REASONING ABOUT
PROBABILISTIC ALGORITHMS

Josyula R. Rao
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-90-07 April 1990

Contents

0 Introduction
0.1 Motivation
0.2 Confributions
0.3 PlanofPaper

1 Notation and Terminology

2 The Computational Model
2.1 Deterministic Statements
99 Probabilistic Statements
2.3 Properties of wp

3 Reasoning about Safety
4 UNITY and Progress: ensures and

5 The weakest probabilistic precondition:
wpPp

6 Relating wp and wpp

7 Reasoning about Progress
701 upto. . .o
7.2 entails
7.3 Therelation~
7.4 Probabilistic Leadsto: =

8 On program composition
8.1 Composition by union
8.2 Conditional Properties
8.3 Superposition

9 Comments on Soundness and Complete-
ness

10 Examples
11 Acknowledgement
References

12 Appendix
12.1 Proofs of Theorems: Section 3-7 . . .
12.2 Properties of upto
12.3 Properties of entails

12.5 Properties of =
12.6 On program composition.

[[I e

b G0 OO

[}

-3 =3 3 O O

oo oo oo 0

0 Introduction

0.1 Motivation

Ever since Michael Rabin’s seminal paper on Proba-
bilistic Algorithms [Rab76], it has been widely recog-
nized that introducing randomization in algorithms
has several advantages. Often these algorithms are
simpler and more efficient - in terms of time, space

and communication complexity - than their deterministic®

counterparts [Rab76; Rab82b; Rab82a; Her89; BGS8S].
With the advent of multi-processing and distributed
computing, it has been realized that for certain prob-
lems, it is possible to construct a probabilistic al-
gorithm where no deterministic one exists. This is
true especially for problems involving the resolution
of symmetry. In the last decade several such algo-
rithms for synchronization, communication and coor-
dination between parallel programs have appeared in
the literature [FR80; IR81; LR81; CLP84; Her89].

However the gain in simplicity, efficiency and tractabil-

ity is not without its price. An integral part of algo-
rithm design is a proof of correctness and for proba-
bilistic algorithms, one has to sacrifice the traditional
notion of correctness for a quantitative notion - cor-
rectness with a non-zero probability.

In this paper, we address this problem of correct-
ness for probabilistic parallel programs. We distin-
guish between two notions of correctness — defermin-
istic and probabilistic. The former is defined to cap-
ture the traditional notion of absoclute correctness,
regardless of the use of probabilistic transitions. For
the latter, rather than specify a quantitative mea-
sure, we reason about the more qualitative notion -
correctness with probability one. In the sequel, prop-
erties of interest will be classified as determinisiic or
holding with probability one depending on the notion
of correctness used.

Erring on the side of caution, we require safefy
to be a deterministic property. For progress, we are
interested in proving a restricted class of properties,
namely those that are attained with probability one.
Proofs of even such a constrained class of properties
can be quite tenuous and tricky’ ; a suggestion for a
proof principle for such properties first appeared in
[HSP83]. The proof principle was shown to be sound
and complete for a class of finite state programs -
that is programs with a fixed number of processes
and variables ranging over finite domains. It was also

0We use the term deferministic to mean non-probabilistic.

1 For a compelling example of how unintuitive probabilistic
reasoning can be, consider the following example: two coins
are independently tossed ad infinitumn. Is it the case that with
probability one, the system reaches a state in which both coins
show heads 7 For details, see Example 0 in Section 10.

shown that the proofs of such progress properties did
not depend on the actual values of the probabilities
used by the probabilistic transition; the properties
of interest hold for a wide family of probability dis-
tributions. The proof principle provided the basis
for a decision procedure for mechanically determin-
ing whether a program satisfied a progress property
with probability one.

This proof principle has been the essence of sev-
eral proof systems proposed since then. In [LS82], the
authors generalized the temporal propositional logic
of linear time to handle random events as well. In
[HS84], two propositional probabilistic temporal log-
ics based on temporal logics of branching time are
presented. However, they do not address the method-
ological question of designing probabilistic programs.

In [Pnu83], Pnueli introduced the concept of ez-
treme fairness. One of the results of the paper was
that a property that held for all extremely fair compu-
tations would hold with probability one for all proba-
bilistic computations. Thus, extreme fairness is a suf-
ficient condition to be satisfied by a scheduler in exe-
cuting probabilistic programs. A proof rule based on
extreme fairness and linear time temporal logic was
presented. This proof rule has been applied to prove
some difficult algorithms in [Pnu83; PZ84; PZ86].
The proofs illustrating the use of this rule are ex-
tremely complicated. Some of the complexity stems
from the interplay of randomization and parallelism
but there is very little support from the proof-system
to alleviate it.

In [CM88], Chandy and Misra introduce UNITY -
a formalism to aid in the specification and derivation
of parallel algorithms. Their thesis is that a small the-
ory - a computation model and its associated proof
system - is adequate for clearly stating and reasoning
about specifications and developing programs for a
variety of application areas. Our thesis is that prob-
abilistic parallel algorithms can be specified, refined
and derived with the same rigor and elegance that
applies to parallel algorithms. By synthesizing ideas
from [ASP83; Pnu83], the theory of predicate trans-
formers [DS89] and UNITY [CM88] we construct a
theory to reason about probability and parallelism.

In [HS85], the proof principle of [HSP83] is gener-
alized to develop conditions for the gualitative anal-
ysis of infinite slafe probabilistic programs. To the
author’s knowledge, no proof system incorporating
these conditions has yet been proposed.

0.2 Contributions

We begin by presenting a computational model in
which the basic elements of synchrony (modelled as a

multiple assignment), asynchrony (modelled as non-
deterministic choice) and probabilistic choice are cho-
sen as primitives. Unlike state-based computational
models, we do not reason about execution sequences:
we choose to reason about properties of programs. In
our model, a program is a set of probabilistic and de-
terministic statements and an execution of a program
proceeds by repeatedly picking a statement from the
set and executing it, with the caveat that in an infi-
nite execution sequence every statement is executed
infinitely often. While unconditional fairness is re-
quired in the selection of a statement to be executed,
we require ezireme fairness in the selection of an al-
ternative of a probabilistic statement.

By defining the weakest precondition for a prob-
abilistic statement appropriately, we show that the
UNITY relation unless and its associated theory can
be used to reason about the safety properties of prob-
abilistic programs as well. This is in keeping with
our decision to treat all safety properties determinis-
tically. In a like manner, we show how the theory of
the UNITY relations ensures and — (read, leads-10)
can be extended to reason about progress properties
that hold deterministically.

To specify and verify progress properties that hold
with probability one?, the wp-semantics are not ade-
quate. It is necessary to define a new predicate trans-
former wpp (read, weakest probabilistic precondition)
to capture the inherent non-determinacy of the prob-
abilistic construct. The wpp is the dual of wp and
this is reflected in its properties. It turns out that the
predicate transformer wpp alongwith the notion of
exireme fairness provides the right generalization of
wp (or Hoare triples, for that matter). The predicate
wpp .5.X characterizes all possible states such that if
s is executed infinitely often from such a state, then
the infinitely often the execution of s terminates in a
state satisfying X. Furthermore, it provides the basis
for generalizing the relations unless, ensures and —
to new relations upto, entails and = (read, prob-
abilistic leads-10) respectively. Using this small set of
operators, we construct a powerful theory in which
specifications can be clearly stated and refined using
a set of inference rules; furthermore the choice of op-
erators is such that they provide heuristic guidance
in extracting the program text from the final speci-
fication. We have investigated the properties of the
operators in detail. A list of these, along with their
proofs can be found in the appendix.

Although our proof theory is not compositional
with respect to general progress properties, we have
results on deriving basic progress properties of & com-

276 see the necessity of a new operator, see Example 1 in
Section 10

posite probabilistic program from those of its com-
ponents. Specifically, unless, upto, ensures and
entails properties compose in our model. Finally,
we show that our proof system is sound and complete
for proving properties of finite state probabilistic pro-
grams.

Our proof system is novel in that it shows that
probabilistic programs are amenable to the same pro-
cess of specification, refinement and verification as
sequential and parallel programs. We illustrate our
proof system by examples from random walk and
(two process) mutual exclusion problems. Further-
more, our proof system allows both probabilistic and
deterministic properties to be manipulated within a
unified framework. This allows one to reuse proofs
and reason in a compositional manner. The most
complicated example that we have proved in our sys-
tem is the paradigm of eventual determinism [Rao90].
Till now, no proof system has aided the design and de-
velopment of probabilistic programs. Proof rules are
baroque and proofs are conveyed by pictures. Though
intuitively appealing, this error-prone procedure has
been known to fail. Furthermore, pictures can nei-
ther be manipulated nor generalized. For example, it
is trivial to generalize the proof of our 2-process mu-
tual exclusion algorithm to an N-process algorithm.

0.3 Plan of Paper

After a short introduction to our notation and pre-
liminary theorems in Section 1, we present the for-
mat of a deterministic and a probabilistic statement
and their wp-semantics in Section 2. Several prop-
erties of the wp of these statements are derived. In
Section 3, we use these properties of wp to extend
the UNITY operator unless to reason about safety
properties of probabilistic programs. Section 4 sum-
marizes the progress operators of UNITY and shows
how the same operators can be used to reason about
deterministic progress properties of probabilistic pro-
grams. Section 5 introduces the predicate transformer
wpp. We present several theorems relating the wp
and wpp in Section 6. In Section 7, we define oper-
ators to reason about progress properties which hold
with probability one. Section 8 contains an exposition
on program composition. In Section 9, we address
soundness and completeness issues for our logic. We
illustrate the application of our theory by classic ex-
amples from random walks and two process mutual
exclusion in Section 10.

In this paper, all theorems have been proved in
the finest detail. In the interests of brevity, all proofs
have been collected together in an appendix.

