EFFICIENT PORTABLE PARALLEL
MATRIX COMPUTATIONS

James Walter Juszczak
Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712-1188

TR-89-38 December 1989

Abstract

In this thesis we exercise a method of developing parallel algorithms for
matrix computations that facilitates efficient and portable implementations. The
method includes defining a set of communication primitives, selecting a storage
scheme, embedding a logical communications topology in the physical architecture,
and synchronizing data flow and computations to reduce the overhead of commu-
nications. Several algorithms are implemented using the column wrapped storage
scheme and communication primitives which are independent of the underlying par-

allel architecture. Theoretical and experimental results are presented.

ii

Table of Contents

Abstract

Table of Contents

List of Tables

List of Figures

1. Introduction

1.1 Interprocessor Communications
1.2 Static Load Balancing e
1.3 Architectures - ring, mesh, hypercube,

1.3.1 SYMULT S2010 oo v vt it
1.4 Notation o o i i i e e e e e e e e e e e e e
1.6 OVeIVIEW o i e e e e e e e e e e e e e e

2. Communications
2.1 The Primitives o o o i i i e e
2.1.1 Node-to-Neighbor
2.1.2 Omne-Way-Shift
2.1.3 Broadcast e e e e
2.1.4 Total Exchange
2.1.5 Data Transpose o o v v b e e e e e e e e
216 Vector SUm o v i e e e e e e

ii

iii

iv

2.1.7 Immner Product.« . i i i e e e e e e e e e e e 14

2.1.8 Global Compare o 14

3. Systems of Linear Equations 15
3.1 Gaussian Elimination with Partial Pivoting 16
3.1.1 Sequential Algorithm 16

3.1.2 Parallel Algorithm, 19

3.1.3 Implementation and Numerical Experiments 21

3.2 Cholesky Decomposition o oo 23
3.2.1 Sequential Algorithm. 24

3.2.2 Parallel Algorithm, 26

3.2.3 Implementation and Numerical Experiments 28

3.3 Triangular Solve e 30
3.3.1 Sequential Algorithm 31

3.3.2 Parallel Algorithm oL 32

3.3.3 Implementation and Numerical Experiments 38

4. Q-R Factorization 42
4.1 Householder Orthogonalization 43
4.1.1 Sequential Algorithm 0oL 43
4.1.2 Parallel Algorithm 45
4.1.3 Implementation and Numerical Experiments 47

4.2 Modified Gram-Schmidt Method 49
4.2.1 Sequential Algorithm oo oL 50
4.2.2 Parallel Algorithm 51
4.2.3 Implementation and Numerical Experiments 52

v

5. Householder Reduction to Hessenberg Form
5.1 Sequential Algorithm o oo

5.2 Parallel Algorithm oo

5.3 Implementation and Numerical Experiments

6. Conclusion
6.1 SUMIMATY .« o v v v v e e et e e e e e e e e e e e

6.2 Other Applications and Future Work

A. Parallel Matrix Subroutines in C
A1 PGEFA . . . e e e e
A2 PPOFA . . e e e e e
A3 PTRSL . . ot e e e e e e
A4 PQRDC o e e e
AB PMGS . o o o e e e e e e e e e e
A6 PGEHR ot e e e e e e e e

BIBLIOGRAPHY

56
56
58
61

65
65
66

68
68
71
74
77
80
83

86

List of Tables

3.1 Column index below which delayiszero

6.1 Algorithm Scorecard

............................

vi

1.1
1.2
1.3

1.4

3.1
3.2
3.3
3.4

3.5

3.6

3.7
3.8
3.9
3.10
3.11

3.12
3.13
3.14
3.15

List of Figures

Column Wrapped Storage Scheme for p=3andn=6
Ring of PTOcessors o v v v v v v i it e
Two Dimensional Mesh Network with Embedded Ring

Hypercubes with Dimensions 1,2,and 3o

Gaussian Elimination with Partial Pivoting

Parallel Gaussian Elimination with Partial Pivoting

Observed and expected timings for p = 8 during Gaussian Elimination

with Partial Pivotingo oo

Ratio of Observed to Expected run times for Gaussian elimination

With 8 PTOCESSOTS . . . v v v v v o e e

Observed efficiencies attained during Gaussian Elimination with Par-

tial Pivoting o o v i e

Cholesky Decomposition« oo oo oo

Observed timings attained during Cholesky Decomposition

Observed and expected timings for p = 8 during Cholesky Decompo-

N7 o SN
Observed efficiencies attained during Cholesky Decomposition
Back-Substitution v . o i it e e e e e e e e e
Distributed Back-Substitution oo

Parallel Back-Substitution ¢ ¢« v v v v v 0 e e e e e e e

vii

3.16
3.17
3.18
3.19
3.20

4.1
4.2
4.3
4.4

4.5
4.6
4.7
4.8
4.9
4.10
4.11

5.1
5.2
5.3
5.4
5.5

5.6

Data Flow During Parallel Back-Substitution 35
PTRSL . o o o o e 39
Observed timings attained during backward substitution 40
Observed and expected timings for p = 4 during backward substitution 40
Observed efficiencies attained during backward substitution 41
Householder Orthogonalization 44
Parallel Householder Orthogonalization 45
PQRDC . o v ot e e e e e e e e 47
Observed and expected timings for p = 16 during Householder Oz-

thogonalization 48

Observed efficiencies attained during Householder Orthogonalization . 48

Modified Gram-Schmidto oo 51
Parallel Modified Gram-Schmidt 52
PMGS . . e e e e e e e e e e e e 53
Observed timings attained during Modified Gram-Schmidt 54
Observed and expected timings for p = 8 during Modified Gram-Schmidt 54
Observed efficiency attained during Modified Gram-Schmidt 55
Householder Reduction to Hessenberg Form 58
Parallel Householder Reduction to Hessenberg Form 60
PGEHR . . . o it o i e e e e e e e e e e e e e e e 62
Observed timings attained during Reduction to Upper Hessenberg Form 63

Observed and expected timings for p = 16 during Householder Reduc-

tion to Hessenberg Form« .o 63

Observed efficiencies attained during Reduction to Upper Hessenberg

Chapter 1

Introduction

The objective of this thesis is to present, analyze and test a method of
developing parallel matrix algorithms. The method involves defining a set of commu-
nication primitives, selecting a storage scheme, embedding a logical communications
topology in the physical architecture, and synchronizing data flow and computations
so as to reduce the overhead of communications. A consequence of this work is the
development of portable and efficient code to perform a variety of matrix computa-
tions in parallel. It is envisioned that ultimately a package of parallel linear algebra
routines (PLAPACK) will emerge from this effort.

The recent focus on parallel computing has been in response to the need
for higher performance computers. Problems have been encountered that require
intensive computations, which cannot be completed in a reasonable amount of time
on the current generation of computers. The options are to construct faster hardware
or use off the shelf technology to build arrays of processors and perform computation

in parallel. We will explore how to exploit the latter of these options in this thesis.

We begin by defining some terminology which we will use to describe the
implementation and evaluation of parallel algorithms. Since the objective of parallel
computation is to execute algorithms in less time, we will define a measurement
by which we can compare algorithms. Speedup is the ratio of the time taken by a
computer to execute an equivalent serial algorithm and the time taken by the same
computer to execute the parallel algorithm using p processors L. Efficiency is the
speedup divided by the number of processors. The efficiency provides a measure

of the performance cost and will indicate whether an algorithm fully utilizes the

1Speedup is sometimes defined as the ratio of the times taken by the fastest serial algorithm over
the parallel algorithm.

available processors. Our goal is to approach linear speedup (i.e., speedup = p) and

100 per cent efficiency.

1.1 Interprocessor Communications

In this paper we will concentrate on MIMD (multiple data stream multiple
instruction stream) machines with distributed memory. Each processor will operate
in an asynchronous manner executing instructions and operating on data stored in
its local memory. Each processor will have access to only its local memory and all

communication and synchronization will be done by message passing.

Messages are passed through explicit calls to the communication library.
This library contains several routines by which processors can send or receive mes-
sages. These primitives have been postulated as sufficient to implement a wide range

of matrix algorithms [4, 14]. These are:

e node-to-neighbor
¢ broadcast

¢ total exchange

s data transpose

¢ one-way-shift

e vector sum

e inner product

¢ global compare

By restricting communications to this library of primitives it is possible to execute the
calling routines on any machine on which these primitives have been implemented.
It is through this communications library that we attain portability of the code.
Moreover, by optimizing their implementation on a specific architecture we are able to
take advantage of the particular network and achieve efficiency as well as portability.

The communications primitives will be discussed in more detail in Chapter 2.

P, P, P, Py P, P,

Figure 1.1: Column Wrapped Storage Scheme for p=3 and n =6

1.2 Static Load Balancing

Having decided on a set of communication primitives, we must concern
ourselves with the distribution of the problem among the processors in order to
evenly balance the work load, maximizing parallel activity while minimizing com-
munications. Assuming a homogeneous system, we can attain higher efficiencies by

assigning equal amounts of work to each processor.

For each of the algorithms in this paper we employ the column wrapped
storage scheme, depicted in Figure 1.1, to store the matrix in the distributed memo-
ries [3, 5, 6, 7]. Given an indexed ordering of p processors Po, ..., Pp_1, this scheme
assigns the ith column (i = 1,2,...,n) to processor P(;_1)modp- Therefore, the first
column is assigned to Py, the pth column to P,_y, the (p+1)th column to P and so
on. If the number of processors divides the number of columns, 7, then each proces-
sor receives an equal share of the matrix and presumably an equal share of the work.
Otherwise (n mod p) processors will have [n/p] columns and the rest will have [n/p]
columns. For n > p the imbalance is insignificant. One advantage of the column
wrapped storage scheme is that it is simple; since contiguous blocks (columns) of the
matrix have been extracted, accessing elements will be straightforward involving lit-

tle indexing overhead. Note, that for the column wrapped storage scheme, p cannot

Ps Ps Py
P7 P3
Pg P] P2

Figure 1.2: Ring of Processors

exceed n.

1.3 Architectures - ring, mesh, hypercube

In this section we will discuss three common distributed memory architec-
tures: the ring, the mesh and the hypercube. In each of these models, it is possible
to embed a logical ring of processors in the physical architecture so that neighbors in
the ring are also neighbors in the underlying connection network. We will see that
when an embedded ring is combined with the column wrapped storage scheme, high
efficiencies can be obtained. This is advisable when considering some matrix algo-
rithms since computations can be viewed as progressing across the matrix column

by column.

The ring multiprocessor consists of p processors, Pg,...,P,_1, connected
in a ring as shown in Figure 1.2, where nodes P; and P; are neighbors if (i + 1) mod p = j
(or (j + 1) mod p = 9).

It is assumed that each processor can simultaneously send to both neigh-
bors or simultaneously send to one neighbor and receive from the other neighbor.
In this thesis we assume that a ring can be embedded in the underlying physical

architecture.

In a mesh network the processors are arranged in a d-dimensional lattice.

Py Pis P4 Pis
P, Ps P~ Pig
P, Ps Ps Py
P; Py Py Pio

Figure 1.3: Two Dimensional Mesh Network with Embedded Ring

An interior processor has two neighbors in each dimension, giving it 2d neighbors.
If the mesh has wrap-around connections then every processor has 2d neighbors. A
processor can only communicate directly with these neighbors. Figure 1.3 shows a
two dimensional mesh in which a ring has been embedded. Processors on the edges

of the grid have wrap around connections to processors on the opposite edge.

A hypercube is a loosely coupled multiprocessor based on a binary n-cube
network. An n dimensional hypercube has 2" processors and each processor has
n neighbors. The processors can be numbered Po,...,Pan_1, so that neighboring
processors differ in exactly one place of the binary representation of their index.
Figure 1.4 shows 1, 2 and 3 dimensional hypercubes. The following sequence of
processor indices describes an embedded ring in a 3 dimensional hypercube, 000,
010, 011, 001, 101, 111, 110, 100 .

By restricting ourselves to a ring, the simplest and least efficient architec-

ture, we examine the worst case scenario.

1.3.1 SYMULT S2010

All algorithms discussed in this thesis were implemented and tested on the
SYMULT Series 2010 parallel processor belonging to the Computer Sciences Depart-
ment of The University of Texas at Austin. The S2010 is a multiple data multiple

110 111
010 011
01 11 100 101
0 1 00 10 000 001

Figure 1.4: Hypercubes with Dimensions 1, 2, and 3

instruction parallel processing system. This machine has twenty-four Motorola 68020
microprocessors connected via automatic message routing device(AMRD) circuits in
a 6 x 4 array topology. Fach AMRD has five channels, four for communications to
other AMRDs and one for access to its own local memory. Each AMRD can send up
to 20 MBytes per second on any two channels simultaneously. When allocating a set
of nodes on which to run an application a ring of an even number of nodes can be
explicitly requested but owing to the AMRD circuits this is not necessary to obtain
good results. Eight of the processors have 3 Mbytes of local memory and the rest
each have 1 Mbyte. Applications utilizing more than 8 nodes were restricted in size

because of the limited memory on 16 nodes.

All algorithms were implemented using double precision computer arith-
metic in the C programming language on a SUN III (UNIX host), under a runtime
system called the Cosmic Environment, which interacts with a node operating sys-
tem running and on the Symult $2010 multicomputer called the Reactive Kernel.
The host and node programs make procedure or function calls to routines from the
set of communication primitives discussed in Chapter 2, and a set of BLAS routines

written in C and optimized for the Motorola 68020 microprocessor 2,

2courtesy of Jim Meyering at the University of Texas at Austin

When comparing the expected and observed timings of the algorithms, it is
necessary first to measure the floprate or speed at which a node of the multicomputer
performs a computation. We will abide by convention and define a flop as the
operation

ye—oar+y aeR;z,ye R"

in which two floating point operations are performed [2]. The flop rate of a single
node of the SYMULT was timed through repeated calls to the BLAS routine, sazpy,
on vectors of length 100, and a flop rate of 71 Kflops was attained. The time for a
single flop is therefore, v = .000014 seconds.

The cost of a communication between two processors is expressed as at+mp
where « is the communication startup time, 8 is the per item (double precision float-
ing point word) transmission time and m is the number of items being transmitted.
The startup and transfer times were measured on the SYMULT S2010 and found to
be: a ~ 450usec and B ~ 10usec/item [15]. These measurements are with respect to
the communication primitives (i.e., they include buffer manipulations in addition to

those performed by the Cosmic Environment [10]).

1.4 Notation

The routines which perform the actual matrix computations will be dis-
cussed in their respective chapters. In doing so, we present the algorithms in a

systematic way, using consistent notation discussed in this section.

The naming conventions and calling sequences of the LINPACK library de-

veloped at the Argonne National Laboratory were adopted where possible to conform
to the LINPACK template.

