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ABSTRACT

An energy-balance method for fast rendering of frames of an
animation sequence is described. The technique is based on
illumination networks, which was introduced in 1989 as a fast
rendering method which could produce both specular and
diffuse effects. Since animation sequences are well known to
reveal rendering flaws much more readily than single frames,
a careful analysis of the sources of error in illumination net
style algorithms has been undertaken. This has led to a new
algorithm exploiting the concepts of illumination networks
which is not only faster at rendering sequences of images
than the previous algorithm, but also faster and more ac-
curate on single frames, and better adapted for supporting
general reflectance functions. We describe the analysis and
the new algorithm and demonstrate its performance on an-
imation sequences and on scenes containing not only spec-
ular and diffuse surfaces but also anisotropically reflecting
brushed metal surfaces.

CR Categories and Subject Descriptors: 1.3.3 [Computer
Graphics]: Picture/Image Generation-Display algorithms.
1.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism.

General Terms: Algorithms

Additional Key Words and Phrases: global illumination,
radiosity, ray tracing, specular, diffuse, data structure, re-
flectance function, animation, anisotropic reflection.

1. INTRODUCTION

Rendering scenes realistically is a major focus of research
in computer graphics. Beginning with raytracing in 1980
[13] and continuing with radiosity and various other meth-
ods, the problem has been attacked by many researchers.
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Even though these advances have allowed progressively bet-
ter images to be generated in progressively less time, high
quality rendering of globally illuminated scenes is still rela-
tively slow and images can still be distinguished easily from
photographs in most cases.

Generating an animation sequence of realistic globally il-
luminated images is a major challenge given the computa-
tional demands for rendering individual frames. In the past,
animation has generally been done in a rather straightfor-
ward fashion: each frame of an animation sequence is ren-
dered independently and the resulting images are combined
in the proper order. This approach ignores an ameliorat-
ing characteristic of most animations: the scene ordinarily
changes little from one frame to the next. Among the few
algorithms designed to exploit this type of frame to frame
coherence are [5] and [1].

Unfortunately, these algorithms are designed for specific
rendering technigues which imit the scenes for which they
produce good results. An animation method for raytrac-
ing such as [5] is useful primarily for specular environments,
while radiosity method is primarily useful for purely diffuse
environments. We were interested in developing a method
with two main characteristics: it would take advantage of the
frame-to-frame scene coherence described above to a very
high degree, and it could render scenes realistically which
contain different types of surfaces.

Ilumination networks, introduced in 1989 in [2], locked
attractive as a basis for two reasons: first, computation of
“Hlumination geometry,” that is, what objects in the scene
illuminate what other objects, is performed independently
from the actual illumination of the scene and the results are
stored in such a way that they may be relatively easily modi-
fied, and second, I-nets provides the means for implementing
many different kinds of reflectance functions.

The I-nets algorithm is a two-part procedure: in the build
process, the illumination geometry described above is en-
coded into a large data structure called an I-net. Surfaces
are divided into patches, each of which has a large array
of pointers, called links, into its environment which connect
it to other patches. These links correspond to a predeter-
mined set of possible ray directions. In the second part of
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the algorithm, called the distribution process, light is dis-
tributed into the scene along the links attached to light-
emitting patches. Incoming light to each paich is mapped
to emitted light through the reflectance function associated
with the patch’s surface. Outgoing light is then distributed
into the scene along the links. This process continues until
convergence, at which point primary rays are calculated and
pixel values are determined.

Two characteristics of the I-nets method are well suited
for exploiting the frame-to-frame coherence of animation
sequences. First, the links of the I-net provide an easily
accessed handle on the geometry of the scene; only the
links which are attached to objects which move between
two frames must be changed while all others remain intact.
A second advantage can overcome the problem that even
a small change in scene geometry can precipitate a large
change in scene illumination; even if consecutive frames look
very similar, every surface is likely to have a slightly differ-
ent intensity than in the frame before. Scene illumination,
then, may need to be completely redone for each frame. This
is easily accomplished with I-nets since scene illumination is
encapsulated in the distribution process and is not entangled
with other work that does not need to be repeated for each
frame.

