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Abstract
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1. Introduction

In [WU1], Wu Wen-tsiin introduced an algebraic method which can be used to prove quite
non-trivial theorems in Euclidean geometry that do not involve betweenness. Hundreds of
theorems from Euclidean geometry have been proved with Wu’s method [CH2], [GW1]. Quite
a few theorems from various non-Euclidean geometries have also been proved by the method
[CK1], [GA1]. Inspired by Wu’s work, people also presented methods based on the Grobner
basis method to prove the same class of geometry theorems which Wu’s method addresses [CH2,
KA1, KU1]. From theoretic point of view, Wu’s method as well as the Grobner basis method
can also be used to prove theorems in other elementary geometries including Riemann geometry,
as showed by Wu in [WU2]. But to develop an efficient and comparatively complete prover for
a special geometry, a lot of detailed work still need to be done. In this paper, we establish a
theorem which can be used to reduce the proof of a geometry statement in Riemann geometry
to some special cases which are much easier to prove. We also present a method to generate
sufficient non-degenerate conditions in geometric form for a class of constructive geometry
statements. These results make the mechanical theorem proving in Riemann geometry much
clearer and easier.

We adopt a model for Riemann geometry and propose the general geometry statements which
can be mechanically proved by Wu’s or the Grobner basis method. In this model the algebraic
translation of a geometry statement involving segment congruence is always reducible and the
proof of the statement can be reduced to many subcases. We prove a theorem which states
that we need only to check some of the subcases. In most of the examples we encountered we
need only check one of the subcases.

In the usual description of a geometry statement, necessary non-degenerate conditions for
the statement to be true are usually not given explicitly and some of them are not easy to
find. There are two approaches to dealing with these implicit non-degenerate conditions in
mechanical theorem proving using algebraic methods. The first approach is to prove a statement
to be generally true at the same time gives certain non-degenerate conditions in algebraic form
to make the statement true. The second approach is to prove a statement to be true under
certain non-degenerate conditions given explicitly as a part of the geometry statement. A
detailed discussion of the formulation problem can be found in [CY1]. As mentioned above, the
first approach can generate non-degenerate conditions automatically, but there is no general
method to transform these conditions to geometry form. The second approach actually needs
people to find the non-degenerate conditions. But generally, it is not easy to find the sufficient
non-degenerate conditions for some statements. So it is very important that we can generate
non-degenerate conditions in geometric form automatically from the usual description of a
geometry statement so that the statement is true in the usual sense iff it is true under these
non-degenerate conditions. If certain non-degenerate conditions satisfy this condition, we say
they are sufficient (for the precise meaning, see section 4.). Wu has done these for a class
of geometry statements [WU3]. In his thesis, the first author extended the result to a larger
class in metric geometry [CH1]. In [CG2], we prove, for a class of geometry statements, the
non-degenerate conditions (in geometric form) generated by our method are also sufficient for
a statement to be true in Euclidean geometry.

In this paper, we extend the results in [CG2] to Riemann geometry: we describe a class of
geometry statements of constructive type, and for statements in this class we present a method
of generating sufficient non-degenerate conditions in geometric form from the construction of



the statement. For a class of irreducible statements, we establish a theorem to connect the two
approaches to dealing with non-degenerate conditions, i.e., an irreducible statement is generally
true iff it is universally true under the geometric non-degenerate conditions generated by our
method.

In section 2, we give a model for Riemann geometry and prove a theorem which can be used
to reduce the proof of a statement to some easy cases. In section 3, a class of constructive
statements is presented, and a method of generating non-degenerate conditions is also given.
Section 4 proves the completeness of the non-degenerated conditions generated by our method.
Section 5 provides some examples to illustrate our method.

9. Mechanical Theorem Proving in Riemann Geometry
2.1. A Model for Riemann Geometry

Let {(z,y) and z X y be the inner product and vector product in the real space of dimension

three R® for z,y in R3. We denote ||z]| = (z,2) and |z| = /{z,2) for z € R®. Let
S2 = {X =(z,y,2) e R*[a’ + 4" + 2" = 1}

be the unit sphere in R®. Regarding a pair of antipodal points of 52 as the same point, we get
the real projective plane:
P2 ={{X,-X}/X €82}

which is a model for Riemann geometry. Let 7 : S2 — P2 be the mapping that sends each
X e€8S2t0{X,-X}eP2 If A=n(z,y,2), we say (z,y,2) is a coordinate for A. A point A
on P2 has two coordinates (z,y,2) and (-2, ~y,—z). One of them is called the antipodal point
of the other.

Two points A = 7(21,%1,2%) and B = m(zq,Y2,22) on P2 are equal iff (z1,91,21) =
(z9,Y2,22) OF (z1,91,21) = —(%2,Y2,22), OT equivalently iff (zy,¥1,21) X (22,%2,22) = 0. Thus
A# Biff (ﬂfl,yhzz) X (332,&’2722) # 0.

A line in P2 is a set of the form n(l), where [ is the intersection of S2 and a plane passing
the origin. Thus, the equation of a line in P2 can be expressed as:

<U,X> = ULT + UaTo + ugxry = 0

where U = (u1,us,us) # 0 is the normal vector of the line and X = =(21,22,23) is an
arbitrary point on the line. Two lines are equal if their normal vectors are parallel. Two lines
are perpendicular if the inner product of their normals is zero.

Note that a point P in P2 determines a unique line [ in P2 whose normal vector is a
coordinate of P. P is called the pole of [ and [ is called the polar of P.

We define the length of segment XY as:
D(X,Y) = arccos(|(z,9)])

where X = n(z) and ¥ = n(y). We assume that all distances are < 7/2. The definition is
well-defined for the choices of coordinates of X and Y.
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We consider four kinds of straight lines in P2.
(1) I = P(A) is the polar line of point A on P2. The equation of line P(A) is:
(A, X)=0
(2) I = L(AB) is the line joins points A and B in P2. The equation of line L(AB) is:
(Ax B,X) =

(3) I = T(C,AB) is the line passes through C and is perpendicular to line L(AB) for points
A, B, and C in P2. The equation of line T'(C, AB) is:

(Cx(AxB),X)=0

(4) I = B(AB) is the perpendicular-bisector of segment AB for points A and B in P2. The
equation of line B(AB) is:

(A-B,X)(A+B,X)=0
Note that B(AB) consists of two lines. It is not difficult to verify that the lines are well defined,
i.e., their definition does not dependent on the selection of coordinates of the points. Unless
stated otherwise, a straight line mentioned below belongs to one of the above four kinds of
lines.

A circle h in P2 is a pair of a point O and a segment AB: h = (O, AB) which represents the
set of points the distances between which and O equal to the length of AB, i.e., h is the circle
with O as center and segment AB as radius. Two circles are equal if their centers are equal
and their radii have the same length.

Let I be a set of points on P2, then a line or a circle is said in II if the points occurred in
the definition of the line or the circle are in II.

We define the measure of angle formed by line L(AB) and line L(C' D) as:

axb dXxe

L{AB,CD) = arccos(](] T x 61>D
where 7(a) = A,7(b) = B, n(c) = C, n(d) = D. We assume that all angles are < /2.

A complete description of this model can be found in [RY1].

2.2. The Basic Predicates and Mechanical Theorem Proving

For points A, B, C, D, X, Y, and Z, let a,b,¢,d,z,y, and 2z be points on S2 such that
m(a) = A, 7(b) = B, 7(c) = C, n(d) = D, n(z) = X, 7(y) = Y, and n(z) = Z. We define the
following predicates®.

(1). Predicate polar( A, B) means A is on the polar line of B. Its algebraic equation is

(A,B) = 0.

* Sirictly speaking they are geometric relations as they can be deduced from the definition of the

model.



(2). Predicate coll(4, B,C) means A, B, and C are on the same line. Its algebraic equation is
(a,bx ¢)=0.

(3). Predicate perp(A, B,C, D) means that A= B, or C = D, or line L{AB) is perpendicular
to line L(CD). Its algebraic equation is

{a x b,exd)=0.

(4). Predicate cong(A, B,C, D) means the length of AB equals to the length of CD. Its
algebraic equation is

(a,b)* = {c,d)>.

(5). Predicate acong(A, B,C;X,Y, Z) means that angle XY Z is congruent to angle ABC'. Its
algebraic equation is
(zxy,zxy)?  {axbexb)?
lle >yl -z x yll ~ flax bl llex b’

(6). Predicate pole(A, B,C) means B = C or A is the pole of L(BC). Its algebraic equation is

ax(bxc)=0.

(7). Predicate para(A,B,C,D) means A= B or C = D or A, B, C, and D are on the same
line. Its algebraic equation is
(axb)x (ecxd)=0.

(8). Predicate cperp(4, B,C, X,Y) means para(B,C,X,Y) or A is on the co-perpendicular
line of L(BC) and L{XY"). Its algebraic equation is

(ax(bxe))x(ax(zxy))=0.

For a predicate P, let E(P) be the polynomials representing P, then P is true iff E(P) =0,
i.e., the polynomials in E(P) are all zero. The correctness of these predicates comes from
the definitions in section 2.1. Note that predicates pole and para can be represented by other
predicates.

pole(A, B,C) is equivalent to (perp(4, B, B,C) and perp(4,C, B,C)).

para(A, B,C, D) is equivalent to [A = B or C = D or (coll(4, B,C) and coll(4, B, D) and
coll(A,C, D) and coll( B,C, D))})

For the proof, see Appendix B.

