STABILIZATION AND
PSEUDO-STABILIZATION

James E. Burns,! Mohamed G. Gouda,?
and Raymond E. Miller®

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712-1188

TR-90-13 May 1990
November 1990 (Revision)

Abstract

A stabilizing system is one which if started at any state is guaranteed
to reach a state after which the system cannot deviate from its intended
specification. In this paper, we propose a new variation of this notion,
called pseudo-stabilization. A pseudo-stabilizing system is one which if
started at any state is guaranteed to reach a state after which the sys-
tem does not deviate from its intended specification. Thus, the difference
between the two notions comes down to the difference between “cannot”
and “does not”—a difference that hardly matters in many practical situ-
ations. As it happens, a number of well-known systems, for example the
alternating-bit protocol, are pseudo-stabilizing but not stabilizing. We
conclude that one should not try to make any such system stabilizing,
especially if stabilization comes at a high price.

Keywords: alternating-bit protocol, communication protocols, conver-
gence, self-stabilization, system specification.

lGeorgia Institute of Technology.
2University of Texas at Austin.
3University of Marvland at College Park.

1 Introduction

We have been interested for some time now in classes of systems that “well-
behave” irrespective of their initial states. Clearly, such systems are extremely
robust in the face of transient faults which may yield them in arbitrary states;
this should explain our interest in these systems. Our aim in this paper is to
investigate the criteria for well-behaving in the context of arbitrary initialization.

The first criterion for the notion of well-behaving in spite of arbitrary initial-
ization can be traced back to Dijkstra’s seminal paper on self-stabilization [5,
6]. Dijkstra’s criterion requires that if the system starts at an arbitrary state,
then it is guaranteed to reach, within a finite number of transitions, a state after
which the system cannot deviate from its intended specification. Many authors
have adopted Dijkstra’s criterion since then; see for example [2, 3, 4, 7, 9, 10,
11]. We refer to systems that satisfy this criterion as stabilizing systems.

In this paper, we propose a new criterion for the notion of well-behaving in
spite of arbitrary initialization. Our criterion requires that if the system starts
at an arbitrary state, then it is guaranteed to reach, within a finite number of
transitions, a state after which the system does nof deviate from its intended
specification. We call systems that satisfy this criterion pseudo-stabilizing.

The “fragile” distinction between stabilization and pseudo-stabilization is
better illustrated by an example. Consider a system with a state-transition
diagram as shown in Figure 1. (In this diagram, circles represent system states
and arcs represent transitions between the states in the usual way.) Starting
from any state, this system is guaranteed to reach, within one transition, either
state p or state g. From p, only one computation (p, p, ...} can be executed, and
from ¢, only one computation (q,¢,...) can be executed. Thus, if the intended
specification of this system 18 F = {(p,p,...),(¢,¢,...)}, then the system will
reach within one transition a state (p or ¢} after which no deviation from F is
possible. Hence, the system is stabilizing.

Figure 1. A Stabilizing System.

Now, consider a second system with a state-transition diagram as shown in
Figure 2, and assume that the intended specification of this system is the same
F as before. This system is not stabilizing because starting at state p, there
is no guarantee that the system will ever leave p, yet at p the system can de-
viate from F by executing the computation (p, ¢, ¢,...) which is not in F'. On
the other hand, every computation of this system is in one of the following forms:

(p’pl“’)i
(O N N
{g,9,.-)

Thus, every computation has an infinite suffix in F. In other words, along
every computation the system is guaranteed to reach a state after which the
system does not deviate from F (although it may have an infinite number of
chances to do so). Hence the system is pseudo-stabilizing.

Figure 2. A Pseudo-Stabilizing System.

As we show later, pseudo-stabilization is strictly weaker than stabilization,
with “does not deviate” replacing “cannot deviate”. Thus, every stabilizing
system is also pseudo-stabilizing but there are pseudo-stabilizing systems that
are not stabilizing. We contend, however, that pseudo-stabilizing systems are
adequate for most practical purposes, and there is no real need to make them
stabilizing, especially if the price of stabilization is high.

