EVENTUAL DETERMINISM:
USING PROBABILISTIC MEANS TO
ACHIEVE DETERMINISTIC ENDS

Josyula R. Rao
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-90-08 April 1990

Eventual Determinism: Using Probabilistic Means to Achieve
Deterministic Ends

Josyula R. Rao”
Department of Computer Sciences
The University of Texas at Austin

January 31, 1990

Abstract

We introduce a new paradigm for the design of parallel algorithms called eventual determinism.
In an eventually-determinizing algorithm, all processes execute identical programs {rom identical
starting states. A program has two parts (alternatively, called modes) — probabilistic and determan-
istic. A process begins execution in the probabilistic mode and eventually (with probability one)
switches to a deterministic mode. The decision to switch is taken independently by each process.
Since different processes can execute in different modes, it is required that the mode of a process be
transparent to its environment. Thus, determinacy pervades the system.

Eventually-determinizing algorithms combine the advantages of probabilistic and deterministic
algorithms. We illustrate the design of such an algorithm for a problem of conflict-resolution for
distributed systems. We construct an algorithm for a ring of dining philosophers by combining a
modified version of the probabilistic Lehman-Rabin’s Free Philosopher algorithm with the determin-
istic Chandy-Misra algorithm. The system is proved to be starvation-free using a new proof-system
for reasoning about probabilistic algorithms proposed by the author. The proof technique is novel
in two ways : firstly, it allows the manipulation of probabilistic and deterministic properties within
one unified framework. Secondly, existing proofs of component algorithms can be used along with a
proof of correctness of their interaction to construct a proof of the algorithm as a whole.

*This material is based in pari upon work supported by the Texas Advanced Research Program under Grant No.
003658-065 and by grant ONR 26-0679-4200 from the Office of Naval Research.

Contents

0 Introduction 0
0.1 Motivation . . v v i i e e e e e e e e e e e e e e 0
0.2 Contmibutions v v v it e e e e e e e e e e e 1

1 The Symmetric Dining Philosophers Problem 3

9 Notation and Variable Declarations 3

3 The Lehman-Rabin Algorithm 4

4 The Chandy-Misra Algorithm 5

5 The Eventually-Determinizing Algorithm 5

6 Conclusions and Future Research g

7 Acknowledgement 10

References 10

8 Appendix 11
8.1 The Lehman-Rabin Algorithm o oo 11
8.2 The Chandy-Misra Algorithm o e 12
8.3 The Eventually-Determinizing Algorithm oo 12

0 Introduction

0.1 Motivation

Ever since Michael Rabin’s seminal paper on Probabilistic Algorithms [Rab76], several algorithms
employing randomization have appeared in the literature [BGS88]. Often these algorithms are simpler
and more efficient — in terms of space, time and communication complexity — than their deterministic?
counterparts. It has also been recognized that for certain problems, especially in the areas of multi-
processing and distributed computing, it is possible to construct a probabilistic solution where no
deterministic one exists. One such problem is that of resolving symmetry in a parallel environment
[Dij74, LR81].

2We use the term deferministic o mean non-probabilistic.

In a parallel system consisting of a multitude of processes, it is possible to customize each process
with a special starting state or program. However as the multitude grows, the cost of customizing
increases and symmetry becomes an interesting and desirable feature. For our purposes, a system of
processes is said to be symmetric, if all processes have identical starting states and execute identical
programs. It has been shown in [Dij74, LR81], that such a symmetric system can reach an asymmetric
state only if the processes are allowed to make probabilistic transitions. It is not possible to break the
symmetry of a parallel environment in a deterministic and deadlock-free manner.

Although probabilistic algorithms have several charms like simplicity, efficiency and tractability.
trading determinacy for randomization has its price. The traditional notion of absolute correctness of
deterministic algorithms has to be generalized to a notion of correctness with a quantitative probability.
This means that some probabilistic programs may take an inordinate amount of time to execute.
Complexity measures for such algorithms tend to be expected values rather than upper bounds. On
the other hand. there is a large and growing body of literature of deterministic algorithms that have
provably optimal upper bounds using varying complexity measures.

0.2 Contributions

To bridge the gap between the capabilities of probabilistic and deterministic algorithms and to har-
ness the advantages of both, we propose a new paradigm — eventual determinism. An eventually-
determinizing system of processes is symmetric and all processes execute an algorithm with two parts
(alternatively called modes) — probabilistic and deterministic. Each process begins execution from the
same starting state in the probabilistic mode. When the system reaches a legal starting state for the de-
terministic part, each process switches to the deterministic mode and remains in that mode thereafter.
In many applications, the legal starting state for the deterministic algorithm is simply an asymmetric
state. It is required that the decision to switch modes be made locally. Furthermore each process that
begins execution, switches mode with probability one.

