FACTORS AFFECTING PERFORMANCE OF
RAY TRACING HIERARCHIES

K. R. Subramanian and Donald S. Fussell
Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712-1188

TR-90-21 July 1990

Factors Affecting Performance of
Ray Tracing Hierarchies

K. R. Subramanian Donald S.Fussell

Department of Computer Sciences
The University of Texas at Austin
Austin, Tx 78712

Abstract

In this article, we study some of the important characteristics that affect the perfor-
mance of ray-tracing hierarchies. Location and orientation of space partitioning planes,
the role of bounding volumes, void ares in the nodes of the hierarchy and hierarchy
traversal methods are studied individually to determine their effect on performance.
We then demonstrate how these characteristics can be combined to obtain object hier-
archies that can out-perform some of the best known ray tracing hierarchies. Results
are shown using standard ray-tracing benchmarks.

CR categories and Subject Descriptors:
I.3.3 [Computer Graphics]: Picture/Image Generation;
1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism;

General Terms: Algorithms, Graphics.

Additional Key Words and Phrases: Ray tracing, computer graphics, bounding volume,
extent, partitioning plane, hierarchy, search structure, traversal, characteristics.

1 Introduction

In recent years, ray tracing has established itself as an important rendering technique. Its

ability to determine visible surfaces, compute shadows, model reflection and transmission of

1

light and a host of other effects [5] has contributed to its growing use. However, ray tracing,
if not carefully done, can be a computationally expensive technique. Consequently a great

deal of research has focused on discovering efficient ways to perform ray tracing.

The principal expense in ray tracing lies in determining a ray’s first (i.e., closest to the
ray’s origin) intersection with an object in a scene. This must be done several times per pixel,
the exact number depending on the effects being generated and the scene being rendered.
Research on efficient algorithms has quite properly focused on minimizing the cost of these
intersection calculations. Bounding volumes [16][19][24][25], space partitioning structures
[8][10][15], item buffers [24], shadow buffers [13] and ray coherence techniques [1][14][20] all

have proven effective at improving the efficiency of ray tracing.

Many of these techniques have employed data structures for speeding up the search for
a closest intersection on a ray. Data structures which support efficient geometric search
allow us to look at only a small percentage of the scene to determine the closest intersection.
Octrees [10], BSP trees [15], and nested bounding volumes [11] are examples of explicitly
hierarchical search structures of this type, while the uniform subdvision techniques [8][4] use

non-hierarchical search structures.

While all these search structures are being used with great success, performance compar-
isons between them until now have been solely via timing benchmarks. Comparisons between
different methods have been difficult, since each method was tested by researchers on their
own set of test cases, thus precluding any meaningful results. A first step has been taken in
this regard by Haines [12], in proposing a set of test scenes with detailed specifications of
the the various parameters of any ray trace. If two methods use the same test case with the
exact same parameter values, the run times obtained from the ray trace are a better measure

of their respective performances.

In this paper, we bring out some of the important characteristics that affect the perfor-

2

mance of search structures used in ray tracing. Locations of partitioning planes, partitioning
dimension, effects of bounding volumes, presence of void areas (void areas refer to sections of
the environment where there are no object primitives) and hierarchy traversal methods are
some of the characteristics examined. The most commonly used search structures are then
described in the context of these characteristics. This will give us a better insight into the
characteristics exploited (or not exploited) by each search structure and help us relate per-
formance to scene characteristics. Finally, it allows us to explore the possibility of combining
different characteristics to improve the performance of existing schemes and design better

object hierarchies. We finish by justifying our results with carefully designed experiments.

2 Search Structures Used in Ray Tracing

Some of the common hierarchical structures being used in ray tracing include BSP trees [15],
octrees [10], and the surface area based heuristic described in [17]. In addition to these, we
consider a hierarchical technique related to the first two which uses k-d trees [9][21] We begin

with a brief description of each of these methods.

