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1. Introduction te the Problem

This is a collection of the results about various Bertrand curves obtained using a computer
program based on an improved version of Ritt-Wu’s zero decomposition algorithm presented in
part I of this paper [CG1]. We adopt two approaches to treating the problems. First, we use
Formulation II to prove known results under some explicitly given non-degenerate conditions.
Second, we derive “unknown” relations among certain variables using Ritt-Wu’s characteristic
method and then prove them using Formulation II. In this way, we have proved or derived
most of the known results for various Bertrand curves mechanically. We have also derived some
results which we have not found in textbooks of differential geometry or relevant papers.

The Bertrand curves problem was first studied using a computer by Wu in [WU1]. This
paper is a further study of the same problem, but contains more results than those of Wu’s:
totally 18 types of Bertrand curves in metric and affine differential geometries are studied and
a complete list of about 50 results are given. Also our study here follows a different approach:
we use the complete decomposition algorithm to derive or prove certain results under some
explicitly given conditions. Also, the proving procedure for the known or derived results is
automatically carried out by our program without any human assistance.

Theorems on various Bertrand curves are among the most eminent results in the local
theory of space curves. The success of our method in dealing with these problems shows that
our program based on the Ritt-Wu’s decomposition algorithm can be used to solve quite difficult
problems in elementary differential geometry, or even discover new results.

A pair of space curves having their principal normals in common are said to be associate
Bertrand curves [BE1]. Here following Wu [WU1], we shall further consider more general
problems. Given two space curves C; and C5 in an one to one correspondence, let us attach
moving triads (Cy, €11, €12,€13) and {Cs, €31, €32, €23) to C; and Cy at the corresponding points
of C{ and C, respectively. We denote the arcs, curvature and torsions of Oy and C by 81, ky, 4
and 89, ko, 15 respectively. Then all the quantities introduced above can be looked as functions

of 8. Let r = j—ﬁ“? and let

Co=Ci+ a1 By +asBs +azls (1.1)
€91 = Uy1€13 + Uia€1y + Uis€13

€33 = Uz1€11 T U22€12 + Uzz€is (1.2)

€93 = Uzi1€11 + Uzp€io + Uss€is

where @; are variables and (u;;) is a matrix of variables satisfying certain relations which will
be given in the following sections. For the original Bertrand Curves, (1.1) and (1.2) become

Co=0C1 +asly,

€97 T Upi€11 + Uiséia
€32 = €12

€33 = —Uis€y; + U11€13

where u?, +ui; = 1.



Roughly speaking, the problem is to find under what conditions for the curve pairs (C and
C,) their moving triads will satisfy some given relations. For example, the original Bertrand
curve problem is to ask under what conditions (of C; or Cy) C1 and C, will have identical
principal normals at the corresponding points, i.e. Ess = E5 at the correponding points.

In this paper, we mainly consider the following three groups of problems.
MI; (1<i<5< 3) means that e,; is identical with ey; in metric differential geometry.
MP; (1<:<5< 3) means that es; is parallel to ey; in metric differential geometry.

AL (1<i<7< 3) means that ey; has the same direction with ey; in affine differential
geometry.

So totally 18 kinds of Bertrand curves are studied.

In this paper, we assume the reader has already known the Ritt-Wu’s decomposition al-
gorithm and Wu’s method of mechanical theorem proving in the differential case. A detailed
description of the algorithm can be found in [WUZ2] or part I of this paper [CG1].

In section 2, we will discuss the following two cases in metric differential geometry. In
section 3, we will discuss the case in affine differential geometry.

2. Bertrand Curves In Metric Space

In metric differential geometry, let (€11, €12,€13) and (€1, €22, €53) be the Frenet triads of C;
and C, at their corresponding points respectively, then we have the following Frenet formulas.

/ 3

€y = kieis

L
612 = “k1€11 +f1€12 {21)
2
€11 ——t1612

6{21 = ’?"kg&gg

; :
€y = —Thzear + rizes (2.2)

P .
623 = —Ti9€99

2

where 7 = %—3—; and the differentiations here and in the following of this paper are all wrpt s;.