1 Notation and Terminology

We will use the following notational conventions: the
expression

(Qz : rx : ta)

where Q € {V,3}, denotes quantification over all z.z
for which satisfies r.z. We call z the dummy, r.z
the range and f.z the term of the quantification.
We adopt the convention that all formulae are quan-
tified over all free variables occurring in them (these
are variables that are neither dummies nor program
variables).

Universal quantification over all program variables
is denoted by surrounding a predicate by square brack-
ets ([], read: everywhere). This unary operator has
all the properties of universal quantification over a
non-empty range. For a detailed discussion of this
notation the reader is referred to [Dijal.

For an assignment statement of the form T =
we denote the predicate wp.“T := . X by {Z :
e X.

Next we define a number of junctivity properties
for our predicate transformers. The following defini-
tions and theorems have been taken from [DS89].

€,

Definition 0 A predicaie transformer f is said 1o be
conjunctive over a bag of predicates V if and only if

fVX : XeV : X)=(¥X:XeV : fX)]

Definition 1 A predicaie transformer f is said fo be
disjunctive over a bag of predicates V if and only if

FEX:XeV:X)={3X:XeV: fX)]

In other words, the conjunctivity of f describes the
extent to which f distributes over umiversal quan-
tification and its disjunctivity describes how it dis-
tributes over existential quantification. The less re-
stricted the V, the stronger the type of junctivity®.
Accordingly, we can distinguish the following types
of junctivity:

e universally junciive : junctive over all V.

& positively junciive : junctive over all non-empty

V.

e denumerably junciive : junctive over all non-
empty V with denumerably many distinct pred-
icates.

e finitely junctive : junctive over all non-empty V
with a finite number of distinct predicates.

3WWe use the term junctive and its noun form to stand for
either conjunctive or disjunciive.

e and-continuous: conjunctive over all non-empty
V, the distinct predicates of which can be or-
dered as a monotonic sequence.

e or-continuous : disjunctive over all non-empty
V. the distinct predicates of which can be or-
dered as a monotonic sequence.

e monoifonic : junctive over all non-empty V, the
distinct predicates of which can be ordered as a
monotonic sequence of finite length.

The various types of junctivity are related by the fol-
lowing theorem.

Theorem 0 Relating Junctivity Properiies :

@

(universally junctivity = posilive Junctivily)

L

(positive junctivity = denumerable junctivity)

@

(denumerable conjunctivity = finile conjunctiv-
ity and and-continuily)

o (denumerable disjunctivity = finite disjunctiv-
ity and or-continuity)

e Both finite conjunctivity and and-continuous =
monolonicily

e Both finite disjunctivily and or-conlinuily =
monotonicily

Theorem 1 The weakest precondition of a multiple
assignment statement is universally conjunciive and
universally disjunciive.

2 The Computational Model

Our computational model is the same as that of UNITY.

Our programs consist of three parts: a collection of
variable declarations, a set of initial conditions and
a finite set of statements. As in UNITY, we call
these sections declare, initially and assign respec-
tively. In addition to the conditional multiple assign-
ment statements that UNITY allows in the assign
section, we allow condifional probabilistic assignment
statements as well.

From an operational point of view, an execution
of our program starts from any state that satisfies the
initial conditions and proceeds by repeatedly select-
ing any statement from the assign set and execut-
ing it, with the constraint that in an infinite execu-
tion, each statement is picked infinitely often. This
is the only notion of fairness - unconditional fairness
- that is required in the selection of statements. We

do not distinguish between deterministic and proba-
bilistic statements at this level.

We now describe the format of the statements and
their weakest precondition (wp) semantics.

2.1 Deterministic Statements

The only deterministic statement that we allow is the
conditional multiple assignment(CMA). This can be
informally presented as:

CMA & T =

e.0 if b0~
€1 if b1~

Effﬁifb@-m

A conditional multiple assignment, causes assignment
of values from any list €. whose associated boolean
expression b.7 is true (The integer variable i can range
over the closed interval 0 to & — 1). If none of the
boolean expressions is true, then the corresponding
variables are left unchanged. More importantly, if
more than one boolean expression is true, then all
the corresponding expression lists must have the same
value. This is required to guarantee that every as-
signment statement is deterministic. The assignment
succeeds only if the numbers and types of variables
match the corresponding expressions.

Formally, the weakest precondition {(wp) seman-
tics of a conditional multiple assignment is defined as
follows. The range of 1 is from 0 to k£ ~ 1, inclusive.

[wp CMAX =
(Vi bi = {T:=ei}X) A({Vi=bi) = X)]

Theorem 2 The predicate transformer wp . CM A is
yniversally conjunciive.

To prove the disjunctivity of wp .C M A4 requires some
more groundwork., We have to make use of the fact
that the statement is determinisiic, that is for all
boolean expressions that evaluate to true, the ex-
pressions have the same value. Using this notion
of determinacy, we can reformulate the definition of
wp .CM A to show that,

Theorem 3 The predicaie transformer wp .UM A 13
yniversally disjunciive.

The proof of Theorem 3 is motivated by a similiar
proof for the weakest precondition of an if-fi state-
ment with disjoint guards, given in [DS89].

2.2 Probabilistic Statements

The only probabilistic statement that we allow is the
conditional probabilistic assignment statement (CPA).
This can be informally presented as:

CPA = T=¢0|el| -]elk—1) if b

A conditional probabilistic assignment is executed as
follows. The boolean condition b is evaluated and if
it is true, a k-sided coin is tossed. The outcome of
the coin toss determines the list of expressions €., to
be assigned to the list of variables . Thus a CPA
can give rise to one of k different assignments. Each
of these possible assignments will be called a mode of
the CPA. Notice that we do not attach a probability
to each mode; we only require that each mode have a
non-zero probability of occurrence and that the sum
of probabilities over all the modes equal one.

We now formalize the notion of fairness required
in selecting the mode to be executed (or equivalently,
the fairness required in tossing the coin). Let X be
an arbitrary predicate over program variables. An
execution, o, is extremely-fair with respect to X if for
all probabilistic statements CPA, if CPA s executed
infinitely often from states of o satisfying X, then
every mode of the CPA is executed infinitely often
from states of ¢ satisfying X.

An execution is exiremely fair if it is extremely fair
with respect to all first order expressible predicates
X.

In [Pnu83], Pnueli established that to prove that
a property holds with probability one over all exe-
cutions, it is sufficient to show that it holds over all
extremely-fair executions. Thus by assuming that the
execution of the probabilistic statements is extremely
fair in our computational model, we are assured by
Prueli’s result, that all properties hold with proba-
bility one.

To recapitulate, our computational model requires
two notions of fairness — uneonditional fairnessin the
selection of statements to be executed and ezireme
fairness in the execution of probabilistic statements.

Formally, the weakest precondition (wp) seman-
tics of a conditional probabilistic assignment is de-
fined as:

[wp CPAX =
(b= (Vi {T =i} X)) A (-b= X)]
We now investigate the junctivity properties of this
predicate transformer.

Theorem 4 The predicaie transformer wp .CPA 1is
universally conjunciive.

Theorem 5 The predicate transformer wp (P A 13
or-confinuous. '

Theorem 6 The predicale transformer wp CFPA 15
not finitely disjunctive.

2.3 Properties of wp

Based on the results of the previous two sections, we
have

Theorem 7 For all siatemenis s, Wp.s 1s univer-
sally conjunciive and or-continuous. However. wp.s
s not finitely disjunctive.

Corollary O For all statements s,
[wp.s.true = true)

Corollary 1 (Law of the Ezcluded Miracle) For all
statementis s,

[wp .s.false = false]

3 Reasoning about Safety

In this section, our aim is to define and develop a the-
ory to reason about the safety properties of a proba-
bilistic program. As emphasized in the introduction,
we require safety properties to hold deterministically.
Since a UNITY program is a special case of a prob-
abilistic program, we would like the relation to be a
generalization of UNITY relation for safety, namely.
the unless. By doing so, we hope to draw on the
extensive repertoire of theorems of unless that have
already been discovered.

In UNITY, the unless relation is defined as follows :

(X unless V) = (Vs 2 [X A=Y = wp.s.(X VY)))

|

For this definition of unless to satisfy the theory of
unless as developed in UNITY, it is sufficient for
the predicate transformer wp .s to meet the following
conditions.

1. Truth-preserving
[wp .s.irue = true)
2. Monotonicity
X=Y]=[wp.sX=wp.sY]
3. Semi-finite conjunctivity

[wp.s.X Awp.s.Y = wp.s(XAY)]

4. Semi-universal conjunctivity

(Vi wp.s.(X.0)) = wp.s.(Vi: X3
From Corollary 0, the predicate transformer wp.s
is truth-preserving for all the statements that we al-
low in our probabilistic programs. By Theorem 7, it
is universally conjunctive and hence satisfies mono-
tonicity (by Theorem 0), semi-finite conjunctivity and
semi-universal conjunctivity as well. Thus we can
use the unless relation and its theory, as developed
in UNITY to reason about the safety properties of
probabilistic programs as well.

Remark: It is interesting to note that given that wp .s
takes a post-condition as an argument to produce a
pre-condition and that in a theory of unless, we are
interested in combining a set of unless properties to
produce a new one, the direction of the implication
sign in the semi-junctivity property of interest is al-

ready determined. (End of Remark)

4 TUNITY and Progress: ensures

and —

At times, it is necessary to prove deterministic progress
properties of probabilistic programs. In this section,
we extend the machinery of UNITY to handle this.

Basic progress properties in UNITY are specified
using the ensures relation. This is defined as

(X ensures Y) =

(X unless Y)A (3s : [X A=Y = wp.s.Y]).

For this definition of ensures to satisfy the theory of
ensures as developed in UNITY, it is sufficient for

the predicate transformer wp .s to meet the following
conditions.

