RECTIFYING CORRUPTED FILES IN
DISTRIBUTED FILE SYSTEMS

Sampath Rangarajan and Donald Fussell
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-90-11 May 1990



Rectifying Corrupted Files in Distributed File Systems *

Sampath Rangarajan
Donald Fussell
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712

Ahbstract

In distributed database or file systems, files may be replicated and distributed over a collec-
tion of sites connected by a network. If a file becomes corrupted, it can be restored by comparing
it with one or more of its copies residing at other sites and then restoring those pages which
have been found to be faulty. Page comparisons can be done by generating signatures using an
uncorrupted file and comparing them to signatures from the corrupted file at a common site.
The overhead of such a strategy is measured by the number of bits in these signatures that
must be transmitted among sites. Let a file be divided into n pages, and let f be the maximum
number of pages that could be corrupted. We present a probabilistic comparison algorithm
which requires O(f logn) bits to be transmitted to identify the corrupt pages, which improves
on previous results on the growth of communicated bits as functions of both n and of f. If
both copies compared are corrupt, only twice the number of bits is required as for the previous
case. Further, if multiple copies are used for comparison, then the product of the number of
copies times the number of bits sent from each of these copies to the comparison site grows
as O(flogn). We provide a lower bound which establishes the optimality of our algorithm to
within a constant factor.

*This research was supported in part by the Office of Naval Research under Contract N0O0014-86-K-0587



1 Introduction

Distributed database or file systems allow files to be replicated and copies kept at a number of
communicating sites. One goal of replication is to allow the data to be kept consistent in the face
of site failures. In case of such a failure, the corrupted copy can be rectified by comparing it with
an uncorrupted one and restoring damaged sections. A brute force way to accomplish this involves
using the full versions of the corrupted and uncorrupted copies for comparison. This would involve
large communication overhead since an entire file would have to be transmitted between sites; this

can be prohibitively expensive when large files are involved.

A better strategy for file restoration is to compress the data before transmitting it to a site
performing comparisons. Since a primary goal is to isolate the locations in the corrupted file
where errors have occurred so that only relatively small portions of the uncorrupted file have to
be transmitted for restoration, signatures of the individual pages (or other appropriate pages) of
an uncorrupted file copy and the corrupted file can be generated and transmitted to a site for
comparison. Signatures which match are assumed to indicate matching, and thus correct, pages,
while mismatched signatures indicate a corrupt page needing restoration. The communication cost
for this approach can be measured by the number of bits that have to be sent betweeen the sites
containing the corrupt and uncorrupted copies. We will henceforth assume that the site containing
the corrupt copy is the comparison site. Since the number of bits involved in the transmission of
complete uncorrupted pages when mismatches occur depends on the number of errors that have
occurred rather than the efficiency of the error identification algorithm, these are not counted in

the communication complexity of the algorithm.

Assume that a file is divided into n pages, where the size of a page defines the granularity to
which we wish to pinpoint errors. Existing work in this area assumes that two copies of a file (say)
Fy and Fy exist on different machines, and one of them (say) F, becomes corrupted so that up
to f different pages of the file can contain errors. Then Fj is to be compared with F, in order
to identify the corrupted pages. We call this problem the single uncorrupted copy comparison

(SUCC) problem. Previous results for this problem include both deterministic algorithms where all



the corrupted pages are correctly identified and probabilistic algorithms where there is a non-zero
probability of misdiagnosis of pages. All these methods have been based on sending signatures
of the pages generated from the uncorrupted copy of the file to the site with the corrupted copy,
so even allegedly deterministic techniques have an inherent probability of error due to signature
aliasing where two or more different pages map onto the same signature. In [6], an algorithm was
presented which correctly identifies up to one faulty page (f = 1) with log, n signatures sent from
one site to the other. In [1], a technique was presented which identifies up to two faulty pages
(f = 2) using £ log, n(logyn + 1) signatures. In both cases, the signatures are assumed to be b
bits in length, where the signature aliasing probability is 2% [10] [6], with b chosen sufficiently
large to allow signature aliasing to be ignored. Otherwise the methods are deterministic, and they
identify a superset of the corrupted pages as faulty if more than one (two) pages differ. It is not

clear whether these methods can be extended to arbitrary f.

