imple-
mentation of Ethernet. Figure 5.44 plots the same quantities for 1024 byte packets, with
o = 0.000525.

5600
5200
4800
4400
4000
3600
D (psec) 3200
2800
2400 -

s LANT Ethernet, fixed interval
a LANT Ethernet, exponential inieval
s Lam’s model, 0 = 000525

YUV DU NUONE YEN TN SR TN NUUS TN WO WO N NG U O

1200

0 3 1) L]
G 2 4 6 8 10

S (Mbps)

Figure 5.44: Packet queueing delay (D) versus throughput (S) for 1024 byte packets. Ana-
lytic curve calculated with o = 0.000525, corresponding to LANT cable configuration

(100m segment) and 1024 byte packets (819.2 microsecond transmission time).

136

The increase in o leads to closer agreement between the analytic curve and the measure-
ment curve with exponentially distributed interpacket times. As in Figure 5.43, this agree-
ment ends at the throughput drop for the LANT Ethernet implementation. This agrees with
the observation made for the maximum throughput calculations that the model is more

accurate for larger values of a.

5.6.7. Enet II Results

Simulation results in [Moll85] indicated that Enet II should experience higher delay
than Ethernet for low loads due to the gating delay for new packets and should have lower
average delay once contention begins to dominate the transmission process. The simulator
that generated these results assumed an infinite population of users and distributed arrival
locations uniformly along the wire. The LANT measurements confirm the general thrust of
these results, though the LANT clock resolution and the infinite population model used in
the simulator prevent direct comparison of the average delay figures. In addition, the
LANT measurements confirm the prediction that the variance of delay for Enet II is
significantly less than that of Ethernet under heavy loads. An analytic model of Enet II was
presented in [LW87], but the results given there are not directly comparable to the LANT

measurements.

5.6.8. Molle’s VTCSMA/CD Analysis

Molle presents analyses of synchronous and asynchronous versions of VICSMA/CD
in [MK85]. Figure 5.45 shows measurements for the LANT experiment run with 1500 byte
packets and fixed interarrival times and the curve for the asynchronous model with similar
parameters. The parameters used in the model reflect 2 100 meter cable with stations send-
ing 1500 byte packets. The model assumes packet transmission time to be unity, leading to
the value 0.0003583 for «, the propagation delay as a percentage of packet transmission
time. The virtual clock rate is the rate implemented in the LANT version of VICSMA/CD.
The parameter ¢ represents the collision clear time, which is given the standard value of the
Ethernet jam signal. The figure shows that the model predicts higher throughput over most

of the range of loads, though the shape of the two curves is very similar. While exact

137

10

S (Mbps) 4

s Analytic Asynch. VTCSMA/CD
s Measured VICSMA/CD

0 2 4 6 8 10 12 14 16 18 20 22 24
G (Mbps)

Figure 5.45: 1500 byte fixed interval measurements for VICSMA/CD compared
with Molle’s asynchronous model. Model parameters: g = 0.0003583, ¢ = 0.004, and
n=13.

agreement was not expected, the magnitude of the difference between the measured and
predicted behaviors of the protocol indicate that, as previously suggested, the
VTCSMA/CD implementation did suffer significantly from the overhead incurred by
software manipulation of the virtual clock. An infinite population model of VICSMA/CD

is also given in [MIL.85], where the stability of the protocol was examined.

138

Chapter 6
On Using Slotted Collision Resolution Protocols

on Unslotted Media

Many of the local network protocols developed recently are of a slotted nature. They
rely on some external clock or other synchronizing signal to organize the transmissions
from each station on the network. Most of these protocols operate using a slot size equal to
the transmission time of a packet, and in performance analyses, the throughput of these pro-
tocols is expressed in terms of the average fraction of a packet transmitted per slot. The
best currently known protocol achieves over .48 packets per slot, while the upper bound is
.5 packets per slot. [PTW85] In the light of the confirmed throughput efficiency of Ether-
net, which achieves 98% utilization of network bandwidth under some circumstances, this
figure seems low. While Ethernet suffers in other respects when compared to the kind of
Collision Resolution Protocols (CRP) considered here, it effectively makes use of the asyn-
chronous nature of the CSMA/CD environment by reacting in a timely way to network
events. Ideally, features of these two types of protocols could be combined to construct
protocols with better delay characteristics than the Ethernet style random backoff protocols
and better throughput than the slotted CRPs. Enet II is an example of a protocol which

attempis to combine the characteristics of both types of protocols.

139

140

The obvious starting point for an investigation of such hybrid protocols is an attempt
to adapt the existing slotted CRPs for use in the asynchronous CSMA/CD environment.
One area where throughput improvements are possible can be immediately identified: the
size of slots. In slotted CRPs, all slots are equal to the transmission time of a packet. If the
packet size is large in comparison to the end-to-end propagation time for the network, then
a great deal of time is wasted discovering conflicts and idle slots. By using the collision
detection mechanism, collisions can be detected and aborted in a fraction of the normal
transmission time. Likewise, by exploiting known characteristics of the network such as
the maximum end-to-end propagation time, idle slots can be detected in less time than it
would take to transmit an entire packet. The general strategy is to alter the protocol to react
directly to events observed on the broadcast bus rather than reacting to some external syn-
chronizing signal. Transmissions and collisions are two such events. Handling successful
transmissions is straightforward. It will be shown that collisions require some care in their
handling, but present no insurmountable problems. However, the most difficult problem
lies in determining the end of an idle step in the absence of perfectly synchronized clocks.
In order to achieve this, the technique presented in the Enet II algorithm of causing an
intentional collision whenever an idle step should have ended is used. Clock synchroniza-
tion is thus not an issue, unless some clock has a drift rate greater that the amount of a pro-
pagation delay during an idle step. In the protocol investigated here, an idle slot lasts one

round trip delay.

The price for exploiting the asynchronous nature of the broadcast bus is that the new
protocols are more difficult to validate due to the absence of synchronization, so special
attention must be paid to the correctness of the adapted protocols. This issue is investigated
by specifying an asynchronous version of the Gallager/Tsybakov First Come First Served
(FCFS) protocol [Gall78] and proving a bounded delay property for the adapted protocol.
This proof is presented in Section 6.4. An adaptation of the protocol which takes full
advantage of the collision detection mechanism does not satisfy the bounded delay pro-
perty. The protocols will be specified in the model of Jain and Lam [JL87][JL88][JL8I].
An investigation of the performance impact of using the conservative implementation

versus the aggressive version with a deadlock detection component, adapting an analysis of

141

Towsley to the two versions of the protocol, is presented in Section 6.5.1.

6.1. A Model for Reasoning about Contention Protocols

As presented, the basic model from [JL871[JL88][JL.89] for a bidirectional bus is used
for proving properties of a collision free protocol and thus did not model the collision detec-
tion mechanistn. The model has been augmented here to handle collision detection.
Modified axioms for the bus are presented, reflecting this addition to the model. The pri-
mary change required to model collision detection is a distinguished state for the segment

of the bus to which a transmitting station is attached.

Jain’s model uses a process to model the behavior of each station and a separate pro-
cess to model the behavior of the bus or channel. Stations are specified by a set of local
variables, a set of shared variables, and a program. The channel specification consists of a
description of the state of the channel and a set of rules governing how the channel state

changes with time.

6.1.1. The Station Process

The station process consists of a set of local variables (including time variables used
to implement timing constraints), a set of shared variables, and a program written in a sub-
set of Pascal to be described below. Variables may be shared with either a user process or
the channel process, but not with another station program. The language is implemented
with several temporal constructs which are described below. The explanation of the pro-

gramming language is drawn largely from [JL89].

The following notation is used in the discussion of the variables used by the station
process. Exclusive-write variables are shared variables which are written by a single pro-
cess. Mutual-write variables are shared variables which may be written by more than one

process.
v set of exclusive write variables

W set of mutoal-write variables

142

X set of shared variables which are exclusive-write

variables of other processes.

Vi Vo s Vi subsetof ¥V

Wi, Wo, ", W, subset of W

€1,80, " s Eman expressions

e (1) value of expression e at time 1

P predicate over variables in V

@ predicate over variables in W u X

The proofs will also make use of control assertions, indicating where control lies in
the station program at any given time. Following the notation of [OL82], the statements of
a program are labeled (angle brackets are used here), and the following three assertions are
used to express the control state of the program. § refers to both a statement and its label, p

is a process, and ¢ is the time.

at(p, S, 1) true iff the control for process p’s program is just before statement
S attime 7.
in(p, §,) true iff the control for process p’s program is at the beginning of §

or inside § at time 7.

after(p, 5, t2: true iff the control for process p’s program is immediately after
statement § at time ¢.

The syntax of the programming language constructs and the axioms and inference
rules for each statement are shown below. (S} indicates the statement label for the state-

ment, p is a process, and ¢ is the time,

after(p, Sty = at(p, 5, 1)

2. {§)ifQthensS, elses§,
at(p,5,1) A Q(p,t) = at(p, 8¢ 1)
at(p, S, 1) A - Qp,t) = at(p,5,¢)
after(p, S ¢) V after (p, S, 1) = after(p,§, 1)

143

3. (S) whileQdo §
at{p, 8,1y A Q(p,t) = at(p, 5,0
at(p,8, 1) A = Qfp,t) = after (p, 5, 1)
after (p, 5,8 A Q(p,t) = at(p,5,1)
after (p, 5, 0) A —Q(p,t) = after(p,§,1)

4, (S) St vy, VWi Wy =1, Eman
In the following, P[4y 1", . refers to the predicate P with all free occurrences of v;

replaced with ¢;(7).
{0 = Tpugin) N Pl 10t
SEEV oy Vi, W "7y Wy I8 T iy

{(T = Topg = Tbegin + 1) A P(’I)}

The set command assigns e, 10 vy, €, 0 v, ... €,,, 10 w, in one atomic operation.

The set command takes one clock tick.

5. wait-seq
Wait-seq causes the process to halt until a sequence of conditions have been satisfied.
Let Q4, Q,,... Q, be boolean conditions, and Ty, T,,... T, be time durations. In the
following explanation,

pattern = Q ,for T,;Q,for T, ..Q, for T,;

R=T+Ty+ - +T,
The execution of the wait-seq statement causes the process to halt until 2 match for
the pattern is observed, i.e. condition C, is observed to be true for T, C, is observed

to be true for T,, and so forth. Formally,
match(p, pattern, ¢} = [Vi,: 1 —T, <1, 1 Qp,1,)]

A {VI?E—}.: £ (Tn + Ta—!) <lpog =1 Tn: Qn-l(ps !n—i)}

144

A {Vfl: f“‘(Tﬁ'i‘“ s +T1)<t1$l"(Tn"§‘ s +T2): Ql(p’tl)}

The following rule for wait-seqg states that the during the execution of the statement,
the exclusive write variables of process p do not change. Termination occurs at time

1,44 if the match for the pattern started at some time after 1,,,;, and completed at ;.
{7 = Toogin "P(O) }
wait —seq (pattern)
{T = Tond 2 Tpegin TR N [V1 Typyy S S T,000 P()]
N match (pattern, T,,4)

ALY 1y, +R <S¢ <1, 0 —match{pattern,)]
begin end

Special Cases
5. a) delay(T) = walit-seg(true for T)

This statement causes the process to halt and remain idle for time T. The execution

time for the statement is T.
{7 = Thegin N P(D }
delay(T)
{00 = Tena = Toegin +T) N IV Tppgin S STe00t P(O]]

5.b) wait(Q)
Wait(Q) causes the process to halt until the condition Q is observed to be true. The

wait-seq(Q for 1)

time taken by the command depends on when C becomes true.
{T = Toegin N P(D) }
wait(Q)
{ (T = Topg > Tpgin) NIV T S0 <7, POIAQ(D]

6. wait-par

Wait-par allows the program to execute wail-seq statements concurrently. The

145

statement terminates as soon as any one of the wait-seq statements completes its exe-
cution, or ‘fires.’” Completion of one wait-seq results in the termination of the other
statements. The resulting state is the same as if only the statement that fired was exe-
cuted. After a statement fires, a label is set to indicate the identity of the statement.
Statements within the wait-par are listed in order of decreasing priority, so that
should two statements fire simultaneously, the label indicates the statement with the
highest priority. Nesting of wait-par statements is allowed. (A more general wait-
par statement is defined in [JL89]. The special case presented here is sufficient for

OUr purposes.)

The following definitions are used:
pﬂﬂern‘- = Qi,i fOT Tf,l;‘"; Qg‘;:(g'} f()l' Ti,}l(i)
where n (i) is the number of terms in pattern;, and

Ry =T +Tip+ - + T 40

The axiom for the wait-par statement is the following:

{(T = Tbegin} A P(ﬁc)}
wait-par

wait —seq (pattern {); label =1,
|| wait —seq (patierr ,); label =1,

|| wait—seq (patrern,,}; label =1,
end-wait-par
{(t =10 A [V:: Tbegin St ST,y P)]

Alabel = 11 = (T = Tug 2Tpogn + Ry N match(pattern, T,,4))

Alabel = 1, = (T = T, 2Ty, + R, N maich(pattern,,, T,,;))
ALYy Tpegin + R Sty <Tppgt — match(paiterny 14)]

ATV, Thpin + Ry Sty < Tpngt — maich (pattern,, t,)] }

146

6.1.2. The Channel Process

The channel is considered to be composed of discrete segments, with the length of
each segment being the minimum allowed distance between stations. Segments are num-
bered left to right from O to D — 1, where D is the one-way propagation delay for the net-
work in segments. A station connected to segment p is referred to as station p. The state of
the channel consists of the state of each segment and is represented by the boolean array
busy. The elements of busy that correspond to segments of the network to which stations
are attached are shared with station programs. In order to model collision handling, a
second state vector is added, fransmisting, which indicates that the station attached to the
segment is currently transmitting a message onto the bus. The appropriate elements of
transmitting are also shared with the station programs, and transmitting(p) is true if station
p has its transmitting flag set and false otherwise. Further, a station is no longer considered
to be busy due to its own transmission. This technique allows a station to detect a collision
as it would in an actual network, by comparing its output signal with the signal on the bus.
A segment to which a transmitting station is connected is in state transmitting, but is not
busy unless a signal from another transmitting station has reached its location. So a colli-

sion is detected by station p when transmitting(p) and busy(p) are true at the same time.

Time in the system is modeled by a global clock combined with time variables. The
sef statement is assumed to take one time unit. All other programming constructs are

assumed to take no time. Jain also defines the following history variables for use in the

proof system.
busyp(?, D true, if there is a signal at location p at time 7T propagating
from left to right,
false, otherwise
busypL(?,7) true, if there is a signal at location p at time © propagating

from right to left,
false, otherwise

The following history variable is added.

transmitting (p, 1) true, if the station connected to the bus at segment p is
transmitting at time T,
false, otherwise

147

Since a segment of the network is assumed to be equal in length to the minimum spacing

for stations, stations are allowed to be connected to adjacent segments.

The addition of the transmitting state for bus segments requires the adjustment of the
channel axioms presented by Jain. Let N be the set of stations, § be the set of segments,
and T be the set of segments to which stations are attached. In the sequel, absence of

quantification indicates universal quantification.
A6 [¥Yp: pe{§ —T }: — transmitting (p, 1)]
A62: [¥p:pel§ Ap =k
busy;p(p, T = busyplp —1,71-1)
Vi{p-—1eT A transmitting (p — 1, 7~ 1}}]
AB3: — busyLR(O, T)
Acd: [Yp:pe 8§ A p #D-1L
busyp,(p,T) = busyp(p + L, T~ 1)
Vi{p+leT A transmitting(p + 1, t— 1))]
A63: —busyp (D -1,17)
A66: [Vp: pe §: busy(p,T) = busy,p(p, 1) V busyp,(p. 1)l
A67: min_size >2D + jam + 1
Axiom AG6.1 states that only segments to which a station is attached may be in the
transmitting state. Axioms A6.2 and A6.4 state the channel process transitions for propa-
gation of signals from left to right and right to left, respectively. Axioms A6.3 and A6.5
state that the lefimost and rightmost segments may never be busy from left to right and right
to left, respectively. (An end segment may be in the transmiiting state if it isinthe set T
or may be busy from the opposite direction.) Axiom A6.6 is shorthand to indicate that a
segment is busy when the direction of the signal is not important. The segment to which a

transmitting station is attached is not considered to be busy as a result of its own transmis-

sion. Axiom A6.7 states that the minimum packet size, and thus the duration of the shortest

148

successful transmission is greater than a a round trip propagation plus the duration of the

collision consensus enforcement jam plus one tick.

The predicate collision(p) indicates that station p is currently detecting a collision.

C6.1: collision(p) = transmitting (p) A busy(p)

The following history variables are useful.
D 6.1: collision (p, 1) = transmitting (p, 1) A busy(p, 1)
D 6.2: tx_begin(p, 1) = — transmitting (p, T— 1) A transmitting (p, 1)
D63: tx end(p,v) = transmitting (p, T— 1) A — transmitting (p,)

D 64: coll_begin(p, 1) = —collision(p, T— 1) A collision(p, 1)
The distance between two stations i and j is given by A;;.

D6.5: A‘f = ii"ji

D6.1 states that station p is involved in a collision when it is transmitting and finds that the
segment to which it is attached is also busy from left to right or right to left. This indicates
that the signal from some other station has propagated to the location of p on the bus and
overlapped with the signal generated by p. The remainder of the definitions simplify refer-
ences to the detection of the beginning and end of transmissions, the beginning collisions
and the propagation of signals between stations. Note that since D is the length of the net-

WOfk, Aij <D,

6.1.3. Station Transmission Behavior

Stations participating in the protocol should adhere to the CSMA/CD paradigm of
deferring to transmissions in progress and aborting transmissions when a collision is
detected. This behavior could be incorporated into the protocol specification, but since
many protocols display this behavior, it is preferable to think of it as “infrastructure,” and
hide the details of its implementation. In that spirit, the enhanced packet transmission pro-
cedure, transmit is defined. The procedure call notation and semantics of [Grie81] are

used. Note that the variable transmitting is a global variable which is shared between the

149

station process and the channel process. Jam, packet_sent, and coll_detected are constants
for the station program.
proc transmit (value t; result label);
{ transmitting(t) = false N T = Ty, }
begin
(T1) if (busy) then
(T2) wait(not busy);
{ transmitting(t) = false A mot busy(t) A1 = 1))}
(T3) set transmitting := true;
{tx _begin(t) A notbusy(t—-1) A T=1+1

A X o= [dey 1y <1 not busy (1)

il

ALV 1, <? <1 transmifting ()11}
(T4) wait_par
if (not collision) then wait(collision); label := coll_detected;
|| if (T > 1) then delay(T - 1); label:= packet_sent;
end_wait_par;
{X NIV 1< <1 not collision (¢)]
A {(label(z) = packet sent A1 = 1,+7 A not collision(t))
¥ (label{1) = coll_detected
Afdd: 0sd <T: 1= 1,+d)) }
{T5) if (label = coll_detected) then
(T6) delay(jam);
{X A (label{t) = packet sent AT =1, +T)
v (label(t) = coll detected
A(dd: 0d T 1= 1y+d +jam] }
(T7) set transmitting := false;
end
{tx_end(t) A (label(tr) = packet sent A1 =1+T +1)

v (label(t) = coll detected A [Dd: 0Sd <T: T =1,+d+jam +1]) }

150

This procedure implements deference, by waiting to transmit until the channel is not busy
(T1), collision detection and the associated abort (T4), and the jam, or collision consensus
enforcement policy (T5). It manipulates the shared variable transmitting, which alerts the
channel process that a transmission is occurring. It returns the status of the transmission by
setting the variable label. The formal semantics of the transmit procedure are as follows.

P’ is the station’s set of exclusive write variables except for transmitting.

{7 = Tpegin A P/(1) A — transmitting }

transmit(T, label);
{T="Tou A
((abel (t) = packet sent A T,y = Ty, + T +T +2) V
(label (1) = coll detected A T,,5 = Tpeps, + 17 +d + jam +2)) A
[V, Tyogin + T <t <1, transmitting (£)] A

[V e <O ST, PP(ONT Y

T" is O if the channel is not busy at 7,,,,; otherwise, T” is the time between Thegin and the
time at which the channel is no longer busy at the location of the station attempting to
transmit. d is the difference between the time at which transmission actually starts and the
time at which the collision is detected by the station attempting to transmit. The additive
constant 2 arises from the set primitives used to alter the transmitting flag. If all stations in
the network use the stated transmit procedure, then 1<d <2D, since no station will begin
transmitting after the signal from the attempting station propagates to its location, and the
attempting station will not begin transmission if there is a signal on the channel at its loca-
tion. (See Theorem 6.3.) All stations are assumed to enforce some maximum allowed
packet length, which will be referred to as max size, so 1<T < max_size, and
min_size ST Smax_size. The timing characteristics of the transmit procedure follow

immediately from these facts and the semantics of the other language constructs.