Definition 2.1. (2). A geometry statement of equation type (or simply a geometry statement)
in Riemann geometry is a triple (HS, DS, G) where HS = {P1,..., P} and DS = {Q;,...,Qn }
for predicates P; and Q;, and G is a predicate.

(b). A geometry statement (H S, DS,G) is true if
VPEN((PLA . AP, A=Q1 A A=Q ) = G)

where 11 is the set of points occurring in the P, the ¢, and G.

-
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HS is called the equation part of the hypothesis. DS is called the inequation part of the hy-
pothesis. Note that Definition 2.1 is for simplicity, actually the predicates in the statement can
be any geometric relation whose algebraic translation is a polynomial equation. For instance,
see Example 5.2.

Definition 2.2. (a). An algebraic statement of equation type (or simply an algebraic state-
ment) is a triple (ES,15,C) where ES = {H{,...,H}, IS = {Dy,..., D;} are polynomial sets,
and C is a polynomial.

(b). An algebraic statement (ES,IS,C) is true in the real number case if
Vo e R((H, =0A..ANH, =0AD; #0A ... A Dy £0)= C =0)

where the x are the variables occurring in the polynomials in (ES,IS,C), and R is the real
number field.

(c). An algebraic statement (ES,15, C)) is universally true if
Ve e C((H, =0A..AH, =0AD; #O0A...AD; #£0)=> C =0)

where the z are the variables occurring in the polynomials in (ES, IS, C), and C is the complex
number field.

Thus if a statement is universally true then it is also true in the real number case. We have.

Theorem 2.3. We can decide whether an algebraic statement is universally true using Ritt-
Wu’s decomposition method or the Grébner basis method.

Proof. See for example [CG1,CS1,KA1]. i

Let (HS,DS,G) (HS = {P,..,P;} and DS = {Q1,..,Qn}) be a geometry statement. Ior
points occurring in (H S, DS, G), we assign coordinates such that no variables in the coordinates
of different points can be the same. Then (HS,DS,G) can be transformed to an algebraic
statement (HS’,DS’, E(G)) where HS' = Uscicy E(F;) and DS = {E(Q1), ., E(Qm)}*.
(HS', DS, E(G)) is called the algebraic version of (HS,DS,G). Thus a geometry statement
is true iff its algebraic version is true in the real number case. We define that (HS,DS,G) is
universally true if (HS’, DS’, E(G)) is universally true. By Theorem 2.3, we can decide whether
a geometry statement is universally true.

As mentioned in the introduction, there is another approach of mechanical theorem proving.
At first we have the following definition.

Definition 2.4. For a polynomial set ES = {H;,...,H,} and a polynomial C, we say (ES,C)
or

Ve((H, =0A---AH, =0)= C =0)

is generally true wrpt a set of variables w1, ...,u,, if there is a polynomial I of the u such that
Zero(ES) C Zero(C D).

* When E(Qz) = {f} gaeny fp} contains more than one polynomials, we can also use the following trick
to transform ‘1(5(@2) = (}} to an ineguation of a single polynomial: 32<Zlf1 R prp # O) for

new variables z;.



A detailed discussion of generally true can be found in [WU2,CY2]. We have

Theorem 2.5. Given a polynomial set £S5, a polynomial C, and a set of variables uy, ..., up,
we can decide whether (ES,C) is generally true wrpt uy, ..., u, using Ritt-Wu’s decomposition
method or the Grobner basis method.

Proof. See [WU2,CH2]. i

For a geometry statement (HS,DS,G) (HS = {Py,..., P }) with DS = 0, let (HS',0, E(G))
be its algebraic version. We can divide the variables occurring in HS" and E(G) into two
groups: i, ...,U, and ,...,z, such that the variables u,...,u, can take arbitrary value and
once their values are fixed the z can be generally determined by the hypothesis H5'. We call
the u the parameters of the statement. We define that (#S, DS, G) is generally true wrpt the u
if (HS', E(G)) is generally true wrpt the u. By Theorem 2.5, we can decide whether a geometry
statement with empty inequation part is generally true.

2.3. The Reducibility Problem in Riemann Geometry

Note that the algebraic translation for the predicate cong is reducible. A statement involving
this predicate can be divided into many subcases and the statement is true if and only all the
subcases are true.

Example 2.6. In any triangle the three perpendicular-bisectors of the three sides are concur-
rent.

Let A = 7(0,0,1), B = 7(0,21,22), C = 7(23,24,%5),and O = m(ze, 7,23 ).

The hypotheses are:

hy =zi+4+27-1=0 B € P2.

ho=a2f+2i4+2i-1=0 C e P2.

hs =al+ai+2i-1=0 O € P2.

hy =22 — (T 127 + 2225)° =0 cong(0, A, O, B).

hs = (2s%3 + T7%s + 2s25)* — 25 =0 cong(0, A, O,C).
The conclusion is:

¢ = (2721 + 2s22)° — (623 + T7T4 + zgrs)? =0 cong(0, B,0,C).

/Note that hq = hLhY and hs = hihY, where b}, = €5 — (€127 +222s), by = 25+ (2127 + T228),
hi = zgx3 + T7%4 + TsTs — Ts, and A = z¢xs + T724 + 525 + 5. Then the above geometry
statement is true if and only if

Va((hi =0Ahy =0ARhs =0AR, =0AR, =0)=>c=10)
Va((hy =0Ahy =0AR3 =0AR, =0A Ry =0) = c=0)
Va((hy =0Ahy =0Ahs =0AR; =0ALf =0) = c=0)
Vz((hy =0Ahys =0Ah; =0AR, =0AR, =0) = c=0)

are true.

To deal with this problem generally, we introduce two new predicates. (Strictly speaking,
they are not predicates, because their algebraic translations depend on the selection of the
coordinates of the points.)

|



(1). congl(A, B,C, D) means
1%y + Y1Y2 + 2172 = Tals + Y3Ya T Z32s
(2). cong2(A, B,C, D) means
@1 Ty F Y Ys + 2122 = — (232 + YsYa + 2324)

where A = ﬂ’(%,yn?«ﬁ), B = 7m(z2, Y2, z3), C = m(zs, Y3, z3),and D = (T4, Ya,r24)-

A substatement of a geometry statement (H S, DS, G) is a statement (HS',DS,G) where HS'
is obtained by replacing the predicate cong in HS by congl or cong2. If there are m predicates
cong occurring in the equation part a geometry statement, then the truth of the statement
is equivalent to the truth of 2™ substatements. We actually need not to check all of these
substatements. In the following, we prove a theorem which can be used to reduce the number
of substatements needed to check drastically.

Note that congl and cong?2 are not independent of the choices of the coordinates of the points.
If point A occurs one or three times in congl(A, B,C, D), then congl(4,B,C, D) changes to
cong2(A, B,C, D) when replacing a coordinate of A with its antipodal. If point A occurs two
or four times in congl(A, B,C, D), then congl(A, B,C, D) changes to itself when replacing
a coordinate of A with its antipodal. Thus we can define an equivalent relation among the
substatements: two substatements of a geometry statement are equivalent if one of them can
be changed to the other by replacing the coordinates for some points in the predicates by their
antipodals.

Theorem 2.7. Let (HS',DS,G) and (HS",DS,G) be two equivalent substatements of a
statement (H S, DS,G), then (HS', DS,G) is (universally) true if and only if (HS", DS, G) is
(universally) true.

Proof. Let HS = {P,,...., P}, DS = {D1,...,Di}. Then the substatement (HS',DS,G) is
true iff

(2.8)  Vz € R(E(P)=0A..AE(P)=0A E(D))#0A..AE(D;)#0= E(G)=0)
Let HS" = {P],...,P.}. The substatement (HS",DS,G) is true iff
(2.9) Ve e R(E(P))=0A..ANE(F)=0A E(D))#0A..ANE(D)#0= E(G)=0)

As the two substatements are equivalent, E(P;) = E(P!) for i = 1,...,k when replacing the
coordinates for some points by their antipodals in one substatement, i.e., when replacing some
variables #; by —z;, (2.8) becomes (2.9). Thus (2.8) is true if and only if (2.9) is true. By
changing the R in (2.8) and (2.9) to C, we can get the result about the universally true.

Theorem 2.10. In a statement (H S, DS, G), if for each predicate cong(Py, Py, Ps,Py)in HS
there is a point P; which occurs in this predicate one or three times and does not occur in other
cong predicates in HS, then the statement (H 5, D5, G) is true iff one of its substatements is
true.

Proof. If P, occurs in cong(Py, Py, P3, Py) one or three times, congl( Py, P, Ps, Py) changes to
cong2(P,, P, Ps, P,) when replacing a coordinate of P, by its antipodal. As for each segment
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congruence predicate there is a point which occurs in this predicate one or three times and
does not occur in other segment congruence predicates, then in a substatement of (H S, DS, G)
each predicate congl (cong2) can be changed to cong2 (congl) separately by replacing the
coordinates of this point by their antipodal. Such all the substatements are equivalent to each
other. Now the theorem comes from theorem 2.7. i

From Theorem 2.10 we know that for Example 2.6, we need only check one of its substate-
ments as point B occurs in cong(O, 4,0, B) only and point C occurs in cong(0, 4,0,C) only.

3. A Class of Geometry Statements of Constructive Type

3.1. The Constructions
Definition 3.1. A construction is one of the six operations.
Construction 1. Taking an arbitrary point P in P2.
Construction 2. Taking an arbitrary point P on a line [/ in P2.
Construction 3. Taking an arbitrary point P on a circle 2 in P2.
Construction 4. Taking the intersection P of two lines [; and I in P2.
Construction 5. Taking an intersection P of a line  and a circle & in P2.
Construction 6. Taking an intersection P of two circles by and hy in P2.
The point P in each of the above constructions is said to be introduced by the consiruction.

