PLANARITY TESTING IN PARALLEL"
Vijaya Ramachandran® and John Reif#
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-90-15 June 1990

* A preliminary version of this paper appeared in Proceedings of the 30th IEEE Annual Symposium on
Foundations of Computer Science, 1989 [RR89].

T Supported by NSF Grant CCR 89-10707.

 Duke University. Supported by Air Force Contract AFOSR-87-0386, DARPA/ISTO Contract N0O0014-88-K-
0458, DARPA/AROQ Contract DAALQO3-88-K-0195 and NASA/CESDIS Contract 550-63 NAS 5-30428 URSA.

%
Planarity Testing in Parallel

Vijaya Ramachandran?

University of Texas at Austin

John Reift
Duke University

ABSTRACT

We present a parallel algorithm based on open ear decomposition o con-
struct an embedding of a graph onto the plane or report that the graph is non-
planar, Qur parallel algorithm runs on a CRCW PRAM in logarithmic time with
a number of processors bounded by that needed for testing graph connectivity
and for performing bucket sort.

A sequential implementation of our algorithm gives a new linear-time
sequential algorithm for planarity testing.

1. Introduction

1.1. The Planarity Problem

Informally, a graph is planar if it can be embedded onto the plane so that the edges do not
cross (see section 2.1 for formal definition). Euler first defined this fundamental concept in 1736
and stated the Euler formula for planar embeddings.

Planar graphs appear naturally in many applications, -- for example, in the solution of 2
dimensional PDEs and in VLSI layout. Many difficult graph problems can be solved in polyno-
mial time in the case of planar graphs.

The planarity problem is the following: given a graph G, test if G has a planar embedding
and, if so, construct an embedding of G onto the plane. A planarity algorithm is one that solves
the planarity problem. There has been a considerable amount of research on this problem, begin-
ning with the characterization theorems for planarity of Whitney [Wh30], Kuratowski [Ku30] and
Edmonds [Ed60] which led to exponential time planarity algorithms, followed by the first

* A preliminary version of this paper appeared in Proceedings of the 30th IEEE Annual Symposium on Foundations of
Computer Science, 1989 [RR89].
‘+Supported by NSF Grant CCR 89-10707.

+Supported by Air Force Contract AFOSR-87-0386, DARPA/ISTO Contract MO0014-88-K-0458, DARPA/ARO Con-
tract DAALOS3-88-K-0195 and NASA/CESDIS Contract 550-63 NAS 5-30428 URSA.

-2

polynomial time planarity algorithm of Tutte [Tu63] and culminating with the linear time sequen-
tial planarity algorithm of Hopcroft & Tarjan [HT74], which used depth first search and built on
techniques developed in a triconnectivity algorithm [HT73]. Another planarity algorithm
developed by Lempel, Even & Cederbaum [LEC67] was made to run in linear time by results in
Booth & Lueker [BL76] for manipulating PQ trees and by the algorithm of Even & Tarjan
[ET76] for computing an st -numbering.

1.2. Previous Parallel Algorithms for Planarity

Considerable previous work has been devoted to developing parallel planarity algorithms
with respect to the Parallel Random Access Machine (PRAM). Ja’Ja’ & Simon [JS82] first
showed that testing planarity can be done in NC. Miller & Reif [MR85] later gave a parallel
planarity algorithm with similar resource bounds that also gave a planar embedding of an arbi-
trary planar graph. Reif [Re84] gave a randomized logarithmic time NC algorithm for graphs of
valence 3. Klein & Reif [KR88] gave the best previously known polylog time planarity algorithm
in terms of processor efficiency, which required time O (log?n) using a linear number of proces-
sors; this algorithm is a parallelization of the sequential algorithm in [LEC67].

1.3. Our Parallel Planarity Algorithm

Our parallel planarity algorithm is a deterministic algorithm that runs in logarithmic time on
a Concurrent Read Concurrent Write (CRCW) PRAM while performing almost linear work. (See
Karp & Ramachandran [KR90] for a discussion of parallel algorithms on various PRAM models.)
More precisely, let C (n,m) be the bound on the work done by a parallel algorithm that finds the
connected componenis of an n-node, m-edge graph in logarithmic time on a CRCW PRAM
when the graph is represented by adjacency lists; currently the best bound is
Cn.m)=0((n+m)ofn,m)) [CV86], where « is the inverse Ackermann’s function, which
grows very slowly with » and m. Let B(n) be the bound on the work to perform bucket sort on
n O (logn) bit numbers in logarithmic time on a CRCW PRAM,; currently B (n) = O (n loglogn).
Finally, let A (n,m)=max(C (n,m),B (n)). Our planarity algorithm runs in logarithmic time on a
CRCW PRAM while performing A (n,n) work. We will refer to such a performance bound as
“logarithmic time with A-optimal performance.’

Our algorithm uses a variety of techniques found in previous parallel graph algorithms. We
search the graph using a parallel algorithm for open ear decomposition [MR86, MSV86, Ra%90].
Open ear decomposition has proved to be a very useful technique in the efficient parallel solution
of several problems on undirected graphs (see, e.g., [FRT89, KR87, KR90, MSV86, Ra90]). To
further order our parallel searches, we make use of the parallel algorithm of [MSV86] for st-
numbering. We use the local replacement graph and the bridges of ears computed in the parallel
triconnectivity algorithm of Fussell, Ramachandran & Thurimella [FRT89]; for this material we
will follow the treatment in the chapter [Ra%0]. We extend the interlacing parity algorithm of
Ramachandran & Vishkin [RV88] in order to obtain the planar embedding of the input graph;
again, for this material, we will follow the treatment in the chapter [Ra%90]. We also make use of

-3-

optimal logarithmic time algorithms for computing tree functions [TV84, CV86, KD88] and for
computing least common ancestors (Ica) of pairs of vertices in a rooted tree [8V388].

Our algorithm differs from all previous planarity algorithms in its use of a general open ear
decomposition for graph searching. However, it is somewhat similar in spirit to the algorithm of
Hopcroft & Tarjan [HT74] in that it embeds paths rather than vertices; as in the case of the algo-
rithm in [HT74], our algorithm makes extensive use of techniques developed in a triconnectivity
algorithm, i.e., the parallel algorithm in Fussell, Ramachandran & Thurimella [FRT89] 10 find the
triconnected components of a graph. At the same time, since our algorithm uses st -numbering to
direct the embedding, it has some similarity to the Lempel, Even & Cederbaum algorithm
[LEC67]. Our algorithm makes no use of parallel PQ tree techniques to represent planar embed-
dings, but instead makes a reduction to finding a 2 coloring of an undirected graph, a special case
of which is used in Ramachandran & Vishkin [RV88] to find a planar embedding for a graph with
a known Hamiltonian cycle. Similar, though less efficient, approaches have been used by Ja'Ja’ &
Simon [J$82] who gave an NC reduction of planarity testing to 2-SAT (satisfiability with 2
literals per clause) and by Reif [Re84] who gave a randomized NC reduction of trivalent planarity
testing to 2-SAT with the two literals in exclusive-or form; this latter problem is equivalent to 2
coloring an associated undirected graph.

All of the steps in our algorithm can be performed in linear sequential time. Hence it gives a
new linear time sequential algorithm for planarity.

1.4. Algorithmic Notation

The algorithmic notation in this paper is from Tarjan [Ta83]. We enclose comments
between a pair of double curly brackets (‘{{’ and “}}"). We incorporate parallelism by use of the
following statement that augments the for statement.

for iterator in parallel — statement list rof

The effect of this statement is to perform the for loop in parallel for each value of the iterator.

1.5. Organization of the Paper

The rest of the paper is organized as follows. Section 2 gives definitions and relevant earlier
results. Section 3 gives a high-level description of our algorithm. Section 4 describes bunches,
their hooks and the bunch graphs. Section 5 defines the constraint graph. Section 6 relates 2-
colorings of the constraint graph to planar embeddings of the input graph, and gives a placement
of each bunch on one side of its fundamental cycle. Section 7 refines this placement to obtain a
combinatorial embedding of the graph. Finally, Section 8 gives the full algorithm.

2. Preliminaries

In this section we provide major definitions and previous results from the literature that we
will need in later sections. Several other graph-theoretic definitions are given in the Appendix.

2.1. Planar Embeddings

2.1.1. Planar Topological Embeddings

We define here a planar topological embedding of an undirected graph G=(V ,E) (see, e.g.,
White [Wh73]). In such a topological embedding, each edge is associated with a simple segment
on the plane, where the vertices of the edge are at the two distinct endpoints of the segment, and
where no two such edges intersect except at endpoints in the case of common vertices. The faces
of the embedding are the connected boundaries of the maximum connected regions obtained by
deleting the embedding of G from the plane. Euler’s formula gives n—m+f =2c, where m,n.f
and ¢ are the numbers of edges, vertices, faces, and connected components, respectively.

2.1.2. Planar Combinatorial Embeddings

The topological definition of planar embedding given above presents difficulties for com-
puter algorithms and their proofs. Given an undirected graph G=(V.E) with 1V |=n, we will
represent an embedding of graph G by a combinatorial representation that is attributed to
Edmonds [Ed60] (see also White [Wh73]); this representation has size O (n). Let D(G) be the
directed graph derived from G by substituting in place of each undirected edge (u,v), a pair of
directed edges (u,v) and (v,u). A combinatorial graph embedding I(G) of the graph G is an
assignment of a cyclic ordering to the set of directed edges departing each vertex in D (G). The
faces of this combinatorial embedding are the orbits of a ceriain permutation of the directed
edges; this permutation orders (w,v) before (v,u) if and only if the combinatorial embedding
orders (v ,u) immediately before (v ,w) in the cyclic order around vertex v. The combinatorial
embedding is planar if it satisfies the Euler’s formula n-m+f =2c, calculated from the numbers
of (undirected) edges m , vertices n, faces f, and connected components ¢. Edmonds [Ed60]
showed that combinatorial embeddings onto the plane can be put in 1-1 correspondence to topo-
logical embeddings onto the plane.

Given a directed simple cycle C=<vq, vy, -, W=ve> in G, and an edge (v;,x) where v; is
in C but x is not, we will define (v;,x) 10 be embedded inside C (and otherwise outside C)ifin
the cyclic order defined by /(G) on directed edges departing vertex v;, directed edge (v;.x)
appears after directed edge (v;,v;41) and before directed edge (v;,v;-1). Hereafter, we will use the
term planar embedding to denote a combinatorial embedding onto the plane.

We extend the above definition to the embedding of an edge relative to a directed path.
Given a directed path P = <vq,v1, - -, > in G, and an edge (v;,x) where x isnot in P and v; is
an internal vertex on P, we will define (v;,x) 10 be embedded inside P (and otherwise outside
P) if in the cyclic order defined by 7(G) on directed edges departing vertex v;, directed edge
(v; x) appears after directed edge (v;,v;+1) and before directed edge (v;,vi-1).

2.2. Bridges of a Subgraph

Let G=(V ,E) be an undirected graph, and let O be a subgraph of G. We define the bridges
of O in G as follows: Let V' be the vertices in G~ , and consider the partition of V’ into classes
such that two vertices are in the same class if and only if there is a path connecting them which
does not use any vertex of Q. Each such class K defines a nontrivial bridge B=(Vp.Ep) of O,
where B is the subgraph of G with Vz=K_ {vertices of 0 that are connected by an edge to a
vertex in K }, and Ep containing the edges of G incident on a vertex in K. The vertices of O
which are connected by an edge to a vertex in K are called the attachments of B on Q; the con-
necting edges are called the attachment edges. An edge (u,v) in G—Q, with both 4 and v in 0,
is a rivial bridge of Q, with attachments u and v. The nontrivial and trivial bridges of QO
together form the bridges of Q.

Let G=(V,E) be a graph and let V' cV with the subgraph of G induced on V' being con-
nected. The operation of collapsing the vertices in V' consists of replacing all vertices in V' by a
single new vertex v, deleting all edges in G whose two endpoints are in V' and replacing each
edge (x,y) withx in V" and y in V-V’ by an edge (v,y). In general the resulting graph is a mul-
tigraph even if the original graph G is not a multigraph.

