A CLASSIFICATION OF DATA TYPES
Nell B. Dale and Henry M. Walker”
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-90-17 June 1990

* Department of Mathematics, Grinnell College.

A Classification of Data Types

by Nell Dale
Department of Computer Sciences
The University of Texas at Austin

and Henry M. Walker!
Department of Mathematics
Grinnell College

Abstract

There is considerable variation in the terminology that is used in discussing the subject of
(abstract) data types. Further, discussions of individual data types often combine several
types into unnecessarily complex or interlinked structures and sometimes refer to a single
data type in inconsistent ways. This paper resolves many of these problems by proposing a
unified classification of a wide range of data types.

Introduction: The authors taught parallel sections of a junior level course entitled Data
Structures (CS7 in Curriculum ’78) last year. After discussing the topic for hours on end,
and, yes, even arguing for hours, we came to two conclusions: Data Structures is an inade-
quate and misleading title and the traditional paradigm used to present the material needs
reorganizing.

Data structures refers to the study of data and how to represent data objects within a
program; that is, the implementation of structured relationships. Over the last ten years
the focus has broadened considerably. We are now interested in the study of the abstract
properties of classes of objects in addition to how these objects might be represented in
a program. Johannes J. Martin puts in very succinctly: “... depending on the point of

view, a data object is characterized by its type (for the user) or by its structure (for the
implementer).”?

The topic of Data Structures has now been subsumed under the broader topic of Abstract

Data Types (ADTs): the study of classes of objects whose logical behavior is defined by a
set of values and a set of operations.

The traditional paradigm for studying Data Structures is based on characteristics of the im-
plementation of the structures. For example, a stack and a queue are classified as restrictive
versions of a list where access is limited to one or both ends of the list. The properties of
a stack and a queue can certainly be represented this way. However, the user does not care
about ends and restricted access. In fact the user does not care what happens when an item
is stored in a stack or a queue; the user is only interested in what is returned on a pop or a
dequeue: the item that is returned is the last one inserted in the case of a stack or the first
one inserted in the case of a queue.

During much of the discussion that led to this paper, the author was on sabbatical leave
from Grinnell College and was working as a Senior Lecturer in the Department of Computer
Sciences, The University of Texas at Austin.

Johannes J. Martin, Data Types and Data Structures, Prentice-Hall International Series in
Computer Science, C. A. R. Hoare, Series Editor.

Classification of Data Types Page 2

Figure 1: Classification Tree

Data Types
Scalar Composite
Ordinal Continuous Unstructured Structured Semi-structured
ENUMERATED RATIONAL SET STACK
SUBRANGE REAL KEYED TABLE QUEUE
INTEGER COMPLEX RECORD PRIORITY QUEUE
CHARACTER
BOOLEAN
FINITE GROUP | |
Non-Dimensional Linear Multi-Dimensional

TREE ARRAY

BINARY SEARCH TREE

HEAP

GRAPH | |

Non-Indexed Indexed
ARRAY
§ ‘ SEQUENCE
Homogeneous Nonhomogeneous
GENERALIZED LIST
Unsorted Sorted
LIST SORTED LIST

The study of ADTs requires that we step back and view data types from the functional view
of the user.? The classification proposed in this paper is based on such a view. Section 1
describes this classification in words, following a top-down organization. Then, within this
hierarchy, Section 2 uses axiomatic specifications to define each data type. This specification
clarifies individual operations for each data type and formalizes the similarities and differ-
ences between data types. Overall, this hierarchical, axiomatic specification of data types
provides a framework to review various traditional classifications of data structures.

While it is common to include the word abstract in the phrase “abstract data type”, the
perception of abstraction is often in the eye of the beholder. For example, an integer data
type often is based on the mathematical notion of these numbers, using operations such as
addition, subtraction, multiplication, and division. However, even for integers, choices may
be made for implementation. Integers may be limited to a specific range, or storage may
be allocated dynamically to accommodate integers of any size. In this paper, therefore, we
frequently drop the term “abstract”, but bear in mind that we are always referring to the
logical properties of a data type.

Classification of Data Types Page 3

Table 1: Summary of Data Type Specifications

Data Types: Data objects together with specified operations.
Scalar: Base type involves a single, elementary data object.
Ordinal: Data values are ordered and discrete.
Operations: Pred, Succ, Relational Operators (<, <,>,>,=,#),
Arithmetic
Continuous: Data values are not discrete.
Operations: Relational Operators (<, <,>,>, =, #),
Arithmetic
Composite: Data type combines one or more elementary data objects.
Unstructured: No relationship or ordering is specified or implied
among objects.
Operations: Store, IsThere, Delete, Find
Structured: An explicit relationship is specified among objects.
Non-Dimensional: No linear order or indexing is specified or implied;
the data may or may not be partially ordered.
Linear: A linear or total ordering is specified or implied.
Non-Indexed: No index variable or value is available.
Operations: Store, Delete, GetFirst, GetNext
Homogeneous: All data objects held within the structure
have the same type.

Unsorted: The linear ordering specification is external
to the data; the ordering may be supplied
by the user or programmer.

Sorted: The linear ordering may be inferred by the data
itself.

Nonhomogeneous: Individual data objects that make
the structure may have different types.
Indexed: A single index variable or value is given or implied.
Array: A linear stream of data of bounded length.
Operations: Store, Retrieve
Sequence: A linear data stream whose length is not bounded.
Operations: Store, Insert, Delete
Multi-Dimensional: Indexing requires multiple variables or values.
Operations: Store, Retrieve
Semi-Structured: A relationship is implied, but not stated among objects.
Operations: Store, Look, GetAnother (destructive)

Section 1: A Description of Data Types

This section organizes many standard data types by identifying several properties that distin-
guish these data types from each other. These properties then are used to develop a unified,
hierarchical classification for a wide range of data types. The results of this classification
are shown graphically in Figure 1. Table 1 presents a parallel summary of the classification
scheme using tabular form.

Classification of Data Types Page 4
Data Types = Scalar + Composite

At a top level, data types may be divided into two major categories, those involving individual
data values and those which combine several values within a single object. The first of these
is called the scalar data type, and normally the operations on this type allow the combining
of two values into a third or the modifying of one value to yield another. In contrast, data
types which combine several values are called composite data types, and the operations on

such composite types normally may be defined in terms of primitive store, retrieve and/or
delete operations.

Scalar = Ordinal + Continuous

Scalar data type in turn may be subdivided into two types, ordinal data types and continuous
data types. In ordinal data types, data models view the data values as being separate,
discrete objects. Data values within continuous data types, on the other hand, are viewed
as being part of a continuous, connected region of a line, plane, or n-dimensional space.

