STABILIZING
COMMUNICATION PROTOCOLS

Mohamed G. Gouda and Nicholas J. Multari

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712-1188

TR-90-20 June 1990
October 1990 (Revision)

ABSTRACT

A communication protocol is stabilizing iff starting from any unsafe state (i.e., one
that violates the intended invariant of the protocol), the protocol is guaranteed to
converge to a safe state within a finite number of state transitions. Stabilization al-
lows the processes in a protocol to re-establish coordination between one another,
whenever coordination is lost due to some failure. In this paper, we identify some
important characteristics of stabilizing protocols; we show in particular that a stabi-
lizing protocol is nonterminating, has an infinite number of safe states, and has
timeout actions. We also propose a formal method for proving protocol stabiliza-
tion: in order to prove that a given protocol is stabilizing, it is sufficient (and neces-
sary) to exhibit and verify what we call a “convergence stair” for the protocol.
Finally, we discuss how to redesign a number of well-known protocols to make
them stabilizing; these include the sliding-window protocol and the two-way hand-
shake.

Keywords: communication protocols, convergence, formal verification, self-
stabilization, sliding-window protocol, two-way handshake.

1 Introduction

A communication protocol can be described by a collection of processes that ex-
change messages over connecting channels in a computer network. One failure that
can severely disrupt the proper execution of a protocol is coordination loss.
Informally, coordination is said to be lost at a given global state of a protocol iff the
local states of different processes in the protocol, though each of them may be cor-
rect in its own right, are inconsistent with one another in the given global state.

Loss of coordination in a protocol has many causes; we list here some of them.

ii.

iii.

iv.

Inconsistent Initialization: The different processes in the protocol may be
initialized, by mistake, to local states that are inconsistent with one an-
other.

Mode Change: In order to change the mode of operation in the protocol,
all processes are informed about the desired change and are requested to
effect it. However, because of the distributed nature of the network, not
all processes get the request and effect the change at the same time. Thus,
the protocol is bound to reach a global state in which some processes have
changed while the others have not.

Transmission Errors: If some sent messages are lost, corrupted, or re-
ordered before being received, the local state of the sending process may
no longer be consistent with that of the receiving process.

Process Failure and Recovery: If a process “goes down” then “comes up”
again, its local state may become inconsistent with the local states of other
processes.

Memory Crash: The local memory of a process may crash causing its local
state to be inconsistent with the local states of other processes.

So far, researchers have concentrated on dealing with the individual causes that
may lead to loss of coordination, rather than investigating how to counter coordina-
tion loss irrespective of its cause. The net result is that most existing protocols have
different procedures that perform the same basic function of restoring coordination
whenever it is lost. For example, the initialization procedure in most protocols is

different from the procedure for mode change, which in turn is different from the
procedures for dealing with transmission errors and process failure and recovery,
and so on.

This traditional approach is not satisfying both from a scientific and an engi-
neering point of view. First, this approach allows one phenomenon, coordination
loss, to be investigated as a collage of seemingly different phenomena. Second, it
allows many protocols to have different procedures that perform the same basic
function.

In this paper, we propose a new method, stabilization, that can be used to
counter coordination loss regardless of its cause. In order to explain this method,
we need first to introduce the concepts of global states and safe states of a protocol.

Each process and each channel in a communication protocol has a (possibly in-
finite) set of local states. Every combination of the local states, one from each pro-
cess and each channel, constitutes a global state of the protocol. Each global state is
identified by the protocol designer as being either “safe” or “unsafe”. Once this
identification has been made, the protocol designer proceeds to make the safe states
reachable from the initial global state of the protocol, and the unsafe ones unreach-
able. This guarantees that the initial global state of the protocol is safe and that once
the protocol is in a safe state, then any further execution of the protocol leads to a
safe state. There are no guarantees on what will happen if the protocol starts its exe-
cution at an unsafe state. This last observation suggests the following, rather infor-
mal, definition.

A communication protocol is stabilizing iff starting from any unsafe state, the
protocol is guaranteed to reach a safe state in finite time (or more precisely, after ex-
ecuting a finite number of state ransitions).

Example: Consider a communication protocol between two processes: “sender”
and “receiver”. The sender has a local variable “sent” that counts the number of
messages sent by the sender, and the receiver has a local variable “rcvd” that counts
the number of messages received by the receiver. The sent messages are stored in a
channel until they are received (by the receiver). The natural coordination between
the two processes is defined by the global predicate:

sent = number of messages in the channel +rcvd (1

Thus, every global state that satisfies this predicate is safe, and every global
state that satisfies the complementing predicate:

sent # number of messages in the channel + rcvd)
is unsafe.

Therefore, the protocol is stabilizing iff starting from any global state satisfying
(2), it is guaranteed to reach a global state satisfying (1).

We are not going to discuss here how to make this particular protocol stabilizing
(more elaborate examples are discussed later); rather, we will try to explain what
benefits are achieved by making this protocol stabilizing.

There are many possible causes for this protocol to ever reach an unsafe state
satisfying (2). One possibility is a wrong initialization procedure that causes vari-
able “sent” to be initialized to 0 and variable “rcvd” to be initialized to 10. Another
possibility is a message loss from the channel that causes:

sent > number of messages in the channel + rcvd.

A third possibility is a temporary failure of the sender process that resets variable
“sent” to 0 mid-way during the protocol execution, and so on.

By making the protocol stabilizing, the protocol can counter all these different
types of failures, and regain coordination, i.e., return to (1), in finite and possibly
short time after coordination is lost (for whatever cause). Clearly, stabilization pro-
vides the protocol with a high degree of fault-tolerance. 0

The issue of stabilization is not entirely new. In fact, it has been studied before
in mathematics and in control theory. However, it arises in these disciplines not as a
fault-tolerance issue, but rather as a platform for studying convergence. Consider
for example the following well-known Newton-Raphson algorithm for iteratively
computing the root of a given function f:

while f(x) # 0 do x :=x — (f)/f x)).