Animation sequences have a way of revealing faults in
a rendering algorithm that might pass unnoticed in a sin-
gle image. To produce good resulis for animation, then,
the sources of error in a rendering method must be care-
fully analyzed and differences of the resulting image with
reality fully understood. Unfortunately, such an analysis
reveals that the original I-nets contains several sources of
unacceptable error due to its use of link-forming rays which
are uniformly separated in slope-intercept ray space. While
this method, which we will refer to as ray-space I-neis pro-
vides good rendering speed, the errors cannot be tolerated
for animation. Thus we have developed a new algorithm,
geodesic I-nets, which not only eliminates these errors, but
is also faster than ray-space [-nets, not only for animation,
but also for single frames. Moreover, the new algorithm pro-
vides a superior method for generating discrete reflectance
fanctions of various types.

In this paper, we will first describe our strategy for using
I-nets as a basis for an efficient energy-balance animation
method. Then we will describe how I-nets forms an approx-
imation to an ideal energy-balance technique, and show how
the approximations of ray-space I-nets are undesirable. We
when present the mew geodesic I-net algorithm to correct
these errors, and describe in detail its operation. Finally, we
provide results which indicate the performance of geodesic
I-nets on single images with various reflectance functions,
including anisotropically reflecting brushed metal, as well as
on a short animation sequence.

2. FAST ANIMATION

In many rendering methods the scene geometry is computed
at the same time as pixels are colored; in classical raytrac-
ing, for example, the complete process of rendering, from
determining the nature of the intersected surface to coloring
the pixel, is done for each primary ray before going on to
the next. This monolithic process makes it difficult to save
any information from one frame to the next in an animation
sequence.

In the I-nets method, however, determination of scene ge-
ometry is decoupled from the lighting and rendering of the
scene. Since the I-net data structure encodes the scene geom-
etry, the I-net may be built just once, for the first frame, and
modified between frames to reflect the changed scene geome-
try. Each frame will require a complete distribution process,
in which light is spread through the scene and patches’ illu-
minations are calculated, while only the first frame requires
the complete build process, in which the I-net is constructed.
Ordinarily the build process requires much more computa-
tion time than the distribution process, so building the I-net
just once for an animation sequence should result in a very
large savings.

A method based on I-nets which takes advantage of the
frame-to-frame coherence of an animation sequence involves
finding a very efficient way to update the I-net between
frames of the sequence. The most attractive method of do-
ing this would consist of three steps: 1) determine which
patches will move and thus determine and delete the links
of the I-net which are affected; 2) move the patches; and
3) create and insert new links which correspond to the new
scene geometry. This procedure is atiractive because it does
not require prior knowledge of patch movement and thus
would be suitable for near-interactive usage. Unfortunately
the I-net, although large, is but a distillation of much more
information that is calculated, used, and discarded during
the build process. Modifying the I-net after each frame,
then, requires that this extra information either be stored or
recalculated, both unpleasant prospects.

Instead, we have chosen to use the extra information
where it is already available, in the build process. In one
build process we can compute the links for many frames
for little more than the cost of computing the links for one
frame. The extra links for subsequent frames are stored until
needed, at which time they replace outdated links. In this
way we avoid storing or recomputing a great deal of infor-
mation, but we must know the future movement of cbjects
at the time the first frame is calculated.

How can the same build process be used to compute the
links for many different frames? The answer is to store a
moving object at different times as different object instances,
each with a temporal label. For instance, if an object moves
during fifteen frames, it will appear in the input file of the
build process as fifteen object instances, each with a label
of 1 through 15 indicating the frame in which the instance



exists. Basically, then, each link is tagged according to the
temporal labels of the object instances it connects, and it is
saved until a frame matching its tag is being rendered, at
which time the link replaces an outdated link.

Each frame has a file associated with it called its connect
file. The connect file for a frame contains links that are to
be changed before the frame. These links could be new links
to moving objects or old links to be re-established between
immobile objects in an area just vacated by a moving object.