1. Law of the Excluded Miracle
[wp.s.false = false]
2. Monotonicity

[X = Y]=[wp.s.X = wp.sY]

3. Semi-finite conjunctivity

[wp.s.X Awp.s.Y = wp .s.(X AY)]

By Corollary 1, the predicate transformer wp.s sat-
isfies the Law of the Excluded Miracle for all the

statements that we allow in our probabilistic pro-
grams. By Theorem 7, it is universally conjunctive
and hence satisfies the conditions of monotonicity (by
Theorem 0) and semi-finite conjunctivity as well. Thus
we can use the ensures relation and its theory as de-
veloped in UNITY to reason about ensures proper-
ties of our programs.

General progress properties in UNITY are defined
using the — (read, leads to). The + relation 1s de-
fined to be the strongest relation satisfying the fol-
lowing three conditions.

¢ (XensuresY) = (X —7Y)
o (X = VIA(Y —2Z) = (X — 2Z)
e (VX : XeW: : X —Y)

= (X : X eW: : X)—Y7)

The theorems about — in [CM88] depend on the
properties of the unless, ensures and the definition
of —. We have shown that the properties of unless
and ensures continue to hold even with the addi-
tion of probabilistic statements to our computational
model. Thus retaining the UNITY definition of w,
we can use the theory developed in [CM88] to rea-
son about the deterministic progress properties of our
probabilistic programs.

The theory of unless relation is sufficient to rea-
son about safety properties of probabilistic programs.
However the notions of ensures and ~— are inade-
quate to reason about progress properties that hold
with probability one. They can be used to prove
progress properties that have nothing to do with prob-
abilities. That is there exist programs for which X v~
Y but X leads-to Y with probability one. This is
illustrated by the first example in Section 10.

In the next three sections, we show how each of the
unless, ensures and + can be generalized to reason
effectively about properties that hold with probability
one.

5 The weakest probabilistic pre-
condition : wpp

The predicate transformer wp allowed us to define
safety properties of probabilistic programs. For defin-
ing progress properties, it turns out that wp .s 18 too
restrictive. Intuitively, wp .CP A requires all modes
of the CP A to behave in the same manner, whereas
for progress, it is enough if there erists a single helpful
mode that establishes a desired property. This weaker
notion is nicely captured by the predicate transformer

wpp (read, the weakest probabilistic precondition).

The predicate transformer wpp is defined as follows
[wpp . CMAX = wp.CMA.X]

(wpp.CPA.X = (b= (3i :: {T := T8} X))A(=b = X)]

For deterministic statements, wpp is the same as wp
and thus enjoys the same properties. The only dif-
ference between wp.CFPA and wpp .CFPA is in the
presence of an existential quantifier in place of a uni-
versal one. In this sense, wpp.CPA is the dual of
wp .CPA and this is reflected in its properties.

Theorem 8 The predicate transformer wpp . CPA
s and-coniinuous.

Theorem 9 The predicate iransformer wpp . CPA
1s not finitely conjunciive.

Theorem 10 The predicate iransformer wpp .CPA
is universally disjunctive.

Remark: In introducing the notion of the weakes?
precondition, Dijkstra defines wp .s.X as characteriz-
ing all possible states, such that if s is executed from
a state satisfying wp.s.X, then the execution of s
terminates in a state in which X 1is true.

The predicate transformer wpp.s.X considered
alongwith the notion of extreme fairness generalizes
this idea. It characterizes all possible states such that
if s is executed infinitely often from a state satisfy-
ing wpp .s.X, then infinitely often the execution of
s terminates in a state in which X is true. (End of
Remark)

From the definition of wpp .s, Theorem 2 and 3 and
the above it follows that

Theorem 11 For all statementis s, wWpp .s s univer-
sally disjunctive and and-continuous. However it is
not finitely conjunctive.

Corollary 2 For all siaiements s,
[wpp .s.true = true]
Corollary 3 For all statemenis s,

[wpp .s.false = false]

6 Relating wp and wpp

In this section, we present theorems relating the pred-
icate transformers wp and wpp.

Theorem 12 For all statementis s,
[wp.s. X = wpp .s.X]
Theorem 13 For all statements s,
[wp.s. X Awpp.sY = wpp.s.{X AT)]
Theorem 14 For all statemenis s,

[wp s (XVY)= wp.s. X Vwpp.sY]

7 Reasoning about Progress

In this section, we develop a relation to reason about
progress with probability one. The predicate trans-
former, wpp allows us to generalize the UNITY re-
lations unless to upto and ensures to entails. We
then introduce the ~ as the reflexive, transitive clo-
sure of entails. These relations provide the basis for
define = — the probabilistic analog of the —.

7.1 upto

We begin by generalizing the relation unless. Con-
sider the definition of unless.

(X unless Y) = (Vs = [A A-Y = wp .s.(X VTY)))

We use Theorem 14 to weaken this definition to ob-
tain the definition of upto.

(X uptoY) = (Vs = [XA=Y = wp 5. XVwpp .5.V])

Intuitively, X upto Y captures the following idea :
If X holds at any peint during the execution of a
program, then either

1. Y never holds and X continues to hold forever,
or

2. YV holds eventually (it may hold initially when
X holds) and X continues to hold until ¥ holds,
or

3. X continues to hold until =X holds eventually;
the transition from X to —X being made by a
statement that could have taken it to a state
satisfying ¥.

The interesting {third) case arises when a U P A is ex-
ecuted in a state satisfying X A =Y. Suppose not all
modes of the CP A when executed lead to a state sat-
isfying X and furthermore there exists a mode which
will take it to a state satisfying ¥. Since there are
no guarantees on which mode will be executed, exe-
cution of the U P A can lead to a state satisfying - X,

even though there exists a mode that can take it to
Y.

One of the consequences of this definition is that
in general upto includes unless and if all statements
are deterministic (i.e. conditional multiple assign-
ments) the definition of upto reduces to unless.

Theorem 15 The upto is a generalization of unless.

(X unless V) = (X upto V')

Furthermore for a program consisting of only deter-
ministic slatements,

(X unless V) = (X uptoY)

The relation upto is weaker than unless and accord-
ingly it enjoys a smaller set of properties. Many of
the properties of unless are not inherited by upto.
This is not a problem as upto is almost never used
for specifications; its utility lies in defining operators
for progress. There will be few manipulations involv-
ing upto. A number of properties of upto have been
investigated and appear in the appendix.

7.2 entails

We propose a new relation entails to generalize ensures.

Consider the definition of ensures.

{X ensures Y} =

(X unless Y) A (3s : [X A=Y = wp .s.Y]).
We weaken this definition to obtain the definition of
entails.

(X entails Y) =

(X uptoY) A {(3s = [X A=Y = wpp .s.Y]).

The intuitive meaning of {X entails Y) is that if X
is infinitely often true in a computation, then Y is
infinitely often true. The claim that ¥ is infinitely
often true is justified as follows. Let a X-state be a
state satisfying predicate X. Suppose X A Y holds
at some point in the execution of the program. By the
first conjunct the only way a program can reach a = X-
state, is to execute a statement that may lead foa Y-
state. Note that the second conjunct assures us of the
existence of a statement s, whose execution ina (X A
—Y)-state, may lead {0 2 Y-state. By unconditional
fairness, s must be executed, causing the program to
transit to a — X -state. If X is infinitely often true then
each time the transition from a X-state to a =X -state
is made by a statement whose execution may lead toa

.

Y-state. From the finiteness of the set of statemen
some statement ? whose execution may lead to
state is executed infinitely often from X-states. By
extreme fairness, every mode of 7 is executed infinitely
often from X-states. In particular, the mode leading
to a Y-state is executed infinitely often. It follows
that Y is infinitely often true.

The ideas introduced in our computational model
- unconditional fairness and extreme fairness - were
all intended to justify this definition of the entails re-
lation. The relation entails plays an important role
in the design of probabilistic programs. Besides be-
ing the keystone of the proof theory of progress prop-
erties, it has a methodological significance as well.
In extracting a program from a specification. each
entails property can usually be translated to a sin-
gle probabilistic statement. This will be illustrated
by examples in a later section.

ts,
Y-

Theorem 16 The entails generalizes ensures
(X ensures Y) = (X entails V)

Furthermore for a program consisting only of defer-
ministic statements,

(X ensures Y) = (X entails V)

Several properties of entails have been investigated
and appear in the appendix.

7.3 The relation ~

The relation entails is tied closely to the program.
We abstract from this by defining the relation ~ to
be the reflexive, transitive closure of entails.

e (X entalls V) = (X ~Y)
e (X~ YIA(Y ~ Z) = (X~ 2)

Properties of the ~» relation have been investigated
and appear in the appendix.

7.4 Probabilistic Leadsto: =

In this paper, we shall express all probabilistic progress
properties using the = (read, probabilistic leads-to).
A program has the property X = Y if once X be-
comes true, Y will become true with probability one.
The k= is defined to be the strongest relation satis-
fying the following three axioms.

e (Xunless VY A(X ~Y)= (X =1)
s (X YINYE=2)= X = 2)
e (VXuXE>2)= (X X)) = 2)

According to the first axiom, if X is true at any point
in the execution of a program, by X unless Y it re-
mains true indefinitely or until ¥ becomes true. In
the former case, X is infinitely often true and by
X ~» Y, Y is infinitely often true. In either case,
Y becomes true. The second axiom ensures that F=>
is transitively closed and the third axiom ensures that
E= is disjunctively closed.

Probabilistic leads-to is a generalization of the UNITY
jeads-to. That is,

Theorem 17 (X — Y) = (X = 7)

The probabilistic leads-to (=) enjoys all the prop-
erties of —. Proofs of these properties are given in
the appendix.

It is possible to formulate an induction principle
over well-founded sets for the = It is very similiar
to the induction principle for — and will appear in
the paper.

8 On program composition

We use the same notions of program composition as
UNITY, namely, union and superposition.

8.1 Composition by union

The union of two programs is the union of the sets
of statements in the assign sections of the two pro-
grams. The union of programs F and G is written
as F [G. Like set union, it is a symmetric and
associative operator. We assume that there are no
inconsistencies in the declarations and initializations
of the variables in the two programs.