This algorithm can be regarded as self-stabilizing in the following sense. Each
state where f(x) = 0 is regarded as safe, and each state where f(x) = O is regarded
as unsafe. Given that function f is well-behaved, this algorithm is guaranteed to
converge from any unsafe state to a safe state; hence, it is a stabilizing algorithm.

The application of stabilization to distributed computing systems is relatively
new. It has started in 1973-1974 by two classical papers of Dijkstra [6, 7]. More
recently, a number of researchers including Lamport [12, 13], Bastani, Yen, and
Chen [2], Brown, Gouda, and Wu [3], Burns and Pachl [4], Gouda and Evangelist
[8], Gouda, Howell, and Rosier [9], and Katz and Perry [11], have started to work
more diligently in this area. Our objective in the current paper is to study the appli-
cation of stabilization to communication protocols [14].

The rest of the paper is organized as follows. In Section 2, we formally intro-
duce the concept of stabilizing protocols. Then in Section 3, we discuss three im-
portant characteristics of these protocols; these three characteristics can be regarded
as necessary conditions that should be satisfied by every stabilizing protocol. In
Section 4, we introduce the concept of a “convergence stair” and show that the exis-
tence of a convergence stair for a protocol is both necessary and sufficient for
proving that the protocol is stabilizing. Then in the next two sections, we discuss
how to redesign two well-known protocols to make them stabilizing: the sliding-
window protocol is discussed in Section 5, and the two-way handshake is dis-
cussed in Section 6. Concluding remarks are given in Section 7.

2 Stabilizing Protocols

In this section, we present a simple notation that can be used in defining communi-
cation protocols and their properties; we then use this notation to formally introduce
the concept of stabilizing protocols.

2.1 Syntax

A communication protocol is a set of two or more processes; each process has the
syntax:

process <process name>
var <var name>.<var type> ; ... ; <var name>.<var type>
begin <action>[] ... [] <action>
end

The variables declared in a process are called local to that process. Each action
has the syntax:

<guard> — <sequence of local or send statements>

where a local statement is one that reads and writes only the local variables of its
process, and a send statement has the syntax send <message> t0 <process
name>. The guard of an action is in anyone of the following three forms:

<local guard>
<local guard> and <receive statement>
timeout <global guard>

where a local guard is a predicate that involves only the local variables of its pro-
cess, a receive statement has the syntax rev <message> from <process name>,
and a global guard is a predicate that involves all local variables (of all processes)
and all channels in the protocol. The concept of a channel is defined next.

Associated with each pair (p,q) of distinct processes in a protocol is a shared
variable Cp, whose value is a sequence of messages taken from those messages that
can be sent from p to g. Variable Cpq is called the channel from p to q.

Notice that timeout actions have global guards where all local variables and all
channels in the protocol can be tested. Because of these additional capabilities,
timeout actions are expensive to implement (using realtime clocks), and good proto-
col designers try to avoid them as much as possible. Unfortunately, as we show in
Section 3, stabilizing protocols cannot be designed without timeout actions.

2.2 Semantics

A state of a protocol is defined by one value for each local variable in each process
in the protocol, and one value (i.e. a sequence of messages) for each channel in the
protocol.

An action ¢ in some process p is said to be enabled at some protocol state s iff
the guard of ¢, whether local or global, is true at s, and moreover if ¢ has a receive
statement rev m from ¢ then the head message in channel C,, is m at state s.

A protocol state s” is said to follow a protocol state s over some action ¢ in a
process p iff ¢ is enabled at s, and executing the (local, send, or receive) statements
of ¢ starting from s yields s”. As expected, executing a local statement updates the
local variables of p, executing a send statement “send 7 €0 g~ adds message m to
the rail of the message sequence Cpg, and executing a receive statement “rev m
from ¢~ removes the sead message m from Cop

A protocol computation is a sequence of protocol states 1, ... , S, such that
cach state s;,1 follows state s; (over some action). A protocol computation is maxi-
mal iff it is infinite, or it is finite and no action 1s enabled at its last state.

Properties of a protocol are defined using global predicates, i.e. predicates that
involve all local variables (of all processes) and all channels in the protocol. In par-
ticular, safety properties are defined using a special type of global predicates called
closed predicates, while progress properties are defined using a convergence rela-
tion over closed predicates. The two concepts of closed predicates and convergence
relations are defined next.

Let R be a global predicate of a protocol. A protocol state s is called an R-staze
iff the values of all local variables and all channels at state s satisfy R. Predicate R is
called closed in the protocol iff each protocol state that follows an R-state (over
some action) is an R-state.

Let R and S be two closed predicates of a protocol. R is said to converge o Sin
the protocol iff each maximal protocol computation that starts in an R-state has an
S-state.

As an example, consider the two global predicates true and false. Each protocol
state is a rrue-state and no protocol state is a false-state; thus both rrue and false are
closed in every protocol. Moreover, for any closed predicate R of some protocol, R
converges to true, and does not converge to false in the protocol.

2.3 Stabilization

Let R be a closed predicate of a protocol. The protocol is called R-stabilizing iff rrue
converges to R in the protocol; in other words every maximal protocol computation
has an R-state.

The next theorem follows directly from this definition and from the facts that
true converges to true, but does not converge to false in every protocol.

Theorem 1: Every protocol is rue-stabilizing, and no protocol is false-stabilizing.

[l

Our objective in the light of this theorem is to investigate protocols that are R-
stabilizing where R is a stronger global predicate than mere rue.

3 Characteristics of Stabilizing Protocols

We discuss in this section three important characteristics of stabilizing protocols.
These characteristics can be viewed as necessary (but not necessarily sufficient)
conditions for achieving stabilization in communication protocols. In Section 3.1,
we show that stabilizing protocols cannot terminate properly. Thus a protocol
should be designed to be nonterminating if its stabilization is desired. In Section
3.2, we show that finite-state protocols such as the “Alternating-bit protocol” can-
not be stabilizing, and so a protocol has to have an infinite number of “safe states”
if it is to be stabilizing. Finally, we show in Section 3.3, that a stabilizing protocol
has to have timeout actions in one or more of its processes.