The rest of this paper is organized as follows. In Section 2, we state our
definitions of systems and their regions of execution, and identify two types
of regions called “attractors” and “pseudo-attractors”. In Section 3, we define
what it means for a system to be stabilizing or pseudo-stabilizing to a given spec-
ification. In Section 4, we discuss an important relationship between (pseudo-}
attraction and (pseudo-) stabilization. In particular, we prove that if a system
has a (pseudo-) attractor where some specification is achieved, then the system
(pseudo-) stabilizes to that specification. This result gives a sufficient condition
for establishing that a given system stabilizes or pseudo-stabilizes to a given

specification. We use this result, in Section 5, to show that the Alternating-
Bit protocol pseudo-stabilizes to its specification. Concluding remarks are in
Section 6. For convenience, our discussion of the Alternating-Bit protocol is
divided into several subsections. An informal presentation of the protocol is
given in 5.1, followed by a formal presentation in 5.2. A specification of the
protocol is presented in 5.3, and a proof that the protocol pseudo-stabilizes to
that specification is outlined in 5.4. Up to this point, our protocol can only
tolerate message loss. Thus, we extend the protocol to tolerate message corrup-
tion in 5.5, and tolerate message reorder in 5.6, while preserving its property of
pseudo-stabilization.

2 Attractors and Pseudo-attractors

Let S be a system defined by a set of stales, and a set of {ransitions, where each
transition is an ordered pair of states.

A region of system S is a subset of the system states. A region P is closed
f for every state p and ¢, if pis in P and {p, ¢) is a transition then ¢ is in P.

A computation of S is a nonempty maximal sequence (p1, P2, .. .), where each
p; is a system state and each (pj, pi41) is a system transition. The maximality
condition implies that if the last state in a finite computation is p then for every
system state g, (p, ¢} is not a system fransition.

A computation leads fe a region P iff it has a state in P.

Definition 1: A region P of S is an aliractor iff it satisfies the following two
conditions.

i. P is closed.

ii. Every computation of S leads to P. O

Thus, each system computation eventually reaches every system attractor.
Moreover, once a computation reaches an attractor, it stays there indefinitely.

Definition 2: An infinite sequence (P, Pa,...) of regions of & is a pseudo-

attractor iff 1t satisfies the following two conditions.

i. For every k, k = 1,2,..., the region (Uf_, P;) is closed.

ii. Every computation of S leads to the region (U2, F%).]

Let {Py, Ps,...) be a pseudo-attractor of some system. Thus, {or every sys-
tem computation, thereis &,k = 1,2, ..., such that the computation eventually
reaches a region Py but never reaches any of the preceding regions Py,..., Pp_1.
In this case, the computation stays within Pj indefinitely (since UL, P; is
closed).

The next theorem, which follows directly from the above definitions, states
an interesting relationship between the attractors and pseudo-attractors of a
system.

Theorem 1: Let P be a region of § and (Py, Pq,...) be an infinite sequence of
regions of S.

1. If P isg an attractor of S,
then (P, P,...) is a pseudo-attractor of S.

i, (P, Py, ...} is a pseudo-attractor of S,
then (U2, P;) is an attractor of S. 0

3 Stabilization and Pseudo-stabilization

A specification of a system S is a set of computations of §.

Next, we define what it means for a system to be stabilizing or pseudo-
stabilizing to a given specification; but first we adopt the following notation.

Notation: Let ¢ be any computation that has at least i states. Then, ¢
denotes the i** state in ¢, and ¢ | i denotes the suffix of ¢ starting with the i**
state c.i. O

Definition 3: A system S stabilizes to a specification # iff
(Y computation ¢ of S, 3 a positive integer 7
every computation of S that starts with the state c.iisin F) D

Definition 4: A system S pseudo-stabilizes to a specification F iff
{(V computation ¢ of S, 3 a positive integer 4
the computation ¢ { ¢ is in F) O

Informally, system 5 stabilizes to a specification F iff starting from an arbi-
trary state, S is guaranteed to reach a state after which F' cannot be viclated.
By way of contrast, S pseudo-stabilizes to F' iff starting from an arbitrary state,
S is guaranteed to reach a state after which F is not violated. Thus, the distinc-
tion between the two definitions comes down to the difference between “cannot”

and “is not”. This distinction cannot be detected or observed by an external
observer of the system. In particular, an external observer can observe only
one computation of the system, namely the computation that the system exe-
cutes. It can also observe that the intended specification is not violated after
some point in the computation, but cannot observe that the intended specifica-
tion cannot be violated after some point. In other words, an external observer
can observe pseudo-stabilization but not stabilization. This suggests that the
two concepts of stabilization and pseudo-stabilization are indistinguishable for
all practical purposes. In principle, however, the two concepts are distinct; in
particular, stabilization is a more strict property than pseudo-stabilization as
shown by the next theorem.