A BSP tree is any binary tree structure used to recursively partition space. BSP trees have
been used extensively to determine visible surfaces [22][6][7]. In Kaplan’s [15] implementation
of the BSP tree for ray tracing, axis-aligned planes are used to partition space. At each step
of the subdivision, three slicing planes are used to divide space into eight equal sized octants
(or voxels, which are just rectangular parallelepipeds). Each object in the scene is tested
against each octant to see if any part of its surface intersects it. If it does, then it is added to
the list of objects for that node. Voxels that contain large numbers of objects are recursively
subdivided until each subdivided region has less than a small number of objects or its size
becomes smaller than a set threshold. The subdivision is adaptive, in that only voxels that

contain primitives are subdivided. Thus, the structure adapts itself to the input scene.

To determine a ray-object intersection from the Kaplan-BSP tree, the origin of the ray is
compared against the partitioning planes in the tree, starting from the root of the tree. The
leaf node (or voxel) containing this point can be determined. All primitives in this voxel are
intersected with the ray. If an intersection is found within this voxel, the closest of these
is the required intersection. Otherwise, the face through which the ray exits this voxel is
determined by intersecting the ray against all the six faces of this voxel. The ray is then
extended a small amount, depending on the size of the smallest voxel in the tree. This end
point is put back into the root of the tree to determine the next voxel visited by the ray and

the search continues.

The octree hierarchy used by Glassner [10] performs a subdivision identical to Kaplan’s
BSP tree. Each level of the octree corresponds to three levels of the BSP tree. The difference
lies in the way Glassner stores the octree. While Kaplan builds a binary tree, Glassner uses
a hash table with link lists, which results in considerable savings in pointer space. The

traversal is also identical to the BSP iree.

The k-d tree [2][3] hierarchy used in [9] is another special case of the BSP tree. It also
uses axis-aligned partitioning planes, but it has greater flexibility in their location as well
as the choice of the partitioning dimension. The initial node is simply the scene extents.
Nodes are partitioned by planes whose locations are chosen by performing a binary search of
potential plane positions within the node extents along all three dimensions. The plane that
best balances the number of primitives on both sides of the partition and contains the least
number of primitives straddling it is the desired partitioning plane. Subdivision continues as
long as there is at least one primitive on each side of the partitioning plane and at least one
of them is completely on one side of the plane. Insertion of a plane creates a pair of nodes,
the union of whose extents equals the parent’s extents. In cases where a new node’s extents

are much larger than the bounding box of the objects included in the node, this bounding

box is stored in the node.

To traverse the k-d tree, a ray is intersected with the partitioning plane stored at the
root of the hierarchy. By looking at the ray parameters (its origin and direction), it is simple
to determine the order in which the regions should be examined. Regions are examined in
order of increasing distance from the ray origin. If the ray intersects the bounding volume
for a node (either its extents as determined by partitioning planes or the bounding box of
its included objects, as appropriate), the node’s children are processed next, otherwise the
node’s siblings which are further from the ray origin are processed next. The entire traversal
can be done in ray parameter space. This traversal can also be used with the octree or BSP

tree hierarchies.

3 Characteristics of Ray Tracing Hierarchies

Hierarchical structures help speed up the search for a ray’s first intersection with an object
in the scene. Two important techniques that are used to achieve this are space partitioning

and bounding volumes.

3.1 Space Partitioning

In space partitioning structures, object space is divided up into a collection of convex regions.
Axis-aligned planes are the most common means used [15][10], although planes of other
orientations have been used to solve the hidden surface problem [7][22]. The search for the
closest intersection usually involves intersecting the partitioning planes. Axis-aligned planes
are advantageous since they are less expensive to intersect when compared to planes that
are arbitrarily oriented. The process is recursive, i.e., the regions are recursively partitioned
until they violate the termination criteria used. An example is shown in in Fig. 1, with two

levels of partitioning.

L t=1

AR
o

ri(/
1=0 G/

r2(t)

Figure 1: Sample Rays

There are important advantages to using a space-partitioning structure.

It enables the use of an ordered search for the closest ray-object intersection. The
preferred order is along the path of the ray, so that the search can be terminated as

soon as an intersection is found.