In [2], three different probabilistic algorithms were proposed which work for arbitrary values of
f. Of these methods, the the most efficient asymptotically [4] requires the transfer of O(f(logn +
log(%))(loglogn +log f +log($))) bits, where § is the error probability of the algorithm. Thus, the
number of bits grows as O( flog f) with f and as O(lognloglog n) with n. In [8] both a deterministic
and a probabilistic algorithm were presented for the SUCC problem; the best asymptotic efficiency
is achieved by the probabilistic algorithm, which requires the transfer of O(f%logn) signatures and

of the same number of bits as the algorithm from [4] cited above.

In this paper, we present a probabilistic solution to the SUCC problem with a lower overhead
(of bits transferred from one site to the other) than existing methods. We prove a lower bound
for probabilistic techniques for this problem which matches our upper bound to within a constant.
Further, we consider the single corrupted copy comparison (SCCC) problem, where both file copies
being compared can have up to f pages in error. Our algorithm for this problem requires only twice
the number of bits to be transferred for comparisons as for the SUCC problem. Finally, we consider
the multiple copy comparison (MCC) problem, where multiple copies {corrupted or uncorrupted)
of files are used for comparison. In this case, we measure the overhead as a product of the number

of copies and the number of bits sent from each copy. We show that there is a trade-off between the



number of copies of files used and the number of bits sent by each of these copies to the comparison
site. In all cases other that the SUCC problem, our results are the first solutions presented for

these problems.
2 Summary of Results

The results of our paper are summarized below. Note that all the algorithms presented work with
asymptotically high probability, that is 1 — O(-?;l;)? € > 1, where the value of § is determined by

constants in the algorithm.

2.1  An upper bound for the single uncorrupted copy comparison (SUCC) problem

For this problem, we propose a strategy which has an overhead of O( flogn) bits to be transmitted
from the site with the uncorrupted copy to the site with the corrupted copy. This result is O(log [+
loglogn) better than the best of the previously published work [4].

2.2  An upper bound for the single corrupted copy comparison (SCCC) problem

For this problem, we use the same strategy used for the SUCC case and show that it requires only
twice the number of bits as the SUCC case to be transmitted from the site with the corrupted copy
used for comparison to the site with the corrupted copy under diagnosis. Thus, this problem can

also be solved with O( flogn) bit overhead. This problem has not been considered previously.

2.3 A lower bound for the single copy comparison problem

For any probabilistic algorithm for the SUCC case, we show a lower bound which holds for the
entire range of variation of f from a constant to {2(n). Specifically, we show that for f = of ni)

H

the lower bound is Q( flogn). From this, we argue that the lower bound for the SCCC case is also

4



Q(flogn). Thus, we show that our algorithms for the SUCC case and the SCCC case are optimal
to within a constant factor if f = o(n%) Further, we show that if f = Q(n), the lower bound is
Q(n) and hence the trivial strategy where the whole file is sent from one site to the other is the

best possible asymptotically.

2.4 An upper bound for the multiple copy comparison (MCC) problem

We propose a probabilistic strategy for this problem which has an overhead of O( flogn) measured
in terms of the product of the number of copies and the number of bits transmitted from each
of these copies to the site with the copy under diagnosis. Thus, we show that if multiple copies
are used in the comparison, a trade-off exists between the number of such copies and the bits

transmitted from each of these copies. All copies can be corrupted or uncorrupted.
3 The basic strategy

3.1 The single copy comparison case

We will first discuss the strategy used in the single copy comparison (SUCC and SCCC) case. We
follow the same strategy as in [4] in forming the signatures of the files which we wish to compare.
First, the two sites generate the signatures for all the pages. Fach of the signatures is b bits long.
Then, they form m sets of pages, {51,...9,} where the sets are formed in such a way that each
page has a probability 7—};{ of being in any set 5;. Also, the two sites agree on these sets. Next,
a signature is generated corresponding to each of these sets where the signature of each set is
the combined signature of the signatures of the page in that set. These combined signatures are
also b bits long. We assume that the combined signature is formed by EX-ORing the individual
signatures. It has been shown in [6] that if b-bit signatures of a set of pages is Exclusive OR-ed to
form one single signature of b bits, the aliasing error probability remains approximately 2. The
site with the compared copy then sends its m signatures to the site with the copy under diagnosis.