In single-frame I-nets, for each ray which intersects the
scene, all the ray-object intersections are calculated and
stored in order along that ray. Links are created which con-
nect consecutive ray-object intersections whose objects face
each other. Each link is stored in the I-net as two pointers,
one from each object to the other.

The procedure in the case of moving objects is more com-
plex. In the simplest case, two immobile objects A and B
(called permanent objects}, have no temporal instances of
any objects (called temporary objects) between them. In
this case, an ordinary link (two pointers) is established in
the I-net just as before. In the case illustrated in Figure 1, a
temporary object C, say with temporal label 5, lies between
two permanent objects A and B. In this case a link between
A and B is inserted in the I-net and in the connect file for
frame 6. Another link is also computed, a link between A
and C (because they face each other), and this link is stored
in the connect file for frame 5. Also stored in frame 5’s con-
nect file is a null pointer for B. For frames 1 through 4, then,
the link between A and B is active. Before frame 5, however,
the pointer from A to B is replaced by a pointer from A to
C, the pointer from B to A is replaced by a null pointer,
and a pointer from C to A is inserted into the I-net. Before
frame 6, the previous link between A and B is re-established,
replacing the pointer from A to C with a pointer from A to
B and replacing B’s null pointer with a pointer from B to A.
It is not necessary to replace the pointer from C to A with
a null pointer because object C is completely ignored in all
frames but frame 5. In the figure links are arrows and active
objects are drawn with solid lines while inactive objects are
dotied.

Of course other possibilities exist as well. Pseudocode for
determining links appears in Table 1.

It should be apparent that the I-net built in this way is
just the same as before except that is has some extra tempo-
rary objects built into it, each of which is hooked into, and
then detached from, the structure by pointers in turn. For
the cost of some extra storage and updating of the pointers,
any work associated with objects that do not move is saved.
The gain is clear~the more objects that do not move, and the
greater the number of frames over which to amortize the cost
of building the I-net, the greater the savings in increment-
ing the I-net as opposed to building it from scratch. The
drawhack to this extension is the extra storage of the tem-
porary objects, and the need for prior knowledge of objects’
movements.

{ad

Frame 6

Figure 1: Different links required for the same ray

For each ray direction {
For each individual ray {
Visiting each ray-object intersection in order {

If object O1 is permanent and it faces down the ray {
I{ there exists another permanent object O2
further down the ray {
Insert a link into the I-net between O1 and O2;
For all temporary objects T} between O1 and 02 {
If no object associated with frame ¢+ 1
lies between O1 and O2 {
Add this link to connect file 5 + 1;
}
}
}
}

Else O1 is temporary {
Scan down {or up, depending on which way the object
faces) the ray until a permanent cbject or temporary
object of the same frame is reached and insert a link
between these two into connect file z;

}

Table 1: Pseudocode for determining links



3. GEODESIC I-NETS

Animation stresses rendering algorithms more than still im-
ages. Artifacts that do not appear objectionable in a sin-
gle image may show up clearly in an animated sequence of
frames. We now include a brief review of by now familiar
radiative heat transfer theory, and discuss the problems of
ray-space I-nets. This leads to the development of geodesic
I-nets, which will be described in some detail.

3.1. RADIATIVE HEAT TRANSFER THEORY

A familiar scientific basis used to develop and analyze
global illumination algorithms is the energy-balance method,
adapted from radiative heat transfer theory [10]. In an
energy-balance method all the energy in the scene should
be tracked: all the light energy that reflects from a sur-
face must be accurately distributed throughoui the scene
whether it ever reaches the eye or not.

The intensity of light observed at a point on a surface
in a given direction is the sum of the intensity emitted by
the surface and the intensity reflected by the surface in that
direction. This is called the directional intensity, and the
preceding statement can be written

Ry = es+7s ey

where Ry is the outgoing intensity from the point in di-
rection ¢, ¢4 is the emitted intensity in that direction, and
T4 is the reflected intensity in the same direction.

