TECHNIQUES FOR RITT-WU’S
DECOMPOSITION ALGORITHM

Shang-Ching Chou and Xiao-Shan Gao
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-90-02 February 1990

Techniques for Ritt—Wu’s Decomposition Algorithme

Shang-Ching Chou and Xiao-Shan Gaot

Department of Computer Sciences
The University of Texas at Austin, Austin, Texas 78712 USA

Abstract This is a summary of techniques used in improving Ritt—Wu’s decomposition algo-
rithm. Some of them are reported here for the first time, although they have been extensively
used by the authors in the connection with geometric reasoning. The algorithm is to decom-
pose an algebraic set into a union of its irreducible varieties. With constant efforts by many
researchers, the current techniques can speed up the algorithm by a magnitude of two orders.
The detailed data of eight examples, including the Morley configuration and the 8; configuration,
are collected in the Appendix.

Keywords Polynomial, ideal, prime ideal, algebraic set, irreducible variety, ascending chain,
characteristic set, pseudo division, Ritt~Wu’s principle, Grobner basis, decomposition of an al-
gebraic set, irredundant decomposition.

* The work reported here was supported in part by the NSF Grant CCR-8702108.

i On leave from Institute of Systems Science, Academia Sinica, Beijing.

1

1. Imntroduction

Algorithms for decomposition of an algebraic set into a union of its irreducible varieties have
been known since the work of G. Hermann [8]. However, Ritt’s decomposition algorithm has been
recognized and revived only recently by Wu’s work [14], [15]. Wu has added many new, important
ideas to Ritt’s original algorithm; so it is proper to call the algorithm Ritt—Wu’s decomposition
algorithm. In order to make the algorithm efficient and practical, many things need to be done.
Since Ritt—Wu’s algorithm is highly undeterministic, it provides many variants and combinations
of variants. Some variants can lead to essential improvements of the algorithm. Many researchers
have been studied and experimented with various variants since 1983 [14], [1], [9], [15], [19], [17],
(16, [10], (3], [18], [13].

This report is a summary of techniques used to improve the decomposition algorithm. Many of
them, especially the technique in 4.3.3, are reported in this paper for the first time, although they
have been estensively used by the authors in the connection with mechanical geometry reasoning.
It is for those who have certain prior knowledge about Ritt-Wu’s work and want to study and
experiment with the decomposition algorithm seriously. Thus we will use some notations or
terminologies without detailed explanations. The reader can found detailed presentation in [14],

(3], 2]

2. Basic Terminologies

Let K be a computable field such as Q, the field of rational numbers, and ¥y = Y1, %2, Ym
be indeterminates. Unless stated otherwise, all polynomials mentioned in this section are in

Klyi,eoosyml = Kly].

Let f € K[y]. The class of f, denoted by class(f), is the largest ¢ such that y; occurs in f.
If f € K, then class(f) = 0. Let ¢ = class(f) > 0. We call y., denoted by lv(f), the leading
variable f. Considering f as a polynomial in y., we can write f as

an Yy +an 1yt e Fa

where ap, ..., a0 are in K[y1,...,y..1], = > 0, and a, # 0. We call a, the initial or leading
coefficient of f and n the leading degree of f, denoting them as le(f) and Id(f), respectively.
Pseudo remainder of g by f (in the variable y.) is denoted by prem(g, f).

Definition (2.1). Let C = f1, fa,..., f be a sequence of polynomials in Kly]. We call it a
quasi ascending chain (abb. quasi asc chain) or a triangular form if either r = 1 and f; # 0, or
r>1and 0 < class(fy) < class(f2) < --- < class(f,).

Unless stated otherwise, we assume C is non-trivial, i.e., class(f;) > 0. Let fi,...,f, bea
quasi asc chain. We define prem(g, fi, ..., f,) inductively to be prem{(prem(g, f+), f1, s fro1)-
Let it be R. Then we have the following important Remainder Formula:

(2.1.1) e Drg=Q1fi+--+Q: fr + R

where the I; = le(fi), s1,...,9, are some non-negative integers, Q1,...,Q, are polynomials.
Furthermore, deg(R, z;) < deg(f;,2;), for i =1,...,r, where z; = lo(f;)-

(i) A quasi ascending chain is called an ascending chain in weak sense (abb. w-asc chain) if
prem(le(fi), fioonn [o) #0, for i=1,..,7.

(i) A w-asc chain is called an ascending chain in Wu’s sense {(abb. wu-asc chain) if the

deg(le(f;),o(f:)) < 1d(f;) for i < j.

(iii) A wu-asc chain is called an ascending chain in Ritt’s sense (abb. r-asc chain)if deg(f;, lv(f;))
< ld(f;) for 1 < 3.

Whenever we talk about an asc chain, it can be one of the about three.

We define a partial order < in Klyl: f < g if class(f) < class(g) or class(f) = class(g) > 0
and ld(f) < ld(g). If neither f < g nor g < f, we denote f ~ g. Obviously, this partial order is
well founded, i.e., there is no infinite, strictly decreasing sequences of polynomials.

Definition (2.2). Let C = fi,...f, and C; = g1, ...,9,» be two ascending chains. We define
C < C, if there is an s such that s < min(r,m) and f; and g; are of the same rank for i < s and
that f, < g,, or m < r and f; ~ ¢g; for i < m.

Proposition (2.3). The partial order < among the set of all ascending chains is well-founded,
i.e, there are no infinite, strictly decreasing sequences of asc chains.

Proof. See Lemma 1 of [14]. i

Definition (2.4). Let S be a nonempty polynomial set. A minimal ascending chain in the
set of all chains formed from polynomials in S is called a basic set of S.

Unless stated otherwise, whenever we talk about a finite polynomial set S, we assume 5 does
not contain zero. By (2.3), every nonempty polynomial set S has a basic set. Actually, we have
the following

Algorithm (2.5). Let S be a finite, non-empty polynomial set. The algorithm is to construct
a basic set of 5.

Proof. See [3]. i

3. The Decomposition Algorithm

Now let us fix an extension F of the base field K. Let PS be a finite polynomial set. We
denote Zero(PS) the common zeros of PS in E™ i.e., the set

{(a1,..,am) € E™ | h(ay,...,a,) =0, for all h € PS}.

The decomposition algorithm is to decompose Zero(PS). It works for any extension E of K, but
is complete only for the case when F is algebraically closed. Thus, in what follows, we assume
E to be algebraically closed. Then the decomposition algorithm is to decompose Zero(PS) into
the union of its irreducible varieties.

The algorithm consists of two phases. Phase 1 is to triangulize a polynomial set (initially the
set PS5) to obtain an asc chain and other polynomial sets to be decomposed further. This phase
is usually called Ritt—Wu’s principle. Phase 2 is to check whether that asc chain is irreducible, if
not, then split the polynomial set to be decomposed into two or more polynomial sets. Recursively
repeat this process for each of the new polynomial sets until no new polynomial sets are produced.
We finally have a set of irreducible asc chains AS5Cy,..., ASC; and the decomposition (if [= 0,

then Zero(PS) is empty) desired:

(3.0.1) Zero(PS) = | Zero(PD(ASCy)).

i1
where the PD(ASC;) = {g | prem(g,ASC;) = 0} are prime ideals.