Here, each of these m signatures are compared with the corresponding signatures generated by the



copy under diagnosis. Once the two sets of m signatures are compared, the diagnosis decisions are

made using a simple voting strategy based on an adaptive threshold as follows.

A matching signature exists when signatures generated by both the copies are identical. We
count the number of matching signatures of sets to which a page belongs. If this number equals
or exceeds a threshold value Dy, then we have confidence in the diagnosis and deem that page to
be uncorrupted. Otherwise, the page is deemed corrupt. We call D; the diagnosis threshold. Note
that although we use the same strategy as in [4] for generating and comparing the signatures, the
two strategies differ in that the threshold used in [4] is 1, whereas we use an adaptive threshold

based on the maximum number of corrupted pages (f).

3.2 The multiple copy comparison case

In this case, m signatures are generated from the copy being diagnosed and each of the compared
copies using the same technique as for the single copy comparison case. Assume that there are R
compared copies and that the copy being diagnosed has random and independent agreements on
how to form the m sets with each of the R compared copies (this requirement will become clear
later). Now, these R copies send their m signatures to the site with the copy under diagnosis. Here,
each of the m signatures from each of the copies is compared with the corresponding signatures
generated from the copy under diagnosis. As in the single copy comparison case, for a particular
compared copy, we count the matching signatures of sets to which a page belongs. If this number
equals or exceeds a diagnostic threshold value Dy, then we have confidence in our diagnosis and
deem that page to be uncorrupted with respect to that compared copy. Otherwise, the page is
deemed corrupted with respect to that compared copy. As a next step, we define a maich threshold
M. If a page is deemed to be uncorrupted due to comparisons with at least M; compared copies,

then that page is deemed uncorrupted. Else, it is deemed corrupt.



4 The Algorithms

In this section, we will formally present the algorithms. The main portion of the algorithm (DIAG-
NOSE PAGES) is common to both single and multiple copy comparisons (MCC). The difference
between these two cases lies in the existence of multiple diagnosis vectors and also in using a match
threshold for MCC both of which are explained below. Note that F denotes the set of pages deemed
by the algorithm to be corrupt.

4.1 The single copy comparison case

The same strategy for forming the vote vector is used for both SUCC and SCCC situations. Let
us denote the m signatures generated by the compared copy by {kc1,....kcm} and those generated
by the copy under diagnosis by {kq1,...,kqn} Note that each of the m signatures contains b bits.
As a first step, a diagnosis vector of length m, C[1,..,m] is formed in such a way that C[i] = 1 if
kei = kag else CTi] = 0. Essentially, the diagnosis vector gets a 1 for all those elements corresponding
to matching signatures. Next, a Vote Vector V[1,...,n]is initialized to zero. Also, define a diagnosis

threshold Dy, and set it to Dy, = Km where 1 < K < 2.

1
20(f+1)°

The steps are as follows:

¢ Form the diagnosis vector.

e Use Algorithm DIAGNOSE PAGES with the above diagnosis vector as the input to perform

the diagnosis.

4.2 The multiple copy comparison case

Now, let us denote the signatures generated by the R compared copies by {ke, 1, ..., keym by {Kea 15 oo Boyim I
vy {kcps s Kepm ) 18 set to . Then, R diagnosis vectors of length m, C;[1,..,m]for 1 < j < R is

formed in such a way that C;[i] = 1if k., ; = kq; else C[i] = 0. Essentially, as before, the diagnosis



vectors get a 1 for all those elements corresponding to matching signatures. As before, define a
diagnosis threshold Dy, and set it to Dy = K m%—(}%’ where 1 < K < 2. Set M, = £. Also
2 -+ } 2 9

initialize a count vector C'O[1,...,n] to zero.

The steps of the algorithm is as follows.

For1 <7< R

e Form the diagnosis vector C;[].
e Initialize the vote vector v[1,...,n] to zero.

Use Algorithm DIAGNOSE PAGES with the above diagnosis vector as the input to perform

the diagnosis.

For 1 < 7 < m, ifv[j] = 1, then CO[j] = CO[j] + 1.

For 1 < j < n, if CO[j] > M, then pagej = uncorrupted, else pagej = corrupted.

4.3 The diagnosis algorithm

Once the diagnosis vector is formed, the algorithm below is used to make the diagnosis decision for

both single and multiple copy comparisons.