Suppose dA; is a differential patch of area on surface A;,
as shown in Figure 2. Define the intensity emitted from d A,
in direction o to be €41

The energy a surface receives is a function of the intensity,
I, of the incoming light, the solid angle dw through which
it arrives, and the projected differential area on which it
is incident. The total energy per unit area incoming from
direction « is given by

Eo = Izcosbdw (2)

where I, is the incident intemnsity from direction o, dw
is the solid angle through which it arrives, and cos ¥ is the
projected unit area (8 is the angle between the surface nor-
mal and o). Now the intensity reflected in direction ¢ from
energy incident from direction o is given by

Ry = poaba (3)
Pl cosbdw {4}

il

where pgo 18 the bidirectional reflectance of the surface

.

for input direction o« and output direction ¢. Suppose a

scene consists of two surfaces A; and Aj, as shown in Figure
3. In order to determine the outgoing intensity observed at
differential area dA; in direction ¢1, we need both ¢4 and
the intensity from surface A; reflected by dA; in direction
¢. The latter is given by integrating Equation 1 over the
solid angle €31 ; subtended by As:

T, = / ,0(;5,0‘}1]&,1 o8 91db)1 (5)
Q1,2

Since the incident intensities I; on surface dA; are the
same as the outgoing intensities Ry from surface As, then

Iag = Rgpo (6)

and

Te1 = / P,a,1 Rg,2 cos brdwr (7
1,2

Now the total intensity observed in direction ¢; from dA;
is

Res = €431+

/ P,0,1 R,z cos Frdws (8)
Q1,2

Similarly, the intensity observed in any other direction
from dA; and intensities associated with differential areas on
Aj may be defined. Of course, in a real scene, the directional
intensity from a point is derived from all the surfaces that
are visible from that point, so the above equation must be
integrated over all these surfaces.

Equation 8 may be made computationally tractable by
the use of several approximations. In hemi-cube methods,
as well as in the I-nets technique, the surfaces are discretized
into patches and the spectrum of light is divided into inde-
pendent bands. The methods differ in their treatment of
incoming and outgoing light directions. In traditional ra-
diosity methods, the hemisphere above a patch is divided
into a set of solid angles determined by a hemicube; these di-
rections are unigue to the patch orientation, and the patches
visible in each of these directions must be determined. In the
I-nets method, the set of all possible directions is approxi-
mated by a small set of directions which is used globally for
all patches. Also, for each direction, a set of rays is chosen;
any light which travels in that direction is transferred over
one of these rays.

3.2. PROBLEMS WITH RAY-SPACE I-NETS

Unfortunately, ray-space I-nets suffers from some defecis
which can lead to unacceptable errors. Two of these defecis



Figure 2: Hemisphere of directions to a differential area
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Figure 3: Outgoing intensities become incoming intensities

pertain to the integral of Equation 5 where energy incident
on a patch from all directions is approximated by the sum-
mation over all possible ray directions of the energy incoming
on those rays. The I-nets algorithm defines a ray space in
terms of slopes and intercepts; both dimensions of this ray
space are sampled at regular intervals to obtain the set of
rays used to create links. The sampling uniformities in each
of these two dimensions are the sources of these first two
defects.

The first of these defects is that the spacing of rays for all
directions is determined by points on a common intercept
plane; rays at any angle § to the intercept plane normal
pass through the same points as rays normal to the plane,
as shown in Figure 4. As a result, oblique rays are more
dense by a factor of 1/ cos 6 than normal rays. Thus if each
ray carries a unit amount of energy, more energy per unit
area is transferred to a surface perpendicular to the angle ¢
rays than to a surface perpendicular to the normal rays.

The second of these problems is the nonuniform spatial
distribution of ray directions resulting from the uniform sam-
pling of slopes in ray space. Unfortunately, the angles be-
tween these directions vary quite a bit: they are small for
the directions near the vertices of the unit cube about the
origin and larger toward the middles of the faces as shown
in Figure 5. As a result, much more energy is transferred in
those directions where the ray directions are “bunched up”
in space (where the angles between them are small) than in
those directions where the rays are more sparse.