Differentiate (1.1) and (1.2); eliminate €],,€},,€}3, €5, €3, and €53 using (2.1) and (2.2);
eliminate es1, €2, and egs using (1.2); at last, comparing coefficients for the vectors €11, €19,
and eys, we have:

(ot — T3 + a{3 =0

ast; — arky + rugp —ay =0

ask, +rup;; —ay —1=0

PUssks — 9ty —uly =0

Tugsks + Uity — unky —ujy =0

rig ks + t12ky — u); =0



riugsts — TUisky — Usaty — Uhy =0 (2.3)
Tuzoty — TUiaks + Ussly — Uz by — Uhy = O

Tﬂ31t2 - Tuuk;; -+ 21;22]{71 — ?i;l =0

’;'”U,ggiQ -+ ?132??1 + '11,{33 = 0

TUgals — Ussly + Usiky +ug, =0

/
TUsy g — uggkl + Ugy = 0

To transform a right-handed orthogonal system {e;1, €12, €13} to another right handed orthog-
onal system {€a1, €20, €23}, (u;;) must satisfy

2 2 2 —
ujs Ui, +uy; —1=0

2 2 2 _
Ung + Uy + Uy —1 =10
wl, Ful, dud, —1=0
33 32 31 =
U13U23 + Ur2U22 + U112 = 0 (2.4)

Uystaz + Uiz + Uiz = O
Ugalhzs + Usalzy + Uz Uz, = 0
(211 Us2 — U1oUoq Uss + (—U11Uss + YrsUsr )Uss + (Urolos — Uralagg)Usy — 1 = 0

(2.3) and (2.4) were first given by Wu in [WU1] except the last equation in (2.4) which is added
by us to preerve the right-handness of the moving triads.

2.1. The Identical Case

Let M1I;; be the case for which e,; is identical with e;; at the corresponding points. Since
(e11,€12,€13) and (ea1, €25, €23) are orthogonal systems, at case M I;; we have:

Gm =0 m#d
U —1=10 (2.5)
Ujp, =0 Ky #£1
Uy =0 k#j4

For each concrete case M I, ;,, apply Ritt-Wu’s decomposition theorem to (2.3), (2.4), and (2.5)
under the following variable order » < gy < g5 < g3 < Uy < Ugs < Uiz < Ugy < Ugs < Uz <
uzy < Uzy < Uzz < ky < 1y < k3 < t3. Once the decomposition is furnished, we can prove or
derive formulas from the given asc chains in the decomposition.

The following non-degenerate conditions are often used:
ky # 0 means curve () is not a straight line.
ko # 0 means curve (5 is not a straight line.

r # 0 means the arc length of C, as a function of the arc length of C, is not a constant,
i.e., Cy is not a fixed point.

At first, we list some of the known or derived results.

Case M I,,. Under the non-degenerate condition vk, ks # 0, C; and Cy must be identical, i.e.
', = (5. For other variables, we have two cases:
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(). r =1, €11 = €31, €12 = €322,€15 = €23 by = ks, and §; = 5.
(ii). r = 1, €11 = €21, €12 = —€32, €13 = —€23 by = —ky, and t; = {s.
Note that (ii) is impossible as we assume k; > 0 and k, > 0.
Case MI,,. Under the non-degenerate condition r # 0, we have

a. Cy and Cy are both plane curves (i, = 15 = 0).

b. Cg - Cl 4+ aieqq.

¢. There are two cases:

€91 = —€12,€33 = €11,€23 &= €13

ai = -1,a1ky = —1 (2.6)
r=—ak;

€91 = €12,€22 = €11,€23 = —€13

ay = —1,a1ky = —1 (2.7)
o= Gk

The geometric meaning of the above results can be stated as follows.

If C, is the involute of Cy in the strong sense that the principal normals of Co are identical
with the tangent lines of Cy, then both curve must be plane curves, and

(i) Cy = C1 + (co — 8)exr where ¢o is5 a constant.
(ii) Cy = Cay + -&2—622) i.e Cy is the locus of the curvature center of Cy.