3.1 Termination versus Liveness

A protocol state s is properly terminating iff all channels are empty at s and the val-
ues of all variables at s guarantee, by themselves, that the guards of all actions are
false at s.

The second condition of proper termination needs some explanation. At a prop-
erly terminating state, each process in the protocol should be able to “recognize”
that termination has occurred. In other words, the occurrence of termination should
be completely deducible from the current values of all variables. Because the guards
of all actions are false at termination, the current values of all variables should, by
themselves, guarantee the falsehood of all guards at termination.

A protocol is R-terminating for some global predicate R iff each R-state of the
protocol is properly terminating.

O

Theorem 2: If a protocol is R-stabilizing for some closed predicate R, then it is
not R-terminating.

Proof: Consider an R-terminating protocol, for some closed predicate R, where R
false; we show that this protocol is not R-stabilizing. Because R # false, the pro-
tocol has at least one R-state. Let s be an R-state of the protocol. Because s is an K-
state and the protocol is R-terminating, s is properly terminating, i.e., the guards of
all actions in all processes in the protocol are false at s, and the channels are all
empty at 5. Let 5" be another protocol state that satisfies the following two condi-
tions. First, the value of each variable (in each process) in the protocol at 5" 1s the
same as its value at 5. Second, at least one channel in the protocol has some mes-
sage(s) at s”. Because of the first condition, the guards of all actions are false at s
as they are false at s. Because of the second condition, s” is not a properly terminat-
ing state. From this fact and the fact that the protocol is R-terminating, s” is not an
R-state. Consider the computation that consists of the single state s’. This computa-
tion is maximal, because the guards of all actions are false at s’. Moreover, this
computation does not have an R-state since s’ is not an R-state. Therefore, the pro-
tocol is not R-stabilizing. 1

Theorem 2 suggests that stabilizing protocols should be designed to be nonter-
minating or live. The concept of liveness is defined next.

A protocol is R-live for some global predicate R iff each maximal protocol com-
putation that starts at an R-state is infinite, and along each such computation at least
one process in the protocol sends an infinite number of messages, and no timeout
action is executed an infinite number of times.

Theorem 3: There are protocols that are both R-stabilizing and R-live for the same
closed predicate R.

Proof: In the next section we give a protocol example that is both R-stabilizing and
R-live for the same closed predicate R. 0

3.2 Finiteness versus Restrain

A protocol is R-finite for some global predicate R iff the number of R-states of the
protocol is finite.

10

Theorem 4: If a protocol is R-stabilizing and R-live for the same closed predicate
R, then it is not R-finite.

Proof: Consider an R-live and R-finite protocol for some closed predicate R,
where R # false; we show that this protocol is not R-stabilizing. Because the proto-
col is R-finite, it has a finite number of R-states. Thus, there is a positive integer K
such that the number of messages in each channel is at most K at every R-state.
Because the protocol is R-live and R # false, there is an infinite computation ¢ that
starts with an R-state. Because the initial state of ¢ is an R-state and R is closed, ev-
ery state in ¢ is an R-state. But because there is a finite number of R-states at least
one state s is repeated (infinitely often) along ¢. Consider an infinite computation d
that first goes from s to s without executing any timeout actions as in ¢ then repeats
itself over and over. Because the protocol is R-live and s is an R-state, at least one
process p sends at least one message to some process ¢ in going from state s to
state s along d. This implies that g receives at least one message from p in going
from s to s along d. Assume that the sequence of messages sent from p to g in go-
ing from s to s along d is x, and the sequence of messages received by ¢ from p in
going from s to s along d is y. Also assume that Cpg =z at 5. There are two cases to
consider.

Case 1. z = the empty sequence of messages: Consider a state s” that is identical to
s except that Cpg = (x)K+1. Also consider the infinite computation 4’ that starts at s’
and executes the same actions as in computation d. It is straightforward to show
(from the fact that z = empty sequence and so x = y) that state s~ is repeated in-
finitely often along d’ (as s is repeated infinitely often along d). But because Cpg has
more than K messages at s, state s” is not an R-state. From the three facts that R is
closed, s” is repeated infinitely often along d’, and s” is not an R-state, we conclude

that the maximal computation d” does not have an R-state and the protocol is not R-
stabilizing.

Case 2. z # the empty sequence of messages: Consider a state s” that is identical to
s except that Cpg = z; (X)X and repeat the same proof as that of Case 1 to show that
the protocol is also not R-stabilizing in this case. 0

Theorem 4 states in effect that a stabilizing protocol has to have an infinite num-
ber of safe states. The next theorem suggests that this infinite number of safe states
can be achieved by using unbounded counters in the processes of the protocol,

11

while keeping the number of messages in each channel bounded. In order to state
this next theorem, we need the following definition.

A protocol is R-restrained for some global predicate R iff there is an integer K
such that each channel has at most K messages in each R-state of the protocol.

Theorem 5: There are protocols that are R-stabilizing, R-live, and R-restrained
for the same closed predicate R.

Proof: In the next section we give a protocol example that is R-stabilizing, R-live,
and R-restrained for the same closed predicate R. 1

3.3 Timeouts

The next theorem states that timeout actions are necessary for achieving stabilization
in communication protocols.

Theorem 6: If a protocol is R-stabilizing, R-live, and R-restrained for the same
closed predicate R, then there is at least one timeout action in one (or more) of its
Processes.

Proof: The proof is by contradiction. Assume that there is an R-stabilizing, R-
live, and R-restrained protocol where the guard of each action is either of the form
<local guard> or of the form <local guard> A <receive statement>. We refer to the
local guard in the first form as a send guard. There are two cases to consider.