Given the specification of transmit, the following are invariants.

11 tx begin(p,¢) = —busy(p,f—~1)

151

12: transmitting (p, 1) = [T fepin’ lpogin S 10 X _begin(p, thop,)
N (VY2 g, <0 <t: transmitting (p,)11
I3: ix end(p,t) A label(p, 1) = packet sent
= [T: min_size <T < max_size:
[¥¢: ¢ —T —1<? «<t: transmitting (p, ') A — collision (p,)1}
14: tx_end(p,) A label(p,) = coll_detected
= coll_begin{p,s — jam — 1)
AT thogin' thegin <01 tX_DegID (D, lppgin)
NIV tyep, <7 <t transmitting (p, ¢')]
NIV 2 tppgin <87 <t — jam — 1: — collision (p, £)]]
15: tx_begin(p,)
= [BT, iy min size ST <max size Nt St(<t+7T:
[¥r: ¢t <7 <ty transmitting (p, 7))
A((t;=t+T—1) V coll_begin(p,)]
16: coll_begin(p,)
= label(p, 1) = coll detected A tx_end(p,! + jam + 1)
ALYY: £ < <t + jom + 10 transmitting (p, ¢)]
I7: collision(p, 1)
= [topipeg® £ = Jam S typippey S1:
coll_begin (p, t,p.,) N tx_end (P, Loppey + jam + 1)]

The first four invariants indicate what can be deduced about the previous behavior of the
transmit procedure from the current state. I1 states that for a station to begin transmission
at time ¢, it must have sensed the wire idle at time ¢ — 1. I2 states that if a station is

transmitting at time ¢, then the transmission began at some time ¢; no later than ¢ and has

152

continued since that time. I3 states that if a transmission is successful, then the station was
transmitting continuously over some interval and no collision occurred during that interval.
14 states that if a transmission results in a collision, then there was some continuous period
of time during which the station was transmitting with no collision followed by a continu-
ous period of time during which the station was transmitting and a collision was occurring.
The last two invariants show what can be deduced about the subsequent behavior from the
current state. IS indicates that if a station began transmitting, it will continue to do so until
it completes transmission or suffers a collision. 16 shows the time at which the value of the
label changes and the time at which the transmission ends given that a collision occurs. 17

gives the range of times a collision could have begun given that it is still going on at ¢.

6.2. Basic Theorems Concerning Collisions

In this section, theorems are presented concerning the detection, duration, and propa-
gation of collisions on a bidirectional broadcast bus. Inthe sequel, peN,p e N,geN,
reN, and p;e N for i = 1,2,.., |[N|. Any unquantified variables are assumed to be
universally quantified. When two quantifiers appear separated by a comma, ordering indi-
cates nesting of the scope of the quantifiers. It is also assumed that the transmissions are
result of executions of the transmit procedure defined above. Each step in the proofs is
accompanied by a list of theorems, lemmas, invariants or previous steps which justify it.
The list is enclosed in square brackets and set at the right margin on the same line as the
conclusion to which it refers. Absence of such a list means that the step involves only alge-
braic manipulation or follows from the construction of the algorithm to which the step
refers. Labels appear in parentheses alone on the line preceding the initial antecedent of the
series of implications or equalities to which they refer. The following theorem from [JL87]

concerning the basic behavior of the channel process is stated without proof.
Theorem J1: The following relations hold for the channel process.
aj busy (p,T) = [p: p’ # p: transmitting (o', T—4,,)]

b) transmitting (p,7) = [Yp':p" # p: busy (¢, T+4,,)]

153

Theorem 6.1:
—busy(p, £, - 1) A busy(p, 1)

= [Hq: g # p: tx_begin(g,1, —4A,,)]

Proof:
0y
—busy(p, 1, 1) [LHS]
= [¥r: 7 # p: — transmitting (, 1, - 1 — 4,,)] [Thil]
(2
busy (p, ,) [LHS]
= [q: g # p: transmitting(q, 1, — 4,,)] [Thi1]
(3)
(3) [Vr,dgq:r #p hq #p: (1,21

~ tramsmitting (7, 1, — 1 - A,,) A transmitting (g, ¢, — A,,)]
s p E895%p ~ Bpg

= [q: g # p: tx_begin(g, 1, — 4,,)] [D6.2]

Theorem 6.2 states that if a collision is detected by station p at time 7, then p must have
begun to transmit at a time earlier than or equal to © and there must be another station ¢

which began transmitting at time T - A,, whose transmission has now propagated to p.

Theorem 6.2:

coll begin(p,7) = [dg: ¢ # p: tx _begin(g,T—4,)]

154

Proof:
coll_begin (p,) = — collision(p, T~ 1) A collision (p, 7) [D6.4]
= (— transmitting (p,T— 1) vV ~busy(p.t~ 1)) [D6.1]
A transmitting (p, 1) A busy{(p,)
= (— transmitting (p, T— 1) A transmitting (p, T) N busy(p, 7))
V (—busy(p, T~ 1} A transmitting (p,7) A busy(p, 1))
= (tx_begin(p,T) A busy(p, 1)) [D6.2]

V (—busy(p,T— 1) A transmitting (p, T) A busy(p, 1))

= —busy(p,T— 1) A busy(p, T} f11]
= [T g: g # p: tx begin(g,T- 4,y [Thé.1]
[

Theorem 6.3 shows the range of times that a station could have begun transmission
given that it was involved in a collision. The result is in terms of the location of a station ¢

which which station p collides.

Theorem 6.3.
coll begin(p,t) =

[Fg: g # p: (3 tpegnt T— 28,5 Slpggin ST X _begin(p)11

Proof:
(1
coll begin{p, 1) LHS]
= [Hgq: g # p: tx_begin(g,T—4,,)] [Th6.2]

= [dgq: g # p: —~busy(g,1—4,, —1)] 11}

= [dg: g9 2p:[¥g: 4 #q: IThit]
— transmitting (¢, T~ Ay —1=28,11

= [dgq: g # p: —transmitting (p, T—24,, — 1)]

@
coll_begin(p, 1) [LHS]
= transmitéing (p, 1) [D6.4,D6.1]
= [thogin loegin < T0 tx_begin(p, f,5,) 121
NIV typ, <17 <70 transmitting (p,)]
3
coll_begin(p, 1) [LES]
= [Hg: g # p: — transmitting (p, T— 24, — 1)] (L2
N1 tgint thegin ST tx_begin(p, f,0:) 12]

ALY t,,, <0 <1 transmitting (9, ¢)]]
= [T q, Tlgin § #P N lpegn ST
— transmitting (p, T— 24, — 1) A &x_begin (p,4,,,)
ALY by, ¢ <10 transmitting (p, ¢)]]
= [g, Dlpegin® § # P N lppin ST
tx_begin (p, lyopn) N T— 28, — 1 <ipeginl

= [q: g # p: [3 thegint T— 28, S lpopn ST Ix_begin (p, fy,5,)1]

The following corollary to Theorem 6.3 gives the absolute earliest and latest times at
which a station could have begun transmission given that it is involved in a collision. It fol-

Iows from Theorem 6.3 by the fact that the maximum propagation time between stations is

156

D ticks.

Corollary T6.3.1:

coll begin(p, 1) = [T thyt T— 2D Sty ST X _begin(p, thegin)]

This theorem and corollary give the range of times at which it is possible for a station
to have begun a transmission given that the station suffers a collision in the attempt. This

range is generally referred to as the vulnerable period of a transmission.

Corollary T6.3.2 extends the result of Theorem 6.3 to specify the the interval over
which a station transmits given that it suffers a collision. Corollary T6.3.2 follows from

Theorem 6.3 by invariant IS.

Corollary T6.3.2:
coll_begin(p, 7,1}
= [tegint toon — 2D _ﬁfbegm Stoon: tx_begin (P fopn)
NIV tyegin SU Sty transmitting (p, 31,

where D is the propagation delay (number of segments) for the network.

The question of the duration of a collision among stations using the transmit primi-

tive is now considered.

Theorem 64:
[Vp, Vg, ¥, Viop #q A, —1,1 SA,:
tx_begin (p, 1,) A tx_begin(g, 7,)]

= [thusy,, 3 thusy,, thusy, ST, + 48y, N ibusy, ST, + 47y

coll_begin (p, tbusy,) N coll_begin (g, tbusy,)1]

Proof:

1)
[Vp, Vg, Y7, Yo p # g A1, -1, 4, [LHS]
tx_begin(p,7,) A tx_begin(g, 7,)]
= [Vp, Vg, V1, Y1,0p 2 g A1, ~7,1 <4, {I1,Thi1]
—busy(p, 1, — 1) A busy(p, T, +4,,)]
= [Vp, ¥ q, VY1, V1, I tbusy,:
g #p N, ~T, | SA, N1, Stbusy, ST, + A,

— busy (p, tbusy, — 1) A busy (p, tbusy,)]

2)
tx_begin(p, 7,) [LHS]
= [T, ity min_size <T <max_size N1, <157, +T: [15]
[¥7: 1, <¢ <t transmitting (p, ¢')]

Aty =1,+T 1) V coll_begin(p, 1,))]

3
[Vp, Vg, Y7, ¥Yi,:p # g AT, —1,/SA,: [LHS]
tx_begin(p, 1,) N &x_begin(g,1,)]
= [V¥p, ¥gq, ¥1,, ¥1,, = tbusy,: (D2
p#EGAIT-TSA, AT, Stbusy, ST, +A,:
busy (p, tbusy,)

AT, Dty min_size T <max_size N1, <1<, +7T:

158

[V 1, </ <1 transmitting (p,)]
Ay =1,+T-1)V coll_begin(p,)]
A tbusy, <1, +T — 1] [A6.7]
= [Yq, Dtbusy,: ¢ # p N1, Sitbusy, ST, + 4,
coll_begin (p, tbusy,)] [D6.4]

A symmetric argument applies to g.

Theorem 6.4 states that if two stations begin transmission at times which are separated
by less than the propagation time between the stations, a collision results. In the theorem,
tbusy, <1, + 4, tather than tbusy, =7, + Ay, 10 indicate that there may be other stations
involved in the collision whose signal reached p before the signal from ¢. In the absence of

other transmitting stations, the relation would be equality.

In Theorem 6.5, the minimum and maximum duration of a collision is determined.

Theorem 6.5:
coll_begin(p, ,,,)
= [T tyngins T lond® thegin < Lot N lpagin +JaAM + 1S 1,5 Slppgyy + 2D + jam + 10
tx_begin (¢, tp,) N X _end (p, 1,00)]

Proof:

(1
coll_begin (p, t,,) [LHS]

= [3 fbegs'.sz: feont — 2D = zbegirz = Leont: tX___bEgiﬁ (p * rbeginﬁ Hh63}

159

€3]
coll_begin{(p, f,,y) [LHS]
= [Tt tong = b + jam + 11 tx_end (p, f,,9)] [i6]

(3
coll_begin(p, f,n) [LHS]

= [a tbegim = bonds Toolt — 2D £ tbegin < Leott A Tond = Feoll +jam + 1 [(1)7(2)]
tx__begin (p, !begin) A tX__end (p, temfﬂ
= [5 fbegin, E 2end: !begiﬁ +jam +1< te;rd < ibegm 4 ZD +jam + I:

tx__hegin (p ? zbegin) A tx_end (P y tend}]

Figure 6.1 illustrates the maximum collision duration for a collision between two sta-
tions. This result, in combination with Axiom A6.7 allows observing stations to distinguish
between successful transmissions and collision fragments based on the length of the
observed packet. The introduction of other stations between e and b will reduce the dis-
tance between any station and the nearest colliding station, causing the collision to be

detected earlier and thus the end of transmission will occur sooner.

The following lemmas describe the behavior of a station given that a busy period
occurs at the station. Lemma 6.1 states that given a range over which a station is busy,
either the station was transmitting when it became busy or it is not transmitting over the
entire busy range plus one tick. Lemma 6.2 states that if station p is transmitting over some
range of times, then it was also not busy over a related range of times. The idle period
results from either the deferral of other stations due to the signal from p, or from other sta-

tions aborting their transmissions due the the signal from p.

Time

iam

\ 4

Figure 6.1: Maximum collision duration.

Lemma 6.1
[¥7: 1,87 <1y busy(p,)]
= (transmitting (p, ;) V [V ¢, < <15+ 10 — transmitting (p,)])
Proof:
[¥7: 1,50 <ty busy(p,)]

= [V 1< <150 —tx_begin(p, 1 + 1)] 11}

= [¥: <t S+ 1 [D6.2]
— transmitting (p, ¢') V transmitting (p, ¢ — 1)]

= (transmitting (p, 1) V [V¢: t;<¢ <t,+ 11 —transmitting (p, £)])

Corollary L6.1.1 states that if a station is busy over a range of times and is not
transmitting when that range begins then the station is not transmitting over the entire busy

range. This follows from the definition of tx_begin (D6.2).
Corollary 16.1.1:

[Vr: t,<0 <ty busy(p,) A — transmitting (p ¢)]

= [V t,<¢ <t,+ 1: — transmitting (p,1)]

Corollary 16.1.2 states that if a station is busy over a range of times then either a col-
lision is occurring at the eartlier endpoint of the range or the station is not transmitting over

the entire range plus 1 tick. This follows from the definition of collision (D6.1).

Corollary 16.1.2:
[Vr: 1, <ty busy(p,)]

= (collision(p,t,) V [¥¢: t; <t <i,+1: — transmitting (p,¢)])

Lemma 6.2:
[¥r: 1, <¢ <t,: transmitting (p, 7)] A (1, 21, + jam)

= [V ty+jam + 20, S S, + 14248, 00 — busy (p,t")]

162

Proof:

(D...

(2)...

[V 1,<¢ <t,: transmitting (p, 7)] A (t, 2 1, + jam)

= [Vg: g #p: [V t,+4,, <0 <1, + A, busy(q,)]l [Thlij
(1, 21, + jam)
= [Vq: g # p: collision(g,7, +4,,) [CL6.1.2]
VYO, +4,, S0 <, +A, + 10 —busy(g, 1
Aty 2, + jam)
= [Vg: g # p: [Tt tat By <logy Sty +8,, +jam +1: [16,17]
~ transmitting (g, f,,4,)]
VIO g, 44, <O <t + A, + 10 — transmitting (g, #')]]
A, 2t + jam)
= [Yg: g #p: (D, (2),CL6.1.1]
[T togyt ta + By <lopgg Sty + Ay, + jam + 1
(V02 b, SO <1+ Ay, + 10 — transmitting (g,)]]
VIV g+ A, <4<t + A, +1: — transmitting (g, £')]]
= [Vg:q 2z pV 1, + A, +jam + 1S < + A, + 1
- transmitting (g, 1" }]]
= [Vq: g = p:[V: 6, +28, +jom + 10 <S4, +24,, + 1t [Thli}

-+ busy (p, £'3]]

163

= [V t,+ 208, i Hjam + 150 S0, + 28, 1 + 1 —busy(p, t')]

6.3. An Asynchronous Specification of the FCFS Protocol

The FCFS protocol will now be specified using the constructs of [JL.87] and the Pascal
programming language. The control flow notation of [JL.89] is adopted. The FCFS proto-
col as specified in [TV82] is taken as a starting point, since the performance analysis
presented there can be adapted to show the difference between the conservative asynchro-
nous protocol and the aggressive asynchronous protocol, discussed below. A more recent
specification for the slotted FCFS protocol which includes some improvements appears in
[BGE71

The FCFS protocol is a variant of the Tree protocol [Cape79] using message arrival
time as the criterion for subdividing the set of colliding stations rather than addresses or
randomly generated bit sequences. Each station keeps track of an enabled window of
length o which lies v time units in the past. In keeping with the notation of the previous
section, to the current time will be referred to as ©. When a collision occurs, @ is reduced
by half and v adjusted to reflect the length of time which has passed and the change inw If
a station finds that the arrival time of its packet is within the new window, the packet is
transmitted, otherwise, the station observes the network to discover the outcome of the
transmission of stations with packets whose arrival time falls within the new window. This
is repeated until two consecutive successes are observed, at which time @ is reset (o 2
predetermined quantity, w,. Because it is important for all stations to search the same win-
dow, it is necessary for a station to monitor the network at all times and adjust © and v,

even when there are not packets waiting for transmission.

The system uses three shared variables, transmitting(p), busy(p) and
packet _to_send(p). Transmitting(p) is set by station p when it begins transmission and
cleared when the transmission ends. These alterations to the value of transmitting occur
only in the transmit procedure. While transmitting(p) is true, the segment to which p is

attached is in state transmitting. Transmitting(p) is shared with the channel process, for

164

which it is a read-only variable. Busy(p) is set by the channel when the segment to which
station p is attached becomes busy from the left or right. It is shared with station p, for
which it is a read-only variable. Packet_to_send(p) is shared between the station program
and a user process. The user process sets packet to_send(p) to true when it submits a
packet for transmission, and the station program sets it to false when the packet is success-
fully transmitted. The timestamp arrival_time is assumed to be generated automatically
when packet to_send(p) is set by the user process. Transmit(p), busy(p) and
packet to_send(p) appear as transmit, busy and packet_to_send in the statement of the sta-

tion program. The following condition is used in the station program.

enabled = packet to send A T—v— < arrival time <7~ (C6.2)

C6.2 indicates that the arrival time of the station’s packet falls within the currently enabled
window. It is assumed that o is an integer such that ©, = 2" for some n. ®, represents the
number of segments in the initial enabled window. When the window is split, integer divi-
sion is used to perform the calculation. Initially, 7, v and © are 0. One iteration of the outer

loop will occur before any packets can be enabled.

Conservative Asynchronous FCFS Station Program

begin
(S1) repeat
(82) if enabled then
begin
(S3) tx_start :=1;
{S4) transmit(T, label);
(S5) tx_stop:=1-1;
end;
else
begin
{S6) wait_start = 1;
(S7) wait (busy or 2¥D);
(S8) if not busy then
begin
(89) @ = min (y, v + 2¥D);
(S10) » := max (0, v + 2¥D - ay);

165

(S11) label :=idle;

end
else
begin
(812) tx_start:=T;
(813) wait(not busy);
(S14) tx_stop :=1;
(S15) if (tx_stop - tx_start) < min_size then
(816) label := other_coll
else
(817) label := other_tx
end;
end;
(818) if label = other_tx then
begin
($19) @ := min (e, v + (tx_stop - wait_start))
(S20) v := max (0, v + (tx_stop - wait_start) - &);
end
(S21) else if 1abel = packet_sent then
begin

(822} ® := min (@, v + tx_time);
(S23) v :=max (0, v + tx_time + 1 - o);
(S24) packet_to_send := false
end
(825) else if label = coll_detected or label = other_coll then
begin
(826) if 1abel = coll_detected then
begin ’
(827} if (tx_stop - tx_start) < (2D + jam + 1) then
{828) delay (2D + jam + 1)
- (tx_stop - tx_start));
(S29)vi=v+2*D + jam + 1 + 0/2;
end
else
begin
{830) if (tx_stop - tx_start) < (2D + jam + 1) then
(831) delay (2D + jam + 1)
- (ix_stop - tx_start));
(832) v := v+ (tx_start - wait_start)
+2*¥D + jam + 1+ /2
end
(833) 0 :=w/2;

166

{834) while not (label = packet_sent or label = other_tx) do begin
(S35) if enabled then
begin
(836) tx_start ;= 1;
(837) transmit(T, label);
(S38) tx_stop =1~ 1;
end

else
begin
(839) wait_start ;= 1;
{S40) wait (busy or 2¥D);
(841) if not busy then
begin 4
(S42) vi=v+2*¥D - w/2;
(S43) o := w/2;
(S44) 1abel :=idle
end
else
begin
(S45
(S46
(S47
(S48
then
{S49) 1abel := other _coll
else
(S50 1abel := other_tx

tx_start :=1;

wait(not busy};

tx_stop = 1;

if (tx_stop - tx_start) < min_size

et S W St

end;
end;
{851} if label = other_tx then
(852} v:=" + (tx_stop - wait_start) - ©;
(S53) else if label = packet_sent then
begin
(S54) v:=v+tx_time + 1 - ;
(S55) packet to send := false

end
(S56) else if label = coll_detected or label = other_coll
then
begin
(857) if label = coll_detected then
begin

(858) if (tx_stop - tx_start)
< (2D + jam + 1) then

167

(859) delay ((2*D + jam + 1)
- (ex_stop - tx_start));
(S60) v:i=v+2%D + jam + 1 + @/2;
end
else
begin
(S61) if (tx_stop - tx_start) < (2D +
jam + 1) then
(S62) delay (2D + jam + 1)
- (tx_stop - tx_start));
(863) v == v + (tx_start - wait_start)
+ 2D + jam + 1 + w/2;
end
(S64) o :=w/2
end
end
end (* End while *)
forever (* End of repeat *)
end

6.4. Bounded Delay of the Asynchronous FCFS Protocol

The bounded delay of the Asynchronous FCFS protocol as specified in the previous
section is now considered. It will be shown that a collision experienced by stations while
the algorithm is in its initial state will eventually result in at least one successful transmis-
sion followed by a successful transmission or idle step which returns the algorithm to the
initial state. In [BG87], the protocol is discussed in terms of searching the left and right
halves of the original enabled window. Statements S1 through S24 carry out the “right
interval search,” while the loop composed of statements S34 through S64 perform the “left
interval search.” The initial interval is thus considered to be a “right ” subinterval. The
protocol is constructed so that whenever a subdivision is performed, the previous right
interval is “forgotten,” to be included in the initial window of the next resolution round.
This means that it is possible for the protocol to resolve only a fraction of the original win-
dow in any given execution of the resolution process. The resulting stability criterion for
the asynchronous version of this protocol is discussed in [TV82]. When a successful
transmission results from the left interval search, the current right interval is resolved.