Ordinal Data Type involves discrete values, which often come with a total ordering. Such
types are built into many standard programming languages and include enumerated types,
integers, characters, Boolean type and subranges of these types. While all of these traditional
types are ordered in a natural way, this scalar type could also include finite groups which do
not have such a natural ordering. (For finite groups, however, an ordering can be imposed
on the finite values, merely by chosing one value to be smallest, another value next smallest,
etc.) For each of these cases, typical operations take advantage of this ordering and include
predecessor and successor operations and the relational operations (<, <,>,>,=,%). Since
many ordinal data types involve numbers, it is common for these types also to include various
arithmetic operations, such as addition, subtraction, multiplication, and division.

Continuous Data Type includes values such as the rational numbers, the real numbers,
and the complex numbers. In each case, the values are not discrete, and it is inappropriate
to ask what value immediately precedes another. (For example, it is hard to say what real
or rational number immediately precedes 1/2 .) Continuous data types normally involve
numbers, and operations customarily include the arithmetic functions addition, subtraction,

multiplication, and division. Some of these types also are ordered, in which case relational
operations may be defined.

Composite = Unstructured + Structured + Semi-Structured

Composite data types involve the combining of several individual objects into a larger whole.

Further, each of these composite types depends upon the fundamental notions of storing,
retrieving, and deleting objects from the composite structures.

In some cases, the combining of objects imposes additional structure on the objects. For
example, the objects may be placed in an order, the objects may be indexed, or various

relationships among data objects may be specified. Such types may be called structured
data types.

At the other extreme, no relationships may be stated or implied among the various objects,
and such data types are called unstructured.

At an intermediate level, some data types place some restrictions on the order in which data
may be stored or retrieved. Such data types may be called semi-structured.

Classification of Data Types Page 5

Unstructured Data Types place no constraints on the data objects being stored or re-
trieved, except that these objects may be required to all be from the same underlying type.
Further, no relationship among objects is stated or implied. Such data types includes sets,
keyed tables (sometimes called symbol tables), and records. Operations for these unstruc-
tured data types often are limited to simple statements to store data, to retrieve an object

(without removing 1t from the structure), to delete an object, and to determine if an object
is present (the Boolean IsThere operation.)

A Semi-Structured Data Type implicitly specifies which data object is accessed when-
ever a retrieve or delete operation is executed. For example, this implicit specification may
involve the time when objects were stored, or it may depend upon the order of store oper-
ations, although factors other than time or order may be used. These data types include
stacks, (FIFO) queues, and priority queues. Operations for semi-structured data types al-
ways involve store and delete capabilities, although these operations often are given different
names. These data types also provide a Empty operation to test if any data are presently

stored. In some cases, provision also is made to examine some or all of the data objects
being stored.

Structured = Non-Dimensional + Linear + Multi-Dimensional

Structured data types all impose some additional connections or structure upon individual

data objects. In a non-dimensional data type, the connections between objects are given
explicitly for various ordered pairs of objects.

In other cases, the structure is imposed by considering one or more variables or by utilizing
a natural ordering of data values. A structure based upon one variable or upon a total

ordering of the objects in the structure is called a linear data type, while a structure based
on two or more variables or values is said to be multi-dimensional.

A Non-Dimensional, Structured Data Type organizes data types by requiring each
application to specify relations between objects, either explicitly or implicitly. In a tree data
type, this relationship follows a strict hierarchy. In a search tree, the order of individual
data objects implies a further structure. In a heap, additional structure is given both by
the order of individual data objects and by the overall shape of the tree structure (although
there can be some debate about whether shape should be an axiomatic issue or a matter
of implementation.) In a graph data type, all relationships between pairs of data objects
must be stated explicitly. In any of these objects, a total ordering of the data objects
in the structure is neither stated nor implied. Operations for nondimensional data types
include means to store, retrieve, and delete individual data objects and to specify appropriate

connections among objects. Additional operations are present to move from one object to
another within the structure.

A Multi-Dimensional Data Type uses two or more specified variables to index individual
objects. Multi-dimensional arrays fall into this category. Operations for this data type often
are limited to a simple store and retrieve capability.

Linear —> Non-Indexed + Indexed

The data objects in a linear data type come with a total ordering which may be either
specified explicitly or implied. In an indexed data type, this ordering is specified explicitly
by a given variable, and the value of this variable serves as the mechanism to refer to
each object. For example, data objects may be referenced by a subscript in the notation
A1, As, As, As,... . In a non-indexed data type, the ordering of data objects may be inferred

from the data themselves, but storage and retrieval need not depend upon a separate index
variable.

Classification of Data Types Page 6

An Indexed Data Type uses a single, specified variable to index all data objects in the
structure. If a fixed amount of space for this structure is declared initially and a store to one
position has no effect on the data elsewhere in the structure, then the structure is called an
array. Otherwise, the amount of space may be considered as being unlimited or a store in
one position position i may change indexing of later items (data item a;4 is relabeled a4,
for example). In such case, the structure is called a sequence.

Non-Indexed = Nonhomogeneous + Homogeneous

A non-indexed, linear data type contains data that have been ordered. However, the or-
dering may be imposed separately by a user or programmer or it may be due to a known
ordering of the data objects themselves. At one extreme, the data type may be used to store
objects of differing individual types, and the resulting composite type is called nonhomo-
geneous. In these instances, individual data objects cannot be compared with each other,
and any sequencing of these objects must be done by a user or programmer. In contrast, in
a homogeneous data type, all individual objects that make up the structure have the same
type.

With either type of structure, it should be noted that the ordering may be used to index
various objects, giving index 1 (or 0) to the first item, index 2 (or 1) to the next, and so
forth. However, a user or programmer cannot necessarily refer to the n** item unless it is
already known that at least that many objects have been stored. A non-indexed data type
does not have pre-defined storage areas for various objects. Thus, it is inappropriate to
consider an operation such as Store(Object, Position) as being a primitive operation, since
the given position may not be defined at any given time. Indexing may be inferred as a side
effect of the linear ordering of data, but the indexing is not a fundamental part of the data
type.

A Nonhomogeneous Data Type consists of a linear sequence of data objects, and these
individual objects may come from several different data types. In this situation, any store
operation must specify where a new object is to be placed. Other operations may include
a means to delete an object, to find the first object GetFirst, to move from one object to
the next GetNext, and to determine the type of a specified object GetType. This data type
includes the generalized list data type, when data objects may be drawn from either a single
underlying type or from generalized lists of such objects.

Homogeneous = Unsorted 4 Sorted

A homogeneous data type involves a linear ordering of data. In this situation, it is possible
that the ordering may be inferred by the data objects themselves, the structure is said to be
sorted. If instead the sequencing of data objects is imposed only by the creation of the data
structure (by a user or a programmer), then the data type is said to be unsorted.

