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1 Introduction

The success in mechanical geometry theorem proving beginning with the pioneering work of
Wu Wen-Tsiin [18] since 1978 has been widely known. Wu’s work and its further developments
[19], [20], [1], [2] inspired researchers to apply the Grobner basis method to the same class
of geometry statements that Wu’s method addresses. However, Wu’s original work, especially
Wi’s formulation, has been oversimplified by some researchers. In his recent work [13], [14],
[15], Kutzler raised two “serious deficiencies or flaws” of Wu’s method.

According to Kutzler, the first defect is that Wu’s method is incomplete for Euclidean geom-
etry. This is a fact emphasized at the very beginning in Wu’s work [18]. Tarski’s method was
complete but too inefficient. It was Wu who first restricted to a class of geometry statements
and found a fast method. In Euclidean geometry that class is a subclass of the class that
Tarski’s method can solve. However, there are many unordered geometries, for which Wu’s
method is complete, but not Tarski’s method. Unordered metric geometry introduced by Wu
[19] (see also [2]) is such an example. In [6] we discussed the scopes of the two methods. Even
in Euclidean geometry Wu’s method is also complete for certain class of geometry statements
(e.g., most geometry theorems of equality type encountered in geometry textbooks). This point
seems overlooked by Kutzler. Actually, the work done by Chou and Ko [2], [4], [10], was to
give a condition to characterize such a class of geometry statements in Euclidean geometry. In
Sections 5 and 6 we will present such classes (in Euclidean geometry) which can be recognized
mechanically.

According to Kutzler, the second defect is Wu'’s “careless translation technique” and “finding
philosophy”. In [14], it wrote:

Wa proposed the following formulation of the problem of mechanically proving a geometry theorem ...

Problem (Wu[19]): Given polynomials ky, ..., hn,c € Qly1, -+ ¥m ], find polynomials dy, ..., d¢ € Qlyi, s ¥m]
such that
Va € Ry [hi(a) =0 A -+ Ahpla) Adia) #0---dya) # 0 = ¢(a) = 0]
and, for all ¢ = 1,..., ¢,
~Va € R™(hy(a) =0 A -+ Ahy(a) = dia) = 0)),

or report that no such polynomials exist.

This is what Kutzler’s called “Wu’s finding problem”. Actually, what Kutzler’s called “Wu’s
finding problem” [11] is his understanding of Wu’s formulation. If studying Wu’s work carefully
[18],[19], [21], [20], one can come to a completely different formulation. From the very beginning
of Chou’s work [1], he followed Wu’s original formulation which can be found in Wu’s first,
pioneering paper [18]. This issue was clarified by Chou and Yang in 1986 [8]. Let V =
Zero(hi,...,hs) be common zeros of hi,...,h, in an extension field F of Q,! the field of rational
numbers, 1.e.,

V = Zero(hy, . hn) = {(a1, s am) € F* | hi(as, vyl ) =0, fori=1,...,n}.

In [8] it was clarified that the above formulation is equivalent to that the conclusion is valid on
one component (case) of the algebraic set V', no matter this case is degenerate or non-degenerate!
Note that for most (more than 90%) examples we have encountered in geometry, V has only
one non-degenerate component (case), while it can have tens of degenerate components (cases).

1 Usually, F is R, the field of real numbers, or C, the field of complex numbers.
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3. Difficulties with Non-Degenerate Conditions

As clarified in [8], there are two formulations dealing with non-degenerate conditions.

Formulation (Approach) F1. Introducing parameters and the notion of “generally true” for
a geometry statement. The present techniques can prove a statement to be generally true, at
the same time giving nondegenerate conditions automatically.

Formulation (Approach) F2. Giving nondegenerate conditions in geometric form manually
(or mechanically) at the beginning as a part of the hypothesis. Then the prover only needs to
answer whether the conclusion follows the hypothesis without adding any other conditions.

If Formulation F1 is what Kutzler claimed a defect because of what he called “finding phy-
losophy”, we will continue to defend this formulation. We don’t see anything wrong with the
notion “generally true” and with the methods which can produce proper non-degenerate con-
ditions. Actually these two formulations are closely related, as Theorems (8.1) and (8.2) in this
paper show that under certain conditions a geometry statement proved to be generally true is
also valid under the geometric non-degenerate conditions generated by our method in Section
3.3. This paper describes a method for generating non-degenerate conditions in geometric form
when using Formulation F1. It is a technical extension of the work in [2]. Our result shows that
Kutzler’s assertion that almost all results obtained with Wu’s algorithm cannot be regarded as
proofs but only as “near proofs” [15], is quite misleading.

In Section 2, we discuss difficulties with non-degenerate conditions. In Section 3, we present
our method for generating geometric non-degenerate conditions for a class of geometry state-
ments. In section 4, we prove that under certain conditions, this method is complete. In Section
5, we prove this completeness theorem for Fuclidean geometry. Section 6 is about experimental
results. Our past results show that at least 400 theorems in geometric form have been proved
fully mechanically, not “nearly”. In Section 7 we prove a theorem stating that, for certain class
of geometry statements, even “Kutzler’s finding methods”, KS1 and KS2 in [11] and [13], if
succeed, give “full proofs” of those geometry theorems in geometric form.

5. Difficulties with Non-Degenerate Conditions

It is our experience that finding non-degenerate conditions for a geometry statement is not
easy. In [14] Kutzler claimed otherwise

«This is certainly true for the careless way of translating a geometry theorem into an algebraic problem,
because one would have to explicitly add all nondegeneracy conditions after the translation process. But in our
method from Section 3.2, there is no need for this any more, because for each predicate from our geometric
specification language we already have determined all necessary conditions.”

In our opinion, this claim is not valid. For example, the last two of the 20 examples in given
[14], D-19 and D-20 which were claimed to be theorems by him, are not theorems because of
missing non-degenerate conditions. Such kinds of mistakes can be made by anyone, no matter
how careful that person is in specifying a particular geometry statement. For a given geometric
statement, a non-degenerate condition obvious to one person might not be obvious to another,
and might even be difficult to accept for a third individual. Since our point of view might not

be obvious to others, we use more examples than usual to illustrate our point.

Example (2.1). (Simson’s Theorem). Let D be a point on the circumscribed circle (O) of
triangle ABC. From D three perpendiculars are drawn to the three sides BC, CA and AB of
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2. Difficulties with Non-Degenerate Conditions

Figure 1 Figure 2

AABC. Let E, F and G be the three feet respectively. Show that E, F and G are collinear
(Figure 1).

In Kutzler’s translation, the necessary non-degenerate condition that
(2.1.1) AB,BC, and CA are not isotropic

is missing [14] (an isotropic line is a line perpendicular to itself). Wu’s method or the Grobner
basis method cannot confirm this theorem without adding the above condition either as part
of the statement or generated during the proof process. But one could argue that Kutzler’s
translation is correct because in Euclidean geometry isotropic lines do not exist and that prob-
lem here is the methods used: Wu’s method and the Grébner basis method are not complete
for real closed fields. Do we have to give up proving Simson’s theorem when using Kutzler’s
“eareful” translation? A translation technique which takes care of Euclidean geometry and
unordered metric geometry is certainly more careful. Since we know that the methods used by
us (Wu, Chou, Gao, Kutzler, etc) are complete only for metric geometry, a careful translation
technique should take this fact into consideration. Such a translation technique will give a much
clear insight of the nature of the method used and the theorems proved. For example, Wu’s
method or the Grobner basis method can prove Simson’s theorem with additional condition
(2.1.1) fully, not “nearly”. Furthermore, the proofs produced by those methods do not need the
azioms of order. Even for the field of real numbers R, there are geometries in which isotropic
lines exist. Thus condition (2.1.1) is necessary. Minkowskian geoemtry is such an example, in
which Simson’s theorem is valid [3], but only under (2.1.1) (Figure 2).

Whether such conditions are specified as a part of the hypothesis or found by the methods
has the same logical result. Logically, we don’t see any differences between “proving process”
and “finding process” if the “finding process” is properly understood in Wu’s or our way, but
not in Kutzler’s way as stated in Section 1.

Example (2.2). (the Butterfly Theorem) A, B, C and D are four points on circle (O). E
is the intersection of AC and BD. Through E draw a line perpendicular to O E, meeting AD
at F and BC at G. Show FE = GE (Figure 3).

Here we need a necessary non-degenerate condition that —perpendicular(FE, O, A, D) (for the
precise meaning of the predicate “perpendicular”, see Section 3.1). Obviously, Kutzler’s trans-
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2. Difficulties with Non-Degenerate Conditions

lation technique cannot come up with this condition. In his language there is even no predicate
“~perpendicular”. Without this condition, the Butterfly “theorem” is not a theorem. In this
example, one might add a Kutzler’s predicate intersection(F, F, E, A, D) to the hypotheses in-
stead of —perpendicular(E,O, A, D). But this is very artificial because it means to take the
intersection of lines EF and AD without actually knowing the line EF.

The above two examples happen to be two of the four elementary examples given in [4]. This
is not an accidental phenomenon, but a strong evidence that dealing with non-degenerate con-
ditions is not easy. Furthermore, the borderline between degenerate cases and non-degenerate
cases is not so clear as we might think. The following examples illustrate our point.

In many problems, it allows certain “degenerate cases” in the hypotheses. For example,
in Simson’s theorem, DE is perpendicular to BC. however, the case D = FE is allowed.
To overcome this difficulty in Kutzler’s translation, a new predicate “foot” was introduced.
Obviously, this predicate is for a special kind of constructions. In his ad hoc language, it
is almost impossible to enumerate all such special kinds of constructions. His translation
solves this dilemma by introducing the foot construction, but how about “parallel” instead of
“perpendicular”?