The partitioning planes help identify the regions visited by each ray. This is a small
fraction of the total number of regions in the search structure. Thus large sections of
the scene remote from the ray are never examined. In Fig. 1, ray r;(¢) examines region
1, while ry(%) examines regions 1, 4 and 3. With increased partitioning, the number of

regions actually examined will be a small fraction of the total.

The structure is direction independent. With the help of the partitioning planes, an
ordering can be determined for a ray with arbitrary origin and direction. Thus all kinds
of spawned rays like shadow rays and reflection rays can be traced with no change in

the search structure. In Fig. 1, ray r(¢) finds an intersection I; and terminates, while

6

r3(t) examines regions 1, 4 and 3 and terminates without finding an intersection.

4. The partitioning is adaptive, i.e. only parts of the scene that contain large collections
of primitives are subdivided. This is important when the object distribution is not
uniform. If space were subdivided uniformly, then then there would be large collections

of empty voxels, and traversal costs would become prohibitively high.

3.2 Location and Orientation of Partitioning Planes

At each stage of space partitioning, we need to decide the location and orientation of the
plane. The most common hierarchies like the octree and the Kaplan-BSP tree use axis-
aligned planes which bisect the node extents in each dimension at all nodes of the hierarchy.
In the octree all three dimensions are partitioned simultaneously while in the BSP structure
the partitioning dimension cycles through the X,Y and Z axes. The k-d tree method [9]
uses a median-cut scheme to locate the plane. The planes are still axis-aligned but they are
located so as to place equal numbers of object primitives on both sides of the planes. At
the same time, the number of primitives crossing the plane is minimized. Another heuristic
used in [17] takes into account the surface area at each node of the hierarchy. Rather than
balancing the number of objects on either side of the partitioning plane, the sum of the

product of the surface area and the object count on both sides of the plane is minimized.

Each of these approaches has its own strengths and weaknesses. Consider the BSP or
octree subdivision. Since the planes are fixed to be at the centers of the node extents, the
partitioning might create a large number of empty voxels, especially when the scene distri-
bution is far from uniform. This means traversing empty regions, an expense to be avoided,
since no intersection can be found in these regions. Also, the inflexibility in plane locations
might cause the plane to cross a large number of primitives, all of which must be counted

on both sides of the hierarchy (splitting up primitives presents no advantage). However, the

7

Object Primitives

AN
AG/RS O

<5 AN
O

— O O
Y]

Ry

Figure 2: K-d Tree subdivision

@

partitioning is adaptive in two respects; a region'is not partitioned if it contains less than a
small number of objects, thus avoiding the creation of large numbers of regions containing
few or no object primitives, and regions smaller than a preset size are not subdivided any
further. The size of the region determines the number of rays that will intersect it. The
smaller it is, the fewer the number of rays that will intersect the region. To sum things up,
the creation of empty voxels is itself a source of inefficiency in the first place since no inter-
section can be found in such voxels, but the fact that they are not subdivided any further
is a desirable factor since it helps the structure adapt itself to the locations and densities of

the primitives in the input scene.

In the k-d tree hierarchy, the planes are located so as to balance the number of primitives
on either side of the plane (Fig. 2). A binary search is conducted to determine the plane that

best balances the primitives and, at the same time, minimize primitives that straddle the

Parlitioning Planes

/\ Partitioning Planes

Y OIS

QO ® OO O

X B X,

A

Figure 3: Kaplan-BSP vs. median-cut subdivision

plane. The partitioning dimension is another parameter that makes the plane choice even
more flexible. This automatically makes the partitioning adaptive since the plane is going
to be located in the vicinity of the object primitives. The median-cut approach results in
a hierarchy that has a smaller average height than the Kaplan-BSP scheme since it builds
a balanced binary tree. This is desirable since getting to the leaf nodes (and hence, object
primitives) is faster and less expensive. The main disadvantage of this scheme (as presented
so far) lies in its potential to create large void areas in its regions, especially when the ob ject
distribution is not uniform. In this case, the k-d tree approach will have larger void space

and, in general, poorer performance.