Let DS be another polynomial set. A key notation introduced by Wu is Z ero(PS/DS), which
is defined to be the set difference Zero(PS) — Zero(DS). As we will see, this notation will lead
to essential improvement of the decomposition algorithm.

3.1. Phase 1 (Ritt—-Wu’s principle) Let PS be as before. The algorithm is to construct an
ascending chain ASC such that either

(3.1.1). ASC consists of a non-zero constant in &' N Ideal(PS). In this case, Zero(PS) is empty;
or

(3.1.2). ASC = f1,..., [, with class(fi) > 0 and such that f; € Ideal(PS) and prem(p, fi, ..., i)
=0forallz=1,...,r and p € P5.

In that the case of (3.1.2) we have:

(3.1.3) Zero(PS) = Zero{ ASC [{lc(f1),....le(f)}) U Ui_, Zero(PS U {le(fi)}),
(3.1.4) Zero(PS) = Zero(PD(ASCY)|J Uj_, Zero(PS U {le(f)})-

Proof. By (2.5), we can construct a basic set BS; of PS; = PS. If BS; consists of only
one nonzero constant, then we have (3.1.1). Otherwise, we can expand PS5, to PS; by adding
nonzero prem(g, BS1) of all g elements of PS;. If PS> = PS,, then we have (3.1.2). Otherwise,
we can construct a basic set BS, of PS,. By (2.8), BS; > BS,. If BS; does not consist of one
nonzero constant, then we can expand PS, to PS; using the same procedure. Thus we have a
strictly increasing sequence of polynomial sets:

P55, CPS, C---,
with a strictly decreasing sequence of characteristic sets
BS, > BSy > --- .

By (2.3), this decreasing sequence can be only finite. Thus, there is an integer k£ > 1 such that
either BS, consists of a nonzero constant or P.S;, = PSy.1; then we have either (3.1.1)or (3.1.2),

respectively. Formulae (3.1.3) and (3.1.4) are the direct consequences of the Remainder Formula
(2.1.1) and (3.1.2). i

The asc chain ASC in (3.1.3) is called a characteristic set of PS and is denoted by Char-
Set(P5). The number of all characteristic sets produced in this Phase during the decomposition
is denoted by ch-number.

3.2. Phase 2. (Check of Irreducibility). If ASC = f1,..., f, obtained in Phase 1is irreducible.
Then PD(ASC) is a prime ideal, we have obtained an irreducible variety Zero(PD(ASC))

5

contained in Zero(PS). Otherwise, we can use factorization to find two polynomials g; and g,
reduced wrpt fi,..., f, such that g g, € Ideal(PS). We have

Zero(PS) = Zero(PS U {g:1})U Zero(PS U {g-}).

3.3. The Decomposition Algorithm. The decomposition algorithm recursively uses Phase
1, then Phase 2 for each new polynomial set produced in these two phases. Since for each of
the new polynomial sets the asc chain ASC obtained in Phase 1 is lower than its predecessor,
The procedure terminates. Upon termination, we either find Zero(PS) is empty or have a set of
irreducible asc chains ASC,...,ASC; that satisfy (3.0.1).

The above algorithm can have the following two major variants.
3.4. The Coarse Form of the Algorithm

This variant, proposed by Wu in [15], does not require that the asc chains ASC; in (3.0.1) be
irreducible. We only need to drop Phase 2 in algorithm 3.3. The procedure still terminates. The
advantage of this variant is that factorization (especially factorization over extension fields) is not
needed. The disadvantage is that each PD(ASC;) is not necessarily a prime ideal. Application
methods based on this variant are incomplete. Avoiding factorization is not necessarily good for
the efficiency of the algorithm. Actually, we need factorization (not over extension) to reduce
the sizes and degrees of polynomials produced. We will discuss this issue in 4.2.2.

3.5. Decomposition of Zero(PS/DS)

Decomposition of Zero(PS/DS) is an important variant proposed by Wu. It not only has
important applications (e.g., in solving a system of polynomial equations) but also can be used
as an important means to control branching in Ritt’s original algorithm (see 4.3.3).

This variant works as follows. When Phase 1 produces characteristic set ASC we check whether
prem(d, ASC) = 0 for some d € DS. If it is, then Zero(PD(ASC)/DS) is empty, and we can
delete those ASC; in (3.1.1) and finally have the decomposition:

(3.5.1) Zero(PS|/DS) = O Zero(PD(ASC;)/DS).

i=1

More impotant, when a characteristic set ASC of a polynomial set PS is produced, we can
check whether some d € DS is reduced to zero by PS5 U ASC using some other reductions (e.g.,
the reduction used in the Grébner basis method). If it is, then Zero(PS/DS) is empty. This
is one of the most important means to control branching, especially such situations happen at
early stages.

4. Various Techniques for Improvements
4.1. Main Problems in the Efficiency

One can get trouble immediately if implementing the algorithm literally following the descrip-
tion in Section 3. In the earlier experiments in 1985-1986 by Ko and Chou, it was observed that

6

it took hours to decompose a simple polynomial set. The main problems in the algorithm are: (1)
The size growth of polynomials in Phase 1; (2) The larger number of branches in Phases 1 and
2. The authors have made extensively experience since 1985 and accumulated a large number of
examples.

Example (4.1). (Feuerbach’s Theorem) Let PS be the set in Example (A.6) in the Appendix.
It took 131.5 sec to get Char-Set(PS), whose largest polynomial has 168 terms.

Example (4.2). (Pappus’ Theorem) Decomposition of PS in Example (A.3) produced more
than 10,000 characteristic sets in Phase 1. But only about 20 are what we were looked for.

4.2, The Size Control
4.2.1. Use w-asc Chains and W—-prem

To reduce the size growth, Wu introduced wu-asc chains. However, wu-asc chains still cannot
prevent the size growth in many cases. Example (4.1) was actually computed using wu-asc chains.
However, if we use w-asc chains and W-prem [3], it only took 1.9s to get w-Char-set(PS). It is
ASC, in Example (A.6). Using w-asc chains with W-prem is one of the most important means
to control polynomial sizes in Phase 1. For detailed description of this variant, see [3].

4.2.2, Factorization

If PS contains a polynomial which is a product of two polynomials g = g1 g2, then Zero(PS) =
Zero(PSU{g:})UZero(PSU{g,}). Polynomials g and g, have lower degrees than that of g, and
generally have smaller sizes than that of g. Each Zero(PSU{g;}) is generally easy to decompose
than Zero(PS).