Let G=(V ,E) be an undirected graph, and let @ be a subgraph of G. The bridge graph of
0, S=(Vg Eg) is obtained from G by collapsing the nonattachment vertices in each nontrivial
bridge of Q and by replacing each trivial bridge b=(u.,v) of Q by the two edges (x.u) and
(xp,v) where x; is a new vertex introduced to represent the trivial bridge b. Note that in general
the bridge graph is a multigraph.

2.3. Interlacing Bridges

Let P=<0,1,2, - - ,&> be a simple path in a graph G. A pair of bridges interlace on P if
one of the following two holds:

1. There exist four distinct vertices a.,b,c ,d with a <b <c <d such that ¢ and ¢ are attachments
of one of the bridges on P and b and 4 are attachments of the other bridge on P ; or

2. There are three distinct vertices of P that are attachments of both bridges.

If bridges S and T interlace on P, then they cannot be placed on the same side of P in a
planar embedding. If S and T do not interlace, then they can be placed in a planar embedding on
the same (opposite) side of P if and only if there exists no sequence of bridges
<S=S0S51, S,=T>, with r odd (even) such that S; interlaces with S;,, 0<i<r—1. If there is
such a sequence with » even then § and T have even interlacing parity and if there is such a
sequence with » odd, then S and T have odd interlacing parity. If no such sequence exists for r
either odd or even, then S and T have null interlacing parity: in this case S and T can be placed
either in the same side or in opposite sides of P in a planar embedding (provided G is planar). It
is possible for S and T to have both odd and even parity, -- in this case, no planar embedding of
G is possible if every star is to be placed completely on one side of P.

-6-

2.4. The Star Graph and Its Inferlacing Parity Graph

Let P be a simple path in a graph G=(V ,E). If each bridge of P in G contains exactly one
vertex not on P, then we call G the star graph of P and denote it by G (P). We denote the
bridges of G (P) by stars, i.e., a star is a connected graph in which at most one vertex has degree
greater than 1. The unique vertex of a star that is not contained in P is called its center. If
P=<0,1,---,n> then given a star § of G (P) with attachments vo<v1<- - <v, on P, we will
call vo and v, the end attachments of S and the remaining attachments the internal attachments
of S; the vertex v ¢ is the leftmost attachment of S, and the vertex v, is its rightmost attachment.

Note that, in a connected graph G, the bridge graph of any simple path in G is a star graph.
We will sometimes refer to a star graph G (P) by G if the path P is clear from the context.

We now define the interlacing parity graph Gy of a star graph G (P). Let P=<0,1, - - - ,n>.
We replace each star S on G (P) by a collection of edges as follows: Let the attachments of § on
P beagai, - .ar with ag<a 1< - - - <a;. We replace S by the edges (a,a;),i=1, - - - ,k and the
edges (g;,a;).i=1, - - ,k—1 (see figure 1a). We will refer to these edges as the chords of § .

—F
H(P) e
Figure 1a
Forming H(P) from G(P)
g
a od
bo e
c f
Figure 1b Figure 1c
Edgesin E, Interlacing parity graph
G of G(P)
Figure 1

Constructing the interlacing parity graph of a star graph.

Let H(P) be the graph obtained from G (P) by replacing each star in G (#) by its chords.
We will say that chords ¢ and 4 in H (P) are related if they are chords of the same star S in
G (P) and are unrelated otherwise. We construct Gy=(V' E’), the interlacing parity graph of
G (P) as follows:

V' =V V2, where

V= {v,le isachordin H(P)} and

Vo= {vs 1S is a starin G(P)}; we will refer to a vertex in V', as a star vertex.

E ={(vs,u,) | S is a star in G(P) and u, is a vertex in V' representing a chord ¢ of S}
VELUF,

where E and F is defined as follows:

DEFINITION OF E ;.

For each chord ¢ in H(P) we first define its left chord I, and its right chord r.. Let
c=(u,v), u<v and let ¢ be achord of star § in G (P).

Left chord of c : Let y; be the minimum numbered vertex on P such that ¢ interlaces with an

unrelated chord d incident on ;. If 1, <u then choose an unrelated chord (i;,v;) with maximum
v; that interlaces with ¢ to be the lefi chord [, of ¢.

Right chord of ¢ : Let v, be the maximum numbered vertex on P such that ¢ interlaces with an
unrelated chord incident on v,. If v,>v then choose an unrelated chord (u,,v,) with minimum u,
that interlaces with ¢ 1o be the right chord r, of c.

Then E = {(v.,v)lc is a chord of H(P) and [is its left chord (if it exists)} (U
{(ve,v,)¢ is achord of H (P) and r, is its right chord (if it exists)}. (See figure 1b)

DEFINITION OF F:
Foreach vertex i on P let

Fi= {(vs,vyr) | § is a star in G (P) with an internal attachment on { and 7 ranges over all other
stars in G (P) with an internal attachment on i }

-1
Then F={_F;.
=1

Figure 1¢ give the interlacing parity graph G; of the graph G (P) in figure 1a.

It is shown in [Ra%0, RV88] that a two-coloring of Gy exists if and only if there exists a
planar embedding of G (P) with each star in G (P) being embedded entirely on one side on P.
Further, a planar embedding of G (P) can be obtained by embedding all stars corresponding to
star vertices of one color inside P and all stars corresponding to star vertices of the other color
outside P .

2.5. Open Ear Decomposition and st-Numbering

An ear decomposition D=[P o,Py, - - - ,P,_1] of an undirected graph &G =(V .E) is a partition
of E into an ordered collection of edge disjoint simple paths Py, - - - P,y such that Py is an
edge, Po_JP 1 is a simple cycle, and each endpoint of P;, for i >1, is contained in some P;,j <i,
and none of the internal vertices of P; are contained in any P;,j <i. The paths in D are called
ears. A trivial ear is an ear containing a single edge. An ear P;,i>1, is open if it is noncyclic and
ig closed otherwise. D is an open ear decomposition if all of its ears are open.

-8-

Let D=[Pg, - - ,Pr-1] be an ear decomposition for a graph G=(V .E). For a vertex v in V,
we denote by ear (v), the index of the lowest-numbered ear that contains v; for an edge e=(x.y)
in E, we denote by ear (¢) (or ear (x y)), the index of the unique ear that contains e. A vertex v
will belong 10 Poar(vy-

Let G be a biconnected graph with an open ear decomposition D=[Pg, - - - ,P,—;]. Two
ears are parallel to each other if they have the same endpoints; an ear P; is a parallel ear if there
exists another ear P; such that P; and P; are parallel to each other.

An open ear decomposition can be obtained in logarithmic time with A-optimal perfor-
mance [MR86, MSV86, Ra90]. The parallel open ear decomposition algorithm constructs a col-
Jection of auxiliary graphs in order to ensure that all ears are open. This construction is used
several times in our planarity algorithm. We present the construction below. It will be used in
sections 4 and 7.

set function auxgraphs (graph G=(V ,E), spanning tree T=(V ,D)) of graphs;

vertexv,y,z,z ,z";edgee, e’ , ", f;

for each vertex v in parallel —
{ {Construct a graph H, } }
create a vertex for each edge of G incidenion v,

for each fundamental cycle C of T with v as the lca of the nontree edge in C in
parallel —

if C has two base edges ¢, €’ — create an edge (' ,z”") in H, where z° and 2"
are the vertices created to represent ¢’ and ¢” respectively

{{Recall that the base edges of C are the edges in C that share the veriex v }}

| C has only one base edge e —> create an edge in H, between y and z, where

y and z are the vertices created to represent edges e and f respectively, f/ being
the nontree edge in C

fi
rof

rof;

return {H, lveV}
end;

An st-numbering of a graph G is a numbering of the n vertices of G from s=1 to t=n,
such that every vertex v other than s and ¢ has adjacent vertices u,w with u <v<w. Given an
open ear decomposition D =[Py, - - ,P,_1] for a biconnected graph G=(V .E) with P g=(s,?), it
is possible to direct each ear in D from one endpoint to the other in such a way that the edge (s 1)
is directed from s to ¢, the resulting directed graph is acyclic, and every vertex lies on a path

-9-

from s to ¢ [MSV86]. Let Gy be this graph, which we will call the sz-graph of G. The graph
Ty, the st-tree of G, is the directed spanning tree obtained from Gy, by deleting the last edge in
each ear except P o. We can similarly construct G, and its directed spanning tree T}, by consider-
ing P o to be directed from ¢ to s. We will refer to Gy, as the reverse directed graph of G, and
vice versa. These graphs can be obtained in logarithmic time with A-optimal performance using
the algorithm in [MSV86].

The following two facts are well-known [Wh30, Ev7 9%
1. A graph has an open ear decomposition if and only if it is biconnected.

2. A graph has an sz-numbering if and only if it is biconnected.

2.6. The Local Replacement Graph

We describe a transformation of a biconnected graph G with an open ear decomposition
D=[Pg, - ,P,1] into a new graph G, called the local replacement graph of (G;D) [FRT89]. In
the graph G, each ear P; in D is converted into a path P'; with P; being P’; with its end edges
deleted. This treatment is from [Ra90].

Consider any vertex v in G . Let the degree of v be d (d22). Of the d edges incident on v,
two belong to P, v). Each of the remaining d—2 edges incident on v is an end edge of some ear
P;, with j>ear (v). In the local replacement graph G; we will replace v by a rooted tree with
d—1 vertices, with one vertex for each ear containing v . The root of this tree will be the copy of v
for the ear containing v. The actual form of the tree is computed from Ty, and T;s as in the algo-
rithm below. The tree representing vertex v will be called the local tree of v and will be denoted
by T,.

Algorithm 2.1: Constructing the Local Replacement Graph

Input:

A biconnected graph G=(V .E);

an open ear decomposition D=[Pg, - - - ,P,_1] for G, with P g=(s,t);

the sz-graph Gy, with its spanning tree Ty, and the &5 -graph G,; with its spanning tree Ty,.
Output: The local replacement graph G; of (G:D).

integer i ,j; {{These integers range in value from O to r—1.}}
vertexa,q,u,v,w; {{g,u,v and w may be subscripted by an integer.}}

edgea,e,f,n; {{e and f will be subscripted by an integer.}}

rename each vertex v in G by v;, where ear v=i;

{{We will refer to the vertex v,,, () interchangeably as either v Of Vegrv). } }

1.

-10 -

for each outgoing ear P; at each vertex v in Gy in parallel —
let the edge in P; incident on v be ¢; and let the nontree edge in P; be f;;
detach edge ¢; from v and label the detached endpoint as v;;
let ¢ be a base edge of the fundamental cycle created by f; in T, with ear (a)#i;
if ear (a)Sear (V) — Vegr(v) = parent (v;)
| ear(a) > ear (v) = Veur(a) = parent (v;) fi;
direct this edge from parent (v;) 10 v;
rof;

let the undirected version of the graph obtained in step 1 be G !, the directed version be G
and its associated spanning tree be T} and the reverse directed graph be G, and its associ-
ated spanning tree be T;

repeat step 1 using G,} and T;} and let the resulting undirected graph be G2, the resulting
directed graph be G/ and its associated spanning tree be T, 2, and the reverse directed graph
be G2 and its associated spanning tree be TZ;

{{In the following we process parallel ears by constructing a new graph # .} }

for each parallel ear P; in parallel — create a vertex g; rof;

for each nontree edge n in 7.7 in parallel —

if the base edges of the fundamental cycle of n belong to ears P; and P;, where P;
and P; are parallel to each other — create an edge between g; and g; fi

rof;
call the resulting graph H ;
find a spanning tree in each connected component of H and root it at the vertex correspond-
ing to the minimum numbered ear in the connected component;
for each vertex g; in H that is not a root of a spanning tree in parallel —
let P; be directed from endpoint # to endpoint w in Gy; let g; be the parent of g; in
the spanning tree in H;
replace the parent of u; in T by u; and the parent of w; in T2 by w;
rof;
denote the undirected version of the graph formed in step 3 by Gy, the directed graph from s

to ¢ by G’y and its associated spanning tree by T’y and the reverse directed graph by G’y
and its associated spanning tree by T',,; call G; the local replacement graph of G ;

call the underlying undirected tree constructed in steps 1, 2 and 3 from each vertex v in G
the local tree T,; call V() the oot of T, and consider T, to be an out-tree rooted at
Vear (v)- Call the part of T, constructed by assigning parents in T the o-tree OT, of T, and
the part of T, constructed by assigning parents in 7,2 the i-tree IT, of T,;

-11-

{{In G, OT, is an out-tree rooted at Vesrv) and /T is an in-tree rooted at Ve (v) and vice-

versain G,;2.}}

denote by P’; the ear P;, together with the edge connecting each endpoint of P; to its parent
in its local ree in Gy;

{ {Note that the innard of P’; (i.., the path P’; excluding its two end edges) is P;.}}

denote the first vertex on P’; when directed as in G’y by L(P’;), the left endpoint of P, and
the last vertex on P’; when directed as in G’y by R (P";), the right endpoint of P;.

end.

