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i. Introduction

Rational algebraic curves are widely used in computer modeling design and it is recognized
that both implicit and parametric representations for rational curves have their inherent
advantages: the parametric representation is best suited for generating points along a curve,
whereas the implicit representation is most convenient for determining whether a given point
lies on a specific curve [Sederberg & Anderson, 1984]. This motivates the search for a means
of converting from one representation to the other. In this paper, we give a complete method
of parameterization for algebraic curves in an affine space of any dimension.

In [Abhyankar & Bajaj, 1988], a method for computing the genus of plane curves is given,
and if genus = 0, they also gave a method for computing the rational parametric equations of
the curve. A natural way for parameterizing a space curve is first to find a plane curve which
is birational to the space curve and then a set of parametric equations for the space curve
can be found if we can find a set of parametric equations for the plane curve. In [Abhyankar
& Bajaj, 1989], this has been done for a special class of space curves, i.e., space curves which
can be represented by transversal intersection of two surfaces.

On the other hand, it is a well known result in algebraic geometry that an irreducible va-
riety is birational to a hypersurface [Hartshorne, 1977]. In particular, an irreducible algebraic
curve is birational to an irreducible plane curve. However, we need a constructive method
for calculating that irreducible plane curve to solve the general parameterization problem for
arbitrary algebraic curves. Such a constructive method implicitly exists in a classic book of
Ritt [Ritt, 1954]. In this paper, based on Ritt’s concept of resolvents, we give algorithms
of constructing a hypersurface which is birational to a given irreducible variety. Birational
maps between the hypersurface and the variety can also be given. Our algorithms for con-
structing resolvents are different from Ritt’s algorithm in two aspects. First, the input of
our algorithms is a set of generators of an ideal, while the input of Ritt’s algorithm is an
irreducible characteristic set of a prime ideal. Second, our algorithms use Ritt—Wu’s decom-
position algorithm [Wu, 1986] or the Grébner basis method [Buchberger, 1985]. In [Bajaj,
1990], a similar method was given based on “multi-polynomial remainder sequences”. But
that method, among other things, may generate extraneous factors.

In the case of algebraic curves, this implies that for an irreducible algebraic curve C,
we can construct a plane curve which is birational to C. Thus, to find a set of parametric
equations for C we only need to find a set of parametric equations for the plane curve. Such
an algorithm has been given in [Abhyankar & Bajaj, 1988]. In this paper, we present a new
algorithm which does not need to compute the genus of the plane curve. Our method is based
on the existence of proper parametric equations for a plane curve.

The method is used to surface/surface intersection problem. The calculation of intersection
curves between general space surfaces is one of the important problems in computer aided
design. Algorithms for intersection problem have been proposed using various elimination
theories, e.g [Pratt & Geisow, 1986]. But by randomly eliminating some variables, the plane
curve obtained is not necessarily birational to the original space curve. By using the method
in this paper, we can find a plane curve which is birational to the intersection of two space
surfaces.

In this paper, we assume the reader is familiar with Ritt-Wu’s decomposition algorithm
a detailed description of which can be found in [Wu, 1986] or our new version [Chou & Gao,



1990-1]. The implementation of the algorithms in this paper is based on this new version.

This paper is organized as follows. In section 2, we introduce some basic notations and
notions necessary for the rest of this paper. In section 3, we present methods of constructing
a resolvent for a prime ideal. In section 4, we present our method of parameterization for a
plane curve. In section 5, we consider the applications to space curves.

2. Preliminaries

Let K be a computable field of characteristic zero and K[z,...,2,] or K[z] be the ring
of polynomials in the indeterminates z1,...,Zn. Unless explicitly mentioned otherwise, all
polynomials in this paper are in K[z].

Let P be a polynomial. The class of P, denoted by class(P), is the largest p such that
some z, actually occurs in P. If P € K, class(P) = 0. Let a polynomial P be of class p > 0.
The coefficient of the highest power of z, in P considered as a polynomial of z, is called
the initial of P. For polynomials P and G with class(P) > 0, let prem(G; P) be the pseudo
remainder of G wrpt P.