Example (2.3). Let ABC be a triangle and F be the midpoint of AB. From any point D
on AC a parallel line to AB is drawn intersecting BC at E. Show lines CF, AE and BD are
concurrent (Figure 4).

Here we have a condition that DE is parallel to AB. According to Kutzler’s translation, D)
should not be identical to E. But why in Simson’s case he allows D = E?7 There is no reason
to exclude the case D = E unless the statement is not valid or becomes meaningless. In this
example, when D = C, we have E = D and the statement is still meaningful and valid. In
our general scheme in Section 3.3, the foot construction and the construction in Example (2.3)
are special cases of “taking intersection of a line passing through two points and another line
passing through a given point and perpendicular (parallel) to a given line”. Thus D = E is
considered non-degenerate in both cases.

C

‘ O
A B

Figure 3 Figure 4

Example (2.4). (D-11 in [14], or Ex8 in [7]). Let ABC be a triangle with AC = BC. D is
a point on AC; E is a point on BC such that AD = BE. F is the intersection of DF and ADB.
Show DF = EF (Figure 5).



2. Difficulties with Non-Degenerate Conditions

If we choose AB as the z—axis, then this theorem cannot be confirmed with Kutzler’s trans-
lation without adding any other conditions. However, if we choose AC as the z—axis, then the
non-degenerate conditions with Kutzler’s translation are enough. The fact that non-degenerate
conditions are not coordinate—independent is certainly an unpleasant feature of Kutzler’s trans-
lation. Something essential must be missing. This can be easily seen in our general scheme in
Section 3.3. The following two examples are exact statements from [14], which were claimed to
be valid, but actually are not valid in Euclidean geometry with Kutzler’s translation.

Example (2.5). (D-19: 5-Star in [14]).
VR.-.--VVVA-..-VE
[(collinear(A, R, V) A collinear( A, S,U) A collinear(B, S, R) A collinear( B, T,V )A
collinear(C, R, T) A collinear(C, U, V) A collinear(D, S,T) A collinear(D, U, R)A
collinear(E, S,V) A collinear(E,U,T) A collinear(A4, B, C) A collinear(A, B, D)) =
collinear(4, B, E)].

This is not a theorem because it is not valid when R = S=T=V="U.

Example (2.6). (D-20: the 83 configuration problem in [14]).
VA---VH -
[(collinear(A, B, D) A collinear(4,C, H) A collinear(A4, F,G) A collinear(B,C, E)A
collinear(B, G, H) A collinear(C, D, F) A collinear(D, E, G) A collinear(E, F, H)) =
collinear(4, B,C)).

This is not a theorem because it is not valid when A= H, B = FE,and D = F.

The gap between a geometry problem and its algebraic translation could be bigger than we
might think. The following example from [14] (D-13) shows some unexpected gap between an
exact geometry problem and its algebraic translation.

C

Figure 5 Figure 6

Example 2.7 (D-13 in [14]). In any circle the midpoint of two secants of equal length have
equal distances from the circle’s center (Figure 5).

In geometry, a circle generally should not be degenerate, i.e., the radius of the circle M A
should not be zero. If we look at Kutzler’s translation, we have found that his exact (algebraic)
statement allows the degenerate circle. In its algebraic form, the conclusion is valid even in this
“meaningless” case. Certainly, many people would think such translation is “careless”. (For
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3. A Class of Geometric Statements of Constructive Type

detailed discussion of this problem see Example (8.4)).

We believe that no careful (mechanical) translation technique which takes care of non-
degenerate conditions for all geometry statements can be found. At the best, we can only
find a translation technique which is careful enough for a class of geometry statements specified
exactly. This is what was exactly done in [2], and in this paper we will present it in detail.

3. A Class of Geometric Statements of Constructive Type

3.1. Our Predicates

In Kutzler’s approach [14], a large number of defined predicates are introduced. For ex-
ample, there are 4 variants (rigthangle, normal, onnormal, and foot) for a single predicate
“perpendicular”. Instead, we use only four basic (non-logical) predicates: “collinear(4, B, C)”,
“parallel(A, B,C,D)”, “perpendicular(4, B,C, D)”, “congruent(A, B,C, D)”. ? The first thing
we should emphasize is that these predicates do include degenerate cases. To be more precise,
let A= (21,91) B = (22,92), C = (23,93) and D = (24, 7a).

(1) Predicate “collinear(A, B,C)” means that points A, B and C are on the same line; they
are not necessarily distinct. Its corresponding algebraic equation is

(z1 — 22)(y2 — ¥3) — (22 — x3)(y1 — y2) = 0.

(2) Predicate “parallel(A, B,C, D)” means that

[(A = B)V(C = D)V (A,B,C,D are on the same line) V (AB || CD)]. Its algebraic
equation is
(21 — 22)(ys — ya) — (%3 — za)(y1 — y2) = 0.

(3) Predicate “perpendicular(A,B,C, D)” means that [(A = B) vV (C = D)V (AB L CD)].
Its algebraic equation is
(21 — z2)(z3 — 2a) + (¥1 — ¥2)(¥s — ya) = 0.
(4) Predicate “congruent(4, B, C, D)” includes the cases when A = Bor C' = D. Its algebraic

equation is
(z1 —22)" + (1 — 92)* — (23 — z5)” — (ys — ya)? = 0.

There are several advantages of using the above predicates.

(1) Each of the above predicates corresponds to only one equation, thus its negation cor-
responds to only one inequation. E.g., -parallel(4,B,C, D) is (A # B) A (C # D) A
(A,B,C,D are not on the same line) A ~(AB || CD)”. Its corresponding inequation is

(9«“1 - 332)(3/3 - y4) - (iCa - 334)(3’1 - 3/2) # 0,

2 In our actual prover [2], [4], there are many other predicates, such as the midpoint, angle
congruence, the radical axis of two circles, etc. For the complete list of all those predicates
and their algebraic equations see pp.97-99 of [4]. However, for a comparison with Kutzler’s
predicates and for the class of geometric statements defined in next section, these four predicates
are enough.



3. A Class of Geometric Statements of Constructive Type

which is the ezact non-degenerate condition we want for intersecting two lines AB and C D: they
have only one common point. Note that this condition implies the condition (A # BAC # D), a
redundancy in Kutzler’s translation. In Kutzler’s approach, each predicate usually corresponds
to several inequations and one or two equations, thus making its negation hard to use. For
example, we want the non-degenerate condition “—perpendicular(E,0, A, D)” in the Butterfly
theorem (2.2). The nearest in Kutzler’s predicates is —normal(E,0, A, D), which includes the
degenerate cases E = O or A = D. In our case, we can use the negations of the four predicate in
a convenient way. E.g., ~perpendicular(A, B, A, B) means A # B and AB is non-isotropic, i.e.,
~isotropic(A, B), or (21 —&3)?+(y1 —y2)? # 0. Here we define a new predicate “isotropic(4, By’
to be perpendicular(4, B, A, B).

(2) If these predicates are in the conclusion, e.g., the conclusion is AB || CD, do we have to
prove that A # B, C # D, and A, B,C, D are not on the same line with Kutzler’s translation?

(3) Our predicates do allow some “degenerate cases” as discussed in Example (2.3) in detail.
This provides much more flexibility.

(4) In the case AB is perpendicular or parallel to C D, it is possible that C and D are identical
under the previous constructions. If so, then adding the condition that C and D are distinct
(as Kutzler’s translation does) will cause inconsistency. Our method in Section 4 can detect
such kinds of inconsistency. Here we cite a comment of Wu [21].

Theorems of elementary geometry are usually true only in the generic or non-degenerate case which are
implicitly assumed as hypothesis but usually not clearly expressed in the statements of the theorems. In each
degenerate case we have to investigate separately whether the theorem is meaningful o1 not and if it is so whether
the theorem remains true or not.

Now to prove theorems in the usual Euclidean fashion one should incessantly resort to previously proved
sheorems considered to be already known. As these known theorems are only true under certain non-degeneracy
conditions, one should verify whether these non-degeneracy conditions are observed or not each time these
theorems are to be applied. One has to consider different cases to exclude each of these degeneracy situations. ...

In the proof process, even we assume the starting figure is in a non-degenerate position, we still cannot insure
that the other geometric elements constructed from the starting figure are non-degenerate. ...

In our opinion, the separation of equations from inequations is not a “careless” technique
and is a natural algebraic way for handling non-degenerate conditions either manually or me-
chanically.

3.2. Definition of Class C

Now we define a class of statements of constructive type for plane geometry, called Class
C. First, let us give “circle” a formal definition. A circle h is a pair of a point O and a
segment (AB): h = (O,(AB)). Two circles (0, (4B)) and (P,(CD)) are equal if O = P and
congruent(A, B,C, D). O is called the center of the circle and (AB) the radius. A point P is
on circle (O, (AB)) if congruent(O, P, A, B).

Let II be a finite set of points. We say line [ is constructed directly from II if

[ joins two points A and B in Il or
[ passes through one point in I,

and is parallel to a line joining two other points A and B in II or
[ passes through one point in II,

and is perpendicular to a line joining two points A and B in Il or
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3. A Class of Geometric Statements of Constructive Type

| is perpendicular bisector of AB with A and B in 1.

A line I constructed directly from II is well defined if the two points A and B mentioned
above are distinct.

Likewise, we say a circle ¢ = (O,(AB)) is constructed directly from II if points O, A and B
are in TI. The lines and circles constructed directly from II are said to be in II, for brevity.

Definition. A geometry statement is of constructive type or in Class C if the points, lines,
and circles in the statement can be constructed in a definite prescribed manner using the
following ten constructions, assuming II to be the set of points already constructed so far:

Construction 1. Taking an arbitrary point.

Construction 2. Drawing an arbitrary line. This can be reduced to taking two arbitrary
points.