An eventually-determinizing algorithm should satisy the following criteria.

e Symmetry : All processes execute identical programs from identical starting states.

e Locality : Each process begins execution in a probabilistic mode and independently makes the
decision to switch to a deterministic mode. Thus a process can execute in a deterministic mode
while another process is executing in the probabilistic mode. This switch is made by each process
with probability one.

e Transparency : The mode of a process is transparent to the processes it synchronizes with.

e Uniformity : Since probabilistic and deterministic processes co-exist in the system and trans-
parency is required, a uniform and clean interface is needed between the probabilistic and deter-
ministic modes.

o Eventual Determinacy : The system of processes gradually becomes deterministic.

Note that in an eventually-determinizing algorithm, it is sufficient for the probabilistic mode 1o
establish a legal starting state for the deterministic mode. Thus the specification of the probabilisitic
mode can be much weaker than the specification of the algorithm. Also, existing proofs of the prob-
abilistic and deterministic modes can be used along with a proof of correctness of their interaction to
construct a proof of the eventually-determinizing algorithm.

In this paper, we illustrate the idea of eventual determinacy by a problem of fair conflict-resolution
for distributed systems. We consider the classic dining philosophers problem and restrict attention
to an arbitrary but finite number of philosophers seated around a circular table. The problem is
well-known [Dij72] and will not be described here.

In [LR81], Lehman and Rabin describe a probabilistic scheme for ensuring deadlock-freedom for
a symmetric system of dining philosophers arranged in a ring. Deadlock freedom guarantees that if
at any time a philosopher is hungry then at a later time some philosopher eats. In [CM84], Chandy
and Misra present a deterministic algorithm for ensuring starvation freedom for an arbitrary network
of dining philosophers. The algorithm guarantees that if a philosopher is hungry, then after a finite
delay it eats. In this algorithm, neighboring processes share a fork {called the common fork) and the
fork can be either clean or dirty. The act of eating dirties the fork. A fork is cleaned by a process
only when it is sent to the neighbor. A process has priority over its neighbor if and only if it has the
common fork and the fork is clean or the common fork is with the neighbor and is dirty. The algorithm
manipulates the precedence graph of processes which reflects this priority of a process with respect to
its neighbors. One of the key invariants of the algorithm requires the precedence graph to be acyclic
and this necessitates an asymmetric starting state. Unlike the Lehman-Rabin algorithm however, there
is 2 bound on the number of message communications required of a hungry philosopher before it eats.

We describe an eventually-determinizing algorithm which combines these algorithms to reap the
benefits of both. The Lehman-Rabin algorithm has been described in a manner suitable for a shared-
memory architecture. We present a version of the algorithm suitable for interfacing with the Chandy-
Misra algorithm and execution in a distributed environment. The rule for switching to a deterministic
mode is simple : a philosopher can start executing the deterministic Chandy-Misra algorithm if it
either receives a clean fork or begins eating.

All philosophers begin by executing the modified Lehman-Rabin algorithm in the same starting
state. After a philosopher becomes hungry, since the Lehman-Rabin algorithm guarantees deadlock-
freedom, some philosopher eats. This act of eating has two important effects. Firstly the philosopher
becomes deterministic. More importantly, it causes the philosopher’s priority to become lower than its
neighbors. This causes the precedence graph for a ring configuration to become acyclic. The transition
rules of the modified Lehman-Rabin and Chandy-Misra algorithms are such that this acyclicity con-
dition cannot be violated. If a neighboring philosopher becomes hungry, it requests a fork from this
deterministic philosopher and gets a clean fork, enabling it to transit to a deterministic state. Thus
determinacy is contagious and spreads through the ring.

Reasoning about probabilistic algorithms is still an active field of research and there are very
few proof systems that address the methodological problem of refining specifications and reasoning
about the composition of probabilistic programs. By synthesising ideas from the theory of the weak
predicate transformer [DS89], UNITY [CM88] and existing proof techniques for probabilistic algorithms
[HSP83, Pnu83], the author has developed such a proof system [Rao90]. The proof system comprises
a minimalistic computational model which captures the basic notions of asynchrony, synchrony and
probabilistic choice. It provides a small set of versatile operators expressive enough to reason about
safety and progress properties of probabilistic parallel programs. It also supports hierarchical and
compositional development of such programs. Conditional properties allow proofs to be abstracted
and reused. Eventually-determinizing algorithms provide an ideal testbed for such proof systems as
they require abstraction and compositional reasoning about probabilistic and deterministic progress
properties. The proof of the eventually-determinizing algorithm described above has been carried out
using this proof-system.