The ray-space I-nets algorithm also assumes that all
patches are the same size so that the bidirectional reflectance
term of Equation 3 will be the same for all patches of an ob-
ject. This is not true in the case of small patches or patches
along the edge of an object. Finally, while the matrix im-
plementation of reflectance functions used in ray-space I-
nets provided a means of implementing a large number of
reflectance functions, in general the technique used would
have required a large matrix for each polygon in the scene.
For mixtures of purely diffuse and specular illumination, this
potential expense was eliminated, but the general case was
inflexible and potentially expensive.

These four main defects limit the utility of the ray-space
Inets algorithm for animation purposes. Thus, a new type
of I-nets algorithm which eliminates these problems while
retaining the performance of ray-space I-nets is required.

3.3. RAY NONUNIFORMITIES

To overcome the nonuniformity of the distribution of ray di-
rections, the ray space of the original I-nets algorithm was
abandoned. Instead, the set of possible ray directions is
determined by tessellating the unit sphere with nearly equi-
lateral triangles; the vertex points serve as endpoints of unit
vectors from the origin. This set of unii vectors defines the
possible ray directions. Since the triangles used to tessellate
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the unit sphere are all the same size, these directions are
evenly distributed.

The variable spacing density of rays due to their angle
with the intercept plane has been corrected in the new al-
gorithm by spacing the intersections of the rays with the
intercept plane by an appropriate amount. To separate the
rays which have the same direction D) evenly in space, it is
necessary to separate their intersections with the intercept
plane by a factor of 1/ cos¢, where ¢ is the angle between
the D and the normal io the intercept plane.

It should be noted at this point these two improvements
now account for the cosine factor of Equation 6. In tradi-
tional radiosity methods, this factor is dealt with in form-
factor calculations, but in geodesic I-nets the cosine factor is
implicit in the distribution of rays. Suppose the separation
distance of two adjacent rays which have the same direction
is 6. This distance will be the same for each ray direction
because of correction (2) above. In the direction normal to
a surface 5, then, the intersections of rays with S will be
separated by this distance §. For a direction D forming an
angle 6 with the normal, rays will intersect S at a separation
of §/ cos 8. Thus if the spatial density of rays which intersect
S from the normal direction is 1, then the spatial density of
rays which intersect S from direction I will be cosd. This
is shown in Figure 6.

3.4. VARIABLE PATCH SIZES AND BUCKETS

The formfactors of traditional radiosity also contain the re-
flectance function and patch size information. In I-nets, all
patches of a surface have the same size. Since the intensity-
to-energy ratio of the bidirectional reflectance function varies
with patch size, this property allows the patches’ reflectance
functions to be the same for all the paiches of the surface.
Tor patches that differ in size, however, this assumption is
not true. The geodesic algorithm addresses this problem by
forming an estimate of patch size based on the number of
ray intercepts, Hy, it receives. This estimate is compared to
the average number of ray intercepts, H., that a unit-sized
patch receives. The ratio Hp/H, is used as a multiplier dur-
ing the distribution process: the reflectance function for the
object is attenuated by this ratio for each patch.

Yet another problem addressed by the geodesic algorithm
which enhances its accuracy is the elimination of the jittering
of ray-object intersections which was used in ray-space I-nets
to hide the artifact termed “plaiding” in [12]. The basis
of the problem is that, although the total amount of light
energy delivered to a surface by links having angle 6 with
the surface’s normal {because of the intersections’ 1/ cosf
distribution over the surface) is correct, it is concentrated in
large amounts on just a few patches, whereas it should be
spread more evenly over larger numbers of patches. This is
shown in Figure 7. Jittering alleviated this problem to some
extent by setting each link randomly within the larger area,
but the light delivered by that link remained concentrated
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Figure 4: Common intercepts yield different ray densities
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Figure 5: Uniform slope interval yields different ray densities
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Figure 6: Built-in cosine factor



at that patch.

