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once n/p > 6. The parallel Householder orthogonalization algorithm shows higher
efficiencies for the same problem size than any of the algorithms presented in this
paper. Comparing it to Gaussian elimination we see that they share the same com-
munication expense but the computation required during each submatrix update is
nearly doubled in the Q-R decomposition. This means that more useful computation
is performed in parallel for the cost of a broadcast and hence the algorithm is more

efficient.

4.2 Modified Gram-Schmidt Method

If we partition A and @ by columns and consider the elements of B we can

express the Q-R factorization as,

P11 P12 ... Pin
p22 PRI p2n
(al,...,an):(QD---aqn) :

and clearly,

k
ar = Y pirgi

i=1
k-1
= Prkqr + Z Pikgi-
=1

If A has linearly independent columns, then R must be nonsingular and therefore

prr # 0 and we can solve for gy,
1 k-1
p=— | @k — kGG | »
@ = ( ;pz Qz)

where the orthonormality of the ¢; implies that

Pz‘kzqiTak for 1=1,...,k.

The expression for g can be interpreted as the normalized vector resulting
from subtracting from ay, all its components in the direction of the already formulated

¢;. This ensures that g is orthogonal to span(qi, ..., k1)

These expressions for g and p;x lead to the Classical Gram-Schmidt (CGS)
method which generates the kth column of ¢ and R in the kth step of the algorithm,
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but unfortunately exhibits poor numerical behavior [2]. However a rearrangement of
the computations yields the more stable Modified Gram-Schmidt (MGS) method.

4.2.1 Sequential Algorithm

Since @ has orthonormal columns, QTQ = I and we can rewrite A = QR
as QTA = R or,

Qf P11 P12 --- Pin
qf 0 p22 ... P2n
. (a17°"7an): . . . .
qr 0 ... 0 pan

From this we see that,
= qia; for j=k
Prj = Gi @j or j=k,...,n
and if we normalize g; by setting gx = ax/||ax||2, then
prk = G ok = lla -

The condition that the ¢; be orthogonal requires that we subtract from a;
its component in the direction of g, for each a; not yet orthogonal to g (i.e., j > k).

This can be done each time a new g is formed by,
aj — aj— (q;{aj)qk for j > k.

The algorithm (see Figure 4.6) begins by setting ¢1 = ay/||a1]|2 and then
determining the first row of R and subtracting the ¢ component from each of
sz, a3, . ..,an. In the second iteration, ¢, is normalized the second row of R deter-
mined and the go component subtracted from as, . .., a,. At this point, go = 1/p22(az — (¢Faz)q)

and the orthogonality of ¢; and ¢, is easily verified since ¢fq =1 and
1
g2 = —(ql a2 - (¢f az)ai 1) = 0.
P22
The orthogonality of the ¢; can be shown inductively.

In the kth iteration finding the norm and scaling a; requires approximately
2m~y time and the execution of the inner loop takes approximately 2(n — k)m~y time.

Summing over all iterations the total time complexity is given as,

Ti(m,n) =~ Z 2m(n—k+ 1)y~ mn?~. (4.3)
k=1
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Algorithm 4.3 This algorithm uses MGS to factor A into the product QQ R where A
is overwritten by Q. In the kth iteration the kth column of Q and the kth row of R
are determined.

fork=1,...,n
prk < llakll2

Qk = ag < ak/Pkk
forj=k+1,...,n

T
Pkj < qr @j
aj &= Gj = Pkidk

Figure 4.6: Modified Gram-Schmidt

4.2.2 Parallel Algorithm

The parallel MGS algorithm (see Figure 4.7) employs only the broadcast
primative to factor a matrix A with linearly independent columns into the product
of a matrix  with orthonormal columns and an upper triangular matrix B. Again
we distribute the matrix A to the ring of processors in a column wrapped fashion so

that each processor has approximately (n/p) columns.

The algorithm loops through a set of computations for each of the n
columns of the matrix A. In the kth iteration, the processor that owns ax, P(k), gen-
erates g by normalizing ar and then broadcasts this vector to all other processors.
Once a processor receives g it can update its columns a; (j > k) by subtracting the

qr component of a; from a;.

In Figure 4.7, the expressions in brackets indicate the effective contribution
to the time complexity of that step in each iteration. Determining pr and scaling
aj Tequires 2m~ time, and the effective time to perform the broadcast is equivalent
to the time to perform two node-to-neighbor communications with a message of
m double precision floating point numbers. Communication time in each iteration
is 2(a + mpB). The (k + 1)th iteration begins as P(k + 1) completes updating its
columns of A. Processor P(k+ 1) owns [(n — k)/p] columns that must be updated.
The update of each column requires a dot product and saxpy operation each of order
m. Using the approximation [(n — k)/p] = (n — k)/p + 1, the time for P(k+1) to

update its columns is then, Zm(ﬂ?g—k— +1)v. Summing these three expressions over all



52

Algorithm 4.4 This algorithm drives P;, a node in a ring of processors to form
the orthonormal basis which spans the column space of A. A is overwritten by @ of
the product A = QR, where Q has orthonormal columns and R is an upper trian-
gular matriz with positive diagonal elements. The matriz is distributed among the
processors in a column wrapped fashion.