]

The problem of eventual determinism was suggested by Jayadev Misra. Eliezer Levy [Lev88] was
the first to apply it to the dining philosophers problem. Though our basic idea is the same as his, he
makes stronger assumptions about the Lehman-Rabin algorithm than we do. Our development has
been aided by the proof techniques for reasoning about composition of probabilistic programs.

The rest of the paper is organized as follows. After introducing the problem in Section 1, we describe
the variables and notation of our solution in Section 2. The original Free Philosophers Algorithm of
Lehman-Rabin and our modification of it are presented in Section 3. In Section 4, we give a brief
description of the Chandy-Misra algorithm. The eventually-determinizing algorithm and a proof sketch
of its correctness appear in Section 5. Finally, we conclude with ideas for future research.

1 The Symmetric Dining Philosophers Problem

Processes, called philosophers are placed at the vertices of a ring, with one philosopher at every vertex.
A philosopher can be in one of three states : thinking, hungry or eating. Associated with each edge of
the ring is a fork. A philosopher can eat only if it possesses the forks corresponding to both its incident
edges. A thinking philosopher may become hungry. A hungry philosopher remains hungry until it gets
its incident forks, when it begins to eat. On entering the eating state, a philosopher eats for a finite
period and then transits to the thinking state. A philosopher may think for an arbitrary period of
time.

The problem is to design an eventually determinizing algorithm that is starvation-free. That is, no
philosopher remains hungry indefinitely.

2 TNotation and Variable Declarations

In this section, we define the variables used by the eventually determinizing algorithm. The philosophers
are assumed to be numbered from 0 through N —1. Associated with each philosopher u are the following
variables. '

o u.dine : This can take values t, h or e corresponding to thinking, hungry or eating respectively.
For convenience, we abbreviate by a boolean variable u.t, the boolean predicate (u.dine = 7).
The boolean variables u.h and u.e are similiarly defined.

o w.mode : This can take values p or d corresponding to probabilistic or deterministic respectively.
For convenience, we abbreviate by a boolean variable u.p, the boolean predicate (u.mode = p).
The boolean variable u.d can be similiarly defined.

o draw.u : This can take values u — 1, u + 1 or V. This variable is intended to contain the value
of a random choice made by a process. It will be used in the Lehman-Rabin Algorithm.

An edge between philosophers u and v is denoted by (, v) (or equivalently (v, u)). Two philosophers
are said to be neighbors if and only if there is an edge between them. For convenience, the ring is
assumed to be tepresented by a boolean matrix E, where Eu, v] holds if and only if there is an edge
between vertices u and v. Associated with each edge (u,v) of the ring, are the following variables.

o fork[u,v]: The forkis shared by neighboring philosophers u and v and can take values uw or v
indicating the identity of the philosopher in possession of the fork.

e clean[u,v] : This boolean variable is an attribute of the fork and indicates whether the corre-
sponding fork is clean or dirty.

o rflu,v]: The request token is shared by neighboring philosophers u and v and can take values u
or v indicating the identity of the philosopher in possession of the request token.

e rfclean[u,v] : This boolean variable is an attribute of the request token and indicates whether
the corresponding request token is clean or dirty.

e 7ffirst[u,v]: This boolean variable is an attribute of the request token.

For an edge (u,v), the reflection function R(u, v) denotes the second neighbor of v.

3 The Lehman-Rabin Algorithm

In [LR81], Lehman and Rabin describe two probabilistic algorithms to solve the problems of deadliock-
freedom (the Free Philosopher’s Algorithm) and starvation-freedom (The Courteous Philosopher’s Al-
gorithm) for a finite number of dining philosophers arranged around a circular table. In the sequel, we
shall be concerned only with the Free Philosopher’s Algorithm.

We give an informal description of the original Free Philosopher’s Algorithm. In the starting state,
all forks are down and all philosophers are thinking. When a philosopher becomes hungry, it makes
a random choice between its left and right neighbor. If the neighbor of choice is holding the common
fork, the philosopher waits for the fork to be put down. Once the common fork is down, the philosopher
picks it up and then inspects the status of the second fork it needs. If the second fork is down, the
philosopher picks it up and starts eating. On leaving the eating state, it puts down both forks (in any
order) and starts thinking. If the second fork is being used by its neighbor, it puts down the first fork
and repeats the whole process by making another random choice.