An Unsorted Data Type requires the user or programmer to specify where each subsequent
data object will be placed within the structure. For example, it might be specified that a new
data object be placed first or last in the structure or the object might be placed before or
after a specified object. Thus, for these structures, a simple store operation places a object
at the beginning of the list. Other operations may include a means to delete an object, to
find the length of the list, to obtain the first (or head) of the list, or to return the tail of
the list (the list with the head deleted). This unordered data type category includes the list
data type, when all data objects are drawn from a single underlying type.

Classification of Data Types Page 7
An Sorted Data Type depends upon an ordering inherent in the data objects themselves.
In such instances, it is customary to refer to the data in the structure as being sorted. Here,
the first object in the structure is the one that happens to be the minimum (or maximum) of
the objects stored. The second object is the second smallest (or second largest) object being
stored. Such an object is often called a sorted list. Operations for such structures involve

store or insert, delete, find the first object on the list (head), and obtain the list with the
first object deleted Tail).

Section 2: The Axiomatic Specification of Data Types

This section presents a formal definition of each composite data type presented in Section 1,
expanding the general description given in the previous section. This axiomatic specification
of data types complements and clarifies the hierarchical, verbal description given earlier.

Notes on Axiomatic Specifications

In an axiomatic specification, the abstract data type being defined is called the designated
domain or the carrier domain. The other data types involved in the operations on the carrier
domain are called auxiliary domains. There are four types of operations that can be defined
on an abstract data type: primitive constructors, constructors, observers, and iterators.

Primitive constructors return an instance of the carrier domain without taking one as input.
That is, a primitive constructor creates a new instance of the abstract data type. This new
instances is either empty or has no defined values stored within it. For obvious reasons,
these operations are often called Create. Create may be parameterless or it make take types
as parameters that set certain bounds on instances of the type.

Constructors take objects of the carrier domain as input and return objects of the carrier
domain. Observers are operators that take an instance of the carrier domain and return
results of a different type. That is, they observe the instance without changing it.

Tterators are operations that allow the user to view the items stored in an instance of the
carrier domain. In some data types, separate iterators are not necessary; in some data types,

iterators have no meaning; in some data types iterators must be explicitly defined using an
additional auxiliary data type to hold the items to be viewed.

Exceptions

We need a way to express two situations that produce exceptions which come up in our
specifications of data types. The first situation is where the application of an operation
causes an error. LTrying to pop a stack when the stack is empty is such a situation. The
second situation occurs in cases where the Create operation takes a parameter that represents
size. Here, we view the operation as creating the shell or structure where places for all future
values exist from the beginning rather than creating an empty structure which grows and
shrinks as values are stored into it. When a retrieval operation is applied to a place where
no value has been stored, an exception has occurred.

To handle these two situations, we introduce two constants, Error and Undefined, which are
a part of every data type. Error is returned when the application of the operation causes an
error. Undefined is returned when the slot in a structure exists, but the contents of a slot
have not been given a value.

Classification of Data Types Page 8

UNSTRUCTURED DATA TYPES

From a user’s view point, an unstructured data type is a composite data type where items
are put into a collection of items and retrieved from that collection of items. There is no
relationship among the items in the composite structure other than that they reside in the
same structure. The set is the classic unstructured data type. There are, however, three other

common data types that also belong in this category: the bag, the keyed table (sometimes
called a symbol table), and the record.

Set

The user of the abstract data type set expects it to model the mathematical data type set.
An empty set is created and items of the component type are inserted into the set and
deleted from the set. The only parameters needed for either operation are the set and the
item. Because the binary operations Difference, Union, and Intersection are so commonly
used, they have been included in the set of functions.

The names that we choose for the operations are, for the most part, obvious. Store is the
exception: We usually think of inserting an item into a set. We choose to use the verb Store
here to be consistent with its use in later data types. (Insert is reserved for a second operator
that adds an item to an abstract data but has a side effect of altering the position of other
items within the structure.)

structure Set (of Item)

interface Create — Set
Store(Set, Item) — Set
IsEmpty(Set) — Boolean
Card(Set) — Integer
IsIn(Set, Item) —— Boolean
Delete(Set, Item) — Set
Difference(Set, Set) — Set
Union(Set, Set) — Set
Intersection(Set, Set) — Set

end

axioms for il, 12 in Item, S, T in Set, let
Store(S, i1) =
IF IsIn(S, ii)
THEN S
IsEmpty(Create) = True
IsEmpty(Store(S, i1)) = False
Card(Create) = 0
Card(Store(S, i1)) = 1 + Card(S)
IsIn{Create, i1) = False
IsIn(Store(S8, i2), il) =
IF i1 = 12
THEN True
ELSE IsIn(S, i1)
Delete(Create, i1l) = Create
Delete(Store(S, i2), i1) =
IF i1 = i2
THEN S
ELSE Store(Delete(S, i1), 1i2)

Classification of Data Types Page 9

Difference(Create, T) = Create
Difference(Store(S, i1), T) =
IF IsIn(T, i1)
THEN Difference(S, T)
ELSE Store(Difference(S, T), il)
Union(Create, T) = T
Union(Store(S, i1), T) = Store(Union(S, T), il)
Intersection(Create, T) = Create ’
Intersection(Store(S, il), T) =
IF IsIn(T, i1)
THEN Store(Intersection(S, T), il)

ELSE Intersection(S, T)
end

A set does not have duplicates. This is represented in the constraint on the Store operation.
The Store does nothing if the item is already in the set. This property could have been
expressed in another way: We could have put no constraints on Store and let Delete take care
of removing all the extra duplicates. Union and Card would have to be altered accordingly.

Delete(Create, a) = Create
Delete(Store(S, i2), il) =
IF i1 = i2
THEN Delete(S, il)
ELSE Store(Delete(S, i1), i2)
Union(Create, T) = T
Union(Store(s, i1), T) =
IF IsIn(T, i1)
THEN Union(S, T)
ELSE Store(Union(S, T), il)
Card{(Create) = 0
Card(Store(S, i1)) = 1 + Card(Delete(S, ii1))

Since there is no structure in a set that we can use to allow us to move from one element to
another in order to view each one, we must define an iterator which takes each of the items
in the collection and puts them in an unsorted, non-indexed, linear list. Once in the list,
we can view each item in turn. The operations on unsorted, non-indexed, linear lists will

be defined in a later section. The constructor operation which takes a list and an item and
returns a list is the Make operation.

Tterator for ADT Set: Augment Domain with ADT UnsortedList

Members(Set) -— List
Members{Create) = Create
Members(Store(S, i1)) = Make(Members(S), iil)

Notice that Createis used twice in the same axiom. There is no ambiguity, however, because
the context determines which empty structure is being defined. The Members operation takes
a parameter of type Set, so the Create on the left of the equal sign refers to an empty set.