(iii) The arc length of Cy between two points equal to the difference of the reciprocal of the
curvature of Co at the corresponding points.

Case MI,;. There exist no curves satisfying €31 = €23 under the condition » # C.
Case MI,;. Under the non-degenerate conditions r # 0 and ap # 0 (Cy # C»), we have
a. The distance from C; to (5 is a constant.
b. The angle formed by the tangent lines at C; and C; respectively is a constant.
c. (Bertrand) There exists a linear relation between k; and £, with constant coefficients.
d. (Schell) The production of #; and ¢, is a constant.

We actually have the concrete expressions for results ¢ and d in (2.10) and (2.11).
Case M I5. Under the non-degenerate condition rk; # 0, we have
a. The distance from C, to Ty is a constant.

B

b. (Mannheim) k7 + 1 = e1ky



c. 1112 = ety —12)

where ¢, and ¢, are constants.

We actually have the concrete expressions for results b and c in (2.12).

Case MI;3. Under the non-degenerate condition rkik, # 0, we have either

0,7’: ’1’k'1 =

a. Oy = Cys 01

- = - r - .
b. C; and C, are both plane curves and e;; = e51,€12 = €93,€13 = €33 a3 = 0,7 = Lk = ky;
or
c. Cy and C, are both plane curves and e;; = —e€s1, €15 = —€92,€13 = €33 a4
—ks.

In this case, we have either C; and C, are identical or both curves are plane curves and C»

is translation of C; with a constant distance along the binormal of C;.

Take M I, the original case of Bertrand as an example. Other cases can be proved similarly.
Using Ritt-Wu’s decomposition algorithm to (2.3) U (2.4) U (2.5) and 7 # 0,a; # 0, we get 3
components the ascending chains representing the components are:

ASCy =

231

a

iz

Uy — 1

Uiz

U3

Ug1

oy — 1

Uz

Uz

Ugg

Uzg — 1

asky +7—1
ty

ragks + 17— 1
19

ASCy =

Gy

@)

a3

1y + 1

Uiz

Uiz

U1

oy — 1

Uss

Uzy

Usg9

Ugs + 1

asky — 1 =1
ty

rask, +7r+ 1
(2

AS5Cs =
ay
ay
a3
i
Uiy
Uiz
2 2
uig +uy; — 1
Ua1

oy — 1
Uas

Hgy + U3
Uz2

Uzz — Y11

agky + Uy — 1
Galy — TUys
rasky — Uy + 7
TQoty — Uis

By the method of eliminating constants in [CG1], the four conclusions of M I5, are equivalent

to

=0

/ [—
Uy, =0

a

By

DLR(1,ky 1)) = K/t — /K, =0

(i}ig)g = G

(2.9)

respectively. The pseudo remainders of the differential polynomials (ab. d-pols) in (2.9) wrpt
ASC,, A5C,, and ASC; are zero which proves the result.
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On the other hand, we can obtain our results from ASC3, which represents the main compo-
nent [CG1], directly. The differential equations representing results a (af, = 0) and b (u}; = 0)
are already in ASCs. Eliminate r from the last four equations of A5C3, we have:

dotyrty + Gougzky — w3 =0
a3tits — uis (2.10)

aztiky + asty — ugiugz =0

As ag, 11, (and hence uz = /1= u,) are constants, the first two formulas of (2.10) actually
give the concrete expression for Bertrand’s theorem and Schell’s theorem. From (2.10) we can
find formulas between ki, ko; k1,75 and ko, ¢5 respectively as follows.
(1 — azks)(1+ asks) —ui;, =0
alkity — asty + Utz =0 (2.11)
aytyyly — GaUizhy — U3 =0
The conclusions in (2.10) and (2.11) are correct at the nondegenerate condition k; ko # 0.