Observing a successful transmission or an idle period in the right interval search results in

168

the protocol resetting to its initial state. A contention epoch is defined to be the period of
time beginning with a station in the initial state (@ = @,) experiencing a collision while
attempting to transmit a packet, and ending with a successful transmission or idle in the
right interval search, resulting in a return to the initial state. Thus, to demonstrate that the
protocol progresses, it must be shown that a contention epoch takes bounded time. It is
assumed that the execution of the set construct takes one tick, and that comparisons and

assignments take no time.

The station program is constructed so that the transmitting flag is altered only in the
transmit procedure. This means that whenever station program control is not in the calls to

the transmit procedure (S4 and S37) it can be inferred that the station is not transmitting.

Note that the possibility for simultaneous packet arrivals exists in the model. Since
the protocol resolves collisions by subdividing the colliding stations according to their
arrival times, it will be unable to resolve a conflict between two stations with packets which
arrived during the same clock tick. Initially it will be assumed that arrival times are dis-
tinct; modifications will subsequently be discussed to allow to the protocol to handle simul-

taneous arrivals.

In the following proofs it is sometimes necessary to distinguish between the value of
local parameters of the various stations at different times in the execution of the protocol.
When this is the case, arguments indicating the station and the time are appended to the

variable name, e.g. w(p, 1), where p is the station name and ¢ is the time.

The properties of the right interval search are considered first. The actions of the left
interval search are identical to those of the right interval search, with the only difference
being the interval of arrival times upon which the algorithm operates. Thus, a single itera-
tion of the left and right interval searches have identical properties. The following are

invariants for the portion of the station program which implements the right interval search.
SIi: at(p, 852, 1)

= (enabled(p,?) = at(p,54,1)) A (—enabled{p,?) = at(p, 57,1}

169

SI2: at(p, 84,19
= [, 1+ jam <ty at(p, §5,¢,) A —transmitting (p, 1,)
A (label{p, t,) = packet sent
= at(p,82,t,) N[T: min_size <T Smax size: t, = 1;+T +1
ALYE: t,—T <t <ty transmitting (p, ') A —busy(p,)ID
A (label(p,t,) = coll detected
= 1,<¢1+2D + jam +1 A coll_begin(p,t,— jam — 1)
Aat(p,S5, ¢

A[Yt”: t,~ jam — 1 <17 <1, transmitting (p,)]

SI3: at(p, 55,¢) A label(p, 1) = coll detected
= coll_begin{p,t — jam — 1}
Aldeg 1,51 —jam — 1: tx_start(p, 1)
A[YY: ¢,<¢ <t transmitting (p,)]

AT ¢ <ty +2D + jam + 10 at(p, 8§35, 7)1

Sid: at(p, 57,1
= [Hiy ty>1 after(p, 87, 15)
Aty =1t,+2D ALY 1<t <ty —busy(p,)]
= at{(p,82,¢;+2D}))
A((t,<t;+2D Abusy(p,iy) AV 1 < <1y —busy(p,)]

= atip, §13, 1,))]

170

8I5: at{p,S13,1;) A after (p, 513,15
= [V t;<f <ty busy(p,)] A —busy(p, 3}
A (t,—t; < min_size = label{p,?,) = other_coll A at(p,S30,¢,))

A (t,~t;>min_size = label(p,,) = other tx A at(p,S2,t5))

SI6: at{p, 8530, ¢,
= label(p,t,) = other coll A —busy(p, ;)
A[Teg ty<ty [V 1< <15 busy(p,)] A —busy(p, 1)

ATty 13511+ 2D + jam + 1t at(p, §35, 13)]]

These invariants enumerate the possible flows of control for the right interval search.

A single execution of the right interval search is shown to be bounded by demonstrating

that each possible flow of control leads to all stations reaching synchronization at either

statement S2 or statement S35 in bounded time. Several new definitions are used in the

proof.

D6.6: t_detect(p,1,) = —~busy(p, 1, -1} A (busy(p, ,) V tx_begin(p,1,))
D6.7: tx_time(p) = tx_stop(p) — tx_start(p).

D6.8: synch(p,t,,9,4,,5) = at(p,S8,14,) Aat(g,S,6) N 1, — 1] <A,

il

D6.9: ss_busy(p,t,q) = transmitting (g, —4,,)

D 6.10: quiescent(p,?) = —busy(p,¢) A — transmitting (p, ¢)

The history variable t_detect is used to indicate the time at which a station either became

busy or began transmitting. This is the reference time used to determine whether an

observed transmission is a collision or a successful transmission. Tx_time is the duration of

an observed or attempted transmission. Note that tx_start corresponds to the time at which

t detect becomes true. The history variable synch is the synchronization constraint for the

station program. It indicates that two stations arrived at the same point in the algorithm at

171

times which are separated by less than the propagation delay between the two stations. The
final definition is a station specific busy condition, i.e. it indicates that a station is busy as
the result of a signal from some specific station. When — ss_busy is true for all stations, —
busy is true. The history variable quiescent indicates that there is no activity at a station at

a given time.

Each of the following theorems assumes that initially, all stations are synchronized as
per D6.8 at statement S2 and that all stations are quiescent as per D6.10 at this synchroniza-
tion point. The results state that within bounded time, all stations are synchronized at state-
ment S2 again or all stations are synchronized at statement S35 and are quiescent again.
From the fact that the initial conditions are reestablished in each instance, it is possible to

conclude that all single executions of the right interval search are bounded.

Right Interval: Idle Interval

Theorem 6.6:
synch(p,,,9,4,52)
A quiescent(p, 1,) N quiescent(q, {,)
Nat(p,852,1,+2D) Alabel(p, 1, +2D) = idle
= [, synch(p, 1, +2D,q,1,,,52) A label(q, 1,) = idle

A quiescent (p, 7, + 2D) A quiescent(q, 1, ;)]

Proof:

(n
synch(p,4,,q,t,,8S2) A at(p, 82,4, +2D) A label{p, s, +2D) = idle [LHS]
= at(p,52,1,) N —enabled(p, ;)

= at(p,57,1,) [SI1]

172

€y
at(p,§7,¢,) Nat(p,52,1,+2D) A label(p,1, +2D) = idle [(D,LHS]
= [V 1,<¢ <1,+2D: —busy(p,?) A —transmitting (p,)] [S14]
= [¥/: 1, <4 <1, +2D: —transmitting (¢, ¢ = A0 fThJ1,D6.10]
A quiescent (p, 1, +2D)
(3
synch(p, 1,, 9,14, 52) [LHS,(2)]
ALY t, < ¢ <t,+2D: — transmitting (g, f - A
= at{g,82,1,) N — enabled (g,t)
= at(g,87,¢,) [SI1]}
(4)
synch(p,1,,4,4,,87) (1,33
= [Vr:r # q: synch(q,1,7,4,57) ID6.5,D6.8]
ALY 1, €7 <1, + 2D — transmitting {r, ¢)]
AN, +2D +A,,21,+2D]
= [Vrir 2 q: [V, <0 <1, +2D: —ss_busy(q,)]l [Thi1,D6.9]
= [V/: 1,0 <¢,+2D: —busy(g,?) A — transmitting (g, /)]
= at(g,§2,t,+2D) A label(g, 7, +2D) = idle [S14,06.10]
A gquiescent (g, 1, +2D)
)

at(p,§2,4,+2D) A label (p, £, + 2D) = idle [LHS,(2),(4),(5)]

173

A quiescent(p, £, +2D)
A at(g,S2,¢,+2D) A label(q, ¢, +2D) = idle A quiescent(q, 1, +2D)
= [, syach(p, 1, +2D,q,1,,,52) A label(q, 1, o) = idle

A quiescent(p, 7, +2D) N quiescent(q, 1,)]

Right Interval: Successful Transmission, Transmitting Station

Theorem 6.7 :
synch(p, t,, 9,1, S2) A quiescent(p,#,) N quiescent(q,?,)
A T: min_size <T <max_size: at(p,8$2,5, +T +1)
A label(p,t, + T +1) = packet_sent]
= [T: min_size <T <max_size:
synch(p, 1, +T+1,49,0,+T+1+4,, §2)
Alabel(g,t, +T +1+A4,,) = other_tx

A quiescent (p, 1, +T +1) A quiescenti(q, 7, +T +1+4,.)]

Proof:

¢y
synch(p, ,,9,1,,52) [LHS]
A3 T: min_size <T <max_size: at(p,52,1, +T + 1)
A label(p,t, +T + 1) = packet sent]
= at(p,52,4,) / enabled (p,1,)

= at(p,S54,1) [SI1]

5 tps

174

@

at(p,54,1,) A —busy(p, 1) [(DH,LHS,D6.10]

A label(p,t, + T + 1) = packet sent
= [T: min_size <T Smax_size: at(p,8§2,4,+T +1}
ANV, +12 <, + T+ 1

transmitting (p, ¢) A — busy (p, £)]]

= [IT: min_size <T <max _size: [V 1, +1< <, +T+ 1t

— transmitting (g, ¢ — 4A,,) A busy(q, £+ A

(3
synch(p,1,,9,%,582)
A [T: min_size <T <max_size: [V, +1<0 <1, +T + 1
— transmitting (g, ¢ —A,,) A busy(q, ¢ + A,

=> at(q,52,¢,) A —enabled(q,1,)

A [T: min_size <T <max_size: [¥0: 1, +1<(<, +T+ 1t

— transmitting (g, £ —A,,) A busy(g, ¢ + A,)11

= at(g,87,t) Nty <t +1+4A,, <1, +2D

A [T: min_size <T <max_size: [V t,+1£0 <, +T + 1

— transmitting (g, ¢ +4,,) A busy(q, ¢ + A1
= [T min_size <T <max_size:

at(g, 513,24, +1+4,,) N after(g,513,4, +T +1+4,,)

ALY tP+i£z" <, +T+1+A4A,,: —ss_busy(p,? +4,,,4)]

= [T: min_size <T Smax size: at(q,82,4, +T +1+4,,)

[SI2]

[Thl1]

[LHS,(2)]

[SI1,D6.8]

[S14]

[SI5]

175

Alabel(g,t, +T +1+4,,) = other_tx
A —busy(g,?, + TH1+A A= transmitting (g, 1, + T + 1 + A,)
A —ss_busy(p,f, +T +1,4)]
= [3T: min_size <T <max_size: at(g,52,1,+T +1+4,,) [D6.9,D6.10]
Alabel(q, t, +T +1+4,,) = other_tx
A quiescent(q,f, +T +1+4,,)

A —busy(p, i, +T +1)]

4)
[T: min_size <T <max_size: ILHS,(3)]
at(p, 52,4, +T+1) Nat{g, 52, ,+T +1+4,)
Alabel(g, 6, +T+1+4,,) = other x
A — transmitting (p, £, + T + 1) A —busy (@, , +7T + 1)]
A quiescent(q, s, + T + 1+ A)]
= [T: min_size <T <max_size: [D6.10]
synch{p,?, +T+1,9,4,+T +1+4A,, §2)
A label(g,t, + T +1+A,) = other_tx

A quiescent (p, 1, +T +1) A quiescent(q, 7, +T +1+4,,)]

Right Interval: Successful Transmission, Observing Station

Theorem 6.8
synch(p,1,,4,1,,52)

A quiescent(p, 1,) N quiescent(q,1,)

176

A[Hzt,: 6, <2D: [T: min_size <T <max_size:
at(p,§2, 6, +1,+T) A label(p, ¢, +¢, +T) = other_tx]]
= [T, t,<2D: [AT: min_size <T Smax_size: [T 1, 4
synch(p,t, +1, ~z—TV, gst. 4> 82)
A (label(q,t,,) = other_tx V label(q,?, ,) = packet sent)

A quiescent (p, t, + 1, +T) A quiescent(q, 7, ;)11]

Proof:

ey
synch(p,?,,q,1,,52) [LHS]
A[Zt,: t,<2D: [T: min_size <T <max_size: at(p,852,¢,+1,+7T)
A label(p, 1, +1, +7T) = other_tx]]
=3 at(p,S2,tp) A ——uenabled(p,tp)
A[Tt,: t,s2D: (DT min_size <T <max_size:
[V/: 1,0 <t,+1,0 —busy(p,)]
AVt +t, 0 <t, 41, +T: busy(p,)]
A —busy(p,t, +t,+T) A —transmitting (p, 1, + 1, + T)1]
= [, t,<2D: [DT: min_size <T < max_size: [Th]1,D6.10]
quiescent (p, 1, +1, +T)

Arir zp [V, 41, < <t +1,+T:

transmitting (v, ¢ — 4,,)111]

177

2)
synch(p, 1,,9,1,,52) [LHS(1)]
Al 6,20 [3T: min_size <T <max_size:
[(Brir z2p: [V 1,41, S0 <t, +1,+T: trapsmitting (7, 7 —4,)111]
=> (—enabled(q, 1,) = at(q,57,14,)) [S11,D6.8]
A (enabled(q,1,) = at{qg,S7,)]
AL, t,<2D: [3T: nin_size <T <max_size:
[Hrir 2p: [V 4,41, <, +1,+ T
transmitting (r, 7 - A,
= (at{g,87.1,) [Thi1]
Al 1,<2D: [T min_size <T < max_size:
[Drir 2p: [V 4, +4, 0 <t +1,+T:
busy(g, ! — A, +4A,)]
A —busy(g,s, +14,+T -4, +4,)
MY st St +1, + T~ A, + A,
— transmitting (g, 71D
Vv (at(g,S54,1,)
[3T: min_size <T < max_size:
[¥V(: ¢, +15¢ <t, +1+T: transmitting (g, 3]
A — transmitting (g, ¢, + 1 + T)])
= [T: min_size <T <max_size:
((Dr:r #p: [He,: 1,<2D: at(g, S13,4, + 4, - A, +4A,) [8i4]

Aafter(q,8513,1, +1, -4, +T +4,)

178

A —busy{(qg,t, +4,+T — A, +A)
A —transmitting (g,¢, + 1, +T — A, + A)]
V (after (g, 84,2, +1+T) A label(q, t, + 1+T) = packet_sent) [S12]
A[Vsis #2q: [V, +1+ A, <0<, +T+A+ 1

busy (s, £) A — transmitting (s, ¢)ID1] [Thi1]

= [T: min_size <T <max_size:

(Fr: 7 #p: (3, t,s2D:
at(g, 82,4, +14, - A, +T +4A) [S15]

A label(q, 2, + 1, — A, +T +4,,) = other_tx

A quiescent(q,t, + 1, — A, +T + A D [D6.10]
V(at(g,S52,¢,+1+T) A label(g, 1, + 1+ T) = packet sent) [512]
AlV¥s: s 2 q: [V, + 140, S0 S, +T+4A,+ 1 [Thii]

—ss_busy(g,, s)ID]

(3)

[T, t,$2D: [T min_size <T < max_size: [LHS(1),(2)]
at(p,82,t,+¢,+T) A quiescent(p, 1, +4,+T)
A(I[drir #prat(g,§2,t,+1,—A,+T +4,)

A label(g,t,+¢, -4, +T+4,) = other tx

A quiescent(q, t, +1, ~ 4, +T + A,

V(at(g,82,¢,+1+T) M label(g, 7, +1+T) = packet sent}
AlYs: s # g [V, + 148,20 S, +T + 48, + 1

—8s_busy(g.7,5}]

179

A — transmitting (g, ¢, + T + D]
= [3e,: t,<2D: [DT: min_size <T <max_size: (32, [D6.8,D6.10]
synch(p, 1, +4, +7T, 4,4 4 52y
A (label(q, ¢, .} = other_tx V label(g,z,) = packet sent)

A quiescent(p,t, +14, +T) A quiescent(q, £, ;)11

Right Interval: Collision, Participating Station

The proof of boundedness in the case of collision requires the following result con-
cerning the time at which an observing station once again finds the channel idle given that a
collision occurs. The following notation is used: #, ; indicates the time at which a station s
is synchronized at statement S2; 7, indicated the time at which a station s detects a
transmission in the case where s is not enabled; and f, , indicates the time at which a

transmitting station s detects a collision.

Lemma 6.3:
synch(p, 4 5,7, 4 ,, 82) N t_detect(r,1;,) A tx_begin(p, 5, , +1)
A c@ll_begin(p, tcp) A be Sld,, A tb,p +1Z tc,g

= ﬂbusy(r,tds,ﬂFZD + jam + 1) A at{r, 835, rd’,'i-ZD + jam + 1)

Proof:

ey
at(r,52,4,,) [LHS,D6.8]
=> (—enabled(r,t,,) = at(r, 57,4 ,)) (8113

A (enabled (7,1, ,) = at{r,54,%,))

180

2

3

@

)

at(r,57,4,,) At detect(r,1,,) A g, , <iy,

= at(r, 57,4, ,) N —=busy(r, iy, — 1) ANbusy(r,65,) N, <y,

= at(r,§13,4,,)

at(r,854,1,,) At detect(r,2,,) N1, , <2y, Nix begin(p,t,,+1)
= tx_begin(r,¢;,) Ain(r,84,1;,) Abusy(r, 5, , +1+4,,)
= in(r,54,1;,) N coll_begin(r,1, ,+1+4,)
= at(r,85, 4, +1+A, + jam + 1)
Aldabel(r, 4, , + 1+ A, + jam + 1) = coll_detected

= at(r,835,1;, +2D + jam + 1)

t_detect(r, ;)
= —busy(r,i;,—1) A busy(r,z;,)
= [Vq: ¢ # r: — trapsmitting (g, 7;, — 1~ A,)]

= [Vg: g # r: tx begin(g,t, ,+1) = t,,+121;,, - A,]

at(p, 52,1, ,) M tx_begin(p, 1, , + 1)

= at(p, 54,1, ,)

[(1),LHS]
[D6.6]

[S14]

[(1H),LHS]

[D6.6,Thl1]

[D6.4,D6.8]

[S12]

[SI5,516]

[LHS]
[D6.6]
[Thi1]

[D6.2]

[LHS]

[S11]

181

(6)
at(p,§4,1,,) A tx_begin(p, 5, , +1) A coll_begin(p, 1,) [LHS,(5)]
= at(p, S5, 1, + jam + 1) A label(p, 1, , + jam + 1) = coll detected [SI2]
= [V, +jam+ 1< Sty ,+ 142D +jam + 1t [SI3]
in(p,S28,) A — transmitting (p, ¢')]
= [Vt +jam+ 1<t <1y, — A, +2D + jam + 1 (@]
in(p,S28,7) A — transmitting (p, 1')]
(N
tx_begin(p, 4, +1) A [Vu: u = p: synch(®, t,,, 4, 1, $2)] [LHS]
= tx _begin(p,f,, + 1) [S11]

AlVYu: u # p: ({—enabled(u,1,,) = at(u,57.4,,))
¥ (enabled{u, % ,) = at(u, 54,4,
A busy (u, t,, + A,,)] [Thi1l]
= [Yu: u # p: tx_begin(u, 1, + 1) ID6.2]
= 4, 1S4+ 1+A,, Abusy(u, b, +1+4,01
= [Vu: u = p: tx_begin(x, 1, ,) (D6.4,512]
= [T, 1, St,, +1+4,,: coll_begin(u,z)
Aat(u,S5,1,, + jan + 1)
= [Vu: u # p: tx_begin(u, 1, ,) [SI3]
= [T, ., S, H 1A,
[¥e: t,,+jam +1< ¢ <4, ,+2D + jam + 1

in(x, 528, 7) A — transmitting (u,)]

182

8

9

1o

(1D

= [Vu: u # p: tx_begin(u,t,,)

4]

= [Vt + A, +jam+ 1< <ty,~ A, +2D + jam + 1:

in{u,$28,7) A — transmitting (1, ')1]]

[Vu: u # p: synch(p, 1, ,, %,1,,52)]

= [Vu: u # p: (enabled(u,,,) V — enabled (¢, 1, ,))]

[Vu: u # p: enabled(u, t,,)

= [V, +1+A,, +jam + 1< <1y, ~ A, +2D + jam + 1

in(u,828,¢) A — transmitting (u,)]

[Vu: u # p: —enabled(u, 1, ,) N tx_begin(p, 4, , +1)
= [Ty, tiu Sty +1 + 4,0 t detect (u, 15,,)]
AV 8, , <0 <ty , +2D + jam + 1:
— transmitting (u,)]
= [V 4,0 <t;,~A, +2D + jam + 1:

— transmitting (4,)]

[Vu: u # r: — transmitting (u, 1, — 4, +2D + jam + 1)]

= —busy{r, iy, +2D + jam + 1}

[LHS]
[SI1]

)

[SI4,S15,516]

(4]

[(6),(9),(10)]
[Thi1]

183

(12)
at(r,513,1,,) A —busy(r,1,, +2D + jam +1) (2),(11)]
= at(r,513,1;,)
Ay, 1y, < 8,5, +2D + jam + 10 after (r, §13, 1, ,)]
A —busy(r,t;, +2D + jam + 1)

= at(r,§35,1;,+2D + jam +1) [S15,516]

The result follows from (3), (11), and (12).