The study of program composition by union is facili-
tated by the the union theorem.

Theorem 18 Union Theorem:

e (XunlessY in ' A X unless ¥ in G)
(X unlessY in F [G)

il

o (X ensuresY in F A X unless ¥ in G) Vv
(X unless Y in F A X ensuresY in G)
= (X ensuresY in F [G)

e (X upto Y in F A X uptoY in G) =
(X uptoY in F | G)

e (X entails Y in F A X upto ¥ in Gy Vv
(X uptoY in F A X entails ¥ in G)
= (XentailsY in F [G)

e (X entailsY in F A X unless Y in Gy v
(X unless Y in ' A X entails Y in G
= (X entails Y in F [G)

Several corollaries of these theorems are presented in
the appendix.

8.2 Conditional Properties

The union theorem illustrates that basic progress prop-
erties compose, that is, the property holds of the com-
posite program if its holds of the components. This
is not the case with ~», — and =

To address this shortcoming, we resort to con di-
tional properties as in UNITY. All program proper-
ties seen thusfar have been expressed using one or
more relations — unless, ensures, upto, entails;
these properties are called unconditional properties.
A conditional property has two parts — a hypothe-
sis and @ conclusion, each of which is a set of un-
conditional properties. Both the hypothesis and the
conclusion can be properties of the F, GorF' [G,
where G is a generic program. The meaning of a con-
ditional property is as follows : Given the hypothesis
as a permise, the conclusion can be proven from the
text or specificatin of F. Thus in proving proper-
ties, a conditional property is used as an inference
rule. The interested reader is referred to [CM88] for
further elucidation.

8.3 Superposition

The second structuring operator that we employ in
our proofs is the superposiiion operator. This is ex-
actly the same operator as in UNITY. We recapitu-
late the salient details.

Unlike program union, program superposition is
an asymmetric operator. Given an underlying pro-
gram (whose variables will be called underlying vari-
ables), superposition allows it to be transformed by
the application of the following two rules.

1. Augmentation Rule. A statement s in the un-
derlying program may be transformed to the
statement s||r where r is a statement that does
not assign to the underlying variables and 1s ex-
ecuted in synchrony with s.

9. Restricted Union Rule. A statement r may be
added to the underlying program provided that
r does not assign to the underlying variables.

By adhering to the discipline of superposition, it is
ensured that every property of the underlying pro-
gram is a property of the transformed program. This
is also called the superposition theorem.

9 Comments on Soundness and
Completeness

Informal arguments for the soundness of our logic
have been presented alongwith the introduction of
each operator. In this section, we informally argue
that our logic is complete for finite state programs.
This is based on the results introduced in [HSP83].

Let T be the set of states of the program. Let s be
an initial state and let X(X C I) be the set of final
states of the program, with s € X. Define I as the
set of all states that can be reached (with a non-zero
probability) from s before a state in X is reached,
using any finite sequence of processes. I includes s
and is disjoint from X. Furthermore, let A be the
set of processes of the program and let P, J be the
probability of process k taking the system frem state
i to any state in set J. One of the main results of
[HSPSBJ is that assuming s, X, £ and I as above and
assuming Iis finite, the following two conditions are
equivalent.

el s = X

® There exists a decomposition of I into disjoint

sets I, I, ..., I such that, if we put J, =
U ,m = 0,1, ...,n, with Iy = X, then
for each m = 1,2,...,n we have the following:

— Foreachi € Ly, k € K, if Pfjm_l
then Pf; = 1.

— There exists ¥ = k(m) € K such that, for
eachi € Im, PF, _ >0

= 0,

The first condition says that if process k can transfer
the system from a state in 7, to a state outside I,
then some k-transitions (with non-zero probability)
move the system “down” the chain {I.}, towards the
goal Io; the second condition ensures the existence of
at least one process that would do this for all states
in I,
Thus given that some progress property holds in
a model with probability one, we are guaranteed that
the chain {I,} exists. Clearly, I unless I holds by
the definition of / and unless. For each element of
the chain, we can show I, entails J,.1. By using
transitivity of ~ we can show, I, ~ Ip. Using finite
dzsgunctlon property of ~, one can conclude that I~
. The proof follows from the unless property, the
~ property and the definition of E=>.

10 Examples

Example 0: (An Unintuitive Example)

w

To show how unintuitive, reasoning about probabilis-
tic algorithms can be, consider the following program.

declare z,y : {heads, tails)
assign z = heads | tails

I v := heads|tails
end

It can be shown that
true b= (z = heads) A {y = heads)

This is because it is possible for the execution of the
program to be unconditionally fair with respect to the
selection of the coin to be tossed and extremely fair
in the tossing of the coins, without reaching a state in
which both coins turn up heads. Abbreviating heads
by H and tails by T, consider the following segrment
o of state transformations: {the state is denoted by
the ordered pair giving the values of z and y).

(H,T) “=2ee® (g, 1) "2 (T, T)

:_tazls (T T) y: -heads (H) Y= hsads

(T H} :_.tazls (T T a:.-.m:is (T T) z..heads {H T}
The sequence ¢ iterated indefinitely gives an execu-
tion sequence which is unconditionally fair and ez-
tremely fair. One way of ensuring that a state satis-
fying [(z = heads) A (y = heads)] is reached is to use
extreme fairness in the scheduling of the statements,
rather than unconditional fairness, as illustrated by
the program below. This also illustrates the power of
extreme fairness over unconditional fairness.

declare z,y:(H,T)
assign = HHE|HT|T.HT.T
end

(End of Example)

Example 1: (From [Pnu83])

Consider the UNITY program :

declare b integer
initially b=10
assign b:=b+1 i (bmod3)

IAIA

I bi=b+2 if (bmod3)
end

For this program, it is not the case that
true = (bmod3 = 2)

Consider the execution sequence in which the two
statements are alternately executed, leading to the

following sequence of values for b
0,1,3,4,6,7,...

This execution sequence is unconditionally fair with
respect to the two statements but no state of the ex-
ecution satisfies (hmod3 = 2). Thus the program
does not satisfy the progress property deterministi-
cally.

Now consider the probabilistic program :

declare b :integer

initially b=0

assign bo=b+1]b+2 if (bmodd) <1
end

We show that the required property is achieved with
probability one, that is

true = (bmod3 = 2)

By applying the definition of wpp .s it can be shown
that wpp .5.((bmod3) = 2)] evaluates to true. Thus

(3s = [true A—(bmod 3 = 2))
= wpp .s.((bmod 3) = 2)])
= {predicate calculus}
[~(bmod3 = 2) = irue)
= {predicate calculus}
true

0. (3s:: [true A=(bmod3 =2) =
wpp .s.(bmod 3 = 2)])
From above
1. true upto (bmod3 = 2)
Tautology for upto
9. true entails (bmod3 = 2)
JFrom 0, 1 and the definition of entails
3. true unless (bmod3 = 2)
,Tautology for unless
4. true = (bmod3 = 2)
JFrom 2,3 and the definition of =

(End of Example)

Example 2: (Random walk?* problems)

At any instant of time a particle inhabits one of the
integer points of the real line. At time 0, it starts
at the specified point and at each subsequent “clock-
tick”, it moves from its current position to the new
position according to the following rule: with proba-
bility p it moves one step to the right and with prob-
ability ¢ = 1 — p, it moves one step to the left; the
moves are independent of each other.

4In general, random walks can be in many dimensions and
the step size can be arbitrary. For ease of exposition we restrict
ourselves to one dimension and a step size of 1.

10

For the random walk problem with no barriers on
the real line, it is possible to show that the particle
returns to 0 with probability one only if p= ¢. This
is also called the symmetric random walk problem.
Although this property holds with probability one, it
is not possible to prove it in our proof system. This
is because the property depends on the values of the
probabilities of the transition, ie p=gq.

There are a class of random walk problems whose
progress properties are independent of the values of
the probabilities of the transition. As our first ex-
ample, we consider the same problem alongwith two
absorbing barriers at 0 and M. This means that that
the instant, the particle reaches a barrier it is trapped.
The movement of the particle is modelled by the fol-
lowing program.

declare z:[0...M]
assign e=z—1lz+1 if (0<zhz<M)
end

For this program we prove that
true == (2 = 0) V (z = M)
We assume, without proof, that
invariant (0 < z)A(z < M)
Assume that the range of k is given by 0 < knk < M.

0. (Vk:(z=kF)entails (z =k~)

,From the program text

1. (Vku(z=k)~(z=0))
JTransitivity of ~

2. (k= (z=k)) ~(z=0)
,Finite disjunction for ~

3. Bku(z=k)~(x=M)
,Proof similiar to 2

4. Gku(z=k)~(z=0Vv(z=M)

,Finite Disjunction using 2 and 3
5. (:L‘:O)\/(xzM')M(i:(})\/(;z::f\f}
Jmplication for ~»

6. {31:::(:c:k))\/(x:())\/(x:}vf}v(x::O)\/{x:}x[)

,Disjunction of 4 and 5
true ~ (z = 0) V{z = M)
,predicate calculus and substitution axiom
,using invariant above
8. true unless (z = 0)V (z = M)
[Tautology for unless
9. truebE=>(z=0)V(z=M)
JFrom 7, 8 and the definition of =

3

As our second example illustrating random walk, con-
sider two reflecting barriers to be placed at 0 and M,
This means that when the particle reaches the bar-
rier at 0 (or M) it bounces back to 1 {or AL — I

with probability one. The movement of the particle
is modelled by the following program.

declare z:[0...M]

assign r=z—1led+l if O<zhrz< M)
| z:=1 if (z=10)
I z:=M-1 if (z=M)

end

For this program, it is easy to show that
invariant (0 <z)A{e < M)

The range of k is assumed to be 0 < kAR <M. In
a manner similiar to the first, we show that

true k= (2 = 0)

As our third example we consider the case of an ab-
sorbing barrier at 0 and a reflecting barrier at M. The
movement of the particle would be modelled by the
following program.

declare z:[0...M]

assign r=e—1]lz+1 i O<zAz<M)
[z=M-1if (z=M)

end

For this program, we assuine, without proof, that
invariant (0 <z)A(zx < M)

The range of k is assumed to be 0 <k Ak < M. In
a manner similiar to the first, we show that

true = (z = 0)
(End of Example)

Example 3: (Two process mutual exclusion)

In this example, we give a brief overview of specifi-
cation refinement and program composition. Due to
constraints of space, we only illustrate the first re-
finernent and indicate what the final program looks
like. The example is designed to give a flavor of proof
machinery at work.