Figure 2 gives an example of the construction of the local replacement graph. For the rest
of the paper we assume that the vertices in G, Gy and T’y are numbered with their s¢-
numbering.

We will need the following lemma about the paths P’; that are constructed in the local
replacement graph G;. The proof of this lemma is immediate if G; contains no parallel ears. The
proof for the case when G; contains parallel ears is not difficult and is left as an exercise.

Lemma 2.1 There exists a permutation = of the indices O through r—1 such that
[P noy - P ar-1)] is an open ear decomposition for G;.

3. Overview of the Planarity Algorithm

Our planarity algorithm finds an open ear decomposition D =[Pgy, - ,Pr—] in the input
graph G and derives from it the local replacement graph G; together with its associated paths
P’;,i=0, - - r—1 and its st -numbering directed graph G’ and spanning tree T”;,. For each path
P’;, let C’; be the fundamental cycle formed with respect to T’y by the unique nontree edge in
P’;. The direction of C’; will be the direction of P'; in G'y.

For each i, our algorithm finds certain approximations to the bridges of C’; with attach-
ments on P’;, called the bunches of P’;, together with a hook for each bunch. Some of the
bunches are called the anchor bunches of P’;; these are defined in the next section. The algorithm
constructs a star graph J; for each i, that (roughly speaking) consists of P’; together with its
bunches, and then forms G; ;, the interlacing parity graph of J;. The algorithm then links these
graphs G; ; with some additional edges that are derived from the hooks of anchor bunches. This
gives the constraint graph G* which we describe in Section 5. The vertices of graph G * are the
union of the vertices in the G; 1, together with some dummy vertices. We show that the graph
G* has the property that if G; is planar, then any legal coloring of the vertices of G* with {0,1}
gives a planar embedding of G; with edge (s ,t) on the outer face. This planar embedding is
obtained by embedding bunch B inside C’; if and only if the star vertex in G; ; corresponding 10
B is colored 0 in G*. We then give a method to obtain the cyclic order of edges embedded inside
C’;, and of edges embedded outside C’;, for each i. Finally we show that a planar embedding of
G can be obtained from a planar embedding of G; by collapsing the vertices in each local tree.

-12 -

c= Cl c= Cl
C. C.
o s ¢y 5 2
¢y ‘s €4
Out-tree at vertex ¢ Out-tree at vertex ¢
after step 1 of after step 3 of Algorithm 4.2
Algorithm 4.2 (I% , P5 and Ig are parallel ears)
Figure 2

Constructing the local replacement graph.
All steps in our algorithm can be implemented in logarithmic time with A-optimal performance.

4, The Bunches and Their Hooks

Let G be a biconnected graph with an open ear decomposition D=[P y,Py, - - - ,P,_1] and let
Gy, G'gy, T'y, and P’;,i=0, - - r—1 be as described in Section 2.6. Let the vertices of G; be
numbered with their st -numbering.

Let C’; be the fundamental cycle formed in G; by adding the unique nontree edge in the
path P’; to T’y and let I be the Ica of the unique nontree edge in C’;. Note that [is the lowest-
numbered vertex in C’; and R (P';) is the highest-numbered vertex in C’;. A nonanchor bridge of
C’; is a bridge of C’;, all of whose attachments are internal vertices of P’;. An anchor bridge of
(’; is a bridge of C’; that has an attachment on an internal vertex of P’; and either a) an attach-
ment on C’; — P’; or b) a nonattachment vertex v withv < orv > R(P’;). A spanning bridge
of C’; is a bridge of C’; that has an attachment on L (P’;), has no attachment on C’; — P’;, and for
each nonattachment vertex v has L(P') < v < R (P’

-13-

4.1. The Bunches
The following algorithm finds certain objects that we call the bunches of the P’;.

Algorithm 4.1: Forming the Bunches

Input:

Biconnected graph G=(V .E);

an open ear decomposition D=[Pgq, - -+ ,Pr_1] for G, with Pg=(s,t);

the local replacement graph G; of (G;D), together with the associated Gy, T and the paths
P, i=0,---,r—1

Qutput: The bunches of each P’;.

integer i, f, k; {{These integers range in value from 0 to r—1.}}
vertexa,b,l,p,u,v,w,x,y,z; {{The vertex p will be subscripted by an integer.} }
edgee,f, e, ez

set X, X" of edges;

1. in G’y collapse the internal vertices of each path P’; to form vertex p;; let vertex ¢ be p g;

call the resulting graph G”, and the resulting spanning tree derived from T's as T'g; call
the resulting underlying undirected graph G”;

2. H =auxgraphs (G” . T"y); {{function auxgraphs is given in Section 2.5.}}
let H = {H; li=1, - r=1};
{{H; is the auxiliary graph whose vertices represent the edges incident on vertex p; in
G" 1}

3. for each i in parallel — compute the connected components of H; and call the set of

edges of G; corresponding to the vertices in each connected component a cluster of P';;

4. for each nontree edge e=(u,v) in Gy whose fundamental cycle countains both base edges
in parallel —

{{In the following we compute attachments to L(P’}), the left endpoint of P’; for each
P'i}}
let =ica{u vy,
let e1=(/,a) and e,=({,b) be the two base edges of the fundamental cycle created by
(u,v), with a an ancestor of # and b an ancestor of v; let a=py and b=p;;

a. ifedge e, isincident on L(P";)in G; —

if u=a —> add a copy of e, to X where X is the cluster of P’ that contains e

end.

rof;

-14 -

| uza — add a copy of e to X, where X’ is the cluster of P, that contains
edge (a,y), where y is the unique child of @ which is an ancestor of u

fi
fi;
if edge e is incident on L (P';) in G; —
{{This is symmetric to step a.}}
if v=b — add a copy of e to X, where X is the cluster of P’; that contains e

| v#b — add a copy of e; to X", where X’ is the cluster of P’; that contains
edge (b,z), where z is the unique child of & which is an ancestor of v

fi

H' = auxgraphs (G, T g);
let H = {H,1veG};

for each P’; in parallel —

rof:

let w = L(P’;); let ear (w) be j; let f be the edge in P’; that is incident on w; let x be
the vertex in H,, that represents the edge f;

for each connected component C in H,, — {x} — union all of the clusters of P;to
which an edge corresponding to a vertex in C was added in step aor step b rof

denote each set of edges generated at the end of step 5 to be a bunch

{{Each bunch of P’; is a set of attachment edges on P’; of a bridge of C’; in G;. Some
edges of G, can appear in the bunches of several different P’; because of step 4.

We will denote a bunch of P’; by (B,i) where B denotes the set of edges in the bunch; if
the index i is clear from the context we will let B denote the bunch. } }

The following observation is a simple consequence of the construction of the local replace-
ment graph.

Observation 4.1 In the graph G”, constructed in step 1 of Algorithm 4.1,

a)

b)

Every outgoing edge from p; is a tree edge in T, except for the unique outgoing edge that

lies on P’;.

Every incoming edge to p; is a nontree edge except for the unique incoming edge that lies

onF’;.

-15-

The next lemma shows that every bunch of P’; is part of a single bridge of C';.

Lemma 4.1 Let (X ,i) be a bunch as computed in Algorithm 4.1. Then X is a subset of the attach-
ment edges of a single bridge of C’;. Further none of the edges in X appear in any other bunch of
P ,j .

Proof Tt is straightforward to see that the edges in each cluster of P’; as computed in step 3
belong to a single bridge of C’; and that these clusters are disjoint. It is also straightforward 1o see
that if edge ¢ is added to cluster X in step 4a or step 4b then ¢ belongs to the same bridge of C’;
as the edges in X . Also, all edges in G; corresponding to vertices in a connected component of
H,, — {x} must belong to the same bridge of C’;. Hence the sets of edges that are unioned in step
5 are all part of the same bridge of C’;. Finally if (X,i) and (¥ ,i) are two bunches of P’; with
X =Y they must be disjoint since the clusters in X are disjoint from the clusters in ¥ and the
added edges in step 4 must also be disjoint, since otherwise, the X and ¥ would have been com-
bined in step 5.[1

We will refer to a bunch (B.,i) as a nonanchor bunch, an anchor bunch or a spanning
bunch, depending on whether the bridge of C’; that contains the edges in B is a nonanchor
bridge, an anchor bridge or a spanning bridge of C’; respectively.

We now give a series of observations about bridges and bunches. The proof of the first
observation makes use of material from [Ra%90].

Observation 4.2 Every spanning bridge of C’; has attachments on both L (P’;) and R (P';).

Proof It is shown in [Ra90] (Lemma 4.4) that any bridge of P’; that has an attachment on L (P';)
either contains a nonattachment vertex on a path P’;, j<i or is a 2-attachment bridge with only
the endpoints of P’; as attachments. In the former case the bridge is called an anchor bridge of
P’;. Since P’; is properly contained in C’;, each bridge of C’; is part of a bridge of P’;. Hence
any spanning bridge of C’; is part of either an anchor bridge of P’; or a bridge of P’; that has
attachments only on its two endpoints. In the latter case the Observation is immediaie so for the
rest of the proof we consider only the former case.

Let S be a bridge of C’; that is part of an anchor bridge of P’; and let [be the Ica of the
nontree edge in C’;. If every nonattachment vertex in S is an internal vertex on a path P';, j>1i,
then S must have an attachment on C’; — P’; and thus cannot be a spanning bridge of C’;. Other-
wise, let v be a vertex in S that is an internal vertex on a path P’;, k<i. Consider the tree path p
from s to v in T'y;. This path must intersect the path g from s to L (P’;) since j <i. Let the lowest
point of intersection of p and g (ie., lea(v, L(P’}))) be x. If x <L (P’;) then either § is an
anchor bridge of C’;. If x=L (P’;), consider the edge ¢ on p that is outgoing from L (P’;). Let ¢
be contained in P’,,. By the construction of the local replacement graph, R (P’,,) is not a descen-
dant of an internal vertex of P’; in T'y, hence we again have the case that either § is an anchor
bridge of C’; or § has an attachment on R (P;).[]

Observation 4.3 Let (X ,i) be a spanning bunch of C’; as computed in Algorithm 4.1. Then X has
an attachment on L (P’;).

216 -

Proof Straightforward.[]

Observation 4.4 Let (B ,i) be a nonanchor bunch of C’; as computed in Algorithm 4.1. Then B is
the set of all attachment edges of a nonanchor bridge of C’;.

Proof Straightforward.[]

Lemma 4.2 Algorithm 4.1 can be implemented to run in logarithmic time with A-optimal perfor-
mance.

Proof We first show the total size of all of the bunches computed by the algorithm is O (n). Edges
are added to the bunches in step 3 and in step 4 (a and b) of the algorithm. Each edge of G is
added to at most one bunch in step 3 so the total number is O (#). In step 4, at most two edges are
added to bunches for each nontree edge, hence the total number is again O (n).

We now analyze the performance of the algorithm. The major computation before step 5 is
in finding connected components which can be performed in logarithmic time with A-optimal
performance, and in finding Icas of pairs of vertices in a rooted tree which can be performed
optimally in logarithmic time using the algorithm of [SV88]. For the case u#a in step 4a and the
case v#b in step 4b we need the second edge on the path from the Ica of a nontree edge to one of
its endpoints; this can be computed optimally in logarithmic time using the Ica algorithm of
[SV88].