The main decision is when to check irreducibility. We can check reducibility each time when
a new polynomial is produced. This is certainly safest strategy in the sense that if this strategy
cannot overcome the large polynomial size trouble, than the other strategy most likely can also
not overcome the same trouble. Though factorization of multivariate polynomials are fast in
many current computer algebra systems due to the excellent work by Paul S. Wang [11], [12], it
is still time-consuming using this strategy because thousands of thousands new polynomials will
be produced in the decomposition algorithm.

(2) The first author uses a strategy very near the spirit of Ritt’s original algorithm. When-
ever a (weak) characteristic set fi,...,f, is produced in Phase 1, the irreducibility of ¢ =
prem(fi, fiy - fi—1) (in the variable lv(f;)) is checked. If it is, then put all factors of g back into
PS. The reducibility over extension fields is checked only after we obtain the decomposition of
the forms (3.0.1) or (3.3.5). This strategy with W-prem and the branching control in 4.3 has been
used to prove at least 500 geometry theorems according to a formulation that non-degenerate
conditions are explicitly given in a geometry statement [3].

(3) The second author uses a strategy which checks reducibility of W-prem(f,BS) where BS
is the basic set B.S of a polynomial set obtained in each step in Phase 1. Methods based on this
strategy can overcome the size growth difficulty for many problems that strategy (2) could not
overcome. It has been used to solve 116 out of 120 problems in mechanical formula derivation

4], [5]-

(4) Tt is impossible to list all possibly good strategies using factorization. For example, instead
of (2), we might check the reducibility of basic sets produced during Phase 1. This could be a

7

better strategy, but we don’t have extensive experience yet.

Remark. Check of irreducibility of an asc chain generally needs factorization over extension
fields, which is generally considered an expensive computation. Here we use only factorization
of multivariate polynomials over the integers. We can put off the check of irreducibility over
extension fields to the last step when we obtain the decomposition of the form (3.0.1) (possibly
in the coarse form). For all 8 examples in the Appendix, only very few need to be factored over
extension fields, and only one is reducible. This is ASC3 in Example (A .4).

4.2.3. Use Top Down Triangular Procedures

Phase 1 (Ritt—Wu’s Principle) is a “bottom up” triangular procedure. It has been observed
that “top down” triangular procedures are much faster [1], [9]. However, top down procedures
cannot insure the property (3.1.2). It was also observed by H. P. Ko in 1985 [9] that if we put
the quasi asc chain obtained from top town methods into the polynomial set and work on the
enlarged polynomial set, then the iteration in Phase 1 will terminate faster in many cases. In
[9], 2 method of this type was reported. Recently, another such variant was reported in [13].
However, this approach should be combined with w-asc chain and W-prem, otherwise the size
control generally cannot be insured.

4.2.4., Other Varlants

As noted in [9], “There can be many variations of the above procedures and it is impossible
to cover all of them. We shall list some important thoughts here.” In addition to those thoughts
listed in that report [9], here we list the following observations in our experiments.

(1) A basic set of a polynomial set is not unique. We have observed that different basic sets
can affect the efficiency of the algorithm in one way or other. We can further refine the partial
order < of polynomials in K[y] to get a possible better control of basic sets produced in Phase
1. To refine the order < when f ~ g, we can define, e.g., f < ¢ if le(f) < le(g). This was first
used by Gao in [7]. Or the size of f is less than that of g; or a combination of both, etc.

(2) The number of polynomials in the sets PS; in Phase 1 can grow fast. It will certainly
slow down the process. However, the more polynomials in PS5, the better basic set BS; can be
obtained. As a result, the final characteristic set could be better. There is a trade-off.

(3) Instead of (3.1.3) or (3.1.4), we can use, e.g., the following variant:

(3.1.4") Zero(PS) = Zero(PD(ASC)) U O Zero(PSUASCU{le(f)]).

iz=1

The advantage of this variant is that ASC is “almost” the characteristic set of PS U ASC U
{lc(f;)}. This variant speeds up the decomposition for some problems, but slows down it for
other problems. It needs further refinement.

(4) The Basic sets BS; produced in Phase 1 are in [deal(PS). This is not a necessary require-
ment. We may require that BS; be in Radical(PS) and make some polynomials in BS; square
free. Polynomials, such as y, 45 etc, often occur in B.S;; we can replace it by y.ys. In many cases,
this simple replacement affects the efficiency greatly.

4.3, The Branch Control

8

Without any control, new polynomial sets produced in Phases 1 and 2 can be as many as tens
of thousands.

4.3.1. Avoid Repeated Polynomial Sets

During our earlier experiments, we observed that there are many obvious repetitions of poly-
nomial sets produced. For example, suppose P S is the polynomial set to be decomposed. After
Phase 1, we want to decompose PS; = PSU{l,} and PS, = P5; U {I}. In the further decom-
position, we might want to decompose PS; 5 = PS; U{l>} and PSy; = P55 U {I,}. Obviously,
PS, o = PS51, and we need to decompose only one of them. Such repetitions are so huge that
in our earlier experiments, the algorithm could not terminate for many examples.

Example (4.3). Example (4.2) again.

Without this obvious control, the program ran more than 12 hours without terminating. Using
this control, the above polynomial set was decomposed into the form of (3.0.1) with { = 190 and
ch-number = 11,192. It took 17,983.4 seconds on a Symbolics 3600.

4.3.2. Take Advantages of Some Special Properties of the Polynomial Set

There are many special properties of some polynomial sets that we can use to control branching.
Let us look at PS in Example (A.3). Char-Set(PS) is ASC;. According to (3.1.3) we have to
decompose PS U {us}, where us = lc(f, 7). However, this is redundant because f; 7 could also
be (uszy + (us — ua)uzr — wyus)7 + - -+, thus le(fi7) = le(fis) is the only one needed, but not
Us.

4.3.3. Use Zero(PS/DS)

In decomposition of Zero(PS), DS is empty (or DS = {1}). It seems no benefits can be gained
by using the trick for Zero(PS/DS) in 3.5. It was observed in 1988 by us that we actually could
use the same tricks when decomposing Zero(PS). However, systematic experiments with this
trick only started recently and to our great surprise, this trick is so effective that it reduces
branches or computing time by a magnitude of 1 to 2 orders for large problems. The basic
idea and related proof are almost obvious. Yet, this is one of our major techniques in control
branching. We can rewrite (3.1.3):

(4.3.1) Zero(PS) = Zero(PD(ASC)) U | Zero(PS U {lc(f)}/{le(f1), - le(fim1) D)

=1

In this way, the final decomposition would be slightly different:

H
(4.3.2) Zero(PS) = |] Zero(PD(ASC;)/DS;).

i=1

Since PS C PD(ASC;) for i = 1,...,1, Zero(PD(ASC;)) C Zero(P5). Thus, we actually can
get 1id of DS; in the above decomposition, and have

(4.3.3) Zero(PS) = | | Zero(PD(ASC:)).

f=1

Now we can use the following techniques to control branching. During the decomposition,
suppose we want to decompose Zero(PS'/DS). Let ASC' = Char-Set(P5’).