fork=1,...,n

ifkeP;
Prk = [lakl|2 [m~]
qr = Gk < ag/ Pk [m~]
broadcast g [2(a + mp)]
else

receive ¢
for jeP;and j >k
pri — 4} 4
aj < aj = prjdk [2m[222]7]

Figure 4.7: Parallel Modified Gram-Schmidt

iterations gives the total time complexity of the algorithm,

Tp(n) = g l?m'y (-’L;—k- + 2) +2(a + mﬁ)]

{2

1
(?}%ﬁ + 4nm) ¥+ 2n(a + mf). (4.4)

This algorithm also approaches 100% efficiency for large n and fixed p.
Comparing (4.3) and (4.4) we see that,

. Ta(n)
lim = p
25 Ty (m)

However, as p approaches n the two terms (2nm)g and (4nm)y gain significance and
efficiency drops. The term (4nm)y reflects the cost of the sequential portion of each

iteration, where one processor determines pgr and normalizes gi.

4.2.3 Implementation and Numerical Experiments

The routine PMGS (parallel modified Gram-Schmidt) drives each node

in a ring of processors to form the orthonormal basis which spans the column space
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PMGS(M,N,A,R,INFO)
¢ On Entry

M  number of rows in the matrix
N number of columns in the matrix

A is a pointer to a vector of type FLT which contains columns of the
matrix to be factored.

e On Return

A a pointer to a vector containing columns of the matrix A which has
been overwritten by @ a matrix with orthonormal columns.

R a pointer to a vector containing columns of the n X n upper triangu-
lar matrix R, distributed among the processors in a column wrapped
faghion.

INFO is a pointer to an integer
= 0 normal value
= k if the kth column was linearly dependent

Figure 4.8: PMGS

of A, a rectangular matrix with linearly independent columns. A is factored into
the product QR, where ) has orthonormal columns and R is an upper triangular
matrix with positive diagonal elements. A is overwritten by ¢. The matrix is
distributed among the processors in a column wrapped fashion. The calling sequence

and argument descriptions are given in Figure 4.8.

Figure 4.9 plots the observed timings obtained by PMGS with various ring
sizes on the Symult $2010 for problems ranging up to n = 490. For these timings m
was set to n + 2. Because of memory restrictions, the maximum problem size was
limited below 490 for certain ring sizes. Figure 4.10 exhibits the agreement between

observed and theoretical run times.

Figure 4.11 plots the observed efficiency attained by the parallel algorithm
for various ring sizes and problem sizes. Reasonable efficiencies can be obtained once
n/p > 6. The parallel modified Gram-Schmidt algorithm shows similar efficiencies to
the parallel Householder orthogonalization algorithm. Each communication is more

expensive yet more computation is performed for each broadcast.
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Chapter 5

Householder Reduction to Hessenberg Form

In this chapter we will describe the reduction of a matrix to upper Hessen-
berg form by orthogonal similarity transformations. If the matrix is symmetric the
result is a tridiagonal matrix, however the algorithm that will be presented does not

expect or take advantage of symmetry.

A matrix, A, is in upper Hessenberg form if aj; =0 for ¢ > j+1. A5X5

upper Hessenberg matrix has the form,

oo o X X
o o X X X
o X X X X
X X X X X
X X X X X

Reducing a matrix to upper Hessenberg form, before applying the QR
algorithm to compute the Schur decomposition, lowers the cost of an iteration by an

order of magnitude from O(n®) to O(n?).

5.1 Sequential Algorithm
The object of the algorithm is to compute the product,
vTAU=H
where H is upper Hessenberg and U is unitary and is the product of Householder
matrices, Hy,..., Hp2.

The algorithm (see Figure 5.1) begins by determining a Householder trans-
formation, H; to zero the first column of A = A below the first subdiagonal. 4 is

then multiplied by
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from the left and the right. Post multiplication of H 1AM by Hy does not affect the

first column so we have,

A® = 1 ADH, =

o o o X X
X X X X X
X X X X X
X X X X X
X X X X X

In the next step Hp = diag(IQ,fI 2) is determined so that,

X X X X X
X X X X X
A® =, ADH, = | 0 x x x X
0 0 x x X
0 0 x X X

Again the application of Hy from the right does not fill in the zero elements in the

first or second columns.

More generally, let A1) = A € R™*™ and after the (k — 1)th step

k
. T A
(Hy,...,Heo))TA(Hy, ... Hi) = AW =\ g B A ek
k-1 1 n—k

where Ag’i) € RF*F is upper Hessenberg. In the kth step we determine Hy € R(n=F)x(n—Fk)
such that H kag;) is a multiple of e € R™F (cf. Section 4.1.1) and compute
H AR Hy, where Hp = diag(Ik,ka). The premultiplication in the kth iteration

takes the form,
I, 0 A% A%
HA® = ( ¢ )( WA
0 " J\o o) A

LO%)

k k
()
0 ney HkAgg)

Post multiplication by Hj produces,

(k+1) (k)
(k+1) (k) _ Ajq Ajy I 9
e e mam = (4750 ) (55,

i

AE AW, )
o AW,
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Algorithm 5.1 This algorithm overwrites A € R™*™ with the upper Hessenberg
matriz UTAU where U = Hy...H,_o is the product of Householder matrices. The
vector v and scalar § = 2/vTv which determine Hy, are stored below the first subdi-
agonal of A.