A sequence of polynomials ASC = Ay, ..., A, is said to be an ascending (ab. asc) chain,
if either 7 = 1 and A; # 0 or 0 < class(A;) < class(A;) for 1 <4 < j and Ay is of higher
degree than A, for m >k in @,, where n; = class(Ay).

For an asc chain ASC = Ay, ..., A, such that class(4;) > 0, we define the pseudo remain-
der of a polynomial G wrpt ASC inductively as
prem(G; ASC) = prem(prem(G; Ay ); Ay oy Ap-1).
Let R = prem(G; ASC), then we have the following important remainder formula:

(2.1) JG — R € Ideal(As, ..., Ap)

where J is a product of powers of the initials of the polynomials in ASC and ideal( Ay, ..., Ap)
is the ideal generated by A, ..., A,. For an asc chain ASC, we define

PD(ASC) = {g | prem(g, ASC) = 0}.

For an asc chain ASC = Ay, ..., A,, we always make a renaming of the variables. If 4; is
of class m;, we rename ,,, as y;, other variables are renamed as w1, ..., 4, where ¢ = n — p.
The variables uy, ..., u, are called the parameter set of ASC. ASC is said to be an irreducible
ascending chain if A, is irreducible, and for each ¢ < p A; is an irreducible polynomial in
K;_1[y;] where K;_1 = K(u)[y1,-->¥i—1]/D where D is the ideal generated by A;,...,4;_; in
gﬁ’<u>[917 erey yi~l}'

Definition 2.2. The dimension of an irreducible ascending chain ASC = Ay, ..., 4, is defined
to be DIM{ASC)=n—p.

Thus DIM(ASC) is equal to the number of parameters of ASC. The following results
are needed in this paper.



Theorem 2.3. ASC is an irreducible ascending chain iff PD(ASC) is a prime ideal with
dimension DIM(ASC).

Proof. See [Wu, 1986]. i

A characteristic (ab. char) set of a polynomial ideal D is an ascending chain ASC in D
such that for all P € D prem(P,ASC) = 0. Theorem 2.3 says that an ideal is prime Hf it has
a char set which is irreducible.

Theorem 2.4. Let ASC be an irreducible asc chain with parameters uy, ..., ;. HQisa
polynomial not in PD(ASC), then we can find a polynomial P in the u alone such that
P € ideal(ASC U{Q}).

Proof. See [Wu, 1986]. i

Theorem 2.5. Let ASC be an irreducible asc chain with parameters uy, ..., g, We can find
an irreducible asc chain ASC’ such that PD(ASC) = PD(ASC’) and the initials of the
polynomials in ASC’ are polynomials of the parameters u.

Proof. Let ASC = {A1,....Ap} and I; = int(A;). By Theorem 2.4, for each 7 we can
find a polynomial P; of y; and the u and polynomials Q; (k = 1,...,%) such that F; =
2;11 Q1 Ap+Q; I;. We assume that A; is of degree d; in 7;. Let Al = QiA+ (T Qr Ay,

k=1"%
then ASC = {A,, Al ...,A;} is an asc chain such that the initials of A/ are polynomials of

the u. Note that the degrees of A} in y; are the same as the degrees of A; in y;, then ASC’
is also a char set of PD(ASC), i.e., PD(ASC’) = PD(ASC) and ASC" is irreducible by
Theorem 2.3. i

Let PS be a polynomial set. For an algebraically closed extension field F of K, let
Zero(PS) = {z = (21, ...,3,) € E* | VP € PS, P(z) = 0}
Then we have the following Ritt-Wu’s decomposition algorithm.

Theorem 2.6. For a finite polynomial set PS, we can either detect the emptiness of
Zero(PS) or furnish an irredundant decomposition of the following form

Zero(PS) = Ui, Zero(PD{ASC;))

where ASC; is an irreducible asc chain for each ¢ < [ and there are no ¢ # j such that
PD(ASC;) C PD(ASC;).