Specifically, we consider the problem of mutual
exclusion between two processes — u, v . Each process
« has a variable u.dine, which can take one of three
values t, h or e, corresponding to thinking, hungry
or eating. We abbreviate by u.t, w.h and u.e, the
expressions u.dine = 1, u.dine = h and u.dine =
e. We assume that every thinking process eventually
becomes hungry. A hungry process remains hungry
£ill it eats. An eating process eats for a finite time
and then transits to thinking.

It is required to transform the program user toa
program muiez where mutexr = user’ | G. Program
user’ is obtained from user by superposition alone.

The following properties constitute a first refine-
ment. They can be refined further and the final spec-
ification can be proven from the program text using
the superposition and union thecrems.

e invariant u.e = (coin = u)
e (coin = v) = (coin = u)
e w.hA(coin = u) => u.e

The first property guarantees mutual exclusion. The
second and third property guarantee starvation free-
dom.

0. (coin = v) = (coin = u)
,From spec
1. w.hunlessu.e
,Property of mutex
2. (u.hAcoin=v) = (u.h Acoin =u)Vu.e
,PSP Theorem of = on 0 and 1
3. (uhAcoin=v)E=>ue
,Cancellation on 2 and second property

4. uw.h k= ue

,Disjunction on 3 and second property

The program follows. declare coin : (u,v)
initially u.dine, v.dine := £, ¢
transform {{o user’}

all statements of user so that the whenever w.dine
is set to i,
coin 1= u v
add
([v udine == ¢ if whAnh
(coin = u))
end

{End of Example)

11 Acknowledgement

1 am grateful to Professor Jayadev Misra for ad vising
and supporting me. Thanks are also due to Cha-
ranjit Jutla and Sumit Ganguly for suggestions and
criticisms,

References

[BGS88]

[CLP84]

[CM88]

[Dija)

[Dijb]

[DS89]

[FR80]

[Her89)

[HS84]

[HS85]

[HSP83]

[IR81]

Shaji Bhaskar, Rajive Gupta, and Scott
Smolka. Probabilistic algorithms: A sur-
vey. Private Communication, 1988.

S. Cohen, Daniel Lehmann, and Amir

Prueli. Symmetric and economic solution
to the mutual exclusion problem in dis-
tributed systems. Theoretical Computer
cience, 34:215-226, 1984,

K. Mani Chandy and Jayadev Misra.
Parallel Program Design: A Foundation.
Addison-Wesley, 1988.

Edsger W. Dijkstra. On structures. EWD
928.

Edsger W. Dijkstra. On the properties of
our predicate transformers. EWD 1001.

Edsger W. Dijkstra and Carel S. Scholten.
Predicate Calculus and Program Seman-
tics. Springer-Verlag, 1989.

Nissim Francez and M. Rodeh. A dis-
tributed data type implemented by a prob-
abilistic communication scheme. In Pro-
ceedings of the 21st Symposiun on the
Foundations of Computer Science, pages
373-379, 1980.

Ted Herman. Probabilistic
self-stabilization. Private Communication,

1989.

Sergiu Hart and Micha Sharir. Probabilis-
tic propositional temporal logics. In Pro-
ceedings of the 16th Symposium on Theory
of Computing, pages 1-13, 1984,

Sergiu Hart and Micha Sharir. Concurrent
probabilistic programs, or: How to sched-
ule if you must. Siam Journal of Comput-
ing, 14:991-1012, 1985.

Sergiu Hart, Micha Sharir, and Amir
Pnueli. Termination of probabilistic con-
current programs. ACM Transactions
on Programming Languages and Sysiems,
5:356-380, 1983.

A. Itai and M. Rodeh. The lord of the ring
or probabilistic methods for breaking sym-
metry in distributive networks. Technical
Report RJ 3110, IBM, San Jose, 1981,

o
o]

[LR81]

[L582]

[Pnus3]

[PZ84]

[PZ86]

[Rab76]

[Rab82a]

[Rab82b]

[Rao90]

Daniel Lehmann and Michael O. Rabin.
On the advantages of free choice: A sym-
metric and fully distributed solution to the
dining philosophers problem (extended ab-
stract). In Conference Record of the &t
Annuael ACM Symposium on Principles of
Programming Languages, pages 133-138,

Williamsburg, VA, 1981,

Daniel Lehmann and S. Shelah. Reason-

ing with time and chance. Information and
Control, 53:165-190, 1982.

Amir Pnueli. On the extremely fair treat-
ment of probabilistic algorithms. In Pro-
ceedings of the 15th Annuval Symposium on
the Theory of Compuling, pages 278-290,
1983.

Amir Pnueli and Lenore Zuck. Verification
of multiprocess probabilistic protocols. In
Proceedings of the 8rd Annual ACM Sym-
posium on Principles of Distributed Com-
puting, pages 12-27, 1984.

Amir Pnueli and Lenore Zuck. Verifica-
tion of multiprocess protocols. Distrzbuled
Computing, 1:53-72, 1986.

Michael O. Rabin. Algorithms and Com-
plezity, chapter Probabilistic Algorithms,
pages 21-40. Academic Press, New York,
1976.

Michael O. Rabin. The choice coordina-
tion problem. Acia Informatica, 17:121~
134, 1082,

Michael O. Rabin. N process synchroniza-
tion with a 4 logs n-valued shared variable.
J. Comp. Sysi. Sciences, 25:66-T5, 1982.

Josyula R. Rao. Eventual determinism:
Using probabilistic means to achieve deter-
ministic ends. Submitted to the 9th An-
nual ACM Symposium on Principles of Dis-
tributed Computing, 1990.

12 Appendix

12.1 Proofs of Theorems: Section 3-7

Theorem 2 The predicate transformer wp .CM A is universally conjunctive.
Proof (of 2}

wp CMANX : XeW: X)
= {Definition of wp.CM A; omitting ranges}

(Vi bi = {F = et} (VX 2 X)) A({Vi—ba) = (VX = X))
= {universal conjunctivity of multiple assignment}

(Vi bi = (VX o {T = e} X) A (Vi nbid) = (VX 2 X))
= { = over V twice}

(Vi (VX bt = {T:= e} X)) A (VX o (Vi =bid) = X))
= {Interchange quantification}

(VX (Viubi = {T:= e} XN A (VX = (Vi —bi) = X))
= {V distributes over A}

(VX o (Viubi = {T= e} X) A (Vi -bid) = X))
= {Definition of wp .CM 4}

(VX wp CMAX)

(End of Proof)

The following Lemmas and their proofs are from [DS89].

Lemma 0 We have for any b and R,
(B bid)= (Vihi: Ri)= (3i:bi: R}
Proof (of 0): We observe for any b and R,

(Vi:bi: Ri)y= (3i:bi:Ri)
= {Predicate Calculus and de Morgan}
i:bi:~RA) V(i bi: R
= {Combine the terms}
(3i :bi:~RiV Rad)
= {Excluded Middle and Trading}
(30 = b

{End of Proof)

Lemma 1 We have for any b and R,
(Vi:binbj:Ri=Rj)y= ((3i:bi:Ri)= (Vj:bj:R.j))]
Proof (of 1): We observe for any b and R,
(Fi:bi:Ri)y= (Vj:b.5:Rj)
= {Predicate Calculus}
(Vi:bi:=Ra)V(¥j:bj:Rj)
= { V distributes over V; unnesting}
(Vi,j:binb.j:~RiV R.j)
< {Excluded Middle}
(¥i,j:binbj: Ri= Rj)

(End of Proof)

13

Lemma 2 We have for any b and R,

[(Vi:binbj:Ri=Rj)] = [(3i:bi)A(vibi:Ri)
(@i bd)v{3iibi: R

3ibitRA)] A

= -
y=(Yibi Ra)j

Proof (of 2): We observe for any b and R,

(3¢ b4) A (Vi bi: Ri)=(3i:bi: R}
= {Lemma 0 and predicate calculus}
[(3i:bi: Ri)A(Vi:bi:Ri)= (Ji:bi: Ri))
< {Lemma 1 and predicate calculus}
[(Vi:biAbj:Ri= Rj)

This gives us the first conjunct on the right. Substitution of =R for R in the first conjunct and negating both
sides yields the second conjunct. (End of Proof)

Lemma 3
[wp.CMAX = (3i:bi: {T:= et} X) Vv ({Vi:—bi) A X)]
Proof (of 3):

wp CMAX

= {Definition of wp . CM A}
(Vi b {F = e} X) A((Vi i mbid) = X)

= {predicate calculus}
(Vi:bi: {F=e}X)A(F b)) v({Vibi:{T =ei) X)AX)

= {First Conjunct of Lemma 2 with R.i:= {F:= e} X}
Fi:bi:{F=ei}X)V({Vi:bi:{T =ea}X)AX)

= {Second Conjunct of Lemma 2 with R.i:= {T:=e. z}X and predicate calculus}
(3i: b {F = ea} X) vV ({Vi:—bi) AX)

{(End of Proof)

Theorem 3 The predicate transformer wp .CM A is universally disjunciive.
Proof {of 3):

wp . CMA(BX : X eW: X)
= {Lemma 3 Wlth X = (EX X); omitting ranges}

(Fi b {F = e} (3X o X)) V((Viu-bi) AEX 1 X))
= {Dm\ersa} disjunctivity of multiple assignment; A over 3}

(3 :bi: (BX {T:= e} X)) V((3X = (Vi =bi) A X))
= {Intercha,nge of quantification}

(AX = (Fi:bi {T = e} X)) V(EX = (Vi -bi) A X))
= {3 distributes over V}

(BX = (Fi o bi {T = e} X) V({¥inmbi) A X))
= {Deﬁmmon wp .CMA}

(3X = wp CMAX)

(End of Proof)

Theorem 4 The predicaie iransformer wp .CPA is universally conjunciive.