When discussing the algorithms and the theory supporting them, the fol-
lowing notational conventions were used. The set of real numbers is denoted as R.
R™ is the set of all n-dimensional vectors with real elements and R™*™ is the set
of all m X n real matrices. Following Stewart [11], lower case Greek letters are used
to represent scalars and lowercase Latin letters represent vectors. Uppercase Latin
letters denote matrices. Elements of a vector or matrix are denoted with the Greek
letter that best corresponds to the Latin letter identifying that vector or matrix. For

example, a;; is the element in the ith row and jth column of the matrix A and &; is

the ith component of the vector z. The letters n,m,1,j,k are reserved to represent
integer dimensions and indices into vectors or matrices. The index 7 will hereafter
be reserved to index processors in the ring. The superscript T is used to denote the

transpose of a vector or matrix (e.g., ¥ = (v1,v2,. .., v,)T denotes a column vector).

Superscripts appearing in parentheses indicate the iteration number during
which the variable exists. A% = (agk) .. .a%k)) is a column partitioning of A®). In a
ring of p nodes, Py, ..., Pp_1, node P; has column k if (k — 1) mod p = i. We denote
this as k € P; and this processor is also referred to as P(k). Therefore the symbols
P, and P(k) serve double duty, representing either a processor or a set of indices.
We hope that each instance of their use is made clear by the context in which they

appear.

1.5 Overview

The intent of this thesis is to demonstrate to the reader through a few
representative examples that an effective method of parallelizing matrix algorithms

is being presented.

In Chapter 2, we examine in detail the problem of exchanging data in a
ring of processors. We will describe algorithms to perform a set of data exchange op-
erations considered sufficient to perform matrix computations. For those operations
used in this thesis, we will derive the time complexity of the algorithm as it has been

implemented for a ring of processors.

Chapter 3 is concerned with the solution of systems of linear equations.
The three algorithms presented in this chapter are : Gaussian elimination with partial
pivoting, Cholesky decomposition and triangular solve. The first two algorithms
factor a matrix into the product of simpler matrices thereby simplifying subsequent
calculations involving the matrix. Both of these algorithms are parallelized using
only the broadcast primitive. The triangular solve algorithm receives the factored
matrix and the right hand side of the equation, Az = b, and solves for the vector z.
The parallel version of this algorithm employs the node-to-neighbor communication

primitive.

Chapter 4 is concerned with the QR-factorization of matrices which can be

applied to solving the linear least squares problem. In this chapter, the QR decom-

position by Householder transformations and the Modified Gram Schmidt algorithms

are both implemented in parallel using only the broadcast primitive.

In Chapter 5, we discuss the Householder reduction to upper Hessenberg
form. The parallel algorithm requires the broadcast vector sum and the total ex-

change primitives.

For each algorithm, we will review the relevant theory in order to present
and analyze the sequential algorithm and then discuss the development and com-
plexity of the parallel solution. Issues pertaining to the implementation of these
algorithms and the results of the experiments on the SYMULT S2010 will then be
presented and compared to the theoretical expectations. Code for these routines can

be found in the appendix.

In Chapter 6, we summarize the theoretical and experimental findings,
discuss the potential and limitations of our approach and discuss future work and

other applications.

Chapter 2

Communications

Many sequential algorithms cannot be decomposed into totally indepen-
dent tasks, and distributed to separate processors for isolated computation. Instead
these parallel tasks must communicate to share data and synchronize processing. It
follows that improved interprocessor communications would benefit all but the most
perfectly parallelizable algorithms. Typically the time to perform a communication
far exceeds the time to perform a floating point operation and often the commu-
nication time of an algorithm dominates the computation time until problem sizes

become very large.

In this chapter, we will examine in detail the problem of exchanging data
in a ring of processors. We will describe and analyze algorithms to perform a set of
data exchange operations considered sufficient to perform matrix computations. The
theoretical analysis of implementing a set of primitives similar to ours on different
parallel architectures is studied in [9]. By restricting communications to only these
primitives the calling routines become independent of the underlying architecture.
In addition, the programmer is provided with a conceptual tool with which parallel

algorithms may be more easily developed.

2.1 The Primitives

In this section, we present the communication primitives some of which
we will use to implement the matrix algorithms in the subsequent chapters. We will
derive the time complexity of the various communication operations as they have
been implemented for the ring topology. In the next sections, the term node will
often be used to refer to a processor. In particular, the source node will refer to
the processor that originates the communication and the destination node(s) to the

processor(s) to which the message is directed.

10

11

We assume that sending a packet of m data items (e.g. double precision
floating point numbers) between neighboring nodes in the ring requires time a +
mf, where o represents the communications startup time, and G is the per item
transmission time. It is also assumed that each processor can simultaneously send
to both neighbors or simultaneously send to one neighbor and receive from the other

neighbor.

2.1.1 Node-to-Neighbor

Moving data from one processor to another represents the simplest data
transfer operation. Here one node sends a packet of m items to a neighboring node.

The time complexity for this operation is
a + mf.

This operation is used in solving triangular systems as seen in Section 3.3 and it

proves useful when performing timings and handling exceptions.

2.1.2 One-Way-Shift

This operation involves every node sending data to its right neighbor or
every node sending data to its left neighbor. Each node sends a packet of m items

to its neighbor. The time complexity for this operation is
a + mfp.

This operation has the same time complexity as the node-to-neighbor communication

since all nodes communicate in parallel.

2.1.3 Broadcast

This data exchange operation involves transferring m data items from one
processor, the source node, to all other processors. Tt occurs frequently in parallel
numerical algorithms such as in Gaussian elimination, the QR decomposition and in

the reduction of a matrix to upper Hessenberg form.

We will implement this operation in two different ways, which we will

call the broadcast and the pipelined broadcast. The broadcast sends the entire

12

message in one direction around the ring. The pipelined broadcast takes advantage
of parallelism in the communication by breaking the message into v packets and

transmitting several packets simultaneously in both directions around the ring.

In the broadcast operation the source node initiates the communication by
sending the m data items to its right neighbor. All other nodes call the broadcast
receive routine which instructs them to receive data from their left neighbor and
send the data on to their right neighbor (if it is not the source node). This requires
(p— 1) sends of the m data items. The time complexity for the broadcast operation
is

(p = 1)+ mp).

This implementation may seem rather naive. However, in inherently sequential sit-
uations, where it is best for the node adjacent to the source to receive all the in-
formation first, this implementation performs very well. This situation arises in the
Gaussian elimination, Cholesky and QR decomposition, and modified Gram-Schmidt

algorithms presented in Chapters 3 and 4.

In the pipelined broadcast the source node breaks the message into v pack-
ots and sends them in both directions around the ring. The maximum distance that a
packet will travel is | p/2]. Without loss of generality let the source node be Pg. Pack-
ets sent to the right neighbor will follow the right path, Po, P, Pa,...,Pp2), and
packets sent to the left neighbor will traverse the left path, Po, Pp—1,- .., P(p/2]+1)-
The right path is at least as long as the left path and since data transfers are occurring

in parallel we need only consider the right path when considering complexity.

In step 1, Py sends packet #1 to Py. Next, in step 2, Py sends packet #2
to Py, and Py sends packet #1 to P3. After [p/2] steps, packet #1 has reached
P|,/2) and the pipe is filled. After (v — 1) more steps, the last packet reaches P|,/2)
and the broadcast is complete. The pipelined broadcast then takes |p/2] +v —1
steps, where each step takes time o+ mf3/v. The time complexity for this operation
is

(lp/2] + v = D(a+ mpB/v).

This time is minimized, if the optimal packet size of

\/mﬂ(lp/2] = 1)

(83

13

is chosen, making the minimum time complexity,

(v T D)’

Note: we have not yet implemented the pipelined broadcast.

2.1.4 Total Exchange

The total exchange can be considered a multi-broadcast or (p— 1) consec-
utive one-way-shifts. Every processor sends a block of data of the same size, m, to
every other processor. This communication is used in the Householder reduction to

upper Hessenberg form, presented in Chapter 5.

Each node begins the communication by sending its m data items to its
right neighbor. Once these messages arrive each node stores the received message
then sends it on to its right neighbor. This cycle is repeated (p — 1) times, at which
point all nodes possess all p messages. Since all nodes can send simultaneously the

time complexity for this operation is

(p— D(a+ mp).

2.1.5 Data Transpose

This operation is the simultaneous scattering of data packets from each
processor to every other processor. As its name suggests, this operation acts much

like the transpose operation for a matrix.

Fach node P; has p packets, each of size h, denoted by z;;,0 < j < p. Let
m = (p— 1)h be the total amount of data each processor must send. After the data

transpose, each node P; has packets z;;, 0 < 7 < p.

Every node begins the communication by sending its m data items or
(p — 1) packets to its right neighbor. When each node receives the message of this
size from its left neighbor, the node removes one packet from the message and sends
the remainder, now of size (p— 2)h on to its right neighbor. This cycle is repeated
(p — 1) times. During the kth cycle the message size is my; = (p — k)h. Since all

nodes can send simultaneously the time complexity for this operation is,

p—1 m
S(e+ (p=B)h) = (p— Do+ 5-p.
k=1

14

Note: we have not yet implemented the data transpose operation.

2.1.6 Vector Sum

In this operation each node P; owns a vector of length n = hp, where for
simplicity we now assume h is an integer. Each processor divides its vector into p
equal sections, indexed by ¢ where 0 < ¢ < p. The sum of section ¢ from all nodes

will reside on P; on completion of the distributed vector sum.

All processors begin the operation by sending to their right neighbor the
section of the vector whose total will eventually reside on their left neighbor. Then
each processor receives the section from its left neighbor, adds to this section the
corresponding section of its own vector and sends the result on to its right neighbor.
This cycle is repeated (p — 1) times. Since all nodes can send simultaneously the

time complexity for this operation is,

(p—1)(a+ hB + h7).

The Householder reduction to Hessenberg form, seen in Chapter 5, requires this

communication.

2.1.7 Inner Product

Two other primitives that we plan to include in this set are the inner
product and global compare operations. We briefly describe them in this and the

next section.

Let z and y be vectors of length n = hp, and assume that they are dis-
tributed among the processors so that each node has parts of z and y of length h.

The inner product computes 2Ty leaving the result on each node.

2.1.8 Global Compare

Assume that & € P; fori = 0,...,p—1, then the global compare operation
finds the largest & and distributes it to all nodes along with the index of the processor

that originally owned it.

Chapter 3

Systems of Linear Equations

In this chapter, we will consider algorithms concerned with the problem of
solving dense linear systems of equations, Az = b, where A € R™ ™ and z,b € R"™.
Sequential algorithms which solve this problem are presented in [2, 11] and efficient

implementations of these algorithms can be found in [1].

In Sections 3.1 and 3.2 we examine algorithms to factor a matrix into
the product of a lower and upper triangular matrix or LU decomposition. Such
decompositions are based on the existence of a unique LDU decomposition of a
square general matrix A. In a LDU decomposition, L is unit lower triangular, D is
diagonal and U is unit upper triangular. The LU decompositions differ in how the
diagonal matrix is handled in the LDU decomposition. For dense matrices, O(n?)

operations are required to perform these decompositions.

In Section 3.3 we consider the solution of the resulting triangular systems.
Once the LU-decomposition has been obtained the problem, LUz = b, reduces to

solving two triangular systems,
and

The first system is solved by forward elimination and then the second can be solved
by backward substitution. Each of these algorithms requires O(n?) operations and
contribute little to the overall complexity compared to the decomposition. However,
in practice it is common for the system Az = b; to be solved for many different
right hand side vectors, bz In this case, the matrix A is decomposed once and the
repeated triangular solves become a significant part of the complexity. We implement
and test a parallel back-substitution algorithm to solve an upper triangular system.

The algorithm for a lower triangular system is analogous.

15

16

3.1 Gaussian Elimination with Partial Pivoting

The first of these algorithms is Gaussian elimination with partial pivoting
for factoring a permuted general matrix PA into the product of a unit lower triangular
matrix and an upper triangular matrix. In terms of the LDU decomposition, PA =
LDU = LU’ where U’ = DU is upper triangular.

DEFINITION 3.1 An elementary lower triangular matriz of order n and indezx k
is of the form,
M = I, — mel

where m = (0,...,0, g1, Pkt2s - - -7.Un)T-

Elementary transformations are elementary lower triangular matrices that are used to
introduce zero components in a vector and can be exploited to perform the reduction

by Gaussian elimination. The following theorem states this property more precisely.

THEOREM 3.1 Given a vector & = (€1,...,&k,...,&)T and & # 0, there exists
an elementary transformation, M such that Mz = (&,...,&,0,...,0)T. If & = 0,

then M does not exist unless &xy1,...,&, are also zero.
The following theorem states the existence of this factorization.

THEOREM 3.2 Let A be an nxn matriz. Then there are elementary permutations
P, (i = 1,2,...,n — 1), and elementary lower triangular matrices M; of index 1
(i=1,2,...,n—1), such that

Ay =My 1M, o... MiPy 1 Ppo...PA

is upper triangular.

3.1.1 Sequential Algorithm

In Gaussian elimination, a matrix A is reduced to upper triangular form
by premultiplying A by a sequence of elementary transformations, M,—1, ..., M1, so
as to introduce zeros below the diagonal of the product matrix. The process begins
by producing the elementary transformation M; and premultiplying AM) = A to get

A® = M; AQ). The matrix A has zeros below the diagonal in its first column. In

17

the kth step, (k = 1,...,n—1), of the algorithm the matrix A®) has zeros below the
diagonal in the first (k — 1) columns. The matrix, My = I, — mke% is determined by
the vector,
mg = (0,0, ke 1,hy - -+ > Hnk)>
where
Mkzagz)/aﬁ), t=k+1,...,n).
Here the elements piy are called the multipliers and ajg, the kth pivot element.

Notice that because of the structure of M}, premultiplying A®) by M;, does
not change the first (k—1) columns or rows of A®) Tn fact A+ is identical to AK)
in the first k rows and k — 1 columns. The effect of the kth step of the algorithm is
to annihilate the subdiagonal elements in the kth column and to perform a rank one
update on AgﬁLk“ , the (n— k) X (n — k) trailing principal submatrix of A¥), In the
implementation the subdiagonal zero elements can be overwritten by the multipliers
which were used to create the zeros. Premultiplication by My then alters the matrix
A® to produce the matrix A*+1) as follows,

(k) A(R)
(k+1) w _ [Bk=1 O Ajy Ay
kk
Here Mj, is an elementary transformation of index 1, and
k k T
o [el (alil)
kk a(k) A k :
E41,k E41,k+1

This results in A*+1) having the following form,

A Af) (k+1) K
+ +1
A+ — o® (@B)T _ (A Al
0 kk kk+1 - 0 A(k+1) 3
0 A(k+1) k+1,k+1
k+1,k+1
where the multipliers are given by
k+1 k k
iR = ol /o
and
k+1 k k41 k
A§c+1,2:+1 = A§c—31,k+1 - u§c+1,2:(a§c,l)c+1)T'

If the kth pivot element is zero, the process cannot proceed unless all the

sub-diagonal elements of the kth column of A%) are also zero. Furthermore, the

18

Algorithm 3.1 The following algorithm uses Gaussian elimination with partial piv-
oting to overwrite A with the LU decomposition of PA. The pivot row indices are
stored in a separate vector of length (n — 1).