Algorithm DIAGNOSE PAGES
Fr={}

For Each Page j {
For Each Set §; {
If (7€ 5)A(Cli]=1) then V[j]=V[j]+1



For Each Page j {
If V[j] < Dy then F' = F'Uj

/* End of Algorithm. Set F' contains the corrupt pages */

5 Upper Bounds

5.1 The single copy comparison case

We will now show upper bounds for our algorithms for both the SUCC and SCCC cases. With
O(flogn) bits sent from site with the compared copy to the site with the copy under diagnosis,
the algorithm diagnoses all pages with an error probability approaching zero as n increases. Let
P,(n) be the probability that all pages are correctly diagnosed by the algorithm for both SUCC and
SCCC. Then we have the following result relating the communication complexity of the algorithm

to the probability of correct diagnosis.

Theorem 1: If the number of signatures m sent from site 1 to site 2 is wf logn for some constant

w, then P,(n) — 1 as n — co.

Parameter w in the above theorem determines how fast the error probability approaches zero.

That is, if the diagnosis error probability is 1 — O(;}%L then w determines 4.
Corollary 1:

For SCCC, it suffices to transmit twice as many bits as SUCC.



The above result follows from the proof and discussion of Theorem 1 which can be found in the

appendix.

5.2 The multiple copy comparison case

For the MCC case, we will show that with an overhead measured in terms of the product of the
number of copies and the number of bits transmitted from each of these copies of O(flogn), the
algorithm diagnoses all pages with an error probability approaching zero as n increases. With all

the parameters as for the single copy case, the complexity of the MCC algorithm is as follows.

Theorem 2: If the product of the number of signatures m sent from each of the sites containing
the comapred copies X the number fo such sites R is v flogn for some constant v, then P.(n) — 1

as n — CO.

As before, Parameter 7 in the above theorem determines how fast the error probability ap-

proaches zero. That is, if the diagnosis error probability is 1 — 0(;;‘—5), then ~ determines 4.

Corollary 2: For MCC, if some compared copies are corrupted, it will suffice if only those copies

transmitted twice the number of bits as uncorrupted copies.

The above result is similar to the one for SCCC when compared to SUCC.
6 Lower Bound

In this section, we will show a lower bound for any probabilistic algorithm for the single copy
comparison case. As a special case, we show that for f = o(ng), the number of bits that have to
be sent from one site to the other is §( f logn), thus showing that the lower bound matches the
upper bound of the previous section to within a constant. Similarly, if f = Q(n) the lower bound
is Qn), which means that the trivial strategy of sending the whole file from one site to the other

is the best possible asymptotically.

10



First, we will show that a bound which holds for any deterministic algorithm which is allowed
to produce incorrect results with some probability €. The strategy that we use to prove the lower
bound is based on the definition of communication complexity in [11]. Then we will use results from
[12] to show that this bound can be extended to apply to randomized algorithms as well. It should
be noted here that an argument which applies to deterministic algorithms with no probability of

producing incorrect results was used in [9] to show a similar bound.

The idea of communication complexity [11] is as follows. Let g(7, ) be a function of two n-bit
integers ¢ and j. Let us assume that the values of 7 and j are known only to two persons A and B.
If the two persons want to cooperatively compute the value of ¢(7, j), how many bits of information
have to be exchanged between the two of them? Two types of randomized communication complex-
ity where a probability ¢ of failure was allowed were defined in [11]. One is probabilistic two-way
complezxity (with error ¢) denoted by Cc(g;1 < 2) where bits are sent in both directions, and the
other is probabilistic one-way complerity (with error €) denoted by C.(g;1 — 2) where bits are sent
only in one direction. Also, in [12] another type of complexity called the distributional two-way
error complexity (with error ¢) denoted byDc(g;1 « 2) was defined. This is the complexity of any
deterministic two-way algorithm computing g(7,j) with average error probability not exceeding e.
What we want to derive first is the value of D.(g;1 « 2) for the file comparison problem where
the two persons involved are the sites, one with a correct copy of the file and another with the

corrupted copy, and g is a function dependent on the two files.
We use the following observations.

Observation 1: The number of ways in which an integer of length n bits can be converted to
another integer of the same length where the two integers differ by at most f bits is given by

27]';1 (7). Let us denote this by Gy ,,.

