
[16] V. Ramachandran. Fast and processor-e�cient parallel algorithms for reducible ow graphs.Technical Report ACT-103, Coordinated Science Laboratory, University of Illinois, Urbana,IL, November 1988.[17] V. Ramachandran. Fast parallel algorithms for reducible ow graphs. In S. Tewksbury, B. Dick-inson, and S. Schwartz, editors, Concurrent Computations: Algorithms, Architecture and Tech-nology, pages 117{138. Plenum Press, New York, NY, 1988.[18] V. Ramachandran. Parallel open ear decomposition with applications to graph biconnectivityand triconnectivity. In J. Reif, editor, Synthesis of Parallel Algorithms. Morgan-Kaufmann,New York, NY, 1992. To appear.[19] V. Ramachandran. Class notes. Dept. of Computer Sciences, Univ. of Texas at Austin, Spring1990.[20] B. Schieber and U. Vishkin. On �nding lowest common ancestors: Simpli�cation and par-allelization. In Proc. 3rd Aegean Workshop on Computing, volume 319 of Lecture Notes inComputer Science, pages 111{123. Springer Verlag, 1988.[21] R.E. Tarjan. Depth �rst search and linear graph algorithms. SIAM J. Comput., 1:146{160,1972.[22] R.E. Tarjan and U. Vishkin. An e�cient parallel biconnectivity algorithm. SIAM J. Comput.,14:862{874, 1984.[23] J. Westbrook and R.E. Tarjan. Maintaining bridge-connected and biconnected componentson-line. Algorithmica, 7:433{464, 1992.
48

[3] D. Fussell, V. Ramachandran, and R. Thurimella. Finding triconnected components by localreplacements. In Proc. ICALP 89, volume 372 of Lecture Notes in Computer Science, pages379{393, 1989. To appear in SIAM J. Comput. .[4] H.N. Gabow, J.L. Bentley, and R.E. Tarjan. Scaling and related techniques for geometryproblems. In Proc. 16th Ann. ACM Symp. on Theory of Computing, pages 135{143, 1984.[5] H.N. Gabow and R.E. Tarjan. A linear-time algorithm for a special case of disjoint set union.J. Comput. System Sci., 30:209{221, 1985.[6] M.R. Garey and D.S. Johnson. Computers and Intractability: a Guide to the Theory of NP-Completeness. Freeman, San Francisco, CA, 1979.[7] P. Gibbons, R.M. Karp, V. Ramachandran, D. Soroker, and R.E. Tarjan. Transitive com-paction in parallel via branchings. J. Algorithms, 12:110{125, 1991.[8] X. Han. An Algorithmic Approach to Extremal Graph Problems. PhD thesis, Department ofComputer Sciences, Princeton University, Princeton, NJ, June 1991.[9] X. Han, P. Kelsen, V. Ramachandran, and R.E. Tarjan. Computing minimal spanning sub-graphs in linear time. In Proc. of the Third ACM-SIAM Symp. on Discrete Algorithms, pages146{156, 1992.[10] D. Harel and R.E. Tarjan. Fast algorithms for �nding nearest common ancestors. SIAM J.Comput., 13:338{355, 1984.[11] R.M. Karp and V. Ramachandran. Parallel algorithms for shared memory machines. In J. vanLeeuwen, editor, Handbook of Theoretical Computer Science, Vol. A, pages 869{941. MITPress/Elsevier, 1990.[12] J.A. La Poutr�e. Dynamic Graph Algorithms and Data Structures. PhD thesis, Department ofComputer Sciences, University of Utrecht, The Netherlands, September 1991.[13] Y. Maon, B. Schieber, and U. Vishkin. Parallel ear decomposition search (eds) and st-numbering in graphs. Theoret. Comput. Sci., 47:277{298, 1986.[14] G.L. Miller and V. Ramachandran. E�cient parallel ear decomposition with applications.Manuscript, January 1986.[15] G.L. Miller and J.H. Reif. Parallel tree contraction and its applications. In Proc. 26th Ann.IEEE Symp. on Foundations of Computer Science, pages 478{489, 1985.47

sequence L(u) (see preprocessing stage) of endpoints of edges of C in TH and the preorder numbersof the children of u in TH , this can be done in time O(jCj+ l) where l is the number of childrenof u in TH . To compute a minimal set A2 such that A1 [A2 is good for Gu, we �rst collapse thevertex set of each connected component in Gu(A1), then collapse all vertices in the resulting graphcorresponding to a component of Gu(A1) that contains a marked vertex into a single new vertex.In the resulting graph we compute a spanning tree and let A2 be the set of those edges in C thatcorrespond to an edge of this spanning tree. Thus, we spend O(p+q) time on all executions of step(2.3). Step (2.4) requires time proportional to the size of Gu, i.e., O(jCj+ l). Using the techniqueswe described above we can implement one execution of steps (2.4.1)-(2.4.4) in time O(jCj+ l).Altogether, we see that algorithm 12 runs in time O(p+ q) as claimed.6 Concluding RemarksIn this paper we have presented e�cient parallel and sequential algorithms for the problems of�nding a minimal 2-edge-connected spanning subgraph of a 2-edge-connected graph and �nding aminimal biconnected spanning subgraph of a biconnected graph.The algorithms for both problems have a similar high-level structure: repeatedly compute a span-ning tree of the input graph with the smallest possible number of redundant edges and minimallyaugment this tree. This strategy is useful for �nding minimal subgraphs of a graph with respect toother properties. In particular this approach gives similar algorithms for the problem of �nding aminimal k-connected subgraph of a graph (for any k), assuming we have a method for augmentinga spanning tree with respect to these properties.In [9] we describe re�nements for algorithm 1 that yield linear time sequential algorithms for theabove problems. The algorithms for both problems use the linear time augmentation proceduresdescribed in section 5 as subroutines. These results reduce the parallel work required for theseproblems by a factor of �(log n).References[1] P.C.P. Bhatt, K. Diks, T. Hagerup, V.C. Prasad, T. Radzik, and S. Saxena. Improved deter-ministic parallel integer sorting. Inform. and Comput., 94:29{47, 1991.[2] R. Cole and U. Vishkin. Approximate and exact parallel scheduling with applications to list,tree, and graph problems. In Proc. 27th Ann. IEEE Symp. on Foundations of ComputerScience, pages 478{491, 1986. 46

taking the union of all sets containing a vertex other than u on the path from v to u in TH andthen adding those sets having the same block number as one of these sets; we create another set byproceeding similarly for the path from w to u. If we do this for every edge of A, we get a collectionof sets whose names are children of u. We determine the block number of each such set using anauxiliary graph GA. The vertices of GA are the children u1; : : : ; ul of u in TH . There is an edge inGA from ui to uj if an edge of A connects a descendant of ui with a descendant of uj . Computethe connected components of GA. All sets whose names are part of the same component receivethe same block number, namely the smallest name in the component. We associate with each blocknumber i the low-value low(i) of the core of the corresponding block of TH (i.e., the minimumlow-value of any vertex of TH in the core). After we have computed Tc in step (2.5) we updatethe quantity low(i) as follows: let Ci be a component of GA that gets assigned block number i.The quantity low(i) is set to the minimum low-value of any child of u in Ci. All of these steps canbe performed in time O(jCj+ l) where l is the number of children of u in TH . (To construct theadjacency list for GA, see the implementation of step (2.3) below.)To see that the sets of TH satisfy the two properties stated above, note that as soon as a set xbecomes part of a larger set y, all sets with the same block number as x are also merged into y.Furthermore, each new set at the end of the current execution of step (2.5) has a child of u as itsname. It follows that the sets of TH do indeed satisfy the two properties mentioned above. Weconclude that the total number of union and �nd operations is O(p+ q). Since all unions are of theform unite(p(z); z), we can use the algorithm of Gabow and Tarjan ([5]). This gives us an overalltime bound of O(p+ q) for all executions of step (2.5).We now describe the implementation of steps (2.2), (2.3), and (2.4) of algorithm 12. In step (2.2)we need to be able to check quickly whether an edge of C is incident with a leaf in Vl. For this wemaintain, for each block number i, the number of children of the corresponding node in Tc. Letd(i) denote the number of children of the node in Tc corresponding to block number i. We updatethe d-values as follows: recall that we incorporate an edge e = (v; w) with lca u into Tc by takingthe union of sets along the paths from v to u and from w to u. After we execute unite(z; p(z))where z is a vertex on one of these two paths with block number j and its parent p(z) in TH hassome block number k < j, we set d(k) := d(j) + d(k) � 1. After incorporating all the edges in Awe have a collection of sets of TH whose names are children of u in TH . Let Ci be the connectedcomponent of GA (see above) whose minimum name is i. As described above all sets whose nameis in Ci receive block number i. We set d(i) to the sum of the d-values of the names contained incomponent Ci. With the low-values and d-values, we can compute the set A1 in step (2.2) in timeO(jCj).To construct the adjacency list for Gu in step (2.3), we need to determine for each endpoint otherthan u of an edge of C the unique child of u of which it is a descendant in TH . Using the sorted45

B0 such that A(2)1 [B2 [A2 is good for Gu. Since A � A(2)1 [B2 [A2, the edges in B2 are essentialfor (P2). Finally we observe that each edge in A1 �B0 has at least one endpoint in Vl that is notincident with another edge in A1 [A2; it is therefore essential for (P1). 2We show how to implement the various steps so that the running time of algorithm 12 is O(p+ q)(where p = n(H) and q = m(H)).We �rst describe how to maintain the block condensation Tc of TH + IN at each step. Somemethods are known (e.g., [23] and [12]) for maintaining the biconnected components of a graphunder edge insertions. These methods however are superlinear in the number of edge insertions.We shall explain how Tc can be maintained in linear time.We represent Tc by a partition of the nodes of TH ; as before, we refer to a set in this partition asa set of TH . Let us �rst assume that each set of TH corresponds to a node of Tc, the tree Tc beingthe block condensation of TH + IN . Hence, a set of TH is either the singleton set consisting of theroot of TH or it contains the nodes in the core of a block of TH + IN . Below we shall see that thisrequirement needs to be relaxed.In step (2.5) we compute Tc by incorporating the edges in A one by one. Fix an edge e = (v; w)of A with lca(e) = u. Adding e to IN in step (2.5) results in a block in TH + IN + e whose rootis u and whose core is the union of the cores in TH + IN containing a vertex other than u on thefundamental cycle of e in TH . Unfortunately, the unions of the corresponding sets of TH are notall of the form unite(p(z); z) where p(z) denotes the parent of a node z in TH (unless v = u orw = u). For instance if u has two children v and w that are both in a set by themselves then theaddition of edge e = (v; w) in step (2.5) amounts to taking the union of sets fvg and fwg; thisunion is clearly not of the form unite(p(z); z). Thus, the algorithm of Gabow and Tarjan ([5]) doesnot apply directly.We overcome this problem by deferring some of the union operations to a later point. Inductively,we assume that the collection of sets of TH has the following two properties: (1) the vertices in aset of TH induce a subtree of TH ; we take the root of that subtree as the name of the set. (2) Thevertex set of a core of a block in TH + IN is equal to the union of sets of TH whose names arechildren of the same node of TH . We implement this by assigning to each set a block number: twosets have the same block number i� they are contained in the core of a single block of TH + IN .We choose for the block number the smallest name (w.r.t. preorder numbering) of a set of TH thatis contained in the core of a given block of TH + IN . We maintain for each block number a list ofsets that have this block number (in order to perform the union operations e�ciently).Let e = (v; w) be an edge of A with lca(e) = u. After adding edge e to IN in step (2.5), we updatethe sets of TH as follows (assume v and w are both di�erent from u): we create one new set by44

for Gu. For the only-if direction we prove the contrapositive. If a vertex of Vl is not incident withan edge of B, then this vertex represents the core of a block in H0 + B whose root is a properdescendant of u, implying that H0+B is not biconnected. Also if B is not good for Gu then, in thegraph Gu(B), there exist at least two connected components at least one of which does not containa marked vertex. The union of the cores corresponding to vertices in a component that does notcontain a marked vertex forms the core of a block of H0 +B that does not contain all the verticesof TH , implying again that H0 is not biconnected.Now we prove the if-part of the above claim. We consider the two cases u = 1 and u > 1. If u = 1we argue as follows. Since H0 + C is biconnected, the tree Tc has no leaf with a low-value > 1because the root of the corresponding block in H0 would be a cutpoint in H0 + C. Since all thevertices in Vl are incident with an edge in B, it follows that there can be no cutpoint in H0 + Bother than u (the root of TH). Since B is good for Gu, Gu(B) is connected and any two verticesin H0+B other than the root of TH are connected by a path in H0+B not containing the root ofTH . Hence, the root of TH is not a cutpoint of H0 + B and H0 + B is indeed biconnected. Nowconsider the case u > 1. As before we observe that no leaf in Tc has a low-value > u. Since anyvertex in Vl is incident with an edge in B, there can be no cutpoint in H0+B other than u. SinceB is good for Gu, there is a path between any two vertices in H0 + B other than u that avoidsvertex u. Hence, u is not a cutpoint in H0 +B. We conclude that H0 + B is biconnected.We now check that A (as de�ned in step (2.4.5)) is a minimal subset of C such that each vertex inVl is incident with an edge in A and A is good for Gu. (The following argument is very similar tothat preceding algorithm 10.) Let us denote these two properties by (P1) and (P2), respectively.By step (2.4.5) of algorithm 12 the set A satis�es property (P2). We need to verify that each vertexin Vl is incident with an edge in A (i.e., A satis�es property (P1)). By step (2.4.2) each vertex ofVl is incident with an edge of A(2)1 [A2 and hence with an edge in A(3)1 [A2. Let e be an edgein B3. By the de�nition of B1 any edge in B1 has exactly one endpoint that is incident with anedge of A2. Since B3 � B1, this also holds for edge e. Again by the de�nition of B1 the endpointof an edge in B1 that is not incident with an edge of A2 is incident only with this edge of B1. Itthen follows from the de�nition of B3 that both endpoints of edge e 2 B3 are incident with edgesin A2 [B2. Since (A2 [B2) \ B3 = ;, it follows that each vertex of Vl is incident with an edge inA.Let us say that an edge e 2 A is essential for (P1) if A�feg does not satisfy property (P1) and edgee 2 A is essential for (P2) if A � feg does not satisfy property (P2). We have to show that eachedge A is essential for (P1) or (P2). (Note that an edge may be essential for both properties.) Bystep (2.4.5) of algorithm 12 each edge in B4 is essential for (P2). Furthermore, each edge in B1�B3has one endpoint in Vl that is not incident with another edge in A(3)1 [A2. Since A � A(3)1 [A2, thisimplies that the edges in B1 � B3 are essential for (P1). By step (2.4.3) B2 is a minimal subset of43