A=A

fork=1,...,n—1
find pivot to determine F%
compute My = I, — mkef
A — AR+ = 71, P AR

Figure 3.1: Gaussian Elimination with Partial Pivoting

algorithm becomes unstable if the pivot element is close to zero, since this can make
the multipliers large and cause subtractive cancellation when updating elements in
the submatrix [2, 11]. However, the algorithm can be made more stable by partial
pivoting or swapping rows of the submatrix so that the largest element on or below
the diagonal in the kth column is moved to the diagonal position. Performing a
pivot with the ith row during the kth step of the algorithm (i > k) is equivalent to

premultiplying the matrix A®) by a permutation matrix P, which is of the form

Li.y O
Pk:(kol P;)

where P;; differs from I,,_zy; only in that the first and ith rows are interchanged.
With pivoting, the kth step amounts to premultiplying the matrix AR by the per-

mutation matrix P, and the elementary triangular matrix My so that,
AR+ - MkPkA(k)

has zeros below the diagonal in the first k columns.

The result of this process is M1 Pp—1...MiPiA = U, where U is an
upper triangular matrix. Letting P = Pp—1...P and noting that P! = P;, we
have, PA = P(My_1Pp_q...MiP)"'0 = M{'...M;2,U or PA = LU, where
I = M{'.. .M}, is a unit lower triangular matrix. The elements of L below the
diagonal are the multipliers y;; produced when determining M; to zero out the jth

column of A,

The time to find the pivot and compute the multipliers is insignificant for

large n, compared to the last step of the loop (see Figure 3.1), in which the submatrix

19

is updated, requiring (n — k)? flops. If we sum this expression over all iterations we

get,

-1 3
n
k=1

Ignoring low order terms, this algorithm requires approximately n3/3 flops.

3.1.2 Parallel Algorithm

We begin our discussion of the parallel algorithm to perform Gaussian
elimination with pivoting by considering the distribution of the problem in a column
wrapped fashion among a ring of p processors, Pg,...,P,_1. As described in Sec-
tion 1.2, the first column is assigned to Pg, the pth column to P,_y, the (p+ 1)th
column to Py and so on. If the number of processors divides the number of columns,
n, then each processor receives an equal share of the matrix. Otherwise (n mod p)

processors will have [n/p] columns and the rest will have [n/p| columns.

Given that each processor has approximately (n/p) columns, we consider
the sequential algorithm, which loops through a set of computations for each of the
first (n — 1) columns of the matrix. Within each iteration, the sequence of compu-
tations is: find the pivot row, determine the multipliers, and update the submatrix.
The pivot row and multipliers can all be determined by processor P(k), the one own-
ing the kth column. The submatrix, however, is distributed among all processors, so

all processors are required to assist in applying the update.

First, note the need for synchronization and communication. There is a
required order to the computations that is satisfied by completely applying the kth
update to column j before applying the (k + 1)th update to that same column.
The kth iteration begins with finding the kth pivot row and then computing the
multipliers before the (n — k) x (n — k) submatrix is updated. The columns of the
submatrix can be updated in any order and hence the update can be performed
in parallel by all processors once they have received the multipliers and pivot row
index from P(k). This requires a communication from one processor to all others,
each iteration. The broadcast primative can be used to disperse this information as
well as to synchronize the computations among all processors so that the order of

computations is preserved.

20

Algorithm 3.2 This algorithm uses the broadcast primitive alone to reduce a general
matriz A € R™" {o triangular form using elementary transformations with partial
pivoting overwriting PA with LU. Pseudo code driving node P; in a ring of processors
is given by,

fork=1,...,n—-1

ifkeP;
find pivot
compute My = I,, — myey [(n— k)7]
broadcast my and pivot index 2(a+ (n—k+1)5)]
else
receive my and pivot index
update a; « a; — apjmi, J € Pi>k [((“—;ﬁKn — k)]

Figure 3.2: Parallel Gaussian Elimination with Partial Pivoting

One more observation before we specify the algorithm for any processor.
We recall from Section 2.1.3 that the non-pipelined broadcast primative involved the
source node sending the complete message to its right neighbor in the ring. This
right neighbor then receives the message and passes it on to its own right neighbor
and so on, until the message reaches the left neighbor of the source node. Returning
to the parallel algorithm for Gaussian elimination, during the kth iteration processor
P(k) computes the pivot row and multipliers, then broadcasts this data to the other
processors. P(k + 1) is the first processor to receive the data and will continue the
broadcast operation by sending the data on to P(k + 2) at which point Pk+1)
is free to begin updating its part of the submatrix. The effect of implementing
the broadcast in this manner is an overlap of the remainder of the broadcast with
computation. As soon as P(k + 1) completes updating its part of the submatrix it
may determine the (k + 1)th pivot row, compute the multipliers, and begin the next
broadcast. As the algorithm nears completion, (i.e, k > (n — p)) the data need not
be broadcast to all other processors since the submatrix is contained in fewer than
p processors’ memories. However, this contributes little to the time complexity and

can be overlooked in favor of the simplicity of the algorithm.

In Figure 3.2 the expressions in brackets indicate the effective contribution
to the time complexity by that step in each iteration. Notice that, as discussed above,

the effective time to perform the broadcast is equivalent to the time to perform two

21

node-to-neighbor communications with a (n — k + 1) size vector. Here we assume
that the sending processor is not free to compute until the message is received. The

time complexity for a single iteration is then,

(n= B+ 2a+ (= k+ 09+ ([=| = by).

Noting that [z] < (z + 1), and summing over the (n — 1) iterations of the loop we

arrive at an upper bound for the total time complexity.

n—1 n-— -
Ty(n) < %Z(n—k)2+2vi(n—k)+2(n~ Dot 263 (n—k+1)
k=1 k=1 k=1

Performing this sum and ignoring low order terms we get
n3
Tp(n) = 3 + 0?2) v 4 2na + n?B. (3.2)

This compares favorably with the sequential time complexity, given by (3.1). For a

fixed value of p, as the problem size increases we have

. Ty(n) _
”1‘1'%0 Tp(n) -

so the speedup approaches p and efficiency nears 100%. In (3.2) we retain the term,
n2v, because of its increasing significance as p approaches n. This term results
from the cost of computing M}, sequentially each iteration and as p approaches n it

contributes, along with communication cost, to the inefficiency.

3.1.3 Implementation and Numerical Experiments

The routine PGEFA (parallel general matrix factorization) drives each
node in a ring of processors to factor a square general matrix by Gaussian elimination.

The calling sequence and argument descriptions are given in Figure 3.3.

Figure 3.4 displays the expected and observed timings that were obtained
by PGEFA with a ring of eight processors on the Symult 52010 for n = 10, 20,...,490.
Figure 3.5 plots the ratio of these observed results over the expected times. Discrep-
ancies between these times are explained by the combined effects of several factors.
For smaller problems, the effect of having dropped negative low order terms when

approximating the time complexity tends to make the expected time greater than the

22

PGEFA(N,A,IPVT,INFO)
¢ On Entry

N is the order of the matrix to be factored.

A is a pointer to a vector of type FLT which contains columns of the
matrix to be factored.

e On Return

A isa pointer to columns of the LU decomposition where U is upper trian-
gular and L is unit lower triangular whose elements are the multipliers
used to obtain U.

IPVT is a pointer to a vector of integers which are the indices of the pivot
TOWS.

INFO is a pointer to an integer, which has value 0 if the matrix A is non-
singular or has value k if the kth pivot element is zero.

Figure 3.3: PGEFA

time(sec)

i
=

75
60 -)

i
)

45 8
30 ot

15 9 "..,o°.

0 -1 n

i i i !
0 100 200 300 400 500

Figure 3.4: Observed and expected timings for p = 8 during Gaussian Elimination
with Partial Pivoting (key:: e: observed, o: expected)

23

observed/expected

1.10 . P
1.06 ¢

®e
vog
LYY
00
oo-..oo.,.....
9006500

1.02 *

98 A

.94

.90 n

T I 1 T I
0 100 200 300 400 500

Figure 3.5: Ratio of Observed to Expected run times for Gaussian elimination with
8 processors

observed time. Also, for small n, 7 is underestimated owing to the overhead in calling
the BLAS routines. This tends to make the expected time less than the observed
time. As the problem size increases this underestimation becomes less pronounced.
In addition, the value used for « is an overestimation when n is small, because of a
message buffer size of 256 bytes [15]. This tends to make the expected time greater
than the observed time for message sizes less than 30 double precision floating point
numbers. The improvement after n > 70 is caused by the dominating influence of
the (n%/3)7/p term, which eventually overshadows all other terms contributing to
the time complexity. This agreement is better for fewer than eight processors and

slightly worse for 16 or 24 processors.

Figure 3.6 plots the efficiencies attained by PGEFA for various ring and

problem sizes. Reasonable efficiencies (> 50%) are obtained once n /p > 10.

3.2 Cholesky Decomposition

We will now consider the decomposition of a symmetric positive definite
matrix A into the product of a lower triangular matrix and its transpose. In terms of
the LDU decomposition, A = LDU = LDLT = LDY2DY2LT. Letting L' = LDY2,

we have A = L/(L")T where I/ is a lower triangular matrix. This decomposition is

24

Eff(%)
100
cessssveseesetrriretatiitil
of® L 60000000000
¢ x* 000000
80 ™ .‘ *** 000000 n
¢ ** 0000 *********
° * oo
60 ° * 0?® ° * **: o ee0o PPN
] * ° * °
° * o?° . o
** 60
40 4 7 o7 oot
o * o **Ooo
o * s
°
20 -1 o *:o
« *O
030
%
0 , . | o

Figure 3.6: Observed efficiencies attained during Gaussian Elimination with Partial
Pivoting (key:: &: p=2, % p=4,0: p=8, % p=16,0: p= 24)

known as the Cholesky decomposition and L’ as the Cholesky triangle.

Obviously, this decomposition does not exist for every matrix; A must be
symmetric and the elements of D must be nonnegative limiting A to the class of
matrices which are symmetric positive semi-definite. The algorithms presented in

Figures 3.7 and 3.8 require that A be positive definite.

DEFINITION 3.2 A symmetric matriz, A € R™™, is positive definite if and only

if for every nonzero x € R,

zT Az > 0.

THEOREM 3.3 Given that A € R™ ™ is symmetric and positive definite, there is a

unique lower triangular matriz L with positive diagonal elements such that A = LLT.

3.2.1 Sequential Algorithm

The proof of the existence of the Cholesky decomposition for positive def-
inite matrices is constructive in that it suggests an algorithm with which we can

compute the Cholesky triangle. However, we can also arrive at an algorithm to

25

Algorithm 3.3 The following algorithm computes the Cholesky triangle by column
and overwrites the lower half of A with L.

fork=1,...,n
Aek = oxp — (ogr)t/?
Aik = g — g/ Ak (i>Fk)
forj=k+1,...,n
fori=17%,...,n
ai; — (aij — XikAjk)

Figure 3.7: Cholesky Decomposition

compute L by considering entries of A = LT,

min(%,7)

;= >, Aikdik
k=1

since the (k,j)th element of LT is Aji. If we consider only elements in the lower

triangle, where ¢ > j we have,

k=1 k=1

J -1
a;; = Z AikAjk = (Z Aik/\jk) + AijAj5

which after rearranging terms yields the following equations,

71
Aij = (%‘ -> /\ikh‘k) /s (i > J)
k=1

i1 1/2
Ajj = (%‘ -5 A?;:) :
k=1

We now vary the order in which these computations are performed so that

and

as the kth column of L is formed, the associated update of the lower half of the
(n — k) x (n — k) trailing submatrix of A is applied before the (k 4 1)th column is

formed [8], much like Gaussian elimination. The result is given by Algorithm 3.7.

Most of the work is done in the loop indexed by j, updating the lower half
of the (n — k) x (n — k) submatrix. There are ((n — k)2 + (n—k))/2 elements in this

26

portion of the submatrix. Summing this over all iterations gives,

Ty~ 23 (=K 4 (= By~ (33)
k=1

Ignoring the lower order terms, this algorithm requires approximately n3/6 flops for
large n. By taking advantage of symmetry, we are able to approximately halve the
number of computations required by Gaussian elimination to factor a matrix into a

product of triangular matrices.

3.2.2 Parallel Algorithm

Again we distribute the matrix A to the ring of processors in a column
wrapped fashion. The parallelization of the algorithm proceeds almost identically to
that for Gaussian elimination. Given that each processor has approximately (n/p)
columns, we consider the sequential algorithm which loops through a set of compu-
tations to form each of the n columns of the matrix L. Within each iteration, the
sequence of computations is to first determine Ay, then scale the kth column, and
then update the lower half of the submatrix. In the kth iteration, the kth column of
L can be completely determined by P(k), the processor that owns the kth column of
A. The submatrix however, is distributed among all processors, so all processors are

required to assist in applying the update. The (¢, 7)th element is updated as follows,

aij — (Ozgj — Azk’\yk)

For a processor to update the jth column of the submatrix it must have
the newly formed kth column of L. This requires a broadcast by P(k) of the kth
column to all other processors. The updating of the submatrix can be performed in
parallel by all processors owning columns of that submatrix once they have received
the vector (Mg, ..., Ank)? from P(k).

Again, in Figure 3.8, the expressions in brackets indicate the effective con-
tribution to the time complexity of that step in each iteration. The scaling of the
kth column takes (n — k)7 time and, as was the case in Gaussian elimination, the
effective time to perform the broadcast is equivalent to the time to perform two
node-to-neighbor communications with a (n — k + 1) size vector. Continuing with

this reasoning, the (k + 1)th iteration may begin as soon as P(k 4 1) completes

27

Algorithm 3.4 This algorithm drives processor P; in a ring of processors to fac-v
tor a symmetric positive definite matriz by the Cholesky algorithm. The matriz is
distributed among the processors in a column wrapped fashion.

fork=1,...,n
iftkeP;
Aek = ape — (o)'/?
ik = i, Ok Mgk (i>k) [(n—Fk)]
broadcast (A, . --sAnk) [2(a+ (n—k+1)8)]
else
receive (Agg,...,)\nk)T
for je P;and j > k
aij — (oij = AikAjk) (i>7) [5(n—k)(n—Fk+p)]

Figure 3.8: Parallel Cholesky Decomposition

updating the lower half of columns that it owns and that belong to the submatrix
(i.e.,columns j 3 j € P(k+ 1)Aj > k). Processor P(k + 1) owns [(n — k)/p]
columns of this submatrix, and these columns have indices 7 = k + 1 + ip, for
i=0,1,...,[(n—k)/p] — 1. In column j, there are (n — j + 1) elements to update.
The time for P(k + 1) to update its share of the submatrix is then,

[255]-1
Z (n - k- 'I,p)’)’,
=0
and using the approximation [(n — k)/p] = (n— k)/p+ 1 yields the third expression
in brackets,

n—k
14

;)(n ~k—ip)y= ;—p(n —k)(n—k+p)y.