Tt is important to note the subtle distinction between the first and second forks. While a philosopher
waits for the first fork to be put down, it does not wait for the second one. (Clearly, a fork being up or
down is determined by whether the neighbor is using it or not. How are “uap” and “down” implemented
in a distributed environment 7 How does a philosopher request a fork 7 Under what conditions can a
philosopher release a fork ? More importantly, when can a philosopher assume that a neighbor is using
a fork and stop waiting 7

To tailor the Free Philosopher’s algorithm to execute in a distributed environment, we reformulate
it using the variables introduced in Section 2. The variable draw.u reflects the random choice by
philosopher u. It has the values N, u — 1 or u+ 1 to denote repectively that it has not drawn, drawn
the left neighbor or drawn the right neighbor respectively.

Having made a random choice, 2 philosopher uses the request tokens it possesses to requisition the
forks it doesn’t have. If philospher v is hungry and needs fork[u,v], it sends request token 7 f[u,v] to
the neighbor v who is currently holding the fork. The rf first[u, v] attribute of the request token is set
to inform philosopher v of the random choice of philosopher u. That is, rf first[u,v] is set to true if
(draw.u = v) and it is set to false if (draw.u = R(v,w)). This information helps philosopher v decide,
whether an immediate response to philosopher u is necessary or not. A true value for rf firstu, v

indicates that philosopher u will wait for v to put the fork “down”, whereas a false indicates it is
enough to inform philosopher u that the fork is “in use”.

To inform philosopher u that fork[u,v]is “in use”, philosopher v “dirties” the request token and
sends it to philosopher u. That is, the request token 7 flu,v] is returned to u with a false value for
the r fclean[u, v] attribute. On receipt of a dirty request token, philosopher u stops waiting, cleans the
request token and makes another random choice.

The starting state of the algorithm is the same for each philosopher and is given as follows.

e All philosophers are thinking.

e No philosopher has made a random choice.

e For a given edge, the fork and request token are held by different philosophers.
e All request tokens are clean.

e The rffirst attribute of each request token is set to true.

The algorithm is described in the appendix using 2 UNITY based notation developed in [Rao90]
The proof obligation of the distributed version of the Lehman-Rabin algorithm is twofold.

e Mutual Ezclusion : Neighboring philosophers do not eat simultaneously.

o Deadlock Freedom : If a philosopher is hungry, then it is guaranteed, with probability one, that
some philosopher will eat.

The proof has been formally worked out using a proof-system developed by the author. The proof is
similiar to one given by Pnueli and Zuck [PZ86] for the original Free Philosopher’s algorithm.

4 The Chandy-Misra Algorithm

In [CM84], Chandy and Misra present a deterministic solution to the dining philosphers problem.
Although their solution is applicable to an arbitrary network of philosophers, we are interested in
applying their solution to a ring of philosophers.

The key idea of the algorithm is to maintain asymmetry as an invariant. This necessitates an
asymmetric starting state. In the algorithm, asymmetry is represented by the acyclicity of a prece-
dence graph of philosophers. This precedence graph is identical to the interconnection graph of the
philosophers (a ring, in our case) except that each edge of the precedence graph is directed from a
philosopher having higher precedence to a philosopher having lower precedence. A hungry philoso-
pher having higher precedence than all its neighbors is allowed to eat. The algorithm manipulates the
acyclicity of the precedence graph so that every hungry philospher eventually takes precedence over all
its neighbors and eats.

The algorithm describes a way to implement the precedence graph in a distributed manner so that
all changes to the edge directions can be made locally. To this end, all forks are assumed to be either
clean or dirty. A clean fork remains clean until it is used for eating. The act of eating with a fork
dirties it. A philosopher cleans a fork only when sending it to its neighbor. The direction of an edge
between two neighboring philosophers u and v is directed from u to v if and only 1f

e u holds the common fork and the fork is clean or,

e v holds the common fork and the fork is dirty.
Note that only eating can change the orientation of the edges of the precedence graph. Since eating
dirties the forks used, an eating philosopher has all its incident edges directed towards it. Redirecting
all the edges of a vertex of a graph to point towards it cannot create any new cycles involving that
vertex. So if the precedence graph was acyclic before the philosopher ate, it continues to remain so.

Initially all forks are dirty and are located at philosophers such that the precedence graph is acyclic.
Hence acyclicity is an invariant.

A hungry philosopher requisitions the forks he needs by sending out request tokens to the philoso-
phers that hold the forks. A philosopher holding both the fork and the corresponding request token,
releases the fork only if the requisitioning philosopher has higher precedence than it. It can be shown
that every hungry philosopher receives the forks it has requested and eventually eats.

The starting state of the algorithm is as follows.

e All philosophers are thinking.
o For each edge, the fork and request token are held by different philosophers.
e All forks are dirty.

e The forks are placed in such a manner that the precedence graph is acyclic.