In step 5 we need to determine for each edge that was added to a cluster in step 4, the con-
nected component to which it belongs in the graph H,, — {x }. For this, as a preprocessing step we
construct the blocktree T° of the graph H' (see Appendix for the definition of blocktree). Each
connected component of H, — {x} corresponds to a segment, starting and ending with x of the
Euler tour of 7. Hence with some simple preprocessing of T° using the Euler tour technique,
each vertex in H’ can determine its connected component in the graph H, — {x}, for any x, in
constant time with one processor.

Step 5 also required several unions to be performed in parallel. For this, we create a triple
(i ,C X) for each end attachment ¢ on P’; that is added to cluster X in step 4, where C is the con-
nected component of H,, — {x} that contains the vertex corresponding to e. We then sort these
triples using the algorithm in [Ha87]. We form an auxiliary graph with a vertex for each cluster X
formed in step 3 for each P’; and we connect up all such vertices with identical second entry in
the triple. Each connected component in the resulting graph together with the edges correspond-
ing to the second entries in their triples gives a set corresponding to the union. This can be com-
puted in logarithmic time with A-optimal performance.[]

4.2. The Hooks of Bunches

In this section we compute, for each bunch found in Algorithm 4.1, an additional edge
called its hook. We first need some definitions. Recall that the vertices of T'y, are numbered with
their st-numbering. For each edge e=(parent (v),v) in Ty, out(e) is the set of nontree edges
that are either incoming to or outgoing from a descendant of v; we define low(e) to be

3 eigg%e)Eca (n}.

-17 -

Let S = {n |neout(e) and lca(n)#low (¢)}. Then we define low 2(e) 1o be min(v, Ir}lei{gl lca(n)).

Note that low 2(e) is the second smallest vertex that is the Ica of an edge in out (¢) if such a ver-
tex exisis.

For a nontree edge n=(,v) in G;, we define out (my={n},lown)=lca(n)in T’ and low 2(n)
to be max{u,v).

Let X be a set of edges in G;. Then, we define

out(X)= UXout {e); and
low(X)= rergi; low (e).

Letll1X)= (fow(e)and [2(X)= Ieneg} low 2(e).

}nin
eeX and low (e ytlow (X)
Then, low 2(X) = min(l 1(X), [2(X)).

Note that low 2(X) is the second smallest vertex that is the lca of an edge in out (X) if such a ver-
tex exists.

The computation of the hooks of the bunches is performed in two stages. In the first stage
we find a hook for some of the bunches of P’; using their low and low 2 values. In the second
stage we compute hooks for those bunches of P’; for which the first stage found a hook that was
incident on L (P’;) or R (P’}).

Algorithm 4.2 is specified in a manner that makes it simple to understand and 1o prove
correctness. In order to obtain logarithmic time, A-optimal performance, we will modify the algo-
rithm slightly. The details of the modification are given in the proof of Lemma 4.7.

Algorithm 4.2: Finding Hooks of the Bunches
Input:

The local replacement graph G; of (G;D);

the bunches of each P';;

Output: A hook for each bunch.

integer i, j; {{i and j range from O to r—1.}}
edge f, h;vertex u, v, w, x;

set D, X of edges; set U of vertices;

bunch (B ,i);

edge function hook (set X of edges in Gy, integer i);
vertex [, u,v,Xx,¥.2;

edged,e,f,m,n;

-18-

[=lIca(d)in Ty, where d is the nontree edge of P';;

1. iflow(X) <! —return (parent(l),l) fi;
n = anedge in out (X) with lca(n) = low (X);

2. LP)>lowX)>1 — n = anedge in out (X) with lca(n) =low (X)

3. | lowX)=l and LFP)>low2X)-—>n = an edge in our(X) with
lca(n)=low2(X)

4. | low(X)=1 and L (P’;) < low2(X) and there is an edge m in out (X) not incident
onR(P)y withlcaim)=1—n =m
fi

5. let n=(x,y) and let e=(u,v) be an edge in X that lies in the fundamental cycle of n
with % contained in P’;; let x be a descendant of v (and hence y is not a descendant of
v); let f be a base edge of the fundamental cycle of # with f not lying on the path
from s to z, where z is the vertex on P’; adjacent to R (P';);

6. if f is not contained in C'; — return f

7. |y >R(P;)—> return (parent(1),])

8. |y <R —>return(xy)
fi

end hook ;

{{Main program} }

H = auxgraphs (G;,.T s);

let H = {H, | visavertexinG;};

for eachbunch (B .i)in G, in parallel —

1.

h =hook (B ,i);
if 1 isincident on L (P’;) or R(P';) —
{{This computation is similar to step 5 of Algorithm 4.1.}}
let w=L (P’;); let ear (w) be j; let f be the edge in P’; that is incident on w;
D :=the set of edges in B incident onw;
let x be the vertex in H,, that represents the edge f';
let U be the set of vertices in H,, that represent the edges in D ;

X = UU (the set of edges in G, that correspond to the vertices in the connected
ue

component of H,, — {x } that contains veriex u);

2. hi=hook(X i)

-19-

rof

end.

Lemma 4.3 Let X be a set of edges not contained in C’; but with each edge in X incident on a
vertex in P’;. Function hook (X ,i) returns an edge f in a bridge of C’; that contains an edge in
X.

Proof If edge f is returned in step 1 of function hook let ¢ be an edge in X with
low(e)=1Ilow(X) and let n be an edge in out(e) with ica(n)=Ilow(X). Since lca(n) <I,
Ica(n) must be an ancestor of parent(l). Then the path in G; consisting of the path from
parent (1) to lca(n) followed by the path from lca(n) to n followed by the path from » to e in
T, shows that £ is an attachment edge of the bridge of C”; that contains e.

If £ is not returned in step 1, consider the nontree edge n=(x,y) in step 5 of function kook .
The edge n is in out (X) and Ica(n) > I. Hence the edge f as computed in step S is incident on a
vertex in C’;. If this edge f is returned in step 6 then the path from f to n, followed by the path
from n to e in T', shows that f is in the same bridge of C’; as edge e, whichis in X.

If edge f is not returned in steps 1 or 6 then f is the base edge of C’; that lies on the path
from s to R(P’;). If edge (parent(l),l) is returned in step 7 then the path from edge e to n in
Ty, followed by the path from y to ¢ that contains vertices in increasing order of their sz-
numbering, followed by the path from s to parent (1) is a path between e and edge (parent (1),l)
that avoids all vertices in C’;. Further, since [is the lca of the nontree edge in C’; the edge
(parent (1),]) is incident on a vertex in C’;.

Finally if edge (x.y) is returned in step 8, then y is a vertex on C’; on the path from / to
R (P’;) and hence edge (x,y) is incident on a vertex in C’;. In this case the path from edge ¢ to x
in T’y is a path between e and edge (x,y) that avoids all vertices in C’;.[]

Lemma 4.4 Let (B,i) be a bunch of P’; and let 2 be its hook as calculated in Algorithm 4.2.
Then % is an attachment edge of the bridge of C’; that contains the edges in B.

Proof If the hook of B is computed in step 1 of the main program, then the result follows
immediately from Lemma 4.3. If the hook of B is computed in step 2 then consider the set X in
the function call hook (X ,i) in step 2. Each edge ¢ in X is incident on L(P’;) and is in the same
bridge of C’; as an edge of B that is incident on L (P’;). Hence X is a subset of the edges in the
bridge of C’; that contains B, and the result follows from Lemma 4.3[]

Corollary to Lemma 4.4 Let (B ,i) be a nonanchor bunch with hook 4. Then % is incident on an
internal vertex of P’;.

The following two lemmas deal with the hooks of anchor and spanning bunches.

Lemma 4.5 Let (B i) be an anchor bunch of P’; with hook % . Then either # is incident on a ver-
tex in C’; — P'; or b = (parent(1),l), where [is the Ica of the nontree edge of P’;.

-20 -

Proof The proof is divided into two cases depending on whether or not B has an edge incident on
L(P").

CASE 1: B contains no edge incident on L (P’;). Since B is part of an anchor bridge of C’; there
must be a path p from an edge in B to either an attachment edge on C’; — P'; or a vertex v with
v <l or v>R (P’;), with path p avoiding all vertices in C’;. Further we can find such a path p with
exactly one nontree edge n. The edge n is in out (B) and lca(n) < L(P';); further, n is not
incident on R (P’;). Hence function hook (B i) will return either an edge incident on C~P;or
the edge (parent(1),1).

CASE 2: B contains an edge incident on L (P’;). In this case the path p of CASE 1 may contain
several nontree edges with lca L (P’;) before reaching an attachment edge on C’; — P’; or avertex
v not having a value between [and R (P’;). But the vertices in H,, corresponding to all of the
base edges of the fundamental cycles of these nontree edges will be in a connected component of
the graph H, — {x} (as computed in step a of the main program) that contains a veriex
corresponding to an edge in B. Hence all of these nontree edges are included in our(X) and
hence the argument of CASE 1 applies with B replaced by X .[]

Lemma 4.6 Let (B ,i) be a spanning bunch of P’; with hook k. Then /4 is incident on L (#';) or
R(P’).

Proof By Observation 4.3 B contains an edge ¢ incident on L(P’}). Let ¢ be contained in P/.
By the construction of the local replacement graph, R (P’}) is not incident on a descendant of an
internal vertex of P’;. Hence B would be part of an anchor bridge of C’; unless R (P,) =R (P’;).
Hence out(B) contains a nontree edge incident on R (P’;). The Ica of this edge equals low (B)
since if low (B) is smaller then B would be an anchor bridge. Hence either an edge incident on
R (P’;) is returned in step 8 on function call hook (B i) and hook (X i) or an edge incident on
L(P’;) is returned in step 6 on function call hook(B i) and hook (X i) (this could happen if
=L@

The following lemma gives bounds on the parallel complexity of Algorithm 4.2.

Lemma 4.7 Algorithm 4.2 can be implemented to run in logarithmic time with A-optimal perfor-
mance.

Proof The low and low?2 values for all edges can be computed optimally in logarithmic time
using the Euler tour technique [TV85]. We can also compute with the same bounds a collection
Z(e) of two or three edges in out (e) with lca equal to low (¢) and such that for any vertex v in
G, one of these edges is not incident on v (if such a collection of edges exists in out(e)). This
computation allows us to find in constant time, an edge in out(¢), not incident on R (P’;), and
with 1ca equal to low (¢), as needed in step 4 of function hook. Once these values are known for
set X, all steps of any single call to function hook (X ,i) can be computed in constant time with
one Processor.

The total size of all of the sets in the function call in step 1 of the main program is linear in
the size of G;, hence this step can be performed optimally in logarithmic time using the prepro-
cessing described above. However, the total size of all of the sets in the function call in step 2 of

221 -

the main program can be superlinear in the size of G; since the graph H,, will be needed in pro-
cessing the bunches of several different P’;. In order to obtain A-optimal performance, we will
preprocess by computing the low , low 2 and Z values for each block in each H,,. As in the proof
of Lemma 4.2, the corresponding values for each connected component in H,, — {x } can be com-
puted from a segment of the Euler tour of the block tree of H,,. In our parallel implementation of
Algorithm 4.2 we will pass only the low , low?2 and Z values to function hook rather than the
entire set of edges. This results in a parallel algorithm that runs in logarithmic time with A-
optimal performance.[]

4.3. The Bunch Graphs

Let O; be the path P’; together with an edge from L (P’;) to a new vertex U (P’;). In the fol-
lowing we define for each path P’; in G, a star graph, J;(Q;), called the bunch graph of P’;. We
create a star Sp for each bunch B of P’; by creating a new vertex vp and adding attachment edges
as follows: we replace each edge (x,y) in B with y not on P’; by the edge (x,vp). If B contains
an edge (x,y) with both x and y on P’; then we replace (x,y) by two edges (x,vg) and (y,vg). If
B is an anchor bunch we include an attachment edge (U (P’;),vp) to represent the hook. If B is a
spanning bunch we include an attachment edge (R (P’),vg). The center of star Sp is vp and each
edge in Sp corresponds to an attachment edge of B on a vertex in '

The bunch graph J;(Q;) is the star graph consisting of the path g;, together with the star Sp
for each bunch B of P/;.