Proof. See [Wu, 1986]. i

3. Methods of Constructing Resolvents for Prime Ideals

In this section, we shall give a constructive proof for the following theorem [Hartshorne,
1977], i.e., give methods for constructing a hypersurface birational to a given irreducible
variety.

Theorem 3.1. Any irreducible variety of dimension r is birational to a hypersurface in E7+1.

We first introduce the concept of resolvents. A prime ideal distinct from (1) and (0) is
called nontrivial. In what follows, we assume D is a nontrivial prime ideal in Klzg,.,2,].
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We can divide the z into two sets, Uy, ...,u, and Yi,...,¥p, P + ¢ = n, such that no nonzero
polynomial of 7D involves the u alone, while, for j = 1,...,p, there is a nonzero polynomial
in ID in y; and the u alone. We call the u a parameter set of ID. Let the variables be listed
in the order u; < ... < 8y < Y1 < ... < Yy, then it is easy to show that a char set of 7D is an
irreducible asc chain of the form ([Ritt, 1954])

ASC = Ay (u, y1)7A2(u7y17y2)7 e Ap(uayla ooy yp)-

Lemma 3.2. Let the notations be the same as above, then for a new variable w, there exist
polynomials My, ..., M,,G of the u, such that

(1) two distinct zeros of I.D with the u taking the same values for which G does not vanish
give different values for @ = Myy; + ... + M,y,; and

(2) a char set of the prime ideal ID; = Ideal(JD,w — Q) under the following variable
order 4y < ... <ty <w <Y < ... <Yy is of the form

(3.2.1) Alu,w), A (u,w, 41 )y e Ap (U, w, Y )
where A is an irreducible polynomial in w and each A; is linear in y;.
Proof. See p85, [Ritt, 1954]. I

According to Ritt, we call the equation A = 0 a resolventof I.D. Note that 1D, in Lemma
3.2 is also a prime ideal and the polynomials in I.D; which are free of w are precisely the
polynomials of I.D.

Theorem 3.3. Let 1D be a prime ideal in K[uy, ..., ug,¥1,...4p] Where the u are the param-
eters of ID, and let A(u,w) = 0 be a resolvent of ID. Then Zero(ID) is birational to the
hypersurface Zero(A).

Proof. Use the same notations as Lemma 3.2. We define a morphism
MP, : Zero(ID) — Zero(A)

by setting M Py(ty, cooyUqy Yty ooy ¥p) = (Uny ey g, Miyn + o + M,y,) where the M; are the
same as in Lemma 3.2. By (2) of Lemma 3.2, we can assume 4; = Liy; — Ui, i = 1,..,p where
I, and U, are polynomials of the v and w. By Theorem 2.5, we can further assume that I;
are free of w. We define another morphism

MP, : Zero(A) — Zero(ID)

by setting M Py(ty, .y tg,w) = (1,0, tig, Uy /I1, ., Up /1) Let I = [T17_, I;, then MP, is
well defined on Dy = Zero(A) — Zero(I). For a zero (v/,w’) in Dy, (o', Uy (', w')/L (v, w'),
o, Up(w/,w') [ 1, (w!,w') ) is a zero of w — > Ay, ie., MP (MP,) is an identity map on D;.
Since I and M are polynomials of the u, Zero(ID) is birational to Zero(A). The birational
transformations are given by M P, and M P,. i

The following algorithm provides a constructive proof for Theorem 3.1.

Algorithm 3.4 Let PS = {p;,...,px} be a polynomial set in K[z]. The algorithm decides
whether V = Zero(PS) is an irreducible variety, and if it is, finds an irreducible polynomial H
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such that V is birational to the hypersurface Zero(H). We also give birational maps between
vV and the hypersurface Zero(H ).

Step 1. By Theorem 2.6, we have an irredundant decomposition
Zero(PS) = UL, Zero(PD(ASC;)).

V is an irreducible variety iff m = 1. If m = 1 goto Step 2; otherwise Zero(PS) is not
irreducible and the algorithm terminates.