(1) If some d € DS is reduced to zero by PS' U ASC’ using some other reductions (e.g., the
reduction used in the Grébner basis method), then Zero(PS’'/DS) is empty. This is one of
the most important techniques to control branching in the algorithm, especially such situations
happen at early stages.

(2) Another technique works as follows. Let ASC' = fi,..., fi. prem(d, ASC’) = 0, for some
d € DS, then Zero(PD(ASC')/DS) is empty. More important, we do not have to add initials
of those f; which are not used in computing prem(d, ASC') to PS’.

Example (4.4). Using this technique, it took 167.7 sec to complete the decompostion of PS in
Example (4.3) with 71 asc chains in (3.0.1) and ch-number = 145.

For this problem,; the improvement is 100 times better. This is almost a universal phenomenon
for most essentially large problems. See the Appendix for more information. In the Appendix we
list 8 test examples. This set of 8 examples can also be served as tests for further improvement.

4.3.4. The Dimension Theorem and the Irredundant Decomposition

In the final decomposition in the above Example (4.4), there are 71 asc chains, thus making
the result almost unmanageable. There are many redundancies. A theorem proved in [3] can
reduce the redundancy greatly. According to this theorem, those asc chains whose lengths are
greater than the number of polynomial set originally to be decomposed are redundant, thus can
be removed from (3.0.1). The elegance of this theorem is that it is valid even for the coarse
form (i.e., asc chains can be reducible). In the above example, this number is 7. Therefore,
any asc chains among the 71 asc chains with lengths > 7 can be removed. Thus the number is
dramatically reduced from 71 to 13.

Among those 13 asc chains, there still exist possbile redundancies. To remove the redundancy
completely, we need to compute the Grobner bases of PD(ASC;) using Chou-Schelter-Yang’s
(CSY) algorithm [2]. This usually is expensive. We might use the theorems in [3] first to reduce
some further redundancies. Then the number is reduced to 12. These two theorems can be stated
as follows:

Theorem (4.5). Let ASC; and ASC, be two irreducible asc chains.

(1) PD(ASCy) = PD(ASC,) iff they have the same dependent variable set and prem(p, ASC,)
= 0 for all p € ASC;.

(ii) PD(ASC,) C PD(ASC,) only if prem(p, ASC,) = 0 for all p € ASC;. If this is the case
and prem(le(p), ASCy) # 0 for all p € ASC,, then PD(ASC,) C PD(ASC,).

Proof. See [3]. i

Theorem 4.5 can also be used to exclude the possibility that a prime is contained in another,
hence to save the calculation of the Grobner bases for some ascending chains.

10

Finally, we note that for an ascending chain ASC if we replace PD(ASC) by
QD(ASC) = {g |3J,Jg € Ideal(ASC)}

where J is a product of powers of the initials of the polynomials in ASC, then all the results in
this paper are still valid. By using QD(ASC), the algorithm to compute the Gronber basis of
PD(ASC) presented in [2] can be generalized to the following form.

Theorem (4.6). For an ascending chain ASC in Ky}, let /D = Tdeal(ASC, Iyzi =1, Iz, —
1) where I; are the initials of the polynomials in ASC and z; are new variables. Then Q D(ASC) =
IDn K[yl

Proof. Let ASC = {fi,..., fo}. @D(ASC) C ID n K[y] can be proved similarly as [2]. Let
PeIDNK[y], then P =3 B;fi + 3 Ci(zl; — 1) for some polynomials B; and C; in Ky, z].
Set z; = 1/I; and clear the clear the denominators. We have JP = _ B f; where J is a product
of powers of the initials of the polynomials in ASC, i.e., P& QD(ASC). i

Theorem 4.6 can be used to eliminate redundant components even we do not know whether
the ascending chains in (3.0.1) are irreducible.

5. Conclusion

With the constant efforts by many researchers (Wu, Ko, Chou, and Gao in particular) since
1985, we have improved Ritt—Wu’s algorithm at least by a magnitude of two orders. Many
polynomial sets now can be easily decomposed by our program. With these improvement, we
can find more applications in various areas. Furthermore, there are so many other variants
which are worth experimenting. We believe that with more efforts, the algorithm can be further
improved.

One of the applications is to find “weakest” non-degenerate conditions for a geometry con-
figuration given by a set of polynomial equations and the set of parameters. The method was
proposed in [6]. However, due to the inefficiency of our program, we could only use it to solve
relative simple problems. With our improvement, now we can solve more complicated problems
such as Feuerbach’s theorem, Morley’s Trisector Theorem, etc. We will discuss such application
in our future work.

References

[1] S.C. Chou, “Proving Elementary Geometry Theorems Using Wu’s Algorithm”, in Auto-
mated Theorem Proving: After 25 years, Ed. By W.W. Bledsoe and D. Loveland, AMS
Contemporary Mathematics Series 29 (1984), 243-286.

[2] S.C. Chou, Mechanical Geometry Theorem Proving, D. Reidel Publishing Company, Dor-
drecht, Netherlands, 1988.

[3] S. C. Chou and X. S. Gao, “Ritt-Wu’s Decomposition Algorithm and Geometry Theorem
Proving”, Technical Report 89-09, Department of Computer Sciences, University of Texas
at Austin, 1989.

[4] S. C. Chou and X. S. Gao, “Mechanical Formula Derivation in Elementary Geometries”,

11

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

TR-89-21, Computer Sciences Department, The University of Texas at Austin, August
1989.

S.C. Chou and X.S. Gao, “A Collection of 120 Computer Solved Geometry Problems in Me-
chanical Formula Derivation”, TR-89-22, Computer Sciences Department, The University
of Texas at Austin, August 1989.

S.C. Chou and G.J. Yang, “On the Algebraic Formulation of Certain Geometry Statements
and Mechanical Geometry Theorem Proving”, Algorithmica, Vol. 4, 1989, 237-262.

Xiaoshan Gao, “DPMS ~ A Differential Polynomial Manipulation System Based on Wu's
Method”, Preprint, 1987.

G. Hermann, “Die Frage der endlich vielen schritte in der Theorie der Polynomideale”, Math.
Ann. 95, 1926, pp. 736-788.

H.P. Ko and $.C. Chou, “Polynomial Triangulation for Pseudo Common Divisors”, Technical
Report, 85CRD242, General Electric Company, 1985.

H.P. Ko, “Geometry Theorem Proving by Decomposition of Quasi-Algebraic Sets: An Ap-
plication of the Ritt-Wu Principle”, Artificial Intelligence, Vol. 37, pp95-122 (1988).

P.S. Wang and L. P. Rothschild, “Factoring Multivariate Polynomials over the Intergers”,
Mathematics of Computation 29 (1975), 935-950.

P.S. Wang, “An Improved Multivariate Polynomial Factoring Algorithm”, Mathematics of
Computation 32 (1978), 1215-1231.