Observation 2: For f = o(n%)’

f N P o e o
7 13 VAN 8n
()2 () -5

=1



The above approximation is from [5].
Observation 3: For f = Q(n), Gy, = Q(2").

From now on, assume without loss of generality that a file consists of n bits, at most f of
which could be in error, and we need to pinpoint these errors. In terms of the definition above
for the communication complexity, ¢ and j are the two files of n bits each. The function g is such
that g(¢,7) tells us exactly which bits differ between the two files. Let g take values from the set
V = [v,...,v]. Assume that the value of g(4,j) = 0 when i = j and it is X when i cannot be
transformed to j with at most f bit flips. Then from Observation 1 it can be seen that |V] is
bounded by G'fn. Each of the two files of n bit integers can have a value in the range [0,...,2"71].

272——1

The matrix C' = (¢ij); ;-¢, Where each ¢;; = g(4,7) € V is called the communication matrix, and

this matrix determines the communication problem.

Now, let us assume that this matrix € is known to both the sites. As per the discussion above,
i is known to site 1 and j is known to site 2 and they have to cooperatively determine ¢;;. The
lower bound proof will be based on calculation of the minimum number of bits that have to be
communicated between the two sites in order to reduce the focus to a submatrix of C from which

the correct value of g(,j) can be picked with probability of error no more than some e.

Theorem 3: The distributional two-way error complexity (with error ¢) denoted by D.(g;1 « 2)

for the single copy comparison problem is Q(log G(f,n)).

Theorem 3 states that D.(g;1 < 2) = Q(log G(f,n)), which establishes the bound for deter-
ministic algorithms. This bound can be extended to apply to randomized algorithms using the

following result from [12].

Observation 4:

Clf51 = D) 2 3Dl fil = 2)

12



Using Observation 4 and the obvious fact that the one-way communication complexity of the
problem is greater than or equal to the two-way communication complexity, it is clear that our
bound applies to both deterministic and randomized algorithms which have some probability of

producing incorrect results.

Corollary 3: For f = o(n%), using Observation 2 and Theorem 3, D.(g;1 < 2) and hence
C.(f;1 « 2) for the single copy comparison problem is Q( flogn).

Corollary 4: For f = Q(n), using Observation 3 and Theorem 3, D.(g;1 « 2) and hence C(f; 1 «

2) for the single copy comparison problem is Q(n).

7 Comments

Given the lower bound and the complexity of our algorithm, we know that the number of bits that
have to be sent has to increase linearly as f. Is it possible to increase the granularity to which we
need to pinpoint errors and thus be able to have no increase in the number of bits sent when f
increases? We have not shown a lower bound for this case. But, if this idea is used in the algorithm
we have proposed, it can be seen that this does not help because the decrease in the probability of

having an error-free page negates the positive effect due to coarser granularity of identification.

References

[1] D. Barbara, B. Feijoo and H. Garcia-Molina, “Exploiting Symmetries for Low-Cost Compar-
ison of File Copies,” Proc. International Conference on Distributed Computing Systems, San

Jose, June 1988, pp. 471-479.

[2] D. Barbara and R. J. Lipton, “A Class of Randomized Strategies for Low-Cost Comparison
of File Copies,” Computer Science Dept. Princeton University, Technical Report, September

1988.

13



[3] H. Chernoff, “A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the Sum
of Observations,” Annals of Mathematical Statistics, vol.23, pp. 493-507, 1952.

[4] D. Barbara and R. J. Lipton, “A Randomized Technique for Remote File Comparison,” Proc.
gth International Conference on Distributed Computing Systems, June 1989, pp. 12-19.

[5] P. Erdos and J. Spencer, “Probabilistic Methods in Combinatorics,” Academic Press, 1974.

[6] W. K. Fuchs, K. Wa and J. Abraham, “Low-Cost Comparison and Diagnosis of Large Remotely
TLocated Files,” Proc. Fifth Symposium on Reliability in Distributed Software and Database
Systems, January 1986, pp. 67-73.

[7] D. Fussell and S. Rangarajan, “Probabilistic Diagnosis of Multiprocessor Systems with Ar-
bitrary Connectivity,” Proc. 19th Intl. Symposium on Fault Tolerant Computing, Chicago,

Tllinois, July 1989.

[8] L. Lovasz, “Communication Complexity: A Survey,” Technical Report, Dept. of Computer

Sciences, Princeton University, 1989.