Members returns a parameter of type UnsortedList, so the Create on the right of the equal
sign refers to the empty unsorted list.

Classification of Data Types Page 10

If we use the second set of axioms where there is no constraint on Store, the general axiom
for Members would be

Members(Store(S, i1)) = Make(Members(Delete(S,i1)), il)

Bag

A Bag is a counted set. That is, duplicate items are allowed in the set. The axioms for a
Bag are identical to the first axioms defined on the set data type with the constraint on the
Store removed. We will not repeat the axioms.

Record

The Record Data Type is a non-homogeneous data type where < field,value > pairs are
stored. The Create operation takes a set of fields and returns the structure with the fields
defined but the associated values undefined.

structure Record (of <Field, Value>)
interface Create(Set of Field) —— Record
Store(Record, Field, Value) — Record
Find(Record, Field) — Value
end

axioms for fields C Set of Field, f1, £2 in fields, v in Value,
R in Record, let
Find{(Create(fields), fi) = Undefined
Find(Store(R, f2, v), f1) =
IF f1 = £2
THEN v
ELSE Find(R, f1)
end

Since the constants in the fields are known in advanced, there is no need to define an iterator.
The same is true for a set if the component type is limited in size. However, because this is
not the general case we included an iterator.

Keyed Tables

In the abstract data type keyed table, the items in the unstructured composite are <
name, value > pairs. The pairs are inserted into the collection, removed by specifying the
name, and the collection is searched for the value associated with a name. There are no
common binary operations applied to keyed tables.

In one sense the keyed table is like the record: The items contained in the collection are
made up of pairs where the first one of the pair is used to identify and retrieve the second.
The difference between a record and a keyed table is that the fields in a record come from
a closed, predefined type. The Create operation creates a structure where the fields exist
waiting for the associated values to be stored. The names in a < name,value > pair may or
may not be known in advanced. The Create operation is not parameterized; it returns an
empty collection.

Classification of Data Types Page 11

Keyed Table

structure KeyedTable (of <Name, Value>)

interface Create — KeyedTable
Store(KeyedTable, Name, Value) —— KeyedTable
Delete(KeyedTable, Name) — KeyedTable
Find(KeyedTable, Name) — Value
IsIn(KeyedTable, Name) — Boolean
IsEmpty(KeyedTable) — Boolean

end

axioms for nl, n2 in Name, v in Value, KT in KeyedTable, let
Delete(Create, nl) = Create
Delete(Store(XT, n2, v), nil) =
IF nl = n2
THEN Delete(KT, ni)
ELSE Store(Delete(KT, ni), n2, v)
Find(Create, nl) = Error
Find(Store(XT, n2, v), nl) =
IF nl = n2
THEN v
ELSE Find(XT, ni)
IsIn(Create, ni) = False
IsIn(Store(XT, n2, v), nl) =
IF nl = n2
THEN True
ELSE IsIn(XT, ni)
IsEmpty(Create) = True
IsEmpty(Store(KT, nl, v)) = False
end

The axioms state that trying to find a < name,value > pair when no pair has been stored
with that name is an error condition.

In the following iterator definition we use the data type SortedList to hold the names to
impose an order on the way in which the names will be viewed.

Iterator for ADT KeyedTable: Augment Domains with ADT SortedList

ListOfNames(KeyedTable) — SortedList
List0fNames(Create) = Create
List0fNames(Store(KT, nl, v))

= Insert(List0fNames(KT), ni)

Summary of Unstructured Types

The unstructured composite data types can be characterized by patterns in their axioms:
there is only one constructor operation that increases the number of elements in the collection
and one operation that reduces the number of elements in the collection. The operation that
deletes an item from the collection takes two parameters: the name of the structure and a
parameter that specifies which item to remove, the item, a field, or a name.

One of the types, the record, is'a fixed size. The Create operation takes a parameter that
determines the size. In such a case, the IsEmpty operation has no meaning. The equivalent
operation would be IsUndefined which would return true if all of the fields were undefined.
However, this does not seem to be a particularly useful operation.

Classification of Data Types Page 12

SEMI-STRUCTURFED DATA TYPFES

From the user’s view point, a semi-structured data type is a collection of items which has
a special or designated item but no logical relationship exists among the rest of the items
in the collection. The operation that deletes an item or views an item knows that it is this
designated item that is to be deleted or returned. The stack, the FIFO queue, and priority
queue fall into this category.

Stack

In the stack, the designated item is the last item that was put into the collection. The
axioms for the stack are used frequently to describe the axiomatic approach to specifying
the behavior of an abstract data type. The operations even have their very own names.

structure Stack (of Item)
interface Create — Stack
Push(Stack, Item) — Stack
Pop(Stack) — Stack
Top(Stack) — Item
IsEmpty(Stack) — Boolean
end

axioms for all S in Stack, i in Item, let

Pop(Create) = Error

Pop(Push(S, 1)) = S

Top(Create) = Error

Top(Push(S, 1)) =1
IsEmpty(Create) = True
IsEmpty(Push(S, 1)) = False

end

FIFO Queue

In the FIFO queue, the designated item is the first item put into the collection. The operation
that puts an item into the FIFO queue is usually called Eng; the operation that removes
an item is usually called Deg; and the operation that views the designated item is usually
called First.

structure Queue (of Item)
interface Create — Queue
Eng(Queue, Item) — Queue
Deq(Queue) — Queue
First(Queue) — Item
IsEmpty(Queue) — Boolean
end

Classification of Data Types

axioms

end

for Q in Queue, 1 in Item, let
Deq(Create) = Error
Deq(Enq(Q, i)) =
IF IsEmpty(Q)
THEN Create
ELSE Enq(Deq(Q), i)
First(Create) = Error
First(Enq(Q, 1)) =
IF IsEmpty(Q)
THEN 1
ELSE First(Q)
IsEmpty(Create) = True
IsEmpty(Eng(Q, i)) = False

Priority Queue

Page 13

In the priority queue, the items are made up of < item,priority > pairs. The designated
item is the item with the highest priority. The operation that deletes the designated 1tem is
usually called Serve in a priority queue, and the operation that views the designated item is
usually called Next. In the following axioms we use the relational operator greater than (>)
to compare priorities. Note that highest priority may or may not mean greatest value.

structure
interface

end
axioms

PQueue (of <Item, Priority>)
Create —— Plueue

Eng(PQueue, Item, Priority) — PQueue

Serve(PQueue) —— PQueue
Next (PQueue) — Item
IsEmpty(PQueue) — Boolean

for PQ in PQueue, i1, i2 in Item, pl, p2 in Priority, let

Serve(Create) = Error

Serve(Eng(Create, i1, pl)) = Create
Serve(Enq(Enq(PQ, i1, pi1), i2, p2))

IF pi > p2

THEN Enq(Serve(Enq(PQ, i1, pl)), i2, p2)
ELSE Enq(Serve(Enq(PQ, i2, p2)), i1, pl)

Next(Create) = Error
Next (Eng(Create, i1, pil)) = ii

Next (Eng(Enq(PQ, i1, pl), i2, p2))

IF pl > p2

THEN Next (Enq(PQ, i1, pi))
ELSE Next(Enq(PQ, i2, p2))

IsEmpty(Create) = True

IsEmpty(Enq(PQ, il, pl) = False

Summary of Semi-Structured Data Types

The semi-structured data types can be characterized by the fact that the operation that
deletes an item takes no item as a parameter. The item to be removed (or viewed) is the
designated item. It is the definition of the designated item that distinguishes among these
data types. Since the names of the operations are different across the data types in this
category, they are summarized below.