Theorem 2: Every system that stabilizes to some specification F pseudo-
stabilizes to the same F'; the converse is not necessarily true.

Proof: From Definitions 3 and 4 and from the fact that each computation
¢ 1 @ starts with the state c.4, it follows that stabilization to F implies pseudo-
stabilization to F.

We show next that the converse iz not necessarily true by exhibiting a system
that pseudo-stabilizes, but does not stabilize, to some specification.

Consider a system S where
states = {p, ¢}, and
transitions = {(p, p), (»,), (¢, 9)}

Thus, the state-transition diagram of S is as shown in Figure 2.

A possible specification of 5 is the following F that consists of two infinite
computations

F={pp-) (0.}

System S does not stabilize to F" because the infinite computation (p,p,...)

of § has no state such that every computation that starts from that state is in
F.

On the other hand, S pseudo-stabilizes to F' because each computation of §
is in one of the following forms:

(p.p,...),
(p7p"":p3g7Q7"'>v or
(g,49,...).
Thus, each computation of S has a suffix in 7. O

The next theorem shows that stabilization has an advantage over pseudo-

Lt

stabilization in systems with a finite number of states. Specifically, the stabi-
lization of a finite-state system guarantees an upper bound on the number of
transitions that the system can execute starting from an arbitrary state until the
system starts to behave according to its specifications. Pseudo-stabilization, on
the other hand, does not guarantee such an upper bound in finite-state systems.

Theorem 3: Let S be a system with n states, and let F' be a specification

of 5.

i. If S stabilizes to F', then
(V¥ computation ¢, 3 positive integer k : k <n-+1andcTkisin F).

ii. The same consequence does not necessarily hold if S merely pseudo-
stabilizes to I

Proof: Part i: Let ¢ be a computation of S. Because of the stabilization of
S, every computation of 5, including ¢, has a suffix in F, i.e., there is a pos-
itive integer k such that ¢ T k is in F'. We now show that if & > n + 1 then
there is a positive integer ¢ smaller than & such that ¢ 7 4 isin F. Let k£ be
Jarger than n + 1. Thus, because S has only n states, the first £ — 1 states
of ¢, namely ¢.1,¢.2,...,c.{k — 1}, include at least two identical states. There-
fore, there is an infinite computation d of § whose states are all taken from
{e.1,¢.2,...,c.{k — 1)}. Because S stabilizes to F', then one of the states in d,
say ¢.%, is such that every computation that starts with c.iisin F'. Becausec 11
is a computation that starts at c.i, then ¢ |7 is In F.

Part 4i: Consider the system S and its specification F in the proof of Theo-
rem 2. Recall that S pseudo-stabilizes to F'. We need to show that

(3 computation ¢, Y positive integer k: k> n-+1orc | kisnotin F).

Note that n = 2 since 5 has two states. Consider the computation ¢ =
(P, 24,4, --.) of S; it is straightforward to check that (V positive integer
k:k>3orct kisnotin F). O

4 Relationship Between Attraction and Stabi-
lization

In this section, we present sufficient conditions for establishing that a given sys-
tem 5 stabilizes or pseudo-stabilizes to a given specification F'. In particular, we
show that if S has a (pseudo-} attractor that satisfies certain conditions involv-
ing F, then S (pseudo-) stabilizes to F'. An example of applying this method to

establish that a given system pseudo-stabilizes to its specification is discussed
in the next section.

Theorem 4: Let S be a system with a specification #'. If S has an attrac-
tor P such that every computation of S whose states arve all in P is in F, then
S stabilizes to F.