The algorithm is described in the appendix. For the purposes of our development, we note that the
algorithm has the following properties.

e Mutual Ezclusion : Neighboring philosophers do not eat simultaneously.
o Starvation Freedom : Every hungry philosopher eats eventually.

The interested reader is referred to [CM84, CM88] for an excellent exposition and proof of this algo-
rithm.

5 The Eventually-Determinizing Algorithm

Now we show how to merge the algorithms of Section 3 and 4 to obtain an eventually-determinizing
algorithm for the dining philosophers problem. It is required that the starting state of the algorithm
be identical for all philosophers. Except for the positioning of the dirty forks, there is no conflict in
the starting states of the probabilistic and deterministic algorithms. Thus they can be consistently
merged.

o All philosophers are thinking.

e No philosopher has made a random choice.

o

e For each edge, the fork and the request token are with different philosophers. In particular, a
philosopher holds the fork it shares with its right neighbor and the request token it shares with
its left neighbor.

e All forks are dirty.
¢ All request tokens are clean.

o The rffirst attribute of the request token is true.

During the execution of an eventually-determinizing algorithm, it is possible to have a mix of prob-
abilistic and deterministic philosphers. Since a philosopher executing in a particular mode expects
certain responses from its environment it is necessary that the interface between the modes be care-
fully designed. For example, a philosopher executing in a probabilistic mode should not have to walit,
if the second fork is “in use”. Similiarly, a philosopher in the deterministic mode should not have the
dirty request token returned to it. It waits for all the forks that it requests.

A close inspection of the variables defined and their occurrence in the algorithms helps us solve the
problem. Notice that the attributes of the request token (rfclean[u,v] and rf first[u,v]) are only of
relevance to the probabilistic algorithm while the attribute of the fork (clean[u,v]) is only used in the
deterministic algorithm. We propose the following two rules.

e Before sending a request token to philosopher v, a deterministic philosopher u sets the r f firstu, v]
attribute to true.

e A probabilistic philosopher u dirties a fork when sending it to philospher v.

The first rule ensures that if v is a probabilistic philospher, it will interpret the true value rf firstlu, v
atiribute to mean that u will wait for the fork. Thus the v does not send a dirty request token to u.
The case where the v is a deterministic philosopher is easily ruled out as the rf first attribute has no
relevance for such a philosopher.

The second rule is more subtle. It is designed to ensure that if a probabilistic philosopher ever
has higher precedence than a deterministic philosopher then it will continue to do so until it becomes
deterministic. That is, by the rules of precedence of the Chandy-Misra algorithm, philosopher u will
have higher precedence than v. Suppose v is a deterministic philosopher. From the rules of the
deterministic algorithm, if u ever requests the fork from v, it will get it back immediately. This is
particularly useful when (draw.u = R(v,u)). In such a case, u will not have to wait for its second
fork. The problem of a deterministic philosopher having to send a dirty request token to a probabilistic
philosopher has vanished ! The case where v is a probabilistic philosopher is easily ruled out as the
clean attribute has no relevance for such a philosopher.

The above two rules allow a uniform interface to be constructed between two philosophers executing
in different modes. We now present the conditions under which a philosopher can switch its mode from
probabilistic to deterministic. The rules are

e A probabilistic philosopher who eats, dirties his forks and becomes deterministic.

e Upon receipt of a clean fork, a probabilistic philospher becomes deterministic.

-

We informally argue about the soundness of these rules. Given the starting state of the algorithm, by
the rules of the Chandy-Misra algorithm, the precedence graph is a cycle. If a philosopher becomes
hungry, by the Lehman-Rabin algorithm some other philosopher eats. By the first rule, he dirties his
forks and becomes deterministic. Since both the incident edges now point towards it, the precedence
graph is acyclic. At this point, there exists a deterministic philosopher whose precedence is lower than
that of its neighbors. We claim that this condition is stable.

The only way that the direction of an edge can be changed is if a philosopher eats or if a probabilistic
philosopher sends a dirty fork to its neighbor. In the first case, the philosopher who eats, dirties his
forks and becomes deterministic. This only validates the claim further. In the second case, suppose
that the probabilistic philosopher sends a dirty fork to a deterministic neighbor. The direction of
an edge between a probabilistic and deterministic philosopher has been changed to point towards the
deterministic philosopher. This does not invalidate the claim. The case of a probabilistic philosopher
sending a dirty fork to another probabilistic philosopher can be ignored. Thus the precedence graph
continues to be acyclic.