AD = A

fork=1,...,n—2
determine Hj such that ﬁk(ak+1,k,...,ank)T = (n,O,...,O)T
ﬁk = diag(]k,ﬁk)
AR+ g AR |y

Figure 5.1: Householder Reduction to Hessenberg Form

The cost of determining Hy is (n — k)7, and the premultiplication which
consists of computing ng’;) =0 kAg;) requires 2(n — k)?y time, as explained in Sec-
tion 4.1.1. The post multiplication consists of computing both Ag?fl ; and flg?ff ks
and requires 2n(n — k) time. To see this let us examine how Agg)f[ r can be formed.
Let Ag) = (@g41,---,0n) and Hj, = I — Bvv”, and then

k) 77 k k

Agz)Hk = Agz) - ﬁ(Agz)”)”T-
First we compute
& k3
A= 3 ai=s
j=k+1

which takes approximately (n — k)kv time. Then each of the (n — k) columns of
Ag‘g)ﬁk can be formed in (n — k)k7y time by

a; « a; — Br;y.

Forming Ag? Hj, requires 2k(n — k)7 time and by similar computations /—1(2? Hj, can
be formed in 2(n — k)?y time. Performing both of these operations completes the

post multiplication. This makes the total time complexity,
nz? 5n3

Ti(n) = 3 [(n— k) +2(n = k) +2n(n — DIRE o (5.1)
k=1

5.2 Parallel Algorithm

A parallel Householder reduction to upper Hessenberg form can be imple-

mented on a ring of processors using the broadcast, vector sum, and total exchange
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communications primitives. Again the matrix A is distributed to the ring of proces-
sors in a column wrapped fashion so that each processor has approximately (n/p)

colummns.

The algorithm loops through a sequence of operations for each of the first
(n — 2) columns of A. During the kth iteration, a Householder matrix, Hy, of order
(n — k) is computed, A¥) is multiplied by diag(I, H;) = Hy from the left and then
H,, multiplies this result from the right. Up through the formation of H A the
algorithm is similar to the Q-R factorization by Householder transformations (cf.
Section 4.1.2). The Householder transformation, Hy, can be completely determined
by processor P(k). Once computed, P(k) can broadcast v and § and all processors

can simultaneously participate in the premultiplication.

Post multiplication requires additional communication. The operation con-

sists of overwritting the last (n — k) columns of A®) with,

AR\ AR AP
( jg) ) Hy = ( A%,’;’) - p A%g) oot
23 23 23

The first step is to compute

A5 :
y=1\| <) Jv= (Qkt1s.-erQn)V = Z a;v;
A23 j=k+1
which requires each processor, P;, to form the partial sum,
v =3 av;
a;€P;

and then for all processors to synchronize to form and receive the vector,
y=23 9"
%

This is done through the vector sum and total exchange primitives (cf. Section 2.1.4
and 2.1.6).
Once y is formed and known to each processor, all processors can complete

the update of their portion of the last (n — k) columns by computing,

a; — a; — pr;y.
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Algorithm 5.2 This algorithm drives processor Py, a node in a ring of processors,
to reduce a general matriz, A, to upper Hessenberg form by applying Householder
transformations. The matriz is distributed among the processors in a column wrapped
fashion.

fork=1,...,n—2

if ke P;

determine Hj : flk(akH,k, v o) =ner [(n—k)Y]

broadcast v and [ [(p— D(a+ (n—Ek)B)]
else

receive v and 3
update a; — a; — B(vTa;)v, jEP; >k [(Qf%ﬁ“" = k)]
compute ) = S via;, jEP; >k ”E‘;"qn’)’]
vector sum y = Y y(i) leaving y; on P; (p— D(a+ 218+ 7))
total exchange ¥; [(p—1)(a+ ffﬂﬁ]
update a; < a; — Briy, jEP; > k [fﬁ;—’“ﬂn”x]

Figure 5.2: Parallel Householder Reduction to Hessenberg Form

Figure 5.2 lists the pseudo code which drives each node; the expressions in
brackets indicate the effective contribution to the time complexity of that step in each
iteration. As in the sequential algorithm, computing the Householder transformation
requires (n — k)7 time. Because of the subsequent synchronization required by a
vector sum operation, the effective cost of the broadcast is the time for the message
to completely traverse the ring. The message is a vector of (n — k) double precision
floating point numbers so the time to communicate in each iteration is (p — D+
(n — k)B). The update associated with the premultiplication requires a dot product
and saxpy operation each of order (n — k). Since each processor has [(n — k)/p]
columns, the time to perform this update is 2[(n — k)/p](n — k)y. Computing
the partial sum, y(9) entails scaling and summing [(n — k)/p] vectors of length n.
This costs [(n — k)/p]ny time. The vector sum with vectors of length n costs
(p— 1)(a+ [n/p]B + [n/p]7) and the total exchange of vectors of size [n/p] costs
(p—1)(a+ [n/p]B) (cf. Section 2.1.4 and 2.1.6).