For MI,s, we can find the following concrete expressions for (b) and (c) of M I3 similarly:

ast? + aski —k; =0 (2.12)
ag}flig - ?fg -+ 51 =0

where a4 is a constant. We can also find the following algebraic relations among ki, ks, and #q:
Golite —ky =0
k2 412 — 118, =0
(aZky —as)ty + k1 =0
For r, we have:
r? =1/ + k)
r? =1 [ty

T = U1y

Note that k, does not occurred in the above expressions. There are no algebraic relations
among ks, ki, 11,12, and a;. We have the following formulas for &,:
2151;62 4 dk‘}/dS! =0

aging - T'//Tg =0

All the above results are true under the nondegenerate condition kikyr # 0.

2.2. The Parallel Case

Let M P;; be the case for which vector ey; is parallel to vector e;; at the corresponding
points. Then at case M F;;, we have

'?.Lj;;,:(} ;ﬂ#@
@éki:@ Z\”}‘é}

e,
A
J
w

R
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For each concrete case M P; ;. , apply Ritt-Wu’s decomposition algorithm to (2.3), (2.4) and

ojo?
(2.13) under the non-degenerate condition k1k,r # 0. The following results can be derived and

then proved automatically under the non-degenerated condition ki ksr # 0.

Case M P;;. There are four cases:

a. azay + G20 + aral +(r+1)a; =0
o= -!€1//’€2 = —f;/?ﬁg
€91 = —€11,€29 = €132,€23 = —€13;07
b. asah + asay + aya +(r+1)a; =0
=k ke = —11 /12
€91 = —€11,€322 = —€12,€23 = €13;07
c. aszay+ asay + aral + (—=r+1)a; =0
A —-—k?l/k‘z = ?fl/ig
€91 = €11,€22 = —E€13,€33 = —€313;07
d. azaly + agal + ayal +(—r+1)a; =0
r=ky/ky =11 /1o

€91 = €11,€23 = €12,€23 = €13.
Case M Pj,. There are two cases:

a. s —1=20

agk; —a) —1=0

> ki

L

3+ k3

ko [ury = —ty/uys = ki /r;or
b, s +1=20

agk) —al —1=0
. K

RS
kyfuye = to/uys = ki /7.

r

Case M Pys. There are four cases:

. €93 = —€313,€29 = —€313,€33 = —€11,07
o= mil/?ﬁg = —;’31/'?2

b. €31 = €13,€20 = €13,€33 = —€11,07T
= ~ty/ke = ky [ts.

C. €21 = —€13,€39 = €19,€23 = €11,07
=1t/ ky = =k [ts.

d. ey =€13,633 = —€12,€23 = €11.

T :ti/iﬁg = fCli'/tge
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Case M P., There are two cases

G. Usg — 1 =0

uy; =0
wjy =0
uis(tits + kiks) = uyr(kyty — t1ks)
o _ L +E]
2+ k2

asty — arky —ay =0

P2ty — 18 ky — aots — alt? — agkit, — ajki =0

Pty + 12k ks + (asks — @) — 18 + azkd + (=af — 1)kT = Ojor
b, gy +1=20

u), =0
U3 =0
urs(tits — kika) = wir(kits + t1ko)
Bk
2 + k3

asly — alkl - a; =0
Tgklig -+ Tzflkg - agi? aad agi? - agk%il - agkg = 0
ity — r2hiks + (asky — af = DI} + aghkf + (—ay — 1)k{ =0

Note that from the fourth differential polynomial, we know that #1,k;, k2, and {, satisfy a
homogeneous quadratic equation of constant coeflicients.

Case M P,3 We have

2
22—t ki =0
ty/urn = ki /uis = iy
2 4 2, V.2 / 2 j 2
(apa} + a2ag)k? + (arasay + (—a) — 1)ad + 2aya5a5)k1 + ayazas + azay =0

a3t1 — (1,1;81 — CL; =0
Case M Ps;. We have the same results as M Pyq.