Construction 3. Drawing an arbitrary circle. This can be also reduced to taking two arbitrary
points.

Construction 4. Drawing an arbitrary line through a point in IL This can be reduced to
taking an arbitrary point.

Construction 5. Drawing an arbitrary circle knowing its center in II. This can be also reduced
to taking an arbitrary point.

Construction 6. Taking an arbitrary point on a line in IL.
Construction 7. Taking an arbitrary point on a circle in IL.
Construction 8. Taking the intersection of two lines in II.
Construction 9. Taking an intersection of a line and a circle in II.
Construction 10. Taking an intersection of two circles in II.

The conclusion is a certain (equality) relation among the points thus constructed (not neces-
sarily one of the four predicates). In the actual prover [2], we have included more constructions
such as taking midpoints and constructions involving angle congruence, radicals axis of two
circles, taking a point one a circle knowing its three points, etc.

3.3 Mechanical Generation of Non-Degenerate Conditions for Class C

For a statement in Class C, we can generate non-degenerate conditions following the con-
structions step by step. Suppose we have already generated a set of non-degenerate conditions
DS for the previous constructions. Let HS be the set of the equation hypotheses under the
previous constructions, and II be the set of points constructed so far. The next construction
is one of the ten constructions in Section 3.2. First we add the point(s) to be constructed to
the set II. Since the first five constructions are reduced to taking arbitrary points, nothing is
added to HS or DS. Thus we assume the next construction is one of constructions 6-10. We
use abbreviations coll(), perp(), para() and cong() for predicates collinear(), perpendicular(),
parallel() and congruent(), respectively.



3. A Class of Geometric Statements of Constructive Type

Consiruction 6. Taking an arbitrary point D on a line in IL. There are four kinds of lines in II.
(i) A line joining two points A and B in II. We denote it by L(AB).
HS = {coll(4,B,D)} UHS; DS := {A # B}u DS.

(ii) A line passing through one point C in II and parallel to a line joining two points A and
B in II. We denote it by P(C, AB).

HS = {para(4,B,C,D)}UHS; DS := {A# ByuDS.

(iii) A line passing through one point C in II and perpendicular to a line joining two points
A and B in II. We denote it by T(C, AB).

HS := {perp(A,B,C,D)}UHS; DS := {A# B}uDS.
(iv) Perpendicular—bisector of AB with A and B in II. We denote it by B(AB).
HS := {cong(A,D,B, D)} UHS; DS :={A# B}uDS.

By adding the non-degenerate condition A # B, we cannot insure that the hypothesis is
consistent. Our prover checks such kinds of inconsistency, see [2] or Section 4.

Construction 7. Taking an arbitrary point A on a circle (B, (CD)) in 1L
HS := {cong(A,B,C,D)}UHS.
Construction 8. Taking the intersection I of two lines in II.

This is the most interesting construction, one of our major superiorities over Kutzler’s ap-
proach. Since there are four types of lines in II, there are 10 types of intersections: types LL,
LpP,LT, LB, PP, PT, PB,TT,TB, and BB. Kutzler only recognized type LL.

Let the two lines be given by the following equations:
L:az+biy+c =0,
lg :a2$+b2y—l—62 = 0.
The elegance of our approach is that for all 10 types of intersections, the only non-degenerate
condition in algebraic form is A = a1by — a2b1 # 0.
Case 8.1. Type LL: I = L(AB)n L(CD).
HS := {coll(A, B,I),coll(C,D,I)}UHS; DS := {-para(4,B,C,D)}uU DS.

In the algebraic form, this is equivalent to A = a1by — asby # 0. In Kutzler’s translation, a
redundant condition

Dl = (al #OVbl #0)/\(&2 %0\/62 7/—‘ 0)
was added (in addition to the condition A # 0). Actually, A # 0= D,.

Case 8.2. Type LP: = L(AB)n P(E,CD).

HS = {coll(A,B,I),para(C,D,E,I)} U HS; DS := {-para(4, B,C,D)} U DS. In the
special case,

10



3. A Class of Geometric Statements of Constructive Type

Case 8.2.1. If B = D, then instead, DS should be DS := {~coll(4,B,C)} U DS.
Case 8.3. Type LT: I = L(AB)NT(E,CD).

HS = {coll(A, B,I),perp(C, D, E,I)} U HS; DS = {-perp(A,B,C,D)} U DS. (See the
Butterfly theorem). In the special cases,

Case 8.3.1. If AB is parallel to CD, -perp(4, B,C, D) is reduced to A # B, C # D, line
AB is not perpendicular to AB itself. Thus instead, DS should be DS := {~isotropic(A4, B)} U
DS.

Case 8.3.2. Lines AB and CD are identical. DS := {~isotropic(4, B)} U DS5.

Case 8.3.3. A= C and B = D. DS := {~isotropic(4,B)} U DS. (See Condition (2.1.1)
for Simson’s theorem.)

Case 8.4. Type LB: I = L(AB)n B(CD).
HS := {coll(4, B,I),cong(I,C,I,D)}UHS; DS := {-perp(4,B,C,D)}UDS. In the special

cases,
Case 8.4.1. AB is parallel to CD. DS := {-isotropic(4, B)} U DS.
Case 8.4.2. Lines AB and CD are identical. DS := {A # B,C # D}yuDS.
Case 8.5. Type PP: I = P(E,AB)Nn P(F,CD).

HS = {para(4, B, E,I),para(C,D,E,I)} U HS; DS := {-para(4,B,C,D)} U DS. In the
special case,

Case 8.5.1. B=D. DS := {~coll(4,B,C)} U DS.
Case 8.6. Type PT: I = P(E,AB)NT(F,CD).

HS = {para,(A,B,E,I),perp(C,D,F,I)} U HS; DS := {-perp(4,B,C,D)} UDS. In the
special case,

Case 8.6.1. lines AB is parallel or identical to CD. DS := {~isotropic(4, B)} U DS.
Case 8.7. Type PB: I = P(E,AB)n B(CD).

HS = {para(A, B, E,I),cong(I,C,I,D)} U HS; DS := {-perp(A,B,C,D)} U DS. In the
special case,

Case 8.7.1. lines AB is parallel to CD. DS := {~isotropic(4, B)} U DS.
Case 8.8. Type TT: I = T(E,AB)NT(F,CD).

HS = {perp(A,B,E,I),perp(C,D,F,I)} U HS; DS := {-para(A4,B,C,D)} U DS. In the
special case,

Case 8.8.1. B=D. DS := {=coll(4, B,C)} U DS.
Case 8.9. Type TB: I =T(E,AB)Nn B(CD).
HS := {perp(A, B,E,I),cong(I,C,1,D)} UHS; DS := {-para(4,B,C,D)} U DS. In the
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3. A Class of Geometric Statements of Constructive Type

special case,
Case 8.9.1. B=C. DS := {~coll(4,B,C)} U DS.
Case 8.10. Type BB: I = B(AB)n B(CD).

HS = {perp(I,A,I,B),cong(I,C,I,D)} U HS; DS := {~para(4,B,C,D)}u DS. In the
special case,

Case 8.10.1. B = D. DS := {~coll(4, B,C)} U DS.

Construction 9. Taking an intersection @ of a line and a circle in II. Let theline be L(AB), or
P(C,AB), or T(C, AB), or B(AB), the circle be (O,(DE)). DS := {~isotropic(A4, B)} U DS.

If Q = L(AB) N (O,(DE)), then HS := {coll(4, B,Q),cong(0,Q, D, E)} U I 5.

If Q = P(C,AB)n (0,(DE)), then HS := {para(4, B,C,Q),cong(0,Q, D, E)} U HS.
It Q = T(C,AB) N (O, (DE)), then HS := {perp(4, B,C,Q),cong(0,Q, D, E)} U HS.
It Q = B(AB) N (O,(DE)), then HS := {cong(Q, 4, Q, B),cong(0,Q, D, E)} U HS.

Case 9.1. In the special case when one of the intersections, say S, of the circle and the line
is already in II. DS := {~isotropic(4, B), S # Q}uDS.

Construction 10. Taking an intersection @ of two circles in II. Let the two circles be (O, (AB))
and (P, (CD)).

HS = {cong(O,Q,A,B),cong(P,Q,C,D)} U HS; DS = {-isotropic(O, P)} U DS. In the

special case,

Case 10.1. One of the intersections is already in II, say, S. DS := {~isotropic(O, P),S #
Q}luDS.

Repeating the above step until every construction is processed, finally we have two parts
for the hypothesis: one is HS = {H,,...,H,}, called the equation part of the hypothesis; the
other is DS = {=Dy,...,mD,}, called the inequation part of the hypothesis and representing
non-degenerate conditions of the statement. Let C be the conclusion of the statement, which
is not necessarily one of the four predicates defined in Section 3.1, but whose algebraic form is
a polynomial equation in the coordinates of the points in II. Then the exact statement is®

(3.1) VP e II(HS ADS = C).

Thus according to our translation, we can denote a statement S in Class C by (HS,DS,C).
In Section 4, we will prove a theorem stating that the mechanically generated non-degenerate
conditions by our method are sufficient for an irreducible (to be defined) geometry statement
S in Class C, i.e., if (3.1) is not valid in the theory of metric geometry, then it cannot be valid
by adding any additional non-degenerate conditions =Dy 1....,~D; as far as

(3.2) VP e TI(HS ADS = D;),

3 Depending on the context, HS can also denote the conjunction of its elements, ie., HS =
H, A---A H,. The same convention is for DS and other sets of geometric conditions.

12



3. A Class of Geometric Statements of Constructive Type

is not valid for j = s+ 1,...,1.

In Sections 5 and 6, we will prove similar theorems for Euclidean geometry. But first let us
look at two examples to see how the method described in this section works.