(2.1) Let C be the set of nontree edges whose lca is u.If C 6= ;, perform steps (2.2)-(2.5) below:(2.2) Let Vl be the set of leaves v of Tc such that low(v) = u and the block of TH + INwhose core is represented by v has a root di�erent from u in TH . Compute a minimalset A1 � C such that each vertex in Vl is incident with an edge in A1.(2.3) De�ne auxiliary graph Gu as follows: the vertices of Gu are the children u1; : : : ; ul ofu in TH . To each edge e of C connecting a descendant of ui to a descendant of uj inTH corresponds an edge (ui; uj) in Gu. Mark the vertices in Gu whose low-value is lessthan u. For B � C let Gu(B) be the subgraph of Gu induced by those edges in Gu thatcorrespond to edges in B. We say that a set B � C is good for Gu if u = 1 and Gu(B)is connected or u > 1 and in Gu(B) there is a path from any vertex to some markedvertex. Compute a minimal subset A2 � C such that A1 [A2 is good for Gu.(2.4) Eliminate some edges from A1 as follows:(2.4.1) Let B0 be the subset of edges in A1 whose endpoints in Vl are incident with otheredges in A1 [A2. Let A(1)1 = A1 �B0.(2.4.2) Each vertex in Vl not incident with an edge in A(1)1 [A2 selects a single edge ofB0 incident with it. Let B1 � B0 be the set of edges selected at this step and letA(2)1 = A(1)1 [B1 (= (A1 � B0) [B1).(2.4.3) Determine a minimal subset B2 � B0 such that A(2)1 [B2 [A2 is good for Gu. LetA(3)1 = A(2)1 [B2 (= (A1 � B0) [B1 [B2).(2.4.4) Let B3 be the set of edges in B1 whose endpoints in Vl are incident with edges inB2 [A2. Let A(4)1 = A(3)1 � B3 (= ((A1 �B0) [B1 [B2)� B3).(2.4.5) Determine a minimal subset B4 � B3 such that A(4)1 [B4 [A2 is good for Gu.Let A = A(4)1 [B4 [A2 (= (((A1 � B0) [B1 [B2)�B3) [B4 [A2).(2.5) Let IN := IN [A. Let Tc be the block condensation of TH + IN . Update low (seebelow).Lemma 18 Upon termination of algorithm 12, IN is a minimal augmentation for TH .Proof. Fix an iteration of step (2). Let INu denote the set of edges in IN with lca > u and let Rube the set of nontree edges with lca < u. Let H0 be the graph TH + INu + Ru. As in the proofof lemma 2 it su�ces to establish that A (as de�ned in step (2.4.4)) is a minimal subset of C suchthat H0 +A is biconnected.Assume inductively that H0 + C is biconnected. First, we prove that for any B � C the graphH0 +B is biconnected if and only if each vertex in Vl is incident with an edge in B and B is good42

For a set named v we denote this quantity by d(v). For some z in TH let d = d(find(z)) andd0 = d(find(p(z)). After executing unite(p(z)); z) we update the d-values by setting d(find(z)) =d + d0 � 1. Thus, the total time to maintain the quantities d(v) is O(p + q). We can determinein constant time whether an endpoint v in Tc of an edge of C is a leaf of Tc by checking whetherd(v) = 0. We can compute the set A in step (2.2) by eliminating the edges in C one by one, makingsure not to remove all the edges incident with a vertex of Vl. By maintaining for each vertex of Vla counter recording the number of edges of C incident with it that have not been eliminated yet,the set A can be computed in time O(jCj).In summary we see that algorithm 11 computes a minimal augmentation for TH in H in timeO(p+ q).5.2 A Linear Time Algorithm for Computing a Minimal Augmentation for Bi-connectivityWe now describe a linear time sequential algorithm for minimally augmenting a spanning tree intoa biconnected graph. Let H be a biconnected graph on p vertices and q edges and let TH be aspanning tree in H .In a preprocessing phase we compute for each vertex in TH the preorder number (henceforthidentifying a vertex with its preorder number), we compute the lca's of nontree edges in H (usingthe algorithm of [10]), we sort the nontree edges by their lca, and compute for each lca u a sorted listL(u) of endpoints in TH of nontree edges with lca u (by traversing TH in preorder). Furthermore,we compute during a postorder traversal of TH for each vertex v in TH the smallest lca of a nontreeedge incident with a descendant of v (we consider a vertex to be a descendant of itself). We denotethis quantity by low(v). The preprocessing phase requires time O(p+ q).The following algorithm computes a minimal augmentation for TH with respect to biconnectivity.As usual the set IN contains those edges that have already been chosen for the augmentation. Thetree Tc represents the block condensation of TH + IN (de�ned in section 4.2). For a node v in Tcde�ne low(v) to be the minimum low-value of any node in TH that is collapsed into v. Steps (2.2),(2.3) and (2.4) in the following algorithm are similar to algorithms 6, 7 and 10, respectively.Algorithm 12 Minimally augmenting TH into a biconnected graph.Input Biconnected graph H , spanning tree TH .Output Minimal subset IN of nontree edges in H such that TH + IN is biconnected.(1) Initialize: IN := ;, Tc := TH .(2) For u := n downto 1 do: 41

on n vertices can be maintained under m edge insertions in time O(m�(m;n) + n). This boundis improved to O(m + n) by [12]. Although the bound of [12] matches our bound, we choose topresent our method because it was discovered independently of [12]. Moreover, the presentation ofour technique will be helpful in understanding the more complicated solution for the biconnectedcase.The tree Tc is represented by a partition of the nodes of TH into disjoint nonempty sets. We referto a set in this collection as a set of TH . Each set of TH has a name which is a vertex in this set.Initially, each vertex v of TH is in a singleton set fvg whose name is v. At any point each set of THwill represent the set of vertices of a 2-edge-connected component of TH + IN . Hence, the verticesin this set induce a subtree in TH . The name of the set is the root of this subtree. The followingtwo operations access the sets of TH :(i) �nd(x): returns the name of the set of TH containing node x of TH ;(ii) unite(x,y): merges the sets of TH containing x and y into a new set whose name is the nameof the old set containing x.We incorporate the edges of A into Tc (step (2.3) of algorithm 11) one at a time. Let e = (v; w) bean edge in A (at the current iteration of algorithm 11) and let u = lca(v; w). The addition of e toIN in step (2.3) creates a 2-edge-connected component in TH + IN whose vertex set is the unionof the vertex sets of the components in TH+IN�e that contain a vertex on the fundamental cycleof e in TH . This amounts to creating a new set of TH that is the union of all old sets containinga node on the fundamental cycle of e in TH . The following sequence of union and �nd operationscreates such a set (p(z) denotes the parent of a node z in TH , e = (v; w) and u = lca(v; w)):x := find(v);while x 6= u do begin unite(p(x); x); x := find(p(x)) end;y := find(w);while y 6= u do begin unite(p(y); y); y := find(p(y)) end;All unions are of the form unite(p(z); z) for some vertex z in TH . Hence, we may use the algorithmof Gabow and Tarjan ([5]) to perform at most q union and �nd operations in time O(p+ q) (withTH being the union tree). This is also the total time spent in step (2.3) over all iterations of thefor-loop.In step (2.2) we need to determine whether an endpoint in Tc of an edge in C is a leaf in Tc. Tothis end we maintain for each set of TH the number of children of the corresponding vertex in Tc.40

Output Minimal subset IN of nontree edges in H s.t. TH + IN is 2-edge-connected.(1) Initialize: IN := ; and Tc := TH .(2) For u := n downto 1 do:(2.1) Let C be the set of nontree edges in H with lca u. If C 6= ;, perform the following twosteps:(2.2) Let Vl be the set of leaves of Tc such that the edge e from the leaf to its parent in Tcsatis�es low(e) = u. Determine a minimal set A � C such that each vertex in Vl isincident with an edge in A.(2.3) Let IN := IN [A and let Tc be the condensation of TH + IN .Lemma 17 Upon termination of algorithm 11, IN is a minimal augmentation for TH in H.Proof. First, we show that TH + IN is 2-edge-connected (upon termination of algorithm 11). Weestablish this by proving that every edge in TH is covered by an edge of IN . Consider the iterationof algorithm 11 when some lca u is processed. Assume inductively that all edges of TH with low-value > u are covered by edges in IN chosen at previous iterations. Fix an edge e from a nodev to its child w in Tc. If low(e) = u, then every leaf of Tc that is a descendant of w is incidentwith an edge of C and the edge e0 to its parent in Tc satis�es low(e0) = u. Hence, all leaves of Tcthat are descendants of w belong to Vl and are incident with an edge in the set A computed atthis iteration. We conclude that all edges of Tc with low-value u will be covered at this iteration.Therefore, every edge of TH is covered by an edge of IN upon termination of algorithm 11.To see why IN is minimal, consider the same iteration of algorithm 11. Let e be an edge in A atthis iteration. Since the set A constructed in step (2.2) is minimal with respect to the property thateach node in Vl is incident with an edge of A, at least one endpoint of e in Vl, say y, is incident withno other edge of A. Moreover, the edge e0 from y to its parent in Tc is covered neither by an edgeof IN whose lca is > u (by the de�nition of Tc) nor by an edge with lca < u (since low(e0) = u).Hence, e0 is covered only by e. It follows that all the edges in A are essential in the �nal graphTH + IN . 2We show how to implement algorithm 11 so that it runs in time O(p + q) (where p = n(H) andq = m(H)).The tree Tc is the condensation of TH + IN . Hence, each vertex in Tc represents the set of verticesof a 2-edge-connected component of TH + IN . We shall describe a method for maintaining Tc thatruns in time O(p+ q). Our technique is similar to methods discovered independently by [23] and[12]. One result in [23] shows that the 2-edge-connected components of an initially connected graph39

steps (0), (1) and (1.1) of algorithm 1 can be implemented to execute in linear time by makinguse of linear time procedures for �nding an ear decomposition and for vertex triconnectivity givenin [18] (see section 3.3). Thus, if we adhere to the high-level structure of algorithm 1, we obtainalgorithms for computing a minimal 2-edge-connected or biconnected spanning subgraph that runin time O(m + n log n). Recently ([9]), linear time algorithms have been developed for theseproblems. These algorithms use the linear time augmentation procedures described in this sectionas subroutines. Similar linear time augmentation procedures (as well as linear time algorithms for�nding minimal spanning subgraphs) have been found independently by [8].5.1 A Linear Time Algorithm for Computing a Minimal Augmentation for 2-Edge-ConnectivityWe shall �rst describe how to minimally augment a spanning tree with respect to 2-edge-connectivity.Assume we are given a 2-edge-connected graph H on p vertices and q edges and a spanning treeTH in H rooted at an arbitrary vertex. We describe how to compute a minimal augmentation forTH in H , i.e., a minimal set of nontree edges of H whose addition to TH yields a 2-edge-connectedgraph. The sequential algorithm for �nding a minimal augmentation for TH is simpler than theparallel algorithm because it processes in one step a single lca instead of a collection of leaf chains.In a preprocessing phase we number the vertices of TH in preorder from 1 to p. Henceforth, weshall identify a vertex with its preorder number. We compute the lca's of nontree edges in H inlinear time using the algorithm of [10]. We sort the nontree edges in H by their lca (in increasingorder), and we compute for each edge e = (x; y) of TH the quantity low(e) (or low(x; y)) de�nedas follows: low(e) is the smallest lca of a nontree edge in H that covers e. Let (u; v) be an edge inTH from a vertex u to its child v. The function low satis�es the recurrence:low(u; v) = min(flow(v; w) : w child of vg [flca(e) : e is a nontree edge incident with vg).Thus, we may compute the low-value for each edge of TH in a postorder traversal of TH . Altogether,the preprocessing requires time O(p+ q) (where p = n(H) and q = m(H)).The following algorithm computes a minimal augmentation for TH . Its structure is similar to thatof algorithm 2: the main di�erence is that we process a single lca in each stage rather than acollection of lca's. As in algorithm 2 the set IN denotes the set of nontree edges that have beencommitted to the augmentation. The tree Tc represents the condensation of TH + IN (de�ned insection 3.2), i.e., Tc is obtained by collapsing the 2-edge-connected components in TH + IN .Algorithm 11 Minimally augmenting TH into a 2-edge-connected graph.Input 2-edge-connected graph H , spanning tree TH in H .38

Algorithm 10 Pruning A1.Input Graph H 03, edge set A1.Output Biconnected spanning subgraph H 003 of H 03 such that each edge of A1 contained in H 003 isessential.(1) Let B0 be the set of edges of A1 whose special endpoints in Vl are incident with edges ofA02 [A3. Let H(1) = H 03 � B0.(2) Each exposed vertex of Vl selects a single edge of B0 incident with it. Let B1 � B0 be the setof edges selected at this step and let H(2) = H(1)+ B1 (= H 03 � B0 + B1).(3) Compute a minimal augmentation B2 � B0 for H(2) using algorithms 7, 8 and 9. LetH(3) = H(2)+ B2 (= H 03 � B0 + B1 +B2).(4) Let B3 be the set of edges in B1 whose endpoints in Vl are incident with edges of A02[A3[B2.Let H(4) = H(3) �B3 (= H 03 �B0 + B1 + B2 �B3).(5) Compute a minimal augmentation B4 for H(4) using algorithms 7, 8 and 9.(6) Let H 003 = H(4) +B4 (= H 03 �B0 +B1 + B2 � B3 +B4).Let A01 be the set of edges in A1 that are contained in H 003 . From the discussion preceding algorithm10 we get the following result.Lemma 16 H 003 is biconnected and every edge in A01 is essential in H 003 .Corollary 4 The set A01 [A02 [A3 forms a minimal augmentation for H0 = TH + IN + R.Proof. By lemma 16 the graph H 003 is biconnected and the edges of A01 are essential in H 003 . Bylemma 13 the edges of A3 are essential in H3. Since H 003 is a biconnected spanning subgraph of H3,the edges of A3 are also essential in H 003 . Finally, by lemma 15 the edges of A02 are essential in H 03.Since H 003 is a biconnected spanning subgraph of H 03, the edges of A02 are also essential in H 003 . 2An analysis similar to the one done in section 3.3 shows that the algorithm for computing a minimalbiconnected spanning subgraph runs within the same resource bounds as the algorithm for �ndinga minimal 2-edge-connected spanning subgraph.5 Sequential AlgorithmsIn this section we give linear time algorithms for minimally augmenting a spanning tree into a 2-edge-connected graph or into a biconnected graph. Both for 2-edge-connectivity and biconnectivity37