Note that the forks are initially dirty and can only be cleaned by deterministic philosophers. Thus
the receipt of a clean fork assures a philosopher that determinism has been achieved in the ring. This
alongwith the above stable condition guarantees that the precedence graph is acyclic. It is safe for the
receiving philosopher to switch modes.

We sketch an argument to show that every hungry philospher eventually eats.

Lemma 0 If a hungry probabilistic philosopher u chooses to wait for a forklu, v], then, with probability
one, either u gets the fork or philosopher v eats.

Lemma 1 Let u be a probabilistic philosopher and let v be a neighboring deterministic philosopher. If
the common fork is at v then the fork is dirty.

Lemma 2 If a hungry probabilistic philospher u has a deterministic neighbor, then either u eats or
becomes hungry in the deterministic mode.

Proof Sketch: Let t, u and v be three consecutive philosophers. Let u be the hungry, probabilistic
philosopher and let v be its deterministic neighbor. If drew.u = v and v possess forkl[u,v], then due
to Lemma 1, u will succeed in getting a clean fork from v. If it fails in getting fork(t, u], it will become
hungry in the deterministic mode.

If draw.u = v and u possesses fork[u,v] then with probability one, philosopher u’s random choice
will become ¢. Thus philosopher u will wait for fork[t, u] and by Lemma 0 will either get the fork[?, u]or
¢ will eat. In the latter case, t becomes determinisitic and by the rules of the deterministic algorithm, {
will send fork fork[t,u]to u. Recall, that the a probabilistic philosopher dirties his forks when sending
them to his neighbor. Thus a probabilistic philosopher u always has precedence over deterministic
philosopher v, and will succeed in getting fork[u, v] and eating. (End of Proof Sketch)

Lemma 3 Let u, v and w be three consecutive probabilistic philosophers. Let v be hungry and w be
thinking. Then, with probability one, either one of u or v will eat or w will become hungry.

Q

Lemma 4 Every philosopher who is hungry in the probabilistic mode, either eats or becomes humngry
in the deterministic mode.

Proof Sketch: Let u, v and w be three consecutive philosophers. Let v be the hungry probabilistic
philosopher. By the Lehman-Rabin proof, some philosopher z eats and becomes deterministic. Assume
that none of v’s neighbors is deterministic and one neighbor (say, w) is thinking. Then Lemma 3, either
u eats or v eats or w becomes hungry in the probabilistic mode. By a simple induction argument. a
chain of hungry probabilistic philosophers is set up until a deterministic philosopher is encountered.
By Lemma 2, either the last hungry probabilistic philosopher on the chain (who has z for a neighbor)
eats or becomes hungry in the deterministic mode. In either case, it becomes deterministic and the
contagion of determinism flows back along the chain. Eventually v eats or becomes hungry in the
deterministic mode. {(End of Proof Sketch)

Lemma 5 Every philosopher who is hungry in the deterministic mode eats.

Proof Sketch: Let v be a hungry, deterministic philosopher. If there are no probabilistic philosophers
in the ring, since the precedence graph is acyclic, the starvation-freedom proof of Chandy-Misra is
applicable and eventually v eats. Otherwise, let M be the number of probabilistic philosophers in
the ring, N the number of deterministic ancestors of u in the precedence graph and L the number of
thinking deterministic ancestors of u in the precedence graph. By an induction argument, we show
that the metric (M, N, L) decreases until eats. (End of Proof Sketch)

Theorem 0 No philosopher is hungry forever.

The eventually-determinizing algorithm appears in the appendix. The author has proved it in a com-
positional manner by stating the proofs of the Lehman-Rabin and the Chandy-Misra algorithmns as
conditional properties and using a calculus that he has developed for manipulating such properties.

6 Conclusions and Future Research

We have introduced a new paradigm for the design of parallel algorithms and applied it to design an
eventually-determinizing algorithm for a circular configuration of dining philosophers. Such algorithms
utilise the advantages of both probabilistic and deterministic algorithms.

The paradigm opens up several interesting problems in the theory and practice of algorithm design.
A first question tries to generalize the paradigm further. Can the idea of mode switching be applied
to other properties, like asynchrony and synchrony 7 Secondly, a theory of eventually-determinizing
algorithms would be useful. It would help in answering questions such as: What is the weakest
specification that a probabilistic mode has to satisfy for its combination with a given deterministic
mode to be eventually determinizing ? In our example, we have assumed the probabilistic mode to
satisfy deadlock-freedom. Would something weaker have done the job 7 Another question relates to
other applications of eventual determinism. Currently the author is working on applying the paradigm
to mutual exclusion and network routing.

A related area of study would be to define suitable complexity measures for such algorithms. It
is evident that something more than the expected value analysis of probabilistic algorithms and the
lower and upper bound measures of deterministic algorithms is needed.