We have solved this problem by associating a small set
of “buckets” with each patch. Basically each bucket defines
a certain area over which light will be spread. Light which
falls in bucket 0 will be spread over very little area, while
light which falls in bucket NV will be spread evenly over many
neighboring patches. Each patch has N buckets, and dur-
ing the build process each ray direction is assigned to the
appropriate bucket. For instance, a link whose direction is
nearly normal to the patch will be assigned to bucket 0, so
that light arriving on that link will be spread very little,
while a link whose direction is nearly parallel to the patch
will be assigned to bucket IV, and light arriving on that link
will be spread over a large area. For greatest accuracy this
spreading should occur periodically during the distribution
process.

Another use for the buckets is in compensating for the
length of links. Energy transmitted to the end of a link
should be spread over an area proportional to the square of
the length of the link. Light travelling over short links should
not be spread much, while light which travels over long links
should be spread over a greater area. When a link is set up
between two surfaces, the distance between the surfaces as
well as the incident angles is used to determine which bucket
each end of the link must be associated with-if the surfaces
are far enough apart to warrant a “wider” bucket than the
incident angle indicates, the bigger bucket is used.

3.5. RENDERING

Rendering of patches is done in much the same manner as
described in [2], with one important difference. To render
diffuse patches, both methods bilinearly interpolate center
intensity values. In ray-space I-nets nondiffuse patches were
rendered one primary ray at a time; for each primary ray
values for neighboring ray directions were interpolated to
arrive at a nondiffuse intensity amount for that primary
ray. This value was then added to the patch’s diffuse in-
tensity amount (interpolated according to the intersection
point on the patch) to get the pixel value. Each primary ray
that intersected a nondiffuse surface resulted in a significant
amount of computation.

To reduce this computation the new method calculates
a nondiffuse intensity for each patch for one primary ray
only, that connecting the eye to the center of the patch.
This intensity is then added to the patch’s diffuse intensity,
and rendering then proceeds just as in the diffuse case. This
approximation is only valid when the patch subtends a small
area of the screen and the differences between the primary
ray to the center of the paitch and all other primary rays
which hit the patch are small.

In addition to reducing the computation time for rem-
dering, this procedure allows shaded polygons representing
the patches to be sent into a graphics pipeline which trans-
forms, Z-buffers, Gouraud shades, and ouniputs them to the

screen. Rendering is thus decoupled from actual pixel shad-
ing, which significantly reduces the computation time for
rendering scenes containing nondiffuse surfaces.

3.6. IMPLEMENTING DIFFERENT REFLECTANCE
FUNCTIONS

Conceptually, I-nets can handle any type of reflectance func-
tion that can be described by an N x N matrix, where N is
the number of ray directions. The (¢, 0)th entry in the NxN
matrix gives the fraction of light which arrives from direction
¢ which leaves in direction o. Such matrices can be large, and
different ones are needed for different patch orientations in
space. Fortunately, the entire matrix can be collapsed into
a constant in the case of a diffuse reflectance function, and
specular reflectance functions result in a sparse matrix that
can also be expressed more compactly. In addition, if an ob-
ject is planar, only one matrix is needed for the whole object,
rather than one for each patch of the object. However,there
is clearly a need for a compact, accurate, easily-generated
description for general reflectance functions.

3.6.1. THE PROTOTYPE REFLECTANCE FUNCTION

We begin with the idea of a “prototype” reflectance function.
Suppose the surface of interest lies in the zz-plane facing
upwards. Light can travel in the directions determined by
the predetermined set of possible ray directions, and the light
arriving from direction ¢ and reflecting from the surface in
direction o can be described by a formula in terms of the
orientation of the surface and the orientations of directions
i and o with respect to the surface. Given a unit amount of
light arriving from one of our ray directions ¢, we can use
the reflectance function formula to determine the amount of
light leaving the surface in all possible ray directions. Thus
for each ray direction, we can construct a list of all directions
in which a non-zero amount of light reflects and the amount
of such reflection (for practical purposes non-zero means a
number larger than a certain threshold). These amounts are
called factors. The collection of such lists for each possible
ray direction comprises the prototype reflectance function.