Using the approximation [¢] ~ ¢ +1, and summing these expressions over

all iterations gives the total time complexity of the algorithm,
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n—k

Toln) = g[g( P

+(p—1) <2a+ <n~k+%>ﬂ>

2

5n° n? nep
(—3‘1‘)" + "5‘) v+ 3npa + Tﬂ (52)

+1>(2n—k)+n—-k}'y

Q

The term (n?/2)7 accounts for the cost of a single processor determining
Hy, every iteration and becomes significant as p approaches n. For n > p however,
(5.2) compares favorably with the sequential time complexity (5.1) and if p is fixed

and the problem size increases, 100% utilization of the nodes will be approached.

Note: Because of the synchronization required by the distributed vector sum, this
algorithm cannot pipeline the computations of several iterations and mask a portion
of the broadcast with computation as done in the QR decomposition. For this reason,
we expect that this algorithm will perform more efficiently when implemented using

the pipelined broadcast, as planned in future work.

5.3 Implementation and Numerical Experiments

The routine PGEHR (parallel general matrix Hessenberg reduction) drives
each node in a ring of processors to reduce a general matrix, A, by applying House-
holder transformations, so that H = UT AU is upper Hessenberg and U is unitary.
The matrix is distributed among the processors in a column wrapped fashion. The

calling sequence and argument descriptions are given in Figure 5.3.

Figure 5.4 plots the observed timings obtained by the parallel algorithm
with various ring sizes on the Symult 52010 for problems ranging up to n = 490.
Figure 5.5 plots the expected and observed timings obtained by the parallel algorithm
with a ring of sixteen processors. The almost 10% discrepancy is largely caused by

the overestimation of the cost of an inner product.

Figure 5.6 plots the observed efficiency attained by the parallel algorithm
for various ring sizes and problem sizes. Reasonable efficiencies can be obtained once

n/p > 10.
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PGEHR(N,A,INFO)
e On Entry

N order of the matrix

A is a pointer to a vector of type FLT which contains columns of the
matrix to be reduced. FEach column of A has been extended to a
length of n + 2 to store further information required to recover the
Householder transformation used at each step.

¢ On Return

A a pointer to a vector containing columns of the matrix A which has
been overwritten by H above the second subdiagonal. The vectors v
which define the transformations Hj = I — Bvv”T are stored below the
first subdiagonal. The first element of v and 3 are stored in A[n + 2][k]
and A[n + 1][k] respectively. The unitary matrix U = H1Hs ... H, can
be formed from these vectors.

INFO is a pointer to an integer
= 0 normal value
= k if the kth column was already reduced

Figure 5.3: PGEHR
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Chapter 6

Conclusion

In this chapter, we will summarize the findings of Chapters 3 through 5,

and discuss other applications and the future direction of this work.

6.1 Summary

In this thesis, we have seen several matrix algorithms and their paral-
lel implementations. Using the column wrapped storage scheme and some of the
communication primatives, which were described in Chapter 2, it was shown that

reasonable efficiencies can be attained in all cases for large enough problem sizes.

The communication needs, time complexity and performance for each of
these algorithms are listed in Table 6.1. The column headed by n/p indicates the
ratio of the problem size to the number of processors at which 70% efficiency is
achieved. This ratio gives an indication of how efficiently the algorithm utilizes its
communications. The smaller this ratio is, the more quickly the algorithm achieves

high efficiencies as n grows.

Four of the algorithms, PGEFA, PPOFA,PQRDC and PMGS, have similar
communication needs and exploit the non-pipelined implementation of the broadcast
primitive by masking communication with computation (Section 3.1.2). They differ
mainly in the amount of parallel and sequential computations they require. They are
all comparable (within a constant factor) with respect to how quickly they achieve
70% efficiency, since for each broadcast they all perform O(mn) or O(n?) flops in par-
allel. The algorithm PTRSL, however, only performs O(n) flops per communication

and reaches higher efficiencies much more slowly.

The algorithm PGEHR, has more extensive communication needs. These
include a distributed vector sum and total exchange which prohibit the pipelining of

computations allowed by the broadcast primitive. It is expected that this algorithm

65
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Algorithm | Communications | Time Complexity n/p
PGEFA broadcast (3p +n ) y + 2na +n?p 19
PPOFA | broadcast (% + an” ) v+ 2na + n?p 29
PTRSL node-to-neighbor (%) 7+ (n = 1D(a+ pp) 100
PQRDC | broadcast (n2m 3) I43n(m— %)y

2n (o + (m -2)5) 10

PMGS broadcast (

PGEHR broadcast

vector sum (%‘5 + %) v + 3npa + P—;Eﬁ 14
total exchange

"pm + 4nm) 7+ 2n(a + mpB) 11

Table 6.1: Algorithm Scorecard:
n/p = columns per processor at which 70% efficiency was achieved.

will perform better when implemented using the pipelined broadcast, as planned in
future work. However, the algorithm still achieved high efficiencies without overlap-

ping communication and computation.

It is important to note that there are limitations to the number of pro-
cessors that can be used while still achieving high efficiencies for these algorithms.
First, there is the practical consideration of the computation time exceeding what is
considered reasonable. For example, with p = 1000, the expected completion time of
PQRDC is on the order of 10 seconds for n/p = 10. Secondly, for each algorithm,
as p approaches n the term resulting from sequential computation and the § term in
the time complexity both become more significant. Until finally, when p = n, com-
munication costs are on the same order as computation costs and efficiency suffers.

Note, that for the column wrapped storage scheme, p cannot exceed n.