Classification of Data Types Page 14

FIFO Priority
Operation Stack | Queue Queue
Insert Item Push Eng Enq
Delete Designated Item Pop Deq Serve
Observe Designated Item Top First Next

It is interesting to note that the priority queue can be used to simulate both the stack and the
FIFO queue. If a time stamp is attached to each item to use as the priority, the designated
item in the stack is the one with the most recent time stamp and the designated item in the
FIFO queue is the one with the oldest time stamp.

STRUCTURED DATA TYPES

Linear Data Tvpes

Linear data types are those that the user views as having a first, a next, and a last. If it is a
property of the type that the user access the items by position, then the linear data type is
called an indexed linear list. If the items are only accessed by moving from one to the next,
the data type is called a non-indexed linear list. Often the term linear list is used to refer
to all linear data types, leading to confusion about such operations as “storing an item” and
“inserting an item”. We think that there are two distinct categories of data types.

Indexed

There are two types of indexed linear structures: the array where an index is permanently

bound to an item and the sequence where an index reflects the item’s current position in the
list.

Array

The array data type is a collection of < index,value > pairs where the bounds on the
index set are known at the time an instance of an array data type is created. Like the
record data type, a newly created instance of an array data type is not empty; the structure
exists, but the value for each < index,value > pair is undefined. An attempt to store an
< indez,value > pair where the index is not within the bounds of the array causes an error.

structure Array (of <Index, Value>)
interface Create(Index, Index) — Array
LoBound(Array) — Index
HiBound(Array) — Index
Store(Array, Index, Value) — Array
Retrieve(Array, Index) — Value
end

Classification of Data Types Page 15

axioms

end

Sequences

for all A in Array, 11, 12, i3, i4 in Index, and
v in Value, let
LoBound(Create(i3, i4)) — i3
LoBound(Store(A, i1, v)) — LoBound(4)
HiBound(Create(i3, i4)) — i4
HiBound(Store(d, i1, v)) — HiBound(4)
Store(d, i1, v) =
IF (il < LoBound(4)) or (i1 > HiBound(4))
THEN Error
Retrieve(Create(i3, i4), il) =
IF (i1 < LoBound(4)) or (i1 > HiBound(A))
THEN Error
ELSE Undefined
Retrieve(Store(a, i2, v), i1) =
IF (i1 < LoBound(4)) or (il > HiBound(A))
THEN Error
ELSE IF (i1 = i2)
THEN v
ELSE Retrieve(a, 1i1)

The items in a sequence are also < tndex,value > pairs. However, the index represents the
value’s current position in the sequence and may change as other items are inserted into the
sequence. The Create operation has no parameters; it returns an empty sequence. There
are two operations that add items to the collection of items: the Store operation which puts
an item into a specified place in the sequence and the Insert operation which inserts an item
into a specified position and shifts all those items in that position and subsequent positions

down one.

An error condition occurs if an attempt is made to store or insert an item into a position in
the list that does not already exist or is greater than the length of the list plus 1. Therefore
we will need an operation that will return the length of the sequence.

structure
interface

end

Sequence (of <Index, Value>)

Create — Sequence

Store(Sequence, Index, Value) — Sequence
Length(Sequence) — Integer
Insert(Sequence, Index, Value) — Sequence
Delete(Sequence, Index) —— Sequence
Retrieve(Sequence, Index) — Value
Find(Sequence, Value) — Index
Replace(Sequence, Index, Value) — Sequence

Classification of Data Types Page 16

axioms for all S in Sequence, i1, i2 in Index,
and vi, v2 in Value, let
Length(Create) = 0
Length(Store(S, i1, vi1))
Store(S, i1, vi) =
IF i1 > Length(S) + 1
THEN Error
ELSE 1IF i1 <= Length(S)
THEN Replace(S, i1, vi)
Insert(Create, i2, v2) = Store(Create, i2, v2)
Insert(Store(S, Length(S) + 1, v1), i2, v2) =
IF i2 > 1 + Length(s)
THEN Error
ELSE IF 12 = Length(S) + 1
THEN Store(Store(S, i2, v2), i2+1, vil)
ELSE Store(Imsert(S, i2, v2), Length(S)+2,v1)
Retrieve(Create, 12) = Error
Retrieve(Store(S, i1, vi), i2) =
IF 12 = i1l
THEN +vi
ELSE Retrieve(S, i2)

Find(Create, vi) = Error
Find(Store(S, i1, v2), vi) =
IF v2 = vi
THEN i1
ELSE Find(S, v1)
Delete(Store(S, Length(S) + 1, vi1), i2) =
IF i2 > Length(S) + 1
THEN Error
ELSE IF i2 = Length(S) + 1
THEN S
ELSE Store(Delete(S, i2), Length(S), wvi)
Replace(Create, i2, v2) = Error
Replace(Store(S, Length(S) + 1, vi), i2, v2) =
IF i2 = Length(S) + 1
THEN Store(S, Length(S) + 1, v2)
ELSE Store(Replace(S, i2, v2), Length(S)+1, vi)

1 + Length(S)

Summary of Indexed Linear Structures

Arrays are used so often to represent sequences in a program that they are frequently thought
to be the same thing. There are, however, two distinctions between arrays and sequences.
Arrays are fixed size; the Create operation returns the structure with the index part of the
< indez,value > pairs already defined. Once a value is stored with an index, the value stays
bound to the index until another value is stored with that same index.

In a sequence, the Create operation returns an empty sequence. The binding of the index
and the value is only temporary. It represents the current position of the value within the
sequence.

Arrays and records are similar. Both have their structure built by the create operation. The

array, however, is linear because the index type is ordered, and the record is unstructured
because the set of fields is not ordered.

