A FORMAL APPROACH TO RECOVERY
BY COMPENSATING TRANSACTIONS®

Henry F. Korth, Eliezer Levy,
and Abraham Silberschatz

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-90-14 May 1990

* Work partially supponed by a grant from the IBM Corporation, TARP grant 4355 and NSF grant [RI-8805215.

A Formal Approach to Recovery by Compensating Transactions *

Henry F. Korth
Eliezer Levy
Abraham Silberschatz

Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712

Abatract

Compensating transactions are intended to handle situntions where it ie required to undo either committed
or uncominitied transactions that affect other tramsactiona, without resorting to cascading aborts. This
stands in sharp contrast to the standard approach to transaction recovery where cascading aborta are avoided
by requiring transactions to read only committed data, and where committed transactione are treated as
permanent and irrevermble. We argue that this standard approach to recovery is mot suitable for a wide
range of advanced database applications, in particular those applications that incorporate long-duration or
nested transactions. We show how compensating traneactions can be effectively nsed to handle these types of
applications. We present 2 model that allows the definition of a variety of iypes of correct compensation. These
typea of compensation range from traditional nndo, at one extreme, to application-dependent, special-purpose
compensating transactions, at the other extreme.

1 Introduction

The concept of transaction atomicity is the cornerstone of today’s transaction management aystems. Atomicity
requires that an aborted transaction will have no effect on the state of the database. The most commeon method
for achieving this is to maintain a recovery log and provide the undo(T;) operation which restores the data items
updaied by T; to the value they had just prior to the execution of T;. However, if some other transaction, 75,
has read data values written by T}, undoing 7; is not sufficient. The (indirect) effects of T; must be removed
by aborting T;. Aborting the affected transaction may trigger further aborts. This undesirable phenomenon,
called cascading abords, can result in uncontrollably many transactions being forced to abort because some other
transaction happened to abort.

Since a committed transaction, by definition, cannot abort, it is required that if transaction T reads the values
of data items written by transaction T;, then T; does not commit before T; commits. A system that ensures this
property is said to be recoverable [BHG87]. One way of avoiding cascading aborts and ensuring recoverability

is to prohibit transactions from reading ancemmified data values — those produced by transactions that have

*Work partially supported by a grant from the IBM Corporation, TARF grant 4355 and NSF grant TRI-BB06215.

not committed yet. This principle has formed the basis for standard recovery in most contemporary database
aystems.

Unfortunately, there is a lazge range of database applications for which the standard recovery approach is
excessively restrictive and even not appropriate. The common denominator of such applications is the need to
allow transactions to read uncommitied deia values.

In general, as indicated by Gray [GraBl], early exposure of uncommitted dats is essential in the realm of
long-duration and/or nested transactions. Applications incorporating transactions of that mature cannot be
accommodated by the standard recovery approach since their executions entail cascading aborts and some of them
are even non-recoverable. For example, consider a database system that uses locks to enforce concurrency control.
Externalization of uncommitted data amounts to releasing exclusive locks befare the end of the transaction. When
long-duration transactions are used, early release of locks is a necessity, since otherwise the delay they incur by
retaining locks for long periods of time ie intolerable [Gra8l, GMS8T). Shortening the time periods transactions
hold locks is a worthwhile goal by its own right. Releasing locks early enhances concurrency, thereby increasing
the system’s throughput.

Nested transactions are often used in applications where a set of subtransactions are assigned a single co-
herent task that requires interaction and cooperation among the subtransactions [HR87]. For instance, nested
transactions may represent long-duration design activities [KKB88, KLMP84]. Since design efforta are usually
collaboralive in nature, it is essential In certain cases for a design subtransaction to see uncommitted data written
by another design subtransaction.

An additional restriction imposed by standard recovery is the inability to undo an already committed trans-
action. Suppose that a transaction was committed “erroneously.” By committed erroneously, we mean that from
the systemn’s poimt of view there was nothing wrong with the committed transaction. However, external reasons,
that were discovered later, rendered the decision to commit the transaction erronecus. Under the standard re-
covery approach there is no support for undoing such {ransactions. The need for a mechanism which support
undoing of committed transactions is established in [Lag88].

This paper presents the method of a compensating fransections as a recovery mechanism in applications
where exposure of uncommitted data and undoing of committed transactions must be facilitated. Qur goals are
to develop a better understanding of what compensation really is, when it is possible to employ it, and what the
implications are on correctness of executions when compensation is used.

The remainder of this paper iz organized as follows. We give an informal introduction to compensating
transactions in Section 2. In Section 3, we present a transaction model suitable for the study of compensation.

We then use this model in Section 4 to define criteria for “reasonable” compensation. After illustrating our

definitions with examples in Section 5, we examine the theoretical consequences of our model in Section 6.

[mplementation issues are discussed in Section 7, and related work is described in Section 8.

2 An Overview of Compensating Transactions

When the updates of a (committed or uncommitied) transaction T are read by some other transaction, we say
that T has been ezfernalized. The sole purpose of compenrsation is to handle situations where we want to undo
an externalized transaction T. We refer to T as the compensated-for transaction. The transactions that are
affected by (reading) the data values written by T are referred to as dependent iransactions. The key point of our
recovery paradigm is that we would like to leave the effects of the dependent fransactions iniact when undoing
the compensated-for transaction. Thus, compensation broadens the scope of recovery to encompass undoing of
externalized transactions without resorting to cascading aborts. Moreover, since the compensated-for transaction
may be a committed one, compensation allows the undoing of committed transactions, which stands in sharp
contrast to the standard approach to recovery.

Similarly to the use of the traditional transaction undo as the means for antomatically undoing a nen-
externalized transaction, we propose compensation as the method for automatically undoing externalized trans-
actions. In both cases, the goal is to restore the database {o a state that would have been obtained had the
undone transaction, T', never taken place. Traditional transaction undo applies to the simple special case where
T is not externalized; hence, all that needs to be done is to restore the database to the state just prior to T7s
beginning. Compensation is applicable in the more general case where 7" may be externalized; hence, it does not
guarantee erasing all of T7s direct and indirect effects.

We propose the notion of compensaling transactions as the vehicle for carrying out compensation. A com-
pensating transaction haa the fundamental properties of a transaction along with same special characteristies. It
appears atomic to concurrently executing transactions (that is, transactions do not observe partially compensated
states); it conforms to consistency constraints; and its effects are durable. However, a compensating transaction
is a very special type of transaction. Under certain circumstances, it is required to restore consistency, rather
than merely preserve it. It is durable in the strong sense that once a decision is made to initiate compensation,
the compensating transaction must complete (since it does not make any sense to abort it). There are other
special characteristics. Above all, a compensating transaction does not exist by its own right; it is always re-
garded within the context of the compensated-for transaction. It is always executed after the compensated-for
transaction. Its actions are derivative of the actions of the compensated-for transaction and the nature of the
execution so far. In some situations, the actions of a compensating transaction can he extracted automatically

from the program of the compensated-for transaction, the current state of the database, and the current state of

the log. In other situations, it is the system programmer’s responsibility to pre-define a compensating transac-
tion. In either case, what a compensating transaction needs to accomplish is a function of the execution of the
compensated-for transaction. A user may invoke a compensating transaction explicitly (in order to cancel the
effects of an externalized transaction) in the same manner as regular transactions are invoked. Alternatively, a
compensating transaction can be invoked internally by the recovery manager as a consequence of the abortion of
an externalized uncommitted transaction.