Our goal is to remove from H 03 a subset of edges in A1 such that the resulting graph is biconnectedand all edges of A1 in this graph are essential. Let Vl, as de�ned in algorithm 6, denote the set ofleaves in the block condensation of H0 = TH + IN + R that represent the cores of blocks whoseroot does not lie on a stem in TH . Recall that the set A1 forms a minimal subset in C with theproperty that each vertex in Vl is incident with at least one edge of A1. Thus, each edge in A1 hasat least one endpoint in Vl that is not incident with another edge of A1. We call such an endpointspecial.By lemma 9 an edge e 2 A1 can only be redundant in H 03 if each of its special endpoints (it has atleast one) is incident with an edge of A02 [A3. Let B0 � A1 contain all those edges in A1 whosespecial endpoints are incident with an edge of A02 [A3. All edges of A1 that will be removed fromH 03 in stage 5 will belong to B0.We start by removing the edges in B0 from H 03. Let H(1) denote the resulting graph (i.e., H(1) =H 03 � B0). Note that a vertex v in Vl may not be incident with an edge of C in H(1). In thiscase we say that vertex v 2 Vl is exposed in H(1). We take care of this problem by having eachexposed vertex in Vl select a single edge of B0 incident with it. Denote the set of selected edgesby B1 (a subset of B0) and let H(2) denote the graph H 03 � B0 + B1. Although no vertex of Vlis exposed in H(2) (i.e., every vertex in Vl is incident with an edge of C in H(2)), the graph H(2)may not be biconnected. Since each vertex of Vl is incident with an edge of C in H(2), we may usealgorithms 7, 8 and 9 to compute a minimal augmentation B2 for H(2). Let H(3) denote the graphH(2)+B2(= H 03�B0 +B1 +B2). By lemmas 13 and 15 the graph H(3) is indeed biconnected andall edges of B2 are essential in H(3).We are not done yet since some edges of B1 � A1 may be redundant in H(3). Note that an edgee 2 B1 can only be redundant in H(3) if both of its endpoints in Vl are incident with some edgein A02 [A3 [B2. Let B3 be the subset of those edges in B1 that have this property. Removethe edges in B3 from H(3) and call the resulting graph H(4) (= H 03 � B0 + B1 + B2 � B3). Notethat no vertex of Vl is exposed in H(4). Thus, we can compute a minimal augmentation B4 � B3for H(4) using algorithms 7, 8 and 9. Let H 003 denote the resulting graph, i.e., H 003 = H(4) + B4(= H 03�B0+B1+B2�B3+B4). Again by lemmas 13 and 15 the graph H 003 is indeed biconnectedand the edges of B4 are essential in H 003 . We have to show that all edges of A1 that belong to H 003 areessential in H 003 . We observed earlier that the edges of B2 are essential in H(3) = H 03�B0+B1+B2.Since H 003 is a biconnected spanning subgraph of H(3), the edges of B2 are also essential in H 003 .Finally, we note that the edges in B1 �B3 all have an endpoint in Vl that is not incident with anedge of A02 [A3 [B2 [B4 and not incident with another edge of B1. Therefore, they are essentialin H 003 . We conclude that all edges of A1 are essential in H 003 .The following is a more compact description of the algorithm that we have just outlined.36

(2.2) Determine if H� has a cutpoint that belongs to B. If this is the case, put the edge backinto the graph H�.(3) Let H 03 = H�.Denote by A02 the subset of edges in A2 that are contained in H 03.Lemma 15 H 03 is a spanning biconnected subgraph of H and each edge of A02 is essential in H 03.Proof. We �rst observe a more general fact. Let H 0 be a subgraph of H containing the tree TH .Let e be a nontree edge in H 0 and let w be a vertex in H 0 not contained on the fundamental cycleof e in TH . We claim that w is a cutpoint in H 0 if and only if w is a cutpoint in H 0 � e. Theonly if part is clear. The if part of the statement follows from the observation that any path in H 0avoiding w yields such a path in H 0 � e: simply replace each occurrence of e on this path by thepath in TH connecting the endpoints of e.We put this observation to use as follows: �x an execution of steps (2.1) and (2.2). Let H 0 andH 00 be the graph H� before and after this execution. Let H 0 be biconnected. Suppose that afterthe execution of step (2.1) a vertex of B becomes a cutpoint of H�. By the previous observationwe must have removed an edge e in step (2.1) whose fundamental cycle contains w. Since alledges removed in step (2.1) belong to nonadjacent blocks of H2, their fundamental cycles in TH arevertex-disjoint. Hence, in step (2.1) we removed a unique edge e whose fundamental cycle includesw. Note that e is put back in step (2.2). By the above observation w is a cutpoint of H 00 if andonly if w is a cutpoint in H 0. Since H 0 is biconnected, w is not a cutpoint of H 00. Because thisholds for any vertex w, the graph H 00 is biconnected. Applying the above observation one moretime we see that the graph H 0 � e has w as a cutpoint. Thus, e is essential in H 0. Since H 00 is abiconnected spanning subgraph of H 0, e is also essential in H 00. By lemma 11 each edge of A2 thatis redundant in H3 will be considered in some execution of step (2.1). The claim follows. 2Above we have shown how to minimally augment graph H1 into the biconnected graph H 03 usingalgorithms 7, 8 and 9. The minimal augmentation is based on the fact that graph H1 has all of itscutpoints on stems of leaf chains in TH . Any spanning subgraph of H containing TH and havingthis property can be minimally augmented using algorithms 7, 8, and 9.In the �fth and �nal stage of the minimal augmentation procedure we remove a subset of edges ofA1 that are redundant in H 03. This stage is done roughly as follows: remove from H 03 a maximal setof edges in A1 such that the resulting subgraph has all of its cutpoints on stems. Minimally augmentthis subgraph into a biconnected graph using algorithms 7, 8, and 9. Repeat these two steps onemore time. We now give a more detailed description of this stage and establish its correctness.35

lemma 11 only the edges in A(1)2 may possibly be removed. The idea is to remove from H3 severaledges in A(1)2 at once and check if the blocks of H2 that contain them now contain a cutpoint. Weshall put back only those edges for which the corresponding block does indeed contain a cutpoint.This strategy will work provided that the fundamental cycles in TH of the edges are vertex disjoint.To guarantee this, we shall select at each step a subset of edges that do not lie on adjacent blocksof H2 (i.e., blocks that intersect the same stem and share a common vertex).The following result (reminiscent of observations 1 and 2) tells us that we only need to look at atmost 4 edges of A(1)2 in each block of H2.Lemma 14 At most 4 vertices of any block of H2 are incident with an edge of AL3 .Proof. Fix a vertex Bj on PL. By the de�nition of CL (see algorithm 8, step (2)), an edge of AL3can only be incident in H2 with a vertex in block Bj of H2 if the corresponding edge of CL hasits upper endpoint (i.e., the one closer to B0 on PL) at Bj+1 or its lower endpoint at Bj�1 or isincident with Bj . By observation 2 at most 2 edges of AL are incident with Bj . By observation 1at most one edge of AL has its upper endpoint at Bj+1 and at most one edge of AL has its lowerendpoint at Bj�1. We conclude that at most 4 edges of AL3 are incident with vertices in Bj . Sincethe two endpoints of an edge of A3 lie in di�erent blocks of H2, the claim follows. 2Algorithm 9 Removing redundant edges from A2.Input Biconnected graph H3, edge set A2.Output Biconnected spanning subgraph H 03 of H3 such that every edge of A2 contained in H 03 isessential in H 03.(0) Let H� = H3.Process the blocks of H2 in two phases: in phase 1 we perform steps (1) and (2) in parallel foreach block B of H2 that is at an even distance from B0 on some PL; in phase 2 we performthese steps in parallel for each block B that is at an odd distance from B0 on some PL (forall leaf chains L). (This ensures that in each phase we consider a collection of edges of A(1)2whose fundamental cycles are vertex-disjoint.)(1) Determine the subset VB of vertices in the block B of H2 that are incident with an edge ofAL3 . (By lemma 14 we have jVBj � 4.)(2) Process the vertices v of VB sequentially as follows:(2.1) If v is a node in the core of an external block of H1 incident with a unique edge of A(1)2 ,remove that edge from the graph H�.34

blocks of H2 are also blocks of H2 + e. 2We reduce the problem of computing a minimal augmentation for H2 to the problem of coveringstem edges considered in the previous section (algorithm 4).Algorithm 8 Augmenting H2 into a biconnected graph.Input Graph H2, edge set C � A1 � A2.Output Minimal subset A3 of C � A1 �A2 such that H2 +A3 is biconnected.In parallel for each leaf chain L, do :(1) Let PL be the path B0 : : :Bk , i.e., the vertices of PL are the blocks B0 : : :Bk and there is anedge from Bi�1 to Bi for i = 1; : : : ; k.(2) If several edges in C�A1�A2 (whose lca's lie on leaf chain L) have the same range, eliminateall but one edge having this range (for any range (i; j)). Denote the resulting subset ofC � A1 � A2 by C0. By mapping each edge in C0 of range (i; j) to the edge (Bi; Bj), weobtain a set CL of edges connecting vertices of PL. Compute a minimal subset AL � CLwhose edges cover the edges on PL using the same method as in algorithm 4. Let AL3 � C0be the collection of those edges in C0 that are mapped to an edge in AL.Let A3 = SLAL3 .Let H3 be the graph H2 + A3.Lemma 13 The set A3 is a minimal augmentation for H2, i.e., H3 is biconnected and all edges ofA3 are essential in H3.Proof. With lemma 12 it follows that H3 is biconnected if and only if each edge of PL is coveredby an edge of AL (i.e., it lies on the fundamental cycle in PL of an edge of AL) for any L. SinceH2+ C is biconnected, the edges in CL cover the edges in PL (for each L). By lemma 6 algorithm4 produces a minimal subset AL of CL covering the edges of PL. We conclude that SLAL is aminimal set of edges covering all the PL's and hence A3 is a minimal augmentation for H2. 2As in the last section we are now faced with the problem that edges chosen at earlier stages mayhave become redundant because of edges added during later stages. The procedure for pruningexcess edges is more complicated here than in the last section because we have added edges in threedi�erent stages.In stage 4 of our minimal augmentation procedure we eliminate redundant edges in A2 by resortingto a strategy similar to that used in the last section for removing edges of A1 (algorithm 5). By33

edge in (H2 � e) + F connects a vertex in V0 with a vertex outside V0 other than s. Suppose fora contradiction that there exists a nontree edge e0 with this property. No edge in H2 � e has thisproperty. Thus, e0 belongs to F . Note that if e0 has an endpoint in the core of a special block, thene0 is not an external edge and the other endpoint of e0 is contained in an external block rooted at s(the root of the special blocks). By the de�nition of V0 this external block is contained in B1. Thiscontradicts the assumption that e0 is essential in H2 + F . Hence, e0 does not have an endpoint inthe core of a special block . It follows that the fundamental cycle of e0 contains edges from bothB1 and B2. But then eF is redundant in H2 + F , contradicting the minimality of F .We now prove the second part of lemma 11. Suppose that a critical endpoint v 2 Ve of an edgee 2 A(1)2 is not incident with an edge in F . Consider the spanning subgraph of Q induced by theedges in A(2)2 . Let U be the unique connected component in this subgraph that contains v. Notethat no vertex in U is incident with an external edge in A(1)2 � e. By assumption no edge of F isincident with v. It follows that no external edge in (H2 � e) + F is incident with a vertex in U .Thus we can use the argument for part 1 of this proof to show that the root of the blocks whosecores are represented by vertices in U is a cutpoint in (H2� e)+F . Hence e is essential in H2+F .2If T is reduced to a single node, every block of H1 is an external block having as root node the rootof TH . Thus Ve = ;, A(1)2 = ; and H2 = H1+A(2)2 is biconnected because H1+C is biconnected. Inthis case, by lemma 11 (with F = ;), all edges in A2 are essential in H2. Thus, we may immediatelyproceed to algorithm 10 which removes redundant edges in A1. Henceforth, we shall assume thatT is not reduced to a single node. Thus, there is a unique block, say B0, that has the root of THas its root node. We denote the root of B0 by r0.We shall now describe stage 3 of our minimal augmentation procedure. In this stage we computea minimal augmentation for H2, i.e., a minimal set A3 � C such that H2 +A3 is biconnected. Forthe following discussion we �x a leaf chain L of T . Number the vertices on the stem of L in THthat are roots of blocks of H2 consecutively as r1 : : : rk, starting at the root closest to r0. By lemma8 and lemma 10 no two distinct blocks in H2 have the same root. Denote the block of H2 havingroot rj by Bj .De�ne the range of an edge e = (u; v) of C whose lca lies on L as the integer pair (i; j), i � j, suchthat u is a vertex in Bi but is di�erent from ri+1 and v is a vertex in the core of Bj . Note that thefundamental cycle of an edge with range (i; j) intersects exactly the blocks Bi : : :Bj in at least oneedge. As an immediate consequence of this observation we get the following result.Lemma 12 Let e be an edge of C whose lca lies on leaf chain L and whose range is (i; j) (i � j).Then the blocks Bi : : :Bj of H2 are all contained in a single block of H2 + e while the remaining32

e

eF

s

special blocksB1

B2

stem

Figure 9: B1 and B2 are internal blocks of H2. The two special blocks (rooted at s) are blocks ofH1 contained in B1. Edge e belongs to A(2)2 and edge eF is contained in F .connected component special. Let s denote the common root in TH of all special blocks. In H2� ethe root s of the special blocks is a cutpoint since any path from a vertex in a special block to avertex outside the special blocks passes through s. Thus, if F = ;, our claim is proved. Henceforth,assume F 6= ;.If no edge of F is incident with a vertex in a core of a special block, then s is a cutpoint in (H2�e)+Fand hence e is essential in H2+F . Thus, suppose that some edge eF 2 F is incident on a vertex ina special block (see �gure 9). By the de�nition of a special block no external edge is incident withthe core of a special block. It follows that eF is not external, i.e., it links a vertex in a special blockwith a vertex in some other external block of H1 having root s. Since each of these two blocks iscontained in a single internal block of H2, the fundamental cycle of eF in TH contains edges of atmost two internal blocks of H2. Thus, because eF is essential in H2 + F (by the assumption ofthe lemma), it contains edges of exactly two internal blocks of H2, say B1 and B2. Both of theseblocks are internal in H2. Hence, one of them, say B1, is rooted at s and the other block is rootedat a proper ancestor of s in TH . This is illustrated in �gure 9.Without loss of generality all the special blocks are contained in B1 (the case where they arecontained in B2 is treated similarly). Thus, edge eF connects a vertex in the core of a specialblock with a vertex in B2 (see �gure 9). Let V0 be the set of vertices other than s that belong toB1 but do not belong to a special block or that belong to a block rooted at a proper descendantof s in TH . We shall show that s is a cutpoint in (H2 � e) + F by establishing that no nontree31