Proof (of 4):

14

wp .CPA(VX = X)
= {Definition of wp .CPA; Omitting ranges}

(b=> (Vi {T = eap{{VX 2 X)) A(mb = (VX 2 X))
= {Universal conjunctivity of multiple assignment }

(b= (Vi (VX = {T:= e XA (=b= (VX = X))
= {Interchange of universal quantification}

(b= (VX = (Vi {ZT:= XA (=b= (VX = X))
= {= overV, twice}

(VX o (Vinb= {T:= e} X)) A(VX b= X)
= {V distributes over A}

(VX = (Vinb={T:= e i} XY A (=b = X))
= {Definition of wp .CPA}

(VX = wp.CPAX)

(End of Proof)

Theorem 5 The predicate transformer wp .CP A 1s or-continuous.
Proof (of 5); Let wp .CPA be expressed as
[wp.CPAX =g.X AhX]
where
[g.X=0(h= (Vi {T:= e} X))
hX = (-b= X))
e g is or-continuous : From the universal disjuﬂftivity of multiple assignment, the finite range of ¢ and
Lemma 3.25, [Dijb] it follows that (Vi :: {F := e.i}X) is or-continuous. It follows that g is or-continuous.

o h is or-coniinuous : It can be easily shown that h is positively disjunctive, which by Thecrem (0 implies
or-continuity.

Since the conjunction of two or-continuous predicate transformers is or-continuous (Lemma 3.24, [Dijb]), it
follows that wp .C PA is or-continuous. (End of Proof)

Theorem 6 The predicate iransformer wp .CPA 1s not finitely disjunctive.

Proof {of 6): Consider the statement
S z = heads | tails

and the assertions
[X = (z = heads)] A [Y = (¢ = tails)]

Then

wp .S (X VY)
= {Definition of wp .CPA}

{z = heads (X VY) A {z = tails HX VY)
= {Axiom of Assignment}

(heads = heads V heads = tails) A (tails = heads V tails = tails)
= {predicate calculus}

true

whereas,

ot
o1

wp.S. X Vwp.5Y
= {Definition of wp .5}

({z := heads} X A {z := tails} X) V ({z := heads}Y A {z := tails}Y)
= {Axiom of Assignment}

(heads = heads A tails = heads) V (heads = tails A tails = tails)
= {predicate calculus}

false

(End of Proof)

Corollary 0 For all statements s,
[wp .s.irue = true]

Proof (of 0). Follows from the universal conjunctivity of wp.s and the fact that universal quantification over
an empty set is true. (End of Proof)

Corollary 1 (Law of the Ezcluded Miracle) For all statements s,
[wp .s.false = false]

Proof (of 1): The theorem holds for CM A, as wp .C M A is universally disjunctive and existential quantification
over an empty set is false. For a probabilistic statement CPA, we proceed as follows.

wp .CPA false
= {Definition of wp .CPA}
(b= (Vi {7 := e} false)) A(—b= false)
= {Law of the Excluded Miracle for multiple assignment}
(b= (¥i:: false)) A (—b = false)
= {predicate calculus}
(b= false) A(—b = false)
= {predicate calculus}
false

(End of Proof)

Theorem 8 The predicate iransformer wpp .CFPA 1s and-continuous.
Proof {of 8): Let wpp .CPA be expressed as
[wpp . CPAX =g¢.X Ah.X]

where

[0.X = (b= (3 {F =i} X))]
[hX = (—b= X))

e g is and-continuous : From the universal conjunctivity of multiple assignment, the finite range of 2 and
the dual of Lemma 3.25, [Dijb] it follows that (I : {T 1= e.i}X) is and-continuous. It follows that g is
and-continuous.

o h is and-continuous : 1t can be easily shown that h is universally conjunctive which by Theorem 0 implies
and-continuity.

Since the disjunction of two and-continuous predicate transformers is and-continuous {dual of Lemma 3.24.
[Dijb]), it follows that wpp.CPAis and-continuous. (End of Proof)

16

Theorem 9 The predicate transformer wpp .CPA is not finitely conjunciive.
Proof (of 9): We use the same example as for Theorem 6. Consider the statement
S z = heads | tails

and the assertions
(X = (2 = heads)] A [Y = (2 = tails)]

Then

wpp .S(X AY)

= {predicate calculus}
wpp .S.false

= {Definition of wpp .S, Law of Excluded Miracle}
Ffalse

whereas,

wpp .S. X Vwpp.S5Y
= {Definition of wpp .5}

({x = heads} X V {z = tails} X) A ({z := heads}Y V {z := tails}Y)
= {Axiom of Assignment}

(heads = heads V tails = heads) A (heads = tails V tails = tails)
= {predicate calculus}

true

{End of Proof)

Theorem 10 The predicate transformer wpp .CP A is universally disjunctive.

Proof (of 10):

wpp . CPA.(3X = X)
= {Definition of wpp. CPA}

(b= (3= {F=e}(3X = X)) A(=b= (3X = X))
= {predicate calculus}

(bA{(Ziz{T c=ea}(3X m X)) V(=bA(EX 1 X))
= {Universal disjunctivity of multiple assignment}

(bA(F: BX 2 {T=e} X)) V(=bA(EX = X))
= {Interchange existential quantlﬁcatzon}

(bA3EX 23 {T =e X))V (mbA(EX 1 X))
= {A over 3}

(BAX 2 bA i o {F=ed} X))V (3X b AX)
= {3 dlstributeb over V}

3X : (bA(Fi: {T=ea} X)) V(=bA X))
= {predicate ca}culus}

(BX :: (b= (3 5 {T 1= EA)X)) A (=b = X))
= {Deﬁmtion of wp.CPA}

(3X :: wpp .CPAX)

(End of Proof)

Corollary 2 For all sialements s,
[wpp .s.lrue = true]

17

Proof (of 2): The theorem holds for CM A, as wpp O M A isuniversally conjunctive and universal quantification
over an empty set is true. For a probabilistic statement C'P A, we proceed as follows.

wpp .CPAlrue
= {Definition of wpp .CPA}
(b= (3i:: {T 1= ed}true)) A (=b = true)
= {{F:=ei}true = true}
(b = (37 true)) A(=b = true)
= {predicate calculus}
(b = true) A (=b = true)
= {predicate calculus}
true

(End of Proof)

Corollary 3 For all staiements s,
[wpp .s.false = false]

Proof (of 3): Follows from the universal disjunctivity of wpp .s and the fact that existential quantification over
an empty set is false. (End of Proof)

Theorem 11 For all siaiements S,
[wp.S5.X = wpp .5.X]

Proof (of 11): The theorem holds for CM A as wp .CM A is defined to be the same as wpp .CMA. For a
probabilistic statement,

wp CPAX
= { Definition of wp .CPA}

(b= (Vi {7 = ea} X)) A(mb= X)
= {Predicate Calculus}

(b= Fu{F =} X)) A(-b=X)
= { Definition of wpp .CPA}

wpp . CPAX

(End of Proof)

Theorem 13 For all statements s,
[wp.s.X Awpp.s.Y = wpp.s.(X AY)]

Proof (of 13): The theorem holds for CM A as wpp .C M A is the same as wp LCMAand wp . CMAisunmiversally
conjunctive. For probabilistic statements,

wp.CPA X Awpp CPAY
= {Definition of wp.CPA and wpp.CPA}

(b= (Vi {T=ed} XA (mb=2> XA (b= (Fi o {T = e YNWA(mb=Y))
= {predicate calculus}

(b= (Vi {T=e} X)A (B {T=ed}Y))A(mb= X AY)
= {A over 3}

(b= (T (Vi {T=ei}X)A{T:= e YA = X AY)
= {Instantiation}

(b= @i {FT=e} XA {T=ei}Y)A(mb=> X AY)
= {Universal conjunctivity of multiple assignment}

(b= G {F=eil{(XAY))A(mb=> X AY)
= {Definition of wpp .CPA}

wpp CPA(XAY)

18

{End of Proof}

Theorem 14 For all sialements s,
[wp.s.(XVY)= wp.s.XVwpp.sY]

Proof (of 14): 'The theorem holds for CM A as wpp .CM A is the same as wp LOMAand wp UM Ais universally
disjunctive. For probabilistic statements,

wp.CPA(XVY)
= {Definition of wp .CPA}
(b= (Vi {T=eif(XVY))A(mb=> X VY)
= {Universal disjunctivity of multiple assignment}
(b= (Vi {T = e} X V{FT = e YY) A(mb= X VY)
= {predicate calculus}
(b= (Vi {T=ed X))V (FH o {T=e} V) A (b= X VY)
= {predicate calculus}
(b= (Vi {T =} X)A (b= X)) V(b= (T {T:= e }Y)) A (=b = Y))
= {Definition of wp.CPA and wpp .CPA}
wp.CPAXVwpp . CPAY

{End of Proof)

12.2 Properties of upto

Theorem 15 The upto 15 a generalization of unless.
(X unless Y) = (X upto ¥')
Furthermore for a program consisting of only determimisiic statements,
(X unless Y) = (X upto 1)
Proof (of 15):

(X upto¥')
= {Definition of upto}

(Vs : [X A=Y = wp.s. X Vwpp.s.Y))
< {Theorem 14}

(Vs 2 [X A=Y = wp.s.(XVY)])
= {Definition of unless}

(X unless Y)

For a program consisting only of deterministic statements,

(X uptoY)
= {Definition upto}
(Vs : [X A=Y = wp.s. X Vwpp.s.Y])
= {Definition of wpp for deterministic statements}
(Vs : [X A=Y = wp.s. X Vwp.s.Y])
= {wp.CM A is universally disjunctive}
(Vs 2 [X A=Y = wp.s.(XVY)])
= {Definition of unless}
{X unless Y)

{End of Proof}

Theorems about upto

The properties of unless follow from its definition.