Consider the simple scene in Fig. 3. In 3a, Kaplan’s BSP subdivision with two planes
creates the void space marked V. This space is not subdivided any further since it does
not contain any object primitives. However in 3b, the median-cut approach always tries to
balance the primitives. Thus the void space that appeared in the BSP subdivision will never
be isolated by the median-cut scheme because planes are always located in the vicinity of

the objects. While this is advantageous in cutting down the cost of reaching the leaf nodes

during hierarchy traversal, it allows large collections of the rays to intersect with these void

spaces, thus increasing the traversal cost.
We will later show how this problem can be overcome with the use of bounding volumes.

The heuristic proposed by Macdonald and Booth [17] considers two different characteris-
tics, surface areas of the nodes in the hierarchy and their object count. Let b be a partitioning
plane of a hierarchy. SA;(b) and SA,(b) represent the surface areas on the left and right
sides of the hierarchy. n; and n, are the object counts on the two sides of the hierarchy. The

function to minimize is given by
f(b) = SAi(b).n; + SA,(b).n, (1)

A good feature of this heuristic is that it takes into account the size of objects. The idea is
to strike a balance between surface area and the number of objects that make up that area
on each side of the plane. However, this heuristic also fails to address the problem of void
area. Once a partitioning plane is located at a node, both sides of the plane can potentially
contain large void areas. These areas must be pruned from the hierarchy. One way to do
this is to use bounding volumes at each node of the hierarchy. Now the surface area of a
node is redefined to be the surface area of the bounding volume of the subtree of objects
stored at that node. An important factor to note is that (SA4;(b) + SA,(b)) will, in general,
be less than the surface area of the bounding volume of the original node. The difference
is a measure of the void area at the node. We will investigate the effects of each of these

characteristics in our experiments.
3.3 Traversal Methods

Earlier, we described two different methods to traverse the BSP tree, one used by the

Kaplan-BSP tree and Glassner’s octree, and the one used by the k-d tree. The regions

10

Operation flops
Reaching leaf node havg
Determining face through which ray exits 15
Computing exit point 6
Extending ray into the next region 9
Total cost/region examined 30 + hgoyg

Table 1: BSP/octree Traversal Operations

Operation flops
Plane intersection at each node 2
Branching decision at each node 1.5
Total cost to get to leaf node 3.5ha4g

Table 2: K — d Traversal Operations

identified by both methods for each ray trace are identical. The difference lies in how this
is accomplished. Let us look more closely at the operations performed by the two methods
(the numbers given in Tables 1 and 2 pertain to our implementation and can be replaced by

equivalent quantities for other implementations).

Tables 1 and 2 show the operations performed in both of these traversal methods. hgug 18
the average height of the hierarchy. For the first method, the total operations is an average
count while in the second method, the total operations is a worst case count. Most often,
neighboring regions will be close to each other in the hierarchy. Thus, if the next region to
be processed is close to the region just processed in the hierarchy, then both regions will
have a common ancestor that is relatively deep in the hierarchy. Hence the number of plane
intersections and branching decisions done to get to the new region will be much smaller

than hgq,.

Looking at the expressions for the two methods, it is not clear which method is better.

The octree/BSP traversal does more work in moving from voxel to voxel while the k-d

11

il N

O O ODO
[/ <=/

a b c

Figure 4: Bounding Volumes

traversal is doing more work getting down to the leaf nodes. For very dense scenes, if an
intersection is found within the first few regions the ray encounters, then the first method
does less work. This is because the k-d tree method is determining the order (in advance)
for regions that may never be visited by the ray because of early termination. If the ray
travels a number of regions and if there is locality properties between successive regions in
the hierarchy, then the second method will do better because all its computation is done
in ray parametric space and no coordinates are computed. One other restriction for the
BSP/octree traversal is that all the regions visited must be contiguous, since the ray is
‘extended’ from region to region. The amount by which the ray is extended is determined
by the smallest voxel in the hierarchy. If there were gaps between voxels, this traversal could
put a ray origin in a gap and there would be no corresponding voxel containing the origin.
The k-d tree traversal has no such restriction. This becomes important when we start using

bounding volumes in hierarchies.