Step 2. Let ASCy = Ay,..., A,. We make a renaming of the variables. If A; is of class m;, we
rename &, as ¥, the other variables are renamed as 1, ..., %, where g = n — p.

Step 3. Let Ay, ..., Ay, w be new indeterminates and let ID = Ideal(PD(ASC:),w—@Q) where
Q = My + ..+ Apyp. ID is a prime ideal in K[u, ), w,y] with parameters u and A. Let

(3.4.1) R{u, A, w), Ry (u, X, w, 41 ), -0y Bp(u, A, w0, Yp )

be a char set of ID. As the A are indeterminates, by (1) of Lemma 3.2, R; are linear in y;.

Step 4. To construct (3.4.1), we first make a simplification. We replace A; by 0in @ if 4;
is linear in 7;. we denote the new Q by Q' and ID’ = Ideal(PD(ASC:),w — @"). This is
possible, because if A; is linear in y; then all other polynomials in ASC are free of y; and
hence y; does no effect the linearization of the other variables. If except one A;, say A, , other
A; are all linear then A; is a polynomial in y;, and the u. In this case, V is birational to
Zero(A;,). The birational maps can be obtained similarly as Theorem 3.3. Otherwise goto
Step 5.

Step 5. By Theorem 2.6, under the variable order u < A< w <y < -+ < yp We have
Zero(ASC, U{w — Q'}) = Ui, Zero(PD(ASC})).

We shall show below that there only exists one component in the above decomposition, say
Zero(PD(ASC})), with the u and the X as parameter set and ASC] is a char set of ID'. For
convenience, we assume ASC] is (3.4.1).

Step 6. By Theorem 2.5, we can assume that for each 1 < ¢ < p, the initial I; of R; involves
the u alone. Let D = I'T[4_, I, where I is the initial of R, then D is a polynomial of the u
and the A.

Step 7. Let a,...,a, be integers for which D becomes a nonzero polynomial in the u when
each ); is replaced by a;, then for A; = a;,i = 1,...,p, (3.4.1) becomes

(3.4.2) R',RY,.., R,
where R and R’ have the same degree in w, and y; occurs in R} effectively.

Step 8. We shall prove below that R’ is an irreducible polynomial in w and (3.4.2) is a char

set of ID" = Ideal(PD(ASCy),w — a1y1 — ... — Gy, ). Hence R’ is a resolvent of PD(ASCy)
and Zero(R') is birational to Zero(PS). The birational transformations can be obtained as
Theorem 3.3. i



Proof of the Correctness for Algorithm 3.4. Only Step 5 and Step 8 need proofs. In
Step 5, let ASC, = A,y,..., Ay, by (2.1) we have

Zero(ASCy) = Zero(PD(ASC) | U, Zero(ASC: U {int(A:)})

where int(A;) is the initial of A;. By Theorem 2.4, there is a polynomial U; in the u and the
A such that U; is in Ideal( ASCy U{int(A;)}). Thus,in Zero(ASC;, w — Q') there is only one
irreducible component, i.e. Zero( PD(ASC:),w—@Q’), on which the u and the A are algebraic
independent. Therefore ASC] is a char set of I.D’. For Step 8, we only need to prove that R’
is irreducible in w. Other results are obvious. If R’ is reducible in w, I D" will have a char
set T, Ty, ...,T, with T of lower degree g in w than R’ and 7; are linear in y;. We can assume
the initials of the T; are free of w. If D is the product of those initials, we have, for a generic
zero of 1D,

C?;,gmlwg_l + Cz',g

(343) Y; = D

where the €' are polynomials in the u. Let us consider the prime ideal ID" = Ideal(ID,v —
My — = Ap¥p) in Kfu, A, v,y] for a new indeterminate v. We will show that /D" contains a
nonzero polynomial P, free of the y, which is of degree no more than g in v. This contradicts
to the fact that (3.4.1) is a char set of ID as both w and v are new indeterminates. We
consider the relations

vi = (Ayr e+ A% ) i=1,...,9.