In the following, we shall give the exact geometric meaning in terms of geometry predicates
and the algebraic translation for each of the above constructions. The algebraic translation of
a construction consists of two parts: the equation part HS and the inequation part DS.

All the points introduced are in P2. For any point P in P2, we use its lowercase p to
represent a point in S2 such that 7(p) = P and ||p|]| = 1. In the following descriptions, we do
not give the condition ||p|| = 1 clearly.

Construction 1. Taking an arbitrary point P.

HS =0,DS = 0.

Construction 2. Taking an arbitrary point P on a line /. We have four cases as there exist
four kinds of lines.

Case 2.1. l = P(Py).

HS = {polar(P, P1)}
DS = {}

Case 2.2. | = L(P1P2)

HS = {coll(P, Py, P»)}
DS = {|lp1 x pa| # 0}



In the real number case DS is equivalent to P, # Pp.*
Case 2.3. = T(P37P1P2>g
HS = {perp(P,Pg,Pl,Pz)}
DS = {|lps x (p2 X p1)ll # 0}
In the real number case DS is equivalent to —pole(Ps, Pi, P ).
case 2.2.1. [ = T(Pj_,Png).
HS = {perp(P, P, P, P»)}
D5 = {|lp1 x (pr x p2)l| # 0}
Tn the real number case DS is equivalent to: Py # Py.
Case 24 | = B(Plpg)
HS = {cong(P, P, P,P,)}
DS = {|lp2 = p1llllp2 + p:ll # 0}
In the real number case DS is equivalent to: P; # Ps.
Construction 3. Taking an arbitrary point P on a circle h = (O, AB).
HS = {cong(0, P, A,B)}
DS =0

Construction 4. Taking the intersection P of two lines [; and [,. We have ten types of
intersections. Generally speaking the non-degenerate condition for all types of intersection is
that [, is not the same as I5.

Case 4.1. 1y = P(P,) and I, = P(Ps).

HS = {polar(P, P),polar(P, P)}

DS = {llp x p2|l # 0}

In the real number case DS is equivalent to: Py # Ps.
Case 4’2 Zl = P(Pl) and lz = L(PQ?PE-,):

HS = {polar(P, P,),coll( P, P, Ps)}

DS = {|lp1 x (p2 x ps)l| # 0}

In the real number case DS is equivalent to: —pole( Py, Py, Ps).
Case 4.3. I, = P(Py) and I, = T(P,, Ps, Py).

HS = {polar(P, P,),perp(P, Py, Ps, Ps)}
DS = {|lpy x (p2 X (ps x ps))|| # O}
In the real number case DS is equivalent to: —pole(P,, Ps, P;) and
(=polar(P;, P>) or ~coll( Py, Ps, PyY).
Case 4.4. I, = P(Py) and I = B(P,, Ps).

HS = {p(ﬂa.r(ip? P;),COllg(P, Pl P, PS)}
DS = {|lp1 x (p2 £ p3)|| # 0}

* The proof of this result can be found in Appendiz B. The same for the following constructions.
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In the real number case DS is equivalent to:
—coll( Py, Py, P3) or —cong( Py, Py, Py, P5) (P is not the middle point of P, Ps).

Cuase 45 ll = L(P]_Pz) and lz = L(P3P4)
HS = {coll(P, Py, P5),coll( P, Ps, P4 )}
DS = {||(p1 X p2) X (ps X pa)|| # O}
In the real number case DS is equivalent to: —para(P;, Py, Ps, Py).
case 4.5.1. Iy = L(Py P>) and I, = L( P, Ps).
HS = {coll( P, P, Py),coll(P, Py, P3)}
DS = {||(pr x p2) x (pr x p3)|| # 0}
In the real number case DS is equivalent to: —coll{ P, Py, Ps).
Case 4.6 Z}_ = L(PlPQ) and lg = T(P3,P4P5).

HS = {coll(P, P, P,),perp(P, Ps, Py, Ps)}
DS = {||(ps X p2) X (ps X (pa X ps))|| # 0}
In the real number case DS is equivalent to: —pole(Ps, Py, Ps) and
("‘COH(Pl, Pg, Pg) or ﬁperp(Pl N PQ,P4, Pg,))
case 461 Zl = L(Plpg) a,nd L’g = T(PS,PlPQ). (The fOOt from Pg to L(P17P2>)

HS = {COH(P,P17P2)7PQTP<P?P3,Pl,Pg)}
DS = {||(p1 X p2) X (ps X (p1 X p2))|| # 0}
In the real number case DS is equivalent to: —pole(Ps, P, Py).

Case 47 ll = L(P:{PQ) and lg = B<P3P4)

HS = {coll(P, P,, P,),cong(P, Ps, P, Ps)}
DS = {l|(pr X p2) X (ps £ p3)|| # 0}

In the real number case DS is equivalent to:
P, # P, and (~cong(P;, P, P, Py) or —perp( Py, Pa, Ps, Py)).

case 4.7.1. Iy = L(P, P,) and Iy = B(P, P,). (The middle point of P, P,.)
}IS = {COH(P,Pl,Pg),COHg(P, Pl,,P,Pg)}
DS = {|l(ps X p2) X (p1 £ p2)|| # 0}
In the real number case DS is equivalent to: Py # Fs.
Case 48 51 = T(Pl,ngg) and Zg = T(Pz;,Png).

H’S = {Pefp(P,Pl,P27P3)7P€TP(P,P4,P5,P5)}
DS = {H(Pl X (pz X ?3}) X (P4 X (Ps X Ps))“ # 0}

In the real number case DS is equivalent to: —pole( Py, P2, P3) and
—pole( Py, Ps, Ps) and (P, # P, or ~cperp(Py, Py, Ps, Ps, Ps)) and
("PGTP(PbPz;,Pz»Ps) or —perp( Py, Py, Ps, Fs))-

C(&SE 4’9 ll = T{PHPQP;;) and gg = B(P4P5)
HS = {perp{P, P;, P, P3),cong(P, Py, P,P5)}
DS = {|l(p1 X (p2 X p3)) X (ps £ pa)|| # 0}
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In the real number case DS is equivalent to:
—pole( P, Py, P5) and (—cong(Py, Py, Py, Ps) or —cperp( Py, Ps, P, P, Ps5)).
Case 410 ll = B(Plpg) and 6’2 = B(P_?,Pé)

HS = {cong(P, P,, P, P,),cong(P, Ps, P, Py)}

DS = {||(p2 £ 1) x (pa £ p3)l| # 0}

In the real number case DS is equivalent to: Py # P, and Ps # P, and
(—~cong( Py, Ps, Py, Py) or ~cong( Py, Py, P2, Ps3)).

Construction 5. Taking an intersection P of a line [ and a circle h = (0,Q,Q2). We have
four cases.
Case 5.1. 1 = P(Py) and h = (0,0:Q3).
HS = {polar(P, P,),cong(P, 0,Q1,Q2)}
DS = {|lp1 % of| # 0}
In the real number case DS is equivalent to: P, # O.
Case 5.2. 1 = L(PyP;) and h = (0,Q:Q2).
HS = {coll( P, Py, P,),cong(P,0,Q1,Q2)}
DS = {lox (pr x p2)|| # 0}
In the real number case DS is equivalent to: —pole(O, P;, P).
case 5.2.1. 1l = L(P,P,) and h = (P;,Q1Q>)-

HS = {coll(P, P;, P,),cong(P, P1,Q1,Q2)}
DS = {llpr x (pr x p2)|| # 0}

In the real number case DS is equivalent to: Py # Ps.

Case 5.3. | = T(P,, P2 P3) and h = (0,Q:1Q2).

HS = {perp(Pv P17P27P3)7C0ng(Pa Oy@laQZ)}
D5 = {|l(p1 x (ps X p3)) X of| # 0}
In the real number case DS is equivalent to: —pole(P;, Ps, P3) and
(=polar(P;,0) or —coll(0, Py, P3)).
Case 5.4. | = B(P,Py) and h = (0,0:Q5).

HS = {Cong(P7O>Q17Q2)7COBg(PvP17P7P2)}
DS = {||(p2 £ p1) x 0| # 0}

In the real number case DS is equivalent to:
—coll(O, P, Py) or =cong(O,Py,0, Py) (O is not the middle point of P, P,).

Construction 6. Taking an intersection P of two circles iy = (Oy, P, Py) and hy = (02,Q:1Q2)-

HS = {Cong(PaOz;Qla@Q}aCOﬁg(PaO%Pl,Pz)}
DS = {lloy x 0s]| # 0}

In the real number case DS is equivalent to: O1 # Os.

We see that the equation part HS of a construction is in geometric form, but its inequation
part DS is in algebraic form and can be transformed in to geometry predicates in the real
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number case.

3.2. Geometry Statements of Constructive Type

Definition 3.2. A construction sequence is a sequence of constructions such that for each
construction in the sequence the point introduced by it must be different from the points
introduced by the previous constructions and the lines and circles occurring in this construction
must be in the set of points introduced by the previous constructions.

Definition 3.3. A geometry statement of constructive type is a pair (CS5,G) where CS is a
construction sequence and  is a predicate.