Proof: Let ¢ be any computation of S; we show that ¢ has a state p such
that every computation that starts with p is in F'. Because P is an attractor,
every computation of 9, including ¢, has a state in P. Let p be any state of
¢ that is also in P. Because p is in P and P is closed, then the states of a
computation that starts with p are all in P. All such computations are in 7. O

Theorem 5: Let S be a system with a specification F. If § has a pseudo-
attractor (Py, Po,...) such that every computation of S whose states are all in
the same P;, i = 1,2,..., has a suffix in F, then § pseudo-stabilizes to F.

Proof: Let ¢ be any computation of S; we show that ¢ has a suffix in .
Because (Py, Py, ...) is a pseudo-attractor, every computation of S, including c,
has a state in U2, P;. Let P be the region in the pseudo-attractor (P, Pa,...)
such that ¢ has a state in P, but does not have a state in U§;11Pi~ Also, let p
be any state of ¢ that is also in P,. Because p is in P, and Uiv‘:l P; is closed,
and because no state of ¢ 1s1n Uf;llP,;, then each of the states that follows pin
¢ is also in Py. In other words, ¢ has a nonempty suffix whose states are all in
P;,. Because every computation whose states are all in Py has a suffix in F, ¢
has a suffix in F. O

5 Case Study: The Alternating-bit Protocol

We show in this section that the well-known Alternating-Bit Protocol [13]
pseudo-stabilizes to its intended specification. Our objective of this exercise
is two-fold. First, we want to illustrate how Theorem 5 can be utilized in verify-
ing that a given system pseudo-stabilizes to a given specification. Second, and
more important, we wish to point out that the stabilization properties of this
important protocol are not as bad as may have been suggested by recent re-
sults [8, 12] which showed that this protocol is not stabilizing, and so prompted
“probabilistic versions” of the protocol in order to achieve stabilization [1].

o3}

5.1 Informal Presentation of the Protocol

Consider a system of two processes s and r that communicate by exchanging
messages over two channels. Each channel is an unbounded first-in-first-out
buffer that stores the messages sent by one process until each of them is either
received by the other process or lost, i.e. disappeared from the channel. (Note
that channel characteristics, e.g. unboundedness and the ability to lose mes-
sages, are not under the control of the system designer.) Despite the possibility
of message loss, process s is required to transfer reliably an infinite stream of
data messages to process r. The following protocol is adopted:

i. Process s sends the data messages one at a time. After sending each mes-
sage, 5 walts to receive an acknowledgement {ack) message before sending
the next data message.

ii. If after sending a data message process s does not receive an ack message
for some time, it concludes correctly that either the data message or its
corresponding ack message was lost. In this case, process s times out and
re-sends the last data message.

iii. Each data message has two fields:
data(?, b)
where 7 is the message text and b is either 0 or 1. When s sends a data
message for the first time, it assigns the message a different & from that
of the last data message. If later s re-sends the data message, the re-sent
message will have the same b (and same {) as the last message.

5.2 Formal Presentation of the Protocol

The program of each of the two processes s and r is a set of actions that has the
form:
begin <action> [J...] <action> end

The symbol “]” is a separator that separates the different actions in the program
of a process. Each action has the syntax
<guard> — <sequence of statements>

Each guard is in one of the following three forms:
<local guard>,
rev <message>, or
timeout <global guard>

where a local guard is a boolean expression over the local variables of its process,

and a global guard is a boolean expression over the variables in the two processes
s and r, and the contents of the two channels between them. The contents of
a channel is a sequence of messages. Sending of a message consists of adding
the message to the “tail” of the sequence, while receiving a message consists of
removing the “head” message from the sequence. The content of the channel
from s to r, denoted C,, is a sequence of data messages. The content of the
channel from r to s, denoted C,¢, is a sequence of ack messages.

The program for process s is as follows.
process §

const in : array [integer] of text {* text of all messages to be sent *}

var ns: integer init {* index of array “in” *}
: readys : boolean init true {* ready to send next data message *}
;b8 (0,1) init 0 {* the alternating bit to be added *}

{* to each data message *}

begin readys — readys := false; send data (in[ns], bs)
I revack — ns,readys, bs := ns+ 1, true, 1 — bs
| timeout —readys A —readyr A Cyp =<> A Cpy =<>
—+ send data (in[ns], bs)

end s

Process s has three actions. In the first action, s sends the next data message
to r and waits for an ack message. In the second action, s receives an ack message
(presumably for the last data message it has sent) and gets ready to send the
next data message. In the third action, when neither process can send and the
two channels between them are empiy (indicating a message loss), process s
times out and re-sends the last data message.