D. Wang, “The Generalization of Characteristic Sets Algorithm”, Technical Report 89-51.0,
RISC Linz, December, 1989.

Wu Wen-tsiin, “Basic Principles of Mechanical Theorem Proving in Geometries”, J. of Sys.
Seci. and Math. Sci. 4(8), 1984, 207-235, republished in Journal of Automated Reasoning
2(4) (1986), 221-252.

Wu Wen-tsiin, “On Zeros of Algebraic Equations —An Application of Ritt’s Principle”,
Kezue Tongbao 31(1) (1986), 1-5.

Wu Wen-tsiin, “A Mechanization Method of Geometry and its Applications — III: Me-
chanical Proving of Polynomial Inequality and Equations-Solving”, Research Preprints,
Mathematics—Mechanization No.2, ppl-17, 1987,

Wu Wen-tsiin, “A Zero Structure Theorem for Polynomial Equations Solving”, Research
Preprints, Mathematics—Mechanization No.1, ppl-12, 1987.

Wu Wen-tsiin, “Some Remarks on Characteristic Set Formation”, Research Preprints,
Mathematics—Mechanization No.3, pp27-29, 1988,

Wu Wen-tsiin, “System SOLVER II: Examples and Applications”, Practice and Under-
standing of Mathematics, 1986, 3 ppl-11 (in Chinese).

6. Appendix: Eight Test Examples

All examples below are from elementary geometry. For most problems, we rename the variables y: y; = u; for
i=1,..,dand ygye; = ¢; for i = 1,...,m—d. We use ch-number to denote the number of characteristic sets produced
in Phase 1. We use the method based on Theorem (4.4) to partially remove some redundancies in the decomposition.
However, there are possibly further redundancies. E.g., in Example 1, PD(ASCy) C PD(ASC35). This was checked
by computing the Grobner bases of PD(ASC3) and PD{ASCy) using the CSY algorithm in [2]. At the end of each
example, we list irredundant decomposition using the CSY algorithm.

In geometry, Zero(PD(ASC1)) are the only non-degenerate components for all examples. Thus if we want to check
whether an assertion g = 0 is valid for that configuration, then we only need to check whether prem(g, ASC;) = 0.
If it is, then the assertion g = O is generally true; otherwise, it is not valid in meiric geomeiry no matter how many
reasonable non-degenerate conditions are added. This is the advantage of using Formulation F1 in [3].

Example (A.1). Parallelogram A = (0,0), B = (u1,0), C = (u2,u3), D = (z2,21), E = (24, z3).
It took 3.2 sec to decompose PS into 5 w-asc with ch-number = 9.

Zero(PS) = U_; Zero(PD(ASC;)).

PS =
hy = wizi —uius AB||CD
ho = uzxs + (—~Uz + U1)£C1 DA H CB
hg = usTy — U3 Points £, A and C are collinear
hg = 2124 + (=2 + u1)23 — U1 23 Points E, B and D are collinear.
ASCl =

fl.l =& — us
fio=2g—us +uy
fia =223 — us
fia = 2z4 — us.

ASCy = ASCy = ASCy = ASCy =
U Uy Uy Ug

us Ug UsTy — UaZy sl

T Us ULy — Ug X3 T3

Lo — Uy TiXg — Tolks3

The irredundant decomposition of Zero(PS) consists of the components represented by the ascending chains ASCY,
ASCq, ASC,, ASCs.

Example (A.2). (Simson’s Theorem) Let B = (u1,0), A = (0,0), C = (u2,u3), O = (23,21), D = (23, ua),
E = (25,24), F = (27, ®6), G = (£3,0). It took 17.8 sec to decompose PS into 8 asc chains with ch-number = 18.

Zero(PS) = US_, Zero(PD(ASC;)).

PSS =
hy = 2uizs — u% OA=OB.
ho = 2uszq + 2uaTy — u% — u% QA= OC.
ha = x% — 2roms — 2usz + u:‘i OA=0D.
hg = (UQ—u1)$5+U3$4+(—U2+u1)$3—u;gu4 DE L BC.
hy = ugzzs + (—us + U1)2Ts — U Uz Points E, B and ¢ are collinear.
he = usz7 + UaTg — ULy — U3U4 DEFE 1 AC.
hy = uzxy — U T Points 7', A and C are collinear.

12

ASCy =
fi1 = 2uzz; — uf — u3 + ugug
flo=2z —uy
= g2 . — Qugzy + ul
fis=25—uix3 4y + ug

fra = (ud 4+ ud — 2uius + ud)za + ((—uz + ur)us)zs — uiug + (uyus — u?)us

Fis = uazs + (—ug + uy)zg — uus
fr6 = (v + vd)ws — ugusws — ujug
fi7 = ug®y — uazs.

ASCy =

u% -+ u% — 2uiuy + u%

2ugxy — U Uy + u%

2332 — U3

uszz + (—uz + w1)ug — uiuz

uszs + (—us + u1)rs — uru3

(Quyuz — ud)ze + (—urus + u?)ug — ugusus
ULy — U6

ASC3 =

u +uj

211.3{131 + Uy Uy

2$2 — U1

U3T3 — UUg

(2uqug — ud)zs — urusua + (—urus + udus
uzxs + (—u2 + uy)ws — urus

ULy — U2Ts

ASCy = ASCy = ASCq =

Uy Uz~ Uy U9

2uoxs + 2uszy — ug - u% Uz Us

wg — 2xox3 — 2usTy -+ ui 2x9 — U3 2z — Uy

(u3 + ud)zg — usuz®s — ujug 23— uyz3 — 2uaTy + ul 2% — uiws — 2uazy + ul
Uzxy — Uada s T4

(ud + u3)ze — ususrs — ujua Z7 — 3 E5 — I3

U3x7 — Ugks

ASCy =
ui
Ug
us
2 2
25 — 2x9m3 — 2ugxy + Uz

ASCg =

uy

u? + ul
Ugo + U3y
U3T3 — UsUq
UzTs — UzT4
ULy — UL

The irredundani decomposition of Zero(PS) consists of the components represented by the ascending chains 45C;—

ASCs.

Example (A.3). (Pappus’ Theorem). B = (u3,0), A = (0,0}, 41 = (u2,u3), B1 = (us,us), C = (ug,0),
Cy = (w1,ur), P = (z3,22), Q = (x5, 24), S = (w7, 26). It took 160.6 sec to decompose PS into 12 w-asc chain with

ch-number = 145.

Zero(PS) = Ui2, Zero(PD(ASCY)).