Case 1: vB 2 Ve, i.e., vB is incident with an external edge in the set A(1)2 computed in step (2) ofalgorithm 7. Let w be the endpoint of e in H1 that does not belong to an external block in H1having rB as its root. If the fundamental cycle of e in TH contains an edge of a stem, B will becontained in an internal block of H2. Otherwise the fundamental cycle of e in TH intersects a stemin TH only in rB. By the de�nition of an external edge this is only possible if w belongs to aninternal block B0 with root rB. Since w 6= rB, the edge in TH from w to its parent belongs to B0and also lies on the fundamental cycle of e. Again, B will be contained in an internal block of H2.Case 2: vB 2 Vl � Ve, i.e., vB is not incident with an external edge. First, we claim that there isa path in Q from vB to a vertex in Ve (and hence Ve 6= ;). Assume for a contradiction that thereis no such path. Then there exists a connected component in Q that does not contain a vertex inVe. The nodes in this component represent the cores of external blocks sharing the same root noderB (since none of them is incident with an external edge). Furthermore, the union of these coresforms the core of a block in H2 + C rooted at rB. If T is not reduced to a single node, there is atleast one more block in H2 + C (whose root is the root of TH), contradicting the biconnectivity ofH2 + C. Thus, in the subgraph of Q induced by the edges in A(2)2 there is a simple path from vBto a vertex v 2 Ve such that none of the internal vertices on this path belongs to Ve. This pathyields a simple path in H2, not intersecting a stem, from a vertex in the core of B to a vertex inthe core of a block B0 rooted at rB with the property that some vertex in the core of B0 is incidentwith an (external) edge in A(1)2 . Hence, B and B0 are contained in a larger block B00 of H2. Fromthe analysis for case 1 we know that B00 is an internal block of H2. 2In the third stage of the minimal augmentation procedure we shall compute a minimal augmentationA3 for H2. The following result says something about the interplay between the edges of A2 andthose of A3. It will used in the proof of lemma 15. A critical endpoint of an edge of A(1)2 is anendpoint of that edge in Ve that is not incident with another edge of A(1)2 . Note that each edge ofA(1)2 has at least one critical endpoint. Recall that an edge of C is external if it links a vertex inthe core of some external block B of H1 with a vertex that lies outside of all the external blocks ofH1 that have the same root as B.Lemma 11 Let F � C be a minimal augmentation for H2. All edges of A(2)2 are essential inH2 + F . Moreover, the critical endpoints of an edge in A(1)2 that is redundant in H2 + F areincident with edges of F .Proof. First, we show that an arbitrary edge e 2 A(2)2 is essential in H2+F . Consider the spanningsubgraph of Q induced by the edges in A(2)2 . By the minimality of A(2)2 the removal of e fromthis subgraph yields a connected component in the subgraph that does not contain a vertex of Veand hence no core of a block in H1 represented by a vertex in this component is incident withan external edge in A(1)1 . Let us call a block of H1 whose core is represented by a vertex in this30

all blocks in H1 are internal, then the removal of a cutpoint v will break up the graph in exactlytwo components: one component contains all vertices other than v that lie in blocks whose root isv or a vertex below v on the stem containing v while the other component contains all remainingvertices (other than v). In this case augmenting H1 into a biconnected graph amounts to �ndinga set of edges connecting these two components for any cutpoint v { a relatively easy task as weshall see later. The following algorithm removes external blocks.Algorithm 7 Eliminating external blocks in H1.Input Graph H1, edge set C � A1.Output Minimal set A2 � C �A1 such that all the blocks of H1 +A2 are internal.(1) Compute the block condensation of H1. Let Vl denote the set of leaves in the block conden-sation representing the cores of external blocks of H1.(2) Call an edge of C � A1 external if it links a vertex in the core of some external block B ofH1 with a vertex that lies outside of all the external blocks of H1 that have the same root asB. Let Ve be the subset of nodes in Vl incident with an external edge. Using the method ofalgorithm 3 compute a set A(1)2 of external edges in C � A1 that is minimal with respect tothe property that each vertex in Ve is incident with at least one edge in A(1)2 .(3) Consider the graph Q whose vertices are the vertices in Vl and whose edges are the edges ofC � A1 between them.If Ve = ;, compute a minimal set A(2)2 � C �A1 such that the subgraph of Q induced by theedges in A(2)2 is connected.If Ve 6= ;, compute a minimal set of edges A(2)2 � C � A1 such that each vertex in Q isconnected to some vertex in Ve through a path in Q consisting of edges in A(2)2 . We computesuch a set of edges by collapsing the nodes of Ve into a single vertex and letting A(2)2 be theset of edges in a spanning tree of the resulting graph.Let A2 = A(1)2 [A(2)2 .Let H2 be the graph H1+A2. Recall that T represents Tlca at the current stage of tree contraction.Lemma 10 If T is not reduced to a single node, then all the blocks of H2 are internal.Proof. Let B be an external block of H1 and let vB denote the vertex of Vl representing the coreof B in the block condensation of H1. Let rB denote the root of block B in TH . By the de�nitionof an external block rB belongs to a stem of a leaf chain. We shall show that B is contained in aninternal block of H2. We consider 2 cases. 29

1

1

1

1

1

1

1

1

1

1

2

1

3

3

11

3

1

1

1

1

1

H1

Figure 8: Graph H1 = TH + IN + R + A1. Stem edges are indicated by thick solid lines. Thegraph contains three blocks whose core vertices are numbered 1; 2; 3. The core vertices numbered1 belong to an internal block of H1; the two other blocks are external.Conversely, if some vertex in Vl is not incident with an edge in F , then this vertex represents thecore of a block in H0+F whose root is a cutpoint in H0+F that does not lie on a stem in TH . 2The following result is immediate with lemma 9.Corollary 3 The set A1 is minimal with the property that all cutpoints of H0 + A1 lie on stemsin TH . 2Let H1 denote the graph H0+A1 (=TH+IN+R+A1). We classify the blocks of H1 into 2 classes.An external block of H1 is a block whose root lies on some stem in TH but does not include any edgeof this stem; a block is internal if it is not external. Figure 8 shows the graphH1 = T0+IN+R+A1for the example in �gure 7. The graph H1 in �gure 8 consists of 3 blocks whose core vertices arenumbered 1, 2, and 3. The block whose core vertices are numbered 1 is the only internal block; itis rooted at the root of TH . The other two blocks are external.In stage 2 of our minimal augmentation procedure we construct a minimal set of edges A2 � C�A1such that H1 + A2 has no external blocks. We eliminate external blocks for the following reason:we want to �nd a (minimal) set of edges whose addition to H1 will yield a biconnected graph. If28

R

IN

IN

IN

R

R

1

1

1

1

1

1

1

1

1

2

3

5

6

4
4

6

7

7

9

8

9

(a)

IN

IN

(b)

H

Tlca

(c)

1

2

3
5

1

6
4

7

8

9

C

C

C

C

C

C

T0

Figure 7: (a) Graph H with spanning tree TH indicated by solid lines. Thick dashed lines representedges of C put into A1. The gray vertices are the lca's of nontree edges in C. Vertices with thesame number belong to the core of the same block of TH + IN + R. (b) Tree Tlca. Gray verticesrepresent those lca's currently processed. (c) Block condensation T0 of TH + IN + R. The squarevertices are the leaves in Vl. Vertex i represents the core of a block of TH + IN +R whose verticesare numbered i in (a) (i = 1 : : :9). 27

of tree contraction and the path in TH corresponding to leaf chain L of T is called the stem ofL (in TH). We shall compute a minimal augmentation for H0 in �ve stages. At each of the �rstthree stages we shall add a set of edges to achieve a certain property. In the �nal two \cleanupstages" we shall get rid of excess edges to obtain a minimal augmentation. Overall our method issomewhat similar to that used for 2-edge-connectivity but it is more complicated.An example is given in �gure 7. Figure 7(a) shows the graph H with the tree TH ; the correspondingtree Tlca is depicted in �gure 7(b). In this example we consider the second iteration of algorithm 2:the lca's of nontree edges processed at this iteration are represented by the gray vertices in �gure7(a) and 7(b). Note that the gray vertices are exactly the vertices on the stems of leaf chains inTH . The edges in IN , R and C are accordingly marked in �gure 7(a).In the �rst stage we select a minimal set of edges A1 � C whose addition to H0 results in a graphall of whose cutpoints lie on stems of leaf chains. The following algorithm accomplishes this. Itmakes use of algorithm 3.Algorithm 6 Eliminating cutpoints that do not lie on a stem.Input Graph H0 = TH + IN +R, edge set C.Output Minimal subset A1 of C such that H0 + A1 has all its cutpoints on stems in TH .(1) Compute the block condensation T0 of H0 (see �gure 7(c)).(2) Let Vl be the set of leaves of T0 that correspond to the cores of blocks whose root (in TH)is not a vertex on a stem (in TH). Using the method of algorithm 3 compute a minimal setA1 � C such that each leaf in Vl (i.e., the core collapsed into this leaf) is incident with atleast one edge in A1.In �gure 7(c) the square vertices represent the leaves in Vl. The thick dashed lines in �gure 7(a)represent a minimal set of nontree edges in C such that each leaf in Vl (i.e., a vertex in thecorresponding core) is incident with an edge in this set.Lemma 9 For any F � C, H0 + F has all its cutpoints on stems i� each vertex in Vl is incidentwith at least one edge in F .Proof. Assume that each vertex in Vl is incident with an edge in F . Consider a block B in H0 whoseroot v is a cutpoint of H0 that does not lie on a stem of TH . All leaves of T0 (block condensationof H0) that are descendants (in T0) of the vertex in T0 corresponding to the core of B belong toVl since their roots do not lie on a stem of a leaf chain. Thus these leaves are incident with edgesof F . The fundamental cycles of these edges in F contain v and a vertex on the stem of some leafchain. Since this holds for any block of H0 whose root is v, vertex v is not a cutpoint in H0 + F .26

1

2

3 4

5 6

1

1 1

2 2

3

3

4

5

5

6 6

(a) (b)

H’ H"

Figure 6: (a) The graphH 0; the edges in TH are indicated by solid lines. Vertices numbered i belongto the core of the block collapsed into the vertex numbered i in H 00. (b) The block condensationH 00 of H 0.Let H 0 be a subgraph of H containing tree TH and let B be a block of H 0. By lemma 8 theintersection of B with TH is a subtree of TH . We call the root of that subtree (i.e., the vertexclosest to the root of TH) the root of B. We call the subset of vertices of B that are di�erentfrom the root of B the core of B. As an easy consequence of lemma 8 we see that the cores oftwo distinct blocks of H 0 have an empty intersection. The block condensation of H 0 is obtainedby collapsing the core of each block of H 0 into a single vertex (see section 2 for the de�nition ofcollapsing) and replacing in the resulting multigraph multiple edges by single edges. Note that theblock condensation of H 0 is a tree. We root the tree at the root of TH . A simple example of agraph and its block condensation is given in �gure 6.There is a natural correspondence between an edge e of H that does not belong to H 0 and the edgee0 linking those vertices in the block condensation of H 0 into which the endpoints of e in H 0 havebeen collapsed. We shall usually not di�erentiate between an edge connecting vertices of H 0 and thecorresponding edge connecting vertices in the block condensation of H 0. For instance, we shall saythat an edge of H is incident with a vertex v in the block condensation of H 0 if the correspondingedge connecting vertices in the block condensation is incident with this vertex.We shall now describe how to compute a minimal augmentation A � C for H0 = TH+IN+R (step(2.2) of algorithm 2), where C denotes the set of nontree edges examined at the current iterationof algorithm 2. As in the previous section, T denotes the tree representing Tlca at the current stage25