Theorem 6.9:
synch(p, t,,9,%,,52)
A quiescent (p, t,) A quiescent(q,?,)
A at(p,S§35,1,+2D + jam +2) A label (p, ¢, +2D + jam +2) = coll_detected)
= [T, synch(p, 1, +2D +jam +2,9, 1, 4, 535)
A (label(q,t,,) = other coll V label (g, 7, ,) = coll_detected

A quiescent (p, 1, +2D + jam +2) A quiescent(q, 7, ;)]

Proof:

(1)
at(p,§2,1,) N quiescent(p,1,) [LHS]
A at(p,835,t,+2D + jam +2) A label(p, t, + 2D + jam +2) = coll_detected
= at(p,S52,1,) A enabled(p,1,) & —~busy(@,?,) [D6.10]
A, f,+151,,<6,+2D +1: —busy (@, 4, — 1) A busy(p, £, ,)]

= at(p,854,1,) N —busy(p,4,) [S11]

184

At 1, + 121, ,<6,+2D + 10 —busy(p, 1., — 1) A busy(p, . ;)]

= tx_begin(p, 1, +1) [D6.2]

N[, t,+151,,<t,+2D + 1: coll_begin(p, ;) D64

P cp

[TRJ1] A [Fr: v # p: tx begin(r, 1, , — A1

(2)
tx _begin(p, 1, + 1) A at(g,§2,1,) [LHS,(1),D6.8]
= t detect(q,85,) Nty <ty St +1+4,, [D6.6]
€)
synch(p,1,,9,1,,S2) At detect(q, ;) Nt, < tg,<t,+1+4, [LHS(1),(2)]
Atx begin(p,t, +) A [0, +1< 1, <1, +2D +1: coll_begin(p, ¢,)]
= —busy(q,ty, +2D + jam + 1) A at(q, 835,15, +2D +jam +1) [L6.3]
= at(q,§35,1;,,+2D + jam + 1)
N —busy(q, t;,+2D + jam + 1)
A A —transmitting (g, 1 , +2D + jam + 1)
“)
at(qg,82,t,) [LHS,D6.8]
= ((—enabled(q,t,) = at(g,87,14,)) [S11]

A (enabled(g,) = at{g, 84, 1))

185

(5)
guiescent(q, ,) A at(g, 54,1,) A tx_begin(p,t, +1) [LHS,(D(4)]
= in(g, §4,1, + 1) A tx_begin(g, 1, +1) M busy(q, 1, + 1+ 4,,) [Thi1]
= [Tt +1S 8 S, +1+A: [D6.43
in(g,84,1 ,) A coll_begin(g, .)]
= [, +12 <, +1+ 4, at(q, 55,1, 4+ jam +1) [SIZ2]
A label(q, t, , + jam + 1) = coll_detected]
= [T+ 1S, S+ 144, [S13]
at(qg, 5354, +2D + 2D + jam +2)
A label(g, ¢, , + jam + 1) = coll_detected]
(6
at(q,S57,1,) M tx_begin(p, 1, + 1) [(,]
= [Tty <ty St +1+4, [D6.6]
at(g,87,¢,) Nt detect(q, ty,) N 1g, <8, +2D]
= [Tty <ty S, +1+4,, at(g, §13,15,)] [S14]
(7)
[Tty ty<tgg St +1+A,: [(3).(6)]

at(g,S513,7;,) N —busy(q, 1y, +2D + jam + 1]
= [Tty b, <y, <, +1+A,,: at(q,S13,1,,)
N[ty tyg< 44585, +2D + jam + 10 1 after (g, 513, 1)]

= [Dig fy<lygSt,+1+4,, [S15]

186

label(q, t; , + 2D + jam + 1) = other_coll
NIt 1y, < b, Sy, +2D + jam + 10 at(g, §30,4)11
= [Hitg, <ty S, + 144, [S16]

label(g, t; , +2D + jam + 1} = other coll

A at{g, §35,15, +2D + jam + 1}]]

The result follows from (3), (5), and (7).

Right Interval: Collision, Observing Station

Theorem 6.10:
synch(p,1,, 4,1, §2)
A quiescent(p, 7,) A quiescent(q,?,)
ATt <t ,St,+4D + jam + 1t
at(p, 835,14, ,) A label(p, 1, ,) = other_coll]
= [de, <8, +4D +jam + 1t
[Fe, o synch(p,t,,, 9,14 4, 535
A (label(g, 1, ,) = other_coll V label(g,z, .} = coll detected)

A quiescent(p, t,,) A quiescent(q, ¢, ,)]]

Proof:

ey
at(p,82,1,) A quiescent(p, 1,) [LHS,D6.8]
ATt <t,,St,+4D + jam + 1

2,p =

at(p,§35,¢, ,) A label(p,, ,) = other_coll]

= at(p,87,4,) N —busy(p,1,)
ATt <, <
= [T, b, < tp, S8, +2D:
(Vi 1,6 <, —busy(p, £} Ain(p, 57, 1))

A busy (2, 4]

= [T, 4, < b, <t, +2D: ¢ detect (p, 1, ;)

187

[SI1,D6.10]

1, +4D + jam +1: label(p, 1, ,) = other_coll]

[D6.8]

[SI4,Thi1,D6.6]

Aatp,S513,4,,) A [Ts:s # p: tx_begin(s, 4, , — A,0)]]

(2
[0 1y <tpp St,+2D: at(p, 513, 4)]

N[y, b, <t,,5t,+4D + jam + 1t
at(p, 835,14, ,) A label(p, ¢, ,) = other_coll]
= [T, b, <, 51, +2D:
[T, t,<t;, St +2D +jam + 1

- busy(p, 1;,} /A after(p, 513, 1 ,)]

(3)
[, t,<t,<t,+2D:

[T, 4y <tipSty,+2D + jam + 10 —busy (@, 4 ,)l]

= [T, t, <t <1, +2D:

iafg)?: 1b§3<1§!?$159p‘*§‘w ~i~jam+1:

[LHS,(1)]

(21

[Thl1]

[Vu: u # p: — transmitting (u, 1; , — A,,)11]

188

C)
[(Htp, t,<t,,<t,+2D: Fs: s # prtx_begin(s, i, — 4,)] (H,03)
NG, t,<b,St,,+2D +jam + 1
[Vu: u # p: —transmitting (u, ; , — 4,,)11]
= [Ty, 1, < tb£$tp +2D: [ds: s # p: tx_begin(s, 5, , —A,)
[Tt 6,5, +2D + jam + 1Ay
[Vl 1, ~ A, < ¢ <4, transmitting (s,)]
A — transmitting (s, 4; ;) N ;5 — (p — Ay} Smin_size]]]]
= [T, < t,,<t,+2D: [Ds: s = p: [13,A6.7]
[t 0t .58, +2D — A, coll_begin(s, ¢, 111
5
at(g,52,1,) [LHS,D6.8]
=> ((—enabled(q,7,) = at(g,57,4,)) [S11]
A (enabled(q,) = at(q,54, 1))
(6
at(q,84,1,) A —busy(q, 1;) [LHS,D6.10,(5)]
= tx_begin(g, t, +1) D6.2]
= t detect(q, 1, +1) [D6.6]
(7
at(q, 57, 1) [(1),(3).5)]

N[ty t,< ty,<t,+2D: [Ar:r = p: tx begin(r, 1, , — 4A,)]

189

= [T, o<, <, +2D: [Dr:r #p: [S14]
[3 i&,q: gd’q S tbg) - Ap,r + Arq:

t_detect(q, %, ~ A, +A,) Aat(g,S13,8,, A, +AN] [D6.6]

®)
[Ds:s 2 p:synch(s, 4, 9,44, 52) [LHS]
A, t, <y, <1, +2D:
[Hiegg by, = t,+ 1V 1,56, -0 + A, t detect (g, 1;,) [(63,(7)]
A tx begin(s,t, , — A,) N coll_begin(s, 2, 5) Aty Sty Nt <1, JITI(1),(4)]
= [T, t,<,,<t,+2D: [Ds:s #p: [L6.3]
[Tty 14, S, — Ay +Ay
~ busy(q, iz, +2D + jam + 1) N at(q, 835, 15, + 2D + jam + 1)]]]
9)
[Hs:s # p: synch(s, 4 ,,p,1,,52) [LHS]
At 1, < 8, ,<,+2D: t detect(p, 1,,) (0]
A tx_begin (s, 1, , — A,) A coll_begin (s, 1,) A t,, <, 1] [(D,(4)]
= [y, t, < 4y, <, +2D: [L6.3]
—busy(p, 4, +2D + jam + 1) N at(p, 535,14, , + 2D + jam + 1)]1]
(10

at(g, $4,1,) [(1.(3).5)]
A, t,<t,,5t,+2D: busy(, 4 ,)

[, t,,< 4,58, +2D + jam + 1

190

[Vs: s # p: —transmitting (s, ; , — 4,111
= tx_begin(g, 7, +1) .
N[ty b, <ty S, +2D: 1, +1218,,—Ay,
N[ty by, < tip Sty +2D + jam + 1
— transmitting (7, ; , — 4,,)1]
= tx_begin(g, 7, +1)
ATty t, < by, <8, +2D:
(3, 6, <tipSty,+2D +jam + 1

fip = Bypg = (ty p = D) S2D + jam + 1

»
[T <4,-4,,: at(qg, S5, £y A
label{g, ') = coll detected]]
= at(q,835,¢,+2D + jam +2) [S13]

A — transmitting (¢, 1, + 2D + jam +2)

A label(g,t, +2D + jam +2) = coll_detected

(11
(T, t,<t,,<t,+2D: [dst s # p: N,
[Ty, tag S, — By + Ay
at(g,S13,25,) N —busy(q, 1, +2D + jam + 1)
A at(g, 835,15, +2D + jam + 1)]1]
= [T, t,<t,,<4,+2D: [dst s #p:
[Tty 1y, Sty — By +A

ps sq:

[, 4,505, +2D + jam + 1:

191

at(g, 530,14 ,) A —busy(q, iz, +2D + jam + 1)
A label(q,t; ,) = other_coll
N at{g, 835,15, +2D + jam + 1)111]
= [Hg, 4, <tp,st,+2D: [Ts:s #p:
[Tty tag Sty,—Bp+ Ay
at(q, $35,t;,+2D + jam +1)
A label(g, t; , + 2D + jam + 1) = other _coll

N —busy(q, s, +2D + jam + DN

(12}
[Tt ,0 1, < by, S, +2D: at(p, 35,4, , +2D + jam + D [(9)]
AT s 2p (Bl tag Sty — By + 840
at(g, §35,1;, + 2D + jam + 1) A —busy(q, iy, + 2D + jam + 1) (&1
A (label(q,ty, +2D + jam + 1) = other_coll (0,1}
V label (g, ty, +2D + jam + 1) = coll_detected)
A — transmitting (¢, t; , + 2D + jam + D]}
= [T, t, < t,,S8,+4D + jam + 1: [D6.8,D6.10]
[T, synch(p, L, ,,9, % 4,535)
A (label(q,t, ,) = other_coll V label(q, t, ,) = coll_detected)
A quiescent(p, s, ,) N quiescent(q, 7, 4)1]
0

Theorems 6.6 through 6.10 show that a single iteration of the right interval search
takes bounded time. Invariants corresponding to SI1 - SI6 and results corresponding to

Theorems 6.6 - 6.10 exists for the left interval search. Because the arguments are very

192

similar, these theorems are stated without proof.

SI7: at(p, S35, 1)

=> (enabled{(p, 1) = at{p,537,1)) A (—enabled(p,t) = at(p, 540,1))

SI8: at(p,8537,¢y)
= [ty 11+ jam <ty at(p, §38,1,) A — transmitting (p, ¢,)
A (label(p, ;) = packet_sent
= at(p,$2,t,) A [T min_size £T <max _size: ty = t1+T +1
ALY : t,-T <1 <ty transmitting (p, 7)) A —busy (p,)1
A (label(p, t,) = coll_detected
= 1, <t +2D + jam +2 N eoll_begin{(p, t,~ jam — 1)
Aat(p, 538, 1.))

ALY 1y— jam — 1 <17 <4, transmitting (p, 17)]

519: at(p,§38,1) A label(p, 1) = coll_detected
= coll begin{p,t — jam — 1)
Aldeg 1<t —jam ~1: tx_start{p, 1)
ALY ¢St < transmitting (p, 1)]

AT Lty +2D + jam + 10 at(p, §35, 7))

SI10: at(p, 540,15

=> [141 19> 142 after (p, 5§40, ¢,)

193

Aty =t;+2D N[Y: ty <t <ty —busy(p,)]
= at{p,835,1,+2D}))
A ({(ty<t+2D Abusy(p,ty) MY 1<t <ty —busy(p,1”)]

= at(p, $46, 1,)]

SI11: at(p, $46,1,) A after (p, 546,1,)
= [Vt <t <ty busy(p,)] A —busy(p, 1)
A (ty—t, < min_size = label(p,t,) = other_coll A at(p, S61,1,))

A (ty—t;>min_size = label(p,t,) = other_tx A at(p,S52,1,))

SEi2: at(p, 561,24
= label{(p, ;) = other coll /N —busy(p,)
ATty ty<ty [V ty<f <ty busy(p,)] A —busy(p, ;)

AT tg 1451 +2D + jam + 11 at(p, §335, t3)]1

Left Interval: Idle Interval

Theorem 6.11:
synch(p,1,.9, t,,535)
A quiescent(p, 1,) N quiescent(q,1,)
A at(p,S35,1,+2D) A label(p, 1, +2D) = idle
= [, synch(p,1, +2D,q,1, ,,535) Alabel(g, 1, ,) = idle

A quiescent(p,t, +2D) N quiescent(q,?, /)]

194

Left Interval: Successful Transmission, Transmitting Station

Theorem 6.12:
synch(p,1,, 9,1, §35) A quiescent(p,#,) A quiescent(q, 1,)
A1 T: min_size <T <max size: at(p, 52,1, +T + 1)
A label(p,t, +T + 1) = packet_sent]
= [T: min_size <T <max_size:
synch(p,,+T+1,9,4,+T +1+4,, §2)
A label(g,t, +T +1+A4,,) = other_tx

A quiescent (p, 1, + T + 1) A quiescent(qg, 1, +T +1+4,]]

Left Interval: Successful Transmission, Observing Station

Theorem 6.13:
synch(p, 1,, g, %, §35)
A quiescent (p, £,) N quiescent{q,?,)
Al 1,<2D: [DT: min_size <T <max_size:
at(p,82,4, +1,+T) A label(p, 1, +14, +T) = other_tx]]
= [, 1,<2D; {3 T: min_size <T Smax _size: [1,

synch(p, 1, +4,+7,4,4,,,82)

g7
A (label(q, 1, ,) = other_tx V label(q,f, ,) = packet sent)

A quiescent (p, ¢, + 1, +T) A quiescent(q, ¢, ,)11]

195

Left Interval: Collision, Participating Station
Theorem 6.14.

synch{p, 1,,9,¢,,835)
A quiescent (p, ¢,) M quiescent(q,{,)
A at(p,S§35,t,+2D + jam +2) A label(p, ¢, +2D + jam +2) = coll_detected
= [Fe, ,u synch(p, 1, +2D + jam +2, 9, ¢, 4, §35)
A (label(q, 1, ,) = other_coll V label(q,t,,) = coll_detected

A quiescent (p, ¢, + 2D + jam +2) quiescent(q, 7, ;)]

Left Interval: Collision, Observing Station
Theorem 6.15:
syach(p,1,,49,,,535)
A quiescent(p,1,) A quiescent(q,1,)
A3t t,<t,,5t,+4D +jam + 1
at(p,835,1,,) A label(p, ¢, ;) = other_coll]
= [T, 4, <t,,St,+4D + jam + 1
[Fe, z synch(p, 1, 5,9, 4, 535)

A (label(q, 1, ,) = other_coll V label(g,s,) = coll detected)

A quiescent(p, 1, ,) A quiescent(q, ¢, ;)11

Resolution Termination

Theorems 6.6 through 6.15 establish that the delay for an iteration of the left and right
interval searches is bounded. The condition of the system when the loop terminates is now

considered. The argument rests on the fact that each iteration of the loop either successfully

196

transmits a packet at some station, in which case the window advances or the window size
is halved. Since arrival times are distinct, this reduction in window size will result in a suc-

cessful transmission within finite time.

Theorem 6.16 states the maximum amount of time between the invocation of the left

interval search and the termination of the left interval search loop.

Theorem 6.16: (Left Interval Search Loop Termination)
at(p, §35,1,) A quiescent(p, ,)
= [Dn: 1<n <log(wp, 1,)): [Tt p bty St +n(AD + jam +2):
at(p,82,1,,)
A (label(p, 1, ,) = packet sent V label(p, 7, ,) = other_tx)
Nt =0ps) 0@, L)
=, =0,)~ wp,5,) >0
Ao,)0,)l

Proof:

The proof proceeds by showing that each of the control flows through the left interval
search enumerated by station program invariants SI7 through SI12 preserves the desired
relationship between the initial and final values of the parameters v and ©. Termination fol-

lows from the assumption that no two arrival times are identical.

(1
at{p, 5§35, 1,) [LHS]
=> (enabled(p,1,) = at{p,S537,1,)) S17]

A {(—enabled (p,?,) = at(p,540,¢,))

2
at(p,537,1,) (D1
= [T, t,+jam <1, at(p, 8§38, ,) A — trapsmitting (p, 1, ,) [SI8]
A (label(p, ;) = packet sent
= at@P, 82,5,) N, =, +T+1
ALY 4, -T <0 <, transmitting (p, ') A — busy (p, £')]
Avp,,) =0p, L)+ T +1-wp,1,)
Nop,ti,) = 0P, 1)
A (label(p, 1; ,) = coll detected
= 4, S, +2D + jam +1 A coll_begin(p, f;, — jam — 1)
Aat(p,838,4,))
ALY 4, ~jam - 107 < ,. transmitting (p, £7)]]
(3
at(p, 838, ,) 1 label(p, 4 ,) = coll_detected 1¢3)
= coll_begin(p, 1, , — jam — 1) [819]

AL, 1, <8, jam ~2: tx_start (p, 1, + 1)

AV 4, +127 <4, transmitting (p, ¢)]

ALt 0 b, <t,+2D + jam +2: at(p, §35,¢,

ep = ,p)

AV, t,,) =0p,5,)+2D +jam + 1+ 0(p, 4,)/2

Ao, t,,) = o, 1,)2]

198

@
at(p, $40, 1,) 169}
= [T, £,>1,: after (p, 540, 1,) 81107
Aty =1t,+2D N[V 1, <t Sty — busy (7,)]
= at(p,§35,1,+2D) N1, , =1, +2D
Ao(p,t,,) = vp,t,)+2D -, 1,)2
N @, t,) = 0P, 4)2)
A((t<t,+2D Nbusy(p,ty) N[1, < <ty —busy(p,)]
= at{p, 546, 1))
(5)
at(p,546,1,,) N after (p, §46,1; ;) [(4)]
= [V t,, <! <t;,: busy(p,)] A =busy(p, 4,) [SI11]
Nt~ by, Smin_size = label(p,;,) = other_coll A at(p,S6L,¢)
Nt ,~ty, >min_size = label(p, ;) = other_tx N at(p,S52,4,)
AP,) = Vs 1)+ (= 1)~ 0P, 1)
Ao, L) = 0@,)]
(6)
at(p,S61,1,) [(5)]
= label(p, % ,) = other_coll A —busy(p, ;) [S112]

A {Ezb}?: fb,p<ti,p: {Vi’: ib,p<z’ <!i,p: busy(p,z’)] A —wbusy(p,?bp)

AT, 1,28, +2D +jam +1: at(p, 835, ¢,)

199

A “(ps te,p) = D(ps !p)+(t£,p _tb,p}—w(p: tp)’lz
A m(pite,p) = (O(P,fp)fz}]

The left interval search ends when a successful transmission takes place as shown in
(2) and (5). Any other iteration ends with o being halved as indicated in (3), (4) and (6). In
the case of an idle step, the window is also advanced and halved as shown in (2). It has
been assumed that @y = 2* for some ». In the worst case, it is possible for the window 1o
be reduced to size 1 without a successful transmission. Since is at most w2 when the left
interval search is invoked, within at most » — 1 iterations, ® = 1. By assumption, a suc-
cessful transmission is guaranteed during this iteration, thus ending the left interval search.
Since each iteration in this case takes less than 4D + jem + 2 time units (Theorem 6.10), the

completion of the left interval search will take less than (n — 1)(4D + jam + 2) time units.