3.4 Role of Bounding Volumes

There are some important advantages to using bounding volumes to optimize ray tracing.

1. Around object primitives, bounding volumes provide a simple and inexpensive non-

intersection test. Only if the ray intersects the bounding volume does the primitive

12

inside it needs to be tested for intersection.

2. By surrounding clusters of objects with bounding volumes, large sections of object space
can be pruned away, drastically reducing the ray search space. Bounding volumes
are more effective in this respect, since, in general, they provide tighter enclosures
around object clusters than those created by space partitioning structures. Also, the
bounding volume can be made arbitrarily tight [16], although the cost of intersecting
the bounding volume also increases proportionately. Grouping objects into clusters of
increasing size and surrounding them with bounding volumes results in a bounding
volume hierarchy. Any node in this hierarchy represents a cluster of objects contained

in its subtree.

3. Bounding volumes can provide a much simpler representation for objects that are
located far from the eye [23]. Thus complex geometric calculations can be avoided if

the object is going to occupy only a small fraction of a pixel in the image plane.

4. The algorithms used to construct bounding volumes are critical to performance. The
best known hierarchy to date is the Automatic Bounding Volume hierarchy [11]. Its
biggest advantage is the automatic construction of the hierarchy, which facilitates ren-

dering complex environments.
3.5 Discussion

Space partitioning hierarchies optimize ray tracing by providing an ordering of regions visited
by the ray independent of the ray origin or direction. This ordering also makes it easy to
terminate a ray trace once the closest intersection is determined. Since only regions visited
by the ray are examined for intersection, the structure helps avoid examining regions that are
far from the path of the ray. Space partitioning structures are adaptive, concentrating the

partitioning in the vicinity of objects. Since all the partitioning planes are axis-aligned, they

13

have the potential to create large void spaces which are a source of inefficiency. Bounding
volume hierarchies, on the other hand, optimize ray tracing by culling away large sections
of object space and provide a compact representation for the objects at every node of the
hierarchy. They are more effective than space partitioning hierarchies in this because of the
greater freedom available in choosing the location, orientation and shape of the bounding
volume. Also, they can be made to fit as tight as possible around object clusters thus reducing
the ray search space even further. Rays that do not intersect a bounding volume in the
hierarchy will not need its subtree (containing bounding volumes and/or object primitives)
to be examined any further. Lastly, the bounding volume hierarchy traversal is not along
the path of the ray, although a partial ordering can be obtained by sorting and processing

bounding volume intersections in sorted order [16], unlike space partitioning hierarchies.

Since the optimizations provided by space partitioning hierarchies and bounding volumes
seem to be orthogonal to each other, can we combine them to good advantage? Hierarchy
traversal methods described earlier also need be examined in more detail to determine how
they perform with typical scene models. Lastly, location of partitioning planes is also a
characteristic that merits a closer look. Our goal will be to attempt to combine these
optimizations to build a space partitioning hierarchy that will be capable of outperforming

any hierarchy that uses only some of these characteristics.

4 Implementation

We have implemented a space partitioning hierarchical structure to investigate the different
characteristics that affect performance. All experiments were conducted on a Sun 4 (SPARC)
workstation running 4.0.3 UNIX'. All the images were computed at 512 by 512 resolution.
Images are illustrated in the color plates at the end of the paper. Run times are in minutes

of cpu time.

1UNIX is a trademark of AT&T Bell Laboratories.

14

Partitioning Bounding Volumes | Traversal
BSP No k-d
BSP es k-d
BSP No BSP/octree
BSP No k-d
k-d (median-cut) No k-d
k-d (median-cut) Yes k-d
SA heuristic No k-d
SA heuristic Yes k-d

Table 3: Experiments Conducted

Ray counts are in thousands

Scene Tetra DNA | Arches | Spd.Balls | Spd.Tree | Spd.Mount
Objects 1024(P) | 410(S) | 4818(P) | 7382(PS) | 8191PSC | 8196(PS)
Lights 1 1 2 3 7 1
Total rays 299 445 437 1819 1676 1393
Visual rays 262 323 317 722 452 977
Shadow rays 37 122 120 1097 1224 416
Hit rays 44 75 73 873 242 683

proposed as benchmarks [12].