As for 2-edge-connectivity we remark that an alternative (sequential) method of Han and Tarjan([8]) for computing a minimal biconnected spanning subgraph can be parallelized; the parallelimplementation is similar to our method but it avoids the explicit computation of redundant andessential edges.The proof of lemma 1 carries over to show that there is a spanning tree in H that contains atmost 2/3 of the redundant edges in H . Hence, O(logn) iterations of the while-loop of algorithm 1(suitably modi�ed) will yield a minimal biconnected spanning subgraph of G.4.2 Computing a Minimal Augmentation in ParallelWe shall now describe a parallel algorithm for �nding a minimal augmentation for TH (with respectto biconnectivity). Again, the high-level structure is the same as that given in the previous section(algorithm 2; replace \2-edge-connected" by \biconnected"). The proof of lemma 2 carries over toshow that the modi�ed version of algorithm 2 does indeed compute a minimal augmentation forTH (with respect to biconnectivity).Recall that during the execution of the algorithm the set of nontree edges is partitioned into disjointsubsets IN , C, and R: IN contains the edges that have already been committed to the minimalaugmentation, C is the set of edges examined during this iteration of tree contraction (i.e., whose lcalies on a leaf chain of T), and R contains those edges that are to be considered at future iterations.Consider one iteration of the while-loop of algorithm 2. Let H0 denote the graph TH + IN + Rafter step (2.1) of this iteration. We are left with the problem of �nding a minimal augmentationfor H0, i.e., a minimal subset of edges in C such that its addition to H0 will result in a biconnectedgraph (step (2.2) of algorithm 2). We shall de�ne an operation on graphs called block condensation.It is reminiscent of the condensation of a graph de�ned in the last section. The concept of a blockcondensation will be helpful in explaining various steps of our minimal augmentation procedure.We need the following result.Lemma 8 Let H 0 be a subgraph of H containing tree TH . The intersection of a block of H 0 withTH forms a tree.Proof. It su�ces to show that any two vertices v; w in a block B of H 0 are connected by a pathcontaining only tree edges (edges of TH) that belong to B. Since B is a connected subgraph of H 0,v and w are connected by some path P in B, possibly containing nontree edges. Note that if anontree edge belongs to B then all the tree edges on its fundamental cycle in TH belong to B aswell. Hence we may replace on path P each nontree edge by a path of tree edges in B, obtaininga path in B consisting only of tree edges. 2 24

G

(b)(a)Figure 5: (a) A biconnected graph G and (b) a minimal biconnected spanning subgraph of G.Essential and redundant edges are indicated by thick and thin lines, respectively.and will require new techniques. Figure 5 shows a biconnected graph G and a minimal biconnectedspanning subgraph of G.4.1 The High-Level AlgorithmAs in the previous section we start out by de�ning the notions of redundant and essential edges.Given a biconnected graph H , we say that an edge e of H is redundant in H if H�e is biconnected;an edge of H is essential in H if it is not redundant in H . As in the last section we shall sometimesomit H if it is clear from the context. In �gure 5 essential and redundant edges are indicated bythick and thin lines, respectively. Since the graph in �gure 5(b) is a minimal biconnected spanningsubgraph of the graph in �gure 5(a), all of its edges are essential.We use the high-level strategy given by algorithm 1 (replace \2-edge-connected" by \biconnected").We compute a biconnected spanning subgraph H of G with fewer than 2n edges by �nding an openear decomposition for G ([3], [18]) and removing all trivial ears. In one iteration of algorithm 1 wedo the following: �rst, we �nd a spanning tree TH in H (the current biconnected spanning subgraphof G) that includes a minimum number of redundant edges in H ; next, we determine a minimalaugmentation for TH , i.e., a minimal set B of nontree edges in H such that TH +B is biconnected;�nally, we update H to be the graph TH + B.To identify the redundant edges in H at each iteration, we construct the graph H 0 from H byadding a new vertex ve for each edge e in H and replacing e by two edges (u; ve) and (ve; v) wheree = (u; v). A separating pair (of vertices) in H 0 is a pair of vertices in H 0 whose removal disconnectsH 0. We note that an edge e of H is redundant if and only if it does not occur in any separatingpair of H 0 of the form fve; ug for some vertex u of H . An e�cient parallel algorithm for �ndingall separating pairs in H 0 ([3], [18]) can thus be modi�ed to identify all redundant edges e�ciently.23

answer maximum queries whose endpoints lie in the same segment of A, each processor constructsin time O(logn) a Cartesian tree for its segment (see [4]) and preprocesses the tree in O(logn)time so that lca queries can be answered in constant time (using the algorithm of [10]). As shownin [4] each maximum query whose endpoints lie in the same segment is answered by computing thelca of the endpoints in the Cartesian tree for this segment; this takes constant time. Altogetherwe see that we can answer each maximum query in constant time after a preprocessing phase thatrequires O(logn) time with n= logn processors.To compute a maximal path in DL (step (3) of algorithm 4), transform DL into an undirectedforest rooted at the sinks in DL. We compute the adjacency lists for this forest B-optimally usingbucket sort. We can then compute the maximal path in DL optimally in time O(logn) by applyingthe Euler tour technique ([22]) to each tree in the forest. We conclude that one execution of stage2 can be done B-optimally.In stage 3 (algorithm 5) we compute the cutedges in H� by determining the 2-edge-connectedcomponents of H�. This can be done A-optimally. Hence algorithm 5 can be implemented A-optimally.In summary we see that one iteration of the while-loop of algorithm 2 runs in time O(logn)with A(n; 2n) ARBITRARY processors (or in time O(log2 n) with A(n; 2n) EREW processors).Since algorithm 2 terminates after O(logn) iterations (stages of tree contraction) and algorithm1 makes O(logn) calls to algorithm 2, algorithm 1 runs in time O(log3 n) with C(n;m)= log2 n +A(n; 2n) processors on an ARBITRARY PRAM (or O(log4 n) time with C(n;m)= log2 n+A(n; 2n)processors on an EREWPRAM). Thus, the work done by our algorithms (time-processor product) isC(n;m) logn+A(n; 2n) log3 n on an ARBITRARY PRAM. In [9] a linear time sequential algorithmfor computing a minimal 2-edge-connected spanning subgraph is given. That algorithm can beparallelized. The parallel version uses our parallel minimal augmentation procedure as a subroutine.The work done by this modi�ed algorithm is C(n;m) logn+A(n; 2n) log2 n on ARBITRARY (i.e.,the work is roughly improved by a factor of log n). The same improvement applies to the relatedproblem of computing a minimal biconnected spanning subgraph (see next section).4 Finding a Minimal Biconnected Spanning Subgraph in ParallelThe problem considered in this section is: given a biconnected graph G, �nd a minimal biconnectedspanning subgraph of G , i.e., a biconnected spanning subgraph of G that does not have a bicon-nected spanning subgraph of G as a proper subgraph. There is an obvious similarity between thisproblem and the one discussed in the last section. Indeed, some techniques used in the last sectionwill be applicable here. Several new problems, however, will arise in the context of biconnectivity22

sibling in Tlca. Note that w has a sibling in Tlca i� the vertex z at position nv + 1 + nd(w) in Asatis�es d(z) = d(w)(= d(v) + 1). We conclude that the asymptotic complexity of computing theleaf chains in Tlca is the same as that of applying the Euler tour technique to TH , i.e., O(logn)time with n= logn processors ([22]).We shall now examine the complexity of one iteration of the while-loop in algorithm 2. In onesuch iteration we shall need to compute connected or 2-edge-connected components in variousgraphs. Note that we can compute (2-edge-)connected components C-optimally provided we havethe adjacency lists for the graphs. Since many of the graphs are obtained by collapsing subsets ofvertices, it is not clear that we can obtain the adjacency list for the graphs without resorting tosorting. For that reason we shall only claim that we can compute (2-edge-)connected componentsA-optimally (instead of C-optimally). (This will not a�ect the overall complexity of one iterationof the while-loop in algorithm 2 since we require sorting in algorithm 4.)To prepare for stage 1 (algorithm 3) we compute the condensation of TH + IN +R. This amountsto computing the 2-edge-connected components of TH + IN + R, which can be done using an eardecomposition algorithm ([14], [13], [18]) that is A-optimal. For step (1) assume that each vertexin Vl is assigned a unique number in the range 1 : : :n. By making each vertex of Vl choose a singleedge of C to a lower numbered vertex in Vl (if there is such an edge) we obtain a spanning forest inGl. We compute the adjacency lists for this forest B-optimally. For step (2.1) we apply the Eulertour technique to each tree in the forest. All remaining steps of algorithm 3 take time O(logn)with n= logn processors. Thus, stage 1 can be done A-optimally.We now come to stage 2 (algorithm 4). We compute T1 (condensation of T0 + A1) by determiningthe 2-edge-connected components in T0+A1; this can be done C-optimally. The complexity of theremaining steps is dominated by the construction of DL in step (2). We can reduce the problem ofdetermining the edges of DL to the following problem: given a sequence of � n numbers determinethe maxima for � 2n (possibly overlapping) intervals of this sequence. This can be done in timeO(logn) on n= logn processors as follows. Suppose a sequence of n numbers is given in an arrayA[0 : : :n � 1]. Processor i is assigned the segment A[(i � 1) � logn; : : : ; i � logn � 1]. It computesthe maximum of its segment as well as the maxima of subintervals of its segment of the formA[(i� 1) � log n; : : : ; r] or A[s; : : : ; i � logn � 1] where (i� 1) � logn � r; s � i � logn � 1. Note thatwe can compute these maxima in time O(logn) with n= logn processors. We store the n= lognmaxima of the segments in a second array B[0 : : :n= logn � 1]. For simplicity we assume thatn= logn is of the form 2k for some integer k. We compute the maxima of all intervals in B of theform B[j � 2i; (j+1) � 2i� 1] for 0 � i � k and 0 � j < n2i logn . The total number of such intervals isO(n). It is straightforward to compute the maxima of these intervals in time O(logn) with n= lognprocessors. With the above maxima we can answer in constant time each maximum query of theform maxfA[i]; A[i+ 1]; : : : ; A[j� 1]; A[j]g where i and j belong to di�erent segments. In order to21

integers in the range 0 : : :nO(1) in time O(logn); C(n;m) denotes the number of processors neededto compute connected components of a graph with n nodes and m edges represented by adjacencylists in time O(logn) ; �nally, A(n;m) stands for maxfB(n); C(n;m)g. As mentioned above wehave currently B(n) = n log log n= logn (on ARBITRARY) and C(n;m) = (n +m)�(m;n)= logn(on ARBITRARY). A step in our algorithm is A-optimal if it runs in time O(logn) with A(n; 2n)processors and is C-optimal if it runs in time O(logn) with C(n; 2n) processors. In these de�nitionswe have replaced m by 2n since step (0) of algorithm 1 reduces the number of edges that need tobe processed to less than 2n.In the following analysis the time and processor bounds that do not specify a particular PRAMmodel all hold for the ARBITRARY CRCW PRAM model. We assume that the input graph G isrepresented by its adjacency lists. Step (0) of algorithm 1 is executed only once. Its complexity isdominated by that for �nding an ear decomposition in G. This can be done in time O(logn) usingC(n;m) processors ([14, 13, 18]). As shown earlier (corollary 1), O(logn) iterations of algorithm 1yield a minimal 2-edge-connected spanning subgraph of G. We analyze the work done in one suchiteration.We identify redundant edges in H by �nding separating pairs of edges in H . For this we modifythe algorithm for �nding triconnected components given in [3, 18] (see also [19]). Thus, we cancompute separating pairs of edges A-optimally. The complexity of computing TH is the same asthat of computing connected components on a graph with n nodes and at most 2n edges; we thuscompute TH C-optimally.Algorithm 2 �nds a minimal augmentation for TH using O(logn) levels of tree contraction. Weprepare algorithm 2 by computing the lca's of nontree edges in H and identifying the vertices inTH that are lca's of nontree edges; this can be done optimally in time O(logn) using the algorithmof [20]. Next we construct the tree Tlca. We shall not compute an explicit representation of thetree (in terms of adjacency lists) but rather compute enough information to identify the leaf chainsquickly. Using the Euler tour technique ([22]) on tree TH we compute the following three quantitiesfor each lca v in TH : the number of lca's in TH that precede v in preorder; the number of lca's on theunique path from the root of TH to v; the number of descendants of v in TH (including v) that arelca's of nontree edges. We denote these three quantities by num(v), d(v) and nd(v), respectively.We call an lca v that has at least two children in Tlca a split vertex. Note that an lca v (other thanthe root of TH) belongs to a leaf chain of Tlca i� none of its descendants in TH is a split vertex.Once we have determined the split vertices in TH , we can check the latter property using one moreapplication of the Euler tour technique (on tree TH). We compute the split vertices with the helpof the three quantities num(v), d(v) and nd(v) as follows: using the quantities num(v) we writethe lca's in TH in preorder into an auxiliary array A. Note that a vertex v at position nv = num(v)in A is a split vertex i� the vertex w at position nv + 1 in A satis�es d(w) = d(v) + 1 and it has a20

follows that all edges of T0 are covered by edges of A01 [A2 and therefore T0 + A01 + A2 is indeed2-edge-connected.We now show that each edge of A01 is essential in T0 +A01 +A2. Fix e 2 A1. A critical endpoint ofe 2 A1 is an endpoint of e in T0 that is a leaf in T0 and that is not incident with another edge ofA1. By lemma 4 and lemma 5 each edge in A1 has at least one critical endpoint in T0. Edge e canonly be redundant in T0 + A1 + A2 if its critical endpoints are incident with edges of A2. In thatcase e will be removed in step (1.1.2.1). It is put back only if its removal produces a cutedge inH� among the edges of T0 covered by it. Since di�erent edges removed at one time in step (1.2.1)cover disjoint sets of edges of T0, e is put back only if it is indeed essential at this point. Since wedo not add edges to H� (the current subgraph of T0 + A1 + A2) after this point, an edge that isput back in step (1.1.2.2) is essential in T0 +A01 + A2. 2Theorem 1 The set A = A01 [A2 is a minimal augmentation for TH + IN +R.Proof. Since T0+A01 +A2 is a spanning subgraph of T0+A1 +A2 and each edge of A2 is essentialin T0+A1+A2 (by corollary 2), the edges in A2 are also essential in T0+A01+A2. With lemma 7we conclude that A01 [A2 is a minimal augmentation for T0. By lemma 3 (with H 0 = TH + IN +Rand H 00 = T0) it follows that A01 [A2 is also a minimal augmentation for TH + IN + R. 23.3 AnalysisWe now analyze the processor and time requirements of our algorithm on a PRAM. For the de�ni-tions of the various PRAM models we refer the reader to the survey paper by Karp and Ramachan-dran ([11]). One iteration of the while-loop of algorithm 2 can be implemented to run almostoptimally in time O(logn) on an ARBITRARY CRCW PRAM. Only the fact that no optimalalgorithms are currently known for bucket sort and for computing connected components preventsus from achieving optimal performance. For sorting we use the algorithm of Bhatt et al. ([1])which sorts n integers in the range 0 : : :nO(1) in time O(logn= log logn) with n(log logn)2= lognprocessors on an ARBITRARY CRCW PRAM. We need to compute connected components at sev-eral places in our algorithm (see below). The most e�cient connectivity algorithm ([2]) computesthe connected components of a graph with n nodes and m edges represented by adjacency listsin O(logn) time with (m + n)�(m;n)= logn processors of an ARBITRARY PRAM; if the graphis represented by an unordered list of its edges, we can construct its adjacency list by sorting theedges lexicographically (using bucket sort in the range 0 : : :nO(1)); this can be done in time O(logn)with m log logn= logn processors of an ARBITRARY PRAM.Since more processor-e�cient algorithms for these problems may be developed in the future, weshall adopt the following conventions: B(n) denotes the number of processors required to sort n19