Summing these three expressions over all iterations gives the total time complexity

of the algorithm,

Q

Tyn) & 3 [5on= B = k4 P+ (= By
k=1

+2(a+(n-k+1)ﬁ]

3 2
(% + ?’Z_) ¥+ 2na + n2B. (3.4)

2

28

PPOFA(N,A,INFO)
e On Entry

N is the order of the matrix to be factored.

A is a pointer to a vector of type FLT which contains columns of the
matrix to be factored.

¢ On Return
A is a pointer to columns of L, the Cholesky triangle, in the lower triangle

of A; the upper triangle remains unchanged.

INFO is a pointer to an integer, which has value 0 if the factorization
completed normally or has value k if the leading principal submatrix
of order k is found not to be positive definite.

Figure 3.9: PPOFA
This algorithm also approaches 100% efficiency for large n and fixed p. Comparing
equations (3.3) and (3.4) we see that,

. Ty(n)
lim =
n—~o0 Tp(m)

However, as p approaches n the two terms n”f and (3n2/4)7 gain significance and
efficiency drops. The term (3n?/4)7 reflects the cost of the sequential portion of each

iteration, where one processor determines ki and scales the kth column.

3.2.3 Implementation and Numerical Experiments

&

The routine PPOFA (parallel positive definite matrix factorization) drives
each node in a ring of processors to factor a symmetric positive definite matrix by
the Cholesky algorithm. The calling sequence and argument descriptions are given

in Figure 3.9.

Figure 3.10 plots the observed timings obtained by PPOFA with various
ring sizes on the Symult S2010 for problems ranging up to n = 490. Figure 3.11
plots the expected and observed timings obtained by PPOFA with a ring of eight
processors on the Symult 52010 for problem sizes up to n = 490. The expected and

observed timings agree within 12%. Again, discrepancies between these times are

29

time(sec) .
100 -
80 -
60 ..0. **‘*
40 | 0.‘... *****’k ooooo
20 ~"°.:*****::oo°°°**::g°§:§
P niiessstsesssEt n
0 100 200 300 400 500

Figure 3.10: Observed timings attained during Cholesky Decomposition
(key:: o: p=2,% p=4,0: p=8,% p= 16,01 p=24)

time(sec)

H

40 85
32 - 3

1
@

24 8
16 ot°

! T T T T n
0 100 200 300 400 500

Figure 3.11: Observed and expected timings for p = 8 during Cholesky Decomposi-
tion (key:: e: observed, o: expected)

30

EA(%)
100 ® edd e
PP N
.....00.0‘::::::*:*:*****a**
80 - o'.. wnrrr? 000000099
® oo
o® **‘* °°o°°°°°°
® »* 000° Kk
60 - L °°o°° ********:ooo
® * o 60¢
* 0° 0o
- e * o *%
40 Ve L
oo ‘k**o‘)°
** 0
20 e o %00
PR
*° *6@
50
oF
0 T T T T n
0 100 200 300 400

Figure 3.12: Observed efficiencies attained during Cholesky Decomposition
(key:: : p=2,4: p=4,0: p=8,x p=16, o1 p=24)

explained by the combined effects of several factors. This agreement is better for
fewer than eight processors and slightly worse for 16 and 24 processors. Within the
range of tests performed, it is as low as .1% when p = 2 and n = 400, and as high as
20% when p = 24 and n = 130.

Figure 3.12 plots the observed efficiency attained by PPOFA for various
ring sizes and problem sizes. Reasonable efficiencies can be obtained once n/p > 15.
The Cholesky algorithm is initially less efficient than that for Gaussian elimination.
The submatrix update is the portion of each iteration that is performed in parallel.
Since in Cholesky’s algorithm there is less to update, the ratio of useful computation

to communication is smaller and efficiency suffers.

3.3 Triangular Solve

In this section we will discuss only the algorithm for backward substitution,

which solves the following system for z,

where U € R™*™ is upper triangular and z,b € R". The algorithm for a lower

triangular system is analogous.

31

3.3.1 Sequential Algorithm

The algorithm to solve an upper triangular system of linear equations is

an O(n?) operation. It is best introduced by first considering a 2 X 2 system. In this

Vi1 V12 & Y\ _ [A
0 e & |\ B)

The unknowns can be found provided vy3v22 # 0, by first solving the equation,

case we have,

& = Pafva2

for &, and then substituting this value into

vi1&y + v = B,

and reducing this to a single equation with a single unknown,
& = (61 — vi2€2)/v11-

Larger systems of order n can be solved in a similar manner, by solving
for the last element of z and then updating the first (n — 1) elements of b, thereby
reducing the remaining system to an upper triangular system of size (n—1) x (n—1).
The process is repeated n times; each time a new element of z is found, the problem
size is reduced to a smaller triangular system. The jth step of the algorithm is
outlined below for j = n,...,1 and the algorithm is listed in Figure 3.3.1. We enter
the jth iteration with the j X j system Uz = b, which can be partitioned as

(52)(8)-(5)

b= (1. vi-1,)Ts &= (&, &-1)T and b= (Brs---Bi-1)"-

where,

If v;; # 0 we can solve for

& = Bilvi;
and then reduce the problem to a (j—1)x (j—1) upper triangular system by updating
the first (j — 1) elements of b with

g(—g——fjﬂj

32

Algorithm 3.5 The following algorithm solves the n X n upper triangular system of
linear equations, Uz = b, provided U = (u1,...un) is non-singular.

for j=mn,...,1
& < Bilvij) ‘
b—b—§&u; b,’&jGR]—l

Figure 3.13: Back-Substitution

Algorithm 3.6 This algorithm drives processor P; in a ring of processors to solve
the n X n upper triangular system of linear equations, Uz = b, provided U =
(u1,...uy) is non-singular. The matriz is distributed among the processors in a
column wrapped fashion.
forj=mn,...,1
if jeP;

if (F # n) receive(b)

&« Bilvis

beb~— ijj

if (j # 1) send left(b)

Figure 3.14: Distributed Back-Substitution

and then letting U « Uyy, ¢ < &, and b « b. Clearly, the solution exists and is

unique if and only if the diagonal elements of U are non-zero.

In each pass through the loop, there is a divide operation and a vector
update (saxpy) operation of order (j — 1), totaling to approximately j flops. If we
sum these over all n iterations we get a time complexity of

,n2

3.3.2 Parallel Algorithm

The matrix U is distributed to the ring of processors in a column wrapped
fashion and the right hand side vector, b, is given to P(n), the processor that holds
the nth column of U.

First, we consider a distributed version of the sequential algorithm to moti-

vate the parallel algorithm (see Figure 3.14). In this algorithm welet U = (uy, u2,...,un)

33

be a column partitioning of U. The vector b starts at P(n) and is passed around the
ring from P(n) to P(n — 1)to... to P(1). At processor P(j), b is used to determine
the jth component of z and is then updated before being passed on to the next
processor. In this distributed algorithm, only one processor computes at any given
time, hence there is no parallel activity. However, a slight modification allows pro-
cessors to compute simultaneously. The resulting parallel algorithm was developed,

analyzed and tested by Li and Coleman [5, 6].

In each loop iteration of the distributed sequential algorithm, the majority
of work is done in the update of the vector b. The object then is to have all proces-
sors performing these updates simultaneously. However, each update of b requires
that a new element of z be determined and these elements must be determined in
order. For processor P(j) to compute ;, it must have access to 8;, {j+1,...&n, and

Vj j+1s-+-Vjn. These data, however, are distributed among several processors.
Access to these values is provided by the auxiliary vectors s (sum) and ¢
(partial sum). Initially, on processor P(n), s contains the last (p — 1) elements of b,
Ok = PBr—k+1 for k=1,...,p~1
and t contains the first (n — p+ 1) elements of b,
Tk = Bk for k=1,...,n—p+ 1.

These vectors are initialized to zero on all other processors. As the algorithm pro-
ceeds, for any processor, 75 will contain a partial sum of those terms to be divided
by vk to determine &, that are resident on that particular processor, (including By
on P(n)). The vector s is used as a communications buffer in which the partial sums
of all other contributing processors are gathered for determining the next (p — 1)

elements of the vector z.

Processor P(j) loops through the following sequence of steps:

e receive the vector s from P(j+ 1), (j # n), which contains partial sums used

to determine &, ..., &j1p-2,
e determine ¢,

e shift s so that the next element of ¢ is entered into the last position of s and

add to each element of s both partial sums from ¢ and the new term containing

&js

34

Algorithm 3.7 This algorithm drives processor P; in a ring of processors to solve
the upper triangular system of equations Ax = b by back substitution. The matriz
is distributed among the processors in a column wrapped fashion. On completion the
vector z is distributed among the processors such that &; € P(j).
for j=mn,...,1
if jeP;
if (j # n) receive(s)
& — (o1 + 75)/vi;
fork=1,...,p—2
Ok = Ok41 — Vj—k—1,;& + Tj=k—1
Op-1 = —Vj—p41,;§j + Ti-p+1
if (j# 1) send left(s)
fork=1,...,7—p+1
Tk = Tk — Uk;&;

Figure 3.15: Parallel Back-Substitution

e send s to P(j - 1), (4 # 1),

e use {; to update the remaining elements of ¢.

This algorithm is presented in Figure 3.15 in greater detail.

Consider the following example where p = 4 and n = 16. Figure 3.16
shows the assignment of processors to columns as well as the data flow between
processors via the vector s. Each column represents the elements of the vectors
¢t and s on the processor denoted above the column during the iteration indicated
below the column. In the jth column (j = 16,...,1), the “x” identifies the element
of s used to determine £;. The three elements labeled “s” identify the elements of
the buffer s which are updated and sent to P(j — 1). The position of each letter in
the triangle corresponds to the position of the element of U which is used to update

that particular element of s, t or 2 in that iteration.

Let us examine how the data becomes available to Py so that it can com-
pute &. The equation (3.6) shows the data elements needed to determine {g. The
processors on which these elements reside originally are indicated in subscripts, and

the elements of ¢t and s in which these terms are collected are highlighted in Fig-

35

Processor: POP1 P2P3POP1 P2P3POP1 P2P3POP1 P2P3

s sstttttittitititti
s s st ttitititttiitt
T s s sttt ittt ittt
z 8 8 tttttt ittt
msg ttt t ittt 1t
Eg"”t"t?’i?“t?

e e e | e o i - — - — j
wElstttttt

T s st t ittt

r 8 8 s t t it 1t

r s s sttt

T 8 8 8t t

T s 8 8t

r 8 S8 S

T 8 8

Tz S

z

Iteration: 1615 - - - 11109 8 - - - 4 3 2 1

Figure 3.16: Data Flow During Parallel Back-Substitution

ure 3.16.

& = [(ﬂe — ve16616 — Ve,12612 — V6,8€8) P,
+(—ve15615 — ve11€11 — Ve 787)P,
+(—ve,14614 — '06,104510)?1

+(—ve,13€13 — V6,989) P, } /(ves)P, (3.6)

In step 8, the terms (—vg 13613 — ve,0lo) are shifted into o3 from ¢ on Pg
and then sent to P5 with the rest of vector s. These terms were accumulated in ¢
during steps 4 and 8. In step 9, the sum (8s — ve16616 — V6,12612 — vg,8€s) is added
to o3 and the sum stored in o3 on P3. The vector s is then sent on to Py which in
step 10, adds the terms (—ve 15615 — V611811 — v6,7€7) to o2 and stores the sum in
oy. Finally, in step 11, Py receives s from Py and the terms (~vs ;14814 — vs,10€10)

are added to oy on P and divided by vg ¢ to yield &.

We begin the complexity analysis by making the simplifying assumption
that the number of processors evenly divides the number of columns in the matrix
(i.e., n = mp where m is an integer). It is conceptually helpful to group iterations

into m cycles of p iterations each, and to consider the passage of the communications

36

buffer s around the ring of processors as the algorithm loops through each cycle. Each
cycle then corresponds to the passage of s once around the ring of processors. In the
first cycle, the elements &y, ..., &x—pt1 are determined, and in the second cycle, the
elements £p—p, . .., En—2p+1 are determined and so on until &, ..., & are determined
in the mth cycle. Each cycle (except the first) begins with P,_; = P(n) receiving
the vector s, determining the current element of z and then updating and sending
the vector s to P,_, before updating the vector ¢. Each cycle (except the last) ends
when Pg sends s to P,_1 for it to begin the next cycle of iterations. When s arrives
at P,_1, this processor may begin using and updating the vector immediately or it
may have to finish updating the vector ¢ from its previous iteration before initiating

the next cycle of iterations.

The buffer, s, must pass completely around the ring exactly (m — 1) times
and then in the mth pass it travels all but the last link of the ring. The time
complexity of the algorithm is the time for s to circle the ring (m — 1) times plus
time for the last partial circuit plus any delays between cycles. During a complete
pass around the ring each processor performs p floating point operations and then
sends the buffer to its neighbor. This takes time equal to py + o + p3, making the
time for a complete cycle, p?v + p(a+ pB). The time for s to make (m — 1) complete

cycles is then

Tcomplete = (m — 1)(1727 + p(a + pﬁ))
= (n—p)a+ph+py)

The time to complete the last partial circuit must account for the shrinking of the

vector s in each iteration and is given by,

Tpartz'al = (zi(p - J)’Y) + (p - 1)(a + Pﬁ)

=0

Mot D)y 4 (p— 1)t p8).

Li and Coleman show that only P(n) = P,-1 can delay s as it is passed
around the ring of processors. It suffices to consider only this processor when de-
termining the total time that s is delayed. In the ith cycle (¢ = 1,...,m), P(n)
performs (n — ip) flops to update the remainder of ¢. The time for s to circle the ring

and return to the sender is p(a + pB) + p(p — 1)7. Whenever the time for P(n) to

37

P ndelay(p)
2 79
4 180
8 449
16 1491
24 2680

Table 3.1: Column index below which delay is zero

update ¢ exceeds the time for s to return to P(n), the vector s is delayed. Therefore
the start of the (i 4+ 1)th cycle is delayed whenever

(n —ip)y > pla+ pB) + plp—)7,

or when

1< k where k:<%_a+pﬂ

- (p - 1)) ’
The column index below which the delay is zero is a function of p, (see Table 3.1)

and is found by letting ¢ = k — 1,

:M+p2_
Y

The entries in Table 3.1 can also be interpreted as being the problem size above

ndelay(p) =n- p(k - 1)

which communications is almost completely overlapped by computation.

If the problem size is less than or equal to Ndelay(P), then no delay occurs

and the time complexity is,

Tp(n) = Tcomplete + Tpartial n < ndelay(p)

= (=Dt 0+ (0= 257) v (37)

If the problem size is greater than ngeiqy(p) then a delay occurs and the
delay is d; = (n — ip)y — p(e + pB) — p(p — 1)y. Using the approximation that
[k] — 1 = k the total time that s is delayed is,

k
Tdelay =~ Zdz

7=1

k
= (Z(n — ip)’)/) = k(p(a+pB) + p(p — 1)7)

1==1

1

38

For problems larger than ngeey(p) the time complexity is,

Tp = Tcomplete + Tpartia,l + Tdelay n > ndslay(p)

2 2
(%‘an—pé—)’y-{—(n-—l)(a-kpﬁ).