For a statement of constructive type (C'S,G), we give different and non-zero coordinates for
different points. Then (CS,G) can be transformed to an algebraic statement (ES,15, E(G))
where ES = {H;,..., H,} is the set of polynomials in the equation part of the construction
sequence; IS = {D,...,D,} is the set of polynomials in the inequation part of the construction
sequence. We call (ES, IS, E(G)) the algebraic version of (CS,G).

Definition 3.3. Let (ES,IS,E(G)) be the algebraic version of a constructive statement
(CS,G). We say (CS,G) is true in Riemann geometry if (£S5, 1S5, E(G)) is true in the real
number case and (CS,G) is universally true if (ES, IS, E(G)) is universally true.

By Theorems 2.3 and 2.5, we can decide whether a constructive statement is universally true
or generally true.

In the real number case, we can transform a statement of constructive type to a geometry
statement of equation type. Let HS = {Py,..., P} be the predicates in the equation part
of the statement, and DS = {Q;,...,Q,} be the predicate formulas which are equivalent to
the inequation part of the statement in the real number case. Then the statement (CS, G) is
equivalent to the geometry statement (HS,DS,G) in the real number case, ie., (HS5,DS,G)
is true in Riemann geometry iff (C'S,G) is true in Riemann geometry. We call (HS, DS, G) the
real version of the statement (C'S, G).

4. The Completeness of the Non-degenerate Conditions

In this section, we shall prove the non-degenerate conditions generated by section 3.1 for
a statement of constructive type (CS,G) are sufficient. For the precise meaning, see section
4.1 and section 4.2. Section 4.1 treats the general case. Section 4.2 treats a special case for
which connections can be established for the two approaches to dealing with non-degenerate
conditions.

In this section, we assume the reader is familiar with Ritt-Wu’s decomposition algorithm. A
complete description for the decomposition algorithm can be found in [RI1, WU2, CH2], or our
newly improved version in [CG1]. The following notions are needed frequently in this section.

Let ES and DS be polynomial sets in Q[z1,...,2,]. For an extension field K of @, let

Zero(ES) = {2 = (21,...,2,) € K" | VP € ES,P(2) = 0}

and Zero( ES/DS) = Zero(ES)— Zero(DS). Weuse RZero(ES/DS) and CZero(ES/DS) to
denote the Zero(ES/DS) when K is R or C respectively. For an ascending chain (depending
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on text some times maybe a triangular form) ASC and a polynomial P, let prem(p, ASC) be
the pseudo remainder of P wrpt ASC. For an ascending chain, we use the following notation:

PD(ASC) = {P € Q[X] | prem(P, ASC) = 0}

Some properties about the irreducible ascending chains needed in this section can be found in
Appendix A of the paper. We have.

Ritt-Wu’s Zero Decomposition Theorem For two finite polynomial sets ES and IS, we
can either detect the emptiness of Zero(ES/IS) or furnish a decomposition of the following
form

Zero(ES]IS) = Ui_, Zero(PD(ASC;)/1S)

where (a). for each 7 < I, ASC; is an irreducible ascending chain such that prem(P, ASC;) # 0
for VP € IS; (b). there are not i # j such that PD(ASC;) C PD(ASC}).

We call such a decomposition an irredundant decomposition, and call Zero( PD(ASC;)/1S)
the irreducible components of Zero(ES/IS).

4.1. The General Case

Definition 4.1. An algebraic statement (ES,IS,C) is called trivially true if its hypothesis is
contradict, i.e, CZero( ES/IS) is empty.

Definition 4.2. An algebraic statement S = (ES,I5,C) is called unmixed if S is not trivially
true and we have the following decomposition

Zero(ES|IS) = Uicicr Zero(PD(ASCy)[1S)
where the ASC; are irreducible ascending chains with the same parameter set {u, vy Up }

The variable set {u,...,u, } in Definition 4.2 is called a parameter sei of the unmixed state-
ment. Note that Definitions 4.1 and 4.2 only depend on the equation part and inequation part
of the statement, i.e., they are independent of the conclusion of the statement.

If point P is introduced by a construction C'O, then a parameter set of CO consists of

two of the variables in a coordinate of P, if CO is Construction 1;
one of the variables in a coordinate of P, if CO is Construction 2 or 3;
0, if CO is Construction 4 or 5 or 6.

For a statement of constructive type, the union of all the parameter sets of the constructions
in the construction sequence of the statement is called a parameter set of the statement. Let
ni,mns,ns be the numbers of the constructions 1-3 occurring in the construction sequence of
the statement respectively. Then each parameter set of the statement has d = 2n; + ny + 13
variables. We define d to be the dimension of the statemeni. Note that in a statement of
constructive type, the variables in a set of parameters can take arbitrary value and once their
values are fixed other variables can be generally determined by the geometric hypothesis. It is
in this sense, we call them parameters.

The following theorem is the main result of this subsection and the completeness of the
non-degenerate conditions can be deduced from this theorem.
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Theorem 4.3. Let § = (ES,15,C) be the algebraic version of a statement of constructive
type and {u, ..., 4, } be a parameter set for the statement, then we can decide in a finite number
of steps that either S is trivially true or S is an unmixed statement with the u as its parameter
set.

The sufficiency of the non-degenerate conditions generated by the constructions can be de-
scribed in two two aspects. First, (C'S,G) is true in the usual sense (or it is a theorem in
the text books) iff it is also universally true under these non-degenerate conditions. Roughly
speaking, they are the conditions under which the configurations of the hypothesis of the state-
ments are normal. For example, when we take a point on a straight line we assume the line
is well-defined; when we take the intersection of two lines we assume the two lines are well
defined and they have normal intersection, i.e., they do not coincide. In the traditional proof of
a geometry theorem, we actually always assume the same conditions as above. For the second
meaning of the sufficiency, we first have.

Theorem 4.4. If P dose not vanish on any irreducible component of Zero(ES/IS), then
for any polynomial C, the algebraic statement S = (£S5,15,C) is universally true iff the new
statement S’ = (ES,I5 U {P},C) is universally true.

Proof. Let
Zero(ES/IS) —- UlsiskZETO(PD(ASCi)/IS)

be an irredundant decomposition of Zero(ES/IS). By Lemma A.5, § is universally true iff
prem(C,ASC;) = 0 for ¢ = 1,..,k. Since prem(P, ASC;) # 0 for © = 1,...,k, we have the
following irredundant decomposition

ZS?‘O(ES/ISU {P}) = UISéSkZeTG(PD(ASC})/IS U {P})

Hence 5’ is universally true iff prem(C, ASC;) =0 for i = 1,...,k, i.e., iff § is universally true.
i

Theorem 4.4 actually means if the newly added non-degenerate condition does not delete any
irreducible component of the original statement, then the new statement is universally true iff
the original statement is universally true. For a statement § of constructive type, by Theorem
4.3 as all the components are normal in the sense that they are with a parameter set of the
statement as their parameter set, then Theorem 4.4 impliesif S = (ES,I5,C) is not universally
true a new statement S = (ES, IS U{P},C) (P is a polynomial) can not be universally true
if P # 0 does not delete any normal component, or equivalently if P # 0 does not make the
statement more special or more degenerate.

In the following, we shall give a proof for Theorem 4.3. Those who are not interested in the
technique details may go to section 4.2 directly. We first give some lemmas.

Lemma 4.5. Let EP and IP be the equation part and the inequation part of a construction,
then we have a decomposition of the following form:

Zero(EPJIP) = Ul_, Zero(ASC;/IP U J;)
where (a). each ASC; is a (weak) ascending chain with a parameter set of the construction as
its parameter set and J; is the set of initials for ASC;. (b). ASC; C Ideal(EP). (c). For 7 and

4 <1, the pseudo remainders of the polynomials in ASC; wrpt ASC; are zero.
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Proof. We shall prove the lemma for each of the construction types.

Construction 1. Taking an arbitrary point. Let P = n(2,y, 2). Then the algebraic equation of
construction 1 is:

EP,={hi=2+y*+2"-1=0}
IPl“;@

Let [ = 1 and ASC, = h;. The lemma is obviously true for construction 1.

Construction 2. Taking an arbitrary point P on a line [. Let P = m(z,y,2) and the normal
vector of [ be m = (n1,72,73). As mentioned in section 2.1, we can reduce the line B(AB) to
two linear cases. Then the algebraic equations for the four types of lines can be summed up as:

EP2:{h17h2}
h1:n1x+n2y+n3220
h22562+y2+z2—1:0
IP, = {d = n? + ni +n® # 0}

Note that Zero(n? + n%,n? + n2,n? + n2) C Zero(d). Using lemma A.8, we have:

(4.6) Zero(EPy[1P,) = Zero(EP, [IP, U {n} + n3})U
Zero(EP, /TP, U {n} + n3})U Zero(EP; /1Py U {ni +n3})

Using lemma A.8 to each of the component on the right side of (4.6) again, we have:

Zero(EP; [IPy) =

(4.7) Zero(EPy[IPy U{ny,n} +n3})U Zero(EP, /1P, U {nqy,n? + n3 U
Zero(EP, /1P, U {ny,n? + n2})U Zero( EP, /TP, U {ns,n] + n3})u
Zero( EP, [IPy U{na,ni +ni})U Zero(EP, /1P, U {ns,n% +ni})

Let
hs = prem(hs, hi;z) = (nd + ni)y? + (ng + n2)z? + 2ngnzyz — n?