6.2 Other Applications and Future Work

The algorithms implemented in this thesis have used only some of the com-
munication primitives of Chapter 2. Below are some other algorithms that employ

these and other primitives.

The nonsymmetric QR algorithm with Hankel-wrapped storage uses the
broadcast and one-way-shift operations [13, 16]. The two-sided Jacobi method for

symmetric matrices, using the blocked Hankel-wrapped storage scheme, uses the total
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exchange and one-way-shift operations [4, 12, 13]. The one-sided Jacobi method for
finding the singular value decomposition of a matrix is parallelized using the column

blocked storage scheme and the one-way-shift operations [4].

The broadcast and global compare operations are required to implement
the QR decomposition with column pivoting in parallel when using column wrapped
storage. Conjugate gradient methods for sparse linear systems can be parallelized
using the one-way-shift and inner product operations [14]. Finally, a parallel imple-
mentation of the power method to find eigenvalues requires the vector sum and inner

product.

In general, the broadcast primitive is appropriate when performing an up-
date (e.g., scaling or applying a transformation from the left) on the columns of a
matrix, which are distributed over all processors. The node-to-neighbor communi-
cation is most likely used in situations with limited parallel potential or in handling
exceptions. As we have seen in algorithm 5.2, the vector sum is required when per-
forming a matrix vector multiplication, and it must be followed by the total exchange
if the result is to be distributed to all processors. The one-way-shift is useful when
processors must share border data. The global compare is needed when finding pivot
elements or columns. The need for the inner product is obvious and we are still

searching for an application of the data transpose.

It is our goal to increase the scope of these implementations to include
the standard routines of packages like LINPACK and EISPACK and to extend the

primitives to parallel computers with larger numbers (> 1000) of processors.



Appendix A

Parallel Matrix Subroutines in C

A.1 PGEFA

#include <math.h>
extern int np;

extern int myprocno;

~
************************

¥*
N

PGEFA - drives each node in a ring of p processors to
factor a square general matrix, A, with type FLT(double)
entries by Gaussian elimination. The matrix is distributed
among the processors in a column wrapped fashion.

ON ENTRY
a *FLT - pointer to vector containing columns of
the matrix A to be factored.
n int - order of the matrix
ON RETURN
a columns of the LU decomposition where U is upper

triangular and L is unit lower triangular whose
elements are the multipliers used to obtain U.
ipvt *int - pointer to vector of pivot indices
info *int - = O normal value

]

k if the (k)th pivot element was zero

JULY 20,1989 - James W. Juszczak,
University of Texas at Austin

SUBROUTINES AND FUNCTIONS

blas - saxpy, sswap, isamax, sSCOpy
amcom - broadcast, broad_rec

68



pgefa(n,a,ipvt,info)

FLT *a;

int n, *ipvt, *info;

{

int pk, /* processor that owns col k */
kcols, /* # cols of kth submatrix held by processor */
h,tnp;

register int k, i, j;
register FLT *cp, *wp, temp;
FLT *work, *col, *akk, *akj;

xinfo = 0O;
h = (myprocno < nknp) ? n/np+i: n/np;
work = a + h*n;
for (k = 0; k < n-1; k++) {
wp work;
pk = kinp;
kcols = h-((myprocno<pk)?k/np+1:k/np);
if (myprocno == pk) {
col = a + (k/np)*n ; /* top of kth col */
akk = col + k;
ipvt[k] = k + isamax{(n-k,akk,1); /* find pivot row */
cp = col + ipvt[k];
temp = *Cp; /* swap */
*cp = *akk;
*akk = temp;
if (temp == (FLT)0.0e0) {
*work = -1.0;
*info = k+1;
broadcast (work, (n-k) *sizeof (FLT),1,0,1,0);
break;
}
cp = akk + 1;
*wp++ = (FLT)ipvt[k];
for(i=k+1;i<n;i++) /* compute multipliers */

xyp++ = *cp++/temp;
broadcast (work, (n-k)*sizeof (FLT),1,0,1,0);
scopy(n-k-1,work+1,1,akk+1,1);
sswap(kcols-1,akk+n,n,col+ipvt[kl+n,n);

3
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else {
broad_rec(work);
if (#work == -1.0) {
*info = k+i;
ipvt[k] = k;
}

else {
ipvt[k] = (int) (xwp++);
if ((tmp = myprocno-pk)<0) tmp += np;
col = (a + ((k+tmp)/np)*n); /* 1st col > k */
sswap(kcols,col+k,n,col+ipvt[k],n);

}

}

if (*work == -1.0) break; /* rest of column is zero */

for (j = k+1; j < n; j++) /* update next submatrix */
if (myprocno == j%np) {
col = (a+(j/np)*n); /* top of jth col %/
akj = col + k;
saxpy(n-k-1,-(*akj) ,work+1,1,akj+1,1);
}



A.2 PPOFA

#include <math.h>

#define ZERO (FLT)0.0e0

#define SQRT(x) (FLT)sqrt((FLT)(x))

extern int np, myprocno;

/*

PPOFA - drives each node in a ring of p processors to
factor a symmetric positive definite matrix, A, with
type FLT(double) entries using the Cholesky algorithm.
The matrix is distributed among the processors in a
column wrapped fashion.