The program for process r is as follows.

process r

var oul: array [integer] of text {* text of all received messages *}

;nr o integer {* index of array “out” *}

: readyr : boolean init false {* ready to reply by an ack *}
; 0r : (0,1) init O {* expected alternating bit *}
;1 text {* received text *}

;60 (0,1) {* received alternating bit *}

begin rcv data(t,b) — if b = br then oullnr], nr,br:=1t,nr+ 1,1 — br fi;
readyr = true
| readyr — readyr := {alse; send ack

end r

Process r has two actions. In the first action, r receives a data message
and checks whether it is an original message that should be stored or it is a
repetition of the last received message and should be discarded. In either case,
7 gets ready to reply with an ack message which is then sent in the second action
of r.

5.3 Specification of the Protocol

A state of the protocol is defined by a value for each variable in the two processes,
and by a sequence of data messages for the forward channel from s to r, and by
a sequence of ack messages for the backward channel from 7 to s.

An action in one of the two processes is enabled at a given state iff either
its guard is a (local or global) predicate whose value is true at the given state
or its guard is of the form rev <message> and the input channel of its process
has at least one message at the given state.

A state ¢ of the protocol follows a state p iff at least one action in one of
the two processes is enabled at p and executing the sequence of statements of
an enabled action starting from p yields 4.

A computation of the protocol is an infinite sequence of protocol states:
By, P2, - - such that each pj;q follows p;. (Notice that the protocol has no
terminating states; thus all its computations are infinite.)

Let p be a state of the protocol. For convenience, let in, ns, out, and nr de-
note respectively the values of variables in, ns, out, and nr at state p. Also, let
ms and mr be two integers. State p is (ms, mr)-safe iff the following condition

10

holds:

(ms < ns)A
(mr < nr)A
(Vi:0 < i< nr—mr:inlms+i] = out[mr + i]).

A computation of the protocol is successful iff variable nr is incremented
infinitely often along the computation, and there are two integers ms and mr
such that each state in the computation is (ms, mr)-safe.

The protocol is specified by the set F of all successful computations.

5.4 Pseudo-stabilization of the Protocol

Consider a system that consists of the two processes s and r, and a “message
loss” action which when executed discards one message, if any, from one of the
two channels between s and 7. We assume that along every (infinite) compu-
tation of the system, if the same message is sent over and over by one process,
then it is eventually received by the other process.

In this section, we apply Theorem 5 to show that this system pseudo-
stabilizes to specification F. In particular, we show that the system has a
pseudo-attractor (P, Pa,...) such that every system computation whose states

&

are all in the same P, ¢ = 1,2,..., has a suffix in F.

Define a function “rank” that assigns to each state p of the system a natural
number rank.p as follows.

rank.p = the number of data messages in the channel from s to r at p
-+ the number of ack messages in the channel from » to s at p

+ X.p
+ Yop
where X.p =0 if readys = false at state p
1 otherwise, and
Yop =0 if readyr = false at state p
1 otherwise.

Notice that each action in the two processes of the protocol either reduces
the value of rank by 1 or keeps it unchanged. The message loss action reduces
the value of rank by 1.

Consider the infinite sequence {(Py, Pa,...), where

11

Py = {p| pis a system state where either rank.p = 0 or rank.p = 1},
and for1=2,3,...
P; = {p| pis a system state where rank.p = i}

It is straightforward to show that (Py, Ps,...) is a pseudo-atiractor of the
system. First, each action in the system, other than the timeout action, either
reduces the value of rank or keeps it unchanged. The timeout action increases
the value of rank from 0 to 1 but still keeps the system state within P;. There-
fore, the region Ui-“:lP;; is closed for every k, &k = 1,2, Second, since the value
of rank.p is a natural number for each system state p, each system state is in
some P;. Hence, each system computation leads (trivially) to the region U2, P;.
This completes the proof that {(Py, Ps,...) is a pseudo-attractor of the system.