Under the variable order: z < y < z, we have an ascending chain ASC; = {hs,hi} and the
first component of (4.7) becomes:

Zero(EPy[IP, U {ny,n] + n3}) = Zero(ASC, /1P, U Jy)

where J; = {ny,n? + n2} is the set of initials for ASC;. Other components in (4.7) can be
treated similarly. At last we have:

ZBTO(EP2/IP2) = U?:TLZ€7’0(‘4SC@/IP2 U Jg)

(a) is obviously true. (b) comes from the computation of the ASC;. (c) can be obtained by
calculating the pseudo remainders.

Construction 3. Taking an arbitrary point P on a circle (O, DE). Let P = n(z,y,2), O =
(i, y1,2), D= (22, Y2, 22), and E = (23, Y3, z3). We have:

EP; = {hy,hs}
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by =212+ ¥+ 2512 — Tolg — Yalys — 2223 =0
ho=a?+y?+2°-1=0
1 P; is empty.

At first let TP; = {d = 2? +y? + 27 # 0}. Similar as construction 2, we have a decomposition
like (4.7) with vector (21,¥;,21) in the position of vector n. Note that d = 27 +yf + 27 =1
then the decomposition is also true for IP; = §.

Construction 4. Taking the intersection P of line [; and line l,. Let P = n(z,y,2) and the
normals of I; and l; be n = (ny,n9,n3) and m = (my, ms, m3) respectively. Use the reducibility
of predicate cong, all the cases can be summed up as the following form. (For case 4.1, we need
the following identity: ||(A x B) x (C x D)|| = ||A x B|| - ||C x D|| = {Ax B,C x D)?.)

EP, = {hy, hs, hs} where
hy =ni2 + N2y +ngz =0
ho = mix + may + mgz =0
hs=z2+y?+22-1=0

IP, = {d = ||(n x m)|| # 0}
Note n X m = (namg — nzMma, N3My — NyM3, N1 My — Namy ). By lemma A.8, we have:
(4.8) Zero(EPy[IPy) = Zero(EP,[IP; U {nyms — ngms })U
Zero( EPyJIPy U{nsm; — nims})U Zero(EP;[IP, U{nimy — noym;})
Let ASC; be the following ascending chain:

dz? — n2m + 2n,nsmaoms — nims
(nyms — nama )y + (nyms — namy )z
(namsz — naMma)z + (—n1my + namy )@

By direct calculation, we have prem(h;; ASCy) = 0,7 = 1,2,3. We can also prove using the
Grobner basis method that ASC; C Ideal(EP,). Then we have
Zero(EP,[IP, U {nyms — nzma}) = Zero( ASC,/IP, U Jy)

where J; = {nams — n3ma,d} is the initial set for ASC;. Other components in (4.8) can be
treated similarly. At last we have:

Zero(EP,[IP)) = U:_, Zero(ASC; [TPy U J;)

(a) and (b) have been proved above. (c) can be proved by direct calculation.

Construction 5. Taking the intersection P of a line [ and a circle o = (O,DFE). Let P =

7(z,y,2), O = 7(21,y1,21), D = (22,42, 2:), and E = 7(xs,¥s, 25), and the normal vector of
I be N = (ny,n3,n3). The four cases can be summed up as:

EP; = {hy,hy, hs} where
hy = nz + 09y +nzz =0 P is on the line.
hy =12+ Y1y + 212 — TaZ3 — Ya¥Ys — 2223 = 0 P is on the circle.
ha=a+9y*+22-1=0
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IP; = {d; = (N x 0, N x o) # 0}
This case can be treated similarly as construction 4.

Construction 6. Taking the intersection P of two circles 0; and 0,. Let 0y = (NV,Q R), 09 =
(M,ST), and P = 7(z,y,2), N = w(ny,n,m3), M = w(my,me,ms), @ = 7(z1,91,71), R =
722, Y2,22)s S = 7(T3,Y3,23), T = (%4, Ya, 7). We have:

E—P6 — {hl,hg,hg} Where

hy = nix +noy+ N3z — T1Y1 — TaYs — Z122 = 0
ho = My + Moy + M3z — T3Tg — YsYs — 2324 = 0
hs=2*4+9y?+22-1=0

IP; = {d, = {n X m,n X m) # 0}
This case can be treated similarly as construction 4. i

Lemma 4.9. Let § = (ES,I5,C) be the algebraic version of a statement of constructive type
and {u,...,u,} be a parameter set for the statement, then either S is trivially true or we can
furnish a decomposition of the following form:

(4.10) Zero(ES/IS) = Zero(PD(ASC)/IS)

where (a). ASC is a (weak) ascending chain with the u as its parameter set. (b). ASC C
Ideal(ES). (c). No pseudo remainders of the polynomials in IS wrpt ASC are zero.

Proof. We prove the statement by induction on the number of constructions. We actually
only need to prove the induction step. The base case, when there is only one construction,
is almost the same. Now suppose we have Lemma 4.9 for a construction sequence C5 whose
equation part and inequation part are ES and IS respectively. We need to prove that for each
construction CO belongs to Constructions 1-6, Lemma 4.9 is still true for the new construction
sequence obtained by adding CO to CS.

Let the equation part and inequation part of the construction CO be EP and I P respectively.
By Lemma 4.5, we have

Zero(EP[IP) = Ui_, Zero(ASC;[IP U J;)

Hence
Zero(ES U EP[IS U IP) = Ul_,Zero(PD(ASC)U ASC;/ISUIP U J;)

Note that the union of ASC and ASC; is still a triangular form, then by Lemma A.6, we have
(4.11) Zero(ESUEP[ISUIP) = Ul_,Zero(PD(ASC,ASC;)/ISUIPU J:)

As the coordinates of the points are all independent variables, then we have (i).ifge J;UIP
vanishes on one of the irreducible component of Zero( ES/IS) it will vanish on Zero(ES/15);
(ii). if for some ¢ < 1,3g € J; U I P such that g vanishes on Zero(ES]IS) then for Vi < [,3h €
J; U TP such that h vanishes on Zero(ES/IS). Thus we have either the statement is trivially
true or for Vi < I,Yh € J; UIP, h do not vanish on any of the irreducible components of
Zero(ES/IS) = Zero(PD(ASC)/IS). At the later case, by Lemma A.10 and Lemma 5 (c),
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we have Zero( PD(ASC,ASC;)]15) = Zero(PD(ASC,ASC;)/IS) for all 4,7 < I. Hence, by
repeated use of Lemma A.8, we can eliminate the J; in (4.11) and have

Zero(ES U EP/IS UIP) = Zero(PD(ASC, ASC;)/IS U IP)

We need to select ASC; such that the parameter set of ASC; is the one given in the lexnma.
This can be done, because, by the proof of Lemma 5, for each possible parameter set U of
the construction CO, there exists an ASC; with U as its parameter set. We have got the
decomposition (4.10). (a) and (c) are true obviously. (b) comes from (b) of Lemma 4.5. 1

Proof of Theorem 4.3. By Theorem 4.9, if the statement is not trivially true we get a de-
composition like (4.10). Now the theorem comes Theorem A.13, since (4.10) is still true when
PD(ASC) is replaced by QD(ASC). i

Remark. To confirm a statement of constructive type (ES,I5,C), we can use lemma 4.9 to
get a decomposition (4.10). If prem(C, ASC) = 0 the statement is universally true. To do this
we do not need any polynomial factorization.

4.2. The Irreducible Case

Definition 4.12. An algebraic statement (ES,15,C) is called irreducible if
Zero(ES/IS) = Zero(PD]IS)

where PD is a prime ideal and no polynomials in IS5 belong to PD.

The non-degenerate conditions IS of an irreducible statement (ES, 15, C) is sufficient in the
sense that if the statement is not universally true it cannot be universally true by adding more
non-degenerate conditions unless the statement is trivially true under these non-degemerate
conditions. Precisely, we have

Theorem. 4.13. If an irreducible algebraic statement (ES,I5,C) is not universally true, then
for any polynomial P we have either (ES,I1S U{P},C) is trivially true or (ES,ISU{P},C)is
still not universally true.

Proof. Let Zero(ES/IS) = Zero(PD/IS) where PD is a prime ideal. If (ES,ISU{P}, C) is
not trivially true then Zero(PD/IS U {P}) is not empty, i.e., P € PD. Thus by Lemma A.5,
(ES,1S U {P},C) is still not universally true as C ¢ PD. i

For a geometry statement of constructive type, we have

Theorem 4.14. Let (ES,15,C) be the algebraic version of a constructive statement. If ASC
in (4.10) is irreducible, then (ES,I5,C) is an irreducible algebraic statement.

Proof. It is obviously true, as PD(ASC) is a prime ideal by Theorem A.l. f

If the algebraic version of a geometry statement of constructive type satisfies the condition
of Theorem 4.14, this statement is called an irreducible geometry statement. More specifically,
we have.

Theorem 4.15. Let § = (FS,15,C) be the algebraic version of a constructive statement
whose construction sequence consists of only constructions 1-3, then either § is trivially true
or S is an irreducible statement.
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Proof. By Lemma 4.7, if § is not trivially true we have a decomposition like (4.10). We need
to prove ASC is irreducible. Let ASC = ASC’ U ASC" where ASC” be the polynomials
provided by the last construction in the construction sequence. It is enough if we can prove
that ASC is irreducible under the condition that ASC’ is irreducible. In the following we shall
prove the result assuming the last construction is each of the constructions 1-3 separately. Let

K = Q(U)[X]/(ASC") be the associate field of ASC” (see Appendix AL).