A mundane example taken from “real life” exemplifies some of the characteristics of compensation. Censider a
database system that deals with transactions that represent purchasing of goods. Consider the act of a cusfomer
returning goods after they have been sold. The compensated-for transaction in that case is a particular purchase,
and the compensating transaction encompasses the activity caused by the cancellation of th:a purchase. The
compensating transaction is bound to the compensated-for transaction by the details of the particular sale (e.g.,
price, method of payment, date of purchase). The effects of purchasing transaction might have been externalized
in different ways. For instance, it might have triggered a dependent transaction that issued an order to the
supplier in an attempt to replenish the inventory of the sold goods. Furthermore, the customer might have been
added to the store’s mailing list as a result of that particular sale. The actual compensation depends on the
relevant policy. For example, the customer may be given store credit, ot full refund. Whether to cancel the order
from the supplier and whether to retain the customer in the mailing list are other application-dependent issues
with which the compensating transaction must deal.

It is crucial to understand that compensation is a semantically-rich recovery activity. Defining what a com-
pensating transaction needs to achieve concretely, depends heavily on the semantics of the application at hand.
This observation will guide us in the construction of a model that can capture semantics of applications easily.
The model allows the definition of a variety of types of correct compensation. These types of compensation range
from traditional unde, at one extreme, to application-dependent, special-purpose compensating transactions, at

the other extreme. We return to study the characteristics of compensating transactions in more depth after we

introduce the model in the next section.

3 A Transaction Model

In the classical transaction model [Pap86, BHGB8T] transactions are viewed as sequences of read and write op-
erations that map consistent database states to consistent states when executed in isolation. The correctness
criterion of this model is called serializability. A concurrent execution of a set of transactions is represented as

an interleaved sequence of read and write operations, and is said to be serializable if it is equivalent to 2 serial

‘(non-concurrent) execution.

This approach poses severe limitations on the use of compensation. First, sequences of uninterpreted reads and
writes are of little use when the semantically-rich activity of compensation is considered. Second, serializability
isolates a transaction from concurrently executing transactions, whereas compensation is relevant especially when
transactions are allowed to interact and cooperate.

In Section 3.1 we deacribe a semantics-based transaction model, and in Section 3.2 we define what executions

are in our model and discuss the corresponding correctness criteria.

3.1 Transactions and Programs

A transaction is a sequence of operations that are generated as a result of the execution of some program. The
exact sequence that the program generates depends on the database state “seen” by the program [Gra8(]. In
the classical transaction model only the sequences are dealt with, whereas the programs are abstracted and are
of little use. Given a concurrent execution of a set of transactions (i.e., an interleaved sequence of operations)
compensation for one of the transactions, T, ¢an be modeled as an attempt to cancel the operations of T while
leaving the rest of the sequence intact. The validity of what remains from that execution is now in serious doubt,
since originally transactions read data items updated by T and acted accordingly, whereas now T7s operations have
vanished but its indirect impact on ite dependent transactions is still apparent. The only formal way to examine
a compensated execution is by comparing it to a hypothetical execution that does not include the compensated-
for transaction. We use the comparison of the compensated execution with the hypothetical execution that
does not include the compensated-for transaction, as a key criterion in our exposition. However, generating this
hypothetical execution and studying it requires the introduction the transections’ programs which are, therefore,
indispensable for our purposes.

A frgnsaciion program can be defined in any high-level programming language. We restrict our attention to
Pascal-like assignments and conditional statements. Programs have local (i.e., privaie) variables, In order to
support the private (Le., non-database) state space of programs we define the concept of an augmented siate.
The augmented state space is the database state space unioned with the private state spaces of the transactions’
programs. The provision of an augmented state allows one to treat reading and updating the database state in a
similar manner. Reading the database state is translated to an update of the augmented state, thereby modeling
the storage of the value read in a local variable.

Thus, a database, denoted as 4b, is a set of data entiftes. The augmented daiabase, denoted as adb, is a set of
entities that is a superset of the database; that is, db C adb. An entity in the set (adb — db) is called a private
entity. Entities have identifying names and corresponding values. A staie is a mapping of entity names to entity

values. We distinguish between the dafabase stafe and the state of the augmented database, which is referred to

as the augmenied state, We use the notation S(e), to denote the value of entity ¢ in a state 5. The symbols §
and e (and their primed versions, $’, ¢, etc.) are used, hereafter, to denote a state and an entity, respectively.

Another deviation from the classical transaction model is the use of semantically-richer operations instead of
the primitive read and write. For example, object-oriented databases use abstract data type techniques to define
data objects which support specific and rather complex operations (see, e.g., [ZM90]). Having semantically-
richer operations allows refining the notion of conflicting versus commutative operations [BR87, Wei88]. That
is, it is possible to examine whether two operations commute (i.e., do not conflict) and hence can be executed
concurrently. By contrast, in the classical model, there is not much scope for such considerations since a write
operation conflicts with any other operation on the same entity. Moreover, as was stressed earlier, compensation
is made possible only when the semantics of the database application at hand are explicit. Therefore, one of the
features of our semantics-based model is the ability to deal with a rich set of complex operations.

An operation is a function from augmented states to augmented states that is restricted as follows:
& An operation updates at most one entity (either a private or a database entity) ;
« an operation reads at most one database entity, but it may read an arbitrary number of private entities;

+ an operation can both update and read only the same database entity.

We use the following shorthand notation for a single operation f: eq = f(e),...,ex). We say that f updates
entity eo, and reads entities ey,...,ex. The arguments of an operation are all the entities it reads. There are two
special termination operations, cemmit, and abort, that have no effect on the augmented state. Operations are
assumed to be executed afomically.

It is implicitly assumed that all the arguments of an operation are meaningful; that is, a change in their
value cause a change in the value computed by the operation. Observe that in defining operations, we have two
contradictory goals. First, we want to capture complex and semantically-rich operations. Second, we want to
adhere to principles of practicality and use operations as primitives of fine granularity. The operations in ocur
model reconcile these two contradictory goals. On the one hand, operations are functions from augmented states
to sugmented states, thereby giving the flexibility to define complex operations. On the other hand, the mappings
are restricted so that at most one database entity is accessed in the same operation, thereby making it feasible to
allow atomic execution of an operation. Although only one database entity may be accessed by an operation, as
many local variables (i.e., private entities) as needed may be used as arguments for the mapping associated with
the operation. Having private entities as arguments to operations adds more semantics to operations. Having

functions for operations allows us to conveniently compose operations by functional compasition, thereby making

sequences of operations functions too.

Entities in our scheme can be of arbitrary granularity and complexity. Examples for entities are pages of data
and index files, or abstract data types like stacks and queues. Accordingly, sample reading operations are read
a page, stack top, is-empty queue, and sample updating operations are write a page, stack push and pop, and
insertion into a queue. Notice that the above sample reading operations only read the database state. On the
other hand, a blind write only updates the database state but does not read it. Finally, assuming integer-type
entities, an increment operation both reads and updates an integer entity.

We are in a position now fo introduce the notion of a transaction as a program. A frznsacfion program is a

sequence of program staiemenis, each of which is either:

e An operation.

o A conditton of the form: if & then 51 else 52, where 51 and 52 are sequences of program statements

and & is a predicate that mentions only private entities and constants.
We impose the the following restrictions on the operations that are specified in the statements:

The set of private entities is partilioned among the transaction programs. An operation in a program cannot.

read nor update a private entity that is not in its own parlition;
» private entities are updated only once;
An operation reads a private entity only after another operation has updated that entity.

Example 1. Consider the following sets of entities: db = {a, 4,¢}, and adb = dbU {u, v, w}, and the following

two transaction programs, 77 and T5:

T1 begin I v begin
u:=a; | a:=0;
vi=h; 1 b:=1
if 1 > v then c:= £{c,v) | and

else Dbegin i

w:=c; I

bi= glu,w) I

end |

end I

Observe that operation f both updates and reads entity ¢. T2 demonstrates operations that read no entities. <

3.2 Histories and Correctness

The use of serializability as the correctness criterion for applications that demand interaction and cooperation
among possibly long-duration transactions was questioned by the work on concurrency control in [KS88, KKB&8).
Since we target compensation as a recovery mechanism for these kind of applications, our model does not rely on
serializability as the correctness notion.