[9] T. Madej, “An Application of Group Testing to the File Comparison Problem,” Proc. 9th
International Conference on Distributed Computing Systems, June 1989, pp. 237-243.

[10] J. Metzner, “A Parity Structure for Large Remotely Located Replicated Data Files, JEFE
Transactions on Computers, Vol. C-32, No. 8, August 1983.

[11] A. C. Yao, “Some Complexity Questions related to Distributive Computing,” Proc. 11th ACM
Symposium on the Theory of Computing, pp. 209-213, 1979.

[12] A. C. Yao, “Lower Bounds by Probabilistic Arguments,” Proc. 24th IEEE Symposium on the
Foundations of Computer Science, pp. 420428, 1983.

14



Appendix

The proof of Theorem 1 requires the following corollary [7] to a theorem by Chernoff [3].

Corollary A.1l: Let Z be a binomial random variable with parameters » and p. Then

P(Z < enp) < exp(—(1—€)’np/2),0 < e < 1

P(Z > enp) < exp(—(e— 1)*np/3),1 < e <2

The following lemmas are required in order to prove the main result.

Lemma A.1l: For both SUCC and SCCC, the probability P; that a page containing one or more

errors belongs to a set with matching signature is given by Z—%;I_%

Proof: For a page with errors to be in a set with a matching signature, the signature that is formed

by that set should alias to a signature formed by a set of all error-free pages. The probability P,

of this is given by the probability that the page belongs to that set times the aliasing probability
1

. ~b
and this is W(f+1).2 .

Lemma A.2: For SUCC, the probability P, that an uncorrupted page belongs to a set with

matching signature is lower bounded by E’(?l-?f}

Proof: For an uncorrupted page to be in a set with a matching signature, that page is part of the

set forming the signature {with probability Tj—f—iﬁsj and

e No corrupted page is in the set forming the signature, the probability of which is (1 — Eﬁ)f R

% for large f, or

15



e There are corrupt pages forming part of the signature, but the signature aliases to the correct

signature, the probability of which is 27%(1 — 1).

So, the probability Py of an uncorrupted page belonging to a set with a matching signature is

given by
1 (1, . 1
(f+1)(2+2 (1_e)>
1
2D
[

Lemma A.3: For SCCC, the probability Ps; that an uncorrupted page belongs to a set with

matching signature is lower bounded by 6—2—(?14_—1)

Proof: For an uncorrupted page to be in a set with a matching signature, that page is part of the

set forming the signature (with probability G_}Fﬂ) and

e No corrupted page is in the set forming both the signatures being matched, the probability

2
of which is ({1 — 7%—1-)},) ~ % for large f, or

e There are corrupt pages forming part of at least one of the two signatures, but the signatures

aliase to the correct signature, the probability of which is > (2'5)2(1 - —812-)

So, the probability P5 of an uncorrupted page belonging to a set with a matching signature is

> Fp(aree-5)
1
22+ )

Any probabilistic diasnosis algorithm can potentially make two types of error. A pessimistic

error occurs when an uncorrupted page is incorrectly diagnosed as corrupt, and an oplimistic error



occurs when a corrupt page is incorrectly diagnosed as uncorrupted. Let the probability of making
a pessimistic error be P, and the probability of making an optimistic error be F,,;. In order
to study the asymptotic properties of a probablistic diagnosis algorithm, we need to calculate the
probability that none of the above two errors are made on any of the pages. It is helpful to recall

that for any integer n > 0 and for non negative z,y and ¢ > y and z,y < 1, n(z —y) > 2™ — y"

Lemma A.4 Given a file with n pages, the probability that all pages are diagnosed correctly is
Pc(”) >1 ”‘fPopi_ (n_‘f)Ppes-

Proof: The probability that at least one of the f corrupted pages is wrongly diagnosed is given by