X

Noting that k ~ n/p for large n and ignoring low order terms we get

n?

22’) v+ (n=1)(a+ ph) n > Ngelay(D)- (3.8)

Tp(n) =~ (

For a fixed value of p, as the problem size becomes very large we have

. Ti(n)
lim =P,
n=co Ty(n)

so the speedup approaches p and efficiency nears 100%, but as indicated in Table 3.1

these values are prohibitively large for even a moderate number of processors.

3.3.3 Implementation and Numerical Experiments

The routine PTRSL (parallel triangular solve) drives each node in a ring
of processors to solve the upper triangular system of equations Az = b by back sub-

stitution. The calling sequence and argument descriptions are given in Figure 3.17.

The observed execution times for two, four and sixteen processors to solve
problems ranging from n = 10 to n = 500 are plotted in Figure 3.18. The transition
from linear to quadratic behavior is apparent for two and four processors. This
transition occurs when the problem size becomes large enough for Tgeiqy to become
non-zero. In the case of sixteen processors this requires n to be greater than 1400 and

hence the timings remain linear in the range of problem sizes tested (see Table 3.1).

Figure 3.19 exhibits the agreement between observed and theoretical run
times. Again, discrepancies between these times are explained by the combined
effects of several factors. Figure 3.20 plots the observed efficiencies attained by
the parallel algorithm for various ring and problem sizes. Reasonable efficiencies are
attained for two and four processors once the problem size has grown large enough to
mask the expense of sending the buffer around the ring with the useful computation

of updating the t vector.

39

PTRSL(N,A,X,T,S,INFO)

s On Entry
N is the order of the matrix to be factored.
A is a pointer to a vector of type FLT which contains columns of the
upper triangular matrix.
T isa pointer to a vector of type FLT which contains the first (n — p+ 1)
elements of b on P(n) and 0 on all other processors.
S is a pointer to a vector of type FLT which contains the last (p — 1)

elements of b on P(n) and 0 on all other processors.

¢ On Return

A

X

is a pointer to a vector of type FLT which contains columns of the
unchanged upper triangular matrix.

is a pointer to a vector of type FLT which contains the solution. The
full solution vector is distributed among the processors such that §; €

P(4)

INFO is a pointer to an integer, which has value 0 if the matrix A is non-

singular or has value k if the kth diagonal element of A is zero.

Figure 3.17: PTRSL

40

time(sec)
100 N .o.
.'.
80 1 .o‘ .
o *******
-60 N .0'****
*%*** °0°°
«* 0o®
.40 - ***,.\»‘;‘t* oooooo
*****f‘.' oo°°°o°
* [
.20 T *k **f:(';::000000000
ﬁ*ffossaﬁsg 0o®
.00 et T T T T T n
0 100 200 300 400 500

Figure 3.18: Observed timings attained during backward substitution
(key:: e:p=2,0:p=4, x p= 16)

time(sec)

1.00

H

.80

i

60
40

20 p28883°

.00 "‘.....: T T T T
0 100 200 300 400 500

n

Figure 3.19: Observed and expected timings for p = 4 during backward substitution
(key:: e: observed, o: expected)

Eff(%)

......0.00000
.ooo‘ *******
60 - ek LR EF
s ? onF
°® Wt
°? ¥
40 s e ® W
* 000
e ? «* 0000000
° L oo00®
20 EEYR] W * ooo°°°
* 0000°°
*
292 00 ek ke kKoK ok Kk KK
0 9993«3::*******************
! T

0 100 200

Figure 3.20: Observed efficiencies attained during backward substitution

(key:: o: p=2,%: p=4,0: p=8, % p=

i
300

16)

n

41

Chapter 4

Q-R Factorization

One application of the algorithms in this chapter is concerned with solving
the least squares problem of minimizing ||Az — b||2, where A € R™*" for m > n
and b € R™. We will examine the Householder and Gram-Schmidt methods for
transforming this problem into an equivalent yet easier problem to solve. Householder
orthogonalization factors A into the product of a unitary matrix () and an upper
trapezoidal matrix R. The Gram-Schmidt method factors A into the product of a
matrix Q € R™*" with orthonormal columns and R € R™*", an upper triangular

matrix with positive diagonal elements.

Once computed we can use this QR factorization of A to transform the

least squares problem as follows,
T, _p_|B1 | n
where R, is upper triangular and

c| n
Q"= [d} m-n

The least squares problem is then to minimize,

Az —b]; = Q7 Az - QTblI3
| Rrz — el + lld]I3

Il

for any z € R™. If rank(A) = rank(R;) = n then a unique z;5 which minimizes

||Az — b||2 exists and is defined as the solution to the upper triangular system,

RleS = C.

42

43

4.1 Householder Orthogonalization

A Householder transformation or elementary reflector has the form
H=1- v’

where 3 = 2/vTv. Householder matrices are symmetric, orthogonal and involutory,
and can be used to introduce a contiguous block of zeros into a vector. In fact if
z € R™, the Householder transformation,
T
vV
H=1-2—
vTy
where

v=2z |z} e,
has the property that
Hz = F||z|2 e1.

The vector v is chosen to be

v =z + sign(&)||z||2 e1,

to avoid introducing large relative error in the factor 8 = 2/vTv when z is close to a

multiple of e;. This guarantees nearly perfect orthogonality in the computed H [2].

4.1.1 Sequential Algorithm

This algorithm (see Figure 4.1) factors A € R™*" into the product QR
where) € R™*™ is unitary and R € R™*" is upper trapezoidal, by applying House-
holder transformations to introduce zeros below the diagonal of A.

The algorithm begins with A = A1) = (a§1)7 agl), cen, ag)) and proceeds by

first determining a Householder matrix, Hy, such that
Hya” = ~sign(af))la} 2 1

and applying it to form
A2 = HlA(l).

44

Algorithm 4.1 The algorithm below uses Householder transformations to overwrite
A with its QR decomposition. On return the upper triangle of A contains the nonzero
elements of R. The vectors v and constants [which define the Householder mairices
that were used at each step are stored below the diagonal of A.

AN = A
fork=1,...,n

determine Hj such that ﬁk(akk, ve oy mi)T = (prk, 0,...,0)T
A®HY) qiag(Ii_q, Hy)AK)

Figure 4.1: Householder Orthogonalization

This sequence is repeated n times. During the kth step, A®) has the form

k-1 1 n—k
AB = (Rk TL Bk) k—1

k)

0 Ck Dk m—k-41

where Rj € RFE-1x(* 1) js ypper triangular. We now determine the Householder
matrix Hy € R(m=A+1)x(m=k+1) guch that Hypcp = prrer. Then we set Hp =
diag(Ir—1, Hy) and set A+ = g A(),

k n—k
Ry r k
0 prr k
0 Hiy Dy m—k
k 1 n—k—1

m—k

Rey1 Teyr By k
0 ce+1 Dt

Note that in forming A*+1) we need only compute H.Dy.

As seen above, the Householder matrix to transform the vector z such that
Hz = —sign(&)]|z||2 e1, is completely determined by v = & + sign(&)||z||2 e1 and
B = 2/vTv. Rather than store Q = Hy H ... H, explicitly, we can store) in factored
form by saving v and § from each Hy. The cost of determining Hy, is approximately
(m—k+1)y. In forming the product H.D;, = (I- BovT)(dy,...,dn—r) We need not
form H}, explicitly. This update can be computed as d; « d; — B(vTd;)v. The cost

45

Algorithm 4.2 This algorithm drives processor P;, a node in a ring of processors to
form the orthogonal QR decomposition of a general rectangular matriz, A, by applying
Householder transformations. The matriz is distributed among the processors in a
column wrapped fashion.

fork=1,...,n

ifkeP;
determine Hy : Hi(ark, ... omi)T = prr €1 [(m —k+ 1)7]
broadcast v and /S 2(a + (m — k)B)]
else
receive v and [
update d; « d; — B(vTd;)v, jeP; >k [(2[3—5&](772 —k+1))v]

Figure 4.2: Parallel Householder Orthogonalization

of updating this submatrix is approximately 2(n — k)(m — k)y. The complexity of
this algorithm is then,

n 3
Ty(m,n) ~ 3 2(n—k+1)(m—k)y~n?m— %- (4.1)
k=1

4.1.2 Parallel Algorithm

The parallelization of the Householder orthogonalization algorithm pro-
ceeds almost identically to that for Gaussian elimination. Again we distribute the

matrix A to the ring of processors in a column wrapped fashion.

Given that each processor has approximately (n/p) columns, we consider
the sequential algorithm which loops through a set of computations for each of the
n columns of the matrix. Within each iteration, the sequence of computations is to
determine Hy and then apply it from the left side to the (m — k) x (n — k) submatrix
Dj.. The Householder transformation, H, can be completely determined by proces-
sor P(k). The submatrix, Dy, however, is distributed among all processors, so all
processors are required to assist in applying the update. Once H}, is computed, P(k)
can broadcast v and 3 to the other processors and all processors can simultaneously

update their portions of Dy.

The expressions in brackets, in Figure 4.2, indicate the effective contri-

bution to the time complexity of that step in each iteration. As in the sequential

46

algorithm, computing the Householder transformation requires (m — k + 1)y time,
and as was the case in both Gaussian elimination, and the Cholesky decomposition
the effective time to perform the broadcast is equivalent to the time to perform two
node-to-neighbor communications. The message here is a vector of (m — k) double
precision floating point numbers so the time to communicate in each iteration is
2(a + (m — k)B). The (k + 1)th iteration begins as P(k + 1) completes updating the
columns of Dy that it owns. Processor P(k + 1) owns [(n — k)/p] columns of this
submatrix. The update of each column requires a dot product and saxpy operation

each of order (m — k).
Using the approximation [(n—k)/p] = (n—k)/p+1, the time for P(k+1)

to update its share of the submatrix is then,

Q(R;k+1)(m~—k)7.

Summing these three expressions over all iterations gives the total time complexity

of the algorithm,

T

Tp(m,n) =];[(mmk+1)'y+2<ﬁ—;—-ki+l> (m —k)y

+2(at (m— k)ﬁ}

o (wm-T) e (n-3)s
+ 2n (a-}- (m— %) ﬂ) (4.2)

Again, the complexity consists of a dominating term which compares fa-
vorably with the sequential time complexity, given by (4.1). For a fixed value of p,
as the problem size increases we have

. Ti(n)
lim = p,
n—co Tp(n)

so the speedup approaches p and efficiency nears 100%. The complexity also con-
tains a term resulting from the sequential computation and a term reflecting com-
munication costs. Both of these terms become significant and reduce efficiency as p

approaches n.

47

PQRDC(M,N,A,INFO)
¢ On Entry

M number of rows in the matrix
N number of columns in the matrix

A is a pointer to a vector of type FLT which contains columns of the
matrix to be factored. Each column of A has been extended to a
length of m + 2 to store further information required to recover the
Householder transformation used at each step.

¢ On Return

A apointer to a vector containing columns of the matrix A which has been
overwritten by R on and above the diagonal. The vectors v which define
the transformation Hy = I — BvvT are stored below the diagonal. The
first element of v and (3 are stored in A[m + 2][k] and A[m + 1][k]
respectively. The orthogonal matrix @ = H1H,...H, can be formed
from these vectors.

INFO is a pointer to an integer
= 0 normal value
= k if the kth column was already reduced

Figure 4.3: PQRDC

4.1.3 Implementation and Numerical Experiments

The routine PQRDC (parallel Q-R decomposition) drives each node in a
ring of processors to form the orthogonal QR decomposition of a general rectangu-
lar matrix, A, by applying Householder transformations. The matrix is distributed
among the processors in a column wrapped fashion. The calling sequence and argu-

ment descriptions are given in Figure 4.3.

Figure 4.4 plots the expected and observed timings obtained by the par-
allel algorithm with a ring of sixteen processors on the Symult 52010 for n =
10,20,...,490. For these timings, m was set to n + 2. Again, discrepancies be-
tween these times are explained by the combined effects of several factors, this time

including the overestimation of the cost of an inner product.

Figure 4.5 plots the observed efficiency attained by the parallel algorithm

for various ring sizes and problem sizes. Reasonable efficiencies can be obtained

48

time(sec)

100
80 -
60

I
& ©

40

1

20 1 00993?3

0 -..T.-aoo""

T i
0 100 200 300 400 500

n

Figure 4.4: Observed and expected timings for p = 16 during Householder Orthogo-
nalization (key:: e: observed, o: expected)

Eff(%)
y
100 e 0000000000000
6 L °° KRk KEK
80 A ¢t 00t ewrrraiiiEaEesEests
° " ooo ******o°°°°°
60 - * o x* 0%
* <
o * 5
[* o
40 - ° **°°
<
o0 *<
50 - * * 0
04,8
&
0 T T T T n
0 100 200 300 400

Figure 4.5: Observed efficiencies attained during Householder Orthogonalization
(key: e: p=2,%: p=4,0:p=8,x p=16,0 p= 24)

49

once n/p > 6. The parallel Householder orthogonalization algorithm shows higher
efficiencies for the same problem size than any of the algorithms presented in this
paper. Comparing it to Gaussian elimination we see that they share the same com-
munication expense but the computation required during each submatrix update is
nearly doubled in the Q-R decomposition. This means that more useful computation
is performed in parallel for the cost of a broadcast and hence the algorithm is more

efficient.

4.2 Modified Gram-Schmidt Method

If we partition A and @ by columns and consider the elements of B we can

express the Q-R factorization as,

P11 P12 ... Pin
p22 PRI p2n
(al,...,an):(QD---aqn) :

and clearly,

k
ar = Y pirgi

i=1
k-1
= Prkqr + Z Pikgi-
=1

If A has linearly independent columns, then R must be nonsingular and therefore

prr # 0 and we can solve for gy,
1 k-1
p=— | @k — kGG | »
@ = (;pz Qz)

where the orthonormality of the ¢; implies that

Pz‘kzqiTak for 1=1,...,k.

The expression for g can be interpreted as the normalized vector resulting
from subtracting from ay, all its components in the direction of the already formulated

¢;. This ensures that g is orthogonal to span(qi, ..., k1)

These expressions for g and p;x lead to the Classical Gram-Schmidt (CGS)
method which generates the kth column of ¢ and R in the kth step of the algorithm,

50

but unfortunately exhibits poor numerical behavior [2]. However a rearrangement of
the computations yields the more stable Modified Gram-Schmidt (MGS) method.

4.2.1 Sequential Algorithm

Since @ has orthonormal columns, QTQ = I and we can rewrite A = QR
as QTA = R or,

Qf P11 P12 --- Pin
qf 0 p22 ... P2n
. (a17°"7an):
qr 0 ... 0 pan

From this we see that,
= qia; for j=k
Prj = Gi @j or j=k,...,n
and if we normalize g; by setting gx = ax/||ax||2, then
prk = G ok = lla -

The condition that the ¢; be orthogonal requires that we subtract from a;
its component in the direction of g, for each a; not yet orthogonal to g (i.e., j > k).