1. Reflexivity and Anti-Reflexivity
X upto X

X upto—X

(X upto X)
= {Definition of upto}

(Vs [X A=X = wp.s. XV wpp.s.X])
= {predicate calculus}

(Vs :: [false = wp .s. X V wpp .s.X])
= {predicate calculus}

true

(X upto —X)
= {Definition of upto}
(Vs : [X A X = wp.s. X Vwpp.s.(~X)])
= {predicate calculus and Theorem 11}
(Vs - [X = wpp.s. X Vwpp.s.(~X)])
= {By Theorem 10, wpp .5 is universally disjunctive}
(Vs :: [X = wpp .s.(X V =X)])
= {predicate calculus and Corollary 2}
(Vs = [X = true)])
= {predicate calculus}
true

2. Consequence Weakening
XupteY YV = 2
X upto Z

(X upto Y)A (Y = Z)
= {Definition of upto}
(Vs 1 [X A=Y = wp.s. X Vwpp.sY)A(Y = Z)
= {By Theorem 10 and Theorem 0, wpp .5 is monotonic}
(Vs : [X A=Y = wp.s. X Vwpp.s.Y]) A(wpp .s.Y = wpp 8.ZYN (=2 = =Y
= {transitivity of =}
(Vs [XAN-Z = wpsXV wpp.s.Z])
= {Definition of upto}
X upto Z

3. Partial Conjunction
X uptoV
X" upto Y’
(X AXNYupto((X'AY)VY') ,conjunction

(X upto Y) A (X' upto V')
= {Definition of upto}

(Vs : [X A=Y = wp 5. X Vwpp.s.Y]) A (Vs [X'A=Y'= wp.s. X' VwppsY'])
= {predicate calculus}

(Vs D [XAX' A=Y VY)= (wp.s. X Awp 5. XYV {(wp.s. X Awpp .s.Y')V

(wp.s. X' Awpp .s.Y)V(wpp.s.Y AwWpp YO

= {Theorem 7 and Theorem 12 and weakening}

(Vs [XAX A(YVY) = wp.s(X A XV wpp.s.(X' AY)Vwpp.s.Y'])
= {Theorem 11}

(Vs [XAX A=Y VYY) = wp.s(XA XNV wpp.s.((X'AY)VY])
= {predicate calculus}

(Vs [X A X' A-((X'AY)VY') = wp S(XAXYVwpp.s. (X' AY)VY)])
= {Definition of upto}

(X A X"y upto ((X'AY)VY)

4. Simple Conjunction and Simple Disjunction

X uptoY

X' upto Y’
(X A X")upto (Y VY’) ,simpleconjunction
(X V X"y upto (Y VY’) ,simpledisjunction

(X upto Y)A (X' uptoY’)
= {Conjunction}

(X AX")yupto (X' AY)VY)
= {Consequence Weakening}

(X A X'y upto (Y VYY)

(X upto Y) A (X' upto Y’)
= {Definition of upto}
(Vs : [X A=Y = wp.s. X Vwpp.s.Y]) A (Vs [X/A =Y = wp.s. X' Vwpp.s.Y'])
= {By Theorem 7 and Theorem 0 wp .5 is monotonic; By Theorem 11 and Theorem 0 wpp .5 is monotonic}
(Vs : (X A=Y) V(X' A=Yy = wp.s(XVX')Vwpp S (Y VYD)
= {predicate calculus}
(Vs : [(XVXIA=(YVY') = wp.s.(XVX')VWwpp (Y VY]
= {Definition of upto}
(X v X')upto (Y VY')

5. Conjunction with unless

X unless ¥V
X' upto ¥’
(X AX)upto (X AY)V(X'AY) V(Y AY)

(X unless Y) A (X' upto Y”')
= {Definition of unless and upto}
(Vs : [X A=Y = wp s (X VY)]) A Vs [X'A=Y'= wp.s.X'Vwpp.sY'))
= {predicate calculus}
Vs s [(XAX A=Y A=-Y) = wp.s (X VY)A(wp 5. X' Vwpp.s.Y)])
= {predicate calculus and Theorem 13}
(Vs s [(XAX' A=Y A=Y') = wp.s.(X AX')Vwpp SUX'AYIVIXAYYVYAY DD
= {predicate calculus and Definition of upto}
(X AX)upto (X AY)V(X'AY)V(Y AY')

21

Corollaries

The following corollaries hold for upto
not depend on the definition of upto.

1. Implication

0. X upto X

. These are all proved using the basic properties proved above. They do

X =Y
X upto Y

,Reflexivity
1. X=Y
Given
2. X upto?Y
,Consequence Weakening using 0 and 1
2.
X =Y
X upto Y
0. X upto—-X
JAnti-Reflexivity
1. = X=Y
,Given
2. XuptoY
,Consequence Weakening using 0 and 1
3.
X upto (Y vV 7)
(X A=Y)upto (Y VZ)
0. Xupto(YVZ)
,Given
1. =Y upto?
JAnti-Reflexivity
2. (X A=Y)upto(YVZ)
Simple Conjunction on § and 1
4.
(X A=Y) upto (Y V Z)
X upto (Y V Z)
0. (X AY)upto?
,Corollary 1 given above
1. (X A-Y)upto (Y V Z)
Given
2. Xupto(YVZ)
Simple Disjunction on 0 and 1
5.

(X VY)uptoZ
X upto (Y V Z)

0. (XVvY)uptoZ
Given
1. ~Yupto?
JAnti-Reflexivity
2. (X A=Y)upto(YVZ)
.Simple Conjunction on 0 and 1

X uptotrue

true upto X

3. Xupto(Y VZ)
.Corollary 4 given above
6.
0. XuptoX
JReflexivity
1. X =>{irue
,predicate calculus
2. X uptotrue
,Consequence weakening using 0 and 1
7.
0. XuptoX
,Reflexivity
1. =X upto X
JAnti-Reflexivity
2. true upto X
.Simple Disjunction on 0 and 1
8.

false upto X

0. X uptoX
JReflexivity
1. =X upto X
,Anti-Reflexivity
2. false upto X
Simple Conjunction on § and 1

12.83 Properties of entails

Theorem 16 The entails is a generalization of ensures

(X ensures Y) = (X entails V)

Furthermore for a program consisiing only of delerministic stalements,

(X ensures ¥) = (X entails ¥)

Proof (of 16):

(X entails)
= {Definition of entails}

(X upto Y)A (35 = [X A=Y = wpp .s.Y])
<= {upto include unless; Theorem 12}

(X unless YYA (3s : [X A=Y = wp s.Y])
= {Definition of ensures}

(X ensures Y)

For a program consisting only of deterministic statements,

(X entails ¥')
= {Definition of entails}
(X upto Y) A (3s = [X A-Y = wpp 8.YD
= {Definition of upto and wp for deterministic statements}
(X unless Y) A (3s = [X A=Y = wp.s.Y])
= {Definition of ensures}
(X ensures Y)

(End of Proof)

Theorems of entails

The properties of entails follow from its definition.

1. Reflexivity
X entails X

X entails X
= {Definition of entails}
(Xupto X)A(Fs n [X A=X = wpp .5.X |}
& {Reflexivity of upto and predicate calculus}
(3s = [false = wpp .s.X])
= {predicate calculus}
irue

2. Consequence Weakening
X entails VY = 7
X entails Z

(X entails Y) A (Y = Z)
= {Definition of entails}
(X upto Y)A (3s 1 [X A=Y 2 wpp s YA (Y = Z)
= {Consequence Weakening for upto; predicate calculus; Monotonicity of wpp .8}
(X upto Z) A (3s = [X A—Z = wpp.s.Y]) A(wpp.s.Y = wpp 8.2}
= {transitivity of implication}
(X upto Z) A {3s = [X A~Z = wpp .5.Z])
= {Definition of entails}
(X entails 7)

3. Impossibility
X entails false
-X

{X entails false)
= {Definition of entails}

(X upto false) A (3s :: [X A—false = wpp 8. falsel)
= {Corollary 3}

(3s =1 [X = false])
= {predicate calculus}

=X

24

4. Conjunction with unless

X entails YV
X" unless Y’
(X AX')entails (X AY'}V (X'AY)V (Y AY)

(X entails Y) A (X' unless Y')
= {Definition of entails}

(X upto Y)Y A (3s : [X A=Y = wpp .s.Y]) A (X' unless ¥
= {Conjunction with unless for upto; Definition of upto}

(X AXyupto (X AY)V (X' AY)V(Y AY' A

3s = (X A X' A=Y A=Y') = (wpp.s.Y Awp.s.(X' VY))])
= {Theorem 13}

(X A X') upto (X AY) V(X' AY) V(Y AY)A

(3s : [(X A X' A=Y A=Y") = wpp .s.(X AY)V (Y AY))))
= {Weakening the consequence of the second conjunct}

(X A X') upto (X AY)V (X' AY) V(Y AY)A

Fs: [(XAX A=Y A=Y) = wpp s (X' AY) V(Y AY) V(XA YN
= {Definition of entails}

(X A X" entails (X AY) V(X' AY) V(Y AY'))

5. Conjunction with upto
X entails ¥
» X' upto Y’
(X A X'")entails (X’ AY) VY’

(X entails Y) A (X' upto Y')
= {Definition of entails and upto}

(X upto Y) A (X' upto Y') A (3s = [X A=Y = wpp s
= {Conjunction for upto; Definition of upto}