We use the framework for alternative correctness notions set forth in [KS88]. Explicit snput and ecutput
predicates over the database state are associated with transactions. The input predicate is a pre-condition of
transaction execution and must hold on the state that the transaction reads. The output condilion is a post-
condition which the transaction guarantees on the database state at the end of the transaction provided that
there is no concurrency and the database state seen by the transaction satisfies the input condition. Thus, as in
the standard model, transactions are assumed to be generated by correct programs, and responsibility for correct
concurrent execution lies with the concurrency control protocol.

QObserve that the input and output predicates are excellent means for capturing the semantics of a database
system. We use the convention that predicates (and hence semantics) can be associated with a set of transactions,
similarly to the way predicates are associated with nested transactions in [K$88]. That is, a set of transactions is
supposed to collectively establish some desirable property, or complete a coherent task. This convention is most
useful in domainls where long-duration nested transactions are assigned a single complex task.

We do not elaborate on the generation of interleaved or concurrent executions of sets of transaction programs,
since this is not central to understanding our results. However, the notion of a history, the result of this inter-
leaving, is a central concept in our model. A Aistory is a sequence of operations, defining both a total order
among the operations, as well as a function from augmented states to augmented states that is the functional
compaosition of the operations. We use the notation X =< fi,..., fo > to denote a history X in which cperation
Ji precedes fip1, 1 < i < n. Allernatively, we use the functional composition symbol o' to compose operations
as functions. That is, X = f; o...¢ f, denotes the function from augmented states to augmented states defined
by the same history X. We use the upper case letters at the end of the alphabet, e.g., X, ¥, Z, to denote both
the sequence and the function a history defines.

The equivalence symbol °=' is used to denote equality of histories as functions. That is, if X and ¥ are
histories, then X = Y means that for all augmented states S, X(S) = Y(S). Observe that since histories
and operations alike are functions, the function composition symbol ‘o’ is used to compose histories as well as
operations.

When a (concurrent) execution of a set of transaction programs A is initiated on a state § and generates a

history X, we say that X is a history of A whose inilial state is S.
Example 2. Consider the transaction program I of Example 1. Since T has a condition there are two

histories, X and ¥, which can be generated when T is executed in isolation. We list the histories as sequences

of operations:
= <uw=av:i=be:=fle,v) >,
Y = <u=av=bw:=¢cb=gluw)>
Let S={a=1, =0, ¢ =2} be database state, then S is an initial state for X. X(5) = 5, where
S'(e) = f(2,0). Now, consider a concurrent execution of 7} and T3 of the previous example. There are many

possible histories. We show the histories, Z and W, whose initial state is 5 given above. Each operation is

prefixed with the name of the transaction that issued it.

Z = «Nia=0 Tju=a, Tp:b:=1, Ty:v:=35 Ti:w:=1c Ti:b6:=guw)>,
W = «h:a=0 Ty:b=1 T:u=a, Ty:vi=4 Nwi=e T1:0:=g(u,w)>
Observe that Z(S) = W(S5) = 8", where 5" ={a=0, 6 =¢(0,2), e=2}. Observe that Z = W. <

A key notion in the treatment of compensation is commatativily. We say that two sequences of operations, X
and Y, commute, if (X oY) = (Y ¢ X). Two operations conflict if they do not commute. Observe that defining
operations as functions, regardless to whether they read or update the database, leads to a very simple definition
of the key concept of commutativity. (Compare our definition to those of [Wei88, BR87] for example).

Typically, an operation that updates an entity and an operation that reads it do not commute. Part of the
orderings implied by the total order in which operations are composed to form a history are arbitrary, since only
conflicting operations must be totally ordered. In essence, our equivalence notion (when restricted to database
state) is similar to final-state equivalence [Pap86]. However, in what follows, we shall need to equate histories
that are not necessarily over the same set of transactions, which is in contrast to final-state equivalence (and
actunally to all familiar equivalence notions).

A projection of a history X on an entity e is is a subsequence of X, that consists of the operations in X that
updated e. We denote the projection of X on ¢ as X,. The same notation is used for a projection on a set of
entities.

We impose very weak constraints on concurrent executions in order to exclude as few executions as possible

from consideration. In this paper we consider the following types of histories:

o A history X is seriaf if for every two transactions 7; and 7T; that appear in X, either all operations of T;

appear before all operations of T} or vice versa.

« A history X is serializeble (SR) if there exists a serial history ¥ such that X =Y.

e Let €' = ¢1 A...Acn be a predicate over the database state. For each conjunct ¢; let d; denote the set of
database entities mentioned in ¢;. A history X is predicate-wise serializable with respect to a predicate (¢

(PWSR) if for every set of entities d; there exists a serial history Y such that X4, = ¥y,.

« A history X is entity-wise serializable (EWSR) if for every entity ¢ there exists a serial history Y such that

A=Y,

The definition of PWSR histories is adapted from [KKB88]. As we shall see shortly, EWSR histories are going

to be quite useful in our work. The following lemma is given without proof.

Lemma 1. Let C be a predicate that mentions all database entiftes, and Let ewsr, pwsre, sr denote the set

of EWSR histories, PWSR¢ histories, and SE hislories, respeclively. Then, sr C pwsre € ewsr. m]

We denote by X7 the sequence of operations of a transaction T in a history X, involving posaibly other
transactions. The same notation is used for sets of transactions. When X7 is projected on entity e the resulting

sequence is denoted Xp .

4 Compensating Transactions
With the aid of the tools developed in the last section, we are in a position to define compensation more formally.

4.1 Guidelines for Defining Compensating Transactions

Although compensation is an application-dependent activity, there are certain guidelines to which every compen-
sating transaction must adhere. After introducing some notation and conventions we present three specification
constraints for defining compensating transactions. These constraints provide a very broad framework for defining
concrete compensating transactions for concrete applications, and can be thought of as a generie specification for

all compensating transactions.

We say that transaction T is dependent upon transaction T; in a history if there exists an entity e such that
¢ T; reads ¢ after T} has updated ¢;
¢ T; does not abort before T} reads ¢; and

¢ every transaction (if any) that updates ¢ between the time T; updates e and T} reads e, is aborted before

T reads e.

10

The above definition is adapted from [BHG8T].

A transaction T}, which is the depended-upon transaction may be either 2 committed transaction, or an
active transaction. In either case, if we want to support the undo of T}, then the corresponding compensating
transaction, C'T;, must be pre-defined. The key point is that admitting non-recoverable histories and supporting
the undo of committed transactions, is predicated on the existence of the compensatory mechanisms needed to
handle undoing externalized transactions. In the rest of the paper, T denotes a compensated-for transaction, CT
denotes the corresponding compensating transaction, and dep(T} denotes a set of transactions dependent upon
T. This set of dependent transactions can be regarded as a set of related (sub)transactions that perform some

coherent task.

Constraint 1. For all histories X, if X7 .0 Xcr . 15 @ contiguous subsequence of X, then (X7 oXpp) =

I
where I is the identily mapping.]

The simplest interpretation of Constraint 1 is that for all entities ¢ that were updated by T but read by no other
transaction (since Xgg , follows Xp . in the history), CT amounts simply to undoing T". Consequently, if there
are no transactions that depend on T, (i.e., no transaction reads T’s updated data entities), then CT is just the
traditional undo(T). The fact that C'T does not always just undo T is crucial, since the effects of compensation
depend on the span of history from the execution of the compensated-for transaction till its own initiation. If
such a span exists, and T has dependent transactions, the effects of compensation may vary and can be very
different, from undoing T". For instance, compensation may include additional activity that is not directly related
to undoing. A good example here, is a cancellation of reservation in an airline reservation system which is handled
as a compensating transaction that causes the transfer of pending reservation from a waiting list to the confirmed
list.