PS =

hy = (us — ug)er + (—ug + ua)y — uats + uztiy

ho = ugzs + (——UQ -+ Hl)i{,’Q — U1U3
hs = ugkgz — UsTo

h4 = U7ky — L1¥4

hs = ugzs + (us — uz)rs — UzUs
he = usxr + (us — w;)xa — UsUg
hy = urzy + (—-.’131 -+ %})$6 — U U7

Fi1 = (ug — ug)er + (—ua + ug U7 — UaUs + Uss

Points Cy, A; and By are

13

Points P, A; and B are
Points P, A and By are
Points @@, A and C; are
Points @, A; and C are
Points 5, B; and C are
Points §, B and C; are

collinear.
collinear,
collinear.
collinear.
collinear.
collinear.
collinear.

fr.0 = ((ug — w1)us — U3ua)22 + u1UsUs

fi3 = ugzs + (—ug + u1)Ts — urus

fia = (uzz1 + (us — U2)u7)Ts — UsUsUy

fi.5 = usws + (us — u2)Ts — Uzl

fr6 = (usz1 + (ue — ua)ur — wrus)Te + (—Usus + Ui Us)ur

frr = uszr + (us — Ug)g — UsUs.

ASCQ = ASCg = ASC4 e
Ui U — Uy tHa
UglUy — U3 U4 Us Us
((us — Us)ue)u’z g — Uy Ug

(us — uz)®s + (—ua + u2)uz
UzTyg — U2T2

us3®s + (ug — u2)Z4 — U3lUs
us27 + (Ug — Ug)Te — UslUs

uszy + (—ug + ug)Uy — v Us
ULy — U4L2
Urks — T1L4
us®r + (—uq + U1)ee — UL Us

UgT1 — UgU7
us®z + {(—us + u1)es — Uy s
U3Ty — UL4
urzy + (~21 + u1)ee — U u7

ASCy = ASCg = AS5Cy =
U1 Uy — Uz Ugq
U9y — UzUs Uus Us
Ug U7 Cirg
(us — uz)z1 + (—us + ua)ur z1 — U1 x1

UzxTy — Uy
ugly — U2T4
UsT7 — U4Ts

UsT3 — U4T2
T4
usey + (U — Us)Te — Usls

us®s + (—uz + u1)zg — urus
uzs + (g — Uz)xa — UsUs
Zs

ASCyg = ASCqy = ASCyig = ASCyy = ASCHy =
Uus Uz (253 Ug — U7 us

Ug — U2 Uy Us Uz Us

Us Ug — Ug Ug — Uz Ua Uy

Ug — U2 u7 ur Us L2

g} Ly — U Z1 ur Ta

Uy — L1%4 T2 T2 T4 Ts

uppy — (X1 — U1)Te — UrU7 T4 Zg o5

The irredundant decomposition of Zero{ PS) consists of the components represented by the ascending chains ASCy-
ASCqs.

Example (A.4). (The Butterfly Theorem) O = (u1,0), E = (0,0), A = (us,us), B = (@1,ua), C = (z3,22),
D= (.@5,:134), = (0,236), G = (0,.’137)‘

It took 200.0 sec to decompose PS into 25 w-asc chains with ch-number = 243. If we did not use the technique in
4.3.3, it took 4046.9 sec with ch-number = 3,111.

The following decomposition took 102.7 sec with ch-number = 112.
Zero(PS/DS) = U}2, Zero(PD(ASC;)/DS).

DS = {xs — uy + 2(x2 — us), s — x1 + z(@s — u4)}. (Their geometric meanings are A # C and B # D). PS5 =

hi = x% —2u1x1+u§——u§-u§+2ulug OA=0OB.
ho = uszz — U Points C, A and F are collinear.
hs = 22 — 2u x5 + %3 — uj — u3 + 2uyuy OA=0C.
hy = uqzy — 2124 Points D, B and E are collinear.
hs = 2% — 2uizs + 3 — ud — ud + 2usuy OA=0D.

he = (25 — uz)Te — UsZs + U2Ts Points 7', 4 and D are collinear.

hr = (33 — .’131)337 — UgZa 4+ 129

ASCy =

2

Points G, B and C are collinear.

Fra o= ol — 2uizy +uj — uj — ud + 2ugus
o= (ud + ud)ze + ud + (vl — 2uruz)us
1 3+ u3

fi3 = us®z — w22y

fra = (Quyzy + ud 4 ud — 2ugug)ws + (v + ud — 2ujus)ug

fi5 = va%s — 21%4

fie = (z5 — ug)Te — uzTs + Uals

Fir = (x3 — 21)T7 — a3z + T122.

ASCH =

(ud + ud)ua + ud + (u3 — 2uru2)us
(u2 + ud)z1 + ugud + uj — 2u1uj
(u2 + u2)zs + ud + (u3 — 2uruz)us

Uz®z — UaT2

ASCa =
Uy
u% + u%
21 + uj
UgTy — ULy

3 2 ,
(2uyzs + ud + ud — 2u1u)Ts — 2uUsUs — U3 — (uf — 2uiug)us UsTs — T1T4

Ugls — L1T4

ASCy =

Uy

uj + uj

U3Ly — UzUyg

Uglg — UzUy

UzLsz — Uz U4

Ugds — T1L4

(25 — ug)zs — u3Ts + Uzlq

ASCy =

Uz

u3

z? — 2uizy + u?

azg — 223 + :c%

T4

Ts

(zg — @1)ar — ua®s + T122

ASCU =
U

u% -+ u%
UzL1 — UaUg
Lo — Ug
ULy — UgUg
g — U3

Ly — Uy

(25 — us)e — uz®s -+ UsZq
(w3 — 21)27r — vgxs + 2122

ASCs = ASCs =
uq u3 + ud — 2uius
ug + u% Uq
UL — UgUyg L1
UgZg — UgZa Lo
Lg — U3 xrs
Ty — Uy 93% — 2U1x5 + .’Eﬁ
(23 — 21)x7 — vaZ3 + 2122 (5 — u2)Te — U325 + U2T4
AS5Cy = ASCy = ASCig =
Us ud + uf — 2uyug Us
Ug Ug U3
21 + Uy — 2uy z z? — 2uyay +ul
o Ty Lo — Uy
T3 -+ U — 2uq T3 rg — T
T4 T4 — U3 T4
Xy — Uy Xy — Ug Ty
ASClg =
Uz
Uy — U3
Z1
Ty +us
T3
Ta -+ Uz
Ty

The irredundant decomposition of Zero(PS/DS) consists of the components represented by the ascending chains
ASCy, ASCy, ASCs, ASCq, and ASCha.

Example (A.5). (the 9-Point Theorem) B = (u1,0), 4 = (0,0), C = (uz,uz), D = (v2,21), £ = (w4,23),

Fo= (?,32,0), M= (1135,@% N = ($77$6>-

It took 70.8 sec to decompose PS into 17 w-asc chains with ch-number = 51. If we did not use the technique in

4.3.3, it took 381.9 sec with ch-number = 442,

The following decomposition took 21.8 sec and the ch-number is 13.

Zero(PS/DS) = Ui, Zero(PD(ASC;)/ DS).