= Zg;} ({)Pg;ot(l - Papt)f—i
= (Popr + (1= Pom‘))f - (1- Popt)f
S fPop’t

Similarly, the probability that at least one of the (n— f) uncorrupted pages is wrongly diagnosed

is given by

< (n— f)Ppes

So,

1—Pc(?2)§fpopt+(n‘f)gwes
Pc(’”)Z l'—fpopi"“(n”’f)Ppes

Proof sketch for Theorem 1

From Lemmas A.1 and A.2 and the algorithm description, it is easy to see that the equations

for the error probabilities for the SUCC case are

17



Dip—1

Ppes = (?)(szﬂ B

=0

Popt = i (?)(Pl)é(l — P1)m“'i

i=Dyp

Let X be a binomial random variable with parameters m and P, and let ¥ be a binomial

random variable with parameters m and Py. Then, using Corollary A.1,

Poes = P(X < D) = P(X < eymPy) < exp(—(1 — ¢1)*wflogn Py)

where ¢ = K2 .
For this equation to hold, § < ¢; < 1. According to the algorithm, the value of K should be
between 1 and 2. Let K = 1. Then for ¢y < 1, b > log, e. In this case, if b = 2, it will suffice.

The above equation for P,.; holds for the SCCC also with Ps substituted for P,. In this case,

¢1 = K27%?. Setting K = 1 as before, for ¢; < 1, b > log, €%, In this case, if b = 4, it will suffice.

Pypi = P(Y > D) = P(Y > comPy) < exp(—(ca — 1)? wflogn Pp)

where ¢g = K
For this equation to hold, 1 < ¢ < 2 and this is satisfied by setting & to be between 1 and 2 in

the algorithm. This equation for F,,; holds for SCCC without any change.

Prom Lemma A.4,

Pc(n)zi“'fpopt”(n"f}l)pes

Substituting the (upper bound) values for P,,; and Ppe; and choosing the proper constant w, it is

easy to see that P.(N)— 1 when N — co.

18



Area l Area 2
e ey sy S 4 ALAUAAE N AR RSN G
O i . m
" Dth = I( m———zb(f+1) "
25(f+1) e(F+1)

Figure 1: Random Variables representing the number of matching signatures

Let us discuss the above theorem. The theorem says that with wflogn signatures each of no
more than two bits being sent from one site to the other, the probability of misdiagnosis — 0 when
n — oo. That means O(flogn) bits will suffice. The intuition for our algorithm is as follows.

Let us look at SUCC. Similar discussion holds for SCCC. The probability that a page containing

. . . —b
one or more errors belongs to a matching signature is given by _(_fz_:ﬁ)_ So, the average number of
signatures on which this happens is m (—?}_% Similarly, the average number of signatures on which

an error-free page belongs to a matching signature is given by m m in case of SUCC ( and
m -;-(J,l—jq; in case of SCCC). Random variables Y and X respectively represent the above two cases.
Figure 1 shows the probability density functions for ¥ and X, and we can see that P,.; and Py
of our algorithm are given by areas 1 and 2. We choose our adaptive threshold D;; to be between
the means of the random variables X and Y. Let us consider the condition on the number of bits
per signature b. From the proof sketch, we see that b > log, e for SUCC so that b > 2 and for
SCCC b > 2logye, so that b > 4. Thus SCCC requires twice as many bits as SUCC. Thus the

algorithm works with O( flogn) signatures each of 2 bits sent from one site to the other for a total

bit complexity of O( flogn).

19



The proof of Theorem 2 requires another corollary to a theorem by Chernoff [3].

Corollary A.2: Let Z be a binomial random variable with parameters n and p. Then
P(Z > enp) < exp(—elog(e)np), 1<«

Note that this generalized result has a looser condition on € (1 < ¢) compared to the condition

on € (1 < ¢ < 2) found in Corollary A.1.

Proof sketch for Theorem 2

Let P,e;[M] and P,,[M] denote the pessimistic and optimistic error probabilities for MCC.
The algorithm for MCC makes a pessimitic error iff > M; of the compared copies make pessimistic
errors. We have set M; = % in our algorithm. That means, a pessimistic error is made iff > -‘;—
compared copies make pessimisstic errors. From the algorithm for MCC, the probability that a
single compared copy makes a pessimistic error is P,es, which is the pessimistic error for the single
copy case. Similarly, the algorithm for MCC makes an optimistic error if > % compared copies
make an optmistic error. The probability that a single compared copy makes an optimistic error
is P,y which is the optimistic error for the single copy case. For simplicity, we assume that both
FPpes and P,,; could be brought down to less than % This condition can be satisfied by sending

sufficient bits from each of the compared copies. Note that based on this assumption, we have set

M, to be i;—. If this condition is not satisfied, M; has to be adjusted.