3.4. A Method for Generation of Constructive Sequences

First we point out that the equation part of the hypothesis of a geometry statement of
equality type is always easy to identify and clear cut. If the user misses one and the prover
answers “not a theorem”, it is user’s own fault. However, if the user misses one of the necessary
non-degenerate conditions and the prover answers “not a theorem?”, then the user is probably
innocent. Even experts feel hard to deal with non-degenerate conditions, e.g., for D-19 and D-
20 in [13]. In this sense, Formulation F'1 is better because we don’t have to concern with some
very subtle degenerate cases. Besides, if the prover answers “the statement is generally false”,
then we know the nature of the statement: it would be useless to search for missing degenerate
cases. For Class C, we even have a method for generating the inequation part DS. For a
given geometry statement in Class C, the sequence of constructions is not unique. Different
construction sequences generally lead to different inequation parts, thus giving slightly different
exact versions of the original statement.

The equation parts of Simson’s theorem and the Butterfly theorem are clear. For Simson’s
theorem, H .S is:

perpendicular(A, B, D,G),

perpendicular(A,C, D, F),

perpendicular(B,C, D, E),

collinear(A, B, G),

collinear(4,C, F), HS,
collinear(B, C, E),

congruent(0, A, O, B),

congruent(0, A, 0,C),

congruent(0, 4,0, D).

and for the Butterfly Theorem, H S} is

congruent(O, A4, O, B),

congruent(0, A,0,C),

congruent(0, A, O, D),

collinear(A, E,C),

collinear(B, E, D), HS,
perpendicular(O, E, E, F),

collinear(E, F,G),

collinear(F, A, D),

collinear(G, B, C).

If we know the construction sequence for Simson’s theorem, then generating the inequation
part DS is straightforward by the method in the previous subsection. Generally, we cannot
generate construction sequence merely by the equation part HS,. However, to ease the user
for specifying the construction sequence, our prover has a method so that the user only needs
to specify an order in which the points are constructed. For example for Simson’s theorem,
we can arrange the points in the order A, B,C,0,D,E, F,G. Qur heuristic to figure out the

13



3. A Class of Geometric Statements of Constructive Type

construction sequence works as follows:

Check last point (here G) to see which predicates in H S, involve this point. If there are more
than two such predicates, we simply return the answer “the order is not chosen in a proper way
or the statement is not of constructive type.” Otherwise, there are only one or two predicates
involved. Our prover can figure out whether it is one of constructions 6-10.* In this case, we
have two conditions, perpendicular(4, B, D, G) and collinear(4, B,G). Thus, the prover figures
out that it is construction 8.3: G = T(D,AB) N L(AB). Then we delete these two conditions
from the set HS, and go to the next point, i.e., F. Similarly, the prover finds two conditions in
the new H S, involving F and figures out the construction F' = T(D, ACYN L(AC). Next, E =
T(D,BC)N L(BC); D is on (0,(0A)). Last, for point 0, congruent(O, A,0, B) is recognized
by our prover as “O is on B(AB)”. Thus the last construction is O = B(AB) N B(AC). After
that, HS, is empty, thus the remaining points A, B, and C can be arbitrarily chosen. By
the method in previous subsection, our prover then produces the set DS, of non-degenerate
conditions from the above construction sequence:

~collinear(4, B, C),
—isotropic(AB),
—isotropic(AC),
~isotropic(BC).

Then the exact statement of Simson’s theorem is:

(3.3) VA---YG[HS, A DS, = collinear(E, F, G)].

Now let us look at the Butterfly Theorem. If we arrange the points in the order O, A,B,C, D,
E,F,G, then we have the construction sequence:

O and A are arbitrarily chosen; construction 1
B is on (0,(0A)); construction 7
C is on (0, (0A)); construction 7
D is on (O,(0A)); construction 7
E = L(AC)N L(BD); construction 8.1
F = L(AD)NT(E,OF); construction 8.3
G = L(EF)Nn L(BC). construction 8.1

Then the program generates a set DSy of non-degenerate conditions from the above construction
sequence:

~parallel(E, F, B,C),
—perpendicular(4,D,0, E),
—parallel(A,C, B, D).

The exact statement of the Butterfly Theorem is:

(3.4) VA-..VGHS, A DS, = midpoint(F, E,G)l.

Note that for the same theorem, the construction sequence is usually not unique. Different
construction sequences lead to different non-degenerate conditions and slightly different “the

4 As we mentioned before, the prover can figure out more than those constructions. But for
the purpose of discussion of basic techniques and principles, contructions 6-10 are enough.
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exact statements” of the theorem. For example, we have at least 8 essentially different con-
struction sequences for Simson’s theorem (see Appendix 2). In Section 7, we will give another
construction sequence for the Butterfly theorem.

4. The Completeness of Non-Degenerate Conditions for Metric Geometry

The completeness of our method for generating non-degenerate conditions DS can be stated
as following theorem.

Theorem (4.1). For an irreducible (to be defined later) statement in Class C, our me-
chanically generated non-degenerate conditions are sufficient for the statement to be valid in
the theory of metric geometry [19] (see also [2]). To be more precise, let S = (HS,DS,C)
be a statement in Class C, where HS = {H,, ..., H,} is the equation part of the hypothesis,
DS = {Dy,...,D,} is the inequation part of the hypothesis, and C is the conclusion. Let Il be
the set of all points involved in S. If S is irreducible (to be defined later) and the formula

(4.2) VP eIl(HSADS = C),

is not valid in a model © of the theory of metric geometry whose associated field Fq is alge-
braically closed, then (4.2) cannot be a theorem in © by adding any set of additional conditions
~Dgy1,...,mD; as long as it keeps the consistency of the hypothesis, where each D; is a geo-
metric condition whose algebraic form is an equation. The consistency means that

(4.3) VP e I(HS A DS = D),

is not valid in @, for ¢ = s+ 1,..., 1. i

Now we are proving Theorem (4.1). Our final goal is to prove Theorem (4.8) which is the
algebraic form of Theorem (4.1). The proof here was originally in [2].

We use the algebraic approach. Following Hilbert and Wu, we use two kinds of variables:
the parameters u; and the dependent variables z. Our proof also provides a method to choose
the parameters u, the dependent variables z, the variable order in x, and a method to decide
whether (4.2) is valid in Q.

After adopting an appropriate coordinate system, each point P in the statement S corre-
sponds to a pair of coordinates: P = (z,,y,). We introduce new parameters u, dependent
variables z, and equations according to the steps of constructions. Under the previous con-
structions, suppose we have already introduced parameters wuy,...,%;_1, dependent variables
1,...,Tp—1, and the equations hy = 0,...,hx_1 = 0 corresponding to a part of hypothesis
{H,,...,Hy 1}, and an ascending chain of the form:

filwy, oo uj-1,21)
folug, oo uj1,21,%2)

(4.4)
Fooi{tr, ooy %j-1,71, yTh_1)



4. The Completeness of Mechanically Generated Conditions for Metric Geometry

Furthermore, we assume the ascending chain (in week sense) f1,..., fr_1 is irreducible.® This is
the exact meaning of “irreducible” in the statement of Theorem (4.1). Let II be the set of points
constructed so far. First we add the next point(s) to be constructed to II. Since Constructions
1-5 introduce only arbitrarily chosen points, we only need to assign new parameters to the
coordinates of the points. E.g., for construction 1 (taking any point A), we can let A =
(u;,u;41). Thus we assume that the next construction is one of Constructions 6-10.

Construction 6. Taking an arbitrary point D on aline [ in II. Let the corresponding condition
in HS be Hj. Let the line equation h; = 0 for [, which is the algebraic form of Hy, is

ax + by +c=0.

Here a, b, and ¢ are polynomials in coordinates of the previously constructed points. E.g., if
[ =T(C,AB) and C = (23,%2), A = (z3,¥3), B = (z4,¥a), then the equation is:

(# —23)(23 — 24) +(y — ¥2)(ys — Ys) =0,

ie., a =123 — &4, b=ys —ysand c= —xz(%‘s - 134) - yz(l/s - 294)‘

Our first step is to check whether R, = prem(a; f1,..., fe—1) and Ry = prem(b; f1, ..., fr—1)
are zero. (Here prem denotes the successive pseudo divisions of a polynomial by an ascending
chain, see [4] for details.)

Case 6.1. R, = 0 and R, = 0. Then the line [ is not well defined. We detect the inconsistency
of the hypothesis by adding A # B. Thus our method actually can detect the inconsistency
raised in Section 3.1. In that case, we either can say that the hypothesis does not satisfy the
dimensionality constraint required by Formulation F1 (see p.47 [4]), or it is a theorem according
to Formulation 2 because of the inconsistency of the hypothesis.

Case 6.2. One of R, and Ry, say R;, is zero. We can let D = (z;,u;) and have a new
equation:
fe = azp +bu; +c=0,

where u; and zj are the new parameter and dependent variable introduced. We have a new
irreducible ascending chain fi, ..., fr. Then the condition a # 0 is equivalent to that the line !
is well defined (in our case A # B).

Case 6.3. Both R, and R, are not zero. We can do the same as in case 6.2. The only
difference is that the non-zero of leading coefficient (¢ # 0) is no longer equivalent to A # B.
But (a # 0V b # 0) is equivalent to A # B. We will come back the this problem later.

Construction 7. Taking an arbitrary point A on a circle (B,(CD)) in II. Let A = (24, 4;),
B = (23,92), C = (%3,y3) and D = (24,ys4). Then the algebraic form of the corresponding
hypothesis Hy in HS is the equation

hy = (»’Ek - 562)2 + (U]’ - yz)z - (953 - 394)2 - (ys - 3;14)2 = 0.