Construction 1. By the proof of lemma 4.7, ASC” = {2* +y* + 2° — 1}. By lemma A.3
in the Appendix A, ASC is irreducible if and only if the discriminant D = 41— y* + 2%) of
22 +y%+ 2% —1 as a polynomial of z is not a perfect square in K. Considering D as a polynomial
of y, by Lemma A.4 this implies 1 + 2* = 0 in K which is impossible as z is an independent
variable.

Construction 2. ASC" has six possible cases. Let us consider one of them, say

ASC" =
N2 + NgZ + N2y
(n2 4+ n3)y® + (nd + n})2? + 2nynsyz — 0

ASC is reducible if and only if the discriminant D = 4n?(n?+n2—(ni+nj+n3)z?) of the second
polynomial in ASC” as a polynomial of y is a perfect square in K. By Lemma 4.5, if Ry =
prem(ny, ASC’) = 0, or Ry = prem(nf+n3, ASC’) = 0,0r Rz = prem(n?+ni+4+ni, ASC') =0
then the statement is trivially true. Otherwise, we prove D can not be a perfect square in
K. As 4n? is already a perfect square and can not be zero, then we need only to consider
D' = n2+n2—(n?+n3+nk)z?. By lemma A.4, D' is a perfect square implies either n?+ni+ni
or n? + nZ is zero in K, i.e, either Rz = 0 or R, = 0 by lemma A.2. We get a contradiction.

The proof for Construction 3 is the same as construction 2. i

4.3. Generally True for Constructive Geometry Statements

In this section, we shall prove that for geometry statements of constructive type, the two
approaches to dealing with non-degenerate conditions have connections.

Theorem 4.16. Let (ES,15,C) be an unmixed algebraic statement with parameter set
Uy, .yt I (ES,C) is generally true wipt the u, then the (ES,IS,C) is universally true.

Proof. Let
Zero(ES[IS) = Ui_,Zero(PD(ASC;)/1S)

be the irredundant decomposition of Zero( ES/IS). The ASC; are irreducible ascending chains
with wi,...,u, as their parameter set. Since (ES,C) is generally true wrpt uq,...,u,, then
there is a polynomial D of the u such that Zero(ES) C Zero(DC). Thus for each ¢ < ¢
Zero(PD(ASC;)/IS) C Zero(ES[IS) C Zero(DC). By Lemma A.5, prem(DC, ASC;) = 0.
Then prem(C,ASC;) = 0 as D is a polynomial of the u. This means (ES,IS,C) is universally
true. i

Corollary. Let (ES,IS,C) be the algebraic version for a geometry statement of constructive
type. If (ES,C) is generally true wrpt a parameter set of the statement, then the statement
(ES,I5,C) is universally true.
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Proof. The result comes from Theorem 4.16 and Theorem 4.3. g

Theorem 4.17. Let S = (ES,15,C) be the algebraic version for an irreducible geometry
statement of constructive type, then S is universally true iff (ES,(C) is generally true wrpt a
parameter set of the statement.

Proof. By Theorem 4.16, we need only prove on direction. Let uy,...,u, be a parameter set of
the statement, then by Theorem 4.14, we have

Zero(ES]IS) = Zero(PD(ASC)/IS)

where ASC is an irreducible ascending chain with the u as parameter set and no pseudo
remainders of the polynomials in IS wrpt ASC are zero. As (ES,IS5,C) is universally true,
we have prem(C,ASC) = 0. By Lemma A.2, this implies that ¢’ = 0 in the associate field
of ASC, or there is a polynomial D of the u such that DC belongs to the ideal generated by
ASC. By Theorem 4.9 (b), Zero(ES) C Zero(ASC). Now we have Zero(ES) C Zero(DC). §

We can benefit from Theorems 4.16 and 4.17 by the following facts: there are lots of methods
of proving a statement to be generally true and it is generally faster proving a statement to
be generally true than proving the same statement to be true under certain non-degenerate
conditions. So if we know a statement is irreducible, we only need to prove the statement is
generally true. If it is generally true, then it is also universally true under the non-degenerate
conditions generated by our method. If it is not generally true, then the algebraic statement
can not be universally true by adding more non-degenerate conditions to the inequation part
unless these conditions make the statement trivially true.

Remark. In this section, we assume the variables in the coordinates of the points in the
statement cannot be zero. If this condition is not satisfied, some of the results in this section
need modifications. For the irreducible case, see [CG2].

5. Experiment Results

With the results presented in this paper, we propose the following paradigm for mechanical
theorem proving in Riemann geometry.

(i). At first, try to find if the given geometry statement is constructive. If it is, generating
the algebraic version of the statement and do (iii). Otherwise do (ii).

(ii). Try to find whether the statement may become constructive if some of the geometry
conditions are deleted. If so, generating the algebraic version of the constructive statement,
adding the deleted conditions and going to (iii). Otherwise, find some non-degenerate conditions
by yourself; translate the geometric conditions into algebraic equations; go to (iii).

(iii). Using Theorem 2.7 or 2.10, we can reduce the proof of the statement to the proofs of
some substatements.

(iv). Prove the substatements using Ritt-Wu’s zero decomposition method or the Grdbner
basis method. If the answer is affirmative, then the statement is universally true under the given
non-degenerate conditions. Otherwise, if the statement is constructive, then the statement can
not be universally true without deleting some of its “normal” components, and if the statement
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is irreducible, then the statement can only be trivially true by adding more non-degenerate
conditions.

We use a prover based on Ritt-Wu’s decomposition theorem to prove geometry theorems
according to the above paradigm. As books about Riemann geometry generally talk about the
axiom system for Riemann geometry and very few geometry statements of equation type are
given. So what we do is to try to find whether the similar statements of certain theorems in
Euclidean geometry are true in Riemann geometry. Some theorems in Euclidean are obviously
true in Riemann geometry. For example, if a statement only involves the geometry relations:
collinear and a point on a circle is a statement in projective geometry. Hence such a statement
is true in Buclidean geometry iff it is true in Riemann geometry. For example, the Pascal
theorem for a circle (p8 of [CH2]) is true in Riemann geometry. We have proved this using our
prover. We have also proved about twenty theorems which are not statements in projective
geometry including the Butterfly theorem, Ceva theorem, and Menulus theorem etc. Here are
two examples which are used to illustrate our method.

C

E A D B
Figure 4 Figure 5

Example 1. Let ABC be a triangle such that AC = BC. Dis a point on AC; F is a point
on BC such that AD = BE. F is the intersection of DE and AB. Show DF = EF.

This statement is of constructive type, and a construction sequence of the statement is:

Taking an arbitrary point A. Construction 1.
Taking an arbitrary point 5. Construction 1.
C is on B(AB). Construction 2.
D is on L(AC). Construction 2.
E = L(BC)N(B,AD). Construction 5.
F=L(AB)Nn L(DE). Construction 4.

and the conclusion is:
cong(D, F, F, E).

Thus by section 3.1, in the real number case the example is equivalent to the geometry
statement (HS,DS cong(D,F,F, E)), where

HS = { cong(4,C,C,B),coll(D,A,C,),cong(B, E, A, D),
coll(E, B,C,),coll(F, D, E),coll(F, A, B) }.
DS ={A=B,A=C,pole(B,B,C),para(4, B, D, E)}

let A = (0,{33 l),B = (071131,.1’2),6 = (3?3,334,3’}5),1) = (37673771:8)95 = (35’9,331@?5811),}? =

22



(0,212,213)* By section 3.1, the algebraic version of the statement is: (ES5,15,g) where
ES = {IBl - LICH = LIDI = LIE] = LIFI = 1, k1, ha, s, g, hs )

Ry = 22 — (2124 + 2225)° = 0 cong(A,C,C, B).
hy = z3z7 — 246 = 0 coll(D, A, C,).
hs = (z1210 + 22211)* —23 = 0 cong(B,E, A, D).
hy = 212311 — T2T3T10 + (2125 + T224)To = 0 coll( £, B,C,).
hs = (TeZ10 — T7%9 )13 + (—T6Z11 + TsZo 212 = 0 coll( F, D, ).
IS = {dl;dg,d;g,dz;}.

dy = [|[A—-B[l|lA+ B||#0 A# B.
dy = ||[AXC|| #0 A+ C.
ds = ||[(BxC)x B||#0 =pole(B, B, C).
dy = [(AXB)x (DX E)|[#0 -para(4, B, D, E).

g = (2%, —2d)zis + (2210211 — 22725)%12) 215 + (2], — 23)2], = 0 cong(D, F, F, E).

Bye Theorem 2.7, the equation part of the statement can be reduced to one substatement:

Ry =25 — (@124 + 2225) = 0 congl(4,C,C, B).
hYy = 2327 — 2426 = 0 coll(D, A, C,).
hy = (z1210 + 22%11) — 23 =0 congl(B,E, A, D).
By = 212511 — 2223810 + (—2125 + 22%4)2Ty = 0 coll( E, B,C,).
hL = (w610 — T7%9)T13 + (—TeZ11 + TsTo )T12 = 0 coll(F, D, E).