Classification of Data Types Page 17

We have not included the string as a separate abstract data type. It is our feeling that
the string is a special case of the sequence. The additional operations normally associated
with strings such as concatenate, substring, and pattern match can be specified using the
sequence axioms.

Non-Indexed

Homogeneous

The non-indexed homogeneous linear structured data type is what most users mean when
they say “linear list.” The property of position that is used in the indexed linear structured
data type is implicitly there, but is immaterial to the user. The operations do not use
position as a parameter. All of the items in the list are of the same type.

The two data types in this category differ in the same way that the two data types in the
indexed category do: one has only one operation that increases the size of the structure, and
the other has two. The result is that the items in the first data type are unordered. The
items in the second data type are inserted into their sorted position in the list.

Unsorted

structure UnsortedList (of Item)

interface Create — UnsortedlList
Make (UnsortedList, Item) — UnsortedList
Delete(UnsortedlList, Item) — UnsortedList
Head(UnsortedList) — Item
Tail (UnsortedlList) —— UnsortedList
IsEmpty(UnsortedList) — Boolean
IsThere(Unsortedlist, Item) — Boolean
Length(UnsortedList) —— Integer

end

axioms for i1, i2 in Item, L in UnsortedList, let
Head(Create) = Error
Head (Make(L, i1)) = il
Tail(Create) = Error
Tail (Make(L, i1)) =L
Delete(Create, i1) = Create
Delete(Make(L, i2), il1) =
IF i1 = i2

THEN L

ELSE Make(Delete(lL, i1), 1i2)
IsEmpty(Create) = True
IsEmpty(Make(L, i1)) = False
IsThere(Create, il) = False
IsThere(Make(l, 12}, i1) =

IF i1 = 12

THEN True

ELSE IsThere(L, il)
Length(Create) = 0
Length(Make(L, i1)) = 1 + Length(L)

end

Classification of Data Types Page 18

Sorted

structure
interface

end
axioms

end

SortedList (of Item)

Create — Sortedlist

Make(SortedList, Item) — SortedList
Insert(SortedList, Item) — Sortedlist
Delete(SortedList, Item) — SortedList
Head(SortedList) — Item
Tail(SortedlList) -—— SortedList
IsEmpty(SortedList) — Boolean
IsThere(SortedList) — Boolean
Length(SortedList) — Integer

for i1, 12 in Item, L in SortedlList, let
Head(Create) = Error
Head (Make(L, i1)) = il
Tail(Create) = Error
Tail (Make(L, i1)) = L
Insert(Create, il) = Make(Create, ii)
Insert (Make(L, i2), il) =
IF i1 < i2
THEN Make(Insert(L, il1), i2)
ELSE Make(Make(L, i2), i1)
Delete(Create, il) = Error or Create
Delete ((Make(L, i2), ii1) =
IF i1 = 12
THEN L
ELSE Make(Delete(L, i1), i2)
IsEmpty(Create) = True
IsEmpty(Make(L, i1)) = False

IsThere(Create, il) = False
IsThere(Make(L, i2), i1) =
IF i1 = i2
THEN True
ELSE IF i1 < i2
THEN IsThere(L, i1)
ELSE False
Length(Create) = 0
Length(Make(L, i1)) = 1 + Length(L)

Summary of Non-Indexed Linear Structure

The only difference in the sorted and unsorted specifications is the additional operator Insert
in the sorted version.

Non-Homogeneous

The only traditional data type in this category is the abstract data type usually referred to
as a generalized list. A generalized list is a linear structured data type where the items in
the structure can either be data items (often called atoms) or other generalized lists.

Classification of Data Types Page 19

type ComponentType = (Atom, GenList)
structure GenList (of ComponentType)
interface Create — GenList

IsEmpty(GenList) — Boolean
WhichType(Component) — ComponentType
Make(GenList, Component) — GenlList
Concat(GenList, GenList) — GenList
Head(GenList) — Component
Tail(GenList) — GenList

end

axioms for c¢ in Component, GL1, GL2 in GenList,
IsEmpty(Create) — True
IsEmpty(Make(c, GL1)) = False
Head(Create) = Error
Head (Make(GL1, c)) = ¢
Tail(Create) = Error
Tail (Make(GL1, <)) = GL1
Concat(Create, GL1) = GL1
Concat (Make(GL2, c), GL1) =
Make(Concat (GL2, GL1), c)
end

Augment Domains with ADT List

List(GenList) —— UnsortedList
List{(Create) - Create
List (Make(Gll, c)) =
IF WhichType(c)) = Atom
THEN Make(List(Gl1), c))
ELSE Concat(List(Gl1), List{(c))

Multi-Dimensional

The specifications for multi-dimensional arrays are a direct extension of the specifications
for arrays. We will give only the specification for two-dimensional arrays here.

structure TwoDArray (of <Index, Index, Value>)

interface Create(Index, Index, Index, Index) — Array
LoBoundl(Array) — Index
HiBoundi(Array) — Index
LoBound2(Array) — Index
HiBound2(Array) — Index
Store(Array, Index, Index, Value) — Array
Retrieve(Array, Index, Index) — Value

end

Classification of Data Types Page 20

axioms for all A in TwoDArray, il, i2, i3, i4, i5, i6 in Index,
and v in Value, let
LoRound1(Create(i3, i4, i5, i6)) —— 13
LoBound1(Store(A, i1, i2, v)) —— LoBoundi1{A)
HiBoundi{(Create(i3, i4, i5, i6)) -— i4
HiBound1(Store(A, iil, i2, v)) — HiBound1(A)
LoBound2(Create(i3, i4, i5, i16)) —— ib
LoBound2(Store(4, i1, i2, v)) —— LoBound2(A4)
HiBound2(Create(i3, i4, ib, i6)) —— i6
HiBound2(Store(&, i1, i2, v)) —— HiBound2(A)
Store(A, i1, i2, v) =
IF (i1 < LoBound1(A)) or (i1 > HiBoundi(A))
or (i2 < LoBound2(A4)) or (i2 > HiBound2(A))
THEN Error
Retrieve(Create(il3, i4, i5, i6), i1, i2) =
IF (i1 < LoBoundi(A)) or (i1 > HiBoundi(Aa))

or (i2 < LoBound2(4)) or (i2 > HiBound2(A4))
THEN Error

ELSE Undefined
Retrieve(Store(d, i1, i2, v), i3, i4) =
IF (i3 < LoBoundi{(A)) or (i3 > HiBoundi1(4})

or (i4 < LoBound2(&)) or (i4 > HiBound2{(A))
THEN Error

ELSE IF (i1 = i3) and (i2 = i4)
THEN v
ELSE Retrieve(d, i3, i4)
end

Non-Dimensional

This category contains two basic data types, the tree and the graph. In fact, a tree is
technically a restricted type of graph, although the user of the abstract data type tree will
probably not view it that way. Similarly, a search tree and a heap can be considered as
restricted type of tree, but users often consider these special trees as separate abstract data
types in their own right. In the next two sets of axioms, we focus on binary trees and binary

search trees. A natural extension of these axioms would produce k-way trees and k-way
search trees.