This can be done each time a new g is formed by,
aj — aj— (q;{aj)qk for j > k.

The algorithm (see Figure 4.6) begins by setting ¢1 = ay/||a1]|2 and then
determining the first row of R and subtracting the ¢ component from each of
sz, a3, . ..,an. In the second iteration, ¢, is normalized the second row of R deter-
mined and the go component subtracted from as, . .., a,. At this point, go = 1/p22(az — (¢Faz)q)

and the orthogonality of ¢; and ¢, is easily verified since ¢fq =1 and
1
g2 = —(ql a2 - (¢f az)ai 1) = 0.
P22
The orthogonality of the ¢; can be shown inductively.

In the kth iteration finding the norm and scaling a; requires approximately
2m~y time and the execution of the inner loop takes approximately 2(n — k)m~y time.

Summing over all iterations the total time complexity is given as,

Ti(m,n) =~ Z 2m(n—k+ 1)y~ mn?~. (4.3)
k=1

51

Algorithm 4.3 This algorithm uses MGS to factor A into the product QQ R where A
is overwritten by Q. In the kth iteration the kth column of Q and the kth row of R
are determined.

fork=1,...,n
prk < llakll2

Qk = ag < ak/Pkk
forj=k+1,...,n

T
Pkj < qr @j
aj &= Gj = Pkidk

Figure 4.6: Modified Gram-Schmidt

4.2.2 Parallel Algorithm

The parallel MGS algorithm (see Figure 4.7) employs only the broadcast
primative to factor a matrix A with linearly independent columns into the product
of a matrix with orthonormal columns and an upper triangular matrix B. Again
we distribute the matrix A to the ring of processors in a column wrapped fashion so

that each processor has approximately (n/p) columns.

The algorithm loops through a set of computations for each of the n
columns of the matrix A. In the kth iteration, the processor that owns ax, P(k), gen-
erates g by normalizing ar and then broadcasts this vector to all other processors.
Once a processor receives g it can update its columns a; (j > k) by subtracting the

qr component of a; from a;.

In Figure 4.7, the expressions in brackets indicate the effective contribution
to the time complexity of that step in each iteration. Determining pr and scaling
aj Tequires 2m~ time, and the effective time to perform the broadcast is equivalent
to the time to perform two node-to-neighbor communications with a message of
m double precision floating point numbers. Communication time in each iteration
is 2(a + mpB). The (k + 1)th iteration begins as P(k + 1) completes updating its
columns of A. Processor P(k+ 1) owns [(n — k)/p] columns that must be updated.
The update of each column requires a dot product and saxpy operation each of order
m. Using the approximation [(n — k)/p] = (n — k)/p + 1, the time for P(k+1) to

update its columns is then, Zm(ﬂ?g—k— +1)v. Summing these three expressions over all

52

Algorithm 4.4 This algorithm drives P;, a node in a ring of processors to form
the orthonormal basis which spans the column space of A. A is overwritten by @ of
the product A = QR, where Q has orthonormal columns and R is an upper trian-
gular matriz with positive diagonal elements. The matriz is distributed among the
processors in a column wrapped fashion.

fork=1,...,n

ifkeP;
Prk = [lakl|2 [m~]
qr = Gk < ag/ Pk [m~]
broadcast g [2(a + mp)]
else

receive ¢
for jeP;and j >k
pri — 4} 4
aj < aj = prjdk [2m[222]7]

Figure 4.7: Parallel Modified Gram-Schmidt

iterations gives the total time complexity of the algorithm,

Tp(n) = g l?m'y (-’L;—k- + 2) +2(a + mﬁ)]

{2

1
(?}%ﬁ + 4nm) ¥+ 2n(a + mf). (4.4)

This algorithm also approaches 100% efficiency for large n and fixed p.
Comparing (4.3) and (4.4) we see that,

. Ta(n)
lim = p
25 Ty (m)

However, as p approaches n the two terms (2nm)g and (4nm)y gain significance and
efficiency drops. The term (4nm)y reflects the cost of the sequential portion of each

iteration, where one processor determines pgr and normalizes gi.

4.2.3 Implementation and Numerical Experiments

The routine PMGS (parallel modified Gram-Schmidt) drives each node

in a ring of processors to form the orthonormal basis which spans the column space

53

PMGS(M,N,A,R,INFO)
¢ On Entry

M number of rows in the matrix
N number of columns in the matrix

A is a pointer to a vector of type FLT which contains columns of the
matrix to be factored.

e On Return

A a pointer to a vector containing columns of the matrix A which has
been overwritten by @ a matrix with orthonormal columns.

R a pointer to a vector containing columns of the n X n upper triangu-
lar matrix R, distributed among the processors in a column wrapped
faghion.

INFO is a pointer to an integer
= 0 normal value
= k if the kth column was linearly dependent

Figure 4.8: PMGS

of A, a rectangular matrix with linearly independent columns. A is factored into
the product QR, where) has orthonormal columns and R is an upper triangular
matrix with positive diagonal elements. A is overwritten by ¢. The matrix is
distributed among the processors in a column wrapped fashion. The calling sequence

and argument descriptions are given in Figure 4.8.

Figure 4.9 plots the observed timings obtained by PMGS with various ring
sizes on the Symult $2010 for problems ranging up to n = 490. For these timings m
was set to n + 2. Because of memory restrictions, the maximum problem size was
limited below 490 for certain ring sizes. Figure 4.10 exhibits the agreement between

observed and theoretical run times.

Figure 4.11 plots the observed efficiency attained by the parallel algorithm
for various ring sizes and problem sizes. Reasonable efficiencies can be obtained once
n/p > 6. The parallel modified Gram-Schmidt algorithm shows similar efficiencies to
the parallel Householder orthogonalization algorithm. Each communication is more

expensive yet more computation is performed for each broadcast.

54

time(sec)
1 .
200 - *
@ &
o ** o°
160 " ° N °
(]
® * o
120 o . °o°
° o o°
L] * o
80 1 ‘.o *** 000cvo v
* x* 0° + °<>°
- ¢ o® FESOUR S A
40 0‘.::***0000001*33(:::00000
raiiistesessessstts’
0 —feessessstfbiahandzty T T T n
0 100 200 300 400 500

Figure 4.9: Observed timings attained during Modified Gram-Schmidt (key:: e:
p=2,% p=4,0: p=8,x p=16, 01 p=24)

time(sec)

200

i
o

160 - 02
120 - 0 e
80 400"

1

40 222

n

0 1 I 1 i T
0 100 200 300 400 500

Figure 4.10: Observed and expected timings for p = 8 during Modified Gram-
Schmidt (key:: e: observed, o: expected)

Eff(%)

10 ey —
0 sso®v?® MM SN
o* owow xR co0o0
° w® oooooooo
* 00 0°
80— 4 « * 0©° % % *
*] *****
° 0o ° s 00 ©°
* o * * o0 ?®
* s ©
= * ° ** o
° * 6
* X o ¢
¢ x o * o
°
40 - o *
*00
o
* o
20_* * O
o % O
°
0 : n

i i i i i i
0 50 100 150 200 250 300

Figure 4.11: Observed efficiency attained during Modified Gram-Schmidt
(key:: e p=2, % p=4,0: p=38,x p=16, o p = 24)

Chapter 5

Householder Reduction to Hessenberg Form

In this chapter we will describe the reduction of a matrix to upper Hessen-
berg form by orthogonal similarity transformations. If the matrix is symmetric the
result is a tridiagonal matrix, however the algorithm that will be presented does not

expect or take advantage of symmetry.

A matrix, A, is in upper Hessenberg form if aj; =0 for ¢ > j+1. A5X5

upper Hessenberg matrix has the form,

oo o X X
o o X X X
o X X X X
X X X X X
X X X X X

Reducing a matrix to upper Hessenberg form, before applying the QR
algorithm to compute the Schur decomposition, lowers the cost of an iteration by an

order of magnitude from O(n®) to O(n?).

5.1 Sequential Algorithm
The object of the algorithm is to compute the product,
vTAU=H
where H is upper Hessenberg and U is unitary and is the product of Householder
matrices, Hy,..., Hp2.

The algorithm (see Figure 5.1) begins by determining a Householder trans-
formation, H; to zero the first column of A = A below the first subdiagonal. 4 is

then multiplied by

57

from the left and the right. Post multiplication of H 1AM by Hy does not affect the

first column so we have,

A® = 1 ADH, =

o o o X X
X X X X X
X X X X X
X X X X X
X X X X X

In the next step Hp = diag(IQ,fI 2) is determined so that,

X X X X X
X X X X X
A® =, ADH, = | 0 x x x X
0 0 x x X
0 0 x X X

Again the application of Hy from the right does not fill in the zero elements in the

first or second columns.

More generally, let A1) = A € R™*™ and after the (k — 1)th step

k
. T A
(Hy,...,Heo))TA(Hy, ... Hi) = AW =\ g B A ek
k-1 1 n—k

where Ag’i) € RF*F is upper Hessenberg. In the kth step we determine Hy € R(n=F)x(n—Fk)
such that H kag;) is a multiple of e € R™F (cf. Section 4.1.1) and compute
H AR Hy, where Hp = diag(Ik,ka). The premultiplication in the kth iteration

takes the form,
I, 0 A% A%
HA® = (¢)(WA
0 " J\o o) A

LO%)

k k
()
0 ney HkAgg)

Post multiplication by Hj produces,

(k+1) (k)
(k+1) (k) _ Ajq Ajy I 9
e e mam = (4750) (55,

i

AE AW,)
o AW,

58

Algorithm 5.1 This algorithm overwrites A € R™*™ with the upper Hessenberg
matriz UTAU where U = Hy...H,_o is the product of Householder matrices. The
vector v and scalar § = 2/vTv which determine Hy, are stored below the first subdi-
agonal of A.

AD = A

fork=1,...,n—2
determine Hj such that ﬁk(ak+1,k,...,ank)T = (n,O,...,O)T
ﬁk = diag(]k,ﬁk)
AR+ g AR |y

Figure 5.1: Householder Reduction to Hessenberg Form

The cost of determining Hy is (n — k)7, and the premultiplication which
consists of computing ng’;) =0 kAg;) requires 2(n — k)?y time, as explained in Sec-
tion 4.1.1. The post multiplication consists of computing both Ag?fl ; and flg?ff ks
and requires 2n(n — k) time. To see this let us examine how Agg)f[r can be formed.
Let Ag) = (@g41,---,0n) and Hj, = I — Bvv”, and then

k) 77 k k

Agz)Hk = Agz) - ﬁ(Agz)”)”T-
First we compute
& k3
A= 3 ai=s
j=k+1

which takes approximately (n — k)kv time. Then each of the (n — k) columns of
Ag‘g)ﬁk can be formed in (n — k)k7y time by

a; « a; — Br;y.

Forming Ag? Hj, requires 2k(n — k)7 time and by similar computations /—1(2? Hj, can
be formed in 2(n — k)?y time. Performing both of these operations completes the

post multiplication. This makes the total time complexity,
nz? 5n3

Ti(n) = 3 [(n— k) +2(n = k) +2n(n — DIRE o (5.1)
k=1

5.2 Parallel Algorithm

A parallel Householder reduction to upper Hessenberg form can be imple-

mented on a ring of processors using the broadcast, vector sum, and total exchange

59

communications primitives. Again the matrix A is distributed to the ring of proces-
sors in a column wrapped fashion so that each processor has approximately (n/p)

colummns.

The algorithm loops through a sequence of operations for each of the first
(n — 2) columns of A. During the kth iteration, a Householder matrix, Hy, of order
(n — k) is computed, A¥) is multiplied by diag(I, H;) = Hy from the left and then
H,, multiplies this result from the right. Up through the formation of H A the
algorithm is similar to the Q-R factorization by Householder transformations (cf.
Section 4.1.2). The Householder transformation, Hy, can be completely determined
by processor P(k). Once computed, P(k) can broadcast v and § and all processors

can simultaneously participate in the premultiplication.

Post multiplication requires additional communication. The operation con-

sists of overwritting the last (n — k) columns of A®) with,

AR\ AR AP
(jg)) Hy = (A%,’;’) - p A%g) oot
23 23 23

The first step is to compute

A5 :
y=1\| <) Jv= (Qkt1s.-erQn)V = Z a;v;
A23 j=k+1
which requires each processor, P;, to form the partial sum,
v =3 av;
a;€P;

and then for all processors to synchronize to form and receive the vector,
y=23 9"
%

This is done through the vector sum and total exchange primitives (cf. Section 2.1.4
and 2.1.6).
Once y is formed and known to each processor, all processors can complete

the update of their portion of the last (n — k) columns by computing,

a; — a; — pr;y.

60

Algorithm 5.2 This algorithm drives processor Py, a node in a ring of processors,
to reduce a general matriz, A, to upper Hessenberg form by applying Householder
transformations. The matriz is distributed among the processors in a column wrapped
fashion.

fork=1,...,n—2

if ke P;

determine Hj : flk(akH,k, v o) =ner [(n—k)Y]

broadcast v and [[(p— D(a+ (n—Ek)B)]
else

receive v and 3
update a; — a; — B(vTa;)v, jEP; >k [(Qf%ﬁ“" = k)]
compute) = S via;, jEP; >k ”E‘;"qn’)’]
vector sum y = Y y(i) leaving y; on P; (p— D(a+ 218+ 7))
total exchange ¥; [(p—1)(a+ ffﬂﬁ]
update a; < a; — Briy, jEP; > k [fﬁ;—’“ﬂn”x]

Figure 5.2: Parallel Householder Reduction to Hessenberg Form

Figure 5.2 lists the pseudo code which drives each node; the expressions in
brackets indicate the effective contribution to the time complexity of that step in each
iteration. As in the sequential algorithm, computing the Householder transformation
requires (n — k)7 time. Because of the subsequent synchronization required by a
vector sum operation, the effective cost of the broadcast is the time for the message
to completely traverse the ring. The message is a vector of (n — k) double precision
floating point numbers so the time to communicate in each iteration is (p — D+
(n — k)B). The update associated with the premultiplication requires a dot product
and saxpy operation each of order (n — k). Since each processor has [(n — k)/p]
columns, the time to perform this update is 2[(n — k)/p](n — k)y. Computing
the partial sum, y(9) entails scaling and summing [(n — k)/p] vectors of length n.
This costs [(n — k)/p]ny time. The vector sum with vectors of length n costs
(p— 1)(a+ [n/p]B + [n/p]7) and the total exchange of vectors of size [n/p] costs
(p—1)(a+ [n/p]B) (cf. Section 2.1.4 and 2.1.6).

Using the approximation [¢] ~ ¢ +1, and summing these expressions over

all iterations gives the total time complexity of the algorithm,

61

n—k

Toln) = g[g(P

+(p—1) <2a+ <n~k+%>ﬂ>

2

5n° n? nep
(—3‘1‘)" + "5‘) v+ 3npa + Tﬂ (52)

+1>(2n—k)+n—-k}'y

Q

The term (n?/2)7 accounts for the cost of a single processor determining
Hy, every iteration and becomes significant as p approaches n. For n > p however,
(5.2) compares favorably with the sequential time complexity (5.1) and if p is fixed

and the problem size increases, 100% utilization of the nodes will be approached.