DS = {ujus} (Geometric meaning: A, B, C are not collinear). PS =

hi = us®y + (—ug + u1)z1 — uius Points D, B and C are collinear.
hzz(uz—ul)afg—i'u;gil/‘l AD 1 CB.
hs = U3Lq — UL T3 Points E, A and C are collinear.
hy = UgZg + UzT3 — U1U2 EB 1L CA.
hs = 225 — w3 M 1is the midpoint of 4 and B.
hg:(2.:84~2u2)x7+2$3x6~m2—2}§+u§ NF = NF.
hy = (2w2 — 2usz)z7 + 22186 — 3 — &} + ud NF=ND.
ASCy =

fra = (u3 +ud — 2uiug + ui)wy + (waus — ui)us

Fio = (uz — uy)2 + uszy

Fia = (ud +ud)ws — viugus

fra = uomg + uzZs — Uit

Jis =25 — uy

fr6 = (2z124 + (=222 + 2us)as — 2usz1)@s + (T2 — uz)@s + (—23 — 2 + ud)wg + (22 — uz) @i + usa? — udzs + usz?
Fir = (222 — 2u9)x7 + 22126 — 3 — 23 + i

ASC, = ASCs = ASC, =

Uy — UL Us u§+u§ — U1 Us

z3 (v + vz — viusg 2] — U3

Lo — Uy ULy — Uzdy Lo — U

(u + ud)zs — uius z3 T3 — Us

U3Tg4 — UL L3 Ly Ty — U

25 — U1 2y — Uy 25 — Uy

(224 — 2u1)z7 + 23376 — £F — 23 + ui 2027 + 22126 — 5 — 22 2uzzs + ud — ujus

The irredundant decomposition of Zero(PS/DS) consists of the components represented by the ascending chains
ASC-ASCy.

Example (A.6). (Feuerbach’s Theorem) A = (u1,0), D = (0,0), I = (0,u2), B = (u3,0), C = (23,21), M1 =

(23,0), My = (x4, 25), M3 = (z5,27), N = (%9, 73).

Tt took 45.8 sec to decompose PS5 into 8 w-asc chains with ch-number = 31.

Zero(PS) = US_, Zero(PD(ASCy)).

PS =
hi = (2ugul — 2uiusus)es + (ud — uiud — wdus + wiud)ay — 2ugud + 2urusul tan(ABI) = tan(I BC).
ho = (2uyugus — 2udus)zs + ((—ud + u)us + uiud — uf)es — 2uiusus + 2ufus tan(BAT) = tan(JAC).
ha = 223 — uz — U1 M is the midpoint of A and B.
h4:2x4—3:g——u1
hs = 2205 — o Mo 1s the midpoint of A and C.
h5:2x6——w2—us,
hr = 227 — 11 Mg is the midpoint of B and C.
hgy = (21‘6 — 2:[‘3)5&9 + 2x7x8 — z% — x% + xg NM, = N Ms.
ho = (2;}64 - 2.?33)!89 + 2z528 — 33% - ,’Ei -+ $§ NM; = NM,.
ASCl =

16

fi1 = (ugus + ud)er — 2uiugus

fio = 2uguszs + (—ud + ud)a; — 2ufuy
fia=2z3—us—

fra=2z4 — 22— U1

fis = 2x5 — 21

fie =25 —x2 — U3

firn=2z— 1

fis = 4zizs + 23 + (—uz — u1)T2 — x + uruz

fio = (dzo — dusz)zs +4z128 — .’L‘% — 2uixs — $% + u% -+ 2uqug.

ASCH = ASCy = ASCy =
Uz — Uz Ug Un
ZTg - Uy 1 i
204 — X9 — UL T — U1 ro — Us
2565—581 2@‘3-—’&3-—111 2333—-11.3——1&1
2236—.182-—-’&1 Tg — U7 2%’4——21.3-—%1
2;137 — Iy Ty Ty
(4zg — 4us)zo + 42128 — 2 — 2uizs — 2} + 3u 2mg —uz —ux &g — U3

Hird il

4.75‘9 - U3 - 3u1

4339 — 3u3 — Ui

ASCs = ASCs = ASCy = ASCy =
Uz — Uy U3 Uy Ug — Uy
Tg — Ug T Iy T

Ty — U3 Lo — UL Xg — U3 To — Uy
Ta — Uy 2333 — Uy 2&33 — U3z g — Uy
23535 - X1 g — Uy 23}4 - U3 Tag — U
g — Uy s s Ty

2337 — X1 2376 — U1 Tg — Uz g — Ul
dxg — xy z7 z7 X7

4339 - 31!,1 4@9 - 3%3

The irredundant decomposition of Zero(PS) consists of the components represented by the ascending chains ASCy

- ASCy, ASCs, and ASCy.

Example (A.7). (Morley’s Trisector Theorem) B = (u1,0), A = (0,0), D = (ug,us), C = (22,21), X = (23,0),
F = (z5,24), E = (27, 25). It took 947.5 seconds to decompose Zero(PS) into 33 w-asc chains with ch-number =

106.

The following decomposition took 663.8 sec with ch-number = 36.

Zero(PS/DS) = U;_, Zero(PD(ASC;)/DS).

DS = {u1z:} (A, B, and C are not collinear.) PS =

hy = (u§+{—3u§+6u1u2—~3u§)U3)azg+((—3u2+3u1)u%%—u%—Sulu%—%—?)uqu——u:f)m—u1u§+(3u1'g%~6u§u2+3u§)ag

tan(ZCBA) — tan(3/DBA) = 0.
ho = (ud — 3uduz)es + (—3uguj + ud)z: tan{LCAB) —tan(3£DAB) = 0.
hs = % — 3 tan(£7/3) = /3.
hy = (ujuszs — urta®y)®s + (Uruszs + U UL) L4 tan(DAB) = tan{CAF).
hs = (((ud + ud — uyug)zs — U u3®))T3 + U UsT2 + (ud + ud — wyug)zy)®s + ((uguses + (ud +ud — uyus)a Jos +

B . 2 1
(—ud — ud + uruz)xs + uruse) s + ((—uz — ud + uyug)ad + (—ud — ud + uun)zd)es — uyusr3 — uguswd

tan(ZBAD + /DBA+ LACF) =+/3
he = (uyusza+(—twius+ui)es —ufug)or+{((uius —ud) g+ uruzz —ulus+ud)ze —uiuszo+ (uius —uf) e +uius

17

tan(ABD) = i:an(EBC)
h7 - ((2:1:1% - ulxl)xS+("$2+“1$"+£1>”34—$15’32 "33’1)3?7'*'((—a3+ U1$2+$1>x5+(2% 29 + Uty)ws+ 25—
wzd + zizy — urz?)zs + (—z123 — 2i)zs + (23 —u12d + zizs — uyz)za + 12123 + w2 tan(ACF) = tan(ECB).