O

Note that the left interval search always results in the window being advanced; some

portion of the arrival time line is eliminated, and a packet is successfully transmitted.

The remaining issue is the boundedness of the right interval search. Theorem 6.17
shows that a right interval search results in either a successful transmission, or a left interval
search followed by a right interval search on a reduced window. The argument is similar to

that presented for Theorem 6.16.
Theorem 6.17; (Left Interval Search Loop Termination)
at(p,82,4,) N op,1,) = 0
= [Tn: 1<n <log(olp, 1)) [T1,,: L, <1, +n’@dD + jam +2):
at(p, 82,2, ,) M op,t.,) = @

A (te,p '—U(ps !ep}— (ﬁ@, :e,p)}

— (6, =P, 1,) ~ O, 1,)) > O]]

200

Proof:

The proof proceeds by showing that each of the control flows through the right inter-
val search enumerated by station program invariants SI1 through SI6 results either in a suc-
cessful transmission or in the invocation of the left interval search which Theorem 6.16

shows to be bounded.

(1
at(p,52,1,) [LHS]
=> (enabled(p,2,) = at(p,54,1,)) [S11]
V (—enabled(p,1,) = at(p,57,4,))
(2

at(p,S4,1,) (D]
= [T, 1, +jam <t ,0 at(p, §5,4,) A — transmitting (p, 1, ;) 1S12]
A (label(p, 1; ,) = packet_sent
= at(p,82,4,) N, = L, +T +1
NIV 4, ~T <0 <t 0 transmitting (p, ') A — busy (p,)]
Aop,4,) = vp,)+ T +1-wp, 1)
Ao, t,) = 0@, 1,)
A (label(p, ; ,) = coll_detected
= 4, S, +2D +jam +1 A coll begin(p, ¢, — jam — 1)
Aat(p,S85,4,)

ALY 4, — jam — 1247 <t ,. transmitting (p, ¢7)])]

201

(3)
at(p, 55,1 ,) A label(p, 1 ;) = coll_detected (2
= coll_begin(p, ; , — jam — 1) 813}
AT 1, S8, jam — 2 tx_start(p, 1, + 1)
AV t, +1< < 4; p+ transmitting (p, 3]
A3t 0 1, <1, +2D + jam +2: at(p, §35,1,,)
Ao(p,t,,) = vp,5)+2D + jam + 1+ 0p, 1,)/2
Mo,) = op,)2
4
at(p,57,1,) (D]
= [Ty ty>1,: after (p, 57, 1,) [S14]
Aty =1,+2D A[YY: 1, < <ty —busy(p,)]
= at(p,82,4, +2D) A t,, = 1, +2D
Aop,t.,) = 0P, 5L)+2D —-op,1,)
Mop,t,,) = op,4))
A((t,4,+2D Nbusy(p, i) ANV 1, <7 <ty0 —busy(p,)]
= at(p, §13,1,))]
(%)
at(p,§13,4,,) A after (p, 513,14 ,) [(4y
= [V t,, <t <1, busy(p,)] A —busy(p, 4 ,) 18157

A{t;, — 1y, Smin_size = label(p, ;) = other_coll A at{p,530,¢,))

202

A (t; =1y, >min_size = label(p, ;) = other_tx A at(p,82,4,)
A U(P,Z;p) = U(P,fp)+(fi@‘fb@)_m@>fp)

A m{p?ri,p) = @(p,fp))

(6)
at(p, $30, 4 ,) (5]
= label(p, ;) = other_coll A —busy(p,,) [SI6]
N[ty ty,<tip: [V 4, <8 <t;,: busy(p,)] A —busy(p, 1,)
ATt 08,2 ,+2D +jam +1: at(p, 835,14, ,)
N, L) = 0@,)+t p — 15) — P, 1,)2
A oP,1,,) = 0@,)21
(7

at(p,535,¢,)
= [Dn: 1<n<log(op,,): [T, L, <1, +n@D + jam +2):
at(p,S2,¢, ,)
A (label(p, ¢, ,) = packet sent V label(p,z, ;) = other_tx)
Mgy =0, % ,) =@, 1))
~({t, v, 5,) -0, 1) >0
Nop,t)sop,)]

In the worst case, the sequence of events indicated in (7} will be repeated until is 1,
at which point a successful transmission is guaranteed. This takes at most » repetitions,
where @, = 2°. The result then follows from (2), (3), (4), (5), and (6).

203

6.5. The Aggressive Asynchronous FCFS Protocol

The conservative asynchronous adaptation of the FCFS protocol has now been shown
to have bounded delay in the worst case. An adaptation is now proposed which takes a more
aggressive approach to interpreting network events associated with collisions. In the ideal
scenario, this protocol achieves better throughput than the conservative protocol, particu-
larly as the size of the network increases. However, it will be demonstrated that the proto-
col is not free from deadlock under certain circumstances. A deadlock detection and
recovery mechanism for the protocol is presented. The recovery protocol is a resolution
procedure based on unique addresses which can be generalized to a novel topology-

dependent resolution protocol.

The collision handling portions of the conservative protocol (statements S26 and S57)
cause the protocol to wait for an interval equal to the worst case duration of a collision
(2D + jam) after the channel is detected busy before proceeding with the next step in the
resolution process. This prevents any ambiguity in interpreting signals in the event that a
non-contiguous collision should occur, as illustrated in Figure 6.2. However, many colli-
sions are actually over much sooner, and in these cases, the extra delay is not necessary.
The aggressive protocol eliminates the extra delay. The specification of the aggressive pro-
tocol is identical to that for the conservative algorithm with the exception that the delays of
statements S28, 831, 559 and 562 are eliminated.

6.5.1. Performance of Aggressive FCFS

A best-case estimate of the performance gains possible for the aggressive protocol is
produced from the analysis of the conservative FCFS protocol by Towsley and Venkatesh.
In [TV82], the performance of the unslotted FCFS protocol is discussed in terms of epochs,
an epoch being the interval starting with the stations conducting a right interval search on a
window of the default size, and ending when the protocol successfully transmits a packet
while searching the right interval. If a collision occurs, the epoch consists of all algorithms
steps required to produce a successful transmission from the right interval search, otherwise
the length of the epoch is the time necessary to detect an idle step or to transmit a packet.

The following expression is derived for the expected time to complete an epoch in the

204

- m
.: o
o

Time

Figure 6.2: A non-contiguous collision.

unslotted FCFS protocol, given than n arrivals occurred during the currently enabled inter-

val:

(ED

205

Elt|A] = {,(m)[1 - Q=pY1+n(1—-p) ' pE[t|A,]

a1l n L
+ 3, [i](l—p)"“*p‘E{t%AiI}/H—(1~p)"——;v"}, nzl,
i=1

where the following notation is used:

t,(n}

The propagation delay for the network, expressed as a fraction of packet

transmission time.
The event that there are n messages in the currently enabled window.

The probability that there are n messages in the currently enabled win-
dow. Towsley and Venkatesh assume that the arrival process is Poisson,

SO P(A,) = (A0)'e ™n!, where o is the length of the interval.
A random variable for the time required for an epoch to complete.

A random variable for the fraction of a window (enabled interval)
resolved during an epoch. This variable is necessary due to the fact that
the algorithm “discards ” the previous right interval when a left interval

is subdivided.

The average duration of a collision among n messages. Towsley and
Venkatesh assume that for protocols with collision detection, 1.(n} = 20

for all collisions.

The quantity ¢, is incorporated into the algorithm presented by Towsley and Venkatesh. By

altering the value of 7,(n) in equation 1, the effect of a lower collision detection time on the

performance of the algorithm can be investigated. In Figure 6.3, the maximum throughput

for the protocol for various network lengths has been plotted for several values of 7,(n).

Throughput is taken to be the value of the Poisson parameter A at which the expected value

of ¢ is equal to the expected value of s times the default window size. An expression simi-

lar to (E1) is given in [TV82] for E[s]. The propagation delay is again normalized to the

duration of a packet transmission, and throughput is expressed as a percentage of the capa-

city of the channel. The lower curve is the performance of the conservative asynchronous

FCFS protocol, i.e. the collision clear time is 2c. The upper curve is the ideal case where

206

0.9
0.8
0.7
0.6
0.5
S (%) 0.4
0.3

0.2

0.1

e Coll. clear = Z X prop.
o Coll. clear = prop.

a Coll.clear=0

Propagation

Figure 6.3: Performance benefits of aggressive FCFS. Propagation delay is normal-

ized to packet transmission time, § is throughput expressed as a percentage of the

capacity.

collisions are instantaneously detected and aborted so that the term in equation (E1) for the

time due to collisions is eliminated. The middle curve shows a reasonable average case

where collision duration is one propagation delay. Figure 6.3 shows that for very short net-

works, there is little gain, but as network length increases, performance of the aggressive

protocol can be significantly better than that of the conservative protocol. For networks
whose length is half the transmission time, the conservative protocol achieves a peak
throughput of 48% of capacity, while the ideal aggressive protocol peaks at 66% and the

average case at 55%.

6.5.2. Potential Deadlock

These figures assume that the protocol operates correctly. However, the algorithm as
presented makes no provisions for distinguishing between new collisions and non-
contiguous portions of old collisions, and as a result, is prone to deadlocks in a particular
situation which will be discussed below. This emphasizes the effect that design decisions
can have on the correctness of protocols adapted from slotted to unslotted networks.
Modifications to correct this aspect of the algorithm will be presented. Since the actual
change to the algorithm is slight, the algorithm description will not be repeated. References

to the algorithm refer to the previous description.

The deadlock scenario for the aggressive FCFS protocol is shown in Figures 6.4 and
6.5. Figure 6.4 shows the situation on the channel resulting from the initial transmissions of
a set of stations which produces a particular kind of non-contiguous collision. Figure 6.5
uses a time line to show how the actions of the protocol affect the protocol’s enabled win-
dow. In Figure 6.4, the pairs of stations at opposite ends of the channel have been “syn-
chronized” by a successful transmission by a station near the center of the channel. All four
of these station have arrival times that lie in the later half of the current enabled window.
For the sake of simplicity it is assumed that all of the enabled stations begin to transmit at
the same time. This time is called ¢,. Figure 6.5(a) shows the arrival times of the four sta-
tions and the currently enabled window. The resulting collision is of the non-contiguous
type, with two localized subcollisions which are detected and aborted quickly. There is an
idle period on the channel at each station between the end of the localized collision and the
detection of the signal from the colliding pair at the opposite end of the network. In the
conservative algorithm, at time ¢ the colliding stations begin to wait for two propagation
delays to allow the channel to clear. In the aggressive algorithm, the stations proceed

immediately to the subdivision of the interval. Since the arrival times are in the later half of

208

0 a b c d D
i] i]

.t N & H i &

1 Time
t, \L
ty

]

:

| g
: PR

P b

\ | 4

Figure 6.4: Channel behavior for the aggressive FCFS deadlock scenario.

the current window, when the subdivision is performed, all four stations will defer and wait
for colliding stations in the early half of the window (now the enabled window) to transmit.
At this point, the enabled interval is as shown in Figure 6.5(b). During this wait, at time ¢,
in Figure 6.4, the collisions from the opposite end of the channel will be detected. This
causes the stations to assume that a collision occurred among enabled stations in the current
window, when, in fact, no such stations exist. Since a collision occurred, the current inter-
val is once again subdivided, with the first half enabled, as shown in Figure 6.5(c). Nothing
oceurs, so the stations conclude that the phantom colliding stations must be in the latter half
of the interval. This interval is once again subdivided... ad infinitum, as shown in Figure
6.5(d). This problem is similar to the one uncovered in the Massey improvement to the
Capetanakis Tree protocol [Mass80] when coins are flipped immediately after a collision

followed by an idle slot.

209

p‘l p2 pD-1 pD-Q
; by, |
frrememmrememmee e foreeene]
63 v

T

,é..._

é..._
R |

(b) Window reduced -- false collision

p1 pz pm pD-Z
RRR .
; % ;
frmeemendt i
®)
(c) Window reduced -- idie detected
p} pz pm pD-z -
Y . -
b---4 1
© v

(d) Right subinterval reduced -- idle detected

Figure 6.5: Interval and arrival time reladonship for the aggressive FCFS deadlock

scenario.

210

More formally, consider a network with channel of length D. A successful transmis-
sion originating from the station attached to the center segment has just completed. Let
there be four stations, py, Py, Pp—s and pp_; with packets to send, where the subscript indi-
cates the segment to which the station is attached. This set of stations will be referred to as
X. If 7 is the current time, v is the current delay, ® the current enabled interval, and
arrival_time is the arrival time for the current packet at a station, let the following condi-

tion be true:

(1
[Vp: peX: 1—v— /2 <arrival _time(p) <t-]

The station is thus enabled and its arrival time is in the latter half of the current window.
Since a successful transmission has just completed, all stations are at the beginning of the

right interval search.

2
[Vp: peX: at(p,S3,1) M quiescent (p,T) A enabled (p, 7)]
= [¥p:pe X:in(p,S4,7) M tx_begin{p, T+ 1)] [S11]
= [Vp, e peX: [V t1</ <t+e transmifting (p,) [153
A ((e = tx_time(p)—1) V coll_begin(p, ¢ +€))]

(2) indicates that the four stations of interest have begun transmission and will continue to
transmit until their packet is successfully transmitted or a collision occurs. The relationship

between the interval and arrival times at this point is as shown in figure 6.5(a).

3
(& begin(py, T+ 1) Atx begin(py, T+ 1) AMA,,, =1) [

=> (coll_begin(p, T+2) A coll_begin(p,, t+2)) [Th6.4,Thil}

211

@
(tx_begin(pp_1, T+ 1) N &x_begin(pp o, T+ D AA, , =1) (1
= (coll_begin(py_;,T+2) N coll_begin{pp_, T+2)) [Th6.4,Thi1]

These statements indicate that the pairs of stations have collided among themselves. Since
the stations are one segment apart, the collisions are detected one tick after the transmis-
sions begin. (Note that having the outside stations begin transmission one tick later than the

inside stations would not have affected the outcome. The two collisions would still occur.)

&)
[Ip: peX:in(p,54,17) A ix_begin(p,t+ 1) A coll_ begin(p,t+2)] [(2),(3),(4)]
= [Yp:peX: x end(p, 1+ jom +3) [16]
A label(p, T+ jam + 3) = coll_detected]
= [¥p: peX: after(p, 54,1+ jam + 3}]

Upon detecting the collisions, the stations delay for jam ticks, then end their transmissions.

At this point the transmit procedure terminates. Consider station p,.

©
—busy(py, t+jam +3+4,) [(5)]
= —busy(p, 1+ jam + 4). [D6.5]

It is also clear from (2) that

(N

busy(py,t+1+4,)

This indicates that the signal from pj,_, has reached p;. As long as 4,

..0: 18 larger than

Jjam + 4, there will be an idle interval on the channel at segment 1 between the end of the

signal from station p, and the beginning of the signal from station p,_,. This conditon is

212

assumed to hold.

(8
(after (p1, §4, T+ jam +3) [(5).6)]
A label(pq, T+ jam +3) = coll_detected A —busy(p, T+ jam +4))
= (at(pq, S35+ jam +4) [SI3]
Av(py, T+ jam +4) = VP, 1)+ jam +4 + 0Py, T)/2
Aa(py, T+ jam +4) = Op, TH2)
= —enabled(p, T+ jam +4) [C6.2,(1)]

The station has subdivided the interval in response to the collision, resulting in the arrival
time of the station being outside the enabled window. This situation is shown in Figure

6.5(b) One execution of the left interval search has been completed.

)
(at{py, S35, T+ jam +4) A —enabled(p,, T+ jam +4)) [(8)]
= in{pq, $40, T+ jam +4). I[SI7]

Since the station is not enabled, it waits in statement S40 for transmissions by stations in

the enabled window. Invoking the assumption that 4, , > jam +3,

(10)
(in(py, 840, T+ jam +4) N busy(p, T+1+4,,)) [, (9]
= in(p, §46,1+1+4,,) [S110]

As noted, the signal from the stations at the opposite end of the channel reach p; at
T+ 1+4,, ,. This causes the station to monitor the duration of the detected signal, which

appears to station p to have originated from a station which is currently enabled. As nofed,

there are no such stations.

213

(1)

(tx end(pp_, T+ jam +2) AT+ jam +2+ A,

o < THjAM 244,) (53]

= —busy@p,T+jam +2+4,) [Thil]

The fact that all stations ceased transmission at © -+ jam + 2 as indicated in (5) allows us to

determine that p, is no longer busy when that end of signal has propagated from pp_; to p;.

(12)
in(py, $46,T+1+4,) [(10),(11)]

A —busy(py, T+ jom +2+4, ,) N jam + 1 <min_size [A6.7]

= (label(p, T+ jam +2+4,,) = other_coll [S111,8112]

-1 1

Aat(py, S35, t+jam +2+ 4,)
Avlp,tHjam +2+4,)

= Wp, T+ jam +4)+A +@{p(, T+ jam +4)

-1 1

Aop,T+jam +2+4,

ps) = @@, T+ jam +4)2)

= in(p, §40,T+ jam +2+4,). [SI7]

g1 1

Axiom A6.7 indicates that the minimum packet transmission time is larger than the max-
imum collision duration. This allows stations to determine that a short transmission is a
collision fragment, as in this case. Upon determining that a collision involving other sta-
tions has taken place, the interval is further subdivided, resulting in the situation shown in
figure 6.5(c). This completes a second iteration of the left interval search. The same argu-

ment can be made for all of the stations in ¥,
[Vp:peX: tx end(p,t+jam +3) A in(p,S40, 1+ jam +2+ 4, .31 [(5),(12)]
= [Vp:peX: after(p,544, T+ jam +2+4, , +2D)

Avp, T+ jam +2+A,

wp: 2D) = 0P, T+ jam +2+ 48,)+2D -

)
o
ErN

Aop,t+jan+2+4,

D_§1+2D) = o(p, T+ jan +2+Apo_lpl)/2}

= [Vp:peX:at(p,835,1+jam +2+4,, , +2D)

N — enabled (p, T+ jam +2+Ap

-1 1 + 2D>}

All signals from the original collision have completed their propagation, so the enabled sta-
tions observing the channel detect an idle step. Since their wait was in response to a per-
ceived collision, the algorithms advance the window by the size of the current interval and
immediately subdivide the interval again, since all of the (phantom) colliding stations must
have been in the current right subinterval. This completes a third iteration of the left inter-
val search. The situation is shown in 6.5(d). All subsequent left interval searches will have

the same result, leading to a fault when the resolution of © is reached.

6.5.3. Deadlock Detection

(Given that the potential for deadlock exists in the aggressive protocol, the possibility
of detecting the deadlock and recovering from it is now considered. The demonstrated
deadlock occurs because the algorithm erroneocusly specifies subdivision of an enabled win-
dow which contains no arrival times. The suggested deadlock detection mechanism is to
specify some threshold for the number of subdivisions performed or the minimum size for

the enabled interval.