In the next section we will use the interlacing parity graph (defined in Section 2.4) of each
J;(0;). We will denote this interlacing parity graph by G; ;. Recall that the graph G;; contains
vertices for certain chords derived from the stars in J;{(Q;) as well as a vertex for each star of
J(0;). We will refer to the latter vertices as bunch vertices and we will denote the bunch vertex
corresponding to (B ,i) by up ;.

We now associate a triconnected component of G; with each bunch (see Appendix for
definitions relating to triconnected components). Recall that by Lemma 2.1 it is possible to rear-
range the P’; so that the resulting sequence of paths forms an open ear decomposition for G;. We
assume that the P’; have been reordered so that [P, - - - ,P',_;] forms an open ear decomposition
for G;. If G, contains no pair a,b separating P’; such that the interval [a.,b] on P’; contains all
attachment vertices of B then let v be an attachment of B and let X be the triconnected com-
ponent of G; that contains the copy of v that remains when all upper split graphs corresponding
to ear splits on adjacent and extremal separating pairs on P’;,j =i have been removed. If G; con-
tains a pair a,b separating P’; such that the interval [a,b] on P’; contains all attachment vertices
of B then let x,y be such an adjacent separating pair whose upper split graph does not contain
any other adjacent pair of this form and let X =TC(x,y,i). Then X is the triconnected com-
ponent of (B i), or equivalently, (B i) belongs to triconnected component TC(xy,i}

The following lemma follows from the results of [MR87, Ra%0] relating separating pairs on
P’; to the interlacings of stars in the bridge graph of P';.

222 -

Lemma 4.8

a)

b)

Let X be a connected component of G; ; that contains no bunch vertex corresponding to an
anchor bunch and let ¥ be the triconnected component of a bunch whose bunch vertex is in
X . Then Y is the triconnected component of a bunch (8 ,i) if and only if the bunch vertex
up ;isin X.

All bunches corresponding 1o bunch vertices in connected components of G; ; that contain
an anchor bunch belong to a single triconnected component of Gy, and this triconnected
component is not part of the upper split graph of any ear split corresponding to a pair
separating P’;.

5. The Constraint Graph

In this section we define the constraint graph G* of G;. G” consists of two parts. One part

consists of the union over all { of the interlacing parity graph, G;;, of the bunch graph J;(Q;).
The other part of G* consists of certain edges linking the G, incorporating some additional
dummy vertices as described below. The link edges are determined by the hooks of anchor
bunches that we computed in Algorithm 4.2. In Section 6 we relate 2-colorings of G* to planar
embeddings of G;.

Algorithm 5.1: Forming the Links of the Constraint Graph

Input:

A bicomnected graph G with an open ear decomposition D =[P, -+ * ,P, 1]

the local replacement graph G; of (G ;D) together with Gy, and T';

the bunches of each P’; in G;

a hook for each anchor bunch;

the interlacing parity graph G; ; for each bunch graph J;(Q;).

Output: The constraint graph G™* of G;.

integer i, j, k, m; {{The range of the integers is from 0 to r—1.}}
vertex[,p,q.w,x,y,z;edgee,f,h,n;
bunch (A .j), (B .i);
procedure odd (bunch (B i), (A .,j));
vertex up i, U4 j:
create an edge between the bunch vertex ug ; in G;; and the bunch vertex uy ; in
Gju

{{We will refer to this edge as the link path between the vertices up ; and ug ;.}}

-23-

end odd;

procedure even(bunch (B i), A0
vertex v, up ;, U4 js
create a vertex v; { {We will refer to v as a dummy vertex.} }
create an edge between the vertex v and the bunch vertex ug ; in G, ;;
create an edge between the vertex v and the bunch vertex iy ; inGjy

{{We shall refer to the path of length 2 formed by the two newly-created edges as the
link path between the vertices up ; and ua ;. 1

end even;

{{Main program} }

for each anchor bunch B of each P’; in parallel —
let n=(p ,4) be the unique nontree edge in P’; with g=R Y
let lca(n)=l;

let i be the base edge of C’; that lies on the path from / 10 ¢ and let ¢ be the other
base edge of C';;

let hook (B) be f=(xy);
1. iff =(parent(i),l) —
let ear (h)=j;
A = the set of edges in the bunch of P’; that contains edge ¢;

{{Note that ¢ must be contained in a bunch of P’; even if L (P’;) = because of
the presence of nontree edge n whose fundamental cycle contains ¢ and £ as its
base edges.}}

even((B i), (A.j))
2. | f is an edge incident on a proper ancestor y of L FH—-

let w be the unique child of y on the tree path from / to L (P';); let (y,w)be an
edgein P';;

A :=the set of edges in the bunch of P’; that contains edge [;
even((B,i), (A.J)
3. | isincident on a vertex y in the path from [to g —

let z be parent(y) in T’y and let w be the unique child of y on the tree path
fromItoqg;

let (y,2) be contained in P’;, let (w,y) be contained in Py, let (x.,y) be con-
fained in P’,,,;

-4 -

a. Hm=#j—
A :=the set of edges in the bunch of P’; that contains edge f ;
0dd((B i), (A.j))

b. | m= j—
A = the set of edges in the bunch of P’; that contains edge (w.,y);
even((B,i),{(A.j)
fi
fi

rof

end.

Lemma 5.1 Algorithm 5.1 can be implemented to run optimally in logarithmic time.

Proof Straightforward.[]

We now relate the link paths created in Algorithm 5.1 to a planar embedding of G;. We first
review some definitions. Let G4 be the directed graph obtained from the local replacement graph
G, by replacing each (undirected) edge (u,v) in G; by two directed edges (u,v) and (v,u). Let
1(Gy) be a cyclic ordering of the edges outgoing from each vertex in G, corresponding to a
planar embedding of G;. Given a directed path Pi=<vgvy, V> in Gy, and an attachment
edge (v;,x) where x is not in P’; but v; is an internal vertex on P’;, recall that in Section 2.2 we
defined (v;,x) to be embedded inside P’; (and otherwise outside P';) if, in the cyclic order
defined by I(G,) on the edges outgoing from vertex v;, edge (v;,x) appears after edge (v;,vi+1)
and before edge (v;,v;-1). Thus (v;,x) is defined to be embedded inside P’; if and only if (v;,x) is
embedded inside the basis cycle C;.

The link paths introduced in Algorithm 5.1 are either of length 1 or length 2. The length of
a link path is determined by the relative placements of the two bunches it connects with respect to
their fundamental cycles in a planar embedding of G; as described in the following lemma.
Lemma 5.2 Let (A,j) and (B i) be a pair of bunches in G; whose corresponding vertices u and v
in G* are connected by alink pathp inG ™.

If G; is planar and G isa planar embedding of G; with edge (s ,¢) on the outer face then

a) Ifp=<u,v>thenin G, the edges in bunch A are embedded inside C” ; if and only if the
edges in bunch B are embedded outside ;.

b) If p =<u,d,v> where d is a dummy vertex created by procedure even, then in G, the
edges in bunch A are embedded inside C’; if and only if the edges in bunch B are embed-
ded inside ;.

Proof The path p must have been introduced in step 1, 2, a or b of Algorithm 5.1. These four

cases are shown in figure 3. We verify the lemma only for step a (the other steps are easier to
verify).

=25 -

05\
parent(l)
{

Step a, CASE 1 Step a, CASE 2 Step b

Figure 3
Hlustrating the four cases in the proof of Lemma 5.2.

Let p be introduced in step a of Algorithm 5.1. Let »” be the nontree edge in C';. Let p” be
the pathin T’ from s to x and let ¢ be the last veriex on p” that is a descendant of L (P’;).

CASE 1: #’ is incident on a descendant b of L (P";). Since G’y is acyclic, the vertex b must be a
proper descendant of . Let B” be the bridge of C’; that contains edge (x,y) and let X be the
bridge of C’; that contains edge (s,z). The bridges B’ and X interlace since B” has attachments
ona andy and X has attachments on / and . The bridge X contains the edge (y ,w).

Assume that bridge B’ is embedded inside C’; (as shown in the figure). Hence edge (y,w)
is embedded outside C’;. Hence edge (x,y) is embedded inside the path from [to ¢ in T’y,. How-
ever, in C;, this path is traversed in the direction from ¢ to I. Edge (x,y) is embedded outside
the path from ¢ to [and hence the bunch B is embedded outside ;. A similar argument shows

-26 -

that if B’ is embedded outside C’; then the bridge containing (x,y) is embedded inside s,

CASE 2: # is not incident on a descendant of L (P’;). The edge n” cannot be incident on an
ancestor of L (P’;) since G’ is acyclic. Let a=(y ,r) be the edge following edge (z,y) on P’;. Let
X be the bridge of C’; that contains edge (x,y) and let ¥ be the bridge of C’; that contains edge
o. The bridges X and Y interlace on C’;. This is because X has attachmentson g andy and ¥
has attachment on lca (#") which is a proper ancestor of y and an attachment on a vertex num-
bered larger than g ory by the st -numbering property.

In C’; the path between [and ¢ is directed from g to /. In C’; the path between [and 7 is
directed from [to r. Without loss of generality assume that X is embedded outside C’; (as shown
in the figure). Then Y is embedded inside C’;. Hence edge (x.y) is embedded outside the path
from [to 7, i.., inside the path from r to /. Thus the bridge of C’; that contains edge (x,y) is
embedded inside C’; if (x .y) is embedded outside C’;.[]

6. Planar Embeddings via 2-Colorings

In this section we correlate 2-colorings of the constraint graph G* with planar embeddings
of G;. A 2-coloring of G™ assigns to each vertex a value (or color) in {0,1} such that no two
adjacent vertices are assigned the same color. This can be done A-optimally in logarithmic time
by a simple algorithm (see, e.g., [Ra90]).

Observation 6.1 Let G; be planar. In any planar embedding of G, the edges in a bunch (B ,i) are
either all embedded inside P’; or all embedded outside F';.

Proof The edges in B are a subset of a bridge of the cycle C’;. Hence all edges in B must be
embedded on one side of C’;, and thus on one side of P[]

We now relate 2-colorings of the constraint graph G to planar embeddings of G;.

Lemma 6.1 Let G; be planar and let G, be a planar embedding of G; with edge (s ,¢) on the outer
face. Then any 2-coloring of G* that assigns a bunch vertex up ; the color 0 if and only if the
corresponding bunch (B,i) was embedded inside P in é; can be extended into a valid 2-
coloring of G*.

Proof By the results in [Ra90] we know that the two coloring can be extended to a valid two

-1
coloring for the graph rUIG,- 7- So we only need to verify that the coloring can be extended to the
PR3

dummy vertices and that the link edges do not destroy the validity of the two-coloring. The result
follows from Lemma 5.2 since the link edges only connect bunch vertices and dummy vertices
and they force a pair of bunch vertices to be given the same color if and only if the corresponding
bunches have to be embedded on the same side of their fundamental cycles.[]

Lemma 6.2 A pair of bunch vertices u4 ; and up ; lie in the same connected component of G *if
and only if bunches (4 ,i) and (B ,j) belong to the same triconnected component of G;.

Proof The proof is by induction on { and is applied to the bunches corresponding to the bunch
vertices in the subgraph D; of G induced on kgG ;71 {dummy vertices linking bunch ver-
=

-7 -

tices ux g, uy 5, k<I<i}.

BASE: D ;=G 1. By Lemma 4.8, the bunch vertices in D satisfy the statement of the lemma,
since P’ ; has no anchor bunches.

INDUCTION STEP: Assume that the result is true until i —1 and consider D;. D; is D;_ together
with G; ; and the link paths connecting vertices in G; s to vertices in D;_4. By comstruction the
vertices corresponding to each anchor bunch incident on P’; are connected to D;; by the link
edges. By Lemma 4.8, if the connected components in G;; that contain a bunch vertex
corresponding to an anchor bunch are connected to one another then a pair of bunches (A i) and
(B ,i) are in the same connected component of G * if and only if the bunches belong to the same
triconnected component of G;. This verifies the induction step for bunches of P';.