Now, let W be the random variable with parameter R and p,, = P, and let V be the random

variable with parameter &£ and p, = F,,;. Then using Corollary A.2,

R 1
Poes | M1 = V> —1= YV > s
wes M ] P(W > 2) P(?V_ QPpesRPp )

1 1
< ex — o
= &P ( szes 100 (Q.Ppes ) RP§’€3>

20




R 1
Py M) = P(V > 5) = P(V > 55—k Popt)

opl

1 1
< > —
S exp ( 2D, 108 <2Popt) RPO”)

From the proof of Theorem I,

Ppes < exp(—(1- 61)2 m Py)

and

Popt <exp(—(cz — 1)2 m Py)

Substituting these values in the equations for P, and F,p;, we get
Ppes[M] < exp(—csm R Py)

and

Popi[M] < exp(—cam R Ps)

where ¢z and ¢4 are some constants.

From Lemma A.4,

Pc(?l)Z 1"'f—P0pi”‘(n’_f)Ppes

Substituting the values of Pop;[M] for P,y and Ppes[M] for P, in the above equation, it is easy
to see that with the product m x R growing as ylogn, P.(n) — 1 as N — oo, where v is some

constant.

|

Proof sketch for Theorem 3

21



L)
3

[ﬁ

2 -1

VE

Figure 2: Division of the Communication Matrix

It has been shown in [11] that any Algorithm A computing a function of two variables can be
represented in terms of a 4 — ary decision tree. Essentially every bit transferred from one site to the
other takes the algorithm one level down the decision tree. In terms of the communication matrix
C, each bit sent from one site to the other will specify which part of the matrix either ¢ or j belongs
to. For example, starting at the root with an undivided matrix C, assume that site 1 sends one
bit to site 2. Then this bit tells site 2 which of any two sets of rows ¢ belongs to. Thus the matrix
has been divided. A bit sent from site 2 to site 1 tells this site which of the two sets of columns j
belongs to. In this way, if the division is balanced, by communicating ¢ bits between the two sites,

the matrix is divided into 2° matrices of size (2;}‘ each. Note that there is a total of (27)* entries

in the communication matrix. Figure 2 shows an example of the above division strategy.

22



In the best case, if the subdivided matrices are monochromatic, there is no problem picking the
correct value of g(7,7). If this is not true, then there is a non-zero probability of making a mistake.
Let us now make some observations about the entries of C'. It is to be remembered that the entries
of the matrix take the value 0 when ¢ = j and the value X when ¢ cannot be transformed to j
with at most f bit flips. From the characteristic of the matrix, the number of non 0 or non X
entries in a row is bounded by Gy ,, because an n bit integer can be transformed to another n bit
namber in at most Gy, ways. Then, the number of non 0 or non X entries in the entire matrix
is bounded by 2"Gy,,. The fraction of the entries in €' which are non 0 or non X in the matrix is
then %i,;ﬁ Consider the scenario after { bits have been communicated and the ¢ and j values have

7y 2
been located to be in a particular submatrix. The size of the submatrix is {222 . So, the number

(say N1) of non 0 or non X entries in this submatrix is then

Grn (20 Gyn2®
on ot T 9t

Also, consider a specific value v, from the set V that g(7, ) can take. Again, from the characteristics
of the communication matrix, it is clear that the value v, can occur only once in each row and
each column of the matrix. Thus the number of times (N3) a value v, can occur in a submatrix is
bounded by % Now, if the correct value of g(¢, 5) is v,, the probability with which we pick this
value is given by % which is %ﬁg Let this value be greater than 1 — ¢ (€ is the error probability).

Then

Va2t
Gim

>1-—¢

so that

t > czlogGy,

where ¢3 is some constant.

Thus, the bit complexity is lower bounded by Q(log G(f, n)).

23



For Corollary 3, substituiting for G(f,n) from Observation 2,

L
t>03(f10gn—1ogf§~—§—?;...é¥2_)
Also, log f! < flog f. So,
2 3

> Cg(flOg’ﬂ— fl()gf - 5’; - m

Using the above equation, for f = o(n%) it is easy to see that ¢ = D.(g;1 « 2) = Q(flogn).

Similarly, for Corollary 4, substituiting for G(f,n) from Observation 3, ¢t = D (g;1 < 2) =
Q(log G(f,n)) = An).

24