ON ENTRY
a *FLT - pointer to vector containing columns
of the matrix A to be factored. Only the lower
triangle, including the diagonal is used.
n int - order of the matrix
ON RETURN
a columns of L, the Cholesky triangle, in the
lower triangle of the matrix A; the upper
triangle of A remains unchanged. The
factorization is not complete if info is not zero.
info  *int - = O normal value
= k if the leading principle submatrix
of order k is found not to be positive
definite.

JULY 28,1989 - James W. Juszczak,
University of Texas at Austin

SUBROUTINES AND FUNCTIONS
blas - saxpy, scopy

HOR K K K K R K K K K K O K OF K K X K ¥ X ¥ ¥ ¥ ¥ ¥ ¥

amcom - broadcast, broad_rec

*
S

ppofa(n,a,info)
FLT =*a;

int n, *info;
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{

int h, pk, /* pk: processor that owns col k */
kcols; /* # cols of kth submatrix held by processor */

register int k, i, j;

register FLT *cp, *wp, temp;

FLT *work, *col, *akk, *ajj;

*info = 0;

h = (myprocno < njnp) ? n/np+i: n/np;
work = a + h*n;

for (k = 0; k < n; k++) {

wp = work;
pk = kinp;
kcols = h-((myprocno<pk)?k/np+1:k/np);
if (myprocmo == pk) { /* processor that owns column k */
col = a + (k/np)*n ; /* top of kth col */
akk = col + k;
if ((temp = *akk) <= ZERD) {
*work = (FLT)-1.0e0;
*info = k+1;
broadcast (work, (n-k)*sizeof(FLT),1,0,1,0);
break;
}
*akk = SQRT(temp);
temp = *akk;
cp = akk + 1;
*Wptt = *akk;
for(i=k+1;i<kn;i++) /* scale col k */
*yp++ = *cp++/temp;
broadcast (work, (n-k)*sizeof(FLT),1,0,1,0);
scopy(n-k,work,1,akk,1);
}
else

broad_rec(work);

if (kwork == (FLT)-1.0e0) {
*info = k+1;
return;

}



for (j = k+1; j < n; j++)
if (myprocno == j¥%np) {
col = (a+(j/np)*n);
ajj = col + j;
wp = work + (j-k);
saxpy(n-j,-(*xwp),wp,1,2jj,1);
}

/* update submatrix */

/* top of jth col */

/* update jth col */
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A.3 PTRSL

#include <math.h>
#define ZERO (FLT)0.0e0
extern int np, myprocno;

/*

O O ¥ R K KX K K ¥ ¥ F K K K ¥ ¥ X K K K K ¥ X K F ¥ ¥ ¥ ¥ ¥ ¥

*

PTRSL - drives each node in a ring of p processors

to solve

the upper triangular system of equations

Ax=b by back substitution. The matrix is distributed

among the processors in a column wrapped fashion.

ON ENTRY
a

*FLT - is a pointer to a vector of type FLT
which contains columns of the upper triangular
matrix.

int - order of the matrix

*FLT - is a pointer to a vector of type FLT
which contains the first (n-p+1) elements of

b on P(n) and O on all other processors.

*FLT - is a pointer to a vector of type FLT
which contains the last (p-1) elements of b

on P(n) and O on all other processors.

ON RETURN

a

info

NOVEMBER

*FLT - is a pointer to a vector of type FLT
which contains columns of the unchanged upper
triangular matrix.
*FLT - is a pointer to a vector of type FLT
which contains the solution. The full solution
vector is distributed among the processors such
that x[j] is on the processor that owns column j
of A, P(j).
*int = 0 normal value, A is non-singular
= k if the (k)th diagonal element of A

is zero
2,1989 - James W. Juszczak,

University of Texas at Austin

SUBROUTINES AND FUNCTIONS
blas - saxpy

amcom - send_left, rec_right



ptrsl(n,a,x,t,s,info)

FLT *a,*x,*t,*s;

int n, *info;

{

int pj, /* processor that owns col j */
tmp, size;

register int k, i, j;

register FLT xj, temp;

FLT *col, *ajj;

*info = 0;

size = np*sizeof (FLT);

k = (myprocno < n¥%np) ? n/np: n/np-1;
for (j = n-1; j >= 0; j--) {

Pj = jhnp;
if (myprocno == pj) { /* processor that owns column j */
col = a + (j/np)*n; /* top of jth col */

ajj = col + j;
if (§ 1= n-1) {
rec_right(s);
if (s[np-1] != 0.0) { /* singularity detected ? */
*info = (int)s[np-11;

if (((myprocno != 0)?myprocno-1:np-1)!=(*infolnp))

send_left(s,size);
return;
+
}
if ((xj = *ajj) '= ZEROD)
temp = (j <= n-np) ? t[j] : 0.0;
else { /* matrix is singular */
*info = j;
s[np-1]1 = (FLT)j;
send_left(s,size);
return;
}
xj = (s[0] + temp)/xj;
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/* update s vector */
if (3 > 0) {
for (i=0;i<np-2;i++) {
if ((tmp = j-i-1) < 0) break;
temp = (tmp < n-np+1) 7 tltmp] : 0.0;
s[i] = s[i+1] - *(ajj-i-1) * xj + temp;

}
if (§ >= (np-1))

s[np-2] = - *(ajj-np+1)*xj + t[j-np+1l;
else

s[np-2] = 0.0;

}
if (j != 0) send_left(s,size); /* send s vector */
saxpy(j-np+1,-xj,col,1,t,1); /* update t vector */
x[k--] = xj;

}



A.4 PQRDC

#include <math.h>
#define MIN(x,y) ((x) < (y) 7 (x) : (y»)
extern int np, myprocno;

/%

¥R KO O K ¥ ¥ ¥ ¥ ¥ K O K K K X K ¥ K K K K K X ¥ * ¥ ¥ ¥ ¥ ¥ ¥

¥*

/

PQRDC - drives each node in a ring of processors to form

the orthogonal QR decomposition of a general rectangular

matrix, A, by applying Householder transformations.