Several characteristics of the prototype reflectance func-
tion should be clear. The first is that it is merely the eval-
vation of the reflectance function formula over a given set
of ray directions {although it could be obtained by other
means, such as experimental evaluation or manual fiddling).
As such, the type of reflectance function modeled is not in-
dependent of the ray direction resolution: if the reflectance
function has very fine features, the number of ray directions
must be large enough that the sampling of the prototype
reflectance function is adequate to catch these features. A
good example of the type of reflectance function that this
method cannot handle is a perfect mirror; 100% of light in-
cident from direction [ is reflected only in direction R and if
the set of ray directions does not happen to include direction



R, the prototype reflectance function reflects no light at all.
4 the reflectance function does not require infinite resolu-
tion, however, an appropriate resolution for the number of
ray directions may be determined.

Second, the prototype function can be every bit as large
as the N x N matrix it replaces if there are few non-zero
entries. Third, its calculation is an O{N?) process, since
the reflectance function must be evaluated twice for each
pair of ray directions. Finally, it is easy to construct for a
wide variety of reflectance functions and is equivalent to the
N x N matrix.

For many reflectance functions, the derived prototype re-
flectance function is not dependent on the colors of objects.
1f the reflectance function behaves the same for each of the
red, green, and blue bands, then a generic factor may be
stored in the prototype reflectance function instead of three
separate factors for each of the three bands. To get the
proper reflectance function, then, the generic factor must be
multiplied by the object’s color amounts whenever the pro-
totype reflectance function is used. This space-saving tactic
can’t be used when the three bands reflect differently, as in
the case of the reflectance function for a diffraction grating.
In this case all three factors must be stored.

3.6.2. THE ACTUAL-TO-PROTOTYPE MAP

If the same reflectance function were to be used for many
surfaces all with different orientations, the N? construction
costs and storage for a prototype reflectance function for
each orientation would be prohibitive. Instead, we use the
uniformity of the distribution of ray directions to advantage
and construct for each different orientation a mapping to
the original prototype reflectance function. If 5 is the set
of possible ray directions, the mapping is a one-to-one and
onto function from S to S. This mapping is called the actual-
to-prototype map. In this way we need only construct one
prototype for each distinctive reflectance function. Then for
different orientations incoming light will be mapped to ap-
propriate directions using the actual-to-prototype map and
the prototype reflectance function applied to that incom-
ing light to produce outgoing light. For each direction the
prototype-to-actual is again used to retrieve the outgoing
light to be sent out over the links.

Given a prototype reflectance function and an arbitrary
orientation for which to construct an actual-to-prototype
mapping, we need to determine the relationships between
two pairs of vectors: the normal vectors and the rotation
orientation veciors for both the prototype orientation and
the actual orientation. The rotation orientation vector gives
the alignment of some surface feature; for instance, the grain
direction of brushed metal. For some refleciance functions,
such as specular reflectance, this vector is not necessary—
rotation of the surface about its normal will not change the
prototype reflectance function.

The actual-to-protoiype map is constructed by first map-

ping the ray direction nearest to the actnal normal to the ray
direction nearest to the prototype normal. Since the ray di-
rections are derived from a tessellation of nearly equilateral
triangles, each ray direction has six neighboring directions.
Using this relationship between the directions, each succes-
sive concentric “ring” of ray directions away from the actunal
normal is mapped to the corresponding ring of ray dirvec-
tions away from the prototype normal, using the rotation
orientation vector to align the ring. Figure 8 illustrates this
process. For each ring of the actual orientation, the ray di-
rection closest to the rotation orientation vector {which is
the one which has the largest dot product with the ROV)
is labeled “1” and the remaining directions in the ring are
consecutively numbered counterclockwise. This same proce-
dure is done for the corresponding ring about the prototype
normal. Direction 1 for the actual ring is now mapped to
direction 1 in the prototype ring, actual direction 2 to pro-
totype direction 1, and so on.

During the distribution process, incoming light accumu-
lates in the in-buffers for each link connected to a patch. To
calculate the light reflected from a given incoming direction
with index é,, the actual-to-prototype map is used to find
the appropriate incoming index i, on the prototype surface.
Now using the prototype reflectance function, the indices of
the reflected directions give locations in a scratch work area
where the amount of the light coming from ¢, multiplied
by the factors given in the prototype reflectance function
are accumulated. This is done for all possible ray directions
for the patch. Now for each possible ray direction o,, the
corresponding location in the work area is found with the
actnal-to-prototype map and the amount of light at that lo-
cation is added to 0.’s out-buffer and sent out over that link.
This process is shown in Figure 9.