Note: Because of the synchronization required by the distributed vector sum, this
algorithm cannot pipeline the computations of several iterations and mask a portion
of the broadcast with computation as done in the QR decomposition. For this reason,
we expect that this algorithm will perform more efficiently when implemented using

the pipelined broadcast, as planned in future work.

5.3 Implementation and Numerical Experiments

The routine PGEHR (parallel general matrix Hessenberg reduction) drives
each node in a ring of processors to reduce a general matrix, A, by applying House-
holder transformations, so that H = UT AU is upper Hessenberg and U is unitary.
The matrix is distributed among the processors in a column wrapped fashion. The

calling sequence and argument descriptions are given in Figure 5.3.

Figure 5.4 plots the observed timings obtained by the parallel algorithm
with various ring sizes on the Symult 52010 for problems ranging up to n = 490.
Figure 5.5 plots the expected and observed timings obtained by the parallel algorithm
with a ring of sixteen processors. The almost 10% discrepancy is largely caused by

the overestimation of the cost of an inner product.

Figure 5.6 plots the observed efficiency attained by the parallel algorithm
for various ring sizes and problem sizes. Reasonable efficiencies can be obtained once

n/p > 10.

62

PGEHR(N,A,INFO)
e On Entry

N order of the matrix

A is a pointer to a vector of type FLT which contains columns of the
matrix to be reduced. FEach column of A has been extended to a
length of n + 2 to store further information required to recover the
Householder transformation used at each step.

¢ On Return

A a pointer to a vector containing columns of the matrix A which has
been overwritten by H above the second subdiagonal. The vectors v
which define the transformations Hj = I — Bvv”T are stored below the
first subdiagonal. The first element of v and 3 are stored in A[n + 2][k]
and A[n + 1][k] respectively. The unitary matrix U = H1Hs ... H, can
be formed from these vectors.

INFO is a pointer to an integer
= 0 normal value
= k if the kth column was already reduced

Figure 5.3: PGEHR

63

time(sec) .
1000 .
800 -
600
400 ,,
200 o’....:******:°o°°° g*i*ooo
0 —feese --?--mll!&i%%iiﬁaagggg%%gg%&5832'333 $.
0 100 200 300 400 500

Figure 5.4: Observed timings attained during Reduction to Upper Hessenberg Form
(key:: : p=2,%: p=4,0: p=8, % p= 16, o: p = 24)

time(sec)

i
o

200
160

H
®0
®

120 X
80 - o8°
40

0 --.-.u,.-""' n

I i I I
0 100 200 300 400 500

Figure 5.5: Observed and expected timings for p = 16 during Householder Reduction
to Hessenberg Form (key:: o: observed, o: expected)

64

Eff(%)

A
100 cesvesssee s e T EETTTITINIRNNE
e 000000
*) o000
° ¥ ooo0o0f000
80 -~ . Wt oooo°°
* o°°° ***********
*
60 4 ° * o° oxe
[} ** 00
T ** ¥ °°°°°°°
40 e ° o °<>°°
* °
? *** <>°°°
- ° °
20 1., rlee
95%8°°
0 I T T T n
0 100 200 300 400

Figure 5.6: Observed efficiencies attained during Reduction to Upper Hessenberg
Form (key: e: p=2,%x: p=4,0: p=8, % p=16,0: p= 24)

Chapter 6

Conclusion

In this chapter, we will summarize the findings of Chapters 3 through 5,

and discuss other applications and the future direction of this work.

6.1 Summary

In this thesis, we have seen several matrix algorithms and their paral-
lel implementations. Using the column wrapped storage scheme and some of the
communication primatives, which were described in Chapter 2, it was shown that

reasonable efficiencies can be attained in all cases for large enough problem sizes.

The communication needs, time complexity and performance for each of
these algorithms are listed in Table 6.1. The column headed by n/p indicates the
ratio of the problem size to the number of processors at which 70% efficiency is
achieved. This ratio gives an indication of how efficiently the algorithm utilizes its
communications. The smaller this ratio is, the more quickly the algorithm achieves

high efficiencies as n grows.

Four of the algorithms, PGEFA, PPOFA,PQRDC and PMGS, have similar
communication needs and exploit the non-pipelined implementation of the broadcast
primitive by masking communication with computation (Section 3.1.2). They differ
mainly in the amount of parallel and sequential computations they require. They are
all comparable (within a constant factor) with respect to how quickly they achieve
70% efficiency, since for each broadcast they all perform O(mn) or O(n?) flops in par-
allel. The algorithm PTRSL, however, only performs O(n) flops per communication

and reaches higher efficiencies much more slowly.

The algorithm PGEHR, has more extensive communication needs. These
include a distributed vector sum and total exchange which prohibit the pipelining of

computations allowed by the broadcast primitive. It is expected that this algorithm

65

66

Algorithm | Communications | Time Complexity n/p
PGEFA broadcast (3p +n) y + 2na +n?p 19
PPOFA | broadcast (% + an”) v+ 2na + n?p 29
PTRSL node-to-neighbor (%) 7+ (n = 1D(a+ pp) 100
PQRDC | broadcast (n2m 3) I43n(m— %)y

2n (o + (m -2)5) 10

PMGS broadcast (

PGEHR broadcast

vector sum (%‘5 + %) v + 3npa + P—;Eﬁ 14
total exchange

"pm + 4nm) 7+ 2n(a + mpB) 11

Table 6.1: Algorithm Scorecard:
n/p = columns per processor at which 70% efficiency was achieved.

will perform better when implemented using the pipelined broadcast, as planned in
future work. However, the algorithm still achieved high efficiencies without overlap-

ping communication and computation.

It is important to note that there are limitations to the number of pro-
cessors that can be used while still achieving high efficiencies for these algorithms.
First, there is the practical consideration of the computation time exceeding what is
considered reasonable. For example, with p = 1000, the expected completion time of
PQRDC is on the order of 10 seconds for n/p = 10. Secondly, for each algorithm,
as p approaches n the term resulting from sequential computation and the § term in
the time complexity both become more significant. Until finally, when p = n, com-
munication costs are on the same order as computation costs and efficiency suffers.

Note, that for the column wrapped storage scheme, p cannot exceed n.

6.2 Other Applications and Future Work

The algorithms implemented in this thesis have used only some of the com-
munication primitives of Chapter 2. Below are some other algorithms that employ

these and other primitives.

The nonsymmetric QR algorithm with Hankel-wrapped storage uses the
broadcast and one-way-shift operations [13, 16]. The two-sided Jacobi method for

symmetric matrices, using the blocked Hankel-wrapped storage scheme, uses the total

67

exchange and one-way-shift operations [4, 12, 13]. The one-sided Jacobi method for
finding the singular value decomposition of a matrix is parallelized using the column

blocked storage scheme and the one-way-shift operations [4].

The broadcast and global compare operations are required to implement
the QR decomposition with column pivoting in parallel when using column wrapped
storage. Conjugate gradient methods for sparse linear systems can be parallelized
using the one-way-shift and inner product operations [14]. Finally, a parallel imple-
mentation of the power method to find eigenvalues requires the vector sum and inner

product.

In general, the broadcast primitive is appropriate when performing an up-
date (e.g., scaling or applying a transformation from the left) on the columns of a
matrix, which are distributed over all processors. The node-to-neighbor communi-
cation is most likely used in situations with limited parallel potential or in handling
exceptions. As we have seen in algorithm 5.2, the vector sum is required when per-
forming a matrix vector multiplication, and it must be followed by the total exchange
if the result is to be distributed to all processors. The one-way-shift is useful when
processors must share border data. The global compare is needed when finding pivot
elements or columns. The need for the inner product is obvious and we are still

searching for an application of the data transpose.

It is our goal to increase the scope of these implementations to include
the standard routines of packages like LINPACK and EISPACK and to extend the

primitives to parallel computers with larger numbers (> 1000) of processors.

Appendix A

Parallel Matrix Subroutines in C

A.1 PGEFA

#include <math.h>
extern int np;

extern int myprocno;

~

¥*
N

PGEFA - drives each node in a ring of p processors to
factor a square general matrix, A, with type FLT(double)
entries by Gaussian elimination. The matrix is distributed
among the processors in a column wrapped fashion.

ON ENTRY
a *FLT - pointer to vector containing columns of
the matrix A to be factored.
n int - order of the matrix
ON RETURN
a columns of the LU decomposition where U is upper

triangular and L is unit lower triangular whose
elements are the multipliers used to obtain U.
ipvt *int - pointer to vector of pivot indices
info *int - = O normal value

]

k if the (k)th pivot element was zero

JULY 20,1989 - James W. Juszczak,
University of Texas at Austin

SUBROUTINES AND FUNCTIONS

blas - saxpy, sswap, isamax, sSCOpy
amcom - broadcast, broad_rec

68

pgefa(n,a,ipvt,info)

FLT *a;

int n, *ipvt, *info;

{

int pk, /* processor that owns col k */
kcols, /* # cols of kth submatrix held by processor */
h,tnp;

register int k, i, j;
register FLT *cp, *wp, temp;
FLT *work, *col, *akk, *akj;

xinfo = 0O;
h = (myprocno < nknp) ? n/np+i: n/np;
work = a + h*n;
for (k = 0; k < n-1; k++) {
wp work;
pk = kinp;
kcols = h-((myprocno<pk)?k/np+1:k/np);
if (myprocno == pk) {
col = a + (k/np)*n ; /* top of kth col */
akk = col + k;
ipvt[k] = k + isamax{(n-k,akk,1); /* find pivot row */
cp = col + ipvt[k];
temp = *Cp; /* swap */
*cp = *akk;
*akk = temp;
if (temp == (FLT)0.0e0) {
*work = -1.0;
*info = k+1;
broadcast (work, (n-k) *sizeof (FLT),1,0,1,0);
break;
}
cp = akk + 1;
*wp++ = (FLT)ipvt[k];
for(i=k+1;i<n;i++) /* compute multipliers */

xyp++ = *cp++/temp;
broadcast (work, (n-k)*sizeof (FLT),1,0,1,0);
scopy(n-k-1,work+1,1,akk+1,1);
sswap(kcols-1,akk+n,n,col+ipvt[kl+n,n);

3

69

70

else {
broad_rec(work);
if (#work == -1.0) {
*info = k+i;
ipvt[k] = k;
}

else {
ipvt[k] = (int) (xwp++);
if ((tmp = myprocno-pk)<0) tmp += np;
col = (a + ((k+tmp)/np)*n); /* 1st col > k */
sswap(kcols,col+k,n,col+ipvt[k],n);

}

}

if (*work == -1.0) break; /* rest of column is zero */

for (j = k+1; j < n; j++) /* update next submatrix */
if (myprocno == j%np) {
col = (a+(j/np)*n); /* top of jth col %/
akj = col + k;
saxpy(n-k-1,-(*akj) ,work+1,1,akj+1,1);
}

A.2 PPOFA

#include <math.h>

#define ZERO (FLT)0.0e0

#define SQRT(x) (FLT)sqrt((FLT)(x))

extern int np, myprocno;

/*

PPOFA - drives each node in a ring of p processors to
factor a symmetric positive definite matrix, A, with
type FLT(double) entries using the Cholesky algorithm.
The matrix is distributed among the processors in a
column wrapped fashion.

ON ENTRY
a *FLT - pointer to vector containing columns
of the matrix A to be factored. Only the lower
triangle, including the diagonal is used.
n int - order of the matrix
ON RETURN
a columns of L, the Cholesky triangle, in the
lower triangle of the matrix A; the upper
triangle of A remains unchanged. The
factorization is not complete if info is not zero.
info *int - = O normal value
= k if the leading principle submatrix
of order k is found not to be positive
definite.

JULY 28,1989 - James W. Juszczak,
University of Texas at Austin

SUBROUTINES AND FUNCTIONS
blas - saxpy, scopy

HOR K K K K R K K K K K O K OF K K X K ¥ X ¥ ¥ ¥ ¥ ¥ ¥

amcom - broadcast, broad_rec

*
S

ppofa(n,a,info)
FLT =*a;

int n, *info;

71

72

{

int h, pk, /* pk: processor that owns col k */
kcols; /* # cols of kth submatrix held by processor */

register int k, i, j;

register FLT *cp, *wp, temp;

FLT *work, *col, *akk, *ajj;

*info = 0;

h = (myprocno < njnp) ? n/np+i: n/np;
work = a + h*n;

for (k = 0; k < n; k++) {

wp = work;
pk = kinp;
kcols = h-((myprocno<pk)?k/np+1:k/np);
if (myprocmo == pk) { /* processor that owns column k */
col = a + (k/np)*n ; /* top of kth col */
akk = col + k;
if ((temp = *akk) <= ZERD) {
*work = (FLT)-1.0e0;
*info = k+1;
broadcast (work, (n-k)*sizeof(FLT),1,0,1,0);
break;
}
*akk = SQRT(temp);
temp = *akk;
cp = akk + 1;
*Wptt = *akk;
for(i=k+1;i<kn;i++) /* scale col k */
*yp++ = *cp++/temp;
broadcast (work, (n-k)*sizeof(FLT),1,0,1,0);
scopy(n-k,work,1,akk,1);
}
else

broad_rec(work);

if (kwork == (FLT)-1.0e0) {
*info = k+1;
return;

}

for (j = k+1; j < n; j++)
if (myprocno == j¥%np) {
col = (a+(j/np)*n);
ajj = col + j;
wp = work + (j-k);
saxpy(n-j,-(*xwp),wp,1,2jj,1);
}

/* update submatrix */

/* top of jth col */

/* update jth col */

73

74

A.3 PTRSL

#include <math.h>
#define ZERO (FLT)0.0e0
extern int np, myprocno;

/*

O O ¥ R K KX K K ¥ ¥ F K K K ¥ ¥ X K K K K ¥ X K F ¥ ¥ ¥ ¥ ¥ ¥

*

PTRSL - drives each node in a ring of p processors

to solve

the upper triangular system of equations

Ax=b by back substitution. The matrix is distributed

among the processors in a column wrapped fashion.

ON ENTRY
a

*FLT - is a pointer to a vector of type FLT
which contains columns of the upper triangular
matrix.

int - order of the matrix

*FLT - is a pointer to a vector of type FLT
which contains the first (n-p+1) elements of

b on P(n) and O on all other processors.

*FLT - is a pointer to a vector of type FLT
which contains the last (p-1) elements of b

on P(n) and O on all other processors.