The matrix is distributed among the processors

in a column wrapped fashion.

ON ENTRY
a

m
n

*FLT - pointer to a vector containing columns of
the matrix A. Each column of A has been extended
to a length of m+2 to store further information
required to recover the Householder transformation
at each step.

int - number of rows in the matrix

int - number of columns in the matrix

ON RETURN

a

info

NOVEMBER 7,1989

*FLT - pointer to a vector containing columns of
the matrix A which has been overwritten by the
triangular matrix R, on and above the diagonal.
The vectors u which define the transformations,
Uk = I -beta*uuT, are stored below the first
subdiagonal. Beta and the first element of u are
stored in A[m+1][k] and A[m+2][k] respectively.
The orthogonal matrix Q = Ul#U2% ... *Ur can be
formed from these vectors.

*int

0 normal value

fl

k if the (k)th column was already reduced

i

James W. Juszczak,
University of Texas at Austin

SUBROUTINES AND FUNCTIONS
blas - saxpy, snrm2, sdot

amcom - broadcast, broad_rec
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pqrdc(a,m,n, info)

FLT *a;

int m, n, *info;

{

register FLT beta, *col, *u, *work, n2, *akk;
FLT snrm2(), sdot();

register int j, k, r;

if (m<=0 || n<=0) return;

r = MIN(m-1,n);

*info = 0;

work = (FLT *) malloc{(m+1)*sizeof(FLT));

for (k = 0; k < r; kt+) {
/* DETERMINE THE TRANSFORMATION, U=I-uuT*beta */
if (myprocno == k¥%np) {

*work = 0.0;
col = a + (k/np)*(m+2); /* top of kth col */
akk = col+k;

n2 = snrm2{m-k,akk,1);
if (n2 == (FLT)0.0) {
*work = (FLT)-1.0;

*info = k;
broadcast (work, (m-k+1)*sizeof (FLT),1,0,1,0);
continue;
}
if (*akk < 0.0) n2 = -n2;
*kakk += n2;
*(col+m) = beta = 1.0/(n2*(*xakk));
u = akk;

broadcast(u, (m-k+1)*sizeof (FLT),1,0,1,0);

*(col+m+l) = *u;

T

else {

broad_rec(work);

if (#work == (FLT)-1.0) { /* rest of column is zero */
*info = k;
continue;

1



else {
u = work;
beta = *(utm-k);
}

}

/* PREMULTIPLY, A <- UA or aj <- aj - u(uT)aj*beta */
for (j = k+1; j < n; j++) { register FLT *akj, temp;
if (myprocno == j%np) {

col = (a+(j/np)*(m+2)); /* top of jth col */
akj = col+k;
temp = sdot(m-k,akj,1,u,1)*beta; /* temp = (uT)aj*beta */
saxpy(m-k,-temp,u,1,akj,1); /* aj <- aj - temp*u %/
}
}
if (myprocno == kinp) *akk = -n2;
}
free(work) ;

X
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A5 PMGS

#include <math.h>
extern int np, myprocno;

~
******************************-)(-

*
S

PMGS - drives each node in a ring of processors to form
an orthonormal basis which spans the column space of A,

a general rectangular matrix with linearly independent
columns. A is factored into the product QR, where Q has
orthonormal columns and R is an upper triangular matrix
with positive diagonal elements. A is overwritten by Q.
The matrix is distributed among the processors in a column
wrapped fashion.

ON ENTRY
a *FLT - pointer to a vector containing columns
of the matrix A.

m int - number of rows in the matrix
n int - number of columns in the matrix
ON RETURN
a *FLT - pointer to a vector containing columns of

the matrix A which has been overwritten by Q, a
matrix with orthonormal columns.

r *FLT -~ pointer to vector containing the n x n upper
triangular matrix R distributed to the processors in
column wrapped fashion.

info *¥int 0 normal value

1]

k if the (k)th column was linearly dependent

NOVEMBER 12,1989 - James W. Juszczak,
University of Texas at Austin

SUBROUTINES AND FUNCTIONS
blas - sscal, saxpy, snrm2, sdot
amcom ~ broadcast, broad_rec



pmgs (m,n,a,r,info)

FLT *a, *r;

register int m, n;

int *info;

{

register FLT *aj, *ak, *qk, temp, *rkj, *work;
FLT snrm2(), sdot();

register int j, k;

if (m<=0 || n<=0) return;