7 Acknowledgement

I am grateful to Professor Jayadev Misra for advising and supporting me. Thanks are also due to Ken
Calvert, Sumit Ganguly, K. Muthukumar and Sankrant Sanu for their suggestions and criticisms.

References

[BGS88] Shaji Bhaskar, Rajive Gupta, and Scott Smolka. Probabilistic algorithms: A survey. Private
Communication, 1988,

[CM84] K. Mani Chandy and Jayadev Misra. The drinking philosophers problem. ACM Transactions
on Programming Languages and Systems, 6:632-646, October 1984.

[cM88] K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foundation. Addison-
Wesley, 1988.

[Dij72] Edsger W. Dijkstra. Operating Systems Techniques, chapter Hierarchical Ordering of Sequen-
tial Processes. Academic Press, New York, 1972.

[Dij74] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communications
of the ACM, 17:643-644, November 1974.

[DS89] Edsger W. Dijkstra and Carel S. Scholten. Predicate Calculus and Program Semantics.
Springer-Verlag, 1989.

[HSP83] Sergiu Hart, Micha Sharir, and Amir Pnueli. Termination of probabilistic concurrent pro-
grams. ACM Transactions on Programming Languages and Systems, 5:356-380, 1983.

[Lev88] Eliezer Levy. A probabilistic-deterministic algorithm, or an exercise in program composition.
Private Communication, 1988,

[LR81] Daniel Lehmann and Michael O. Rabin. On the advantages of free choice: A symmetric and
fully distributed solution to the dining philosophers problem (extended abstract). In Confer-
ence Record of the 8ith Annual ACM Symposium on Principles of Programming Languages,
pages 133-138, Williamsburg, VA, 1981.

[Pnu83] Amir Pnueli. On the extremely fair treatment of probabilistic algorithms. In Proceedings of
the 15th Annual Symposium on the Theory of Computing, pages 278-290, 1983.

[PZ86] Amir Pnueli and Lenore Zuck. Verification of multiprocess protocols. Distributed Com puting,
1:53-72, 1986.

[Rab76] Michael O. Rabin. Algorithms and Complexity, chapter Probabilistic Algorithms, pages 21-40.
Academic Press, New York, 1976.

[Rao90] Josyula R. Rao. Reasoning about probabilistic algorithms. Submitted to the 9th Annual
ACM Symposium on Principles of Distributed Computing, 1990.

10

8 Appendix

8.1 The Lehman-Rabin Algorithm

The Lehman-Rabin algorithm is formalized in a UNITY-based notation designed by the author [Rac90l.
The interested reader is referred to [LR81, PZ86] for an alternate exposition.

always
(] u:
u.mayeat = wh A (drawu# N) A (forklu,u—1]=u) A (forklu,u+1] = u)
i u.retry = w.h A (drawu# N) A (forklu,draw.u] = u) A
(forklu, R(draw.u,u)] # u) A (rflu, R{draw.u, u)] = u) A
-7 feleanu, R(draw.u, u))
)
1 (] (wv): Elul:
sendreglu, v] = wu.h A {drawu# N) A (fork[u,v]=v) A (7 flu,v] = u) A 7 feleanfu, v]
i sendfork{u, v] = (forklu,v]=u) A (rflu,v]=u)A
(utV (uwh A (draw.u = N))V (uh Adrawu = R(v,u) A forklu, draw.u] # ¢
I forkinuselu,v] = (forklu,v]=u) A (rflu,v]=u)A
(u.eV (whA(draw.u = v))V (uv.h Adrawu = R(v,u) A forklu,dravau] = u
)
initially
(] u:
u.dine, drawvu = t, N
I forklu,u+1] = u
i rflu,u+ 1], rfeleanfu,u + 1], v f firstlu,u + 1] = (u+ 1), true, irue
)
assign
drawv = u—1}lu+1 if v.hA(drawu=N)
|
rflu, draw.u], v f firstu,draw.n] := draw.u,true if sendreglu, draw.u]
[
rflu, R(draw.u,w)],7f firstlu, R(draw.u,u)] := R(draw.u,u), false if sendreglu, R(draw.u, u)]
(forklu,draw.u] = u)
|
u.dine := e if w.mayeat
l
draw.u,r felean[u, R(draw.u,u)] := N,true if w.reiry
[
(] v:Elu,v]:
fork[u, v}, 7 flu,v], v feleanu, v]
.= fork[u,v],v, false if forkinuse[u,v]A —rffirst[u,v]~
v, 7 flu,v], 7 felean[u,v] if sendforklu,v]
)
end