There are certain operations on certain entities that cannot be undone, or even compensated-for, in the form
of inverting the state. In [Gra8l] these type of operations and entities are termed real (e.g., dispensing money,

firing a missile]. For simplicity’s sake, we omit discussion of such entities.

Constraint 2. Given a history X invelving T and CT, there must exisi X' and X" subsequences of X,

such that no iransactton has operations both in X" and in X", and X = X' o Xpop o X7,]

This constraint represents the atomicity of compensation. That is, a transaction should either see a database state
affected by T, or see a state following £T”s termination. More precisely, transactions should not have operations
that conflict with C'T’s operations scheduled both before and after C'T’s operations, or in between C'7T’s first

and last operations. It is the responsibility of the concurrency control protocol to implement this constraint (see

11

Section 6 for implementation discussion).
In what follows, we use the notation Or and It to denote the output and input predicate of transaction

T, respectively. The same notation is used for a set of transactions. These predicates are predicates over the

database state.

Constraint 3. Let Q be a predicate defined over the database state, if (Ogepiry = Q) A (I = Q) then

Ocr = Q. a

Constraint 3 is appropriate when @ is a either general consistency constraint, or a specific predicate that is
established by dep(T) (that is, one of the collective tasks of the transactions in dep(T) was to make § true). It
constraints the semantics of compensation by imposing restrictions on the output predicate of the compensating
transaction. Observe that the assumption that @ holds initially (i.e., Ir = Q) is crucial since T's effects are undone
by CT, and hence, predicates established by T and preserved by dep(T) do not persist after the compensation.
It is the responsibility of whoever defines C'T to enforce Constraint 3.

Constraints | and 2 will be assumed to hold for all compensating transactions, hereafter. Constraint 3, which

is more intricate and captures more of the semantics of compensation, will be discussed further in Section 6.

4.2 Types of Compensation

As was mentioned earlier, compensation is really an application-dependent activity. Therefore, there are many
ways to define what compensation is supposed to accomplish. An important criterion exists, however, that
dichotomizes the range of possibilities. For some applications, it is acceptable that an execution of the dependent
transaction, without the compensated-for and the compensating transactions, would produce different results
than those produced by the execution with the compensation. On the other hand, other applications might
forbid compensation unless the outcome of these two executions is the same. Next we make explicit the above

criterion that distinguishes among types of compensation by defining the notion of compensation soundness.

Definition 1. Let X be the kistory of T, CT, and dep(T') whose initial state 15 5. Let Y be some history
of only the transactions in dep(T") whose initial state is also S. The history X is gound, if X(S) = Y(9). (|

The history Y can be any history of dep(T'). As far as the definition goes, different sets of (sub)transactions
of dep(T) may commit in X and in Y, and conflicting operations may be ordered differently. The key point is
that X(5) = Y(S). If a history is sound then compensation does not disturb the outcome of the dependent
transactions. The database state after compensation is the same as the state after an execution of only the

dependent transactions, dep(T). All direct and indirect effects of the compensated-for transaction, T, have been

12

erased by the compensation.

Transactions in dep(T’) see different database states when T and C'T are not executed, and therefore generate
a history ¥ which can be totally different than the history X. This distinction between the histories X and
Y, which is the essence of the important notion of soundness, would not have been possible had we viewed a
transaction merely as sequence of operations rather than a program.

A delicate point arises with regard to soundness when S does not satisfy Jgep(ry. Such situations may occur
when T establishes Iy.p(7) for dep(T) in such a manner that dep(T) must follow T" in any history. Hence, if T is
compensated-for, there is no history of dep(T"), Y, that can satisfy the soundness requirement. We model such
situations by postulating that if Ig.p(7y(S5) does not hold, then ¥'(S} results in a special state that is not equal
to any other state (the undefined state), and hence X is indeed not sound.

We illustrate Definition 1 by considering the following two histories over read and write operations {the

notation ri[e] denotes reading e by T;, and similarly w[e] for write, and ¢; for commit):

W <w}[e]sri{e]!cj:ci>l

Z

< wjle], rile] , wile], e >

The history W is recoverable. History Z is not recoverable. If however, C'T; is defined, T; can still be aborted.
Let us extend Z with the operations of CT; and call the extended history Z’. Z’ is sound provided that Z%
would have been generated by T;’s program, and the same value would have been written to &', had 7} run in
isolation starting with the same initial state as in Z°,

The key netion in the context of compensation, as we defined it, is commautativity of compensating operations
with operations of dependent transactions. Significant attention has been devoted to the effects of commutative
operations on concurrency control [Kor83, Wei88, BR87). Our work parallels these results as it exploits commu-
tativity with respect to recovery. In all of our theorems we prefer to impose commutativity requirements on C'T
rather than on T, since CT is less exposed to users, and hence constraining it, rather than constraining 7T, is
preferable. Predicated on commutativity, the operations of the compensated-for transaction and the correspond-
ing compensatory operations can be ‘brought together’, and then cancel each other’s effects (by the enforcement

of Constraint 1), thereby ensuring sound histories. The following theorem formalizes this idea.

Theorem 1. Let X be a history involving T, dep(T) and C'T. If each of the operations in X 4,00 commutes

with each of the operations in Xor, then X is sound m}

We omit the proof of the theorem since it is not central to our exposition. However we illustrate it by the following

simple example:

13

Example 3. Let T}, T; and CT; be a compensated-for transaction, a dependent transaction and the
compensating transaction, respectively. Let the programs of all these transactions include no condition statements
(i.e., they are sequences of operations). We give a history X, in which each operation is prefixed by the name
of the issuing transaction. X =< Ti:a:=a+2, Tj:u:=4 Tj:a:=a+u, CT;:a:=a+2)> Clearly,
every operation of T; commutes with every operation of CT; in X. Hence, X is sound, and the history that
demonstrates soundness is simply ¥ = X¢, =< Tj :u:=b, T} :a:= a+u>. As will become clear in Section 6,
the fact that no condition statements appear in T is important. <

Our main emphasis in this paper is on more liberal forms of compensation soundness, where the resulis
of executing the dependent tramsactions in isolation may be different from their results in the presence of the
compensated-for, and the compensating transactions. One way of characterizing these weaker forms of soundness
is by qualifying the set of entities for which the equality in Definition 1 holds. In Section 5.1, we define a type
of compensating transaction that ensures sound compensation with respect to some set of entities. Alternatively,

in Section 6 we investigate other weak forms of soundness that approximate (pure) soundness.

5 Compensation Examples and Applications

In this section, we present several examples to illustrate the various concept we have introduced =o far. Through-
out this section we use the symbols T, dep(T), CT, X, and 5 to denote a compensated-for transaction, its
compensating transaction, the corresponding set of dependent transactions, the history of all these transactions,

and the history’s initial state, respectively.
5.1 A Generic Compensating Transaction

In this example we present a generic compensation definition. Let update(T, X) denote the set of database entities

that were updated by T in history X. The same notation is nsed for a set of transactions.

Definition 2. Let X(5) = 8, end X = X' o X {by Consiraint 2). We define the generic compensating

transaction OT, by characterizing 5 for all entilies e:
S(e) if e update(dep(T), X)
S'(e)= ¢ (X'(S)e) if e € update(dep(T), X) A e & update(T, X)
XaepiT),6(S) if e € update(dep(T), X) A e € update(T, X)
Before we proceed, we informally explain the meaning of this type of compensation.

s If no dependent transaction updates an entity that T updates, CT undoes T’s updates on that entity.

o The value of entities that were updated only by dependent transactions is left intact.