*¥info = 0;

work = (FLT *) malloc(m*sizeof (FLT));

ak = a; /* points to top of kth col of A */

for (k = 0; k < n; k++) {
if (myprocno == kjnp) {
*work = (FLT)0.0;
*(r+k) = temp = snrm2(m,ak,1);
if (temp == (FLT)0.0) {
xwork = (FLT)-1.0;
broadcast(work,sizeof (FLT),1,0,1,0);
*info = k;
return;
+
sscal{(m, (FLT)1.0/temp,ak,1);
qk = ak;
broadcast(qk,m¥sizeof (FLT),1,0,1,0);
T += 1n;
ak += m;
}
else {
broad_rec(work) ;
if (*work == (FLT)-1.0) {

*info = k;
return;
}
else
gk = work;
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rkj = r+k;
for (j = k+1; j < n; j++) {
if (myprocno == jY%np) {
aj = a + (j/np)*m;
*rkj = temp = sdot(m,aj,1,qk,1);
saxpy(m,-temp,qk,1,aj,1);
rkj += n;

}

}

free(work) ;

}



A.6 PGEHR

#include <math.h>
extern int np, myprocno;

.
********************************

*
~

PGEHR - drives each node in a ring of p processors to

reduce a

square general matrix, A, to upper Hessenberg

form by determining and applying Householder unitary

similarity transformations. The matrix is distributed

among the processors in a column wrapped fashion.

ON ENTRY
a

n

*FLT - pointer to vector containing columns of
the matrix A. Each column of A has been extended
to a length of n+2 to store further information
required to recover the Householder transformation
at each step.

int - order of the matrix

ON RETURN

a

info

NOVEMBER

*FLT - pointer to vector containing

columns of the matrix A which has been overwritten
by the upper Hessenberg matrix above the second
sub-diagonal. The vectors u which define the
transformations, Uk = I -betaxuul, are stored
below the first subdiagonal. Beta and the first
element of u are stored in Aln+1][k] and A[n+2][k]
respectively.

*int 0 normal value

i

k if the (k)th column was already reduced

2,1989

James W. Juszczak,
University of Texas at Austin

SUBROUTINES AND FUNCTIONS

blas -

saxpy, snrm2, sdot, scopy

amcom - broadcast, broad_rec, dvec_add, exchange
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pgehr(a,n,info)

FLT
int

{

*a;
n, *info;

register FLT beta, *col, *u, *work, *x, *¥y, n2, *aklk;

FLT
reg

Snrm2() 3 SdOt() 3 ZERO [1] H
ister int j, k, tmp;

*ZERO=(FLT)0.0;
*xinfo = 0;
work = (FLT %) malloc((3*n+np)*sizeof (FLT));

i}

X

Yy
for

work + n;
x + 1n;
(k = 0; k < n-2; k++) {

/* DETERMINE THE TRANSFORMATION, U=I-uuT*beta */

if (myprocno == kinp) {
register FLT temp;
col = a + (k/np)*x(n+2);
akilk = col+k+1;
n2 = snrm2(n-k-1,akik,1);
if (n2 == (FLT)0.0) {
*work = (FLT)-1.0;
*info = k;

broadcast(work,(n-k)*sizeof(FLT),1,0,1,0);

continue;
}
if (*akik < (FLT)0.0) n2 = -n2;
*xaklk += n2;
x(col+n) = beta = 1.0/ (n2*(*aklk));
u = aklk;
broadcast (u, (n-k) *sizeof (FLT),1,0,1,0);
#(col+n+l) = *u;
¥
else {
broad_rec (work);

if (xwork == (FLT)-1.0) { /* rest of

*info = k;
continue;

}

/* top of kth col */

column is zero */



else {
u = work;
beta = (*(u+n-k-1));
}

}

/* PREMULTIPLY, A <- UA or aj <- aj - u(uT)aj*beta
for (j = k+1; j < n; j++) { register FLT *akl], temp;
if (myprocno == j¥np) {

col = (a+(j/np)*(n+2)); /* top of jth col
aklj = col+k+l;
temp = sdot(n-k-1,ak1j,1,u,1)*beta;/* temp = (uT)aj*beta
saxpy(n-k-1,-temp,u,1,ak1j,1); /* aj <- aj - tempxu
}
}
/% POSTMULTIPLY, A <- AU or aj <- aj - aj*u(ut)*beta)

scopy(n,ZER0,0,x,1);
for (j = k+1; j < n; j++) { register FLT ujk;
if (myprocno == j¥np) {
col = (a+(j/np)*x(n+2)); /* top of jth col
ujk = *(u+tj-k-1);
saxpy(n,ujk,col,1,x,1); /* x<-x+aj*u[j] for each aj on P
>
}
scopy(n,ZER0,0,y,1); /* y <- sum x over all P’s
tmp = n/np;
if (nYnp != 0) tmp++;
dvec_add(x,n,tmp*myprocno+y) ;
exchange(y, tmp*sizeof (FLT));
/* complete submatrix update
for (j = k+1; j < n; j++) { register FLT temp;
if (myprocmo == jlhnp) {
col = (a+(j/np)*x(n+2)); /* top of jth col
temp = *(u+j-k-1) * beta;
saxpy(n,-temp,y,1,col,1); /* aj <- aj - uljlxy
¥
}
if (myprocno == kinp) *aklk = -n2;
} /* end outermost FOR loop
free(work) ;

}
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