Binary Tree

As in the case of sorted and unsorted lists and sequences and arrays, there are different types

of binary trees. Here, a simple binary tree has only a store operation, while both binary
search trees and heaps have insert operations.

Binary Tree

structure BinTree {of Item)

interface Create — BinTree
Make(BinTree, Item, BinTree) — BinTree
LeftTree(BinTree) — BinTree
RightTree(BinTree) — BinTree
Data{BinTree) — Item
IsEmpty(BinTree) — Boolean

end

Classification of Data Types Page 21

axioms for all BT1, BT2 in BinTree, il in Item, let
LeftTree(Create) = Error
LeftTree(Make(BT1, ii, BT2)) = BT1
RightTree(Create) = Error
RightTree(Make(BT1, il, BT2)) = BT2
Data(Create) = Error
Data(Make(BT1, ii, BT2)) = ii
IsEmpty(Create) = True
IsEmpty(Make(BT1, i1, BT2)) = False

end

Iterator for Binary Tree: Augment the Domains with ADT Queue (of Data)

PreOrder(BinTree) — Queue
Concat(Queue, Queue) — Queue
Concat{(Q, Create) = Q
Concat(Q, Enq(P, il)) = Enq(Concat(Q, P), il)
PreOrder(Create) = Create
PreOrder (Make(BT1, ii, BT2)) =
Concat (Concat(Enq(Create, i1), PreOrder(BT1)),
PreOrder(BT2))

Binary Search Trees

When the operations for a BinTree are augmented with an Insert operation that inserts the
item into is proper place in the tree, the result is a binary search tree. Because of the length
of these axioms, we will only show the Insert and the corresponding Delete. We also need
an operation that returns the maximum element in a binary search tree in order to specify
the Delete operation correctly. This operation can be made part of the interface or can be
kept hidden from the user. Here, we will add it to the interface.

structure BSTree (of Item)
interface

Insert(BSTree, Item) — BSTree
Delete(BSTree, Item) — BSTree
MaxE1(BSTree) — Item

end

Classification of Data Types Page 22

axioms for all ii, i2 in Item, BST1, BST2 in BSTree, let
Insert(Create, il) = Make(Create, il, Create)
Insert (Make(BST1, i2, BST2), il) =
IF i1 < 12
THEN Make(Insert(BST1, il), i2, BST2)
ELSE Make(BST1, i2, Insert(BST2, i1))
MaxEl(Create) = Error
MaxEl(Make(BST1, i1, BST2))
IF IsEmpty(BST2)
THEN il
ELSE MaxE1(BST2)
Delete(Create, il) = Create
Delete(Make(BST1, i2, BST2), il) =

IF i1 = i2
THEN IF IsEmpty(BST1)
THEN BST2
ELSE IF IsEmpty(BST2)
THEN BST1

ELSE Make(Delete(BST1, MaxE1(BST1)),
MaxE1(BST1), BST2)
ELSE IF i1 < i2
THEN Make(Delete(BSTi, it1), i2, BST2)
ELSE Make(BST1, i2, Delete(BST2, il))

Heaps

Just as one ordering of data within a tree yields a binary search tree, another ordering
produces a partially-ordered tree. In most cases, users want partially-ordered trees to have
a special, balanced shape, and the resulting structure is called a heap. It should be noted,
however, that there is some debate about whether shape is an abstract property (to be given
in axioms) or whether shape is an implementation issue. In the context of binary search trees,
shape gives rise to the notion of AVL trees, but many consider these height-balanced trees to
vary only in implementation from other binary search trees; there may not be any change in
axioms from one to the other. Similarly, partially-ordered trees and heaps can be viewed as
having similar properties. When users often rely upon shape in their thinking and analysis,
however, it may be helpful to incorporate this notion of shape in the axioms themselves. The
following axioms for heaps illustrate how shape can be built into an axiomatic specification
of a data type.

structure Heap (0f Item)

interface Create — Heap
Make(Heap, Item, Heap) — Heap
Left(Heap) — Heap
Right(Heap) —— Heap
Data(Heap) — Item
Insert(Heap, Item) — Heap
Delete(Heap) — Heap
TopHeap(Heap) — Item
IsEmpty(Heap) — Boolean

end

Classification of Data Types Page 23

axioms for all Hi, H2 in Heap, 12 in Item, let
Left (Create) = Error
Left (Make(H1, i1, H2)) = Hi
Right(Create) = Error
Right(Make(Hi, i1, H2)) = H2
Data(Create) = Error
Data(Make(H1, i1, H2)) = il
IsEmpty(Create) = True

IsEmpty(Make(H1, i1, H2)) = False
TopHeap(Create) = Error
TopHeap(Make(H1, i1, H2)) = il

The axioms for Delete and Insert require several auxiliary operations which are included in
what follows.

Height (Heap) —— Integer

Full(Heap) —— Heap

Last(Heap) — Item

DellLast(Heap) — Heap

ReHeap(Heap) - Heap

Height (Create) = 0
Height (Make(H1, d1, H2)) = Max(Height(H1), Height(H2)) + 1
Full(Create) = True
Full(Make(H1, i1, H2)) =
IF Height(H1) <> Height(H2)
THEN False
ELSE Full(H1) AND Full(H2)
Insert(Create, il) = Make(Create, i1, Create)
Insert(Make(H1, i2, H2), i1) =
IF NOT Full(H1) OR Full(Make(H1, i2, H2))
THEN
IF 11 < i2
THEN Make(Insert(H1, i1), i2, H2)
ELSE Make(Insert(H1, i2), i1, H2)
ELSE
IF i1 < i2
THEN Make(Hi, i2, Insert(H2, i1))
ELSE Make(H1, i1, Insert(H2, i2))
Last(Create, i1, Create) i1
Last(Make(H1, i1, H2))
IF Full (Make(H1, i1, H2)) OR NOT Full(H2)
THEN Last{(H2)
ELSE Last(H1)
DellLast{(Create, il, Create)
DellLast(Make(Hi, i1, H2))
IF Full (Make(H1, i1, H2)) OR NOT Full(H2)
THEN Make(H1, i1, Dellast(H2))
ELSE Make(Dellast(Hi), i1, H2)

Delete(Create) = Error

Delete(Make(Create, il, Create)) = Create
Delete(Make(H1, i1, H2)) =

ReHeap(Dellast (Make(H1, Last(Make(H1, i1, H2)) , H2)