14

¢ The value of entities updated by both T and its dependents should reflect only the dependents’ updates,

There is a certain subtlety in the second case of the definition which is illustrated next. Assume that T updated
e. The modified e is read by a transaction in dep(T) and the value read determines how this transaction updates
¢'. After compensation, even though the initial value of e is restored (by the first case of the definition), the
indirect effect it had on ¢’ is left intact (by the second case of the definition). We use the above definition as a
precise specification of what C'T should accomplish.

To further illustrate the type of compensation just described, we give a concrete example. Consider an airline
reservation system with the entity seats that denotes the total number of seats in a particular flight, entity »s
that denctes the number of already reserved seats in that flight, and entity reject that counts the number of
transactions whose reservations for that flight have been rejected. Let reserve(x) be a simplified seat reservation

transaction for z seats defined as:

it {re + x) <= seate then rs := T8 + X

elae reject := reject + 1
The consistency constraint Q in this case is: Q{S) iff S(rs) < S(seats). Assume:
S = {seats = 100, rs = 95, rejects = 10}, T = reserve(5), dep(T') = {reserve(3)}

Let the history be X = Xy o Xgop(1) ¢ Xor Where CT is defined by Definition 2. We would like to have after X:
& = {rs =95, rejects = 11}, that is, T"s reservations were made and later canceled by running C'T', and dep(T)’s
reservations were rejected. And that is exactly what we get by our definition. Observe how T's reservations were
canceled, but still its indirect impact on rejeets persists (since T' caused dep(T')’s reservations to be rejected).
Hence, this example demonstrates a history that is not sound but is nevertheless intuitively acceptahle. Had
the transaction in dep{T) been executed alone, it would result in successful reservations. Notice how in this
example the operation of C'T" can be implemented as inverse of s operation (addition and subtraction). The
less interesting case, where there are encugh seats to accommodate both T and dep(T), also fits nicely. In this

case CT"s subtraction on the entity seats commutes with dep(T')’s addition to this entity.
5.2 Storage Management Examples and Applications

The following example is from [MGGB6], though the notion of compensation is not used there. Consider trans-
actions 77 and T3, each of which adds a new tuple to a relation in a relational database. Assume the tuples
added have different keys. A tuple addition is processed by first allocating and filling in a slet in the relation’s

tuple file, and then adding the key and slot number to a separate index. Assume that T}’s slot updating (5;) and

15

index insertion (I;) steps can each be implemented by a single page read followed by a single page write (written
ri[tp], wi[tp] for a tuple file page p, and r;[ip], w;[ip] for an index file page p).
Consider the following history of T and T3 regarding the tuple pages g, 1r and the index page ip:

< riftq], witg], »oftr], waltr], ralip], welip] , riip] , wi[ip] >

This is a serial execution of < Sy , 52, I, I) >, which is equivalent to the serial history of executing T} and
then T5. Assume, now, that we want to abort Tp. The index insertion J; has seen and used page p, which was
written by T, in its index insertion step. The only way to abort T3, without aborting T is to compensate for T%.
Fortunately, we have a very natural compensation, C'Ty, which is a delete key operation. Observe that a delete
operation as compensation, satisfies Constraint 1, commutes with insertion of a tuple with a different key, and
encapsulates composite compensation for the slot updating and index insertion. The resulting history is sound.

An entire class of applications for compensation (similar to the above example) can be found in the context
of storage management in a database system. It is difficult to isolate the effects of an operation at the storage
management level. Therefore, these effects are exposed to all the transactions. We list several specific examples
as an illustration: The compensated-for transaction extends a file, or is allocated storage, and the additional
space is used by other transactions; the compensated-for transaction frees space that is later allocated for other
transactions; the compensated-for transaction inserts a record to a B-tree that causes a split of a node, and other
transactions use the new nodes; the compensated-for transaction updates the free space information mechanism
of the storage manager (percentage of occupied space in 8 page, etc.) and other transactions update the same
information. We note that, in all the above storage management examples, although effects are exposed to
transactions, they are not exposed to users.

Undoing such operations is referred to as logical undoing and is supported by logical logging [HR83, MHL*89)].
The transaction is undone in a logical manner, from a semantic point of view., On the physical level it might
leave traces. Clearly, use of physical logging, where before-images are restored blindly for every object affected hy
the undone transaction is out of the question in such cases. We propose to define compensatory actions for these
type of storage management actions. Often, the compensation amounts to simply leaving the effects as they are.

The point is, however, that traditional (physical) undoing does not work properly in this context.

6 Approximating Compensation Soundness

In this section we introduce weak forms of compensation soundnesa, where the results of an execution that includes
compensation only approzimate the results of executing the dependent transactions in isolation. We state several

theorems that formalize the interplay among the approximated soundness notion, concurrency conirol constraints,

18

restrictions on programs of dependent transactions, and commutativity. Each theorem is followed by a simplified
example that serves to illustrate at least part of the theorem's premises and consequences. Proofs of the theorems
can be found in the Appendix. Throughout this section, we assume that a compensating transaction complies
with Constraints 1 and 2 of Section 4. We use these constraints in the proofs without explicitly mentioning them
in the premises. We start with definitions of weaker forms of commutativity and weaker forms of compensation

soundness.

Definition 3. Twe sequences of operations, X and V', commute with respect 1o a relation B on augmented

states (in short, R-commaule), if for all augmented states 5, (X o Y)(S) R (¥ o X)(S).]
Observe that when R is the equality relation we have regular commutativity.

Definition 4. Let X be a history of T, dep(T), and CT whose initial state is S, and lef R be a reflevive
relation on augmented simtes. The history X is sound with respect to E (in short R-sound), if there erists a
history Y of dep(T) whose initial state is S such that Y(5) R X(5). o

Observe that regular soundness is a special case of R-soundness when R is the equality relation. Since ® is
reflexive, the empty history 1= always R-sound, regardless of the choice of R.

We motivate the above definitions by considering adequate relations R in the context of R-commutativity
and R-soundness. Let) be a predicate on database states such that Qye;1) => Q. @ can be regarded as either
8 consistency constraint, or a desired predicate that is established by dep(T) (similarly to the predicate @ in
Constraint 3). Therefore, we would like to guarantee that compensation does not violate §. Define R (in the

context of X,Y and 5) as follows:

Y(S) R X(5) iff (QY(S) = Q(X(S))
An R-sound history with such R has the advantageous property that predicates like J are not violated by the
compensation. Such R-sound histories yield states that approximate states yielded by sound histories in the sense
that both states satisfy some desirable predicates. That definition of R is in the spirit of CAD systems where the
final result of an execution is of importance, more than the order and the recovery-related actions of the execution

[KLMP84, KKB88)]. In the examples that follow the theorems, we use relations R of that form.

Definition 5. Lei R be a relation on states, and let v, and v denole values of an arbitrary entily e. We
define the relations R, on values of e for every entity e as follows:

ve Re vl iff (35,5": S(e)=wv1 A S"(e)=1v2 A R S")]

Definition 6. Let X be a hisiory of T, dep(T) and CT whose initial state is 5, and let R be a reflezive

17

relation on cugmented states. The history X is partially R-sound if there exists a history Y of dep(T) whose
initial state is § such that (Ve € db: (Y(8))(e) R, (X(S)){e))- D

Definition 7. A program of o transaction is fized if if is o sequence of operations thal use no privale entilies

as ergumenis. O

If T°s program is fixed then it has no conditional branches. Moreover, T cannot use local variables to store
values for subsequent referencing. A sequence of operations, where each operation reads and updates a single
database entity (without storing values in local variables) is a fixed transaction. A transaction that uses a single

operation to give a raise to a certain employee recorded in a salary management database 1s an example for a

fixed transaction.