It remains now to show that every system computation whose states are all
in the same P, = 1,2,..., has a suffix in F. Consider a computation whose
states are all in the same P;. We discuss the two cases of t = 1 and ¢ > 1
separately. If i = 1, then at each state in the computation there is at most one
message in the two channels between s and 7. It is straightforward to show that
such a computation has a suffix in F (provided that every message that is sent
over and over is eventually received).

If 7 > 1, then every state in the computation has the same rank i which
means that the message loss action is never executed (because it reduces the
rank). Moreover, the timeout action in process s is never enabled, and so is
never execubed. Along the computation, process s merely keeps on receiving an
ack message then sending the next data message (with a bit value different from
that of the last data message), and process r keeps on receiving a data message
with the expected alternating bit, storing it in array ouf, then sending back an
ack message. It is straightforward to show that this computation has a suffix in
F.

5.5 Dealing with Message Corruption

We have assumed so far that each sent message can either be lost or received
correctly; hence the protocol is designed to deal only with message loss. We
now discuss how to extend the protocol to deal with message corruption as well
as message loss.

The corruption of a sent message, whether data or ack, consists of changing
the message into a special message “error” before it is received. {Note that the
form of corruption that changes a message into another message of the same type
can already be countered by the pseudo-stabilization properties of the protocol.
Hence, this form of corruption is not considered here any future.)

12

To deal with the “error” messages that may result from message corruption,
the following action is added to each of the processes s and r:

rev error — skip

With this action, each process discards all the corrupted messages it receives.
In effect, each message corruption is eventually transformed into a message loss.

Now, consider a system that consists of the new processes 5 and », and
a message loss action (similar to that defined in Section 5.4), and a message
corruption action which when executed changes a message in one of the two
channels, if any, into an error message. We assume that along every (infinite)
computation of the system, if the same message is sent over and over by one
process, then it is eventually received correctly by the other process. It is
straightforward to show that this system pseudo-stabilizes to specification F.
{The proof is similar to the one given in Section 5.4; in fact, it is based on the
same pseudo-attractor (Py, Ps,..), and the same definition of rank as in the
earlier proof.)

5.6 Dealing with Message Reorder

We now discuss how to extend the protocol to handle message reorder along
with message loss and corruption. A message reorder consists of swapping two
consecutive messages in the same channel. Because ack messages are all identi-
cal, the reordering of ack messages in the channel from » to s has no effect on
the protocol. Thus, we need only to consider reordering of data messages in the
channel from s to r.

We assume that along every (infinite) computation, infinitely many original
data messages are not reordered, corrupted, or lost after they are sent. (Recall
that each sent data message is either an original or a repeiition of the last sent
message.) This assumption guarantees that every message reorder is eventually
followed by a message loss or corruption (which reduces the value of rank), or
eventually causes process r to receive two consecutive data messages that are
original and have the same alternating-bit value. In the latter case, if process
r can detect the reception of these two messages, it can discard the second
message causing a message loss {which reduces the value of rank). Thus in
either case, each message reorder eventually reduces the value of rank which
ensures pseudo-stabilization of the system as discussed in Section 5.4 and as
utilized later in Section 5.5.

Note that without message reorder, process r can still receive two consecutive
data messages with the same alternating-bit value. In this situation, however,

13

the second of these two messages is a “repetition” of the first message. This
fact differentiates between this situation and the earlier situation caused by
message reorder. Hence process r should be able to detect whether a received
data message is an original or a repetition.

This can be achieved by adding an extra bit ¢ to each data message:

c=0 if the data message is an original
1 if the data message is a repetition

Consequently, the first and third actions of process s are changed to become:

readys — readys := false; send data(in[ns], bs, ‘0")

timeout —wreadys A —readyr A Cyp =<> A Cpy =<>
— send data(in[ns], bs, ‘17)

Moreover, the first action of process r is changed to become:

rev data{f, b,¢) — if b= br Ve =1 then readyr 1= true f;
if b = br then oullnr],nr,br:=t,nr+ 1,1 —br fi

The first if-statement guarantees that every original data message with an un-
expected alternating bit is not acknowledged reducing the value of renk.

It is straightforward to verify pseudo-stabilization of the system consisting
of the modified processes s and r and the three actions of message loss, corrup-
tion, and reorder that satisfy the following two constraints along every (infinite)
computation:

1. If the same message is sent over and over by one process, then it is even-
tually received correctly by the other process.

ii. Infinitely many original data messages are not lost, corrupted, or reordered

after they are sent.