ASCl =

fii= (3u3+(6u2 6u1u2—ul)u3+3u2—6u1u2+3u1u9)$1——u3+(6u2—~6u1uz+3u1)u3+(9ud+18us ud —9utul)us

fia= (ug — 3uduz)zs + (—3usud + ud)z

fia=2x3—3

fra = (((uz — w1)ud +ud — wiud)es + ud + ujua)zs + (v + (U3 — wruz)us)s + (—uzud — u3 + wyud)e)es +
ulugzng — ULU2U3L 1

Fis = (uzzo — uaz1)s + (a2 + uzzy)zg

f1. 6 = ((ugaz‘g+(u‘>-ul)xl)x5+((~uz+u1)xg+U3:Ll);c4—u3m§—usml)a}6+(u3x1wg+(—uQ+u1)m1 -u1u;>,a:1):c5+
(U3I2 -4 ((Ug - ul)xl -+ u1u3)x2)$4

fir = (uzza + (—uz + u1)z1 — wruz)zr + ((ug — uy)xs + uszy — ugus + ui)ws — uruszs + (uruz — ud)zy + vius.

ASC? =
foa = U3+ug “231U2+U1
Joz U1U3$1 + 4”@2 - 10&1112 + 9u1u9 — 4u1v2 + ul
fo3 = uszy + (—uz + u1)z1 — urug
fra=23-3
fas = ((2u%~—3ulUQ+U%).CL’3+(2U2"“U1>U3)£E‘4+(((UQ—~U1)U3)$g+(—ug+ulU2)$1)$3+(—u%+2ullL2——U%)ZE‘Q-—UQUglUl
fos = (Uswz - u2x1)$5 + (uzl‘z -+ u3x1)£4.

i

i

ASC3 =
fS.l = u3 -+ Ug
Ja2 = U»%”Eﬂﬂ + 4“2 - Guluz + 3“1“2
f3,4 = 333 -3
fas = (uruszs — u1u2$4)a,6 — (243 — 2ugud)zs — (2u? — 2uius)uszzs
f3,6 = Uix7 + 2’%2 - 2u1u2

ASCy =
fa1 = ud+ud
fao = viusz, + 4ub — 6ugud + 3udud
fas = udzy — 4ud + 6uyud — 3uuy
faa=2%-3
Jas = uzrs — U2y
fas = (2ug — 2us)uzer — (2uf — 2usus + uf)zs — (2uiug — 2uf)ug

I

ASCy =
51 = 2uy — uy
fso = 4ud + ol
fs3 = duswy +ui
fo.a = 2ugzs — w1y
fs5 = a3 — 3.

ASCs =

foq1 = ug — 1wy

2
for=ud+ul
fo = uszy + ul

18

Joa = @2 —u1

fos=123—3

Jo.6 = uz®s — U1T4

Jor = ws.
The irredundant decomposition of Zero(PS/DS) consists of the components represented by the ascending chains
ASC—ASCs.

Example (A.8). (The 83 Configuration) A = (0,0),B = (y1,0),D = (42,0),C = (ys3,98), B = (ya,y0), F =
(ys5,910), G = (ye, y11), H = (yr, y12)-

It took 1344.8 sec to decompose PS into 15 w-asc chains with ch-number = 426. If we did not use the technique in
4.3.3, it ran for more than 24 hours without terminating.

Zero(PS) = ULE, Zero(PD(ASCY)).

PS =
hy = Y3yi2 — Y1Ys collinear(A,C, H)
hs = ysy11 — YsY10 collinear(4, F,G)
hs = (y3 — y1)yo + (=¥ + y1)vs collinear(B,C, E)
ha = (ys — y1)y12 + (=7 + y1)yn collinear(B, G, H)
hs = (ys — y2)y10 + (=95 + v2)¥s collinear(C, D, F)
he = (ya — y2)y11 + (~¥s + y2)yo collinear(D, E, G)
h7 = (ys — ya)yr2 + (—y7 + ya)yio + (y7 — Y5)Yo- collinear(E, I, H)

AS’Cl =

fra=((¥3— y1¥2 +y1)y4+((y1yv—Zyl)ys—leyg +y1yz)y4+ylyg ylyﬁyﬁyuz)y;’ﬂ((2y§+y1yz)y3+,ju2
2yfy2)yi + (— ylyZy3 + (33193 + 3y3y2)ys — V3Ud)ya — ¥iveys — viviya)ys + (V3V3 — yivays + ui T¥3)vi + (—vy3u3 —
yiviys)va + yiv3ua

fro=(((y2 — y1)ya + (—y2 + y)ys)ys + (~y2ys + y1y2)ya + y3ys — v1v3) s + ((Y2ys — ¥3)ya — Y1929s + ¥193)ys

Fi3 = ((y2y3—v192)¥s+ (—y1ys+y1y2)ya+(—va+y1)vd)yr+(((—y2+91)y3)¥a— Y193 +y19293)ys + (Y293 — Y1 y23)va

fra=(ys —v1)yo + (—ya+y1)ys

fis = (ys — y2)yio + (—¥s + y2)ys

fi6 = (ya — y2)y11 + (—¥s + y2)yo

Fir = ysyiz — y7¥s-

ASCy = ASCs = ASCy =

n U Y2 — 1

Y2 Yo Yo — YUs

Y3 Ys Y7 — Ys

Ys Y (ys — y1)vo + (—¥ya + y1)Us

Us YaY1o — YsYo (ys — y1)vo + (=¥s + ¥1)ys

Y11 YaY11 — YelYo (ya — y1)y11 + (—ys + 11)ys

(ys — ya)y12 — (y7r — ya)y10 + (y7 — ¥s)ye (U5 — Ya)y12 — yr¥10 + ¥y Yiz — Us

ASCys = ASCs = ASCr = ASCy = ASCy = ASCig =

Y3 Y4 — Y1 Ys — Y2 Y3 — Y2 Ys — Y1 Y1

Ys — Ya —Ys + Y2 Ys Yo Y6 — Y2 Ya

Y — Y1 Y7 Y7 — Y1 Y7 — Y4 Yr — ¥Ys Yq

Yz Yo Ys Y& Ys Yo

Yo Y10 Yo Yy Yio YsYio — YUs¥Ys
Yo Y11 Yio Y1 Yi1 Ys¥i1 — Ys¥io
Yi1 Yi2 Y12 Y1z Yi2 YaYia — Yr¥s

ASC =

0

Ya

Y3Yo — Y4Ys
Ysyio ~— YsYs

Yal11 — Ys¥o
YsYia — Yrys

ASCys =

W

Ys — ¥Ys

—Y6 + Y4
YsYo — Y4ls
Yio — YUs

Y11 — Yo
YslYia — Yrys

ASC13 =

Y2

Ya — Y3

yr — Ys

Yo — Us
YsYio — Ys¥s
YY1 — Usls

YY1z — YslUs

ASChiy =
o
Y2
Ys
Ya
Ys
Ys
Yyr

ASCis =
Ys

Yo

Yio

Y11

Y12

The irredundant decomposition of Zero(PS) consists of the components represented by the ascending chains ASC;
ASCy, ASC4~ASCy, ASC11-ASCh3, and ASCis. ’

20