11

8.2 The Chandy-Misra Algorithm

Ne describe the deterministic Chandy-Misra algorithm in UNITY. The interested reader is referred to
[CM&4, CM88] for an excellent exposition of this work.

u.mayeal

sendreglu, v)
I sendforklu,v]
)

u, v Elu,v]

i

I

(Av: Elu,v]: (forklu,v] = u) A (cleanfu,v]V (7 flu,v] = v)))

(forklu,v]l=v) A (rflu,v]=u)Au.h

(forklu,v] = u) A =cleanfu, v] A (7 flu,v] = u) A —u.e

initially
(] v:udine=1)
I (] (u,v):cleanfu,v] = false)
I (] (w.v):u<wv forklu,v],rflu,v] = v, v)
assign
(] u: u.dine 1= ¢ if w.h A wmayeal
W(|v: Elu,v] i cleanfu,v] = false if wu.h A uw.mayeat)
)
[(0 (wv)
rflu,v]i=v if sendreg{u,v]
I forklu,v], cleanu,v] = v, true if sendfork[u,v]
)
end

8.3 The Eventually-Determinizing Algorithm

The eventually-determinizing algorithm is shown in its entirety below. It is obtained by merging the
UNITY-like notations of the modified Lehman-Rabin and the Chandy-Misra algorithms and incorpo-
rating the mode switching rules developed in Section 5.

always
(] u
u.mayeaip
ﬂ u.retry
w.mayswitch
) | ﬁ
I (0 (wov): Elu,v]:
psendreglu, v]
0 psendforklu, v]
0 forkinuse[u, v]

y
/

wh A uwph (drawau# N) A (forklu,u—1]=u) A (forklu,u + 1] = u)
uh A u.pA (drawu# N) A (forklu,draw.u} = u) A

(fork[u, R(draw.u,w)] # u) A (rflu, R(draw.u,u)] = u) A

~r fclean|u, R(draw.u, u)]

(Vv : E[u,v]: (forklu,v] = u) A clean[u,v])

iy

wh Auph (drawau# N) A (forklu,v] = v) A (7flu,v] = u) A rfcleanfu,t
(forklu,v] = u) A (rflu,v]=u) Au.pA
(wtV (wh A (drawu = N))V (uh Adrawu = R(v,u) A fork[u,draw.u] # u
(fork[u,v] = u) A (rflu,v]=u) AupA
(u.eV (wh A (draw.u = v))V (w.h Adrawu = R(v,u) A fork[u, draw.u] = u)

12

I w.mayeatd = wdAlrv: Elu,vl: (forklu,v]l = u) A (clean]u, v}V (v flu,v] = v)))
L < % § % Lo > Vi 7 N ? j \ L 4

L S

I3 . 7 I
([wyv: Elu,v)
I eendrealu. vl
dsendregiu, v

i

(fork[u,v] = v)A(rflu,v]=u)Auh Aud

l dsendforklu,v] = (forklu,v]=u)A ~clean{u,v]A (rflu,v]=u) A —u.ehud
)
initially
(] u
u.dine, uomode, draww = {,p, N
b fork[u,u + 1], cleanfu,u+ 1] = u, false
0 rflu,u+ 1], feleanfu, v+ 1], 7 f first[u,u+ 1] = u+ 1,true, true
)
assign
drawu = u—1lu+1 if vhAupA(drav.u= N)
n
i
rflu,draw.ul, v f firstlu,draw.v] := draw.u,true if psendregfu, draw.u]
1
i
rflu, R(draw.u,u)}, rf firstlu, R(draw.u, u)] := R{draw.u,u), false if psendreglu, R(draw.u. u)ln
(forklu.draw.u] = u)
n
U

u.dine, u.mode, clean[u,u — 1}, clean[u, v + 1] :=
e.p, false, false if w.mayeaip

[ade]

draw.u, r fclean[u, R{(draw.u, u)], u.mode :=
N,true,d if wu.retry Au.mayswitch ~
N, true,u.mode if w.retry A —u.mayswiich

(} v:Elu,v]:
fork[u, v],r flu, v], 7 felean[u, v], clean(u, v]
:= forklu,v],v, false,cleanlu,v] if forkinuse[u,v]A —rffirstlu,v]~
v, 7 flu,v],r felean[u, v], false if psendforklu,v]

o

i}

o,

Pseena]
IS

u.dine := e it w.h A umayeaid
Wiv : Elu,v]:: clean[u,v] := false if w.h A wmayeatd)

=]
PN
o~
s
4
e

rflu,v],rf firstju,v] := v, true if dsendreglu,v)
I forklu, v],cleanfu,v] := v, true if dsendfork[u,v]
\
/

end

13