5 For the definition of ascending chains, see [19], [4], or [5]. The ascending chain fi,..., fr_1
is irreducible if f(u,z1,...,2;) is irreducible in the field Q(u)[z1,...,2;]/(f1, s fiz1), for @ =
1,...,k — 1. Here here (f1,..., f;_1) is the ideal generated by fi,..., fi_1-
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4. The Completeness of Mechanically Generated Conditions for Metric Geometry

Our next step is to check whether CD is isotropic, i.e., whether R = prem((z3 — z4)* + (y3 —
y2)?: fis vy fo_1) is zero. If R # 0, then let fr = hg, and fi,..., fr is irreducible by Lemma
(A1.2) in Appendix 1. We always assume this is the case.

Construction 8. Taking the intersection I of two lines {; and I, in TI. We have two corre-
sponding hypotheses Hy and Hii1 in HS, whose algebraic forms are two equations for lines Iy
and {,:

hk = a1x+b1y+cl 20,
hiy1 = asx + by +c2 =0.
The first step is to check whether R = prem(A; f1, vy fo—1) is zero, where A = a; by — azb;.

Note that A # O is the algebraic form of the non-degenerate condition generated in cases
8.1-8.10 of Section 3.3.

Case 8.1. R = 0. Then adding condition A # 0 causes inconsistency with the previous
constructions.

Case 8.2. R # 0. Letting I = (z41,%), then we have two new equations:

Jr = Azy +d =0,
fesr = AZpqr +e€=0.

where d = byc; —bicy and e = aj¢y — azc;. We have an irreducible ascending chain fi, ..., fr41.°

Construction 9. Taking an intersection @ of a line [ and a circle ¢ in II. We have two
corresponding hypotheses Hy and Hyyq in H S whose corresponding algebraic forms are the
equations for the line / and the circle ¢:

hy =y*+2? +az+by+c=0,
hry1 = a1y +biz+ ¢ =0.

First we check whether R = prem(a? + b%; fi, ..., fr—1) is zero.
Case 9.1. R = 0. Then the hypothesis HS A DS is inconsistent.

Case 9.2. R # 0. One of R, = prem(as; fi, s fi_1), Ry = prem(by; fi, ..., fr_1) is zero, say,
R,. (They cannot be both zero, otherwise R would be zero). Then a; # 0 means that the
line [ is well defined. We introduce two dependent variables &, g1 and let @ = (Tp41,28)-
Eliminating ¥ from equation h, we have

fo = (a2 +03)z? + (alb + 2151 — aa b))z + (alc+ ¢ —acia;) = 0,
fre1 = @1 Zpgr 017 + 1 = 0.
Now we have ascending chain (in weak sense) fi, ..., fr+1. We can check whether fi, ..., fr41
is irreducible using the algorithm introduced in [1] (also see [2]) and implemented in our prover.

If it is reducible, generally it is still open whether non-degenerate conditions DS are sufficient.
In the statement of Theorem (4.1), we assume fi,..., fy4+1 18 irreducible.

6 Actually, we can let fry1 = Ga%p41 + byzy, + ¢ if prem{as; fi, .., fr—1) # 0. This can save
time and space. For details see [2] or Appendix 1.
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4. The Completeness of Mechanically Generated Conditions for Metric Geometry

Case 9.3. R # 0, and both R, and R, are non-zero. We can do the same as in Case 9.2. The
only differences is that (a; # 0V by # 0) is the condition that the line [ is well defined. We will
come back to this condition in the proof of Theorem (4.8).

Construction 10. Taking an intersection @ of two circles ¢; and ¢y in II. We have two
corresponding hypotheses H and Hyy; in HS whose corresponding algebraic forms are the
equations for the circles ¢; and cs:

hy =y +2° +ay+bz+c=0,
hryr =y + 22 +ey+dz+j=0.

Letting hg41 = by — Rpqr, we have the equation for a [ line:
hk+1 = a1y + bll' -+ cy = O,

where a; = a — e, by = b—d, ¢; = ¢— j. This is the line joining the two points of intersection
of ¢; and ¢s, if they intersect (this is always the case if the field associated with the geometry
Q is algebraically closed.) But line [ exists in Q even if ¢; and ¢; do not have common points
in . This is called the radical axis of the two circles. Now we check whether R = prem(a} +

b2 fiy ey fo—1) is zero.

Case 10.1. R = 0. This means the radical is isotropic, hence the line OP joining the two
centers is isotropic and the hypothesis HS A DS is inconsistent.

Case 10.2. R # 0, and one of R, = prem(ai; f1,..., fr—1) and Ry = prem(bs; f1,..., fr—1) is
zero. Then we have exactly the same situation as in case 9.2.

Case 10.3. R # 0, and both R, and R; are not zero. Then we have exactly the same situation
as in case 9.3.

Repeating this process until we complete all constructions. Finally, we have an irreducible
ascending chain:

filug, .., ua,21)

fo(ur, ..o ug, 21, 22)
(4.5)

fr(ur, .o ta, @, .0, 20 ).

Now we want to ask whether the formula
(4.6) YPell[(HiA---AH, A=Dy A---A=D,) = C]
is valid in €, or in its equivalent algebraic form, whether the formula
(4.7) Veuz[(hy =0A---Ah, =0Ad #0A---ANd, #0) = ¢ = 0]

is valid in Fp, where hq,...,h,, and ¢ are the polynomials corresponding to Hy, ..., H, and C,
respectively, di, ...d, are polynomials corresponding to Dy, vy Dy
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Remark. Each =D, is one of the negations of the four predicates: collinear, parallel, per-
pendicular, and (point) equal. The algebraic form for each of the first three is a polynomial
equation. The predicate (point) “equal” is a logical one as defined in [17]. Let A = (z1,91)
and B = (&2,¥)- The algebraic form of A # B is (a # 0V b # 0), which is the disjunction of
two inequations, where @ = &; — 25 and b = y; — y». However, we can use a new variable z to
convert it to an inequation: in any field (a # 0V b # 0) if and only if 32(az + b # 0). Then we
can move such existentially quantified variables z; to the outside, and (4.7) becomes

(4.7) Vu;z;2e[(hy =0A - Ah, =0Ady #0A---Ad, #0) = c=0].

Since new variables z are only auxiliary, we will not mention them explicitly.
We have the following theorem which is the algebraic form of Theorem (4.1).

Theorem (4.8). Let the ascending chain ASC = fi,..., f, in the form of (4.5), which is
obtained by the above procedure, be irreducible and the I; be the initials of the f;. If F is
algebraically closed, then the following conditions are equivalent:

(1) prem(c; ASC) = 0;
(2) The formula

(4.9) Vuz € Fp[(fi=0A---Afr =0AI; #0A---AL #0)=c=0]

is valid in Fa;
(3) Formula (4.7) is valid in Fo;
(4) Formula (4.6) is valid in £;
(5) prem(d - ¢; ASC) = 0 for any polynomial d with prem(d; ASC) # 0.

Proof. (1) = (2). Suppose R = prem(c; ASC) = 0. Since we have the remainder formula:

Ii’l "'I:rc:Qlfl ++Qrfr +R7

and R = 0, formula (4.9) is valid.

(2) = (1). Since Fy is algebraically closed and the ascending chain ASC is irreducible, (1)
follows from (2) by Theorem (3.7) on p.30 in [4].

(2) = (3). Let J be the set {I; |I; is not a constant, i = 1,....,7}. Let N = {dy,....,d,}. We
want to show that those I, in J but not in N can be removed or replaced by d; in (4.9). Such
an I, can be only the following three cases:

Case 1: Case 6.3. In this case I; = a. We can let A = (u;,z;) and f; = bz +au; +¢=0.
The ascending chain ASC’ = fi, ..., fi_1, i, fot1,-or fr is 2lso irreducible. By Lemma (A1.1)
in Appendix 1, prem(c; ASC) = 0 if and only if prem(c; ASC’) = 0. Thus we only need the
condition (a # 0V b # 0). This is the condition for the line to be well defined as given in 3.3.

Case 2: Case 9.3. In this case I; = a,. Using the same technique as in Case 1, we can come
to the conclusion that I, # 0 can be replaced by a weaker condition (a; # 0V by # 0), which
is implied by a? + b? # 0, i.e., by the condition that line [ is non-isctropic.

Case 3: Case 10.3. The same as in Case 2.
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Thus the formula Yuz[(fi = 0A---Afy Adi #0A---Ad, #0) = c=0]is valid. Since
(hy =0A---Ah, =0)=>(fy =0A---A f, = 0),(3) follows from (2).

(3) = (2). By the remainder formula, (fy =0A---Af, =0AL #OA---AIL # 0) = h; =0.
AlsoI; #0A---A I # 0= d; #0. Thus (4.7) follows from (4.9).

Since (4.7) is the algebraic form of (4.6), (3) and (4) are equivalent.

Since ASC is irreducible, (1) and (5) are equivalent. i

5. The Completeness for Euclidean Geometry: Easy Cases

If Wu’s method does not confirm a statement in Euclidean geometry, we generally do not
know whether the statement is disproved or not. The work [2] and [10] is to give a condition,
i.e., the Condition (GC) below, for geometry statements in Fuclidean geometry for which Wu’s
method is complete, i.e., if Wu’s method does not confirm a statement satisfying that condition,
the statement is not a theorem. However, to decide whether a geometry statement satisfies that
condition is beyond Wu’s method. In this and next sections, we will present subclasses of Class
C that satisfy the condition (GC) and can be recognized by our prover [2].

From now on, the geometry in discussion is Euclidean geometry, whose associated field is R.

Definition (5.1). Let fi,...,f. be an irreducible ascending chain in the form of (4.5), if
there are non-empty open intervals Ui,...,U; in R such that f; = 0,..., f, = 0 have solutions
for #1,...,z, in R for all u; € U; (i = 1,...,d), we say that fi,..., f, is R—generic.