Case 1. There is a process p in the protocol such that the disjunction of all send
guards in p = true: Consider an infinite computation in which only the actions with
send guards in p are executed. Because the protocol is R-stabilizing, this computa-
tion has an R-state. Consider the suffix ¢ of this computation that starts with the
first R-state. Clearly, c itself is an infinite computation whose states are all R-states.
Because the protocol is R-live, one of its processes (in this case process p) sends an
infinite number of messages along ¢. From this fact and the fact that no process re-
ceives messages along ¢, the number of messages in at least one channel in the
protocol grows beyond any bound along c. The two facts that every state In ¢ is an
R-state, and that the number of messages in some channel grows beyond any
bound in the states of ¢ contradict the assumption that the protocol is R-restrained.

12

Case 2. For each process p in the protocol, the disjunction of all send guards in p #
true: For each process p there is an assignment of values to the local variables of p
such that the conjunction of all send guards in p = false. Consider the global state s
of the protocol where all channels are empty and the local variables of every process
are assigned values that falsify all the send guards in the process. Therefore, every
action in each process in the protocol is disabled at state s. Now, consider the
maximal computation that consists of the single state s. This computation, being
maximal, has an R-state because the protocol is R-stabilizing; thus, s is an R-state.
This fact along with the fact that the computation s is maximal contradict the as-
sumption that the protocol is R-live. 0

In summary, in order to design a stabilizing protocol, it is necessary to observe
the following three conditions. First, the protocol should be live rather than termi-
nating. Second, the protocol should have unbounded local variables in some of its
processes. Third, the protocol should have timeout action(s) in some of its pro-
cesses.

4 Verification of Stabilization

We present in this section a method for verifying that a given protocol is R-stabiliz-
ing for some closed predicate R. The method is suggested by the following theo-
rem.

Theorem 7: A protocol is R-stabilizing iff it has a sequence (R1, ... ,R,) of
global predicates that satisfies the following three conditions.

i. Boundary: Ry=trueand R, =R.
ii. Closure: Each R; is closed.
iii. Convergence: Each R; converges toR;, 1, fori <n.

Proof: If part: Because R is closed, it is sufficient to prove that each maximal
protocol computation has an R-state. Consider an arbitrary maximal protocol com-
putation. The first state in this computation is an Ry-state because Ry = true. Also,
the computation has an R,-state because Ry converges to Ry. Similarly, the compu-
tation has an R3-state because R, converges to Rz, and so on. Thus the computa-
tion has an R,-state, which is also an R-state.

13

Only if part. consider an R-stabilizing protocol. It is straightforward to show that
the sequence of two predicates (irue, R) satisfies the above three conditions of
boundary, closure, and convergence. i

We call a sequence of predicates that satisfies the above three conditions of
boundary, closure, and convergence a convergence stair to R. Theorem 7 suggests
that in order to prove that a given protocol is R-stabilizing, it is sufficient (and nec-
essary) to exhibit and verify a convergence stair to R for the given protocol.

Example: Consider a communication protocol that consists of two processes p
and g. Process p sends request messages to ¢ which answers by reply messages.
Each request message is of the form rgst(i) where i is a unique sequence number,
and each reply message of the form rply(i) where i is the sequence number of the
request message being replied to.

Initially the two channels C,,, and Cg), are empty; thus process p times out and
sends its first request message. After sending each rqst(i) message, process p waits
for a rply(i) message. Only after p receives rply(i), does it send the next rgst(i+1)
message, and the cycle repeats. Process p can be defined as follows.

process p;
var pi:integer {* sequence number of last sent rgst *}
,1:integer {* sequence number of last rcvd rply *}
begin

rev 1ply(i) from g — if i # pi — skip
i=pi — pi=pi+1
; send rgst(pi) to g
fi
[1 timeout Cpy=<> A Cgp =< > send rqst(pi) to g
end

On the other side, when g receives a rgst(j) message from p, it answers back by
sending rply(j) to p. Process g can be defined as follows.

process g;
var j:integer {* sequence number of last rcvd rgst *}
begin
rev rgst(f) from p — send mply(j) to p
end

14

Consider the following global predicate of the protocol:

R = (for each rgst(i) in Cpq: i<pi)
A (foreach rply(@) in C o i<pi)
A (leququiSl)

where | Cpg land 1 Cpy, | denote the number of messages in the two channels C,, and
Cyp» respectively. It is straightforward to show that the protocol is both R-live and
R-restrained. First, all maximal protocol computations (including those that start at
R-states) are infinite, and along each of them process p (and also g) sends an infi-
nite number of messages; this proves the protocol R-live. Second, each of the two
channels has at most one message at each R-state; this proves the protocol R-re-

strained.

In order to prove that the protocol is R-stabilizing, we need to exhibit and verify
a convergence stair to R for the protocol. (Coming up with a convergence stair is an
“art” in principle, but checking it is methodological as we demonstrate shortly.)
Consider the following sequence of global predicates:

Ry =1true

Ry =Ry A (for each rgst(i) in Cpq: i<pi)
R3 =Ry A (for each rply(i) in qu: i<pi)
R4=R3A(1Cpq{+icqp!£1)

To prove that these predicates constitute a convergence stair to R, we need to to
prove that they satisfy the the three conditions of boundary, closure, and conver-
gence. Proving the boundary condition is immediate since indeed Ry = true and Ry4
= R.

Proving the closure condition consists of showing that if the protocol starts at
an R;-state, then executing any of the two actions in process p or the single action in
process g yields an R-state, for i = 2, 3, and 4. For instance, if the protocol is at an
R,-state, then executing any of the two actions in process p will result in one of the
following three cases:

+ The values of variable pi and channel C,,, remain unchanged.
» The value of pi is incremented by 1, then a message rgst(pi) is added to Cp,.
» The value of pi remains unchanged, while a message rqst(pi) is added to C,,.