ON RETURN

a

info

NOVEMBER

*FLT - is a pointer to a vector of type FLT
which contains columns of the unchanged upper
triangular matrix.
*FLT - is a pointer to a vector of type FLT
which contains the solution. The full solution
vector is distributed among the processors such
that x[j] is on the processor that owns column j
of A, P(j).
*int = 0 normal value, A is non-singular
= k if the (k)th diagonal element of A

is zero
2,1989 - James W. Juszczak,

University of Texas at Austin

SUBROUTINES AND FUNCTIONS
blas - saxpy

amcom - send_left, rec_right

ptrsl(n,a,x,t,s,info)

FLT *a,*x,*t,*s;

int n, *info;

{

int pj, /* processor that owns col j */
tmp, size;

register int k, i, j;

register FLT xj, temp;

FLT *col, *ajj;

*info = 0;

size = np*sizeof (FLT);

k = (myprocno < n¥%np) ? n/np: n/np-1;
for (j = n-1; j >= 0; j--) {

Pj = jhnp;
if (myprocno == pj) { /* processor that owns column j */
col = a + (j/np)*n; /* top of jth col */

ajj = col + j;
if (§ 1= n-1) {
rec_right(s);
if (s[np-1] != 0.0) { /* singularity detected ? */
*info = (int)s[np-11;

if (((myprocno != 0)?myprocno-1:np-1)!=(*infolnp))

send_left(s,size);
return;
+
}
if ((xj = *ajj) '= ZEROD)
temp = (j <= n-np) ? t[j] : 0.0;
else { /* matrix is singular */
*info = j;
s[np-1]1 = (FLT)j;
send_left(s,size);
return;
}
xj = (s[0] + temp)/xj;

75

76

/* update s vector */
if (3 > 0) {
for (i=0;i<np-2;i++) {
if ((tmp = j-i-1) < 0) break;
temp = (tmp < n-np+1) 7 tltmp] : 0.0;
s[i] = s[i+1] - *(ajj-i-1) * xj + temp;

}
if (§ >= (np-1))

s[np-2] = - *(ajj-np+1)*xj + t[j-np+1l;
else

s[np-2] = 0.0;

}
if (j != 0) send_left(s,size); /* send s vector */
saxpy(j-np+1,-xj,col,1,t,1); /* update t vector */
x[k--] = xj;

}

A.4 PQRDC

#include <math.h>
#define MIN(x,y) ((x) < (y) 7 (x) : (y»)
extern int np, myprocno;

/%

¥R KO O K ¥ ¥ ¥ ¥ ¥ K O K K K X K ¥ K K K K K X ¥ * ¥ ¥ ¥ ¥ ¥ ¥

¥*

/

PQRDC - drives each node in a ring of processors to form

the orthogonal QR decomposition of a general rectangular

matrix, A, by applying Householder transformations.

The matrix is distributed among the processors

in a column wrapped fashion.

ON ENTRY
a

m
n

*FLT - pointer to a vector containing columns of
the matrix A. Each column of A has been extended
to a length of m+2 to store further information
required to recover the Householder transformation
at each step.

int - number of rows in the matrix

int - number of columns in the matrix

ON RETURN

a

info

NOVEMBER 7,1989

*FLT - pointer to a vector containing columns of
the matrix A which has been overwritten by the
triangular matrix R, on and above the diagonal.
The vectors u which define the transformations,
Uk = I -beta*uuT, are stored below the first
subdiagonal. Beta and the first element of u are
stored in A[m+1][k] and A[m+2][k] respectively.
The orthogonal matrix Q = Ul#U2% ... *Ur can be
formed from these vectors.

*int

0 normal value

fl

k if the (k)th column was already reduced

i

James W. Juszczak,
University of Texas at Austin

SUBROUTINES AND FUNCTIONS
blas - saxpy, snrm2, sdot

amcom - broadcast, broad_rec

77

78

pqrdc(a,m,n, info)

FLT *a;

int m, n, *info;

{

register FLT beta, *col, *u, *work, n2, *akk;
FLT snrm2(), sdot();

register int j, k, r;

if (m<=0 || n<=0) return;

r = MIN(m-1,n);

*info = 0;

work = (FLT *) malloc{(m+1)*sizeof(FLT));

for (k = 0; k < r; kt+) {
/* DETERMINE THE TRANSFORMATION, U=I-uuT*beta */
if (myprocno == k¥%np) {

*work = 0.0;
col = a + (k/np)*(m+2); /* top of kth col */
akk = col+k;

n2 = snrm2{m-k,akk,1);
if (n2 == (FLT)0.0) {
*work = (FLT)-1.0;

*info = k;
broadcast (work, (m-k+1)*sizeof (FLT),1,0,1,0);
continue;
}
if (*akk < 0.0) n2 = -n2;
*kakk += n2;
(col+m) = beta = 1.0/(n2(*xakk));
u = akk;

broadcast(u, (m-k+1)*sizeof (FLT),1,0,1,0);

*(col+m+l) = *u;

T

else {

broad_rec(work);

if (#work == (FLT)-1.0) { /* rest of column is zero */
*info = k;
continue;

1

else {
u = work;
beta = *(utm-k);
}

}

/* PREMULTIPLY, A <- UA or aj <- aj - u(uT)aj*beta */
for (j = k+1; j < n; j++) { register FLT *akj, temp;
if (myprocno == j%np) {

col = (a+(j/np)*(m+2)); /* top of jth col */
akj = col+k;
temp = sdot(m-k,akj,1,u,1)*beta; /* temp = (uT)aj*beta */
saxpy(m-k,-temp,u,1,akj,1); /* aj <- aj - temp*u %/
}
}
if (myprocno == kinp) *akk = -n2;
}
free(work) ;

X

79

80

A5 PMGS

#include <math.h>
extern int np, myprocno;

~
******************************-)(-

*
S

PMGS - drives each node in a ring of processors to form
an orthonormal basis which spans the column space of A,

a general rectangular matrix with linearly independent
columns. A is factored into the product QR, where Q has
orthonormal columns and R is an upper triangular matrix
with positive diagonal elements. A is overwritten by Q.
The matrix is distributed among the processors in a column
wrapped fashion.

ON ENTRY
a *FLT - pointer to a vector containing columns
of the matrix A.

m int - number of rows in the matrix
n int - number of columns in the matrix
ON RETURN
a *FLT - pointer to a vector containing columns of

the matrix A which has been overwritten by Q, a
matrix with orthonormal columns.

r *FLT -~ pointer to vector containing the n x n upper
triangular matrix R distributed to the processors in
column wrapped fashion.

info *¥int 0 normal value

1]

k if the (k)th column was linearly dependent

NOVEMBER 12,1989 - James W. Juszczak,
University of Texas at Austin

SUBROUTINES AND FUNCTIONS
blas - sscal, saxpy, snrm2, sdot
amcom ~ broadcast, broad_rec

pmgs (m,n,a,r,info)

FLT *a, *r;

register int m, n;

int *info;

{

register FLT *aj, *ak, *qk, temp, *rkj, *work;
FLT snrm2(), sdot();

register int j, k;

if (m<=0 || n<=0) return;

*¥info = 0;

work = (FLT *) malloc(m*sizeof (FLT));

ak = a; /* points to top of kth col of A */

for (k = 0; k < n; k++) {
if (myprocno == kjnp) {
*work = (FLT)0.0;
*(r+k) = temp = snrm2(m,ak,1);
if (temp == (FLT)0.0) {
xwork = (FLT)-1.0;
broadcast(work,sizeof (FLT),1,0,1,0);
*info = k;
return;
+
sscal{(m, (FLT)1.0/temp,ak,1);
qk = ak;
broadcast(qk,m¥sizeof (FLT),1,0,1,0);
T += 1n;
ak += m;
}
else {
broad_rec(work) ;
if (*work == (FLT)-1.0) {

*info = k;
return;
}
else
gk = work;

81

82

rkj = r+k;
for (j = k+1; j < n; j++) {
if (myprocno == jY%np) {
aj = a + (j/np)*m;
*rkj = temp = sdot(m,aj,1,qk,1);
saxpy(m,-temp,qk,1,aj,1);
rkj += n;

}

}

free(work) ;

}

A.6 PGEHR

#include <math.h>
extern int np, myprocno;

.

*
~

PGEHR - drives each node in a ring of p processors to

reduce a

square general matrix, A, to upper Hessenberg

form by determining and applying Householder unitary

similarity transformations. The matrix is distributed

among the processors in a column wrapped fashion.

ON ENTRY
a

n

*FLT - pointer to vector containing columns of
the matrix A. Each column of A has been extended
to a length of n+2 to store further information
required to recover the Householder transformation
at each step.

int - order of the matrix

ON RETURN

a

info

NOVEMBER

*FLT - pointer to vector containing

columns of the matrix A which has been overwritten
by the upper Hessenberg matrix above the second
sub-diagonal. The vectors u which define the
transformations, Uk = I -betaxuul, are stored
below the first subdiagonal. Beta and the first
element of u are stored in Aln+1][k] and A[n+2][k]
respectively.

*int 0 normal value

i

k if the (k)th column was already reduced

2,1989

James W. Juszczak,
University of Texas at Austin

SUBROUTINES AND FUNCTIONS

blas -

saxpy, snrm2, sdot, scopy

amcom - broadcast, broad_rec, dvec_add, exchange

84

pgehr(a,n,info)

FLT
int

{

*a;
n, *info;

register FLT beta, *col, *u, *work, *x, *¥y, n2, *aklk;

FLT
reg

Snrm2() 3 SdOt() 3 ZERO [1] H
ister int j, k, tmp;

*ZERO=(FLT)0.0;
*xinfo = 0;
work = (FLT %) malloc((3*n+np)*sizeof (FLT));

i}

X

Yy
for

work + n;
x + 1n;
(k = 0; k < n-2; k++) {

/* DETERMINE THE TRANSFORMATION, U=I-uuT*beta */

if (myprocno == kinp) {
register FLT temp;
col = a + (k/np)*x(n+2);
akilk = col+k+1;
n2 = snrm2(n-k-1,akik,1);
if (n2 == (FLT)0.0) {
*work = (FLT)-1.0;
*info = k;

broadcast(work,(n-k)*sizeof(FLT),1,0,1,0);

continue;
}
if (*akik < (FLT)0.0) n2 = -n2;
*xaklk += n2;
x(col+n) = beta = 1.0/ (n2*(*aklk));
u = aklk;
broadcast (u, (n-k) *sizeof (FLT),1,0,1,0);
#(col+n+l) = *u;
¥
else {
broad_rec (work);

if (xwork == (FLT)-1.0) { /* rest of

*info = k;
continue;

}

/* top of kth col */

column is zero */

else {
u = work;
beta = (*(u+n-k-1));
}

}

/* PREMULTIPLY, A <- UA or aj <- aj - u(uT)aj*beta
for (j = k+1; j < n; j++) { register FLT *akl], temp;
if (myprocno == j¥np) {

col = (a+(j/np)*(n+2)); /* top of jth col
aklj = col+k+l;
temp = sdot(n-k-1,ak1j,1,u,1)*beta;/* temp = (uT)aj*beta
saxpy(n-k-1,-temp,u,1,ak1j,1); /* aj <- aj - tempxu
}
}
/% POSTMULTIPLY, A <- AU or aj <- aj - aj*u(ut)*beta)

scopy(n,ZER0,0,x,1);
for (j = k+1; j < n; j++) { register FLT ujk;
if (myprocno == j¥np) {
col = (a+(j/np)*x(n+2)); /* top of jth col
ujk = *(u+tj-k-1);
saxpy(n,ujk,col,1,x,1); /* x<-x+aj*u[j] for each aj on P
>
}
scopy(n,ZER0,0,y,1); /* y <- sum x over all P’s
tmp = n/np;
if (nYnp != 0) tmp++;
dvec_add(x,n,tmp*myprocno+y) ;
exchange(y, tmp*sizeof (FLT));
/* complete submatrix update
for (j = k+1; j < n; j++) { register FLT temp;
if (myprocmo == jlhnp) {
col = (a+(j/np)*x(n+2)); /* top of jth col
temp = *(u+j-k-1) * beta;
saxpy(n,-temp,y,1,col,1); /* aj <- aj - uljlxy
¥
}
if (myprocno == kinp) *aklk = -n2;
} /* end outermost FOR loop
free(work) ;

}

85

*/

*/

*/
*/

*/

*/

*/

*/

BIBLIOGRAPHY

[1] Dongarra, J.J., Moler, C.B., Bunch, J.R., and Stewart, G.W., LINPACK User’s
Guide, SIAM, Philadelphia, 1979

[2] Golub, G.H. and Van Loan, C.F., Matriz Computations, Johns Hopkins Press,
1983

[3] Ipsen, I.C.F., Saad, Y., and Schultz, M. H., “Complexity of Dense-Linear-
System Solution on a Multiprocessor Ring,” Linear Algebra and its Applications,
77:205-239, 1986

[4] Juszczak, J.W. and van de Geijn, R.A., “An Experiment in Coding Portable
Parallel Matrix Algorithms,” Proceedings of the Fourth Annual Hypercube Con-
ference, to appear, 1989

[5] Li, G. and Coleman, T.F., “A Parallel Triangular Solver for a Distributed-
Memory Multiprocessor,” Siam J. Sci. Stat. Comput., Vol. 9, No. 3, May 1988

[6] Li, G. and Coleman, T.F., “A New Method for Solving Triangular Systems
on Distributed-Memory Message-Passing Multiprocessors,” Siam J. Sci. Stat.
Comput., Vol. 10, No. 2, March 1989

[7] McBryan, O.A. and Van de Velde, E.F., “Hypercube Algorithms and Implemen-
tations,” SIAM J. Sci. Stat. Comp., Vol. 8, No. 2, March 1987

[8] O’Leary, D.P. and Stewart, G.W., “Data-Flow Algorithms for Parallel Matrix
Computations,” Communications of the ACM, Vol. 28, No. 8, August 1985

[9] Saad, Y. and Schultz, M.H., “Data Communication in Parallel Architectures,”
Yale University, Research Report YALEU/DCS/RR-461, 1986

[10] Seitz, C.L., Seizovic, J., and Su, W., “The C Programmer’s Abbreviated Guide
to Multiprocessor Programming,” Caltech Computer Science Technical Report
Caltech-CS-TR-88-1, 1988.

[11] Stewart, G.W., Introduction to Matriz Computations, Academic Press, 1973

86

87

[12] Van de Geijn, R. A., “A Novel Storage Scheme for Parallel Jacobi Methods,”
The University of Texas at Austin, Dept. of Computer Sciences, TR-88-26

[13] Van de Geijn, R. A., “Storage Schemes for Parallel Eigenvalue Algorithms,”
to appear in Numerical Linear Algebra, Digital Signal Processing and Parallel
Algorithms, G. Golub and P. Van Dooren (Ed.), NATO ASI Series, Springer
Verlag, 1989

[14] Van de Geijn, R. A., “Machine Independent Parallel Numerical Algorithms,”
in Parallel Supercomputing: Methods, Algorithms and Applications, Graham F.
Carey (Ed.), Wiley, 1989

[15] Van de Geijn, R. A., “Performance Evaluation of the AMETEK 2010: A Pre-

liminary Report,” unpublished manuscript

[16] Van de Geijn, R. A. and D.G. Hudson III, “Efficient Parallel Implementation of
the Nonsymmetric QR Algorithm,” in Proceedings of the Fourth Annual Hyper-
cube Conference, to appear, 1989