Let ES" = {||B]| - L,||IC|| - LID|| = LIE| — L|F]| — 1,h}, h%, ks, by, R} To prove the
statement using Ritt-Wu’s decomposition algorithm, we first have the following decomposition:

Zero(ES'|IS) = Zero(PD(ASC,)/IS) U Zero( PD(ASC,)/IS)

where

ASC: =

zi+ai -1

(22 — 225 + 27 + 1)2] + (23 — 22, + 1)2f — 23 + 22, — 1
(22 — L)zs + 2124

T3Ty — Tals

22+ aital-1

Ty — Tg

(22 + 2%)as)z1o + (212225 — 2324)To — 212325

To&yy + T1T10 — Ty

(2222, — 2w6TsToT11 + TE2T — 2o Tr o 1o + (2F +22)2d)e], — 2ialy + 2052720210 — 2]
(zex10 — T7%9)%13 + (—2s211 + T59)T12

ASCQ =

22 4+z? -1

(22 — 2zs + 2 + 1)a] + (23 — 22, + 1)z — 25 + 22, — 1
(2o — Dzs + 2124

T3y — T4

24241

* Here the coordinates of a point, say O = (333,$47$5> actually means { = 7?(333,:64,21‘5). The same
for Example 2.
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Ty + Zs

(22 + z3)23)T10 + (212225 — ixy)Te — T12T325

Z3T11 + T1%10 — T

(2222, — 2zxs@o1y + 2E0p — 2T6B7ToT10 + (22 +22)22)2l, — 2izi; + 20627 8e 210 — TFE]
(ZeT10 — T7T9)T13 + (—TeZ11 + TgTo)T12

We have prem(g, ASCy) = prem(g,ASC;) = 0 which means the statement (ES,IS,g) is
universally true.

Example 2. (Ceva Theorem) As in figure 2, let AG, BG, C'G intersect BC,AC,ABin F,E,D
respectively. Show that:
sin(AD)sin(BF)sin(CE) _ 1
sin(DB)sin(FC)sin(EA)

Strictly speaking, this example is not a geometry statement according to Definition 2.1. To
describe the statement, we need the following new predicates:

(a). cos-dis(A, B,z) means: ¢ = (A, B)?,
(b). sin-dis(4, B, z) means: z + (A,B)? =1,
and we need to assume the conclusion of a geometry statement can be any polynomial equation.

The construction sequence of the statement is

Taking arbitrary points G, A, B, and C in P2. Construction 1.
D = L(GC)N L(AB). Counstruction 4.
E = L(GB)n L(AC). Construction 4.
F = L(GAYN L(BC). Construction 4.

Let G = (0,0,0),C foen (O,II,.TQ), A = (333,(174,1'5), B = (Clﬁ's,x?,fl?g), D ot (0,269,5610)7 E fes
(211,%12,213), I = (Z14, 215, 216). The algebraic version of the statement is (E5,15, g), where

ES = {J|Al - LBl - LICl = LD = LUEN = LIFN = 1, by, o chan}

hy = T5TsTy + T3T7T10 — T4TeT1o — T3TeZs = 0 coll( A, B, D).
hg = Zglig — T7T11 = 0 COH(B’ E,G)
hy = T1T5%11 + T223T10 — T2TaT1y — T123%13 = 0 coll(A, E,C).
h4 = X3%15 — Lgl14 = 0 COH(A, G,F)
hs = 21T3T14 F+ TaZeT1s — TaT7T14 — T1TsP1s = 0 coll( B, C, F).
he = 17+ 1 — (229 — T5210)? =0 zi7 = sin( AD)?.
h',’ = Zi8 + 1— (9363314 -+ T7Tyy — $8$16>2 =0 T8 = SIH(BF>2
hg = 19+ 1 — (21212 — 22213)° =0 z19 = sin(CE)%.
ho = 220 + 1 — (2o%7 — z1025)" =0 Z90 = sin( DB)?.
hio = a1 + 1 — (21715 + 22 —216)° =0 29, = sin( FC)?.
By = Tos + 1 — (22211 + TaZ12 — T5213)° =0 Ty = sin( EA)%.
I8 = {dy,ds,ds}
di = |(GxCyx (AX B)|| #0 —-para(G,C, A, B)
do = |l(GXB)x (AXC)||#0 -para(G, B, A,C).
ds = [[(GXx Ay x (BxC)|]| #£0 —para(G, A, B, C)

g = Ti7%15T19 — T20%21%22 =0
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To prove the statement using Ritt-Wu’s decomposition method, we first get the following
decomposition:
Zero(ES[IS) = Zero(PD(ASCy)[1S5)

where

ASC, =
zi+azi-1
i+l + 23 —1
vl +al+ag—1
(2222 — 2T3T5T60s + 2327 — 2374627 + (22 + 22)ad)ad - z3al + 2w3242677 — T5TF
(z327 — T4%6)T10 + (—T3Ts + T5%6)To
(22 +21)23)2?+((22 CoaTs — 2020514 )3 )2+ (2iad — 22, womaws +afal +ata)ad) e T —
zzial
TeTiz — T7¥11
T1Z3%13 — T2¥3&12 + (—zi25 + ToTa)T11
. Q(xixgxg + gng&xgxgm 4+ 20, Ta3Tas)Ts + TITITE — 2032374T6T7 + (23 + 2})x3 +
x§$§)$g)xf4 — 3375
T3Tis — T4%14
T1T6T16 — TaTeT1s + (—T1%s + T227)T14
217 + 222 + 28T Te 10 + 2525 — 1
T1s + 22735 + (22728715 + 2a62sT14)T16 + TiTT5 + 2267 T14T 15 + zizd, -1
Tio + 22275 + 281 %22 12213 + 22T, — 1
Zog + 22Ty + 2T7T3ToT10 + 2FT — 1
Tor + 22776 + 2818015216 + 27T — 1
mzz%—xgxfg-%(2$4$5$124-2x3$5$me13+-$2x§3%-2x3x4$11$12%-x§$§1-—1

We have prem(g, ASC;) = 0 which means that the statement (ES,I5,g) is universally true.
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Appendix A. Some Results about Ascending Chains
Let

ASC =
AI(U7371>
Az(Uyﬁh%)

AP(U’.’L"].’ ...’:L'p)

be an ascending chain with the U as parameters and with the z as dependent variables. ASC
is said to be an irreducible ascending chain if A, is irreducible, and for each k A; is irre-
ducible in K(U)[1, .., @p-1]/(A1, .y Ap_1)[2], where (44, ., Ag_1) is the ideal generated by
{Ay, .y Ap_1} in K(U)[z1, ., zpo1]. If ASC is irreducible, we call K = K (U)[X]/(ASC) the
associate field of ASC.

We need the following results.

Theorem A.l. ASC is an irreducible ascending chain if and only if PD(ASC) is a prime
ideal.

Proof. See [RI1]. i

Lemma A.2. Let ASC be an irreducible ascending chain, then the pseudo remainder of a
polynomial P w.r.t ASC is zero if and only if P is zero in the associate field of ASC.

Proof. P is zero in the associate field of ASC if and only if the product of P and a polynomial
of the U is linear combination of the polynomials in ASC. This is true if and only if the P is
in PD(ASC) as the polynomial invelving only the U is not in PD(ASC) and PD(ASC) is a
prime ideal. i

Lemma A.3. Let ASC as above is irreducible, and P = ay® + by + ¢ be a polynomial where y
is a new variable and a,b, and ¢ are polynomials of the U and the X. Then ASC U {P} is an
irreducible ascending chain if and only if the pseudo remainder of @ w.r.t ASC is not zero and
b? — 4ac is not a perfect square in the associate field of ASC.

Proof. See [CH1]. I

Lemma A.4. Polynomial P = az® + b in K[z] is a perfect square in field K(z) if and only if
a = 0 and b is a perfect square in K or b = 0 and « is a perfect square in K.

Proof. At first note that if P = Q?, then @ must be in K[z] as the square of a proper rational
function of z is still rational function. Let Q = a,2" + ... + ao. Then P = (a,27 + ... + ag)?.
Comparing coefficients for z we have as = az = ...,a, =0, al = a, 2a1a0 = 0, and aZ = b.
From 2ab = 0, we know that either ¢ = 0 or b = 0. If @ = 0, then b = af must be a perfect
square in K. If b = 0, then a = «} must be a perfect square in K. Q.E.D

The following result is for the completeness theorems proved in section 4.

Lemma A.5. Let ASC be an irreducible ascending chain and R be a polynomial with nonzero
pseudo remainder wrpt ASC. Then a nonzero polynomial G vanishes on Zero( PD{(ASC)/R)
for the complex field C iff prem(G, ASC) = 0.
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Proof. The if part is obvious. As ASC is irreducible, PD(ASC) is a prime ideal by theorem
A1, Since G vanishes on Zero(PD(ASC)/R), GR vanishes on Zero(PD(ASC)). Then GR €
PD(ASC) by Hilbert’s Zero Theorem. Since R is not in PD(ASC), we have G € PD(ASC),
i.e., prem(G,ASC) = 0. i

Lemma A.6. Let ASC = f,,--- f, be a triangular form, I, be the initial of f,. Then we have

Zero(PD(ASC)/{L,}) = Zero(PD(fi -+ fo-1) UL }/{1k})

Proof. Since PD(fi---foo1) U{fp} C PD(ASC), then one direction is obviously true. To
prove another direction, let b € PD(ASC), then Ish = Qf, + R for some integer s 2 0, and
polynomials @ and R € PD(fy,.es fp—1). Thus a zero of PD(fi,.., fp—1) and f, which is not
a zero of I, is a zero of PD(ASC). i

The following is another form of lemma 4.5 in [CG1].

Lemma A.7. Let ASC = {fi, ..., f-} be a non-trivial ascending chain, J = {Li,....,I, } where
I, are the initials of f;. Then

Zero(ASC|J) = Uicici Zero(PD(ASC;)[J)

where each ASC; is irreducible and with the same parameters as ASC.