We replace the y by their expression in (3.4.3) and depress the degrees in w of the second
members to less than g, using the relation 7' = 0. We have such get a set P S of g polynomials
of the u, the A, v, and w such that the polynomials in PS are of degree less than g in w
and of degree no more than g in v. Treating w, w?, ..., w?™! as independent variables in the
polynomials in PS5, we eliminate them and get a nonzero polynomial ¢ in v and the u and
the A. Note the special position of the v* in the polynomials of PS, @ is of degree no more
than ¢ in v. This polynomial is in D" as ID" n K[z] = ID" N K[z]. We have completed
the proof. g

There are Modifications of Algorithm 3.4. They are different in Step 5.

Modification 3.5. In Step 5 of Algorithm 3.4, we can use the Grobner basis method instead
of Theorem 2.6 to compute a char set of I D’ as follows. Let GB be a Grobner basis of
Ideal(PS") (PS" = ASC, U {w — Q'}) in K(u,\)[w,y] in the purely lexicographic ordering
w <y < --- <y, (for the Grobner basis method, see [Buchberger, 1985]). Asin K (u, A)[w,y],
ID = Ideal(PS’) defines a zero dimensional prime ideal in K(u, A)[w,y], then GB is also a
char set of Ideal(P5’) by [Chou & Schelter, 1989]. Alternatively, we can also calculate a
Grobner basis GB of Ideal(PS’) in the pure lexicographic order u < A< w <y < -+ < 1
and obtain a char set of I D' from G B (see [Chou & Schelter, 1989]).

Remark. In practice, Algorithm 3.4 may be very slow, because by introducing new variables
)\; large dense polynomials could be produced in the procedure. An idea to improve the
efficiency is that we can randomly select p integers a1, ...,a, and use Q' = w—a1y; — ...~ 4, Y,
instead of @ = w — aly; — ... — A, Y, to compute the resolvent. We have the following
modifications based on this idea.



Modification 3.6. In Step 5 of Algorithm 3.4, we randomly select p integers ai,...,q,
and find a char set ASC of Ideal(PS U {w — a1y1 — ... — Gpy, }) using Theorem 2.6 under
the variable order u < w < -+- < y,. H ASC = {A(u,w), AL (U, W, 91 )y eeey Ap (%, 0,915 0, Yp ) }
where A; are linear in y;, then the A = 0is a resolvent of PD(ASC,). The success probability
of the selection of the integers should be one, because by Step 7 of Algorithm 3.4, the integers
sets which do not suit for the above purpose consist of an algebraic set of lower dimension
than p.

4. The Parameterization of Algebraic Curves
An irreducible algebraic curve is an irreducible variety of dimension one.

Definition 4.1. An irreducible algebraic curve C = Zero(PS) (where PS C K|z]) is called
rational if there exist polynomials s, ..., u, ,w of an indeterminate ¢ such that not all of u; /w,
i=1,..,n, are constants in K and for VP € PS5, P(uy/w, ...,y /w) = 0. If such polynomials
u; and w exist, we call

Ty = UL Wy Ty = Un [W

a set of parametric equations for the curve. The maximum of the degrees of u; and w is
called the degree of the parametric equations.

Theorem 4.2. For an irreducible algebraic curve C in A", we can find a plane curve f (z,9) =
0 which is birational to C. The birational maps between C and f = 0 can also be obtained.

Proof. By Definition 2.2, the dimension of a prime ideal is equal to the number of its param-
oters. Then an irreducible algebraic curve C' has one parameter u;. By Algorithm 3.4, the
resolvent A(uy,w) = 0 of the prime ideal which defines C' is a plane curve. The birational
maps between C and A = 0 can be obtained similar as Theorem 3.3. i

It is obvious that C is rational iff f(z,y) = 0is rational. Furthermore, using the birational
maps between C' and f = 0, we can find a set of parametric equations for C' (or f =0) if a
set of parametric equations for f = 0 (or C) is given. Hence, we only need to find a set of
rational parametric equations for f(z,y) = 0.