Most computer systems keep time using integer valued registers. This is in accord
with the integer clock of the model used here, so the following scheme for detection of
deadlocks is suggested: let the initial value of the interval, w, be a power of two, and let the
splitting fraction for the algorithm be 1/2. A deadlock is detected when the value of @
becomes zero. This will occur whether the deadlock is due to the situation described in
Section 6.5.2 or due to multiple stations with identical arrival times. The protocol can thus
test the value of © whenever a subdivision is performed and respond appropriately when the
value becomes zero. This response could range from returning an error message and declar-
ing the network broken, as is the case for most Ethernet interfaces when the collision limit
of the backoff algorithm is reached, to attempting to recover from the deadlock in some

fashion. Using this scheme, a deadlock is detected after at most log(tg) X 2D ticks. This is

215

similar to the approach taken in [Humb86] to producing a Limited Sensing algorithm.
Direct application of the methods presented in [Humb86] would require the introduction of

another counter to keep track of idle steps in the algorithm.

6.5.4. Deadlock Recovery

Having suggested a method for detecting the deadlock produced by the aggressive
adaptation of the protocol, the following possible recovery strategies are considered. One
possible strategy is to remember the protocol state at the point when the last signal was
detected and to attempt to “roll back” to that point and take the correct action. However,
this assumes that the only type of deadlock that occurs in the protocol is the one demon-
strated here, and this may not be the case. As discussed in the previous section, the fact that
most computers use integer time keeping means that in normal operation of the protocol it
is possible for two participants to believe that they have packets with identical arrival times,
a situation which will also result in a deadlock. The deadlock detection scheme works
equally well in both situations, the recovery scheme should also handle both of the deadlock

situation equally well.

The FCFS algorithm bases collision resolution on the arrival times of messages. In
the case of the deadlocks described, this method of performing the resolution has failed,
therefore, some other resolution criterion for recovery from deadlocks must be used. Taking
a cue from the work of Capetanakis, a resolution algorithm based on unique addresses as
the backup resolution mechanism is chosen. The resulting protocol is essentially a version
of the Tree protocol [Cape79] for finite population networks which maintains the con-
sistency of the parameters for the arrival time resolution. Thus, when the deadlocked sta-
tions have been allowed to transmit, the FCFS algorithm can resume at the point where it
left off. The recovery mechanism must run until all deadlocked stations have transmitted,
since a resumption of the initial resolution algorithm with more than one of the deadliocked

stations still active would result in another deadlock and further wasted time.

The recovery mechanism is implemented by checking the value after each subdivi-
sion and executing the procedure space_resolve() if the value is 0. The following enabling

condition is used in the recovery algorithm:

216

space_enabled = enabled (C6.3)
A D —top offset —interval <my_address <D —top_offset,

where my_address is assumed to be a unique address assigned to the station. The resulting
protocol prioritizes the stations according to address; stations with lower addresses transmit
before stations with higher addresses. Note that in the case of the phantom-collision
deadlock, the FCFS property is not maintained by the recovery algorithm, but in the case of
identical arrival times, it is. Busy and transmitting are shared variables, as before. The fol-
lowing are constants accessible to all routines: D, LEFT, RIGHT, idle, packet sent,
other_tx, coll_detected, other_coll, min_size. The structure of the code is reminiscent of the
left interval search in the main statement of the algorithm, since it is always the case that a
collision has occurred when the space_resolve() routine is called. However, the routine

does resolve the entire address space, as noted above.

procedure space_resolve(value tx_time, w, busy;

value result transmitting, packet _to_send, v, label);
begin
var interval, top_offset, tx_start, tx_stop, wait_start:INTEGER;

(R1) interval = D/2;
(R2) top_offset := interval;
(R3) push(LEFT);

(R4) while interval < D do begin
(RS) if space_enabled then
begin
(R6) tx_start :=1;
(R7) transmit (x_time, label);
(R8) tx_stop :=1-1;
end
else /* if not space_enabled */
begin
(R9) wait_start := 1;
(R10) wait(busy or 2*D);
(R11) if not busy then
begin
(RI2Z)vi=v+2*D;

217

(R13) if tos() = LEFT then
begin
(R14) backup(interval);
(R15) push(LEFT);
(R16) interval := interval/2;
end
else
(R17) backup(interval);
(R18) top_offset := top_offset - interval;
{R19) label := idle;
end
else /* if busy */
begin
(R20) tx_start :=T;
{R21) wait (not busy);
(R22) tx_stop :=T;
(R23) if (tx_stop - tx_start) < min_size then
(R24) label := other_coll;
else
(R25) label := other_tx;
end /* if not busy */
end /* if space_enabled */

(R26) if label = other_tx or label = packet_sent then
begin
(R27) if label = other_tx then
(R28) v :=v + (tx_stop - tx_start);
else
begin
(R29) v :=v + tx_time + 2;
(R30) packet_to_send := FALSE;
end
{R31) backup(interval);
{R32) top_offset := top_offset - interval;
end
(R33) else if label = coll_detected or label = other_coll then
begin
(R34) if label = coll_detected then
(R35) v = + (tx_stop - tx_start) + 2;
else
(R36) v = v + (tx_stop - wait_start);

218

(R37) push(LEFT);
(R38) interval := interval/2;
(R39) top_offset := top_offset + interval;
end
end /* while ¥/
end /¥ procedure space_resolve ¥/

procedure backup (value result interval);
begin
(B1) while tos() = RIGHT do begin
(BZ) interval := interval*2;

(B3) pop(;
end /* while ¥/

(B4) pop();
(B5) push(RIGHT);
end /* procedure backup */

The procedure space_resolve () keeps a stack recording whether the intervals resolved
so far (“subtrees” in the nomenclature of Capetanakis; “intervals” will be used here to
preserve consistency with arrival time resolution) were left or right intervals, with “left”
indicating the interval containing lower addresses and “right” indicating the interval con-
taining higher addresses. The stack is manipulated by the push(), pop(), and tos() calls,
which respectively push an element onto the top of the stack, pop the top element from the
stack, and return the value of the top element of the stack. The procedure backup(} is used
to determine how far “up the tree” to return when a success or idle step occurs, i.e. backup()
determines the correct interval size for the next step of the algorithm given the contents of

the stack.

Space resolution is analogous to arrival time resolution. The highest address, here
represented by D, is analogous to 1, the current time in the arrival time resolution. The
varigble top_offset is similar to v, indicating how far to the right the current address window
starts. The variable jnierval performs the function of o, indicating the size of the enabled

address window.

219

The addition of an address resolution phase results in an instance of a class of hybrid
protocols which can be thought of as time-space resolution protocols, suggested to the
author by Simon Lam [Lam88]. In general, such a protocol could use some function of the
packet arrival time and the position of the station on the network as the criterion for subdi-
vision. The resulting protocol should have similar analytic properties to the original FCFS
protocol, though the FCFS property would be lost. The FCFS protocol is an example of
one extreme, the time resolution protocol. An example of the other extreme, the space reso-

lution protocol, is discussed in Section 6.6.

It should also be noted that using the suggested deadlock detection method and the
space_resolve() recovery procedure allows new stations to join the network without having
complete knowledge of the channel history. Two factors make this possible. First, the
deadlock detection method guarantees that no more than log () idle steps will occur before
the space_resolve() procedure is invoked. Second, the space_resolve() procedure will pro-
duce a successful transmission within at most log (D) steps, where D is the number of seg-
ments (or stations) on the network. Thus, there can be at most log (wg)xlog (D) idle steps in
a row. A station observing the channel idle for longer than this is guaranteed that the
currently enabled interval is a right interval and that the size of the interval is @,. While the
likelihood of an idle period of this length depends on the load on the network, it introduces
the possibility of joining the protocol in progress. Should this prove impossible within a
reasonable amount of time, other measures to reset the state of all participating stations
would be necessary. A noise burst of duration greater than the maximum packet transmis-
sion time (or any other unique globally detectable event) could be used to signal that such a

reset is needed.

6.6. The Space Division Multiple Access Protocol

As noted, the FCFS protocol is an example of one of the logical extremes of the class
of time-space resolution protocols. This section discusses an example of the other extreme
of the class, which will be referred to as Space Division Multiple Access (SDMA). The
protocol discussed here is a specialization of protocols such as the Capetanakis Tree proto-

col which use a unique address to perform collision resolution. These protocols do not

220

require any correlation between the address of a station and the location of the station on
the network; this simplifies adding new stations to a network. It is simply necessary to find
a unique address to assign to the new station. However, it is possible to imagine perfor-
mance improvements which could result from using information about the relative positions
of stations on the network. The protocol presented here exploits one such improvement.
(Various unidirectional broadcast protocols such as Expressnet [TBF83] and Hymap
[RG85] have made use of upstrearm/downstream positional information. These protocols

are intended for use on folded bus or dual bus topologies.)

The SDMA protocol is similar to the address-based Capetanakis protocol with one
important difference; if the address of the station is interpreted as a location (e.g. distance
from one end of the cable), then the collision clear time required for the conservative imple-
mentation of the protocol in an unslotted medium can be reduced with each address space
subdivision. To see why this is so, consider the situation when a collision occurs in such a
network. {Assume that the splitting fraction is one half.) Divide the stations into two sub-
sets, one subset containing addresses less than N/2, where N is the number of positions on
the network, and the other subset containing stations whose address is greater than N/2.
Since addresses correspond to locations, this corresponds to a physical partitioning of the
cable, with all the stations in the enabled subset on the same half of the network. This
means that the maximum propagation delay between enabled stations will be half of the full
propagation delay of the network. So, should another collision occur, the collision itself
may be of shorter duration due to the proximity of the colliding stations, and the subsequent
channel clear time will be half what it was for the previous step. Likewise, it will take only
half as long to detect an idle step. While this protocol is equally suited to implementation
on slotted or unslotted networks, the savings are even more important on unslotted net-

works where the intentional collision method is used to signal the end of idle steps.

There are several restrictions imposed by this scheme, As presented, SDMA imposes
priorities by location; stations with lower addresses will transmit earlier. Under extreme
loads, this will result in a round-robin ordering of transmissions. It is possible to alleviate
this 1o some degree by alternating the order in which the subsets are resolved, and so on.

Stations are required to continuously monitor the channel at all dmes as in FCFS, etc. As

221

presented, SDMA also expects a single linear cable, a significant topology limitation. The
protocol can be adapted to handle branching topologies by mapping addresses fo create a
logical linear cable with length equal to the sum of the lengths of the branches. On sparsely
populated cables, further gains can be made by keeping track of the unused slots. If an

enabled range of addresses consists wholly of unused slots, a step can be skipped.

Chapter 7

Conclusions

This thesis argues for the experimental investigation of data link level protocols for
local area networks. This case cannot be made too strongly; in the area of broadcast bus
networks, one method came 1o dominate the marketplace before other glternatives were
ever implemented and evaluated. By the time this work was undertaken, it was all but
impossible to perform the soris of experiments necessary without going to the effort of cus-
tom fabricating hardware. In the interim, the situation has gotten worse rather than better;
today, protocols seem to be issued as official standards before the first interface is ever built

and tested.

7.1. Measurement Results

Measurement experiments were conducted on protocol implementations representing
three general strategies for multiple access on broadcast bus networks. Ethernet is an exam-
ple of a technique referred to here as random backoff. The Enet IT protocol is an example of
an unslotted Collision Resclution Protocol. The Virtual Time CSMA/CD protocol is an
example of a Collision Avoidance Protocol. The experiment design subjected each protocol
to artificially generated loads for ten different load patterns with varied packet length and
arrival time distributions. The Enet I protocol was also used for normal operation of the
testbed network for several months and performed satisfactorily. The importance of these
studies is manifold. First, the Enet II protocol and the VICSMA/CD protocol had not

223

224

previously been implemented and studied in this way before. Second, no measurement stu-
dies of Ethernet which examined the behavior of the protocol under heavy loads with realis-
tic traffic mixtures had been previously undertaken. Third, no direct comparison of imple-
mentations of the three approaches to collision handling represented in these three protocols

had been done.

7.1.1. General Behavior of the Protocols

The measurement experiments produced a consistent picture of the relative perfor-
mance of the three protocols across a wide range of load patterns and operating conditions.
Under the normal operating conditions (offered loads of between 0 and 10
Megabits/second), Ethernet and Enet II produced throughputs closely matching the offered
load, with Ethernet showing a slight edge in peak throughputs as the load approached
saturation. Hampered by the overhead necessary for manipulating the virtual clock, the
VTCSMA/CD protocol was not as effective under normal loads. When the offered load
exceeded the capacity of the channél, both Ethernet and Enet II suffered a decrease in
throughput followed by a restabilization at a lower throughput level. The stable level for
Enet II was typically slightly higher than that for Ethernet. For Ethernet, we believe that
the drop in throughput was due to the combination of an error in the backoff algerithm sup-
plied in the 4.3BSD Unix device driver for the 3Com Ethernet interface, transmission over-
head in the interface, and the small host population participating in the experiments. For
Enet II, we believe that the drop in throughput was also due to a combination of factors,
namely, the increase in the percentage of packets suffering two or more collisions before
transmission (and thus possibly entering the deferred state) as the offered load increased
past the capacity of the channel, the larger unit of delay used in the implementation due to
the clock resolution problems discussed in Chapter 4, and the transmission overhead and
host population factors mentioned for Ethernet. Under overloaded conditions,
VTCSMA/CD produced stable throughput levels significantly higher than the other two
protocols except in the situation where a large percentage of small packets were included in

the traffic mix.

225

The delay behavior was also consistent across all of the load patterns investigated.
Under normal loads with minimal contention, Ethernet and VTCSMA/CD experienced
roug}ﬁy the same delay, while Enet II incurred the initial gating delay specified in the algo-
rithm. Without the gating delay, however, the delay curve for Enet I would have matched
the curve for Ethernet very closely. Both Enet II and Ethernet experienced sharp increases
in delay when the offered load reached the saturation point of the channel, while
VTCSMA/CD experienced only slight increases under heavy loads. In some cases, mostly
where the load was very heavy and some small packets were included in the traffic mixture,
Enet II experienced lower average delay under overloaded conditions, but in most cases, the
distance between the two curves merely decreased from the contention free portion of the
curves. We note that a relationship more closely matching a correct implementation of the
Enet II protocol could be gained by uniformly subtracting 450 microseconds from the Enet
II delay. (This is the difference between the correct initial gating delay and the delay used
in the implementation presented here due to the clock resolution.) In this case, Enet II

would consistently experience lower average delays for the overloaded portion of the curve.

The relation of the delay variance curves was also consistent across the various loads.
As one would expect, when contention was light, the variance of the delay was low. As the
lpads approached saturation, the delay variance increased with contention. The increase
was slight for VTCSMA/CD, indicating the effectiveness of the collision avoidance stra-
tegy it employed. Note, however, that this variance effect is the result of the lower collision
rate of the Virtual Time protocol rather than a feature of the backoff algorithm. The delay
variance increase was more severe for Enet II, but was most severe for the random backoff
protocol, Ethernet. This indicates that the the unslotted collision resolution method used by
Enet II is a genuine improvement over the random strategy exemplified by Ethernet.
Further evidence for this conclusion is drawn from the fact that the collision rates for Ether-
net and Enet II were nearly identical for all load patterns and all offered loads, indicating
that the variance improvement for Enet II is in fact a result of improved performance on 2
packet by packet basis. This result clearly indicates the desirability of unslotied Collision

Resolution Protocols for networks where heavy loads are the norm.

226

7.1.2. The Effect of Exponential versus Fixed Arrivals

The extra overhead involved in generating exponentially distributed arrivals makes
direct comparison of peak throughputs achieved by the two arrival processes of little value.
However, we can make some general observations about the effects on the behavior of the
protocols of the two arrival processes. The relative performance of the three protocols was
not changed by the use of exponential arrivals. The observed bistability of Ethernet and
Enet I was moderated under the exponential arrival process, though it is difficult to say
whether this was a result simply of the lower packet generation rates or whether the fixed
arrival process generated some more complex interaction or synchronization among the
small experimental host population. The most noticeable difference between the behavior
of the protocols under the two arrival processes was the collision rate. For fixed interpacket
arrivals, the collision rate remained very low until the load reached the capacity of the chan-
nel, then increased dramatically. For the exponential arrivals, contention began at a loads
well below the channel capacity for the Ethernet and Enet II protocols. VICSMA/CD was
not strongly affected by the change in arrival process. This is because whatever the arrival
process is, VICSMA/CD spreads transmission attempts relative to the end of busy periods
using the virtual clock. This effect was possibly heightened in the LANT implementation
by the overhead of operating the virtual clock, which could have been a further source of

variation even in the fixed arrival case.

7.1.3. The Effect of Small Packets

As expected, the introduction of small packets into the packet length distribution had
the effect of increasing contention and thus lowering throughput and increasing delay for all
three protocols. VTCSMA/CD, which for the most part seemed immune to changes in the
load pattern, did experience increased delay and delay variance for the load pattern contain-
ing the highest percentage of small packets. Throughput for the protocol was strongly
affected, and the average delay became very close to that of Ethernet under heavy loads.
Enet 11 also showed slightly greater deterioration of throughput and average delay than Eth-
ernet as the percentage of small packets in the load pattern were increased. The clock reso-

lution arguably contributed to this behavior.

227

7.2. Adapting Unslotted Protocols to Slotted Networks

The experiments discussed here indicate the desirability of applying collision resolu-
tion techniques to the multiple access problem for unslotted broadcast bus communication.
The successful implementation of Enet II and VICSMA/CD on such a network also indi-
cates that it is possible to use these techniques, which previously had been designed strictly
for time slotted media, on such unslotted networks. The Enet II protocol provides an
important technique, signaling the end of idle periods with intentional collisions, for such
implementations. This makes it reasonable to begin investigating the adaptation of slotted
protocols for use on unslotted networks. However, it is also necessary to have the ability to
provide formal assurance that such an adaptation is correct and maintains the salient
features of the slotted version. Until recently, little progress had been made on general
methods for proving formal properties of broadcast protocols. The development of Jain’s
model remedies this situation and makes investigation of the slotted-unslotted adaptation

practical.

Chapter 6 presents an extension of Jain’s model fo handle collision detection more
naturally and states the channel axioms reflecting the change. Subsequent results are
developed describing the essential behavior of the network in the event that collisions
occurred. These results are in turn used to provide a proof of bounded delay for the resolu-
tion of one contention epoch of an asynchronous version of Gallager’s First Come First

Served protocol.

A modification of the protocol specification which involves interpreting the end of a
collision more liberally and thus potentially gaining efficiency is proposed. The resulting
protocol is referred to as Aggressive FCFS. A demonstration is given that under some cir-
cumstances, this protocol can suffer deadlocks. This demonstration makes two important
points; first, that formal proofs of correctness are vital to effective conversions of this sort
and second, that collision handling behavior is the crucially difficult matter in such conver-
sions. One of the important properties of the asynchronous version of FCFS is that all sta-
tions detect the channel clear following a collision within one propagation delay of each
other. In the aggressive version of the protocol, this difference can be up to two propaga-

tion delays.

228

A deadlock detection and recovery method for the protocol is suggested in Chapter 6.
Detection is performed by limiting the number of interval subdivisions that the protocol
performs. This method is a variant of the method used by Humblet in [Humb86] for Lim-
ited Sensing protocols. This is a natural method, given that most computer systems keep
time with integers; when the enabled arrival time window of the protocol reaches zero, the
system concludes that a deadlock has occurred, either due to the deadlock situation we
describe or due to the fact that two stations believe they have the same arrival time. The
recovery mechanism is a second resolution process which uses unique addresses rather than
arrival times as the basis for the resolution. In the case of the aggressive deadlock scenario,
the FCFS property is violated. However, since the identical-arrival deadlock can occur
even in the conservative version of the protocol, this detection/recovery method is still

necessary, and in this case the FCFS property is preserved.

7.3. Space Division Multiple Access

The FCFS plus deadlock recovery protocol can be thought of as a member of a class
of protocols suggested by Lam [Lam88] that perform collision resolution based on a func-
tion of both space and time A protocol is suggested that lies at the endpoint of this contin-
uum of protocols, one which performs resolution strictly on the spatial location of stations.
This protocol is referred to as Space Division Multiple Access. The interesting aspect of
this protocol is that each subdivision is in fact a physical reduction in the size of the net-
work upon which resolution must occur. This means that the time necessary for an idle step
to be detected and the time for the channel to clear after a collision are halved at each subdi-
vision, resulting in improved performance, particularly in situations where the length of the

network is a large fraction of the packet transmission time and the load is normally heavy.