Proof. Lemma 4.5 of [CG1] actually gives the following decomposition:
Zero(ASC[J) = UlSiSkZero(ASCi/J uJ;)

where the ASC; are irreducible ascending chains with dimension < n —7 and J; are the sets of
initials for ASC;. Then we have:

Z@!‘O(ASC/J) = UngSkZaSTO(PD(ASCg)/J)
By dimension theorem, the components in the above decomposition with dimension lower than
d = n — r must be contained in a component with dimension d. From the proof of lemma 4.5,

we know that the ascending chains ASC; of dimension d in the decomposition are with the
same parameters as ASC. This proves the lemma. i

Lemma A.8. For polynomial set PS, polynomials P; (¢ = 1,..., k) and D, if Zero({Py,..., Pr})
is contained in Zero(D) we have:

Zero(PS/{D}) = Ul Zero(PS/{D,P;}).

Proof. We have
Zero(PS/{D}) = Zero(PSU{P, ,Pk}!{D})U UleZero(PS/{D)Pé}).

Note the first component is empty as Zero({Py, ..., P }) C Zero(D). Then we have proved the
Tesult. i
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Lemma A.9. Let ASC; and ASC, be two ascending chains of which the later is irreducible.
If the pseudo remainders of the polynomials in ASC; wipt ASC, are zero and none of the
pseudo remainders of the initials of ASC, wrpt ASCs is zero, then PD(ASC,) C PD(ASCy).

Proof. See [CG1]. I
We have the following generalization for Lemma A.9.

Lemma A.10. Let ASC; and ASC, be two ascending chains, and
Zero(PD(ASCy)) = UL, Zero(PD(ASCY))

be the irreducible decomposition of PD(ASCy,). If the pseudo remainders of the polynomials
in ASC, w.r.t ASC, are zero and none of the pseudo remainders of the initials of ASC; w.r.t
ASC! for (i = 1,...m) is zero, then Zero(PD(ASC5)) C Zero(PD(ASCy)).

Proof. Let h € PD(ASC,), then Jh € Ideal(ASC,) where J is a product of the powers of some
initials of the polynomials in ASC;. As the pseudo remainders of the polynomials in ASC,
w.r.t ASC, are zero, then Jh € Ideal(PD(ASC,)), hence Jh € PD(ASC]) for ¢ = 1,...m.
As none of the pseudo remainders of the initials of ASC; war.t ASC! is zero for i = 1, ..., m,
then prem(J,ASC]) # 0 for i = 1,...,m. Thus h € PD(ASC]) as PD(ASC]) are prime ideals.
Hence a zero of PD(ASC,) is a zero of h. This proves the Theorem. i

For an ascending chain ASC), let
QD(ASC) = {g |3J,J9g € Ideal(ASC)}

where J is a product of powers of the initials of the polynomials in ASC. By using QD(ASC),
the algorithm to compute the Grénber basis of PD(ASC) when ASC is irreducible ([CH2J)
can be generalized to the following form.

Theorem A.11. For an ascending chain ASC in Kly|,let ID = Ideal(ASC, Iy z1—1,-- -, Iz, —

1) where I; are the initials of the polynomials in ASC and z; are new variables. Then
QD(ASC)=1Dn Ky].

Proof. Let ASC = {f1,...,f»}- QD(ASC) C ID N K[y] can be proved similarly as [CH2]. Let
PeIDnK[y],then P =3 B;f; + 3 Ci(%I; — 1) for some polynomials B; and C; in K[y, z].
Set z; = 1/I; and clear the denominators. We have JP = }_ B}f; where J is a product of

powers of the initials of the polynomials in ASC, ie., P € QD(ASC). i
Theorem A.12. For polynomial sets PS and DS = {dy,...,d, } in K[y],let DP = Ideal( PS5,
diz; — 1, ... dpz, — 1) where z; are new variables. If

Zero(PS|DS) = UL, Zero( PD(ASC;)/DS) (A.1)

is an irredundant decomposition for Zero( PS/DS), then we have an irredundant decomposition
for PD
Zero(DP) = UlL, Zero(PD(ASC))) (A.2)

where ASC| = ASC;,dyzy — 1,--+,d, 2z, — 1, and vice versa.

Proof. Suppose we have (A.1). Since the pseudo remainders of the polynomials in D5 wrpt
ASC; are not zero, then ASC! are weak irreducible ascending chains. Thus PD C PD{ASCY).
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The one direction of (A.2) is proved. For the other direction, let (%o, 20) be a zero of Zero( D P),
then by the definition of DP we have zo € Zero(PS/DS). Thus 2y € Zero(PD(ASC;)/DS)
for some i, say i = 1. We will prove (g,20) € Zero(PD(ASC})). Let b € PD(ASCY), then
Jh=P+3 Ci(zd; ~ 1), where P € PD(ASC,) and J is a product of the the powers of some
d;. As the d; do not vanish on g, then (g, %) is a zero of h. Hence (A.2) is true. It is similar
to derive (A.1) from (A.2) i

Theorem A.13. For an ascending chain ASC in K[y], we have
Zero(QD(ASC)) = UL, Zero(PD(ASC;))

where each ASC; is irreducible and has the same parameter set as ASC.

Proof. Let J be the set of initials for ASC, then by Lemma A.7
Zero(ASC|J) = UiciciZero(PD(ASCy)/J)

where each ASC; is irreducible and has the same parameter set as ASC. Then by Theorem
A.12 and Theorem A.11,

Zero(PD(ASC)) = Uici<i Zero(PD(ASC;))

which proves the theorem. i
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Appendix B. Some Basic Properties of P2

In this appendix, we shall prove some basic properties of P2 using our prover based on Ritt-
Wu’s method. The results given in this section provide proofs for the equivalence of the 25 in
section 3.1 to certain combination of predicates in the real number case. For example, in case

4.3 DS = {||p1 X (p2 X (p3 X pa))|| # 0} which is equivalent to p; X (p2 X (ps X ps)) # 0 in the
real number case. Now by B12, we get the result in section 3.1.

Let p; be points on S2 such that 7(p;) = P, e P2 for: =1, ...,6.
B1. P1 ZPQ 1ff(pl ng):().

Proof. If P, = P,, we have p; = py or py = —ps. Thus (p; X p2) = 0. If (p1 X p2) = 0, there is
a number 7 such that p; = rpy. Then ||p;]| = r*||p:|| = 7* = 1. We have p; = py or p; = —ps,
i.e., P1 = PQ- l

B2. Para(Pl,Pg,P3,P4) iff P_}L e P2 or Pg = P4 or (COH(P;g,Pl,Pg) and COH(P47P1,P2) and
coll( Py, Ps, Py) and coll(Ps, P, Py)).

Proof. Using the following formulas
(a = (bor ¢)) « ((a and =b) = ¢)

((edorb) = ¢) «— ((a = ¢) and (b = ¢))
{((a = b) and (a = ¢)) — (a = (b and ¢))

B2 can be reduced to the following geometry statements

(para( Py, Py, P, PA) AP, # Py A P3s # Py) = coll( Ps, Py, Py)
(para(Py, P, Ps, P,) A P, # Py A Py # Py) = coll(Py, Pr, P)
(para( Py, Py, Pa, Pa) AP, # P2 A Py # Py) = coll( Py, Ps, Py)
(para( Py, Py, P3, PAYA Py # Py A Py # Py) = coll( Py, Ps, Py)

(P, = P») = para(P, Py, P3, Py)

(Py = Py) = para(P, Py, Ps, Py)

(coll(Ps, Py, Py) A coll( Py, Py, P) A coll(Py, Py, Py) A coll( Py, Py, Py)
APy # Py APy # Py) = para(Py, Py, P3, Py)

which can be proved by our prover (Theorem 2.3). i
We have proved the following statements using the same method.

B3. Pole( Py, P», Ps) iff perp( Py, Ps, P, P3) and perp( P, Ps, Ps, Ps).

B4. Pole( P, P, P) iff P, = P,

B5. Para( Py, Py, Py, P3) iff coll( Py, Py, Ps).

B6. We have (p1 X pa) X (ps X (ps X ps)) = 0 iff pole(Ps, Py, Ps) or (perp(P1, Py, Py, Ps) and
COll{Pi,PQ,Rg>).
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B7. We have (py X p2) X (ps = pa) = 0 or (p1 X pa) X (ps +ps) = 0 Mf P, = P or
(cong(Py, Ps, P, Py) and perp( Py, Py, Ps, Py)).

B8. We have (py X p2) X (pr —p2) =001 (p1 X pa) X (p1 +p2) = 0 iff P, = P,.

B9. We have (p1 X (p2 X p3)) X (pa X (ps X ps)) = 0 iff pole(P1, P>, P;) or pole( Py, Ps, s ) or
(P =Py and CPeTP(P1>P27P37P57P6>) or (PQI’P(PuPz;aPmPS) and perp( Py, Py, Ps, P ).

B10. We have (p; X (ps X p3)) X (ps £ ps) = 0 iff pole(Py, P», Ps) or (cong(Py, Py, Py, Ps) and
cperp( Py, Pa, P3, Py, P5)).

Bi1l. We have (p1 £ p2) X (ps £ ps) = 0iff P, = P or P5 = Py or (cong(P1, Ps, P, Py) and
cong(Pl,P4,P3,P2)).

B12. We have o X (p; X (ps X p3) = 0iff pole( Py, P», P3) or (coll(O, P, Ps) and polar(O, Py )).
B13. We have o X (p; & py) = 0iff (coll(O, P, P») and cong(O, P, 0, Py)).
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