PL is incident with at most 2 edges of AL2 , we only need to look at at most two vertices in each 2-edge-connected component of T0+A1. We also note that each edge in AL1 has at least one endpointthat is a leaf of T0 and that is not incident with another edge of AL1 . We call such an endpointa critical endpoint of an edge of AL1 . We observe that an edge in AL1 can only be redundant inT0+A1+A2 if its critical endpoints are incident with edges in AL2 . Thus, we only need to examinean edge of AL1 if it is the unique edge in AL1 incident with a leaf in T0 that is an endpoint of an edgeof AL2 . It follows that we only need to consider at most two edges of AL1 in each 2-edge-connectedcomponent of T0 + A1. Thus, we may process the edges in AL1 in two phases. In each phase welook at edges that lie in di�erent 2-edge-connected components of T0 + A1. These edges certainlyhave edge-disjoint cycles in T0. Hence, we may apply the idea described in the previous paragraphto remove a maximal set of edges in each phase.The approach we have just outlined is essentially that taken by the following algorithm.Algorithm 5 Making A1 minimal.Input Graph T0, edge sets A1 and A2.Output Subset A01 � A1 such that A01 [A2 is a minimal augmentation for T0.(0) Let H� = T0 +A1 + A2.(1) In parallel for each leaf chain L, do:(1.1) In parallel for each vertex w on PL incident with at least one edge of AL2 , do:(1.1.1) Let Bw be the 2-edge-connected component of T0 +A1 that corresponds to w (pos-sibly, Bw is a single vertex). Let Vw be the set of endpoints in Bw of the edges ofAL2 . (By observation 2, we have jVwj � 2.)(1.1.2) Process the vertices v of Vw sequentially as follows:(1.1.2.1) If there is a unique edge e in A1 incident with v, remove e from H�.(1.1.2.2) If an edge on the fundamental cycle of e in T0 is a cutedge in H�, put e backinto H�.(2) Let A01 be the subset of edges in A1 that are contained in H�.Lemma 7 T0 + A01 +A2 is 2-edge-connected and each edge of A01 is essential in T0 + A01 +A2.Proof. The graph T0+A01+A2 is a spanning subgraph of T0+A1+A2. To see that T0+A01+A2 is2-edge-connected, note that an edge of A1 removed in step (1.1.2.1) is not put back in step (1.1.2.2)only if in H� the edges of T0 that were covered by e are still covered (by some other edges). It18

To see why AL2 is minimal, let e0 : : : ek be the edges in AL2 in the order they occur as vertices on themaximal path in DL. By observation 1 and the de�nition of DL, the edge from the lowest vertex(leaf) on PL to its parent in T1 is covered only by e0. Furthermore, the lower endpoint of ei+1 liesstrictly above the upper endpoint of ei�1. It follows that the edges on PL between those endpointsare covered only by ei. Finally, again by observation 1, the highest edge on PL is covered only byek. Hence, the edges of AL2 cover the edges of PL minimally. 2Corollary 2 The graph T0+A1+A2 is 2-edge-connected and the edges in A2 are essential in thisgraph.Proof. By lemma 5 each non-stem edge of T0 is covered by some edge in A1. By lemma 6 eachstem edge of T0 is covered either by an edge of A1 or an edge of A2. Hence, T0 + A1 + A2 is2-edge-connected. By lemma 6 the set A2 is a minimal set such that T1 +A2 is 2-edge-connected.By lemma 3 A2 is also a minimal set such that T0+A1+A2 is 2-edge-connected. We conclude thatthe edges of A2 are essential in T0 + A1 +A2. 2Observation 2 Every vertex of PL is incident with at most 2 edges of AL2 .The set A1 [A2 may not be a minimal augmentation for T0. Indeed, an edge of A1 is redundantin T0 + A1 + A2 if all the tree edges on its fundamental cycle in T0 are covered by other edges inA1 [A2.To obtain a minimal augmentation for T0, we shall remove a subset of the edges in A1 fromT0 + A1 + A2 such that the resulting subgraph of T0 + A1 + A2 is 2-edge-connected and all edgesof A1 [A2 contained in this subgraph are essential in this subgraph.We note that an edge e in A1 can be removed from T0 + A1 + A2 (without destroying 2-edge-connectivity) if no edge on the fundamental cycle of e in T0 is a cutedge in the resulting graph.We may extend this idea to a subset B � A1 with the property that the fundamental cycles of theedges in B are edge-disjoint: we may remove exactly those edges e in B from T0+A1+A2 with theproperty that none of the edges on the fundamental cycle of e in T0 is a cutedge in T0+A1+A2�B.Note that edges in A1 whose lca's lie on di�erent leaf chains of T (the tree representing Tlca atthe current stage of tree contraction) have edge-disjoint fundamental cycles in T0. Thus, we mayapply the idea from the previous paragraph to process edges of C whose lca's belong to di�erentleaf chains independently of each other. Let AL1 contain those edges in A1 whose lca lies on leafchain L. It su�ces to show how to remove a maximal subset of edges in AL1 so that the remainingedges are essential. Note that edges in AL1 may have overlapping fundamental cycles in T0. Thus,it is not su�cient (in general) to remove all the edges in AL1 from T0 + A1 + A2 at one time andcheck the resulting graph for cutedges. Here is where observation 2 comes in: since each vertex on17

In parallel for each leaf chain L, do:(1) Let CL be the subset of edges in C � A1 that connect two distinct vertices on PL. For eachvertex v on PL let Ev be the set of edges in CL incident with v and whose other endpoint liesstrictly above v on PL (i.e., closer to the root of T1). Each vertex v on PL with Ev 6= ; selectsa single edge in Ev whose upper endpoint is closest to the root of T1. Denote this edge byup(v) (see �gure 4(a)).(2) Construct the auxiliary digraph DL de�ned as follows (see �gure 4(b)): the vertex set of DLis the set fup(v) : v is a vertex on PL and Ev 6= ;g. There is a directed edge in DL from e toe0 if and only if the lower endpoint of e0 lies between the endpoints of e, possibly coincidingwith the upper endpoint of e, and the upper endpoint of e0 is strictly above that of e (i.e, itis closer to the root of T1); moreover, among all edges whose lower endpoint lies between theendpoints of e, the upper endpoint of e0 is closest to the root of T1. (Note: There may beseveral such edges e0; in this case pick an arbitrary such edge e0. Hence, each vertex in DLhas outdegree at most 1.)(3) Starting at up(v), where v is the unique leaf on PL, construct a maximal path in DL, i.e., apath that ends at a vertex that has outdegree 0 in DL. Let AL be the set of edges in CL thatare represented by vertices on this path.Let A2 = SLAL2Observation 1 The lower endpoints on path PL of edges in AL2 are all distinct. Furthermore, theupper endpoints on PL of the edges in AL2 are all distinct.Lemma 6 A2 is a minimal set of edges covering the edges of T1.Proof. As mentioned earlier, edges in C � A1 have their endpoints in T1 on the same path PLfrom the root to some leaf of T1. Therefore, it su�ces to show that the edges in AL2 minimallycover the edges of PL for an arbitrary leaf chain L of T . We shall �rst prove that each edge in PLis covered by some edge in AL2 . Assume for a contradiction that e is the lowest edge on PL notcovered by any edge in AL2 . Consider the subset S of edges of C � A1 that cover e. Since H is2-edge-connected, S is nonempty. Let e0 be an edge of S. Since e is the lowest uncovered edge onPL, the lower endpoint of e0 lies between the endpoints of some edge e00 2 AL2 (may coincide withits upper endpoint). The path in DL found in step (3) is maximal. Therefore, e00 has a successoredge on the path whose upper endpoint is at least as high on the stem as that of e0. Hence, thatedge covers e, contradicting the assumption that e is not covered.16

5e

4e

3e

2e

e1P
L

D
L

(a) (b)

e
5

e
4

e
3

e
2 e

1

v
5

v
4

v
3

v
1

v
2

Figure 4: (a) Condensation T1 of TH + IN +R+A1. Solid lines correspond to edges in T1. Dashedlines correspond to nontree edges in H . Thick dashed lines represent edges in A2. On path PL wehave up(vi) = ei. (b) Graph DL corresponding to root-to-leaf path PL in T1. Edges e5, e4 and e2belong to A2 because they represent vertices on a maximal path in DL starting at e5.root of T1 has at most one child. Moreover, the edges on any root-to-leaf path in T1 belong to thestem of a single leaf chain of T . The tree T1 corresponding to the example in �gure 3 is shown in�gure 4(a).Let PL denote the root-to-leaf path in T1 containing edges on the stem of leaf chain L of T . Wenote that all the nontree edges in C connect vertices on the same path PL for some leaf chain L(this follows from the de�nition of C). Let CL be the set of edges in C that connect two distinctvertices on PL. It su�ces to show how to compute a minimal subset of edges in CL that covers theedges on path PL. For any edge of CL, let the upper endpoint refer to the endpoint that is closer tothe root of T1 and let the lower endpoint be that endpoint that is further away from the root of T1.The following greedy procedure picks a minimal subset of edges covering the edges on PL: pick as�rst edge an edge of CL incident with the unique leaf on PL and whose endpoint is closest to theroot of T1. At any point pick as the next edge an edge in CL whose lower endpoint lies betweenthe endpoints of the edge that was picked last and whose upper point is closest to the root of T1.We are done once we pick an edge whose upper endpoint is the root of T1. The following algorithmis a parallel version of this greedy strategy.Algorithm 4 Covering T1.Input Tree T1, edge set C � A1.Output Minimal subset A2 � C � A1 covering the edges in T1.15

that e is a non-stem edge in T0. Suppose that e links a node v0 in TH to its parent in TH . Bythe de�nition of T0 and R, no edge of R is incident with a descendant of v0 in TH (otherwise theendpoints of e would have been collapsed into a single vertex of T0). Furthermore, if an lca of anedge in IN is a descendant of v0, it must be a proper descendant. Hence v = v0 and v is a leaf ofTH . It follows that v is not an lca of an edge in C. Hence, e is a non-stem edge.Now let each leaf of T0 be incident with an edge of A1. Let e be a non-stem edge of T0 connectingsome vertex v to its parent in T0. Let D be the set of edges in A1 incident with leaves in T0 thatare descendants of v. By our assumption D is nonempty. Moreover, any edge in D has its lca ona stem in TH ; hence its fundamental cycle must contain edge e. We conclude that each non-stemedge in T0 is covered by an edge of A1. 2Lemma 5 A1 is a minimal subset of edges in C covering all non-stem edges of T0.Proof. By lemma 4 we only need to show that A1 is a minimal set of edges such that each leaf ofT0 is incident with an edge in A1. We �rst show that each leaf of T0 is incident with some edge inA1. If v is a leaf in tree Tl of the forest, then its unique incident tree edge marked in step (2.1)will never be unmarked. Now assume that v is not a leaf. If its depth is even, it will certainly beincident with a marked edge after step (2.3). If its depth is odd, the edge to its parent in Tl can beunmarked only if one of its children is a leaf. The edge to that child is marked in step (2.1) and willnever be unmarked. Finally, any isolated vertices in Ge (all of whose incident edges of C connectto nodes that are not leaves of T0) will be incident with a marked edge after step (3). Hence, everyleaf in T0 is incident with an edge of A1.To establish the minimality of A1, �x an edge in A1. If it was marked in step (3), then only oneendpoint of this edge is a leaf of T0 and this endpoint will lie on a single marked edge. For theremaining edges of A1, observe that edges that were bad after step (2.1) were removed during step(2.2) and none of the edges marked in step (2.3) are bad. Hence, every edge of A1 has at leastone endpoint that is a leaf in T0 and that is not incident with another edge of A1. Therefore A1 isminimal. 2In stage 1 we covered all non-stem edges of T0 and possibly some stem edges. In the second stagewe proceed to cover stem edges in T0 that have not been covered in stage 1. The algorithm we usehere is similar to an algorithm in [17, 16] for �nding a minimum feedback-vertex-set in a reducibleow graph.To compute a minimal subset A2 � C covering the stem edges of T0 not covered by edges of A1, weappeal again to lemma 3. According to this lemma we may choose for A2 a minimal set of edgesin C covering the edges in the condensation T1 of T0 + A1. Note that T1 is also the condensationof graph TH + IN +R+A1. The tree T1 has a rather simple structure: any vertex other than the14