7.4. Contributions

The successful implementation of the Enet II protocol demonstrates the practicality of
adapting collision resolution techniques for use in unslotted broadcast bus networks. The
performance evaluation of Enet II demonstrates that the collision resolution method it

employs successfully reduces the variance of delay for packets under heavy loads without

229

resorting to centralized control.

The performance measurement results for the VTCSMA/CD protocol demonstrate its
viability and the remarkable effectiveness of its collision avoidance technique. The proto-
col is shown to have better average delay characteristics and throughput under heavy loads

than the Enet IT and Ethernet protocols.

The problem of using slotted algorithms on unslotted networks is discussed. A suc-
cessfully adapted protocol is presented along with a formal proof of bounded delay. The
critical aspect of the adaptation, the interpretation of collision duration, is identified. A
deadlock detection and recovery method, necessary in any implementation of the protocol
presented that uses integer timekeeping, is presented. A related Collision Resolution Proto-

col which takes advantage of knowledge of the location of stations is presented.

7.5. Future Work

The success of the LANT demonstrated the feasibility and desirability of a testbed for
data link layer protocols. However, there are several limitations imposed by the equipment
used in the testbed. The protocols evaluated using the system were chosen partly due to
their amenability to implementation with the available hardware and software. The avail-
able hardware also limited investigation to one network topology among many interesting
choices. The concept of the LANT should be extended to a system which provides a con-
sistent software environment for the investigation of protocols for many network architec-
tures. Such a system would be composed of a large number of workstations with interfaces
which could download protocol code for execution by onboard processors, avoiding the
overhead incurred by the LANT software implementations. The benefits of such a testbed

are considerable.

The field of computer communication in general is moving in several interesting
directions. The idea of mixed service networks carrying voice and video information as
well as data has gained popularity in recent years. Lessons learned in the LANT studies can
profitably be applied to the design of protocols for this type of network. Likewise, new pro-
tocols are needed for the ultra-high speed networks envisioned which will operate over

much larger distances as speeds an order of magnitude or more faster than the current

230

generation of LANs.

The Space Division Multiple Access protocol is an interesting but recent develop-
ment, It bears further attention, particularly toward the development of resuits on its perfor-

mance.

A version of the model used in Chapter 6 which relaxes the global clock assumption is

under development. Adapting the proofs presented in Chapter 6 to this model is desirable.

Finally, the guidelines for adapting slotted algorithms to unslotted networks presented
in the introduction to chapter 6 have been tested by the specification and proof of correct-
ness for one slotted CRP. Further conversions should be done to increase confidence in this
method of adapting algorithms. Further investigation into the performance penalities impli-
cit in the collision handling aspects of the resulting unslotted algorithms is also in order. In
addition, it is possible that rules could be developed concerning maintaining correctness

across the transformation of the algorithms from slotted to unslotted operation.

/*

®

*/
tdefine
#define
#define
#define
#define
#define

$ifndef
#define
#endif

/* Types not used by UNIX but present on

#define

#define ETHERTYPE EXCL 0x8010 /* Excelan
#define ETHERTYPE RARP 0x8035 /* Reverse

.

struct

Appendix A

ILMON Filter Structure Definition

structure for selective packet monitor feature in interface driver.

HOSTMAX 32 /*
NUMTYPES 19 /*
TREEMAX 2048 /*
HGMAX 140 /*
LOGMAX 5000 /*
QUALMASK 0x7£c00 /*
NS

ETHERTYPE_ NS 0x0600

ETHERTYPE CHAOS

filter {

int fil flags;

of selectively monitorable hosts */
Number of Ethernet packet types */
Array for binary tree of hgram ptrs */
Maximum size of histogram */

Maximum size of packet log */

Any qualifiers set? */

our net. {From CC documents) */
0x804 /% Chaosnet */

*/

ARP */

/’k

BAetion flags

& qualifiers - n.b. */

*/

struct timeval fil tsing /* Time monitor session started */
struct timeval fil tsout; /* Time monitor session ended */
int fil_ensacnt; /% Size of Enet source addr cklist
char fil‘ensa[HOSTMAX}[EASIZ];/* Addresses to check for */

int fil endacnt; /* Size of Enet dest addr cklist */

char fil enda[HOSTMAX][EASIZ];/*

Addresses to

check for */

int £fil _ipsacnt; /* Size of IP source addr cklist */
struct in addr fil ipsa[HOSTMAXI; /% IP addresses to check */

int f£il ipdacnt; /¥ size of IP dest addr cklist */
struct in_addr £il ipda [HOSTMAX]; /% IP addresses to check */

int fil type: /* Packet type to monitor */

int £i1 lengt; /* Lower bound of lengths to monitor */
int fil lenlt; /* Upper bound of lengths to monitor */
int £i1 lenegs /* Monitor only pkts of this length */

231

232

struct

bz

int
int
int
int
int
struct
int
int
struct
int
int
struct
int
int
struct
int
int
struct

int

fil errcnt; /* Total errors from is_stats */

fil fragent: /* Total frags from is_stats */

fil dropent: /* Packets dropped during session */
fil framecnt; /% Total frames during session */

fil lenhg[ETHERMIU+1]; /* Packet length histogram */

exp _hgram fil_ typhg [NUMTYPES+1l]:/* Packet type histogram */
fil_ensatr[TREEMAX+1]; /* Binary tree pointers for ensahg */
fil ensatop; /* Next free element of ensahg */

exp hgram fil ensahg[HGMAX+1]; /* Hgram on Enet src addrs */
fil endatr[TREEMAX+1]; /* Binary tree pointers for ensahg */
fil endatop; /* Next free element of ensahg */

exp hgram fil endahg[HGMAX+1]; /* Hgram on Enet dst addrs %/
fil ipsatr[TREEMAX+1]; /* Binary tree pointers for ensahg */
fil_ipsatop; /* Next free element of ensahg */

exp _hgram fil ipsahg[HGMAX+l]; /* Hgram on IP src addrs */
fil ipdatr[TREEMAX+1]; /* Binary tree pointers for ensahg */

fil ipdatop; /* Next free element of ensahg */
exp_hgram fil_ipdahg[HGMAX+l]; /* Hgram on IP dst addrs */
fil_logtop; /* Next free element in pkt log */

shortlog {

struct timeval timestamp;
struct 1il_rheader header;
union {

struct ip iphdr;
} in_hdr:

/*

* fil flags bits.

*/

/* Bction flags -- determines the type of monitoring to be done */

#define FLT PKTLOG 0x00001 /* Retain log of packets filtered */

#define FLT_ENSAHG 0x00002 /* Histogram on Ethernet source addresses */
#define FLT ENDAHG 0x00004 /* Histogram on Ethernet dest addresses */
#define FLT_IPSAHG 0x00008 /* Histogram on IP source addresses */
#define FLT_ IPDAHG 0x00010 /* Histogram on IP dest addresses */

#define FLT PLENHG 0x00020 /* Packet length histogram */

$#define FLT PTYPHG 0x00040 /* Packet type histogram */

/* Qualifiers -- determines what filtering will be done on monitored pkts */
#define FLT_ERRS 0x00100 /* Count error packets */

#define FLT VALID 0x00200 /* Count valid packets */

#define FLT_ENSA 0x00400 /* Count pkts w/ addr in fil ensa */

#define FLT_ ENDA 0x00800 /* Count pkts w/ addr in fil enda */

#define FLT_IPSA 0x01000 /* Count pkts w/ addr in fil ipsa */

#define
#define
#define
#define
#define
#define

FLT IPDA
FLT LNGT
FLT LNLT
FLT LNRN
FLT LNEQ
FLT PTYP

0x02000
0x04000
0x08000
0x10000
0x20000
0x40000

/*
/*
/*
/*
/*
/*

Count pkts w/ addr in f£il ipda */
Count pkts w/ length > £il lengt ¥/
Count pkts w/ length < fil lenlt */
Lengths > £il lengt && < fil lenlt */
Count pkts w/ length = fil leneg */
Count packets of a specific type */

233

Appendix B

Experiment Configuration File Structures

B.1. Header File Structure

BYTES CONTENTS

0-2 Section complete flags

3-12 Experiment name (corresponds to file name}
i3 Protocol code

14-20 Date of last modification (MMDDYY)
21-27 Date created

28 Unused

29-30 # of Processes on node 1

31-32 # of Processes on node 2

33-34 # of Processes on node 3

35-36 # of Processes on node 4

37-40 # of distributions defined

41-55 Load pattern name

56-70 Unused
71-140 Comment

235

236

DISTRIBUTION RECORDS

Exponential Distribution

1-3

4
5-13
14-20

Sequence #
Distribution code (= 1)
Value for theta (theta = mean interarrival time)

Unused

Poisson Distribution

1-3

4
5-13
14-20

Sequence #

Distribution code (= 2)

Value for lambda (arrival rate)
Unused

Geometric Distribution

1-3

4
5-13
14-20

Sequence #
Distribution code (= 3)
Value for p (probability of success)

Unused

Rinomial Distribution

1-3

4
5-13
14-22
23-40

Sequence #

Distribution code (= 4)

Value for n (number of trials)

Value for p (probability of success for any trial)
Unused

General Discrete Distribution

1-3

Sequence #

4 Distribution code (= 5)

5-7 # of coordinate pairs entered
8-10 Point sequence #

11-15 x value

16-20 v value

Piecewise Continuous Distribution

1-3 Sequence #

4 Distribution code (= 6)

5-7 # of coordinate pairs entered
8-10 Point sequence #

11-15 X value

16-20 y value

B.2. Configuration File Structure

BYTES CONTENTS
1-2 Process number
3-5 Interpacket distribution code (determined from

list in header file)

238

6-8 Seed index for time generation
9-11 Packet length distribution code (determined from
list in header file)

12-14 Seed index for packet length generation

Appendix C

ILMON User’s Manual

C.1. Using ILMON

The general sequence for performing network monitoring with ilmon is as follows:

1y

2)

3)

4)

5)

6)

7)

Run ilmon and choose the interface (by unit number) with which you wish to do
the monitoring with the "chif" command.

Load a filter description either manually using the "setfil” command or from a
stored template using the "loadtmp” command.

Start promiscuous mode monitoring using the "setprom” command. Setting the

mode flag to "1" puts the chosen interface into promiscuous mode.

Network activity can be periodically checked using the "getfil" command. If
this is done before the interface is returned to normal mode, some of the guanti-

ties presented (stop time, frame count...} will be inaccurate.

End promiscuous mode monitoring using the "setprom” command with mode
flag setto "0."

Retrieve the filter using the "getfil" command. This will present a summary of
the information collected.

Save the filter to disk using the "savefil” command. The resulting file can be
viewed with the program prfilter and turned into graphs and reports of average

guantities with the program eap.

239

240

C.2. Command Summary

chif

cntr

creverr

getfil

hw-addr

loadfil

loadtmp

reverr

If the computer running ilmon is a gateway or has more than one
Interlan ethernet interface, chif allows you to determine which net-
work will be monitored by switching interfaces. You will be
informed of the unit number of the current interface and prompted
for the unit number of the interface to change to. The default set-
ting in unit 0.

Retrieve and print out the on-board statistics registers. Unix reads
and resets these registers periodically, so what you get is the values

over the last O to 60 seconds.

Clear receive error mode. Necessary only when a rcverr has been

previously performed.

Retrieve a filter from the device driver and display the collected
statistics. Unless promiscuous mode is turned off before getfil is

called, some of the statistics will be invalid.

This command prompts for a hostname and returns the internet and
hardware addresses of the machine. Useful for deciphering source

and destination address histograms.

Read a filter (previously stored with savefil) from disk and display

its contents.

Read a filter (previously stored with savetmp) from disk. A filter
that was stored with savetmp *before* a monitoring session was
run using it (i.e. it contains no data, only a description for monitor-
ing sessions.) is called a template. After being read in, the template

can be used to run a monitoring session.

Set receive error mode. Normally the NI1010 automatically filters
out error packets, but when creverr is performed, all packets are

returned to the device driver regardless of error status. (setprom

241

performs a rcverr automatically, so it is not necessary to do this

prior to setprom if you want to see error packets t00.}

savefil Write the results of a monitoring session out to disk for later exam-
ination.
savetmp Write a filter that has been setup with setfil, but not yet used for a

monitoring session, to a disk file. Templates that have been saved
in this way can be loaded for use later using loadtmp, or may be

used with the program timedmon.

setfil Configure a monitoring session. This command is described in
greater detail below.
sefprom Set (or clear) promiscuous mode. You will be prompted for a flag.

0 (the default) clears promiscuous mode and returns the interface to
normal operation. 1 puts the interface in promiscuous receive

mode and begins collecting the information specified in the filter.

start Put the interface on line. (Left over from debugging, but may be
useful.)

stop Put the interface off line. (Left over from debugging, as above.)

z-cntr Read and reset the onboard statistics registers. (Doing this may

disrupt the interface level statistics reported by netstat.)

C.3. Configuring a2 Monitoring Session

Filters are used to tell the device driver what kind of packets we’re interested in and
how we want information about them stored. Filters are constructed with the "setfil” com-
mand. When you issue the setfil command, you will be presented with menus for "actions”
(or what information to collect) and "qualifiers” (or the conditions a packet must satisfy to
be included in the collected data. In either case, multiple entries are accepted, with choices

separated by spaces.

242

The action menu allows the following choices.

1y

2)

3)
4)
5)

6)

7)

Log packet headers - the ethernet and IP (where appropriate) headers of packets

are collected in a buffer for individual examination.

Ethernet source address histogram - count of the number of packets originating
at each source. Due to overhead of maintaining the data structures for this

option, many packets are usually lost.

Ethernet destination address histogram - count of the number of packets

intended for each destination. Warning from (2) applies.
IP Source address histogram - not implemented.
IP Destination address histogram - not implemented.

Packet length histogram - counts of packets of each length. Length is data area

only, does not include ethernet header.

Packet type histogram - counts of packets of each type (e.g. IP, ARP, NS, ND,

efc.)

1, 2, and 3 tend to lose packets. 6 and 7 are better about this, but still fail to keep up when

traffic gets too heavy.

The qualifier menu offers the following choices.

1y
2)

3)

4)

Log error packets - if 1 is not chosen, only valid packets are counted.

Log valid packets - count valid packets. One or the other (or both) of items 1

and 2 must be chosen. If neither is chosen, no packets will be counted.

Ethernet source address filtering - count packets only if they are from one of the
ethernet addresses specified. Enet addresses are entered with the bytes

separated by spaces.

Ethernet destination address filtering - count packets only if they are to one of
the ethernet addresses specified. Enet addresses are entered with the bytes

separated by spaces.

5)
6)
7)

8)

2)

10)
11)

IP source address filtering - not implemented.
IP destination address filtering - not implemented.

Length > lower bound - count only packets whose data length is greater than

some lower bound. You will be prompted for the lower bound.

Length < upper bound - count only packets whose data length is less than some
upper bound. You will be prompted for the upper bound. Note that it is possi-
ble to specify bounds in 7 and 8 that no packet can satisfy. (e.g. packets with
Iength less than 100 bytes AND greater than 500 bytes)

Length in range - count packets whose length falls between an upper and lower

bound. You will be prompted for the bounds.
Length == - count packets whose length matches the specified value.

Packet type - count packets with the specified ethernet packet type. You will be
presented with a list of types from which to choose.

Again, multiple choices are entered on the same line, separated by spaces. When multiple

choices are specified, packets must satisfy the logical conjunction of the conditions to be

counted.

Appendix D

Experiment Configuration Package User’s Manual

D.1. Infroduction

This appendix contains a discussion of the actual usage of the various programs men-

tioned in Chapter 3, Section 3.

D.2. Front End

The Experimental Configuration Package (or ECP) is a front end for a set of Local
Area Network performance evaluation tools. It is used to enter specifications for artificially
generated network communications loads. The specification generated by the ECP are used

by the Experiment Execution Package (EXP).

D.2.1. The Structure of an Experiment Definition

An experiment definition has three parts: a list of distributions, a topology, or connec-
tivity matrix, and a protocol selection. The goal of the definition is to produce complete
descriptions of a set of packet producing processes. You will enter a list of distributions
which will be used to generate interpacket times and packet lengths. These distributions are
in turn used in the definition of the experiment’s topology. For each machine in the net-
work, the user will enter the characteristics of the load generating process. The distribution
list and topology definition together constitute a load pattern. This load pattern can be used
in several experiments with different communications protocols as determined by the proto-

col selection.

245

246

Experimental Configuration Package

Your choices are:
1) Define topology and load characteristics for an experiment
2) Select protocol
3) Edit an experiment definition
4) Dump a configuration file in printable form
5) Exit

For defining a new experiment, steps 1 and 2 should be done in order.
Choice # 7 _

Figure D.1: Main Menu

D.2.2. Distribution List

To enter a list of distributions, choose entry 1 at the main menu. (Figure D.1) The first
prompt is for a name for the experiment to work on. If this question has been asked previ-
ously in the current sessicn, a choice of continuing to use that experiment will be offered.
If you would like to see a list of experiments that already exist, type *?7’ in response to this
question. Experiment names may be a maximum of 10 characters long. If the experiment
you named already exists, it will be checked for completeness. If the topology definition
has not yet been entered, you will automatically find yourself in the Topology definition
section. If both the distribution list and the topology definition are complete for the
specified experiment, you will be notified and given the choice of selecting a different

name, or re-using the distribution list to create a new experiment with a different topology.

If the name you enter is not currently in use, you will be prompted for another name to
identify the load pattern for the experiment. This name will be used to set up groupings of
experiments with the same load pattern but different protocol selections. You will then be
prompted for a comment to identify the purpose of the experiment. After this is completed,
the screen shown in Figure D.2 will appear. Choose one of the listed distribution types by
typing the number that appears next to the distribution name. Depending on the type of dis-

tribution you choose, you will be prompted for the parameters needed. If you choose either

247

LOAD CHARACTERISTICS

Time intervals between instances of packet generation and packet
lengths will be specified by distributions from the following list.
Special distributions are entered by the user. Your choices here
form a list which will be referenced in the topology description.

Standard distributions
1) Exponential
23 Poisson
3) Geometric
4) Binomial

Special distributions
5) General Discrete
6} Piecewise Continuous

Choice # 7 _

Figure D.2: Distribution List entry screen

of the user entered distributions, (distributions 5 and 6) you will be prompted for a list of x
and y coordinates. This will continue until you type 'n’ in response to the question ‘Enter
another point?’ Likewise, you will continue to be prompted for distributions until you type

'n’ in response to the question ‘Enter another distribution?’

D.2.3. Topology Definition

To enter a topology definition, one may choose to continue into the topology
definition section immediately from the load distribution section, or topology information
can be entered at a later time by choosing ’1’ at the main menu, then entering the name of
an experiment for which the distribution list has already been entered. If the second route is
taken, you will go through the same procedure as discussed in section 1.1.2. for entering the
experiment name. The screen for entering the topology definition is shown in Figure D.3.
Each repetition of the questions in this screen represents one process. You will be

prompted for distributions from the list discussed in section 1.1.2. for interpacket time and

248

TOPOLOGY DEFINITION
Node 1 How many processes will there be for this node?

Process 1
{Type '’ to see a recap of the distributions entered)
Distribution for inter-packet time?
Distribution for packet length?
Number of processes receiving packets from this process:

Receiver 1
Process address for receiver: node #
process #
Probability that a packet goes to this process:

Figure D.3: Topology Definition entry screen

packet length for the packets generated by this process. You may look at a list of the distri-
butions that you entered by typing an 'h’ in response to either of these questions. You will
then be prompted for the number of processes with which this process will communicate.
You will then cycle through the questions for a receiver that many times. If you wish to
examine the topology you are entering at any point visually, type 'v’ in response to any of
the questions about the receivers. The process number requested in this subsection does not
correspond to the sender process on the node specified; ‘sources’ and ‘sinks’ are separate
entities. If a process has more than one receiver, the probabilities of the receivers should

add up to one -- currently the program does not check to be sure this is true.

D.2.4. Protocol Selection

The protocel select section determines what communication protocol will be used for
the experiment. When ’2’ is chosen at the main menu, you are once again asked for an
experiment name. The codes and descriptions of the available protocols are displayed, (see
Figure D.4) and you will be prompted for your choice. Enter the code corresponding io the

protocol you wish to use for your experiment. and asked to choose the one you wish to edit.

249

Select Protocol
MName Description
1) 802 Ethernet

2) VICSMA Virtual Time CSMA

3) Enet I Asynchronous Collision Resolution

Which protocol would you like to use for this experiment?