In each of these cases, the resulting state is also an Ry-state. Similarly, executing
the action of process g keeps the values of variable pi and channel C pg unchanged
and the resulting state is also an R,-state.

Proving the convergence condition consists of proving three parts: Ry con-
verges to Ry, Ry converges to R3, and R3 converges to R4. We present here a
proof for the first part; proofs for the other two parts are similar. Consider an arbi-
trary maximal protocol computation; we show that this computation has an R,-state.
Notice that each message that process p sends is of the form rqst(pi), and that the
value of pi never decreases along the computation. Thus, all messages that are
added to €, during the computation satisfy Ro. Therefore, the protocol state that
results after the initial messages in Cp,; are all received by g is an Ry-state. 1}

Two final comments concerning convergence stairs are in order. First, the
number of predicates in a convergence stair significantly impacts the complexity of
its verification. In particular, by choosing this number to be “large”, verification of
the convergence stair is divided into a large number of simple proofs. For instance,
if we have chosen the convergence stair in the above example to be the sequence
(R1, R4) only, then the verification would have been dominated by a complex proof
of “Ry converges to R4”. Second, one can always write the convergence stair of a
stabilizing protocol as a “strengthening sequence” of predicates. In fact, it is
straightforward to show that if (Ry, ... , R,) is a convergence stair to R, then the
strengthening sequence (Sy, ..., S,) where §; =Ry and foreachi,i> 1, §;=5,1
A R;is also a convergence stair to R. Note that the convergence stair in the above
example is strengthening.

In the next two sections, we discuss how to redesign two well-known protocols
to make them stabilizing; the sliding-window protocol is discussed in Section 5,
and the two-way handshake is discussed in Section 6.

5 Stabilization of the Window Protocol

In this section, we describe how to make the sliding-window protocol stabilizing.
We start in Section 5.1 by describing the original window protocol, and show that
it is not stabilizing; this means that if the protocol ever reaches an unsafe state, due
to some fault, it may stay within the unsafe states indefinitely and never return to its
safe states. In Section 5.2, we present a stabilizing version of this protocol.
Proving the stabilization of this version is sketched in Section 5.3.

16

5.1 Original Protocol

The window protocol consists of two processes p and g. Process p sends data mes-
sages of the form data(i) to ¢, where i is the message sequence number. Process ¢
replies by sending acknowledgement messages of the form ack(j) to acknowledge
receiving all the data messages data(0), data(1), ... , data(j—1).

In order to control the flow of data messages from p to g, process p is restricted
to sending at most w data messages without receiving acknowledgements for any of
them; the constant w, whose value is at least 1, is called the window size. To imple-

ment this control mechanism, process p is provided with two local variables:

na to store the sequence number of the next ack message to receive,
and #s to store the sequence number of the next data message to send.

The actions of process p guarantee that the following local predicate is satisfied at
all times:

nasns<na+w

Process p is defined as follows.

process p;
const w : integer {(Fwz21*}
var na, ns,i:integer {(*raz20,ns20,i20%*}
begin ns <na +w — send data(ns) to g; ns :==ns + 1

0 revack(i) fromg — ifi>na - na:=i
[1i £na — skip

fi
[timeout (ns > na) A (—ready) A Cpg=<>ACgp=<>
— fori=na,...,ns

do send data(i) to g od

end

17

Process p has three actions. In the first action, p sends a new data message after
it checks that sending this message will not falsify the local predicate ns < na + w.
In the second action, p receives an ack(i) message and updates na. In the third ac-
tion, p detects that there are data messages that have been sent but not yet acknowl-
edged and that no ack messages are forthcoming; it then timesout and resends all the
unacknowledged data messages. (The boolean variable “ready” that appears in the
global guard of the timeout action is a local variable of process q.)

On the other side, process ¢ has a local variable

nrto store the sequence number of the next data message to receive,
or the sequence number of the next ack message to send.

Process q is defined as follows.

process ¢;
var nr,j: integer {(*nr=20,j20 %}
; ready : boolean

begin rcv data(y) fromp — ifj=nr > nri=nr+1
[lj # nr — skip
fi; ready := true
] ready — send ack(nr) to p; ready := false

end

Process ¢ has two actions. In the first action, g receives a data message and
checks whether it is the one it expects: if so, it increments nr by 1. In either case, g
gets ready to reply by an ack message that is sent in the second action.

Correctness of this protocol can be established by showing that it satisfies the
next two properties.

Safety: The following predicate R is closed in the protocol:

R= (nasn)Amr<ns)Anssna+w)
A (for each data(i) in Cpg : i < ns)
A (for each ack(@) in Cgp 1 i < nr)

18

Progress: Along every maximal computation that starts with an R-state, the first
action in process ¢ is executed infinitely often when j = nr.

The safety property guarantees that if the protocol starts at an R-state, then it
will continue to execute within the R-states indefinitely. An R-state from which the
protocol can start executing is as follows:

(na=0) A (nr =0) A (ns =0) A (—ready)
A(Cpg=<>)
A(Cqp=<>).

The progress property guarantees that as the protocol executes within the R-states,
process g will receive “new” data messages infinitely often.