Generic Condition (GC). Let a constructive statement S = (HS,DS,C) and hy, ..., h,,
and ASC = fi,..., [, be the same as in Section 4. If fi,...,f, is R-generic, then we say S
satisfies Generic Condition (GC).

Theorem (5.2). Let the notations be the same as above. If S satisfies Condition (GC),
then the following conditions are equivalent

(1) prem(c; fi,on fr) =05

(2) Veu € R[(fi=0A---Afy =0ALL #0A---AL #0)=c=0]
(3) Vzu € R[(hy =0A---Ah, =0Ad; #0A---Ads #0) = c=0];
(4) VP € II[HS A DS = (] is valid in Euclidean geometry;

(5) prem(d - ¢; ASC) = 0 for any polynomial d with prem(d; ASC) # 0.

Proof. (2) = (1). This is a theorem proved in [2] (also see [4] or [10]).
The rtest of the proof are either obvious or the same as in the proof of Theorem (4.8).

Now we enlarge subclasses of class C to satisfy the Generic Condition (GC) in the following
two subsequent theorems.

Theorem (5.3). Statements in class C which involve only constructions 1-6, and 8 are
either inconsistent or satisfy the Generic Condition (GC). Thus our method is complete for
such statements in Euclidean geometry.

Proof. Since for such a statement, either the hypothesis HS A DS is inconsistent, or we have
an ascending chain fi,..., f, with all deg(f;, z;) = 1, the condition (GC) is trivially satisfied. j
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Remark. This is what we called linear cases. Wu’s method or the Grébner basis method
(used in a proper way) are also decision methods for such linear cases, i.e., they can prove or
disprove any assertions on linear configurations in any geometries, including Euclidean geome-
try. About 60% of 512 theorems proved in [4] were specified as linear statements. Nine among
the 20 examples (D4-10, 15, 17) in [14] were also specified as linear statements.

Theorem (5.4). For a statement S = (HS,DS,C) in class C which involves only construc-
tions 1-8, either HS A DS is inconsistent with additional conditions that the radius C'D is
non-zero (i.e., nisotropic(C, D)) for construction 7, or it satisfies the Generic Condition (GC).

Proof. Now we are back to construction 7 in the proof of Theorem (4.1). the radius of the
circle is given by 1% = (23 —24)?+(ys —ya)?. —isotropic(C, D) means r* = 0. We check whether
R = prem(r%; fi, ..., fr—1) is 0. If R = 0, then the hypothesis HS A DS is inconsistent with
r2 # 0. In Fuclidean geometry 7 = 0 means C = D or the radius is 0. Otherwise, fi,..., f3 is
irreducible by Lemma (A1.2), and we have open interval U; = (—r,r) such that fi,..., fy have
real solutions for the z. Thus, the generic condition (GC) is satisfied. i

Remark. Simson’s theorem and the Butterfly theorem in Section 3.4 belong to this subclass.
Thus we can prove and disprove any assertions about these two configurations. E.g., if we want
to decide whether AF = BG for the Butterfly configuration, this is not a theorem in Euclidean
geometry as shown by our prover. Our result is much stronger than any results based on
Formulation F2: it cannot be a theorem by adding any consistent non-degenerate conditions.

6. The Completeness for Euclidean Geometry: More General Cases

To enlarge our subclass further we first need some new tools. From now on we are free to
use any tools and notions developed by Ritt, Wu and us [16], [19], [22], [4], [5]. The coefficients
of all polynomials mentioned are in Q. Let F be a field containing Q. Let PS be a polynomial
set in variables y;, ..., Y. We denote F~Zero(PS) or Zero(PS) (if F is clear in the context)
the common zeros of polynomials of PS in the field F, i.e.,

Zero(PS) = {(ay,...,am) € F™ | f(ay,...,a,) =0 for all f € PS}.

Let G'S be another polynomial set. We denote Zero(PS/GS) the set difference Zero(PS) —
Zero(GS).

Definition (6.1). Let HS, DS, hy,..., ., di,...,d, be the same as before. A statement S
= (HS,DS,C)in Class Cis said to be irreducible in weak sense if Z = Zero(hy,....h, [dy,....ds)
has only one non-degenerate component, i.e., Z = Zero(PD(f1, ..., fr)/d1,...,d, ), where fi, .., f,
is an irreducible ascending chain in the form of (4.5). Here PD(fi,..., f,) denotes the prime
ideal with fi, ..., f, as a characteristic set, i.e., the set {g |prem(g; f1,..., fr) = 0}.

Obviously, an irreducible statement defined in Section 4 is an irreducible statement in weak
sense. Example (2.3) is not irreducible, but irreducible in weak sense.

Theorem (6.2). There is an algorithm to decide whether S = (#5,DS,C) is irreducible in
weak form.

Proof. Using the method in Chapter 3 of [2] and Ritt-Wu’s decomposition algorithm in [5]. §

Theorem (6.3). Let the notations be the same as the above. If S = (HS,D5,C) is an
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irreducible statement in weak sense, then the formula (4.6) is valid iff prem(e; f1,..., f;) = 0.
Proof. Straightforward. |

Generic Condition (GCW). Let S = (HS, DS,C) an irreducible statement in weak form.
If fi,..., fr is R-generic, then S is said to satisfy the Condition (GCW).

Theorem (6.4). If S = (HS,DS,C) satisfies (GCW), then the following conditions are
equivalent:

(1) prem(c; fi,s fr) =05

(2) Veu ER[(fi=0A---Af, =0AL #0A---AL #0)=c=0]
(3) Vzu € R[(hy =0A---Ah, =0Ad #0A---Ad, #0) = ¢ =0];
(4) VP € I[HS A DS = C] is valid in Euclidean geometry;

(5) prem(d - ¢; ASC) = 0 for any polynomial d with prem(d; ASC) # 0.

Now we define the class of geometry statements involving constructions 1-8, 9.1 and 10.1 to
be Class Cg. Our main result in this Section is that Wu’s method is complete for Class Cg in
Euclidean geometry.

Theorem (6.5). A geometry statement S in Class Cg. is either inconsistent or irreducible
in weak sense. In the latter case, S satisfies the Condition (GCW).

Proof. The proof also provides a method to decide whether S is inconsistent, and in the
consistent case to compute the irreducible ascending chain fi,..., f, and decide whether S is
valid or not in Euclidean geometry. The elegance of the method is that we don’t need any
factorization. For a complete proof see Appendix 1. i

Theorem (6.6). Let S = (HS,DS,C) be a statement in Class Cg. If (4.6) is not valid in
Fuclidean geometry, then it cannot be a theorem in Euclidean geometry by adding any set of
additional conditions {~D,,1,...,mD,} as long as it keeps the consistency of the hypothesis,
ie., VP eI[(HS A DS = D;) is not valid in Euclidean geometry, for i = s + 1, ..., 1.

Proof. This is a direct consequence of Theorems (6.4) and (6.5). i

7. Examples and Experiment Results

Example (7.1). (Simson’s Theorem). By the calculation of Example (2.1) in Chapter 1 of
[4], we actually proved the exact geometric statement of Simson’s theorem (3.3).

Example (7.2). (the Butterfly Theorem). If we introduce points in the order £,0, 4, B,C,
D, F,G, then our prover produces the following construction sequence for H S, (Section 3.4).

E, O, and A are arbitrarily chosen construction 1
B is on circle (0,(0, 4)) construction 7
C=L(AE)N (0,(0A4)) construction 9.1
D= L(BE)N(0,(0A)) construction 9.1
F=T(E,EO)nL(AD) construction 8.3
G = L(EF)n L(BC) construction 8.1

Then DS, is
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—isotropic(AE), A # C,
-isotropic(BE), B # D,
—perpendicular(4, D, 0, E),
—parallel(4,C, B, D).

Then the exact geometric statement of the Butterfly theorem, HS, A DS, = C, was proved
by the calculation in Example (2.4) of Chapter 1 of [4] because of Theorems (6.4) and (6.5)
(see also Example 36 of [4]). Furthermore, we can prove and disprove any assertions about
the Butterfly configuration in Euclidean geometry. For example, if we want to ask whether
AF .CG = BG - DF, then it was easily disproved in Euclidean geometry in about 36 seconds.
Our disproof is much stronger than any results based on Formulation F2: it cannot be a theorem
in Euclidean geometry by adding any number of additional conditions as far as HS A DS is
consistent with those additional conditions.

For 413 among 512 theorems proved in [4], non-degenerate conditions are generated all in
geometric form using the method described in this paper or in [2] with some extensions to
include other constructions. In [4], we gave full geometric specifications of these 413 theorems
and proved them under such specifications without adding any other conditions.

8. On Proving Methods Based on the Grébner Basis Method

The Grobner basis (GB) method has been also successfully used for the same class of geometry
theorems which Wu’s method originally addresses. Chou-Schelter [7] and Kapur [9] were the
first to use the GB method to prove theorems according to Formulation F2. Chou-Schelter [7]
and Kutzler-Stifter [12] were the first to use the GB method according to Formulation F1.

However, Kutzler is obviously unaware of Formulation F1 as he claims that his methods KS1
and KS2 are for “Wu’s finding problem” and only give “near proofs” [14], [13]. In the light
of our analysis of statements of Class C, we can see that method KS2 actually did more than
Kutzler thought in [13], [14]. 7 At least for a subclass of Class C, method KS2 actually gives
“fyll proofs” of those statements, instead of “near proofs” if we add geometric non-degenerate
conditions generated by our method.

First we give a brief review of Formulation F1. (The reader can find detailed discussions in
[4] or [8)).