Take M Py, as an example. Using Ritt-Wu’s decomposition algorithm to (2.3), (2.4), and
{15 = 0,u13 = 0,us; = 0,us; = 0} under the following variable order: by <t < ky < 13 <
P ay < s < az < upp < Uz < Us < dgr < Uzz < Uz < Uy < Usp < Usz, We find four main
components which give the four results respectively.

Some of the results obtained in this section cannot be found in textbooks of differential
geometry.

3. Bertrand Curves in Affine Space

In affine differential geometry, let ;7 = ———*(;f ,E€10 = ——iéddi‘ ,€13 = -——*-&d;s"’ and ey = ———l’gf , €99 =

1 i | 1 27
——-de5; , €93 = 42&;55 be the moving triads of Cy and C, at their corresponding points respectively,
- 52 ¥,
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where 5; are the arc length of curves C; for i = 1,2. Then we have the following Frenet formulas.

P
€11 = €12
7
€19 = €13 {31}
foom= —kye 1
€15 = 1€12 T i€y
i —
621 = T€99
I .
€4y = Te€a3 (3.2)
6;3 = -—7‘%2622 'Jr Tt2€21
where r = i—z—f. We also have
(e11,€12,€13) = 1 (3.3)
(€21,€20,€03) = 1 (3.4)

Similar as section 2, we can get the following d-pol equations.

TUpz — 5 — a3 = 0

agkl + rUyg — a; -y == 0

asty +rug;; —a; —1=10

TUgs — Uy — Uy = 0

wizki 4 ras — Uiy —u11 =0

Uygly + TUg; —uy; =0 (3.5)
Plgg — Upy — Ugy = 0

Ugsky + Tlgy — Uhy — Uz =0

Ugaty -+ TUz — ’U,lgl =0

TUiale + TUssks + Uy + Uz = 0

TUygty + Tugsky — Ussky + ugy + sy =0
=0

TUui1ly + TUz1 ko — Uasly + Ug

From (3.3), (3.4), and (1.2) we have that the determinant of the transformation matrix (u;; ) is
the unit, i.e.

(w1122 — Ui2Uoy JUss + (—U11Uos + UrsUsy Jtsz + (U12Uss — Uislan Uz — 1 =0 (3.6)

Let AI; be the case such that e;; has the same direction™ as €;; at the corresponding points.
At case Al;;, we have:

ar =0 k#q (3.7)
%{.jkl:{) ;31#2

* In affine case the vectors in the moving triads are not unit vectors. Then there is no identical
case as section 2.1



We first apply Ritt-Wu’s decomposition theorem to (3.5), (3.6), and (3.7) under the following
variable order 7 < a1 < as < G5 < Uy < Uiz < Urz < Ugy < Ugp < Uz < Uzyp < Uzz < Uszz <
ky < t; < ky < ty. Once the decomposition is furnished, we may prove or derive results from
the given asc chains in the decomposition.

At first, we list some of the known or derived results.
Case AI,. The following results are true under the non-degenerate condition 7 # 0
a. Cs = C1.
b. There are two cases.
r=1

ky =kt =1

€97 = €11,€22 = €12,€23 = €13

r=—1
ky = ki, 1y = —1y
€91 = —€11,€22 T €12,€23 = —€13
Case Al,,. There exist no curves such that e;; has the same direction as eqs.

Case Als. The following results are true under the non-degenerate condition 7 %0

Cy =Cy+aren

€23 = U31€11

aq :-;—frdsl

Uz = 7’3/@§

ky =0

a?ig + =0

aity +us: =0

PR+t =0

rraky + (=2r7" £ 37" )a, +2r =0

3r8abty + (=3r2r" + 12r7'7" — 9r')ad + (4r%r" — 10r7'*)a? +3r° = 0
1862¢4 11 — 912142 — 66,15ty + 64t + 9k, 1517 =0

3ra} —3r'a; +7r =20

Case Al,;. The following results are true under the non-degenerate conditions r # 0,05 # 0.