(X A XY upto (X' AY)VY))A

(Fs : [XAX' A-Y A=Y = (wp.s. X'V wpp.s.Y') A Wpp 8.Y0)
= {predicate calculus}

(X A X')upto (X" AY) VYA

Bs [XAX' A=Y A-Y = (wp.s. X' Awpp s.Y)V(wpp.s.Y' Awpp.s.Y)])
=> {Weaken consequence of second conjunct using Theorem 13}

(X A X"y uapto (X' AY) VYA

(3s = [XAX' ARY ARY' = (wpps.(X'AY)V wpp ERE)
= {Universal disjunctivity of wpp.s}

(X A X"y upto (X' AY) VYA

(3s : [X A X' A=Y A-Y = wpp s.(X'AY)VY')])
= {Definition of entails}

(X A X")upto ((X'AY)VY))

6. Disjunction
X entails ¥V
(X V Z)entails (Y V Z)

X entails ¥
= {Definition of entails}
(X upto Y)A (3s = [X A-Y = wpp.s.Y])
= {Reflexivity of upto}
(X upto Y) A(Z upto Z) A (3s :: [X A=Y = wpp .s.Y])
= {Simple Disjunction for upto}
(XVZ)upto (Y VZ)A(3s : [X A=Y = wpp.s.Y])
=> {predicate calculus; Monotonicity of wpp .5}
(XvZ)yupto (Y VZ)NA{Es 2 [(XVZ)A-(Y VZ)= wpp s(Y VI
= {Definition of entails}
(X Vv Z) entails (Y V Z)

Corollaries

The following corollaries hold for entails. They follow from the basic properties defined above.

1. Implication
X =Y
X entails ¥

0. X entails X
Reflexivity of entails
1. X =Y
,Given
2. X entails Y
.Consequence Weakening on 0 and 1

2.
X entails (Y V 2)
(X A=Y) entails (Y V Z)
0. X entails (Y V Z)
,Given
1. =Y upto?
JAnti-Reflexivity of upto
2. (X A=Y)entails (mY AZ)VY)
,Conjunction with upto for entails using 0 and 1
3. (X A-Y)entails (Y V Z)
,predicate calculus on 2
3.

(X VY) entails Z
X entails (Y V Z)

0. (XVY)entails Z
,Given
1. (X A-Y)entails (Y V Z)
,Corollary 2 given above
2. X entails (Y V 2)
,Disjunction on 3 using Z := X AY and predicate calculus

26

12.4 Properties of ~
1. Implication
X=Y
X ~Y

0. X =Y

JGiven
1. X entails Y

Corollary 1 of entails
2. X~Y

Definition of ~

2. Impossibility
X ~ false
- X

The proof is by induction on the definition of ~». The base case is proved by the impossibility property
of entails. The induction step is proved by

0. (X ~Y)A(Y ~ false)
,Given
I (X ~Y)A~Y
JInduction hypothesis
2. (X ~ false)
JFrom 1
3. =X
JInduction hypothesis

o

3. Disjunction

(X ~Y)=(XVZ~YVIZ)
The proof is by induction on ~. The base case follows from the disjunction property of entails. The
induction step is as follows.

0. (X~U)ANU~Y)
,Given

I (XVW~UVW)AUVW~YV W)
JInduction hypothesis, twice

2. (XVW~Y VW)

,Transitivity of ~

4. Finite Disjunction
(X~ 2),(Y ~ 2)
({(XVY)~2Z)

0. (X~ Z)N(Y ~ Z)
JGiven

1. (XVY ~ZVY)ANTYVZ~ZVZ)
,Disjunction, twice

2. (XVY ~2Z)
 Transitivity of ~

5. Cancellation
U VVW, W~ X
J~VVvA

(SN
i

<

(U~ VVIW)A Y ~ &)
,Given
1. U~VVWIAVVIW~VVX)
,Disjunction on second property of 0
(U~VV X)
,Transitivity of ~

fNe]

6. PSP (Progress-Safety-Progress)
X ~ Y, U unless V
(XAUy~ (Y AU)VV

The proof is by induction on the definition of ~». The base case follows from the conjunction with unless
rule of entails and consequence weakening. The induction step is as follows.

0. (X~Z)A(Z~Y)A(U unlessV)
,Given
1. ((XAUY~(UNAZ)VV)A
{(ZANUy~(UAY)VV)
,Applying induction hypothesis twice
2. (XAU)~(YAU)VV
Cancellation on 1

7. Completion Theorem (Proof Omitted)

12.5 Properties of =
Theorem 17 (X — Y) = (X =7Y)

Proof (of 17): The proof is by an induction on the definition of —.
Base Case :

(X ensures Y)
= {Definition of ensures}

(X unless Y) A (X entails V)
= {Definition of F=>}

(X = Y)

Induction Step (transitivity) :

(X = Y)A(Y = 2)

= {Induction hypothesis, twice}
(X = YIAY = 2)

= {Transitivity of F=>}
(X = 2)

Induction Step (disjunction) :

(VX 2 X —Y)
= {Induction hypothesis}
(VX = X = Y)

= {Disjunctivity of =}
(BX = X) = 2)
{End of Proof)

The probabilistic leads-to (== enjoys all the properties of —.

78

1. Implication

X =Y
pa— g

0. X =Y

,Given
1. XY

JProperty of —
2. X =7

.1 and Theorem 17

2. Impossibility
X b= false
=X

The proof is by induction on the definition of =,
Base Case :

0. (X unless false) A (X entails false)
,Given

1. =X
JImpossibility property of entails

Induction Step (transitivity) :

0. (X k= Y)A(Y = false)
,Given
. (X = Y)AY
,Induction hypothesis
2. (X = false)
JFrom 1
3. —X
JInduction hypothesis

Induction Step {(disjunctivity) :

0. (VX X = false)

Given
1. (VX = -X)

JInduction hypothesis
2. -3X = X)

,predicate calculus

3. General Disjunction
(Ym:meW: X.mE>Ym)

Bm .meWw: Xm)E= 3m:meW:Y.m)

0. Yom= (3m:Y.m)
,predicate calculus

1. (Ym: Xom = Y.m)
,Given

2. (¥m: X.om = (3m 2 Y.m))
transitivity of =

3. (@m: Xm) = (3mYm)
Jdisjunctivity of ==

29

4. Cancellation
Ubks VVW, W e X
U VVX

0. Uk VVW)IA(WEX)
Given
I (U VVIWAVVIW = VVX)
Disjunction on second conjunct of 0
2. (U= VVX)
[Transitivity of =

5. PSP (Progress-Safety-Progress)
X =Y, Uunless V
(XAU)YE= (Y AU)VVY

The proof is by induction on the definition of b=.
Base case :

0. (X unless Y) A (X entails Y) A (U unless V)
,Given
1. (X AUunless (Y AUYVVIA(XAU) entails (Y AUV V)

.Conjunction of the two unless properties; Conjunction with unless for entails

2. (XAUE (Y AU)VYV)
,Definition of =

Induction Step (transitivity) :

0. (X E=Y)AY B Z)A (U unless V)
,Given

1L (XA E (Y AUYWVWIAY AU (ZAT) V)
Induction hypothesis, twice

2. ((XAUYE=(ZAU)VV)
,Cancellation

Induction Step (disjunctivity) :

0. (VX = X = Y)A(U unless V)
JGiven

1. (VX s (XAU) = (Y AUV
JInduction hypothesis

2. EX 2 XANU)yE= (Y AU)VY
.Disjunctivity of =

3. BXX)ANU = (Y AU)VY
predicate calculus

6. Completion (Proof omitted)

12.6 On program composition

Theorem 18 Union Theorem

e (X unlessY in FAX unlessY in G) = (XunlessY in F I G) The proof is exactly as in [CnMBslL

e (X ensures Y in FA X unlessY in G)V (X unless ¥ in FAX ensures Y in G)
Y in F | G) The proof is exactly as in [CM88].

30

(X ensures

¢ (X uptoY in FAX upto? in G) = (XuptoY in F 1 &

e (X

e (X

(X uptoY in FA X uptoY in G)

{Definition of upto twice}

(Vs:s in F:[X A=Y = wp.s. X Vwpp.s.Y])A

(Vs:s in G:[X A=Y = wp.s. X Vwpp.s.Y])
{predicate calculus}

(Vs:sin FVsin G:[X A=Y = wp.s.X vV wpp.5.Y])
{Definition of [}

(Vs:sin F | G:[X A=Y = wp.s.XVwpp.sY])
{Definition of upto}

XuptoY in F [G

entails Y in FA X upto Y in G) V (X upto Y in F A X entails ¥ in G)
Yin F [G)

Xentails Y in F | G
{Definition of entails}

(XuptoY in F | G)A(3s:sin F | G:[X A=Y = wpp .s.Y])

{Union theorem for upto}

(X uptoY in F)A(X uptoY in G)A(3s:s in F] G:[XA-Y = wpp.sY])

{predicate calculus}
(X uptoY in F)A (X uptoY in G)A

((3s:s in F:[XA-Y = wpp.sY])V(3s:s in G [X A=Y = wpp.s.Y]))

{predicate calculus and definition of entails}

(X entails Y in FA X uptoY in G)V(X uptoY in FAX entails Y in G)

Corollaries
1. X stable in F [G = (X stable in F A X stable in G)

2.

X unless Y in F, X stable in G

XunlessY in F | G

X invariant in F, X stable in G

X invariant in F | G

X ensures ¥ in F, X stable in G

XensuresY in F | G

X upteY in F, X stable in G

XuptoY n F | G

X entails Y in F, X stable in G

X entails Y in F | G

31

= (X entails

entails ¥ in F A X unless Y in G)V (X unless ¥ in F A X entails ¥ in G) = (X entails
Y in F || G) The proof follows from the union theorem for entails and upto by strengthening the right
side using Theorem 15.