Unfortunately, this protocol is not R-stabilizing which means that if the protocol
ever reaches a (—R)-state due to some fault, it may never return back to the R-
states. This can be demonstrated by an example. Assume that an instance of the
protocol where w = 1, reaches a (—R)-state that satisfies the following predicate

Ri= (ma=2)A(r=1)A{ns=3) A (—ready)
A (Cpg=<>)
ACgp=<>)

The only action that is enabled at this Rj-state is the timeout action in process p.
Executing this action leads to the state:

Ry = (na=2)A(nr=1)A(ns=3) A (—ready)
A (Cpg = <data(2)>)
A(Cqp=<>)

The only action that is enabled at this state is the first action in process g; executing
this action leads to the state

R3= (ma=2)Amr=1)A (ns=3) A (ready)
A(Cpg=<>)
A (Cgp=<>)

19

The only action that is enabled at this state is the second action in process g; execut-
ing this action leads to the state

Ra= (na=2)A(nr=1)A (ns =3) A (—ready)
A(Cpg=<>)
A (Cgp = <ack(1)>)

The only action that is enabled at this state is the second action in process p; execut-
ing this action leads back to the first state Ry, and the cycle repeats. Each of the
states R1 to R4 is a (—R)-state because each of them violates the conjunct (na < nr)
in R. Therefore, the infinite computation (Ry, R2, R3, R4, R1, R2,...) does not
converge to an R-state and so the protocol is not R-stabilizing. Note that the proto-
col will “livelock” along this infinite computation as each process will send and re-
ceive infinitely often but no “real” progress will be made along the computation.

5.2 Stabilizing Protocol

In order to make the sliding-window protocol stabilizing, we adopt the following
strategy: whenever a process discovers that it is “lagging behind” the other process,
it tries to “catch up” with it. This strategy is accomplished by modifying the proto-
col as follows.

i. Whenever process p receives ack(i) where i > ns, p updates both na and
ns: na,ns =11

ii. Each data message is provided with two sequence numbers instead of one:
data(j, k)
where j is the sequence number of the message as before,
and k is the value of na when the data message is sent.

iii. Whenever process g receives data(j, k) where k > nr, g updates nr:
nr=k.

The two processes of the modified protocol can be defined as follows.

20

process p
const w : integer {(*w=>1%*}
var na, ns, i : integer {(*naz1,ns20,i20 *}

begin na<nsAns<na+w — send data(ns,na)tog; ns :=ns+1
[rev ack(i) from g — ifi>nanisns — na=i
Niznani>ns — na,ns :=1,i
Higna — skip
fi
[I timeout (na # ns) A (—ready) A Cpg=<>ACgpp=<>
— ifnasns Ans<na+w — skip

[} na>ns — Hs:=na
HNus>na+w —> na =ns
fi
sfori=na,..., ns
do send data(i, na) to q od

end

process g
var nr, j, k : integer (*nrz20,j20,k20 %}

; ready : boolean

begin rcv data(j, k) fromp — ifj=mwAak<nr — nri=nr+1l
Oj#nmrAak<nr — skip

1 k>nr — nri=kEk
fi; ready = true
[l ready —» send ack(nr) to p; ready := false

end

Correctness of this protocol can be established by showing that it satisfies the
next two properties.

Safety: The following predicate S is closed in the protocol:

S= (masn)anrsns) A{ns<na+w)
A (foreach data(i, j) in Cpg: i< ns AjSnr Aj<ns)
A (for each ack(?) in Cgp : i < nr)

21

(Notice the strong similarities between this S of the modified protocol and the
corresponding R of the original protocol.)

Progress: Along every maximal computation that starts with an S-state, the first
action in process ¢q is executed infinitely often when (j = nr A k < nr).

5.3 Proof of Stabilization

In order to show that the modified window protocol is S-stabilizing, we need, ac-
cording to Theorem 7, to exhibit and verify a convergence stair to S. Consider the
following strengthening sequence (S1, S2, 53, S4) of global predicates of the pro-
tocol:

S1= true
Sr= SiAamasns)An@ms<na+w)
S3= SoA(nur<ns)
~ (for each data(i, j) in Cpg @ i <ns A j < ns)
A (for each ack(i) in Cgp @ i S ns)
Sa= Si3An(masgnr)
A (for each data(i, j) in Cpy 1 j < 1)
A (for each ack(i) in Cgp 1 i < nr)

It is straightforward to show that (51, $7, 53, S4) is a convergence stair to S for the
protocol. A detailed proof of this fact appears in [14].

6 Stabilization of the Two-Way Handshake

We describe in this section how to make the two-way handshake protocol stabiliz-
ing. Our presentation follows the same steps of the previous section. In Section
6.1, we present the original protocol and show that it is not stabilizing. A stabilizing
version of the protocol is presented in Section 6.2. Finally, we sketch a stabilization
proof (i.e., a convergence stair) for the stabilizing version in Section 6.3.

6.1 Original Protocol

In order that process p “opens a connection” with a process g, it sends a set mes-
sage to g. If the reply from g is a rjct message, the request for opening the connec-
tion has been rejected. If the reply from ¢ is an acpt message, the connection has
been opened. To close down the open connection, p sends a rsez message 1o ¢
which replies by an ack message. On receiving the ack message, p recognizes that
the “connection is closed”.

Each sent message from p to ¢ is of the form msg(u), where u indicates the
message type either set or rset. Each sent message from g to p is of the form

msg(f), where ¢ indicates the message type: rjct, acpt, or ack.

Process p has a local variable sp whose value is closed, wait, open, or done.
These four values have the following informal meanings:

sp = closed means that the connection from p to g is closed.

sp =wait means that p is waiting for a reply for its request to open the
connection.

sp=open means that the connection from p to ¢ is open.

sp=done means that p is waiting for an ack for its request to close the
connection.

Similarly, process ¢ has a local variable “sg” whose value is either closed or open.
These two values have the following informal meanings:

sq = closed means that either the connection from p to ¢ is closed or soon
will be closed.

sq=open means that either the connection from p to g is open or soon
will be open.

The two processes p and g can be defined as follows.

23

process p
var sp: (closed, wait, open, done)
;11 (acpt, rict, ack)

begin sp = closed — send msg(set) to g; sp := wait
[l sp=open — send msg(rset) to g; sp = done
[rev msg(?) fromg — if r=acpt —> sp:=open
0 t=1jct —>» sp := closed
[l t=ack —> sp := closed
fi
[1 timeout (sp = wait v sp =done) A (Cpg=<>A Cgp=<>
— if sp =wait — send msg(set) to g

[1 sp=done — send msg(rset) to g
fi
end

process g
var sq: (closed, open)
. U (set, rset)

begin rcv msg(u) fromp — if u=set — send msg(acpt) to p; sqg := open
[u=set — send msg(rjct) to p; sq := closed
[u=rset — send msg(ack) to p; sq := closed
fi

end

Correctness of this protocol can be established by showing that it satisfies the
following two properties.