Theorem 2. Let X be a history of T,dep(T) and CT whose initial state is 5. If the histories Xgq.p(r) and
Xor R-commule, X is EWSR, and all programs of trensections in dep(T) are fixed, then X is partially R-sound.

a

Example 4. Consider a database system with the following entities, parametric operations, and reflexive

relation:
db = {a : integer, b : integer} , fe): fe>2 then e:=e—2, gle):: ife>10then e:=e—10
SR S"fF((S'(0) 2 0A S'(a) 2 10)V (S'(a) = 4)) = ((S”(b) 2 0 A §"(a) > 10) V (5"(a) = 4)))

{The predicates on a are present ouly to demonstrate partial R-soundness). We emphasize that f and g are
{atomic) operations. The history X is as follows (there is no need to give the program of dep(T') since it is fixed):

X=<dep(TV:A:=0a+2, T: f(a), T:9(b), dep(T):g(b), CT:a:=a+2, CT:b:=b+10>

Observe that Xgep(r) and Xcr do not commute but they do R-commute for the given relation . Let the initial
state be § = {a = 2, b = 15}. We have that X(5) = {a = 4, b = 15}, whereas Y(5) = {a = 4, b = 5}, and
indeed X 18 partialiy R-sound. <

Theorem 2 is quite weak since it restricts the programs of dep(T") severely, and guarantees only partial R-
soundness. The inherent problem with (the proofs of) compensation soundness is the fact that they equate two
histories that are mo? over the same set of transactions, which is in contrast to all the equivalence notions in
the traditional theory of concurrency control. The obstacle is that the history ¥ may be generated by different
executions of the programs of dep(T'), and may be totally different from Xg.p¢7), which is just asyntactic derivative
of the history X. In Theorem 2, this problem was solved only because dep(T) was fixed {see the proof.in the

Appendix). This obstacle can be removed by posing more assumptions, as is done next.

18

Definition 8. A fransaction T is a serialization potni in a history X #f X = X" o Xy o X", 0

Observe that no restrictions are imposed on X' and X”. Also notice that a compensating transaction is a

serialization point, as implied by Constraint 2.

Theorem 3. Let X be a history of T, dep(T) and CT . Lei Z be a kist;::ry of the transactions in dep(T) and
CT such that Z = Zaepiry 0 Zor- If for all states S and for all histories Z, there exists a kistory Y of dep(T)
such that (Zor o Y)(S) R (Zaepir) © ZoT)(5), then every history X where T i3 ¢ sertalization point is R-sound.

]

Note that it is required that dep{T)’s programs be such that executing C'T before dep(T) would result in a state
that is related by R to the state resulting when executing dep(T") first and then CT. Observe that this requirement
is stronger than R-commutativity.

This theorem is quite useful since it specifies a concurrency control policy that guarantees R-soundness.
Namely, we need to ensure that every potential compensated-for transaction be isolated (i.e., T is a serialization
point) in order to guarantee R-soundness in case of compensation.

Example 5. Consider the set entities of Example 4, with the addition of a private entity u that belongs to
some transaction in dep(7). Let the programs of T, dep(T), CT, and the relation R be defined as follows:

T =a:=a+1 , dep(T) ={u:=a; ifu>5then f(b) else g(}))

CT =a:=a-1 , SRSIiff (B)=0=5"()>0)

Even though dep(T")’s history can branch differently when run alone and in the presence of T and CT, the two

different histories produce final states that are related by R. <
Definition 9. A program of a fransaction is linear if il 15 a sequence of operations. O

Programs are sequences, but we allow operations to read multiple entities, that is, use local variables. Therefore,
programs may not be fixed. An example for a linear transaction program is a program that gives a raise to all

employees, where the raise based on some aggregated computation (for instance 10% of the minimum salary).
Definition 10. LetR be a reflesive relation on augmenied stales. An cperation f that updales e preserves R,

if (Ve' € adb : (5{e'}) R §'(e)) = (f(5) R. F(S') w}

Theorem 4. Let X be a history of T,dep{T) and CT whose initzal siate is S. If the histories Xaep(T)
and Xcr R-commule, X is EWSR, the programs of all transactions in dep(T) are linear, R s transitive, and the

operations of dep(T") preserve R, then X is partially R-sound. o

19

Example 6. Consider the set entities of Example 4, with the addition of a private entity u that belongs to
some transaction in dep(T). We use the relation ' R 5" iff ((S'(b) = 5'(a)) = (5”(b) = S”(a))). The history

X is as follows:
X=<T:a:=a+1, dep(T):u:=a, dep(T):b:=u+10,CT:a:=a—-1>

Observe that Xer and Xg.p(ry R-commute (but do not commute), dep(T’) is linear (but not fixed), and X is
(partially) R-sound. &
Finally, based on Lemma 1 from Section 2, we derive the following corollary.

Corollary 1. Theorems 2 and | hold when X is PWSR: or SR instead of EWSK. m]

The requirements from the dependent transactions in Theorems 2,3, and 4 are quite severe. Besides the
R-commutativity requirement imposed on the operations of the dependent transactions, there are restrictions on
the shape of the programs (e.g., fixed or linear programs) in each of the theorems' premises. Clearly, in practical
systems, there are many transactions that do not stand up to any of these criteria. The practical ramification
of this observation is that externalization of uncommitted data items should be done in a controlled manner if
a degree of soundness is of importance. That is, uncommitted data should be externalized only to transactions
that do satisfy the requirements specified in the premises of the theorems. In the context of locks, locks should
be released only to qualified transactions, that is, those transactions that do satisfy the requirements. Other

transactions must be delayed and are subject to the standard concurrency control and recovery policies.

7 On the Implementation of Compensating Transactions

In this section we discuss several implementation issnes that need to be considered in order for compensation to
be of practical use. A very useful component in a recovery system that supports compensation is the leg. The
log is the source for crucial information such as the actual sequence of operations generated by the compensated-
for transaction, the identity of the dependent transactions, etc. It is likely that a logical logging scheme on an
operation level [HR83] will be used in conjunction with compensation. Each log record in this scheme containg
the operation name, the issuing transaction name, the name of the entity the operation updates, and the values
of its arguments. Therefore, this scheme provides more semantic information than physical logging [HRE3]. We
envision that a compensating transaction would be driven by a scan of the log starting from the first record of the
compensated-for transaction and up to its own begin-transaction log record. It is important to provide convenient
on-line access to the log information for these purposes. Without a snitable logging architecture, these accesses

might translate to 1/O traffic that would interrupt the sequential log I/O that is performed on behalf of executing

20

transactions. A related problem is concerned with supporting compensation for long-duration transactions whose
log records span a lengthy log interval, thereby causing difficulties in terms of reusing log space and efficient access
to the distant log records. We are currently investigating the issue of efficient log access for recovery purposes.

There are some subtle ramifications on concurrency control which are discussed next in the context of locking.
We have required that U'7"s execution is serializable with respect to other concurrent transactions. (Constraint 2).
Also, if it is reasonably assumed that update{CT, X) C update(T, X}, then this leads to the conclusion that the
compensating transaction and the dependent transactions should follow a 2-Phase Locking protocol [BHGST] with
respect to entities in update(T, X). Otherwise, it possible to viclate Constraint 2. A viable strategy that might
simplify matters for the implementation can be as follows. Once CT is invoked, the entities in update(T, X) should
be identified by analyzing the log and then C'T should exclusively lock all entities in this set. After performing
the necessary updates, C'T can release these locks.