Definition 4.3. A set of parametric equations ¢ = u;/w for a curve C is called proper if
there is a one to one corresponding between the points of C and the values of ¢ except for a
finite number of points on C and a finite number of values for ¢.

By Liiroth’s theorem, a rational curve always has a set of proper parametric equations
[Walker, 1950].

Theorem 4.4. Let o = u(t)/w(t),y = v(t)/w(t) be a set of proper parametric equations for
a plane curve f(z,y) = 0. We assume ged(w,v,w) = 1, then the degree of [ is equal to the
degree of the parametric equations.

Proof. Let f be of degree d and the parametric equations be of degree d’. Let az +by—1=0
be the equation of a generic line where @ and b are indeterminates. The parametric values
corresponding to the intersection points are the roots of the equation P(t) = au(t) + bv(t) —
w(t) = 0. Since ged(u,v,w) = 1, P(t) = 0 has no repeated toots for general values of @ and
b. Thus P(t) = 0 has d’ distinct roots. By Bezout’s theorem [Walker, 1950], the degree of
f = 0 is equal to the number of the intersection points between f = 0 and a generic straight
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line. Hence d < d'. Since the parametric equations are proper, d > d',ie. d = d'. i

Algorithm 4.5. Let PS be a finite set of polynomials in K[z]. The algorithm decides
whether C = Zero(PS) is a rational irreducible algebraic curve, and if it is, finds a set of
parametric equations for C.

Step 1. By Theorem 2.6, we have an irredundant decomposition
Zero(PS) = U, Zero(PD(ASC;))

C' is an irreducible algebraic curve iff m = 1 and ASC; contains n — 1 polynomials. If C is
an irreducible curve goto Step 2. Otherwise, the algorithm terminates.

Step 2. By Theorem 4.2, we can find a resolvent f(z,y) = 0 of degree d for C and birational
transformations between f = 0 and C.

Step 3. Let
(4.5.1) 2 = u(t)/w(t),y = v(t)/w(t)

where u(?) = ugt? +...+ug, v(t) = vat? 4 ...+ g, and w(t) = wat? + ...+ w, for indeterminates
u;, v, and w;.

Step 4. Replacing z and y by u(¢)/w(?) and v(¢)/w(?) in f(z,y) = 0 and clearing denomina-
tors, we obtain a polynomial @ of ¢ whose coefficients are polynomials of u;, v; and w;. Let
the set of coefficients of Q as a polynomial of t is HS = {Py, ..., Py }.

Step 5. By Definition 4.1, (4.5.1) is a set of parametric equations for f = 0 iff A5 has a set
of zeros such that the u/w and v/w, when the coefficients of u, v, and w are replaced by the
zeros, are not constants in K. By step 6, we can decide whether there exist such zeros of H 5.

Step 6. Let DSy = {ww; —wjw; | 4,5 =1,...,d}, DSy = {v;w; —vjw; | 4,5 =1,...,d}. Then
f = 0is rational iff HD = Zero(HS) — (Zero(D5S1) U Zero(DS5)) is not empty, and if it is
not empty, each zero of HD provides a set of parametric equations for f = 0. i

In step 6 of the above algorithm, we have to solve a system of algebraic equations. There
are many methods for doing this. We can use, e.g., a method based on Ritt-Wu’s decomposi-
tion algorithm [Wu, 1987]. This method is complete in the field of complex numbers. If one
wants to find real coefficients parametric equations, we have to find the real zeros of a system
of polynomials which can be done by Collins’ CAD method [Collins, 1975].

5. The Space Curves

Since space curves have application in computer modeling, we pay a special attention to
it.
5.1. A Refined Algorithm for Space Curve
Algorithm 5.1. Let PS be a polynomial set of indeterminates z,y, and 2. The algorithm

decides whether C' = Zero(PS) is an irreducible space curve, and if it is, finds a plane curve
which is birational to C.