Cy = Cp 4 asers

€99 = U2€11

a; = CU2y

where ¢ is a constant. For k, and £;, we get a formula for &y, k{, k7 .2y, 17,77, and ¢}" of 55 terms.
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((12¢% — akit )t )"

+ ((—1585 + 5K 20 )17 + (248, + 4k7)E2 + ARV t, 8] — 90k, 15 4 30k, k{15 )t/

— 20k K117 + (14417 + 216k113 + (20k1 kY — 56725, — TEEZ T + 25k7 K3t
+ (1588, — 5k 1)tf® + (1203 — 4k + (90K €7 + 25k, k1 1)t]

~ 135t% + 15183 + (—55k kY + 10k)¢3)t?

+ (20k, K117 + (14483 — T2k, 15 + (—20k kY — 1287)60 )17 + ((—144Kk7 + 75k7 )83

+ (68K, kY + 150k K, )11, + 90k 8§ — 510k, ki ¢] + (—175k7 K} + 160k, k77 )i3)t)

— 16K + 32K kY4112 + (240K, K1 £ + (= 16k — 180k, K2)E2)t7

+ (4327 — 1152k117 + (—240k, kY + 924%7)t7 + (180k k1KY — 196k 4+ 125K3K))13)1)
+ 225K%15 — 525k k115 + (— 1253k + 150k2E72)t = 0

For other variables we have two cases
Ugy — T = 0

2ral, — r'a; =0

tg —_ i} _ 0
PP agks + a0k, +2r° —2=0
rast; +7' =0

aity +2a,=0

Ugy +7 =0
2raly —r'ay =0
ty+t, =0
PP asks + agky — 2% —2 =0
rast; +7 =0
ait, +2a5 =0
Case Als3. The following results are true under the non-degenerate condition r # 0.
riasty + (2ral, — r'ag)ui, + riugz, = 0
rky —ud, = 0
a3usqty + 2ahuzy + 13 =0
rrask; — 3r’ay + 6rr'ay + (r7” =31 )ay — 1 =0
(a5t} + 4aiaht, +4aF )k, — 78 = 0
(a5t3 + 4adabt; + 4a7)kd — uj, = 0
Case Alzz. The following results are true under the non-degenerate condition r # 0.

?"Qk,’g h uggk‘l =0

(r*asty — )ty + (rast) + (2ray — 7'as)t; + 7' )ky + r2ugst; = 0

All the above results can be proved similar as section 2. For example, let us show how to
prove the result a = cuqy in case Aly,. Since cis a constant. We need to prove DLR(a2,uq5) =
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2a9ahusy —adub, = 0. Using Ritt-Wu’s decomposition theorem to (3.5)U(3.6)U{a;, as, Uz, uss}
under the non-degenerate condition r # 0, we get six components. the pseudo remainders
of DLR(a%,us2) with respect to (ab. wrpt) the six ascending chains representing the six
components are all zero which means the result is true. We actually can derive this result
automatically. Of the six components, there are two main components whose ascending chains
are:

ASC, = ASC,y =

i a4y

2ral, — r'as 2ral, — r'as

ds as

PU — 1 ULy — 1

272Uy — r'a, 2r2 Uy — 7 g

TUyz — Qo TlUiz — G2

Uz Uz

Uz + T Ugg — T

Ua3 a3

Uzt U3y

TUzy ~+ 1 TUzs — 7

uzz + 1 uzz — 1

ar?asky + (=2rr" 4+ 31" )as — 47° — 4r? Ar?ask; 4 (=207 + 37 )ay + 4r° — 472
Taqoty + 1 Pty + 7

drtaske + (277" — 3r'%)ay — 47° — 41?7 drtagky + (2777 — 37'%)ay + 47° — 477
ragty — 1/ rasty + 1

In ASC, and AS5C,, there is a differential equation 2raf, — r'a; = 0 whose solution is just
a? = cr for a constant ¢. All the results of case Aly, can be found similarly. In this way, we
have rediscovered all the formulas among #;,%5, a2, 7, tss in [OG1]. We also found some results
which are not in [OG1], e.g. the relations between k; ¢; and k; ks.
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