Table 4: Test Scenes

-

15

Table 3 describes the tests we have conducted to bring out the performance characteristics
that we described in the previous section. In Table 3, ‘SA heuristic’ refers to the surface area
heuristic used in [17], described by Equation 1. BSP/octree traversal refers to the traversal
methods used by Glassner [10] and Kaplan [15]. k-d traversal was used in [9][18], as we
described earlier. Seven different datasets were used as test cases. Most of these are scenes

Details of these datasets and ray statistics are described in

In our implementation, the partitioning plane can be located so as to bisect the scene
extents (BSP/octree), balance the number of objects on either side (k-d), or search for

the best plane between the spatial and object medians (Surface area heuristic). Bounding

volumes can be turned on or off for any of these schemes. The k-d traversal can be used
with any of these schemes, while the BSP /octree traversal can be used only in the absence of
bounding volumes in the hierarchy. This is because the BSP/octree traversal requires that
voxels be contiguous, which is no longer the case once bounding volumes are introduced into

the hierarchy.

Bounding volumes used in the hierarchy are axis-aligned parallelepipeds. Object prim-
itives are also surrounded by parallelepipeds. Bounding volumes are used in the hierarchy
only when their presence at a node will result in a significant reduction in void space. Some
2D examples are shown in Fig. 4. In 4a, bounding volumes are required on both sides of the
plane, in 4c, no bounding volumes are required since no reduction in void space is achieved

by doing so, and in 4c, only the left side needs it.

We measure the floating point operations spent in computing bounding volume intersec-
tions (both in the hierarchy and those surrounding object primitives), traversal operations
(for example, plane intersections) and object intersections. This constitutes the majority of
the work spent in ray tracing. This is a measure of performance independent of the computer
used to run the ray trace. We also compute the total void area for each scheme. This helps
bring out the role of bounding volumes in the hierarchy. To compute this, the area of the
node is first determined, which is just the surface area of its bounding volume. Once a par-
titioning plane subdivides this node, we have two sub-nodes. The tightest bounding volume
enclosing all the primitives in each sub-node is computed, clipped to the bounding volume
of the original node and the partitioning plane. The void area is the difference between the
area of the original node and the sum of the areas of its two children. This computation is

carried out at each node that is subdivided to get the total void area.

5 Experimental results

16

Scene Avg. Ht | Void Area | flops/ray | Run time
Tetra 11.45 | 43388.03 153.20 2.90
DNA 11.70 | 32552.10 240.86 6.67
Arches 14.41 59.12 428.22 9.60
Spd.Balls 20.07 3034.28 547.93 69.93
Spd.Tree 24.52 | 48611.76 484.42 73.22
Spd.Mount 19.53 344.31 273.61 31.58

Table 5: BSP subdivision, no bounding volumes, k-d traversal.

Scene Avg. Ht | Void Area | flops/ray | Run time
Tetra 8.78 | 105095.42 200.33 3.27
DNA 11.14 | 60220.91 268.71 7.21
Arches 13.56 252.38 894.52 20.35
Spd.Balls 14.97 | 43655.13 708.05 84.39
Spd.Tree 14.02 | 716925.55 | 1097.19 108.88
Spd.Mount 13.97 1617.71 600.70 43.38

Table 6: k-d subdivision, no bounding volumes, k-d traversal.

Tables 5, 6 and 7 illustrate the results for the different space partitioning schemes in the
absence of bounding volumes. Among these, the BSP (or octree) scheme performs best. The
reason for this is the larger void areas in the k-d and SA methods (also illustrated in the

tables). Performance is tracked reasonably well by the void area figures.