Furthermore, by the minimality of A2, all edges of A2 are essential in T0 + A1 + A2. To obtain aminimal augmentation for T0, we shall remove certain edges of A1 from T0 + A1 + A2 so that theresulting subgraph of T0+A1+A2 is 2-edge-connected and all remaining nontree edges in A1 [A2are essential in this subgraph. This is done in the third and �nal stage.One can show (lemma 4) that a set of nontree edges A1 � C covers all non-stem edges of T0 if andonly if each leaf of T0 is incident with at least one edge of A1. Thus, in stage 1 we need to computea minimal set A1 � C such that each leaf of T0 is incident with at least one edge of A1. This isexactly what algorithm 3 does. In �gure 3 the thick dashed lines represent nontree edges that areput into A1. Note that the set of these edges is minimal with respect to the property that each leafof T0 is incident with an edge in this set.Algorithm 3 Covering non-stem edges of T0.Input Tree T0, set C of nontree edges.Output Minimal subset A1 � C covering the non-stem edges of T0.(1) Let Gl be the graph whose vertices are the leaves of T0 and whose edges are the edges of Cbetween them. Find a spanning forest in Gl.(2) For each tree Tl in this forest do the following:(2.1) Root the tree at an arbitrary vertex. Determine the depth of each node in Tl. Mark alledges in Tl that connect a vertex at even depth with a child (at odd depth). Also, foreach leaf in Tl mark the unique incident tree edge (if it is not already marked).(2.2) A marked edge in the tree is bad if both of its endpoints have at least two marked edges(including this edge) incident with them. Each node (at even depth) eliminates any badedges to its children.(2.3) If a node at even depth loses all marked edges to its children in the previous step, itmarks a single edge to one of its children in Tl.(3) Any leaf of T0 that is not yet incident with a marked edge (i.e., it is an isolated vertex of Gl)marks an arbitrary edge of C incident with it.Let A1 be the subset of edges in C that are marked.Lemma 4 A1 covers all non-stem edges of T0 if and only if each leaf of T0 is incident with an edgeof A1.Proof. Suppose that A1 covers the non-stem edges of T0. Let v be a leaf of T0 and let e be theedge from v to its parent in T0. To show that an edge of A1 is incident with v, it su�ces to show13

h

g

f

e

d

t

s

r

q

o

n

m

Figure 3: Condensation T0 of TH + IN + R. The edges of T0 are indicated by solid lines. Thicksolid lines indicate stem edges. Dashed lines correspond to nontree edges in H . Thick dashed linesrepresent nontree edges that are put into A1.Let us return to our original problem. We want to compute a minimal augmentation A � C forTH + IN + R. Let T0 denote the condensation of TH + IN + R. By lemma 3 we may choosefor A a minimal augmentation for T0. We shall illustrate our method to compute such a minimalaugmentation with the example in �gure 2. Consider the �rst iteration of algorithm 2 on the graphH depicted in �gure 2(a). In this case IN = ; and R is the set of nontree edges whose lca is inthe set fa; b; j; kg. The condensation T0 of TH + IN +R is indicated in �gure 3 by solid lines. Thedashed lines represent nontree edges in C.Our method for computing a minimal augmentation for T0 is based on partitioning the edges inT0 into two classes. Recall that tree T represents Tlca at the current stage of tree contraction(it will change in step (2.4) at the end of this iteration of the while-loop in algorithm 2). LetL =< v0; : : : ; vk > be a leaf chain of T . The path in TH from v0 to vk is termed the stem of L. Wecall those edges in T0 that belong to a stem of a leaf chain stem edges and refer to the remainingedges as non-stem edges. In �gure 3 the stem edges are indicated by thick solid lines and nonstemedges are indicated by thin solid lines.We build a minimal augmentation for T0 in three stages: in stage 1 we select a minimal subsetA1 � C covering the non-stem edges in T0. In stage 2 we choose a minimal subset A2 � C whoseedges cover all stem edges in T0 not covered in stage 1. The graph T0+A1+A2 is 2-edge-connected.12

In the sequel we consider a �xed iteration of the while-loop in algorithm 2. We have reduced theproblem of computing a minimal augmentation for TH to the problem of computing a minimalaugmentation for TH + IN + R from the edges in C, i.e., a minimal set A � C such that TH +IN + R+ A is 2-edge-connected. At this point it is not clear that this problem is easier than theoriginal problem of computing a minimal augmentation for TH . We shall see, however, that thespecial structure of C, i.e., the fact that all edges in C have their lca on a leaf chain of T , allows fora fast parallel solution of the modi�ed augmentation problem. Intuitively, this is because nontreeedges whose lca's lie on di�erent leaf chains can be processed independently.It is helpful to view the minimal augmentation problem in terms of edges in the spanning tree THbeing covered by nontree edges. To make this precise, note that any nontree edge e in H producesa unique cycle in TH + e, the fundamental cycle of e. We say that edge e covers the edges of THthat lie on its fundamental cycle. We say that a set D of nontree edges covers a set D0 of tree edgesif each tree edge in D0 is covered by some edge in D. The de�nition of 2-edge-connectivity impliesthat A is a minimal augmentation for TH + IN + R if A is a minimal set of nontree edges in Ccovering the edges in TH not already covered by an edge in IN [R.Since we are only interested in the edges of TH not covered by edges in IN [R, we would like tosomehow \remove" those edges in TH that are covered by an edge in IN [R. This motivates thefollowing de�nition. LetH 0 be a subgraph ofH containing tree TH as a subgraph. The condensationof graph H 0 is a graph H 00 obtained from H 0 by collapsing the vertex sets of the 2-edge-connectedcomponents of H 0. (The operation of \collapsing" is de�ned formally in section 2.) Note that H 00is a tree. We root this tree at the vertex into which the root of TH is collapsed.The following lemma shows that we can reduce the problem of minimally augmenting H 0 to theproblem of minimally augmenting its condensation H 00.Lemma 3 Let H 0 be a subgraph of H containing TH and let H 00 be the condensation of H 0. Forany B � E(H), H 0 +B is 2-edge-connected i� H 00 +B is 2-edge-connected.Proof. The edges of H 00 are the cutedges of H 0. Moreover, a cycle in H 0 + B containing a cutedgeof H 0 maps to a cycle in H" + B containing the corresponding edge of H". If H 0 + B is 2-edge-connected, then every cutedge of H 0 is on a cycle in H 0+B and hence, every edge of H"+B is ona cycle. Therefore, H" +B is 2-edge-connected.Conversely, we note that a cycle in H" +B yields a cycle in H 0 +B containing all the cutedges ofH 0 that lie on the cycle of H" + B. Thus, if H" + B is 2-edge-connected, every edge of H" is ona cycle in H 00 + B and hence, every cutedge of H 0 is on a cycle in H 0 + B. Therefore, H 0 + B is2-edge-connected. 2 11

stage, and those with lca a are processed at the third and last stage.For technical reasons we view the tree consisting of a single vertex as having a leaf chain with noroot vertex; one more iteration of tree contraction will yield the empty tree. The �ne-structure ofstep (2.2) will be developed following lemma 2. Note that a stage as explained earlier correspondsto an iteration of the while-loop.Algorithm 2 Finding a minimal augmentation for TH .Input Tree TH , set F of nontree edges.Output Minimal augmentation IN for TH from edges in F .(1) Initialize : IN := ;, R := F , and T := Tlca.(2) While T is non-empty, perform the following actions for all leaf chains of T in parallel:(2.1) Let C be the subset of edges in R whose lca is a vertex on some leaf chain of T . LetR := R� C.(2.2) Find a minimal subset A � C such that TH + IN +R+ A is 2-edge-connected.(2.3) Let IN := IN [A.(2.4) Remove the leaf chains from T .Lemma 2 Upon completion of algorithm 2, IN is a minimal augmentation for TH.Proof. We claim that the following statement holds before any iteration of step (2):(*) TH + IN +R is 2-edge-connected and every edge of IN is essential in TH + IN +R.Upon termination of algorithm 2, R is empty and (*) implies that IN is a minimal augmentationfor TH .We prove that (*) holds before each iteration of step (2) by induction on the iteration number.Note that (*) holds before the �rst iteration where R = F and IN = ; since H = TH+F is 2-edge-connected. Assume that (*) holds before the ith iteration of step (2) (i � 1). Denote by INj andRj the sets IN and R, respectively, before the jth iteration for any j � 1. By step (2.2) in the ithiteration TH + INi + Ri+1 + A is 2-edge-connected, and hence, by step (2.3), TH + INi+1 + Ri+1is 2-edge-connected. Note that INi+1 [Ri+1 � INi [Ri. Thus, by the inductive assumption , theedges of INi are essential in TH + INi+1 + Ri+1. By the minimality of the set A constructed instep (2.2) each edge of INi+1 � INi is essential in TH + INi+1 + Ri+1. This shows that (*) holdsbefore iteration i+ 1 of step (2). 2 10

indicated by dashed lines. We shall make use of parallel tree contraction to compute such a minimalaugmentation. Tree contraction was �rst introduced by Miller and Reif ([15]). We use a variant oftree contraction proposed in [17, 16]. This method is based on the operation Shrink which we shallnow describe.Let T be an arbitrary rooted tree. A leaf chain in T is a sequence < v0; v1; : : : ; vk > of vertices inT such that vk is a leaf, vi is the unique child of vi�1 for i > 0 and the parent v of v0 is either theroot of T or has at least 2 children. For example consider the tree in �gure 2(b). This tree has oneleaf chain with 6 nodes (< c; d; e; f; g; h >), one leaf chain with 5 nodes (< p; q; r; s; t >), one leafchain with 4 nodes (< l;m; n; o >) and one leaf chain with 1 node (< i >).The operation Shrink reduces a tree by removing the vertices in the leaf chains. Tree contractionreduces an arbitrary rooted tree to a single vertex by repeatedly applying the Shrink operation toit. It can be shown ([17, 16]) that O(logn) applications of Shrink contract any tree on n nodes to asingle vertex. Applying Shrink to the tree in �gure 2(b) removes vertices c : : :h; i; l : : : o; p : : :t andapplying it one more time removes vertices b; j; k, thus leaving a tree with the single vertex a.In the sequel we assume that the spanning tree TH , computed in step (1.1) of algorithm 1, is rootedat an arbitrary vertex. The tree contraction will be performed on a tree Tlca closely related to thetree TH . The tree is de�ned as follows: the vertices of Tlca are the least common ancestors (lca's)in TH of nontree edges in H (i.e., the lca's of the endpoints of those edges). The root of Tlca is theroot of TH . A vertex v is a child of u in Tlca if and only if v is a descendant of u in TH and noneof the internal vertices on the path from u to v in TH is an lca of a nontree edge. For instance,consider the graph H depicted in �gure 2(a) with the spanning tree TH denoted by the solid edges.The corresponding tree Tlca is the tree in �gure 2(b).Let F denote the set of nontree edges in H , i.e., those edges in H that do not belong to the spanningtree TH . Let T denote the tree Tlca at the current stage of tree contraction. The algorithm forcomputing a minimal augmentation for TH works in stages. In each stage the algorithm maintainsthe following three sets of nontree edges (subsets of F): the set IN of edges that have been processedat an earlier stage and have been chosen for the minimal augmentation; the set C of those nontreeedges whose lca lies on a leaf chain of T ; and the set R of nontree edges that are still to be processed.At the current stage we add to the augmentation a subset A of C that is minimal with respect tothe property that TH + IN + R+ A is 2-edge-connected. Thus, we add a subset of edges from Cto the augmentation while taking into account those edges that have already been added as well asthose that will be examined at later stages. This will ensure that the resulting set of edges for theaugmentation is indeed minimal. This will be proven formally in lemma 2.For the example in �gure 2(a) nontree edges with an lca other than a; b; j; k will be processed at the�rst stage of our algorithm (algorithm 2), those whose lca is b, k or j are processed at the second9

Tlca

(a)

(b)

b

a

a

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

b

h

g

f

e

d

c i

t

s

r

q

p

k

o

n

m

l

jH

Figure 2: (a) Graph H with the edges of TH (rooted at a) indicated by solid lines and the non-tree edges indicated by dashed lines. Vertices with a letter are lca's of nontree edges. (b) Thecorresponding tree Tlca. 8

mentation is similar to our method but it does not require redundant and essential edges to becomputed explicitly.The correctness of algorithm 1 follows from these two observations: (1) at the start of any iterationof the while-loop (step (1) of algorithm 1) the graph H is a spanning 2-edge-connected subgraphof G; (2) the number of edges in H strictly decreases in each iteration of the while-loop.The following lemma implies that the number of redundant edges in H decreases quite rapidly.This results in a O(logn) upper bound on the number of iterations of algorithm 1.Lemma 1 There is a spanning tree in H that contains at most 2=3 of the redundant edges in H.Proof. Let Ess denote the set of essential edges in H . Let r denote the number of redundant edgesin H and c the number of connected components of the graph (V (H); Ess). Fix a spanning treeT in H with the smallest possible number of redundant edges of H . The tree T contains exactlyc� 1 redundant edges of H . Furthermore, if c > 1, then each connected component of (V (H); Ess)is incident with at least 3 redundant edges in H and hence, c � 2=3 � r. The claim follows. 2Corollary 1 Algorithm 1 terminates after O(logn) iterations of the while-loop.Proof. Let H 0 and H 00 represent the graph H at the start of two consecutive iterations of thewhile-loop. Note that all edges in H 00 added to the spanning tree TH 0 in step (1.2) of the currentiteration are essential in H 00. Thus, any redundant edge in H 00 is redundant in H 0 and belongs toTH 0. The previous lemma then implies that the number of redundant edges in H 00 is at most 2=3times the number of redundant edges in H 0. The claim follows. 2The main work in algorithm 1 is done in step (1.2) in which we minimally augment the spanningtree TH into a 2-edge-connected graph. We call the (minimal) set B of edges in H that will beadded to TH a minimal augmentation for TH in H . In the next section we describe how such aminimal augmentation can be computed e�ciently in parallel.3.2 Computing a Minimal Augmentation in ParallelFor this section we �x an iteration of the while-loop of algorithm 1. We describe how to computea minimal augmentation for the tree TH computed in step (1.1) of the current iteration.Our method does not use the fact that TH contains a minimum number of redundant edges inH . We may therefore assume that TH is an arbitrary spanning tree in H . We shall illustrate ourminimal augmentation procedure with the example in �gure 2(a). Figure 2(a) shows a graph Hwith a spanning tree TH ; the edges of TH are indicated by solid lines and the nontree edges are7

essential in any 2-edge-connected spanning subgraph of H . Similarly an edge that is redundantin a 2-edge-connected spanning subgraph of H is also redundant in H . In �gure 1 essential andredundant edges are indicated by thick and thin lines, respectively. Since the graph in �gure 1(b)is a minimal 2-edge-connected spanning subgraph of the graph in �gure 1(a), all of its edges areessential.Let G = (V;E) be a 2-edge-connected graph with n vertices and m edges. We present our algorithmfor �nding a minimal 2-edge-connected spanning subgraph of G in a top-down fashion. At thehighest level it has the following structure:Algorithm 1 Finding a minimal 2-edge-connected spanning subgraph of G.Input 2-edge-connected graph G.Output Minimal 2-edge-connected spanning subgraph H of G.(0) Find a 2-edge-connected spanning subgraph H of G with fewer than 2n edges.(1) While H contains redundant edges, repeat the following two steps:(1.1) Find a spanning tree in H that contains the smallest possible number of redundant edgesin H . Call this tree TH .(1.2) Determine a minimal subset B of edges in H such that the graph TH + B is 2-edge-connected. Let H = TH +B.The purpose of step (0) is to speed up subsequent iterations of the while-loop by computing a sparsesubgraph of the input graph. In this step we compute an ear decomposition ofG ([14], [13], [18]) andeliminate all trivial ears. Let H be the resulting graph. H is clearly a 2-edge-connected spanningsubgraph of G. Let m0 denote the number of edges of H and let q be the number of (nontrivial)ears in the above ear decomposition. A proof by induction over q establishes m0 = n+ q� 2. SinceH contains no trivial ears, we have q � n� 1; hence, m0 � 2n� 3 as required in step (0).For steps (1) and (1.1) we need to determine the redundant edges in H . A separating pair of edgesfor H is a pair (e1; e2) of edges of H such that the graph H � e1 � e2 is not connected. Note thatan edge of H is redundant if and only if it does not occur in any separating pair of edges for H .Hence, we identify the redundant edges in H by �nding all separating pairs of edges in H . For thiswe modify the vertex triconnectivity algorithm in [3], [18] (see also [19]). We now assign weight 0to essential edges and weight 1 to redundant edges and choose for TH a minimum spanning tree inthis graph. The implementation of step (1.2) will be discussed in the next section.Note: An alternative (sequential) method developed independently by Han and Tarjan ([8]) forcomputing a minimal 2-edge-connected spanning subgraph can be parallelized; the parallel imple-6