Create

il

(lassification of Data Types Page 24

ReHeap(Make(Create, i1, Create) = Make(Create, il, Create)
ReHeap(Make(H1, i1, Create)) =
IF i1 < Data(H1)
THEN Make(Make(Create, il, Create), Data(Hi), Create))
ELSE Make(Hi, i1, Create)
ReHeap(Make(H1, il, H2)) =
IF (i1 > Data(H1)) AND (i1 > Data(H2))
THEN Make(Hi, i1, H2)
ELSE
IF Data(H1) > Data(H2)
THEN
Make (ReHeap(Make(Left(H1), i1, Right(H1))), Data(H1), H2)
ELSE
Make(H1, Data(H2), ReHeap(Make(Left(H2), il, Right(H2))))

Graphs

Mathematically, a Graph is a nonempty set of Vertices and a set of Edges. In the axiomatic
specification, it is more convenient to allow the vertex set to be empty and to view the edge
set as a collection of < Vertex,Vertexr, Weight > triples. Most axioms for graphs then are
completely analogous to those for sets, with one set of axioms for the vertex set and one for
the edge set. The relationship among these operations is given in the following table.

Operation Set Vertex Set Edge Set
Insert Item Store StoreVertex StoreEdge
Determine if Set Empty | IsEmpty | VerticesEmpty | EdgesEmpty
Count Items Card VertCard EdgeCard
Delete Item Delete DelVertex DelEdge
Find Item in Set IsIn IsVertex IsEdge

The axioms for a graph distinguish between the vertex set and the edge set using both
operations StoreVertex and StoreEdge as primitives, subject to the constraint that an edge
may be stored only if both of its vertices are present. Individual axioms for graphs now
generally follow the same form as for sets, except that the deletion of a vertex from a graph
also deletes all the edges associated with the deleted vertex.

structure Graph (of <vertex> and <Vertex, Vertex, Weight>)

interface Create — Graph
StoreVertex(Graph, Vertex) — Graph
VerticesEmpty(Graph) — Boolean
VertCard (Graph) —— Integer
DelVertex(Graph, Vertex) — Graph
IsVertex(Graph, Vertex) -—— Boolean
StoreEdge (Graph, Vertex, Vertex, Weight) —— Graph
EdgesEmpty(Graph) — Boolean
EdgeCard (Graph) — Integer
DelEdge(Graph, Vertex, Vertex) — Graph
IsEdge(Graph, Vertex, Vertex) — Boolean
GetWeight (Graph, Vertex, Vertex) — Weight

end

Classification of Data Types Page 25

axioms

for all v, vi, v2, v3, v4 in Vertex, w in Weight,

G in Graph, let
StoreVertex(G, v) =

IF IsVertex(G, v)
THEN G

VerticesEmtpy(Create) = True
VerticesEmpty(StoreVertex(G, v)) = False
VerticesEmpty(StoreEdge(G, vi, v2, w)) = VerticesEmpty(G)
VertCard(Create) = 0
VertCard(StoreVertex(G, vi)) = 1 + VertCard(G)
VertCard(StoreEdge(G, v1, v2, w)) = VertCard(G)
DelVertex(Create, v) = Create
DelVertex(StoreVertex{(G, vi), v) =

IF (v1 = v)

THEN G

ELSE StoreVertex(DelVertex{(G, v), vl)
DelVertex(StoreEdge(G, vi, v2, w), v) =

IF (v1i = +v) OR (v2 = v)

THEN DelVertex(G, v)

ELSE StoreEdge(DelVertex(G, v), vi, v2, w)
IsVertex(Create, v) = False
IsVertex(StoreVertex(G, v1), v) =

IFvi=v

THEN True

ELSE IsVertex(G, v)
IsVertex(StoreEdge(G, v1, v2, w) = IsVertex(G, w)
StoreEdge(G, vl, v2, w) =

IF IsVertex(G, vi) AND IsVertex(G, v2)
THEN IF ISEdge(G, vi, v2)
THEN G
ELSE <null>
ELSE G
EdgesEmtpy(Create) = True
EdgesEmpty(StoreVertex(G, v)) = EdgesEmpty(G)
EdgesEmpty(StoreEdge(G, vi, v2, w)) = False
EdgeCard(Create) = 0
EdgeCard(StoreVertex(G, vi)) = EdgeCard(G)
EdgeCard(StoreEdge(G, v1, v2, w)) = 1 + EdgeCard(G)
DelEdge(Create, v) = Create
DelEdge(StoreVertex(G, v1), v2, v3) =
StoreVertex(DelEdge(G, v2, v3), vi)
DelEdge(StoreEdge(G, vi, v2, w), v3, v4) =
IF (v1 = v3) AND (v2 = v4)
THEN G
ELSE StoreEdge(DelEdge(G, v3, v4), vl, v2, w)

IsEdge(Create, vl, v2) = False
IsEdge(StoreVertex(G, v), vi, v2) = IsEdge(G, v1, v2)
IsEdge(StoreEdge(G, v3, v4, w), vi, v2) =
IF (vi = v3) AND (v2 = v4)
THEN True
ELSE IsEdge(G, vi, v2)

Classification of Data Types Page 26

GetWeight(Create, vi, v2) = Undefined
GetWeight (StoreVertex(G, v), vi, v2) = GetWeight(G, vi, v2)
GetWeight (StoreEdge(G, v3, v4, w), vi, v2) =
IF (v3 = v1) AND (v4 = v2)
THEN w
ELSE GetWeight(G, vi, v2)
end

Graph algorithms often depend upon a list of vertices that are adjacent to a given one. The
appropriate axioms use the data type list to hold vertex names.

Augment the Domains with the ADT List (of Edges)

FromEdges(Graph, Vertex) — List
ToEdges(Graph, Vertex) —— List

FromEdges(Create, vl) = Create
FromEdges (StoreVertex(G, v), vl) = FromEdges(G, v1)
FromEdges (StoreEdge(G, v3, v4, w), vl) =
IF vi = v3
THEN Store(FromEdges(G, v1), v4)
ELSE FromEdges(G, v1)
ToEdges(G, v1) = Create
ToEdges(StoreVertex(G, v), vi) = ToEdges(G, vi)
ToEdges(StoreEdge(G, v3, v4, w), vi) =
IF vl = v4
THEN Store(ToEdges(G, v1), v3)
ELSE ToEdges(G, vi)

Conclusions: This paper has presented a coherent classification of data types, based upon
a hierarchical tree organization. Throughout the tree, properties or constraints are added in
moving from each node to its children, and each node inherits all properties of its ancestors.
The result is a unified classification of a wide variety of data types. Within this framework,
this paper presented a careful, axiomatic specification of each data type. This specification
clarified the individual operations for each data type and allowed similarities and differences
of operations on various data types to be highlighted.