It should also be noted that the protoitype reflectance
functions need not be calculated every time the program
is run. Quite likely a small library of reflectance functions
will be used for many different scenes. These may be com-
puted once and stored on disk for future use. Of course, the
actual-to-prototype maps must be computed for each differ-
ent scene since objects will likely have different orientations
{although common orientations such as axis alignment may
be saved as well). However, since the bulk of the work is
in computing the prototype reflectance functions, re-using
these will result in significant savings.

4. RESULTS

The method has been implemented in C and runs on a vazi-
ety of UNIX machines. The data presented here is the resul$
of runs on a MIPS RC6280 computer with 32M of memory,
Times were determined with the prof utility of UNIX.

Image 1 shows the first six frames of a four second ani-
mation sequence consisting of 60 frames. The blades of the
ceiling fan are turning and the heat lamp is swinging in a cir-
cle over the cabinet. This moving light source is particulazly
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taxing for animation techniques because the lighting over
the entire scene changes even though relatively few objects
move. Note for example how the floor under the light gets
redder when the light swings over it. More subtle changes
not readily visible are even more widespread over the scene.

All surfaces are diffuse to conserve memory. The I-net for
this scene occupies 6M of memory. Generating each frame
from scratch requires about 8 seconds per frame; 6.4 seconds
for initialization and the build process and 1.6 seconds for
the distribution process and rendering. The animation pro-
cedure was applied to two sequences of 30 frames each. For
each sequence the initialization and build process require
16.8 seconds (more than for a single frame because of the
extra temporal objects that must be processed) while each
frame requires 1.62 seconds for the distribution process and
rendering (also more than for a single frame due to the time
necessary to update the I-net between each frame). The
extra storage required for the temporal objects amounts to
4.6M of memory. For sixty frames, then, generating each one
from scratch takes 8 seconds per frame, while the animation
method takes 2.18 seconds per frame, a speedup of almost 4
times.

Image 2 shows the same scene except the floor has a broad
specular component. This scene requires 7 seconds for ini-
tialization (including computing the prototype reflectance
function) and the build process and 12 seconds for the dis-
tribution process and rendering. The I-net occupies 8.4M of
memory.

Images 3 and 4 demonstrate the anisotropic reflectance
function of brushed metal. The light source illuminates the
flat surface outlined in green. The arrow in the right corner
of the surface indicates the direction of the striations of the
brushing. The same surface is shown at orientations of 0,
45, 67.5, and 90 degrees relative to a line connecting the eye
to the light source. The surface is divided into 364 paiches,
each of which samples light in 1261 directions. The I-net
occupies 7.5M of memory and each image was generated in
9.3 seconds (including computing the prototype reflectance
function). Notice that the “horns” of the reflections rotate
with the surface, with the back horn diminishing and even-
tually disappearing when the striations are perpendicular to
the eyerays. For comparison, Images 5-8 are photographs
of an actual brushed surface in the same orientations. The
actual surface has a diffuse component which appears as a
“halo” in the photographs; this diffuse component is mot
modeled in the generated images.

5. CONCLUSIONS

IMumination networks is a technique which is inherently well-
suited to efficiently render animated scenes in which the ani-
mation has been precomputed due to its explicit representa-
tion of illumination geometry and its separation of the tasks
of evaluating this geometry and distributing light through
a scene. Unfortunately, however, the ray-space algorithm



for I-nets presented in [2] contained inaccuracies which re-
sulted in unacceptable artifacts when used for animation.
Analysis of the sources of these artifacts have led to the de-
velopment of a new I-nets algorithm, which we call geodesic
I-nets. This algorithm provides much more accurate results
than ray-space I-nets, and with greater efficiency. It also
provides a very effective means of implementing a wide va-
riety of reflectance functions for the surfaces rendered.
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