Step 1. Using Theorem 2.6, we find an irredundant decomposition
Zero(PS) = UL, Zero(PD(ASC;))

where A5C; are irreducible asc chains. C is an irreducible space curve iff m =1 and ASC,
contains two polynomials. If C is an irreducible space curve, then goto Step 2, otherwise the
algorithm stops.

Step 2. Without loss of generality, we assume @ is the parameter of ASCy, then ASC; =
Al(xvy)a‘AE(xayvz) ($ <y< Z)

Step 3. If A, is linear in z,ie. Ay = I,z — U,, C is birational to the plane curve 4; = 0.
Otherwise goto Step 4.

Step 4. If A; is linear in y, according to the definition of asc chain, As is free of y. Thus C
is birational to Zero(A,). Otherwise goto Step 5.

Step 5. If there is no polynomial in PS5 U {A;, A;} which is linear in some variables, goto
Step 6. Otherwise, let P be a polynomial in PS5 U {A;, A;} which is linear in, say z. Let
O be another polynomial in PSU {A;,A,}. We eliminate z from @ to obtain a non zero
polynomial @’ of y and z. By Step 1, such @ exists. Let Q1,...,Q; be the irreducible factors
of @', then one of them, say @1, must be in PD(ASC,) (i.e., prem(Q1, ASCy) = 0). Then C
is birational to Zero(Q1).

Step 6. This is the general case. For (7,7) = (1,1),(1,-1),(~1,1),(-=1,—1),..., (00, 00), by
Theorem 2.6, under the variable order z < w < y < z we have

Zero(PS,w — iy — jz) = Zero(PD(ASC))

where ASC = R(z,w), Ri(z,w,y), Ra(2, w,y,2); if Ry is linearin y and R, is linear in z, goto
Step 7. Since such pair of integers actually exists by Algorithm 3.4, this step will terminate
after a finite number of steps.

Step 7. C is birational to Zero(R). The birational transformations can be obtained similarly
as Theorem 3.3. i

Example 5.2. (Example 2.1 in [Abhyankar & Bajaj, 1989].) Let C be the intersection of
f=z"+a2>—-1=0and g=2"+y* —1=0 By Theorem 2.6, under the variable order
z <y < z, we have

Zero(f,g) = Zero(f, f1)U Zero(f, f2)

where fi =y —z and fo = y+ 2. Thus Cis reducible and consists of two irreducible curves
C, = Zero(f, fi) and Cy = Zero(f, fo). We use Algorithm 5.1 to C; and C, separately.
According to Step 4 of Algorithm 5.1, both C; and C are birational to Z ero( f). A birational
map from Zero(f) to Cy is (z,2) — (z,2,2) and a birational map from Zero(f) to Cq is
(z,z) — (2, —%,2). The results here are simpler than that in [Abhyankar & Bajaj, 1989].

Example 5.3. (Example 3.1 in [Abhyankar & Bajaj, 1989].) Let C' be the curve defined by
f=24+4z+y"=0andg= 2?2 1+ 2z + 2% = 0. Find a plane curve which is birational to C.

At first, we check whether the intersection of f = 0O and g = 0 is an irreducible space
curve. By Theorem 2.6, under the variable order 2z < y < z, we have

Zero(f,g) = Zero(PD(ASCy))
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where ASCy = {A; = y* + (62 — 16)y” + 2° — 82* + 3227, A, = (2° — 8)2 —y® — 227}, Then
C = Zero(f,g) is an irreducible space curve. Since A, is linear in 2, according to Step 3 of
Algorithm 5.1, C is birational to the plane curve Cy = Zero(A,;). A birational map from ¢

to Cy is (z,y,2) — (2,%). A birational map from C; to C is (z,y) = (w,y,%). The
results are the same as [Abhyankar & Bajaj, 1989].

Note the above two examples are easy in the sense that to find the birational plane curve,
a projection to a coordinate plane is enough, and the general case in Step 6 is not needed.