The recovery issues of compensating transactions themselves must be also considered. As was noted earlier,
we should disallow a compensating transaction to be aborted voluntarily. The choice of either to abort or to
commit is present for the original transaction. A compensating transaction offers the ability to reverse this
choice, but we do not go any further by providing the capability to abort the compensation. Other forms of
transaction failures (as opposed to system failures) should be avoided too. A compensating transaction should
not be chosen as the victim in a deadlock resolution scenario. Running one compensating transaction at a time,
thereby avoiding a eycle of compensating transactions, might solve the problem (similarly to golden transactions
in System R [GM181]). Alternatively, the chances of selecting a compensating transaction as a victim, can be
minimized by assigning them high priorily, and choosing victims {of deadlock resolution) with lowest priority.
Still, there is the problem of aystem failures. We think that the preferred way to handle this problem is to resume
uncompleted compensating transactions rather than undoing them. To accomplish this, we need to resume a
compensating transaction from a point where its internal state was saved along with the necessary concurrency
control information, (refer to [GM*81, KKB88] for discussion of seve poinis and saving locking status). We
emphasize that the principle for recovery of compensating transaction is that once a begin-transaction record of
T appears in stable storage, CT must be completed.

The technique of logging undo activity is discussed in length in [MHL*89]. An implementation along the
lines of the ARIES system [MHL189] can support the persistence of compensating transactions across system
crashes. In ARIES, undo activity is logged using Compensating Log Records (CLRs). Each CLR points (directly
or indirectly) to the next regular log record to be undone. This technique guarantees that actions are not undone
more than once and that undo actions are not undone, even if the undo of a transaction is interrupted by a system

crash.

21

8 Related Work

The idea of compensating transactions as a semantically-rich recovery mechanism is mentioned, or at least referred
to, in several papers. However, to the best of our knowledge, a formal and comprehensive treatment of the issue
and its ramifications is lacking.

Strong motivation for our wark can be found in Gray's early paper [Gra81]. There, compensating transactions
are mentioned informally as ‘post facto’ iransactions that are the only means to alter committed effects. Also,
compensation is mentioned as a possible remedy to the limitations of the current transaction model. Another
early reference is the DB/DC database system [Bjo73, Dav73], where the idea of semantic undoing is used.

The notion of compensation (countersteps) is mentioned in the context of histories that preserve consistency
without being serializable in [GM83]. Tt is noted there that running countersteps (to undo steps} does not
necessarily return the database to its initial state, an observation on which we elaborate in cur work. The difficulty
of designing countersteps is raised as a drawback of compensation, which is another problem we address.

Compensating transactions are also mentioned in the context of a saga, a long-duration transaction that can
be broken into a collection of subtransactions that can be interleaved in any way with other transactions [GMS87].
A saga must execute all its subtransactions, hence compensating transactions are used to amend partial execution
of sagas. In [GMSR7] and in [GM83] the idea that a compensating transaction cannot voluntarily abort itself is
introduced. Low-level details of how to store reliably the code of compensating transactions, and record their
identity in the log records of the saga’s subtransactions are also discussed there.

A noteworthy approach, which can be classified as a simple type of compensation, is employed in the XPRS
system [SKPO88]. There, a notion of failure commutativily is defined for complete transactions. Two transactions
failure commute if they commute; and if they can both succeed then a unilateral abort by either transaction cannot
cause the other to abort. Transactions that ate classified as failure commutative can run concurrently without
any conflicts. Handling the abort of such a transaction is done by a log-based special undo function, which is a
special case of compensation as we define it.

A more theoretic class of related work is based on commutativity-like properties of abstract data type oper-
ations. In [BRAT7], semantics of operations on abstract data types are used to define recoverability, which is a
weaker notion than commutativity. Conflict relations are based on recoverability rather than commutativity. Con-
sequently, concurrency is enhanced since the potential for conflicts is reduced. When an operation is recoverable
with respect to an uncommitted operation, the former operation can be executed; however a commit dependency
is forced between the two operations. This dependency affects the order in which the operations should commit,

if they both commit. If either operation aborts, the other can still commit, thereby avoiding cascading aboris.

22

This type of work is more conservative than ours in the sense that it narrows the domain of interest to serializable
histories. Our results offer several notions that are even weaker than standard recoverability, and hence applicable
in the wider domain that includes non-serializable and non-recoverable histories. Moreover, our work explicitly
allows and handles situations of exposed dirty data, and offers the extra flexibility of redressing such cases when

the need arises.

9 Conclusions

In this paper we have discussed the consequences of early exposure of uncommitted data. We have argued that this
concept is very useful for many database applications employing long-duration and nested transactions. Compen-
sating transactions are proposed as the means for recovery management in the presence of early externalization.
A framework for the understanding and design of the semantics of these application-dependent compensatory
activities is established. Several types of compensation soundness criteria are introduced and are found to be
predicated on notions of commutativity. Even the approximated forms of soundness can be used to guarantee
that compensation results in desirable consequences and deces not abrogate dependent transactions’ outcome. A
semantically-rich model that is adequate for dealing with non-serializable and non-recoverable histories is set up,
and is offered as a viable tool for the understanding of these intricate histories and compensation issues.

We believe that future database applications will require the rethinking of the traditional transaction model
that is founded on serializability and permanence of commitment. Contemporary applications in the domains of
CAD, CASE, CIM (and other domains that require long-durations and nested transactions) exemplify our belief.

The work presented in this paper is a step towards the establishment of this new model.

References

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Conirol and Recovery in Dalabase
Systems. Addison-Wesley, Reading, MA, 1987.

(BjoT3] L. A. Bjork. Recovery scenario for a DB/DC system. In Proceedings of the ACM Annual Conference,
Atlanta, pages 142-146, 1973.

[BRET] B. R. Badrinath and K. Ramamirtham. Semantic-based concurrency control: Beyond commutativity.
In Proceedings of the Third International Conference on Data Engineering, Los Angeles, 1987.

[Dav73] C.T.Davies. Recovery semantics for a DB/DC system. In Proceedings of the ACM Annual Conference,
Atlania, pages 136— 141, 1973.

[GM*81] 1. N. Gray, P. Mclones, et al. The recovery manager of the system R database manager. ACM
Computing Surveys, 13(2):223-242, 1981.

[GM83] H. Garcia-Molina. Using semantic knowledge for transaction processing in a distributed database.
ACM Transactions on Database Systems, 8(2):186-213, June 1983.

[GMS87] H. Garcia-Molina and K. Salem. Sagas. In Proceedings of ACM-SIGMOD 1987 International Confer-
ence on Management of Data, San Francisco, pages 240-259, 1087.

23

[Gra80]
[Gra81]
[HR83]

[HR$7]

[KKB88)

[KLMP84]

[Kor&3]

[KS88]

[Lag8s]
[MGGS6]

[MHL*89)

[PapB6]

[SKPOB8]

[Wei88)

[ZM90]

J. N. Gray. A transaction model. In Leclure Noles in Compuier Science: Automaia Langtiages and
Programming, pages 282-298. Springer-Verlag, Berlin, 1980.

J. N. Gray. The transaciion concept: ¥irtues and limitations. In Proceedings of the Seventh Interna-
tional Conference on Very Large Dalabdases, Cannes, pages 144-154, 1981.

'T. Haerder and A. Reuter. Principles of transaction oriented da.tabase recovery — a taxonomy. ACRM
Computing Surveys, 15(4):280-317, December 1983.

T. Haerder and K. Rothermel. Concepts for transaction recovery in nested transactions. In Proceedings
of ACM-SIGMOD 1987 Internationgi Conference on Management of Dala, San Francisco, pages 239-
248, 1987.

H. F. Korth, W. Kim, and F. Bancilhon. On long duration CAD transactions. Feformation Sciences,
46:73-107, October 1988.

W. Kim, R. Lorie, D. McNabb, and W. Plouffe. Nested {ransactions for engineering design databases.
In Proceedings of the Tentk International Conference on Very Large Dalabases, Singapore, pages 355—

362, 1934.