G

(b)(a)Figure 1: (a) A 2-edge-connected graph G and (b) a minimal 2-edge-connected spanning subgraphof G. Essential and redundant edges are indicated by thick and thin lines, respectively.maximal biconnected subgraph of G.An ear decomposition D = [P0; P1; : : : ; Pr�1] of an undirected graph G = (V;E) is a partition of Einto an ordered collection of edge disjoint simple paths P0; : : : ; Pr�1 such that P0 is an edge, P0[P1is a simple cycle, and each endpoint of Pi, for i > 1, is contained in some Pj , j < i, and none ofthe internal vertices of Pi are contained in any Pj , j < i. The paths in D are called ears. D isan open ear decomposition if none of the Pi is a simple cycle. A trivial ear is an ear other than P0containing a single edge.3 Finding a Minimal 2-Edge-Connected Spanning SubgraphIn this section we consider the following problem: given a 2-edge-connected graph G, �nd a minimal2-edge-connected spanning subgraph of G, i.e., a 2-edge-connected spanning subgraph of G thatdoes not have a 2-edge-connected spanning subgraph of G as a proper subgraph. Figure 1 shows a2-edge-connected graph G and a minimal 2-edge-connected spanning subgraph of G.3.1 The High-Level AlgorithmOur parallel algorithm for computing a minimal 2-edge-connected spanning subgraph makes use ofa partition of the edges of a 2-edge-connected graph into two classes: those that can be removedwithout destroying 2-edge-connectivity and those whose removal destroys 2-edge-connectivity. For-mally, for an arbitrary 2-edge-connected graph H , we say that an edge e is redundant in H if H� eis 2-edge-connected; edges that are not redundant in H are essential in H . We sometimes shall notmention the graph H if it is clear from the context. Note that an edge that is essential in H is also5

A rooted tree is a directed graph whose undirected version is a tree, having one vertex, called theroot, which is the head of no edges, and such that all vertices except the root are the head of exactlyone edge. If (v; w) is an edge in the rooted tree, v is the parent of w and w is the child of v. Aleaf in the rooted tree is a vertex in the tree that does not have a child. A descendant of v is anynode reachable from v in the tree (including v). A vertex w is an ancestor of v if v is a descendantof w in the tree. A proper descendant (ancestor) of v is a descendant (ancestor) of v other than v.The depth of a node in a rooted tree is the number of edges on the (unique) simple path from theroot to the node in the tree. The least common ancestor (lca) of two vertices in a rooted tree is thevertex at maximum depth that is an ancestor of both vertices.A spanning tree of a graph G is a spanning subgraph of G that is a tree. The tree edges in G arethe edges in G that belong to a given spanning tree; all other edges in G are nontree edges. If eachedge in G has a real weight, the weight of a spanning tree of G is the sum of the weights of itsedges. A minimum spanning tree in G (with respect to these weights) is a spanning tree in G withminimum weight.Let G = (V;E) be a graph and let V1; : : : ; Vk be disjoint nonempty subsets of vertices in G. Letv1; : : : ; vk be k new vertices (that do not belong to V). De�ne a mapping f from V to V [fv1; : : : ; vkgby f(v) = vi if v 2 Vi (1 � i � k) and f(v) = v if v does not belong to any Vi. The operationof collapsing the vertices in V1; : : : ; Vk consists in replacing the vertices in each Vi by vi, replacingeach edge (v; w) in G by the edge (f(v); f(w)) and deleting all self-loops in the resulting graph.Let G0 denote the resulting graph. The graph G0 is a multigraph. It will often be convenient toidentify each edge (v; w) in G where f(v) 6= f(w) with a unique edge in G0 linking the vertices f(v)and f(w). In these cases we may pick an arbitrary one-to-one mapping between the edges in G0connecting any two distinct vertices x and y and the edges (v; w) in G with f(v) = x and f(w) = yand identify an edge (x; y) with the edge in G to which it is mapped under this one-to-one mapping.A graph is k-edge-connected (k � 1) if the removal of at most k�1 edges does not disconnect G. Anequivalent condition for a graph to be 2-edge-connected is that every edge lies on a cycle. A 2-edge-connected component of G is a maximal 2-edge-connected subgraph of G (i.e., a 2-edge-connectedcomponent is not a proper subgraph of a 2-edge-connected subgraph of G). A cutedge in G is anedge in G whose removal disconnects G. Thus, a graph is 2-edge-connected if it is connected anddoes not contain a cutedge.A graph is k-vertex-connected (k � 1) if at least k vertices have to be removed from the graphin order to disconnect it or reduce it to a single vertex. A vertex in G is a cutpoint if removingit together with all incident edges yields a graph that is not connected. A graph G is biconnected(or 2-vertex-connected) if it has at least 3 vertices and does not contain a cutpoint. A block (ora biconnected component) of a graph G is either an isolated vertex in G, or a cutedge in G, or a4

2 De�nitionsA graph G = (V;E) consists of a set V of vertices and a set E of edges. We sometimes write V (G)and E(G) for the set of vertices and edges, respectively, and write n(G) and m(G), respectively, fortheir cardinalities. If the edges are ordered pairs (v; w) of distinct vertices, the graph is directed: vis called the tail and w is called the head of the edge. We also use the term digraph for a directedgraph. The indegree (outdegree) of a vertex in a digraph is the number of edges in the digraphwhose head (tail) is this node. If the edges are unordered pairs of distinct vertices, also denoted by(v; w), the graph is undirected. In that case v and w are incident with the edge (v; w). If v = w,then the edge (v; w) is a self-loop. The degree of a vertex is the number of edges incident with it.If E is a multiset, i.e., if edges may have multiple copies, then G is a multigraph.Fix a multigraph G = (V;E). A path P in G is a sequence < v0 : : :vk > of vertices of V such that(vi�1; vi) (1 � i � k) is an edge in E; the nodes v0 and vk are the endpoints of P and v1 : : :vk�1are the internal vertices of P . We say that vk is reachable from v0. The vertices vi lie on the pathP and the edges (vi�1; vi) are the edges on the path P . The length of a path is the number of edgeson the path. A path is simple if v0 : : :vk�1 are distinct and v1 : : :vk are distinct. A simple pathis a chain if all of its internal vertices have degree 2 in the graph. A cycle in G is a path in Gwhose endpoints coincide and all of whose edges are distinct. A simple cycle is a simple path whoseendpoints coincide.If G = (V;E) and G0 = (V 0; E 0) are two graphs such that V 0 � V and E 0 � E, then G0 is a subgraphof G. A subgraph G0 of G is a proper subgraph of G if it is di�erent from G. A subgraph G0 of Ghaving some property is a maximal subgraph with this property if it is not a proper subgraph ofanother subgraph of G with this property. G0 is the subgraph of G induced by the vertices in V 0 ifE0 contains exactly the edges of E between vertices of V 0. G0 is the subgraph of G induced by theedges in E0 if V 0 = V . A spanning subgraph of G is a subgraph G0 with V 0 = V . If G0 is a spanningsubgraph of G and E 00 � E, then G0+E00 denotes the graph with vertex set V 0(= V) and edge setE0 [E 00 and G0 � E 00 denotes the graph with vertex set V 0 and edge set E 0 � E 00.An undirected graph G is connected if every vertex in G is reachable from any other vertex in G.A connected component in G is a maximal connected subgraph of G (i.e., it is connected and it isnot a proper subgraph of a connected subgraph of G).A tree is a connected (undirected) graph without cycles. A subtree of a tree is a subgraph of a treethat is a tree. If T is a tree and u and v are two vertices in T , then the graph T + (u; v) contains aunique (simple) cycle called the fundamental cycle of (u; v) in T . A forest is a graph without cyclesor, equivalently, it is a graph whose connected components are trees. A leaf in a forest is a vertexof degree at most 1 in the forest. 3

of G. The total time is dominated by m calls to the algorithm for testing 2-edge-connectivity ([21],[14], [13], [18]), giving a time bound of O(m(n+m)). The time can be brought down to O(m+n2)by �rst �nding a sparse 2-edge-connected spanning subgraph of G (see section 3). There is a sim-ilar sequential algorithm with the same time bound for �nding a minimal biconnected spanningsubgraph of G. None of these algorithms lends itself to an e�cient parallel implementation.In this paper we present fast parallel algorithms for these problems: they both run in time O(log3 n)with a number of CRCW processors close to (n+m)= logn (for the exact bound, see end of section3). These algorithms are the �rst e�cient parallel algorithms for these problems. In the outer loopof both parallel algorithms we �nd a spanning tree in the current subgraph of the input graph thatcontains the smallest possible number of redundant edges (i.e., edges that can be removed withoutdestroying the desired property - 2-edge-connectivity or biconnectivity). A similar step is used ineach iteration of an algorithm of [7] to compute a minimal strongly connected spanning subgraphof a strongly connected digraph (transitive compaction problem). We augment such a spanning treewith a minimal set of edges restoring the desired property (2-edge-connectivity or biconnectivity).We use tree contraction to construct such a minimal augmentation. This part of our algorithmmarkedly di�ers from the corresponding step in the transitive compaction algorithm. As in [7] weshow that O(logn) iterations of this procedure yield the desired spanning subgraph.We also give linear time algorithms for minimally augmenting a spanning tree into a 2-edge-connected or biconnected graph. If used in the obvious way these procedures yield sequentialalgorithms for both problems that run in time O(m+ n logn). In recent work ([9]) the basic algo-rithms have been re�ned into linear time algorithms for �nding a minimal 2-edge-connected span-ning subgraph of a 2-edge-connected graph and �nding a minimal biconnected spanning subgraphof a biconnected graph. These algorithms use the linear time minimal augmentation proceduresdescribed in this paper as subroutines. Similar linear time augmentation procedures have beenfound independently by Han and Tarjan ([8]).Our paper is organized as follows. In the next section we introduce the graph-theoretic terminol-ogy. In section 3 we present the parallel algorithm for �nding a minimal 2-edge-connected spanningsubgraph and in section 4 we describe our parallel algorithm for �nding a minimal biconnectedspanning subgraph. In section 5 we present linear time sequential algorithms for minimally aug-menting spanning trees with respect to these properties. In section 6 we summarize our results andmention some related results. 2

On Finding Minimal Two-Connected Subgraphs �Pierre KelsenVijaya RamachandranDepartment of Computer SciencesUniversity of Texas, Austin, TX 78712July 30, 1992AbstractWepresent e�cient parallel algorithms for the problems of �nding a minimal2-edge-connectedspanning subgraph of a 2-edge-connected graph and �nding a minimalbiconnected spanning sub-graph of a biconnected graph. The parallel algorithms run in polylog time using a linear numberof PRAM processors. We also give linear time sequential algorithms for minimally augmentinga spanning tree into a 2-edge-connected or biconnected graph.1 IntroductionIn this paper we consider the following two related problems: given a 2-edge-connected (bicon-nected) graph G, compute a minimal 2-edge-connected (biconnected) spanning subgraph of G,i.e., a 2-edge-connected (biconnected) subgraph in which the deletion of any edge destroys 2-edge-connectivity (biconnectivity). We present e�cient parallel algorithms for these problems.It is known that the corresponding problems of �nding minimum spanning subgraphs with theseproperties are NP-hard ([6]). Thus, it is natural to study the simpler problem of computingminimal spanning subgraphs with respect to these properties. The problems considered here haveapplications in the context of network reliability.Our interest in the parallel complexity of the above problems is prompted by the fact that both prob-lems admit very simple sequential algorithms that seem hard to parallelize. Thus, new techniquesare required to obtain an e�cient parallel solution for these problems. Several other well-knownproblems share this property, e.g., the problem of computing a maximal independent set in a graphand the problem of computing a depth-�rst search tree in a graph (see [11]). To illustrate this, con-sider the problem of �nding a minimal 2-edge-connected spanning subgraph. Let the input graphG have n vertices and m edges. We assume that G is 2-edge-connected. The obvious sequentialalgorithm �nds a minimal 2-edge-connected spanning subgraph of G by examining the edges of Gone at a time and removing an edge if the resulting graph is a 2-edge-connected spanning subgraph�Work supported in part by NSF Grant CCR-89-10707.1