Formulation F1. Let the equation part of the hypothesis of a geometry statement be given
algebraically by a set of equations By(Uyy ey Udy T1y ey B ) = Oy ooy Bg (Ugy ooy g, 21, vy @p) = 0,
where the u are parameters and the z are dependent variables (such as given by the method
in Section 4). Let the conclusion is also an equation ¢(u,z) = 0. The statement is generally
true if there is a non-zero polynomial s containing the » only, called a u~polynomial, such that
sc € Radical(hy,...,hn).

Theorem (8.1). For an irreducible statement S in weak sense, S is generally true if and
only if the geometric form of S, (4.6), is valid.

7 Method KS2 is very similar to the method used by Chou—Schelter. However, KS2 is incom-
plete in the sense it cannot derive 22 =0 = z = 0 in contrast to Chou—Schelter’s method. For
historical reason it should be more appropriate to denote it by CS-KS52.
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Proof. By the definition of “irreducible in weak form”,
Ze?“o(hl, ...,h,- /d17 ---7ds) = Zero(PD(fl g aeey fr)/dl g eney ds)'

Since Zero(PD(fiy - fr)]d1s-nrds) C Zero(c) i prem(c; f1, veey fr) = 0. This is in turn equiv-
alent to there is a u—polynomial s such that sc € I'deal(fi,...,f) C Radical(hy, ..., h, ).

Now suppose there is a u—polynomial s such that sc € Radical(hy, ..., h, ). Thus sc vanishes
on Zero(PD(fi,..., fr)/d1, -, d.); hence prem(sc; fi, ..., f) = 0. Since s is a u-polynomial,
prem(¢; fiy ..., fo) = 0. By Theorem (6.3), (4.6) is valid. i

Theorem (8.2). For a statement S = (HS5,DS,C) in Class C which involves construction 1-
8,9.1 and 10.1, (HSA DS = C) is valid if and only if Method CS-KS2 proves S to be generally
true, or in Kutzler’s term, KS2 confirms the “finding problem”. In the case that HSADS = C'is
not valid, it cannot be valid by adding any number of non-degenerate conditions = D41, ...,m D,
as long as each D; is consistent with H.S A DS,i.e., (HSADS = D;) is not valid in Euclidean
geometry for i = s+1,...,1.

Proof, This is a direct consequence of Theorems (6.4), (6.5) and (8.1). i

Example (8.3). Theorem (8.2) can apply to all 12 examples given in Chou-Schelter’s work
on the Grobner basis method [7] but one, Ex8, which is D11 in [14]. Thus our Grobner basis
method in [7] actually gave full proofs of these 11 examples instead of “near proofs”.

Example (8.4). By a close look at the selection of parameters and equations of 20 examples
given in [14], we have found that 12 involve only constructions 1-8, (D-2, D4-10, D14-17), thus
Kutzler’s results of method KS2 actually gave “full proofs” of these 12 statements instead of
“near proofs” if he uses our translation technique for generating non-degenerate conditions
instead of his. Especially we would like to mention examples D-14, D-16 and D-17 because
Kutzler’s results show that no “full proofs” have ever been given by any methods (provers) he
discussed. By Theorem (8.2), Kutzler’s method KS2 itself actually gave full proofs of these
theorems in 21.4, 3151.6, and 73.9 seconds, respectively. Here we have made this assertion
even without knowing the ezplicit forms of the u-polynomials found by his prover. However,
we do require the non-degenerate conditions be those generated by our method. Note that the
equation parts are the same for both our translation and Kutzler’s translation.

Example (8.5). Examples D-11 and D-13 in [14], according to Kutzler’s specifications,
belong to Class C, but involve constructions 9 or 10. Thus we cannot arrive at the same
conclusion as in (8.4) without further decomposition. Using our prover, we have confirmed
that D11 is irreducible in weak sense and D-13 is irreducible. Thus together with our results,
the results by method KS2 in [14] also gave full proofs of these two theorems under geometric
non-degenerate conditions produced by our method, not by Kutzler’s translation. According to
Kutzler’s results, no “full proof” of D-11, has never been found by all methods he discussed.
This was due to the omission of the non-degenerate condition “~isotropic(B,C)” required by
our construction 9.

D-13 was proved by some methods in [14] even without adding any non-degenerate con-
ditions. According to Kutzler’s specification, point D is obtained by our construction 10:
D = (C,(AB))N (M,(MA)). Thus we do require that C'M be non-isotropic. There are differ-
ences between Kutzler’s “full proof” by method KS1 and the “full proof” by method KS2. The
former does not require any non-degenerate conditions, but the latter needs =isotropic(C, M)
generated by our method. It is worthwhile to explain this very subtle situation in more detail.
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The equation part of the theorem HS is
{cong(A, M, M,B),cong(A, M, M,C),cong(A, M, M, D),
cong(A, B,C, D), midpoint(A, P, B), midpoint(C,Q, D)}.

The conclusion C is congruent(P, M, M, Q). The result by KS1 shows
(8.6) YA..-VYQ(HS = DS)

is valid. Owur result (without knowing the concrete form of u-polynomial found by method
KS2) shows that method KS2 actually proved

(8.7) YA---YQ(HS A —isotropic(C, M) = C).
To see this delicate difference, following Kutzler’s selection of parameters and dependent vari-

ables, we let A = (uy,0), M = (0,0), B = (u3,21), C = (us, 22), D = (23,24), P = (25, %6),
and Q = (z7,%s). Then we have

hi=a?+ui—uf=0 MA= MB.
ho=234+ui—ul=0 MA= MC.
h3::cﬁ-2m2z4+w§-—2u3w3+z§~x§+u§-—u§+2u1u2-u§=O AB =CD.
ha=22+z3—ul=0 MA= MD.
h5:2.’135——U2—-’U,1:0

hg = 2z —21 =0 P is the midpoint of B and A.
h7:2$7—-:€3—u3:0

hg =223 — x4 — T2 =0 Q is the midpoint of D and C.
c=al+ai-zi—-2i=0 Conclusion: MP = MQ.

By the Ritt—-Wu’s algorithm described in [5], we have
Zero(hy,...,hs) = Zero(PD(ASCy)) U Zero(PD(ASC,)),

where the ascending chain ASC; =
2%5 — Tg — Ty
2z7 — Tz — Us
2xg — T3
25 — Ug — Uy
ToTq + UzT3z — U Uz
w22 — 2ugusTs + w Ul + ugui — u?
22 + ul — ul
Z‘% + ug - u%?

and ASC, =
2@y — Ta — Ty
Qa7 — Tz — Us
2% — Ty
2%5 — Uy
To%g + U3
&3 +u3
2t +

Uy -
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ASC, corresponds to the non-degenerate case, while ASC, corresponds to the degener-
ate case. Thus, prem(c; ASC,) must be zero if D-13 is a theorem. However, it happens
that prem(c; ASC;) = 0. This explains why (8.6) is also valid. But generally, we need
~isotropic(C, M) to exclude ASC,. This also explains why D-11, is not a theorem without
adding condition =isotropic(B,C).

Remark (8.8). The first 18 of 20 examples in [14] can be easily specified as statements
in Class C and proved with the method (prover) presented in [2] or in this paper entirely
automatically, all in geometric form (all in less than 5 seconds on a Symbolics 3600). The last
two cannot be specified in a constructive way.
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Appendix 1. Proof of Theorem (6.5)

Lemma (Al.1). Let ASC, = fiyes fr and ASCy = g1,...,9; be two irreducible ascending

chains in variables yi,...,ym. If prem(fi; g1, 9;) 0 and prem(le(f;);g1,--,9;) # O for
i =1,...,k, then PD(ASC;) C PD(ASC5).

il

Proof. See Appendix of [5]. i

Lemma (A1.2). Let ASC = fi(u,z1),.., fe (4,21, ...,74) be an irreducible ascending chain,
and frp1(UyT1yos Tog1) = miﬂ + y? — 7, where r is a polynomial in u and z1,...,2; and y is
a new variable other than the u and z. If prem(r; fi,...., fy) # 0, then the ascending chain
Fiy ooy frg1 is irreducible.

Proof. See Chapter 3 of [2]. i

Lemma (A1.3). Let ASC = Fi(w, 1)y e, fi(u, 21,0, @) be an irreducible ascending chain,
I; be the initial of fj, and DS be a polynomial set. Then

Zero(PD(ASC)/DS U {L,}) = Zero(PD(fi, ., feu1) U {fi}/DS U{LL}).

Proof. Since PD(fi,..., fi-1) C PD(ASC) and f; € PD(ASC), one direction is obvious. Let
h be any polynomial in PD(ASC), then I h = Qfr + R for some integer s > 0, and polynomials
Q and R € PD(f1,., fr—1). Thus a zero of PD(fi,..., fs—1) and fi, which is not a zero of I,
is a zero of PD(ASC). i

Lemma (A1.4). For any polynomial sets PS and DS and polynomials a and b, if DS contains
a polynomial of form za + b or a® + b* then .

Zero(PS/DS) = Zero(PS/DS)U Zero(PS/DS U {a})U Zero(PS/DS U {b}).

Proof. Since Zero(PS/DS) = Zero(HSU {ab}/DS)YU Zero(HS/DS U {a})U Zero(HS/DS U
{b}), and the first is empty, the equation follows. i

(A1.5) Proof of Theorem (6.5). Let S = (HS,DS,C) be a statement in Class C involving
constructions 1-8, 9.1 and 10.1 only. We want to show either HSA DS is inconsistent by adding
the condition that the radius of the circle is non-isotropic in construction 7, or S is irreducible
in weak sense. Furthermore, in the case of consistency, 5 satisfies (GCW).

The proof is essentially the same as the proof of Theorem (4.1). But with advanced tools, the
proof is much clearer for those who are familiar with Ritt—Wu’s decomposition.