To establish the induction step for bunches in P’;, j <i, we need to verify the lemma for
pairs of bunches (A ,i) and (B,j), j<i, whose bunch vertices are connected by a link path. Let
(A ,i) be an anchor bunch of P’; and let u4 ; be connected 1o up j, j<i by alink path in G *. Let
% be an attachment vertex of bunch (A ,i) on P’; and let y be an attachment vertex of bunch (B ,j)
on P’;. To show that (A ,i) and (B,j) belong to the same triconnected component it suffices to
show that there are 3 vertex-disjoint paths between x and y in G;. For this we note that x and y
are vertices on the fundamental cycle C’;. This gives two vertex-disjoint paths between x and y
on C’;. Further by Lemma 4.4 x and y are attachments of the bridge X of C’; that contains the
edges in A . This provides the third vertex-disjoint path betweenx and y.

This concludes the induction step and the lemma is proved.[]
We now state and prove the main result of this section.

Theorem 6.1 Let G; be biconnected and planar and let X be a 2-coloring of G ™. Then there
exists a planar embedding of G; with the edge (s ,t) on the outside face that embeds a bunch
(B ,i) inside P’; if and only if the bunch vertex ug ; in G * is colored O.

Proof The proof is by induction on the number of triconnected components in G;.

BASE: G is triconnected. Then by Lemma 6.2 G* is connected. Hence G ™ has exactly two dif-
ferent 2-colorings, and each can be obtained from the other by interchanging zeros and ones. By
Lemma 6.1 these two colorings must correspond to the two possible embeddings of G; with (s ,¢)
on the outer face.

INDUCTION STEP: Assume the lemma is true for up to k—1 triconnected components and let G;
have k triconnected components. Assume without loss of generality that the indices of the P’;
have been permuted so that D=[P’y, - - - ,P’,_] forms an open ear decomposition for G; (such a
rearrangement was shown to exist in Lemma 2.1). Let x,y be a nontrivial adjacent pair separat-
ing P’; and let G ; and G, be the upper and lower split graphs obtained by the ear split (x.y.0).
The open ear decomposition D induces an open ear decomposition D 1 in Giand D, in G, with
the newly-introduced edge (x,y.i) serving as the initial ear in D, [MRE&7, Ra90]. Each tricon-
nected component of G is contained entirely within one of G or G 2, hence the connected com-
ponents of G can be partitioned between G 1 and G 5. Further, each of G and G4 contains at

228 -

most k—1 triconnected components, hence the induction hypothesis applies to both of them.

Let G and Gobe planar embeddings of G ; and G, respectively, that are induced by the 2-
coloring X . We only need to verify that these two embeddings can be combined inic a planar
embedding for G . In G; the embeddings for G and G , interact only on P’;. However none of the
bunches of P’; in G, interlace with any of the bunches of P’; in G [MR87, Ra%0]. Also, since x
and y serve the place of s and ¢ in G o, G, hasx and y on the outer face. Hence G { can be com-
bined with G, at x and y to form a planar embedding for G;.[]

7. The Combinatorial Embedding

By Theorem 6.1 we can determine for each P’;, the set of bunches that are embedded inside
P’; and the set that is embedded outside P’;. In this section we show how to determine the rela-
tive ordering of the edges incident on a vertex in P’; that are assigned to one side of P’;. In Sec-
tion 7.1 we describe this procedure for the local replacement graph G;. In Section 7.2 we map
this ordering back to the input graph G .

7.1. The Combinatorial Embedding of the Local Replacement Graph

In order to obtain a combinatorial embedding of G; we need to obtain for each vertex v in
G, the cyclic ordering of the edges incident on v in a planar embedding of Gy. In Section 6 we
obtained some coarse information on this cyclic ordering, i.e., for each vertex v in P’; we parti-
tioned the set of edges incident on v (other than the two edges in P’; that are incident on v) into
two classes, those that are embedded inside P’; and those that are embedded outside P’;. In this
section we obtain the cyclic ordering for each of these two sets. Since the procedure is identical
for each of these two sets we describe only the procedure for the edges embedded inside P;.

A segment of a cycle C in a graph G is a connected subgraph of a bridge of C. Two seg-
ments of C are disjoint if their nonattachment vertex sets are disjoint. For instance, each bunch
(B ,i) is a segment of C’; and two bunches (B ,i) and (B’ i) with B#B’ are disjoint. We will work
with segments in this section, and the following observation and its corollary will be used.

Observation 7.1 If two disjoint segments of a cycle C in a graph G interlace then they must be
placed on opposite sides of C in any planar embedding of G .

Corollary to Observation 7.1 If two disjoint segments of C that are derived from the same
bridge of C interlace then G is nonplanar.

In the following we will assume, as before, that the vertices of G;, G'y;, and T’y are num-
bered with their s¢-numbering. Given an edge e=(u,v) with u >v, the vertex u will be called the
high endpoint of e and the vertex v will be called the low endpoint of e.

Observation 7.2 Let n=(x,y) be a noniree edge in G’5; with respect to the tree T'y. Let x>y.
Then x is the largest-numbered vertex in the fundamental cycle of z.

Let v be an internal vertex on P’; and let F be the set of edges incident on v that are
embedded inside P’;. Let F =F W F 2 where F is the set of edges in F that lie in the tree Ty
and F , is the set of remaining edges in F . We first obtain the cyclic ordering of edges in F; (for

-20 .

all vertices v) and then find the cyclic ordering of edges in F . The following lemma shows that
all edges in F ; must appear before any edge in F ; in a cyclic ordering corresponding to a planar
embedding of G;. Hence we can concatenate the cyclic ordering of F' and F 5 to obtain the cyclic
ordering of .

Lemma 7.1 Let v be an internal vertex of P’; in the local replacement graph G;. Let ¢ and ¢’ be
edges incident on v that are embedded inside P’; in a planar embedding of G; with ¢ an edge in
T, and ¢ a nontree edge. Let f be the unique incoming edge to v and g the unique outgoing
edge from v in G’y that are contained in P’;. Then edge e appears before edge ¢’ in the cyclic
ordering of edges incident on v, starting with edge g .

Proof Let e be contained in P’; and let n=(u,w) be the nontree edge in P’;. Let w>u. By Obser-
vation 7.2 the vertex w is the largest-numbered vertex in the fundamental cycle C”;. Hence there
is a path p from w 1o ¢ that avoids all other vertices on C’; including vertex v.

Let C be the cycle in G; consisting of the path in Ty, from s to v, followed by the path ¢
in C’; from v to w that contains edge e, followed by the path p, followed by edge (¢,s). Let this
cycle have the direction of edge f (which is the same as that of edge ¢). Edge g is embedded
outside C since e is embedded inside C’;.

Let g=(v.,y). There is a path from y to ¢ that contains vertices in increasing order of their
st -numbering. Hence the bridge B of C containing edge g must have an attachment on a vertex
x#v that lies on path ¢ or path p. Now consider the bridge B® of C that contains edge g . Letm
be the base edge of the fundamental cycle of ¢ not lying on C'. The edge m is an attachment
edge of B’ and the attachment vertex, which is lca(¢’), does not lie on either path p or path g
since lca (¢) is a proper ancestor of v. If B is embedded outside C then it must appear before g
in the cyclic ordering starting with f . This is not possible since this would cause ¢’ 1o be embed-
ded outside C’;. Hence ¢ is embedded inside C which means that e appears before ¢’ in the
cyclic ordering of edges incident on v, starting with edge g .[]

We now describe how to obtain the cyclic ordering of the tree edges that are attachment

edges on an internal vertex v in P’;. We will compute this ordering in two phases. The first phase
makes use of the following lemma.

Lemma 7.2 Let v be an internal vertex on the path P’;. Let H, be the graph obtained for vertex
v using the function call auxgraphs (G JT’) (from section 2.5). Let X;, {=0 t0 k be the con-
nected components of F=H,—{z }, where z is the vertex in H, representing the unique outgoing
edge from v that is contained in P’;. Let S; be the simple graph obtained from X;, for each [, by
deleting multiple edges. Then each S; is a simple noncyclic path.

Proof Let z’ be a vertex in S; whose corresponding edge in G; is ¢’. Let (Z/ 2") be anedge in S;
with ¢” being the edge in G; corresponding to z” and let # be a nontree edge in G; that caused
edge (7 ,2”) to be placed in H,. Let ¢’ be contained in P’; and let (4w) be the noniree edge in
P’; with w >u; by Observation 7.2 w is the largest-numbered vertex on C’;. By the construction
of G; the fundamental cycle C’; does not not contain e” .

-30-

Now consider the bridge B of C’; that contains the attachment edge ¢””. The fundamental
cycle of n will contribute an attachment edge for B on C’; on a veriex x where x#v and x#w .
Further, if ¢” is on P’; then the fundamental cycle C’; will contribute an attachment edge for B
either on vertex w on C’; or on a proper ancestor of v on C’;. This results in a segment S of B
that has 3 or more attachments on C’;.

4 24

We have shown above that each edge (7,2) in H, results in a segment of C” ; that contains
at least 3 attachments. The segments corresponding to different z” are disoint. Any two seg-
ments with 3 attachments interlace on a cycle, and hence must be placed on opposite sides of the
cycle in a planar embedding by Observation 7.1. Hence z° can have at most two neighbors in
H,—{z }. Hence each connected component of F must be a simple path. Finally, all of the edges
in a connected component of v must be placed on the same side (either inside or outside) of C’;.
Hence no connected component of F is a simple cycle.[]

Lemma 7.3 Let X be a connected component of the graph F=H,—{z }, as defined in the state-
ment of Lemma 7.2 and let X be the path <xg, - - - >, Let the edge in G; corresponding to x;
be ¢;. Then in any planar embedding of G, the cyclic ordering of the edges incident on v will
contain the ¢; as consecutive edges in order from ¢ 310 ¢, or from ¢ 10 €.

Proof Let v be an internal vertex of P’; and let ¢; be contained in P’;. Then by the construction
of the local replacement graph, the nontree edge in P’; is not incident on a descendant of an inter-
nal vertex of P'q , for any P’q that contains one of the ¢,. Hence the edges ¢ ¢ 10 ¢;; appear in one
bridge of C’; and the edges ¢+ t0 ¢; appear in another bridge. This holds for each ¢;, /=0 to k.
Hence in any planar embedding of G, the edges e t0 e, appear in that order in the cyclic order of
edges outgoing from v.

We now show that the ¢; must occur as consecutive edges in the cyclic order. Let ¢ be an
outgoing edge from vertex v other than the ¢;, and let ¢ be contained in P’,,. Since R (P’,,) is not
incident on a descendant of an internal veriex of P’,, for any P’, that contains one of the ¢;, all of
the ¢; are in a single bridge of C’,,. Hence they must all appear on one side of ', i.e., the edge
¢ cannot appear between the ¢; in the cyclic ordering.[]

We will call each set of edges in & corresponding 1o vertices in a connected component of
F (as defined in the statement of Lemma 7.2) a tuft of vertex v. In phase 2 of the algorithm to
find the cyclic ordering of tree edges outgoing from v we determine the ordering of the tufts that
are embedded inside P’;. To do this, we determine, for each tuft S of v, an edge n in ouz (§') with
lea(n) < v and we embed the tufts in decreasing order of the high endpoint of this edge. The fol-
lowing lemma shows that if the high endpoints of the edges chosen for different tufts are all dis-
tinct this will give us the correct ordering of the tufts.

Lemma 7.4 Let ¢, ¢” be two tree edges outgoing from v that are embedded inside ;. Let
W eout(e) and n” eout(e”) with lca(®w’) <v and lca(n”) <v and let ¥’ and u” be the high
endpoints of n” and n” respectively. If #* > u” then ¢’ is embedded before ¢” in the cyclic ord-
ering starting with g, the unigue outgoing edge from v that lies on P’;.