H. F. Korth. Locking primitives in a database system. Journal of the ACM, 30(1):55-79, January
1983.

H. F. Korth and G. Speegle. Formal model of correctness without serializability. In Proceedings
of ACM-SIGMQOD 1988 International Conference on Management of Data, Chicago, pages 370-388,
June 1688.

Future directions in DBMS research, 1988. A report that summarizes the Laguna Beach workshop.

J. E. B. Moss, N. D1, Griffeth, and M. H. Graham. Abstractions in recovery management. In Proceedings
of ACM-SIGMOD 1986 International Conference on Management of Data, Washington, pages T2-83,
1986.

C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. ARIES: A transaction recovery
method supporting fine-granularity locking and partial rollbacks using write-ahead logging. Technical
Report RJ 6649 (63960), IBM Research, 1989. To appear in ACM Transactions on Database Systems.

C. Papadimitrion. The Theory of Database Concurrency Conitrel. Computer Science Press, Rickville,
Maryland, 1986. -

M. K. Stonebraker, R. H. Katz, D. A, Patterson, and J. K. Ousterhout. The design of XPRS. In
Praceedings of the Fourteenth International Cﬂnference on Very Large Databases, Los Angeles, pages
313-330, 1988.

W. E. Weihl. Commutativity-based concurrency control for abstract data types. JEEF Transaclions
on Computers, C-37(12):1488-1505, December 1988,

S. B. Zodnik and D. Maier. Readings in Object-Oriented Database Systems. Morgan Kaufmann, San
Mateo, California, 1990.

24

A More on the Model

We present some definitions and notation that are going to be used in the formal proofs. When a projection on
an entity is applied to a state, we are interested in the resulting value of that particular entity. Therefore, we use
X.(8), as a shorthand for (X.(5))(e).

The astute reader may have noticed that X,(5) is not well defined, and in particular it is not necessarily equal
to (X(5))(e). Since X, includes only operations that update e, and since private entities are updated only once,
the value of all private entities is undefined when histories that are projected on database entities are applied to
a state. To rectify this anomaly we define the function ex from database states and histories to augmented states

as follows. Let S5 be a database state, and X a history, then:

Se if e € db
(exts, 006 = { (Dsie) i+ o —an

It should be noted that in the third case of Definition 1, we used Xjup(7)e(S) instead of Xjup(r) o(ex(5, 2)) for
the sake of simnplicity. We illustrate the function ex and its use in the following example:

Example 7. Let u € (adb— db), and {a,b} C db. Consider the following history X =< u:=a, b:= f(u) >.
Let S(u) = @ (undefined value), and S(a) = 1. Then, Xi(S) = f(S(u)) = f(®), whereas (X{S))(b) = £(1).
However, (ex(S, X)){u) = (X{S)}u) = 1, and then Xi(ex(S, X)) = f(1). <&
Essentially, the augmented state ex(S, X)) represents the view [Pap86] operations have on the database in history
X applied to state 5. The following lernma can be easily proven by induction on the length of X and with the

aid of the restriction that private entities are updated only once.

Lemma 2. For all histories X, (Ve € adb : (X(8))(e) = X.(ex(5, X))). a

B Proofs

In this section we present the proofs of Theorems 2 through 4. To do so we need to first state two lernmas, whose

proofs are omitted for brevity.

Lemma 3. If two hislories, X and Y, R-commaule, then for all sugmenied stales S, there erists an

augmented slate S5 such thail:
o (Ve: (X.oY)S) R, (Y. 0 X)(5)), and

o (Ve €db: S(e) = 5'(e)), f.c., the restrictions of § and 5’ 1o database states coincide.

25

Lemma 4. Let X be a history of T,dep(T) and CT whose instial state 15 S. If X 15 EWSR, then for all

endilies e thai are updated by both T and dep(T) in X, either

1. X, = Xaepiry,e © X7,0 0 XT e OF

2 X,

Xr.0 Xdup(T),s o X¢Te

B.1 Proof of Theorem 2

Proof. Let Y be a history of the transactions in dep(T) that includes the same operations as in Xg.p¢r) and
in the same order {such a Y is a legitimate history since dep(T)’s programs are fixed). We prove a stronger
claim then our proof obligation; we show that for some entities, (Y [$))e} R, (X(S5)){e), and for the rest
(Y(S))(e) = (X(5))e). Since dep(T) is fixed, for all database states §, Xgopr)(S) = ¥Y(5). We proceed
by examining equivalences (1) and {2) established by Lemma 4. {The case of an entity that is updated by only
one of T and dep(T) is trivial). In case equivalence (1) holds, by Constraint 1, X7, and Xcr . cancel each
other, and hence (X(S)}(¢) = X.(ez(5, X)) = Xaepr),(e2(5, X)). Now, since dep(T)’s programs are fixed
Xaep(r), e (€2(5, X)) = Ye(ex(S5,Y)) = (Y(S))e), and our claim is proved for this case. In case equivalence
(2) holds, observe that (X(S))(e) = (Xiep(ry,e © Xor,e)(X7 {e2(S, X))). We can apply the R-commutativity
assumption and Lemma 3 and observe that (Xcr,e @ Xaep(r),e(X7.£(S™)) = S'(e) and S'{e) R, (X(5))(e).
8" coincides with S on database entities by Lemma 3. However, 5'(¢) = Xg.p(7).(5"”) by enforcing Constraint 1.
Since dep(T)'s transactions have fixed programs, and S and $* coincide on database entities the following holds,

S'(e) = Ye(ex(S5,Y)) = (Y(5))e). Thus, (Y(5))e) R, (X(5))(e) in this case. o
B.2 Proof of Theorem 3

Proof. Let X be a history where T is a serialization point, and let § be its initial state. Since both T and
CT are serialization points X(5) = (X7 o Xaep(r) © XeT)S) = (Xtepiry © Xer)(Xr(S)). By assumption, there
exists a history ¥ of dep(T) such that (Xcr o Y} X7(5)) = Y(S5) (the last equality is by Constraint 1), and
¥(8) R X(5). Observe that X o Xpp oY is indeed a history since ¥ involves only dep(T). 0

B.3 Proof of Theorem 4

Proof. By Lemma 4, the R-commutativity assumption, and the reflexivity of R, we can show that
(Ve € db : Xgepm),e(5') Re (X(5))(€)), where 5 coincides with § on the database state. (This is similar

to the proof of Theorem 2). Let ¥ be a history of the transactions in dep(T’) that includes the same operations

26

as in Xg.p(r) and in the same order (such a Y is a legitimate history since dep{T’)’s programs are linear). If we
can show that (Ve € db : Yo(ex(S,Y)) Re Xaeper,e(S”)), we can then use the transitivity of R to complete the
proof.

Since all programs in dep(T"} are linear we can treat ¥ merely as a sequence of operations, regardless of the
issuing transactions. Let fjo. ..o fi be the sequence of all the operations of dep(T") in the order of their appearance
in X (and hence alsoin Y.

We show that (Ve € adb: Yu(ez(S,Y)) Re Xiep(T),e(5")), where 5’ coincides with S on the database state by
induction on k.

E=0: (Ve € adb: Xgep(r),o(S') = Yelex(S,Y)) = S(e)).

Inductive step: Let fu41 transform e € adb. The final value of database entities other then e is computed by a
sequence of at most n operations. Therefore, we can apply the hypothesis of induction and get the following
(Ve! € adb : (¢' # e) = (Yo(ex(5Y)) Re Xiep(1),e(5)))- Let us focus on e itself. We can say that
Y.(ex(5,Y)) = fas1(8") and Xaepry e (S') = fos1(S™). Since each argument of f,, 41 is computed using less than
n+ 1 operations in both X and ¥, we can apply the hypothesis of induction and get (Ve € adb : S(e) R. 5" (e)).

Since fn41 preserves B we have completed the proof. O

27