Figure D.4: Protocol select screen

D.2.5. Edit Functions

An experiment definition consists of three parts, and these three parts are edited
independently. However, editing any section has an overall effect on the experiment. Edit-
ing either the distribution list or the topology of a definition or both creates a new load pat-
tern. It is possible to deliberately copy in place, (overwrite) but this should be done only to
correct mistakes or before an experiment has actually been run using the definition. If both
the distribution list and the topology of a definition are to be edited, the first section edited
should be copied to create a new experiment and thus a new load pattern, while the second
should be overwritten, to keep a third experiment from being created. After you have
entered the name of the experiment you wish to edit, it will be checked to see which of its
sections are complete and thus are eligible for editing. You will be presented with a list of

these sections,

Editing the Distribution List

After you have chosen to edit the load distributions, a menu will appear offering
several ways to edit the list. If you already know which member of the list you want to edit,
choose ’1°, Edit a specific entry. You will be prompted for the number of the distribution
you want to edit. This is the number that appears beside the distribution in a dump of the

250

experiment, which will be discussed in section 1.1.7. The specified entry will be printed,

along with a list of possible values for the distribution code field. The question:

[Eldit entry, [Dlelete entry, [Qluit?

will appear, and you will be prompted for input. Type the letter in brackets from the choice
you want. Typing e’ causes the cursor to move beside each field in the distribution record
in turn, If you wish to change the value in that field, type the new value beside the old one.
If you want to leave the old value unchanged, simply type a carriage return. Typing 'd’
causes the displayed distribution to be removed from the list. Typing "¢’ returns you to the
edit menu without making any changes. If the distribution chosen was one of the special
distributions, the question will also contain the option ‘[Slcan points.” Typing ‘s’ lets you

see the x and y coordinates of one point at a time, and change them if you wish.

The second choice at the edit menu allows you to scan through the list of distributions
one at a time. You will be asked for an entry at which to begin scanning. Enter an integer
corresponding to the element of the list you wish to see first. The requested entry will be
displayed, and the following question will appear:

[Nlext entry, [E]dit this entry, [Q]uit scanning?

Typing ‘n’ will display the next entry in the list. Typing ‘e’ will cause the editing process

discussed above to be invoked on the current entry. Typing ‘q’ exits back to the edit menu.

At the distribution edit menu you may also choose to add a new distribution. If you
choose this option, the data entry process for load distributions (as discussed in section
1.1.2.) will be invoked. The choices you enter will be appended to the end of the distribu-
tion list. The new entry will not immediately be available for editing. If changes need to be
made to a distribution entered in this way, you must choose 4 (exit) at the edit distribution
menu, then begin the edit process again by choosing 3 (edit) at the main menu. This will
merge the changes entered in the last edit session with the existing distributions and make

them available for editing subsequently.

251

Editing a Topology Description

A topology record consists of two distributions chosen from the list entered in the
load distributions section. The same editing options are available for topology descriptions
as for distribution lists. In addition, there is also an option which allows you to examine the

topology you have built visually .

In order to edit a particular entry, (choice 1 in the edit topology memu) you need io
know what node the process is defined on, and its process number on that node. At present,
valid node numbers are 1 through 4. When these have been correctly entered, the process
number and the two distributions are displayed. The following question will be displayed:

{Eldit process,[D]elete proc,[Q]uit?

Typing ‘e’ causes the cursor to move to each of the editable values in turn. To leave the
value as it appears, type a carriage return. To change the value, type the new value beside
the old value. The number of receivers is not an editable value; it is changed automatically
if receiver records are deleted or added. Typing ‘d’ removes the process from the experi-

ment.

Choosing option 2, scan process records, at the edit topology menu prompts you for a
node and process number. If you just want to scan all of the processes on 2 node, type the
node number, then a carriage return for the process number. The specified process is
displayed, and the question

[Nlext process,[Eldit this process,[Qluit?

appears. The actions associated with these options correspond to the ones discussed above.

Choosing the option to add a new process at the edit topology menu prompts you for
the number of the node you want the new process to reside on. You are then taken through
the data entry screen discussed in section 1.1.3 for one process. As before, this process entry
will not be immediately available for editing. Exiting to the main menu, then choosing edit

will remedy this,

The view topology option allows you to visually display the topology of the current
experiment. A screen in built with columns of integers for each node representing the pro-

cess which resides there. When you a finished viewing the topology, tvype *q’ and a carriage

252

return o quit and go back to the edit topology menu.

Editing Protocol Select

The protocol selection of an experiment is comprised of a single integer. Editing the
protocol selection is, therefore, very simple. The current selection is displayed, along with
a list of available protocols. This is the same list that is displayed in the protocol select pro-
cess, discussed in section 1.1.4. You will be prompted for a choice. If you change you
mind about editing the selection, simply type a carriage return and the selection will remain
as is. To change the selection, choose a different protocol from the list and type its number.
As in the other two edit sections, you will be presented with the possibility of overwriting
the current experiment, or copying to create a new experiment. If you choose to copy, you
will be prompted for a name for the new experiment. By typing ‘?’ in response, you will be
shown a list of existing experiments. When you have typed in the new name, the program

will create a copy with the new protocol selection, and link it to the appropriate directories.

D.2.6. Caveats

In the load distributions and topology sections, the functions allow all distributions to
be removed. This situation is undesirable, as it would render an experiment unusable. Great
care should be taken if the distribution list is edited after the topology for an experiment has
been entered to insure that the new distributions have the desired meaning in the context of

the choices made in the topology description.

The overwrite option should be used only to correct mistakes or make changes in an
experiment definition only if the experiment has not yet been run. Overwriting an experi-
ment that has already been run may cause inconsistencies in the analysis phase of the exper-

iment.

If, in creating a new experiment by editing an old one, it is necessary to edit both the
load and topology sections, change the load section first and copy it to a new experiment,
then change the topology section and overwrite it. Doing this in the opposite order is also

permissible.

253

D.2.7. The Dump Utility

If you choose 4 (dump an experiment description) at the main menu, you will be
prompted for an experiment name as before. When the name of an existing experiment has
been entered, that experiment will be examined and a list of completed sections will be
displayed. If you want a dump of the entire experiment description, type ‘y’ in response to
the question. If you only want to see one or two sections, type a carriage return in response,
then, as the cursor is moved to each section in turn, type ‘y’ by the ones you want to include
in the dump, and carriage return by the ones you do not want to see. The dumpfile will be

created with a pathname of the form
experiment/<exp name>/<exp name>.dmp

which can be viewed either on the screen using cat or vi, or sent to a printer.

D.2.8. The Protocol Selection Table

When the ECP is first invoked, the file containing the list of available protocols does
not exist. To build this table, type ‘A’ at the main menu choice. You will be prompted for
an extension, which must be no longer than 8 characters. This will correspond to the name
of the subdirectory in the protocol directory to which experiments with this protocol selec-
tion will be linked. You will then be asked for a description of this protocol. It must be no
longer than 70 characters. This will serve to explain the purpose of the protocol with the
extension entered before. These will appear in the protocol select and protocol select edit
sections. Typing “A’ permits one additional protocol to be entered, 5o to initially build this

file, procedure must be done repeatedly.

[Abra70]

[Abra87]

[ALT79]

[Amer82]

[AKS8S]

Bibliography

Abramson, N,, “The ALOHA System -- Another Alternative for Computer
Communication,” Proceedings of the Fall Joint Computer Conference, 1970,
pp. 281 - 285.

Abrams, Marc, “ Design of a Measurement Instrument for Distributed Sys-
tems,” IBM Zurich Research Laboratory Research Report RZ 1639, Ociober
30, 1987.

Almes, G. T., and Lazowska, E. D., “The Behaviour of Ethernet-like Computer
Communication Networks,” Proceedings of the 7th Symposium on Operating

Systems Principles, Asilomar, California, December 1979, pp. 66 - 81,

Amer, P.D., “A Measurement Center for the NBS Local Area Computer Net-
work,” IEEE Transactions on Computers, Vol C-31, No. 8, Aug. 1982, pp.
723-729.

Amer, P.D. and Kumar, R.N,, “Local Area Broadcast Network Measurement
Part I -- Measurement Center Design and Implementation,” University of
Delaware Department of Computer and Information Sciences, Technical
Report No. 85-3, April 1985,

JAKKPC86]Amer, P.D., Kumar, R.N., Kao, R., Phillips, J.T., and Cassel, L.N, “Local Area

Broadcast Network Measurement: Traffic Characterization,” University of
Delaware Department of Computer and Information Sciences, Technical
Report No. 86-12, January 1986.

255

[AS84]

[BMS87]

[BG87]

[BMKS8]

[Bost88]
[Cape79]

[CL83]

[DIX82]

[Exced5]
[Ferr78]

[Ferr84}]

256

Arthurs, E. and Stuck, B'W., “A Modified Access Policy for ETHERNET Ver-
sion 1.0 Data Link Layer,” IEEE Transactions on Communications, Vol
COM-32, No. 8, August 1984, pp. 977-979.

Barnpett, B. Lewis, III and Molloy, Michael K., “ILMON: A Unix Network
Monitoring Facility,” Proceedings of the Winter 1987 USENIX Technical
Conference, Washington, D.C., January 21 - 23, 1987, pp. 133-144,

Bertsekas, D. and Gallager, R.G., Data Networks, Prentice-Hall, Inc., Engle-
wood Cliffs, NJ, 1987, pp. 229-238.

Boggs, David R., Mogul, Jeffrey C., and Kent, Christopher A., “ Measured
Capacity of an Ethernet: Myths and Reality,” Proceedings of the SIGCOMM
1988 Symposium on Communications, Architectures, and Protocols, Stanford,

California, August 16 - 19, 1988, pp. 222 - 234.
Bostic, Keith, private communication, November 1, 1988.

Capetanakis, J., “Tree Algorithms for Packet Broadcast Channels,” /EEE Tran-
sactions on Information Theory, Vol IT-25, September 1979, pp. 505-515.

Coyle, Edward J. and Liu, Bede, “Finite Population CSMA/CD Networks,”
IEEE Transactions on Communications Vol. COM-31, No. 11, November
1983, pp. 1247 - 1251.

The Ethernet, A Local Area Network: Data Link Layer and Physical Layer
Specifications (Version 2.0}, Digital Equipment Corporation, Intel Corporation,
Kerox Corporation, November 1982,

Nutcracker User Manual, Excelan, Inc., San Jose, California, 1985.

Ferrari, D., Computer Systems Performance Evaluation, Prentice-Hall, Inc,,
1978, pp. 66-67.

Ferrari, D., “On the foundations of artificial workload design,” Proceedings of
the 1984 SIGMETRICS Conference on Measurement and Modeling of Com-
puter Systems, Cambridge, MA, August 1984, pp. 8 - 14.

[FW81]

[Frat83]

[Gall78]

[Gons85]

[GT88]

[IEEE82]

[Inte82]

[Jaco88]

[JL87]

[J1.88]

257

Fields, J.A. and Wong, J.W., “ An Analysis of a Carrier Sense Multiple Access
System with Collision Detection,” University of Waterloo, Technical Report
CCNG E-Report E-95, May 1981.

Fratta, L., “An improved access protocol for data communication bus networks
with control wire,” Proceedings of the ACM SIGCOMM Symposium, Austin,
TX, March 1983.

Gallager, R.G., “Conflict Resolution in Random Access Broadcast Networks, ”
Proceedings of the AFOSR Workshop on Communication Theory Applications,
Provincetown, MA, September 17-20, 1978, pp. 74-76.

Gonsalves, Timothy A., “ Performance Characteristics of 2 Ethernets: an
Experimental Study,” Proceedings of the 1985 ACM SIGMETRICS Conference
on Measuring and Modeling of Computer Systems, August 1985, pp. 78 - 86.

Gonsalves, Timothy A., and Tobagi, Fouad A., “On the Performance Effects of
Station Locations and Access Parameters in Ethernet Networks,” IEEE Tran-
sactions on Communications, Vol. COM-36, No. 4, April 1988, pp. 441 - 449.

“ IEEE Project 802, Local Area Network Standards,” Draft IEEE Standard
802.3 CSMAJ/CD Access Method, Draft D, 1982,

NI1010 UNIBUS Ethernet Communications Controller User Manual, Interlan,
Inc., Chelmsford, Massachusetts, 1982,

Jacobson, Van, “4BSD TCP Ethernet Throughput,”
USENET comp.protocols.tcp-ip posting, message LD.
8810242033.AA29183@helios.es.lbl.gov, October 24, 1988.

Jain, P. and Lam, S.S., “Modeling and Verification of Real-Time Protocols for
Broadcast Networks,” IEEE Transactions on Software Engineering, Vol. SE-
13, No. 8, August 1987, pp. 924-937.

Jain, P. and Lam, S. S., “ Specification and Verification of Collision-Free
Broadcast Networks,” Proceedings of the SIGCOMM Symposium on Communi-
cations Architectures and Protocols, Stanford, California, August 16 - 19,
1988, pp. 282 - 291.

[JL89]

[Humb86]

[Kern82]

[KKE&1]

[KT75]

[Lam80]

[Lam88]
[Lewi89]

[EWE7]

[Mass80]

[ML85]

[MB76]

258

Jain, P. and Lam, S.S., University of Texas Department of Computer Sciences
technical report {in preparation).

Humblet, Pierre A., “On the Throughput of Channel Access Algorithms with
Limited Sensing,” IEEE Transactions on Communications, Vol. COM-34, No.
4, April 1986, pp. 345 - 347.

Kernighan, B. W., PIC - A Graphics Language for Typesetting, revised edition,
March 1982, (online UNIX documentation)

Kiesel, W.M. and Kuehn, P.J., “CSMA-CD-DR: A New Multi-access Protocol
for Distributed Systems,” Proceedings of National Telecommunications
Conference 1981, Dec. 1981, pp A2.4.1-A2.4.6.

Kleinrock, L. and Tobagi, F., “Packet Switching in Radio Channels: Part I --
Carrier Sense Multiple-Access Modes and their Throughput-Delay Characteris-
tics,” IEEE Transactions on on Communications, Vol. COM-23, No. 12,
December 1975, pp. 1400-1416.

Lam, Simon S., “ A Carrier Sense Multiple Access Protocol for Local Net-

works,” Computer Networks, 4, 1980, pp. 21 - 32.
Lam, Simon, private communication, December 7, 1988.

Lewis, John M., “ Bandwidth Utdlization of a Large Local Area Network,”
IEEE Communications Magazine, Vol. 27, No. 2, February 1989, pp. 25 - 30.

Liu, Y.-C. and Wise, G. L., “Performance of a CSMA/CD Protocol for Local
Area Networks,” IEEE Journal on Selected Areas in Communications, Vol.
SAC-5, No. 6, July 1987, pp. 948 - 955.

Massey, J., “Collision Resolution Algorithms and Random-Access Communi-
cation,” UCLA Technical Report UCLA-ENG-8016, 1980.

Meditch, J. S. and Lea, C. T. A., “Stability and Throughput in Virtal Time
CSMA,” Computer Networks and ISDN Systems, Vol. 10, 1985, pp. 19 - 26.

Metcalfe, R. and Boggs, D., “Ethernet: Distributed Packet Switching for Local
Networks,” Communications of the ACM, Vol. 19, No. 7, July 1976, pp. 395-

[MC83]

[Molle83]

[MKS85]

IMSVZE7]

[Moll83]

[Moll85]

[Moll86]

[Nabi84]

[Net87]

259

404.

Minnich, N.M. and Cotton, C.J., “An Evaluation of Two Unibus Ethernet Con-
trollers,” Proceedings of the 8th Conference on Local Computer Networks,
Minneapolis, Minnesota, Oct. 17-19, 1983, pp. 28-36.

Molle, M., “ Asynchronous Multiple Access Tree Algorithms,” Proceedings of
SIGCOMM 83 Symposium on Communications Architectures and Protocols,
ACM #533830, March, 1983, pp 214-218.

Molle, Mart L. and Kleinrock, Leonard, * Virtual Time CSMA: Why Two
Clocks are Better than One,” IEEE Transactions on Communications, Vol
COM-33, No. 9, September 1985, pp. 919 - 933.

Molle, Mart L., Schraby, Khosrow, and Venetsanopolous, Anastasios N, “
Space-Time Models of Asynchronous CSMA Protocols for Local Area Net-
works,” IEEE Journal on Selected Areas in Communications, Yol. SAC-5, No.

6, July 1987, pp. 956 - 968.

Molloy, Michael K., “ Experimental Evaluation of New USMA Protocols,”
Proceedings of the National Communications Forum, October 24 - 26, 1983,
pp. 350 - 354.

Molloy, Michael K., “ Collision Resolution in an Unslotted Environment,”

Computer Networks, Vol. 9, No. 3, March 1985, pp. 209-214.

Molloy, Michael K., “Living on the Leading Edge of Ethernet Use,” Proceed-
ings of the 11th Conference on Local Computer Networks, Minneapolis, Min-
nesota, October 6 - 8, 1986, pp. 124 - 131.

Nabielsky, Jose, “Interfacing to the 10Mbps Ethernet: Observations and Con-
clusions,” Proceedings of the ACM SIGCOMM Symposium on Communica-
tions Architectures and Protocols, June 6-8, 1984, Montreal, Quebec, Canada,
pp. 124 - 131,

IEEE Newwork, Special issue on LAN Test Tools and Performance Measure-
ments, Vol. 1, No. 3, July 1987.

[OL82]

[PTW85]

[Post80]

[RP85]

[RG85]

[SHRO]

[TK85]

{TH80]

[Toba80]

[TBF83]

260

Owicki, S. and Lamport, L., “Proving Liveness Properties of Concurrent Pro-
grams,” ACM Transactions on Programming Languages and Systems, Vol. 4,
No. 3, July 1982, pp. 455-495.

Panwar, S.S., Towsley, D. and Wolf, J.K., “On the Throughput of Degenerate
Intersection and First-Come First-Served Collision Resolution Algorithms,”
IEEE Transactions on Information Theory, Vol. IT-31, No. 2, March 1985, pp.
274-279

Postel, J., “User Datagram Protocol,” RFC 768, Information Sciences Institute,
August 1980.

Reynolds, J. and Postel, J., “ Assigned Numbers,” RFC 943, Information Sci-
ences Institute, April 1985.

Rios, M. and Georganas, N. D., “A Hybrid Multiple-Access Protocol for Data
and Voice-Packet Over Local Area Networks,” IEEE Transactions on Comput-
ers, Vol. C-34, No. 1, January 1985, pp. 90 - 94.

Shoch, J. F. and Hupp, J. A., “Measured performance of an Ethernet local net-
work,” CACM, vol. 23, Dec 1980, pp. 711-721.

Takagi, Hideaki and Kleinrock, Leonard, “Throughput Analysis for Persistent
CSMA Systems,” IEEE Transactions on Communications, Vol. COM-33, No.
7, July 1985, pp. 627 - 638.

Tobagi, F. and Hunt, J.A., “Performance Analysis of Carrier Sense Multiple
Access with Collision Detection,” Computer Nerworks, Vol. 4, 1980, pp. 245 -
259,

Tobagi, F., “Multiaccess Protocols in Packet Communication Systems,” IEEE
Transactions on Communications, Vol COM-28, No. 4, April 1980, pp 468-
488.

Tobagi, F., Borgonovo, F., and Fratta, L., “Expressnet: A High-performance
integrated services local area network,” IEEE Journal on Selected Areas in
Communications, Vol. SAC-1, Nov. 1983, pp. 898 - 912.

TT77]

[TVg2]

261

Tokoro, Mario and Tamara, Kiichiro, “ Acknowledging Ethernet,” Proceedings
of COMPCON 77, Sept. 1977, pp. 320-325.

Towsley, D. and Venkatesh, G., “Window Random Access Protocols for Local
Computer Networks,” IEEE Transactions on Computers, Vol C-31, No. 8§,
August 1982, pp. 715-722.

VITA

Benjamin Lewis Barnett Tl was born in Spartanburg, South Carolina, on August 2,
1959, the son of Annalyne Hall Bamnett and Dr. Benjamin Lewis Barnett, Jr. He graduated
Magna Cum Laude from Furman University in Greenville, South Carolina, in 1981. For one
year after graduation, he was employed as a Programmer/Analyst by the Clinical Computing
Laboratory, a part of the Department of Internal Medicine of the Medical College of the
University of Virginia. He entered the Graduate School of the University of Texas, Depart-
ment of Computer Sciences, in Fall of 1982. While attending the University of Texas, he
has been employed as a consultant by Advanced Computer Engineering of Austin, Texas and
as a Software Engineering intern by National Instruments of Austin, Texas, He received the
Master of Science in Computer Science degree from the University of Texas Department of
Computer Sciences in May of 1988. His studies at the University of Texas were supported

in part by National Science Foundation CER Grant #MCS8122039.

Permanent address: 2406 Northfields Road
Charlottesville, Virginia
22901

This disseriation was typed by the author.