-31-

Proof Let C” be the fundamental cycle of n”. The edge g is embedded outside C” since ¢” is
embedded inside C7;. Since lca(n”) < v, the vertex ¢ is in the same bridge of C” as edge g and
hence ¢ is embedded outside C”. By Observation 7.2 " is the highest-numbered vertex in C”
and hence by the s¢-numbering property any vertex x with x>u” must be in the same bridge of
C” as vertex t. Hence vertex i’ and edge ¢ are embedded outside the cycle C” in the planar
embedding, i.e., edge ¢’ is embedded before ¢” in the cyclic ordering starting at edge g .[]

In order to handle the case when the chosen edges for different tufis have the same high
endpoint we choose two different nontree edges for each wft. These edges are chosen by a stra-
tegy somewhat similar to the one used to find hooks for the bunches. We first present some
definitions. These definitions are similar to the definitions of low and low 2 given in Section 4.2,
except that we now distinguish between outgoing noniree edges and incoming nontree edges.

Let the vertices of T’ be numbered in s¢-numbering. For each edge e=(parent(v),v) in
T, a.out(e) is the set of nontree edges that are outgoing from a descendant of v and b.out (¢) is
the set of nontree edges that are incoming to a descendant of v; note that g.out (¢) and b.ouz(¢)
are disjoint and out (¢) as defined in Section 4.2 is a.out (e W _b.out(¢). We define a.low (¢) to

be neglog(e)lca (n)and b.low(e)to be negxgg(e}lca (n).

Let aS ={nlneaout(e) and lca(n)zalow(e)}. Then we define alow2(e) to be
min(v, min_ lca(n)).
neal
Let X be a set of edges in T, Then, we define
out{X)= out(e
a.out(X) e (e)

bout(X)= k&b.out (e

g€
alowX)= I;}Elgg alow (e);
blow(X) = ggnex? b.low (e¢); and

letall(X)= (alow(eand al2(X)= gﬂelg a.low2(e).

eeX and a.}ggl{% Yralow (X))
Then a.low 2(X) =min{a.l 1(X), a.l2(X)).
In the following algorithm we find for each tuft S of v, two vertices big (S) and nextbig (S)

which are high endpoints of edges in out (S). We use these to compute the cyclic ordering of the
tufts of each vertex.

Algorithm 7.1: Finding the Cyclic Ordering for the Tufts
Input Graphs Gy, tree T'y, and the tufts for each vertex.

QOutput For each vertex v, the cyclic ordering of its tufts that are embedded inside the fundamen-
tal cycle of the path P’; that contains v as an internal vertex (vertices s and ¢ are assumed to be
internal vertices of P’ g).

-32 -

vertex u,u ,v;edgen,n’;

tuft S;

1. for eachtuft S of each vertex v in parallel —
big (S) = the high endpoint of an edge » in a.ouz (S) with lcam)y=alow(S)
nextbig (8) =v;
if there is an edge n’ in a.out(S) with lca(n)=alow(S) and with high endpoint
U #u — nextbig () =u’
| a.low2(S) < v — nextbig (S) := the high endpoint of an edge in a.out(S) with
leca(w') =a.low2(S)
| blow(S) <v —> nextbig (§) := the high endpoint of an edge n’ in b.out(S) with
lea(W Y=blow(S)
fi;
pair (S) = (big (S), nextbig (§))
rof
2. for each vertex v in parallel —
sort the tufts of v embedded inside the path containing v as an internal vertex in lexi-
cographically nonincreasing value of their pairs;
output the tufts in the order computed by the sort
rof

end.

Lemma 7.5 If G; is planar then Algorithm 7.1 finds a cyclic ordering of the tufts corresponding
to a planar embedding of G;.

Proof If the pairts sorted in step 2 of Algorithm 7.1 are distinct then by Lemma 7.4 this cyclic ord-
ering corresponds to a planar embedding of G;. Otherwise, let S; and 53 be two tufts with
pair (S 1) = pair (S 7). Let pair (S =(a,b). If b#v then by Lemma 7.4 S; must be embedded
before S, since a>b ; also S| must be embedded after S, since b <a. Hence no planar embed-
ding is possible if §; and S are to be embedded on the same side of P’; (where P’; is the path
that contains v as an internal vertex). If b=v then by the computation in the for loop of step 1,
every nontree edge in out (S 1) and our (S) is incident on a or has lca greater than v. In this case
the pair (a,v) is a separating pair for G; and S and S can appear in either order in a planar
embedding of G;.[]

Lemma 7.6 Algorithm 7.1 can be implemented to run in logarithmic time with A-optimal perfor-
mance.

Proof The only nontrivial computation in Algorithm 7.1 is the computation of tree functions that
can be computed using the Euler tour technique, lca computation and bucket sort. Hence the

-33-

algorithm runs in logarithmic time with A-optimal performance.[]

Algorithm 7.1, together with the ordering of edges within each tuft, gives the cyclic order-
ing of tree edges outgoing at each vertex. We number these tree edges in cyclic order as
0,~1,~2, - -; let this be the cyclic tree number of the edge. To find the cyclic ordering of the
incoming nontree edges at each vertex, we assign each tree edge (x,y) that is outgoing from x,
for each vertex x, the ordered pair (x,c), where ¢ is the cyclic iree number of the edge. For each
nontree edge incoming to a vertex v, we consider the base edge of the fundamental cycle of each
such nontree edge that lies on the path from the Ica to the low endpoint, and we embed noniree
edges incoming to v in reverse order of the ordered pairs of these base edges. It is easy to see
that this gives a cyclic ordering for the nontree edges corresponding to a planar embedding of G;
consistent with the ordering obtained for the iree edges.

7.2. The Combinatorial Embedding of the Input Graph

In this section we show that we can work with G; in order to obtain a planar embedding of
G.

Lemma 7.7 G is planar if and only if G; is planar.

Proof If G, is planar then clearly G is planar. For the reverse, let C; be the fundamental cycle in
G of the noniree edge in ear P; with respect to tree Ty and let C’; be its image in G;. Let
By, - ,By be the bridges of C; in G and let By, - - - ,B’y be the bridges of C’; in G;. By the
results in Section 4.1.3 in [Ra90] there is a 1-1 correspondence between the B; and the B’; such
that an edge ¢ in G — C; is in B; if and only if e is in the bridge corresponding to it in G; — C';.
(The results in Section 4.1.3 of [Ra90] are for bridges of P;; however it is straightforward to
extend them to bridges of C;.)

Let G be planar and let G bea planar embedding of . Let C; be the embedding of C;.
Replace each vertex v on C; by its image in T, together with its parent and children (if any) in
T,. The embedding G can be extended to a planar embedding in this new graph. This can be
established by virtue of the correspondence between the bridges of C; in G and those of C’; in G,
and by using the properties of the local replacement graph; we omit the details. We now find a
fundamental cycle inside C; (similarly outside C;) that intersects C; and repeat this construction.
Since planarity is preserved, we can continue to repeat this construction until we have exhausted
all fundamental cycles at which point we obtain a planar embedding of G;.[]

8. The Complete Algorithm and Its Complexity

We now present the complete algorithm for obtaining a planar embedding of a graph onn
vertices if one exists.

Algorithm 8.1: Planarity Algorithm
Input: A biconnected graph G=(V .E).
Output: A combinatorial embedding of G if G is planar.

-34 -

vertex 5,1, Y,

integer i; {{The range of this integer is from 0 to r—1.}}

if IE!l >3 1V | — report G is nonplanar and halt fi;

1. fix an edge (s,¢) in the graph; find an open ear decomposition D=[Pg, - - ,P,.;] starting
with (s,¢); construct the directed s¢-numbering graph G',, its spanning tree T, and the
associated paths P’ o.,P 1, ,P'r_i;

2. find the bunches of each P’; together with the hooks for the anchor bunches;

3. construct the constraint graph G* by forming the interlacing parity graph for each bunch
graph and adding in the link edges;

if G* is not 2-colorable — report G is nonplanar and halt fi;
4. find a 2-coloring of G ™;
for each P’; in parallel —

5. assign all bunches whose corresponding vertices on G* were given color 0 in G~
inside P’; and the remaining bunches outside P’;

6. find the cyclic ordering of the edges assigned to each side of P’; and consequently the
ordering of edges around each veriex

rof;

7. compute the number of faces in this combinatorial embedding and verify Euler’s formula to
determine if G is planar;

8. if G; is planar — collapse all vertices in T, into a single vertex v for each v to obtain a
combinatorial embedding of G

| G; is nonplanar — report G is nonplanar
fi

end.

Step 1 is described in Section 2, step 2 in Section 4, step 3 in Section 5 and step 6 in Section
7. Steps 4 and 5 have easy optimal logarithmic time parallel algorithms and steps 7 and 8 can be
computed with similar bounds using the Euler tour technique [TV84, CV86, KD88]. This gives
us the main theorem of the paper.

Theorem £.1 The planarity problem can be solved on a CRCW PRAM in logarithmic time with
A-optimal performance.

REFERENCES

[BL76] K. Booth, G. Lueker, "Testing for the consecutive ones property, interval graphs, and
graph planarity using PQ-tree algorithms,” J. Comp. Syst. Sci., vol. 13, 1976, pp. 335-379.

-35 -

[CV86] R. Cole, U. Vishkin, "Approximate and exact parallel techniques with applications to list,
tree and graph problems,” Proc. 27th Ann. IEEE Symp. on Foundations of Comp. Sci., 1986, pp.
478-491.

[Ed60] J. Edmonds, "A combinatorial representation for polyhedral surfaces,” Not. Am. Math.
Soc., vol. 7, 1960, p. 646.

[Ev79] S. Even,. Graph Algorithms, Computer Science Press, Potomac, MD, 1979.

[ET76] S. Even, R. Tarjan, "Computing an st-numbering," Theoretical Computer Science, vol. 2,
1976, pp. 339-344.

[FRT89] D. Fussell, V. Ramachandran, R. Thurimella, "Finding triconnected components by
local replacements,” Proc. ICALP 89, Springer Verlag LNCS 372, 1989, pp. 379-393.

[Ga86] H. Gazit, "An optimal randomized parallel algorithm for finding connected components in
a graph,” Proc. 27th Ann. IEEE Symp. on Foundations of Comp. Sci., 1986, pp. 492-501.

[Ha88] T. Hagerup, "Optimal parallel algorithms on planar graphs,” Proc. 3rd Aegean Workshop
on Computing, Springer-Verlag LNCS 319, 1988, pp. 24-32.

[HT73] J. E. Hopcroft, R. E. Tarjan, "Dividing a graph into triconnected components,” SIAM J.
Comput., vol. 2, 1973, pp. 135-158.

[HT74] J. E. Hopcroft, R. E. Tarjan, "Efficient planarity testing,” J. ACM, vol. 21, 1974, pp.
549-568.

[JS82] J. Ja’Ja’, J. Simon, "Parallel algorithms in graph theory: planarity testing," SIAM J. Com-
puting, vol. 11, 1982, pp. 314-328.

[KR87] A. Kanevsky, V. Ramachandran, "Improved algorithms for graph four-connectivity,"
Jour. Computer and Syst. Sci., to appear; preliminary version in Proc. 28th Ann. IEEE Symp. on
Foundations of Comp. Sci., 1987.

[KR90] R. M. Karp, V. Ramachandran, "Parallel algorithms for shared-memory machines,"
Handbook of Theoretical Computer Science, North-Holland, 1990, to appear.

[KR88] P. Klein, J.H. Reif, "An efficient parallel algorithm for planarity,” J. Comp. Syst. Sci.,
vol. 37, 1988.

[KD] S. R. Kosaraju, A. L. Delcher, "Optimal parallel evaluation of tree-structured computations
by raking," Proc. 3rd Aegean Workshop on Computing, Springer-Verlag LNCS 319, 1988, pp.
101-110.

[Ku30] Kuratowski, "Sur le problem des courbes gauches en topologie,” Fund. Math., vol. 15,
1930, pp. 271-283.

[LEC67] A. Lempel, S. Even, 1. Cederbaum, "An algorithm for planarity testing of graphs,”
Theory of Graphs: International Symposium, Gordon and Breach, New York, NY, 1967, pp.
215-232.

[Lo85] L. Lovasz, "Computing ears and branchings in paralleL," Proc. 26th Ann. IEEE Symp. on
Foundations of Computer Science, 1985, pp. 464-467.

-36-

[MSV86] Y. Maon, B. Schieber, U. Vishkin, "Parallel ear decomposition search (EDS) and st-
numbering in graphs,” Theoretical Computer Science, vol. 47, 1986, pp. 277-296.