Example 5.4. Let C be the curve defined by f = 2 +¢° -y’ ~1 =0and g = 2° —y° —2% = 0.
Find a plane curve which is birational to C'.

By Theorem 2.6, under the variable order z < y < z, we have

Zero(f,g) = Zero(PD(ASCy))

2

where ASCy = {A; = y® + 27 —1,4; = 2% — y* — 2?}. Thus C is an irreducible space curve.
According to Step 6 of Algorithm 5.1, we chose two integers (1,1) and let h = w—y — 2. By
Theorem 2.6, under the variable order z < w < y < z, we have

Zero(h, f,9) = Zero(PD(ASC,)) where
ASCy = {B;, By, B3} and
B; = w® — 32%w* + (827 — 8)uw® + 3z*w® — z°
B, = 2wy — w? + 2°
Bs = 2wz — w® — 2?
C is birational to H = Zero(B;). A birational map from C to H is (2,¥,2) — (z,y+2). A

2

. . . . , 2_ 2, .2
birational transformation from H to C is (z,w) — (2, %525, %555 ).

5.2 The Surface/Surface Intersection Problem

Using Algorithm 5.1, we can find a plane curve which is birational to the intersection of
two space surfaces. Furthermore, we can find parametric equations for the intersection curves
if possible. We consider three cases for the intersection problem [Pratt & Geisow, 1986].

(i) implicit/implicit.
Let curve C be the intersection of the surfaces whose equations are
flz,y,z)=0and g(z,y,2) = 0.
Using Algorithm 5.1, we can decide whether f = 0 and g = 0 define exactly one irreducible

curve, and if it is, find a plane curve which is birational to C. Examples 5.2, 5.3, and 5.4
belong to this case.

(ii) implicit/parametric.
Let curve C be the intersection of the surfaces whose equations are
f(z,y,2) = 0 and 7(u,v) = (2(u,v),y(u,v), 2(w,v)).
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Let F(u,v) = f(z(u,v),y(u,v),2(x,v)), then there is a surjective rational map from the plane
curve ' =0 to C
(u,v) — (z(u,v),y(u,v), 2(u,v)).

If we find a set of parametric equations for F' = 0, we can also find a set of parametric equations
for C'. But the inverse is generally not correct, i.e. if C is rational, F' = 0 is not necessarily
rational. To find a plane curve which is birational to C, we can use an idea in [Sederberg
& Anderson, 1984]: we first use the elimination theory (e.g., the method in [Chou & Gao,
1990-2]) to find the implicit equation g(z,y,2) = 0 for the surface represented by r(u,v) and
then use Algorithm 5.1 to find a plane curve which is birational to C = Zero(f,g).

(iii) parametric/parametric.
Let curve C be the intersection of the surfaces whose equations are
r1 = (z1(u,v),y1(u,v),21(u,v)) and 72 = (z5(t,w), Yo (t, w), 22 (¢, w)).

Similar to case (ii), we can first find the implicit equations f(z,y,2) = 0 and g(z,y,2) = O for
the surfaces represented by r1(u,v) and 7.(t,w) and then use Algorithm 5.1 to find a plane
curve which is birational to C = Zero(f,g).

We can also find a plane curve C; from the equations 2;(u,v) = zo(t,w),y1{u,v) =
y2 (1, w), 21 (u,v) = z(t,w) as done in [Pratt & Geisow, 1986]. But generally speaking, ()
is not birational to C. Sederberg et al [Sederberg & Anderson, 1984] suggest that, we first
transform one of the parametric equations to its implicit equation, then case (iii) becomes
case (ii). In this way, we can obtain a plane curve F(u,v) immediately as in case (ii). Note
that F(u,v) = 0 is also not necessarily birational to C.

The following example shows that in case (iii), C is not necessarily a rational curve, though
C'is the intersection of two rational surfaces. Let f = y® —2® 42,9 = z— 1, then C is obvious
birational to F = y? — 2% + 1 = 0 which is not a rational curve. But both f=0and g =0
are obviously rational surfaces.
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