As in proof of (4.1), we use induction. Suppose under the previous construction, we have an
irreducible ascending chain:

Filtg, .. uj-1,21)
fg(ul,...,uj_l,a:l,xg)

(A1.6)
fk_i(ul.,...7uj,_1,$1,...,xk_1\),
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and Zero(hy,.hp_1/diy.ndioy) = Zero(PD(f1, ey fo—1)/d1,...,di_1). Since constructions
1-5 only introduces new parameters, we can assume that the next step is one of the following
constructions.

Construction 6. We have a new equation hy = fy = az + by + ¢ = 0. d; = az +b. We consider
R, = prem(a; f1, ., fi—1) and Ry = prem(b; froes Jro1)-

Case 6.1. If both R, and R, are zero, then prem(az + b; f1,..., fx—1) is zero. Hence
Z€7‘0(h1, ---:hk-—l/dh ...,dl) - ZETO(PD(fl, pees fk—-l)/dl 5 aeny d[)
is empty. The hypothesis is inconsistent.

Case 6.2. One of R, and Ry, say Ry, is zero. If welet D = (x,u;), then fi = hj, = az) +bu; +c.
Then
Zero(PD(fl, ...,fk_l)/dl, ...,d]) = Z@TO(PD(fl, ...7fk,~1)/d1, ...,dz__l, (I).

By Lemma (A1.3),
Zero(PD(fiy .o, f—1)shi/dy,.ydioi,a) = Zero(PD(f1,...fx)/d1, .cdi_1, a).
Hence Zero(hy,...,hy/dy,....di) = Zero(PD(fyy..fx)/d1, .. di).

Case 6.3. For fi,..., fr is an irreducible ascending chain, considering the order y < z. If can
consider the order z < y, then it is another ascending chain fi, ..., fr_1, f;. Here fj is identical
to f,. We use different notations to emphasize the different leading variables. By Lemma
(Al.4),

Zero(PD(f1, s fi—1), fi/drsdi) =
Z67‘0(PD(f1 g ey fk—-l)’fk /dl, ...dl, a) U Z€7‘0(PD(f13 ...,fk_l),fli /dl, ...d;, b)

Hence

Zero(hy, ., by [diy.,di) = Zero((PD(fy, - fi)]d1s rdiy @) U Zero((PD(f1,...fi)/d1, ..., di, D).
By Lemma (A1.1), PD(fi,...fy) = PD(f1, .., f;). Hence Zero(hy,....;hy/dy,...,di) = Zero(PD
(fi, - fi)/d1, oy dy) by Lemma (Al.4).

Construction 7. We check whether CD is isotropic. If it is then (HS A DS) is inconsistent
with —isotropic(C, D). Otherwise we have an irreducible ascending chain fises fr by Lemma
(A1.2) and

Z€7"0(h,1, ...,hk/dl, vaey dl—l) = ZE?‘O(PD(fl, fk)/dly ...,d(~g>.
Construction 8. Now d; = A. Let R = prem(A; fi, ..fo—1)-

Case 8.1. R =0, then Zero(hy,....,hx_1/d1, ... dr) = Zero(PD(f1, ..oy fr—1)/d1, .., dp) is empty.
(HS A DS) is inconsistent.

Case 8.2. R # 0. Let R, = prem(as; fi,...fyr—1) and Ry = prem(bs; fi, ..., fro1). Then one of
R, and Ry, say R,, is non-zero. Let I = (2441,%;) and

fr =0z, +d
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frr1 = fo41 = o1 + byzy + €.

where d = byc; — bics. Then we can use the same technique as in Cases 6.2-3 to prove

Zero(hl, ...,hk, hk+1/d1 , ...,d;) = Z@TO(PD(fl, °~fk7fk+1)/d17 ...,dz).

Construction 9.1. Then d; = a? +b? and diy; = az; +b. Let Q = (z,y) and § = (2',y’). Then
they both satisfy the following two equations.

he(z,9) =v* +2’ +az+by+c=0
hipi(z,y) = ay+biz+ce =0.

hi(z,y) = 0 and hgy1(2z,y) = O are new hypothesis from construction 9.1. But hi(z',y') =0
and hy41(2',y') = 0 are the assumption, i.e.,

prem(hy(z',y'); frs s fi-1) = 0
prem(hgye1(2',¥'); fis e fo=1) = 0.
First we check whether R = prem(a? +b3; f1,..., fr—1) is zero.
Case 9.1. R = 0. Then Zero(PD(f,..., fx—1)/d1,...,di) is empty. HS A DS is inconsistent.

Case 9.2. R # 0. One of R, = prem(ay; f1,..., fr—-1), Bp = prem(by; fi,..., fr—1) must be
non-zero, say, Ry. (They cannot be both zero, otherwise R would be zero). We introduce two
dependent variables 2y, 2,41 and let @ = (Zg41,25). Eliminating y in equations h; and hyyq:

felzy) = dizd + (a2b + 2¢1by — aarby)zy + (afc+ ¢} —aciay)
frs1 = @1 T + 012 + ¢4 = 0.

Thus prem(fi(z'); fi,-., fi—1) = 0. Dividing fi.(z1) by zx — 2’ we have
fi = (zp — 2)((a} 4 8)z + ) + r(u, @15 s Te1)-

Thus prem(r; fi, . fs—1) = 0 and f = (zx—2')((a]+b])zr+¢’) on Zero(hy, .oy hy_1/dr,.ydiot);
the ascending chain fi,..., fi is reducible. Now

(A17) Zero(hl,...,hk+1/d1,...,d;+1) =
Zero(PD(f1,.en, fr—1),dizi + ¢y forr/diy e digr) U
Zero(PD(fi,...., Je—1)sTh — xlvfk-i-l/dlw-')dl—}-l)-

By the same technique as used in cases 6.2-6.3
Zero(PD(f1,.cos fr—1), iy + ¢y fonr/diyordiydipr) = Zero(PD(ASCL)/dy, .y di, diyy )

Z@TO(PD(fl, ....,fk.,l),.’)f?k — $',fk+1/d1> ...,d;,d1+1) = Z67"O(PD(ASC2)/(11,...,d17d1+1).

where ASCi = fiyon fomt, iy + ¢, fog1 and ASCy = fi, .o, fioi, 2 — @', frpr. By cal-
culation, prem(diy1; fori.2x — 2') = a1’ + by + e, Thus prem(d;y,1; ASCy) = 0 by the
assumption. Thus the second set on the right hand side of (A1.7) is empty and we have:

ZeTO(hl, ...,hk+1fd1,...,d1+1) = Ze’ro(PD(fl, ...,fk+1)/d17 '°'7dl+l)-
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where fy = diz; + ¢'. Since deg(fi,2:) = deg(fre1,Tre1) =1, fi, 0, frg is irreducible.

Construction 10.1. This is similar to Construction 10 in the proof of (4.1) and Construction
9.1 above.

Repeating the above process, we finally have an irreducible ascending chain (or the hypothesis
is inconsistent) of form (4.5) and prove that S is irreducible in weak sense.

To prove S satisfies (GCW), we note that all deg(fr,z) = 1 but for Construction 7. By the
same argument as in (5.4), fi,..., fr is R-generic. i

Appendix 2. More Construction Sequences for Simson’s Theorem

As we pointed out in (7.2) of [4], “here are at least eight essentially different construction
sequences for the configuration of Simson’s theorem that preserve the original meaning of the
theorem.” Here we list them in detail.

(A.1) The construction sequence is the one listed in Section 3.4.

(A.2)
Points O and A are arbitrarily chosen;
B is on circle (0,(0A));
C is on circle (O,(0A));
D is on circle (O, (0A));
E = T(D,BC) n L(BC);
F = T(D, AC)n L(AC);
G =T(D,AB)N L(AB).

(A2.3)

Points A and B are arbitrarily chosen;
O is on B(AB);

C is on circle (O, (0A));

D is on circle (O,(0A));

E =T(D,BC)n L(BC);

F =T(D,AC)Nn L(AC);

G =T(D,AB)n L(AB).

(A2.4)
Points A, B, and E are arbitrarily chosen;
O is on B(AB);
C = L(EB)n (0,(04));
D = T(E, BC)n(0,(0A);
F =T(D,AC)n L(AC);
G =T(D,AB)n L(AB).

The construction of point C is reducible, though the prover confirmed the theorem. The reader
is strongly recommended to study this case.

(A2.5)
Points A and B are arbitrarily chosen;
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(A2.6)

(A2.7)

(A2.8)

Note that the equation part, i.e., HS, in Section 4.3, is the same for all these 8 constructive
statements of Simson’s theorem. But the 8 different constructive sequences give slightly different
the inequation parts (non-degenerate conditions). The simplest is perhaps the non-degenerate
condition that DS = “-isotropic(AB) A —isotropic(AC) A —isotropic(BC)”. Here we see that
the conclusion “A, B and C are collinear” follows from H S, and DS even without assuming

Appendix 2. More Construction Sequences for Simson’s Theorem

O is on B(AB);

C is on circle (0,(0A));

E is on L(BC);

D =T(E,BCYN (0,(0A));
F = T(D, ACYn L(AC);

G =T(D,AB) N L(AB).

Points A, B, and E are arbitrarily chosen;
Cis on L(EB);

O = B(AB)n B(AC);

D = T(E, BC)n(0,(0A))
F=T(D,AC)n L(AC);

G =T(D,AB)Nn L(AB).

Points A, B, and C are arbitrarily chosen;
E is on L(BCY);

O = B(AB)n B(AC);

D = T(E, BC) N (0, (0A));

F =T(D,AC)n L(AC);

G =T(D,AB)n L(AB).

Points A and G are arbitrarily chosen;
B is on L(GA);

D is on T(G, AB);

O is on B(AD)n B(AB);

C is on circle (O, (0A));

E = T(D,BC)n L(BC);

F = T(D, ACYN L(AC).

“points A, B, and C are not collinear”.
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