[MR86] G. L. Miller, V. Ramachandran, "Efficient parallel ear decomposition with applications,”
manuscript, MSRI, Berkeley, CA, January 1986.

[MRS87] G. L. Miller, V. Ramachandran, "A new graph triconnectivity algorithm and its paralleli-
zation,” Proc. 19th Ann. ACM Symp. on Theory of Computing, 1987, pp. 335-344.

[MRS85] G. L. Miller, J. H. Reif, "Parallel tree contraction and its applications,” Proc. 26th Ann.
IEEE Symp. on Foundations of Comp. Sci., 1985, pp. 478-489; also, Part I, Journal of Computer
and System Sciences, to appear, and Part II, Randomness and Computation, JAI Press, S. Micali,
ed., (1989), to appear.

[RV88] V. Ramachandran, U. Vishkin, "Efficient parallel triconnectivity in logarithmic time,"
Proc. 3rd Aegean Workshop on Computing, Springer-Verlag LNCS 319, 1988, pp. 33-42.

[Ra90] V. Ramachandran, "Parallel open ear decomposition with applications to graph biconnec-
tivity and triconnectivity," invited chapter for the textbook Synthesis of Parallel Algorithms, J. H.
Reif, ed., Morgan-Kaufmann.

[RR89] V. Ramachandran, J. H. Reif, "An optimal parallel algorithm for graph planarity,” Proc.
30th Ann. IEEE Symp. on Foundations of Comp. Sci., 1989, pp. 282-287.

[Re84] J. H. Reif, "Symmetric Complementation,” J. ACM, vol. 31, 1984, pp. 401-421.

[SV88] B. Schieber, U. Vishkin, "On finding lowest common ancestors: simplification and paral-
lelization,” Proc. 3rd Aegean Workshop on Computing, Springer-Verlag LNCS 319, 1988, pp.
111-123.

[Ta83] R. E. Tarjan, Data Structures and Network Algorithms, SIAM Press, Philadelphia, PA,
1983.

[TV84] R. E. Tarjan, U. Vishkin, "An efficient parallel biconnectivity algorithm," SIAM J. Com-
puting, vol. 14, 1984, pp. 862-874.

[Tu63] W. T. Tutte, "How to draw a graph,” Proc. London Math. Soc., vol. 3, 1963, pp. 743-768.
[Tu66] W. T. Tutte, Connectivity in Graphs, University of Toronto Press, 1966.
[Wh73] A. T. White, Graphs, Groups, and Surfaces, North-Holland, Amsterdam, 1973.

['Wh30] H. Whitney, "Non-separable and planar graphs,” Trans. Amer. Math. Soc., vol. 34, 1930,
pb. 339-362.

-37 -

APPENDIX

Basic Definitions

A graph (or undirected graph) G=(V ,E) consists of a vertex set V and an edge set E con-
taining unordered pairs of distinct elements from V. An edge (u,v) is incident on vertices u and
v. Vertices and v are adjacent in G if G contains edge (u,v). The degree of a vertex is the
number of edges incident on the vertex.

A directed graph G=(V ,E) consists of a vertex set V and an edge set E containing ordered
pairs of elements from V. Anedge (u,v)ina directed graph is directed from u to v and is outgo-
ing from u and incoming tov.

A multigraph G=(V ,E) is an undirected graph in which there can be several edges between
the same pair of vertices, as well as self-loop edges of the form (v,v),ve V. Anedge ¢ in a multi-
graph may be denoted by (a,b,i) to distinguish it from other edges between a and b; in such
cases the third entry in the triplet may be omitted for one of the edges between a and b.

A path P in G is a sequence of vertices <vg, -+ ,Vx> such that (v;_,vi)eE i=1, - k; P
is directed or undirected depending on whether G is directed or undirected. The path P contains
the vertices v, - - * ,Vx and the edges (vo,v1), - - »(Vk—1,v) and has endpoints Vg, v, and internal
vertices v, -+ * »i—1. The path P is a simple path if v, - - - Vg1 are distinct and vy, - - - ,vp are
distinct, and all edges on P are distinct. A simple path P=<vg, - ,w> is a simple cycle if
vg=vy, otherwise P is noncyclic. The path <v> is a trivial path with no edges. If
P=<vg, V> is a noncyclic path, the innard of P is the path <vy,- - ,v-1>, i.e., the path
obtained from P by deleting the first and last vertices.

A graph G’ =(V’ ,E’) is a subgraph of a graph G=(V .E) if V' < V and E’ cE . The subgraph
of G induced by V' is the graph H=(V’ ,F) where F= {(u,v)eE l u,ve V' 1

An undirected graph G=(V ,E) is connected if there exists a path between every pair of ver-
tices in V. A connected component of a graph G is a maximal induced subgraph of G which is
connected.

Let G=(V,E) and H=(W,F) be a pair of graphs. The graph G(JH is the graph
G’ =(V\ W ,E\UF). f WV then the graph G — H is the graph H =(V.E-F).

A tree is a connected graph containing no cycle. A leaf in a tree is a vertex of degree 1. Let
T=(V ,E) be a tree and let re V. The out-tree T rooted at r (or simply the tree T rooted at r) is
the directed graph obtained from T by directing each edge such that every path from r 1o any
other vertex is directed away from 7. The in-tree rooted at r is the directed graph obtained from
T by directing each edge such that the path from every vertex to r is directed towards 7.

Let (x,y) be a directed edge in a rooted tree 7. Then, x is the parent of y and y is a child of
% in T. Vertex v is a descendant of vertex u (and equivalently, u is an ancestor of v) ifthereis a
directed path from u to v in T. Vertex v is a proper descendant of u (and u a proper ancestor of
v)if v is a descendant of u and u#v. Given a pair of vertices u,veV, the least common ancesior
of u and v, denoted by lca(u,v) is the vertex we V that is an ancestor of both u# and v with no

-38 -

child of w being an ancestor of both y and v. For an edge e=(u,v) the least common ancestor of
¢, denoted by lca(e), is the vertex lca(u,v).

Let G=(V ,E) be a connected graph. A spanning tree 7 of G is a subgraph of G with vertex
set V such that 7" is a tree. Anedge in G-T is a nontree edge with respectto T .

Let T be a spanning tree of G. Any nontree edge ¢ of G creaies a cycle in the graph
T _y{e}, called the fundamental cycle of e with respecttoT. LetreV,andlet T be rooted at 7.

Let e=(u,v) be a nontree edge in T=(V ,E r) and let Ica (¢)=[. The fundamental cycle of ¢
with respect to T consists of the path from [to u, followed by edge ¢, followed by the path from
v to . Let {({,a) be the first edge on the path from / to ¥ and ({,b) be the first edge on the path
from [to v (it is possible for one of these edges to be missing). Then edges ({ ,.a) and ({,b) are
the base edge(s) of the fundamental cycle of e (when they exist) and the vertices ¢ and b are the
base vertice(s) of the fundamental cycle of e (when they exist).

Anedge e e E in a connected graph G=(V ,E) is a cutedge if ¢ does notliconacycleinG.
An undirected graph G=(V ,E) is 2-edge connected if it contains no cutedge. A 2-edge connected
component of G is a maximal induced subgraph of G which is 2-edge connected.

A vertex veV is a cutpoint of a comnected undirected graph G=(V .E) if the subgraph
induced by V—{v } is not connected. G is biconnected (or two-vertex connected) if it contains no
cutpoint. A biconnected component (or block) of G is a maximal induced subgraph of G which is
biconnected.

By Menger’s theorem a graph is 2-edge connected if and only if there are at Ieast two edge-
disjoint paths between every pair of distinct vertices, and a graph is biconnected if and only if
there are at least two vertex-disjoint paths between every pair of distinct vertices.

Let G be a connected graph. The blockiree of G is a tree with a vertex for each block and
each cutpoint in &, and an edge between each cuipoint and the blocks that contain it. A rooted
blockiree of G is the blockiree of G that is rooted at one of the vertices that represent a cutpoint
of G.

Finally we give some definitions on the friconnected components of a biconnected graph
{see, e.g., [Tu66, HT73, FRT§9, Ra%0]).

A pair of vertices ¢ ,b in a multigraph G=(V ,E) is a separating pair if and only if there are
two nontrivial bridges, or at least three bridges, one of which is nontrivial, of {a,b}In G. I G
has no separating pairs then G is triconnected. The pair a ,b is a nontrivial separating pair if there
are two nontrivial bridgesofa b in G.

Let {a,b } be a separating pair for a biconnected multigraph G=(V ,E). For any bridge X of
{ab},let X be the induced subgraph of G on (V-V (X)) {a.b}. Let B be a bridge of G such
that 1E(B)122,1E(B)|>2 and either B or B is biconnected. We can apply a Tutte split s{a b i)
to G by forming G and G, from G, where G is By_{(a,b,i)} and G, is §U{(a,b,i)}, The
graphs G ; and G ; are called split graphs of G with respect to a,b. The Tutte components of G
are obtained by successively applying a Tutte split o split graphs unii! no Tutie split is possible.
Every Tutte component is one of three types: 1) a triconnected simple graph; ii) a simple cycle (2

-39.

polygon); or iii) a pair of vertices with at least three edges between them (a bond); the Tutte com-
ponents of a biconnected multigraph G are the unique triconnected components of G.

If a pair of vertices of G appear in a triconnected component of G then by Menger’s
theorem there must be 3 vertex-disjoint paths in G between x and y. Conversely if there are 3
vertex-disjoint paths between x and y then there must be a triconnected component of G that
contains a copy of both x and y.

Let G=(V ,E) be a biconnected graph with an open ear decomposition D=[P ¢, - - - ,P,1]. A
separating pair a,b in G is a pair separating P; if a and b are contained in P; and the vertices
between a¢ and & on P; are separated from the vertices on ears numbered lower than i. A candi-
date list for P; is a sequence of vertices on P; in increasing order of their values such that each
pair of vertices on the list is either adjacent on P; or a pair separating P;. It is known that every
separating pair in a graph G with an open ear decomposition D is contained in a candidate list for
some ear in D [MR87, Ra%01.

Let a,b be a pair separating P;. Let By, - - - ,B; be the bridges of P; with no attachments
k

cutside the interval [a.,b] on P;, and let Ti(a b):(UlBj)uP,-(a b), where P;(a.b) is the seg-
j:

ment of P; between and including vertices ¢ and b. Then the ear split e (a b ,i) consists of form-
ing the wupper split graph Gi=Ti(a,b){(a.b,i)} and the lower split graph
G=Ti(a b wi(a.b.i)}. An ear split e(a,b.i) is a Tutte split if either G 1—{(a.b.,i)} or
G —{(a,b,i)} is biconnected.

Let S be a nontrivial candidate list for ear P;. Two vertices u,v in § are an adjacent
separating pair for P; if u and v are not adjacent to each other on P; and S contains no vertex in
the interval (z,v) on P;. Two vertices a,b in S are an extremal separating pair for P; if 15123
and S contains no vertex in the interval outside [a,b]. An ear split on an adjacent or extremal
separating pair is a Tutte split, and the Tutte components of G are obtained by performing an ear
split on each adjacent and extremal separating pair [MR87, Ra%90].

With each ear split ¢(a,b,i) corresponding to an adjacent or extremal pair separating P;,
we can associate a unique Tutte component of G as follows [FRT89, Ra%0]. Let e (a,b ,i) be such
a split. Then by definition T;(a.b 3 _j{(a,b,i)} is the upper split graph associated with the ear
split e(a,b,i). The triconnected component of the ear split e(a b i), denoted by TC (a.b i), is
Ti(a.by_{(a,b,i)} with the following modifications: Call a pair ¢ ,d separating an ear F; in
T;(a.,b) a maximal pair for T;(a b) if there is no e,f in T;(a,b) such that e .f separates some
ear P, in T;(a,b) and ¢ and d are in Ty(e.f). In T;(a b _{(a.b.i)} replace T;(c.d) together
with all two-attachment bridges with attachments at ¢ and d by the edge (¢ .d,j), for each maxi-
mal pair ¢,d of T;(a.,b), 10 obtain TC (a,b.i). We denote by TC (0,0,0), the unigue triconnected
component that contains edge P g.