Safety: The following predicate R is closed in the protocol.

R = (sp=closed A sg=closed A 1 Cpyl+1Cyp1=0)
v (sp=open A sg=open A 1Cpgl+1Cgpl=0)
v {(sp = wait
A | Cpgl +1Cgp1=0
v (sg=closed A Cpg=<msg(set)> A Cgp=<>)

24

(sqg=closed A Cpg=<>n Cgp=<msg(tjct)>)
(sg=open A Cpg=<> A Cyp=<msglacpt)>)

)
)
v {(sp =done
A ([Cpgl +1Cgp1=0
(sq = open A Cpg= <msg(rset)> A Cgp = <>)
v (sg=closed A Cpg=<>ACqgp=<msglack)>)
)
)

Progress: Along every maximal computation that starts with an R-state, the first
action in process p is executed infinitely often.

The safety property guarantees that if the protocol starts executing at an R-state
(e.g., at the state sp = closed A sg =closed A Cpg=<>ACgp=<>), then it will
continue to execute within the R-states indefinitely. Note that within the R-states,
(sp = closed = sq = closed) and (sp = open = sg = open); in other words, the
protocol can never reach a state in which sp # sq while sp is either closed or open.
The progress property guarantees that as the protocol executes within the R-states,
process p will request the connection to be opened infinitely often.

This protocol is not R-stabilizing. For example, consider the infinite computa-
tion

(R1,R2, R3, R4, R5,Re, R1, R2, ...)

where
R1 = (sp = closed) A (sqg = open)
A (Cpg = <msg(rset)>) A (Cgp = <msg(acpt)>)
Ry = (sp = wait) A (sq = open)

A (Cpg = <msg(rset); msg(set)>) A (Cgp = <msg(acpt)>)

25

Ry = (sp = wait) A (sq = closed)
A (Cpg= <msg(set)>) A (Cgp= <msg(acpt); msg(ack)>)

Ra = (sp = open) A (sq = closed)

A (Cpg= <msg(set)>) A (Cgp = <msg(ack)>)
Rs = (sp = done) A (sq = closed)

A (Cpg= <msg(set); msg(rset)>) A (Cgp = <msg(ack)>)
Reg = (sp = done) A (sq = open)

A (Cpg= <msg(rset)>) A (Cgp = <msg(ack); msg(acpt)>)

Because each of the states R1 to Rg is a (—R)-state, the protocol does not converge
to R along this computation. Thus, the protocol is not R-stabilizing.

6.2 Stabilizing Protocol

The above protocol is both R-finite and R-live; thus it cannot be R-stabilizing ac-
cording to Theorem 4. This observation suggests that in order to make this protocol
stabilizing, we should get rid of its “finiteness”. This can be accomplished by
adding an unbounded sequence number to each message. Process p keeps track of
the current sequence number in a local variable cp whose value is incremented by 1
whenever p receives a rjct or an ack message. Process g replies to each message
from p with a message that has the same sequence number as the received message.
Whenever process p receives an unexpected message or a message with an unex-
pected sequence number, it discards the message.

The two processes p and g for this protocol can be defined as follows.

process p
var sp: (closed, wait, open, done)
. t: (acpt, ict, ack)
; Cp, c:integer

begin sp =closed — send msg(set, cp) to g; sp := wait
[l sp=open — send msg(rset, cp) to q; sp := done
[rev msg(z, ¢) from g

26

— if p#c — skip
[cp=cAt=acptAsp=wait —> sp = open
[cp=cAtr=acptAsp=#wait — skip
[cp=cAt=rjctAsp=wait —
sp, cp = closed, ¢ + 1
[ecp=cAat=rjctAsp#wait — skip
I ecp=cat=ackAsp=done —
sp, cp :=closed, ¢ + 1
I cp=cat=ackAnsp#done — skip
fi
[] timeout (sp = waitv sp=done) A Cpg=<>ACgp=<>
— if sp = wait — send msg(set, cp) to g
[sp=done — send msg(rset, cp) to g
fi
end

process g
var sq: (closed, open)
;U (set, rset)
; d:integer

begin rcv msg(u, d) fromp
— if u=set — send msg(acpt, d) to p; sq := open
[u=set — send msg(rict, d) to p; sq := closed
0 u=rset— send msg(ack, d) to p; sq := closed
fi
end

Correctness of this protocol can be established by showing that it satisfies the
next two properties.

Safety: The following predicate S is closed in the protocol:

S = (sp=closed A sg=closed A [Cpgl+1Cgp1=0)
v (sp=open A sg=open A [Cpgl+1Ch1=0)
v (sp = wait

27

A ([Cpgl+1Cgp1=0
v (sqg=closed A Cpq=<msg(set, cp)> A Cgp=<>)
(sq =closed A Cpg=<>n Cgp=<msg(rjct, cp)>)
(sg=open A Cpg=<>A Cgp=<msg(acpt, cp)>)
)
)
v (sp =done
A ([Cpgl +1Cgp =0
(sg=open A Cpg=<msg(rset, cp)> A Cgp=<>)
(sq =closed A Cpg=<>A Cqp=<msg(ack, cp)>)

)

Progress: Along every maximal computation that starts with an S-state, the first
action in process p is executed infinitely often.