The proof of pseudo-stabilization is similar to the one given in Section 5.4 using
the same pseudo-attractor (P, Py, ...} and the same definition of rank.

6 Concluding Remarks

Achieving stabilization can be an expensive proposition in some application do-
mains. For example, it is shown in [8, 12] that stabilization of communication
protocols can be achleved only by using unbounded sequence numbers—a fea-
ture that most system designers try to avoid. When it is clear that the cost of
achieving stabilization is high, system designers should strive to meet weaker
criteria. We believe that pseudo-stabilization is one such criterion.

On one hand, the notion of pseudo-stabilization is reasonably close to that
of stabilization. On the other hand, pseudo-stabilization is clearly not as de-
manding as stabilization. After all, pseudo-stabilizing communication protocols
can be achieved without unbounded sequence numbers, as evidenced by our case
study of the alternating-bit protocols.

The alternating-bit protocol in this paper is new and intriguing. In this pro-
tocol, the sender process sends one additional bit per data message to identify
whether the data message is an original or a repetition. This identification is
utilized by the receiver process to ensure that each message reorder is eventually
followed by a message loss, hence guaranteeing pseudo-stabilization in the pres-
ence of message reorder. It would be hard to motivate or explain this protocol
without resorting to the notion of pseudo-stabilization.

Acknowledgements: We are thankful to Anish Arora for discussions that
led to Theorem 3, to the referees for suggesting a number of improvements in
the presentation, and to I{. F. Carbone for carefully preparing the manuscript.

7
(1]

(6]

(7]

[8]

[9]

(10]

(11]

[12]

[13]

References

Y. Afek and G. Brown, “Self-stabilization of the alternating-bit protocol,”
Proceedings of the Eighth Symposium on Reliable Distributed Systems, pp.
80-83, 1989.

F. Bastani, I. Yen, and I. Chen, “Class of inherently fault-tolerant dis-
tributed programs,” IEEE Trans on Software Engineering, Vol. 14, No.
10, pp. 14321442, 1988.

G. Brown, M. Gouda, and C. Wu, “Token systems that self-stabilize,”
IEEE Trans. on Computers, Vol. 36, No. 8, pp. 845852, 1989,

J. Burns and J. Pachl, “Uniform self-stabilizing rings,” the ACM Trans.
on Programming Langueges and Sysiems, Vol. 11, No. 2, pp. 330-344,
1989.

E. Dijkstra, “EWD 391, Self-stabilization in spite of distributed control,”
1973; reprinted in Selected Writings on Computing: A Perscnal Perspec-
{wve, Springer Verlag, pp. 4146, 1982.

E. Dijkstra, “Self-stabilizing systems in spite of distributed control,” Comm.
of the ACM, Vol. 17, pp. 643-644, 1974.

M. Gouda and M. Evangelist, “Convergence/response tradeoffs in concur-
rent systems,” Technical Report TR-88-39, Dept. of Computer Sciences,
Univ. of Texas at Austin, 1988; also being revised for the ACM Trans. on
Computer Sysiems and Languages, 1989,

M. Gouda and N. Multari, “Stabilizing communication protocols,” Tech-
nical Report TR-90-20, Dept. of Computer Sciences, Univ. of Texas at
Austin, 1990; also [EEE Trans. on Computers, to appear in 1991.

M. Gouda, R. Howell, and L. Rosier, “The instability of self-stabilization,”
Acta Informatica, Vol. 27, pp. 697-724, 1990,

S. Katz and K. Perry, “Self-stabilizing extensions for message passing sys-
tems,” presented at the MCC workshop on Self-Stabilization, August 1988,

L. Lamport, “The mutual exclusion problem: Part II—statement and
solutions,” Journal of the ACM, Vol. 33, pp. 327-348, 1986.

N. Multari, Towards a theory for self-stabilizing protocols, Ph.D. disserta-
tion, Dept, of Computer Sciences, Univ. of Texas at Austin, 1989.

W. Stalling, Data and Computer Communications, Macmillan Publishing
Company, pp. 133-140, 1985.