6.3 Proof of Stabilization

In order to show that the modified two-way handshake protocol is S-stabilizing, we
need to exhibit and verify a convergence stair to S. Consider the following
strengthening sequence (S1, S2, 53, S4, Ss) of global predicates of the protocol:

S1 = true

S2 = S1 A (for each msg(z, ¢) in Cpg : ¢ S ¢p)
S3 = Sy A (foreach msg(z, ¢)in Cgp : ¢ S ¢cp)
S4 = S3AO0S(ICpgl+1Cpl+HsT)

S5 =8

where fis a function that assigns to each global state s of the protocol a value 0 or 1
as follows:

flsy =0 if sp=wait v sp=done
1 if sp=closed v sp=open

It is straightforward to show that this sequence of global predicates is a conver-
gence stair to S for the protocol. A detailed proof of this fact appears in [14].

28

7. Concluding Remarks

The objective of this paper is two-fold: first, to motivate and promote the idea of
stabilization in the area of protocol design, and second, to plant the seeds for a the-
ory for designing and verifying stabilizing protocols. In order to achieve the first
goal, we have argued (in Section 1) that stabilization is a general method for coun-
tering coordination loss regardless of its cause. We have also demonstrated that
stabilization is not costly to achieve: the stabilizing versions of the sliding-window
protocol (in Section 5) and of the two-way handshake (in Section 6) closely re-
semble their respective nonstabilizing versions (except for the fact that the stabiliz-
ing versions are much more robust in face of coordination loss).

In order to achieve our second goal, we have presented three important charac-
teristics of stabilizing protocols (in Section 3), and outlined a method for proving
protocol stabilization (in Section 4). We have demonstrated the applicability of this
method by applying it to prove all the stabilizing protocol examples in the paper.

One of the characteristics of stabilizing protocols that we have identified in
Section 3 needs further discussion. Theorem 4 states (roughly) that each stabilizing
protocol must have one or more processes with unbounded local variables.
Confronted with this result, one can adopt either of two legitimate positions. On
one hand, one can argue that a variable with a large number of bits, 64 say, is un-
bounded for all practical purposes. Thus, it is possible, for example, to implement
all the stabilizing protocols in this paper, but use in them large-size variables instead
of the required unbounded ones. The resulting protocols, to be exact, are not stabi-

lizing, but they are close enough to being so; hence they can counter most forms of
coordination loss.

On the other hand, one can argue that exact stabilization is not achievable in
practice, and so we should strive for notions that are not as demanding as stabiliza-
tion but are still close enough that the resulting protocols can counter coordination
loss effectively. After we communicated this result (Theorem 4) to others, two new
notions have surfaced: probabilistic stabilization [1], and pseudo-stabilization [5].
Both these notions can be fully achieved in practice, and both of them provide com-
munication protocols with a high degree of robustness in face of coordination loss.

Besides the examples in this paper, there are other examples of elegant stabiliz-
ing protocols; see for instance [1, 10, 14]. This confirms our belief that stabilization

29

is a very fundamental idea with wide applicability; it deserves thorough attention
and detailed consideration.

Acknowledgements. We are thankful to Anish Arora, Edsger W. Dijkstra,
Simon Lam, Ming Liu, and Jayadev Misra for listening to our ideas and their
encouragement, and to K. F. Carbone for preparing the manuscript.

References

(1]

[2]

(31

(4]

(5]

[6]

[7]

[8]

(9]

Y. Afek and G. Brown, “Self-stabilization of the alternating-bit proto-
col,” Proceedings of the Eighth Symposium on Reliable Distributed
Systems, pp. 80-83, 1989.

F. Bastani, I. Yen, and 1. Chen, “Class of inherently fault-tolerant dis-
tributed programs,” IEEE Trans on Software Engineering, Vol. 14, No.
10, pp. 14321442, 1988.

G. Brown, M. Gouda, and C. Wu, “Token systems that self-stabilize,”
IEEE Trans. on Computers, Vol. 36, No. 6, pp. 845-852, 1989.

J. Burns and J. Pachl, “Uniform self-stabilizing rings,” the ACM Trans.
on Programming Languages and Systems, Vol. 11, No. 2, pp. 330-344,
1989.

J. Burns, M. Gouda, and R. Miller, “Stabilization and Pseudo-stabiliza-
tion,” Technical Report TR-90-13, Dept. of Computer Sciences, Univ.
of Texas at Austin, May 1990. Also submitted for journal publication.

E. Dijkstra, EWD 391, “Self-stabilization in spite of distributed control,”
1973; reprinted in Selected Writings on Computing: A Personal
Perspective, Springer Verlag, pp. 41-46, 1982.

E. Dijkstra, “Self-stabilizing systems in spite of distributed control,”
Comm. of the ACM, Vol. 17, pp. 643-644, 1974.

M. Gouda and M. Evangelist, “Convergence/response tradeoffs in con-
current systems,” Technical Report TR-88-39, Dept. of Computer
Sciences, Univ. of Texas at Austin, 1988; also submitted to the ACHM
Trans. on Computer Systems and Languages, 1989.

M. Gouda, R. Howell, and L. Rosier, “The instability of self-stabiliza-
tion,” presented at the MCC workshop on self-stabilization, August
1989. Also, Acta Informatica, to appear, 1990.

[10]

[11]

[12]

[13]

[14]

30

M. Gouda, N. Maxemchuk, U. Mukherji, and K. Sabnani, “Delivery
and Discrimination; The Seine Protocol,” Proceedings of the SIGCOMM
'88 Symposium, 1988, pp. 292-302.

S. Katz and K. Perry, “Self-stabilizing extensions for message passing
systems,” presented at the MCC workshop on Self-Stabilization, August
1988.

L. Lamport, “Solved Problems, Unsolved Problems, and Non-Problems
in Concurrency,” Invited Address, Proceedings of the Third ACM
Symposium on Principles of Distributed Computing 1984, pp. 1-11.

L. Lamport, “The Mutual Exclusion Problem: Part II—statement and
solutions,” JACM, Vol. 33, No. 2, pp. 327-348, April 1986.

N. Multari, Towards a theory for self-stabilizing protocols, Ph.D. disser-
tation, Dept. of Computer Sciences, Univ. of Texas at Austin, 1989.