To counter the problem of void area, we next introduce bounding volumes into the hier-
archy. The results are illustrated in Tables 8, 9 and 10. The performance of all the schemes
improve but it is more dramatic for the k-d and SA methods. Now the advantages of the
greater flexibility in plane location and partitioning dimension make the k-d or SA methods
much more attractive. The smaller average height of the k-d and SA hierarchies(refer to the
Spd.Balls and Spd.Tree databases) is another reason for their superior performance. This is
especially true for the larger scene models, a very desirable factor since performance is more

critical for complex scenes.

17

Scene Avg. Ht | Void Area | flops/ray | Run time
Tetra 8.72 | 99964.82 195.02 3.20
DNA 12.47 | 31183.64 243.20 6.26
Arches 14.60 153.63 858.33 15.29
Spd.Balls 15.57 568.55 296.89 33.80
Spd.Tree 15.20 2243.42 162.93 18.17
Spd.Mount 14.01 930.41 428.87 30.65

Table 7: SA subdivision, no bounding volumes, k-d traversal.

Scene Avg. Ht | Void Area | flops/ray | Run time
Tetra 11.47 0.07 144.45 2.48
DNA 11.91 723.45 229.10 6.26
Arches 15.79 0.95 304.17 8.17
Spd.Balls 15.74 1.95 260.74 33.32
Spd.Tree 13.77 61.26 155.97 21.40
Spd.Mount 13.91 5.09 272.00 25.98

Table 8: BSP subdivision, bounding volumes, k-d traversal.

Tables 5 and 11 show the performance of the BSP scheme with the two different hierarchy
traversal methods. Clearly, the k-d traversal is superior because of the smaller number of

operations done. It is also more general since it can be used in the presence of bounding

volumes in the hierarchy.

6 Amnalysis

From the experiments, we see that there are two very different classes of methods. The BSP,
octree (and uniform subdivision, too) belong to one group while the k-d and SA methods
belong to another. In the BSP/octree schemes, the plane locations are predetermined to
bisect the scene extents and the partitioning dimension follows a strict sequence (for the

octree, subdivision is simultaneous on all three dimensions). These methods assume objects

18

Scene Avg. Ht | Void Area | flops/ray | Run time
Tetra 8.78 960.63 152.55 2.56
DNA 11.14 1363.29 216.40 5.87
Arches 13.72 1.442 320.21 8.02
Spd.Balls 14.97 4.47 259.53 24.60
Spd.Tree 14.02 6.77 125.15 13.50
Spd.Mount 13.97 1617.71 282.45 24.60

Table 9: k-d subdivision, bounding volumes, k-d traversal.

Scene Avg. Ht | Void Area | flops/ray | Run time
Tetra 8.72 735.80 144.84 2.23
DNA 10.98 866.59 212.11 5.58
Arches 14.60 1.00 286.01 7.08
Spd.Balls 15.20 3.99 244.51 26.71
Spd.Tree 14.51 5.52 127.55 12.92
Spd.Mount 14.40 4.63 244.63 19.36

Table 10: SA subdivision, bounding volumes, k-d traversal.

are uniformly distributed, in which case this is the desirable location for the partitioning
plane. Any deviation from this assumption results in an uneven distribution of objects in
the individual regions. In the worst case, all objects might fall onto one side of the plane.
However, the subdivision is adaptive, in that the empty region is no longer subdivided. Thus,
the disadvantage arising from the inflexibility in plane locations is counterbalanced by the

adaptive subdivision, which also helps in keeping the void area low.

Both the k-d tree and SA methods attempt to locate the partitioning plane in the vicinity
of the objects. In the k-d hierarchy, the object median is the choice, while in the SA method,
the plane is located to minimize the criterion function given in Equation 1. This function
takes into account both the number of objects and the surface areas on both sides of the

plane. While this is desirable, the heuristics have the potential to create large void spaces

19

on both sides of the plane. Large collections of rays intersect these void spaces and rising

Scene Avg. Ht | Void Area | flops/ray | Run time
Tetra 11.46 | 433388.03 249.42 3.46
DNA 11.71 1 32552.10 339.36 7.62
Arches 15.37 59.12 593.98 12.05
Spd.Balls 20.06 3034.28 | 1053.52 102.45
Spd.Tree 24.52 | 48611.76 | 1146.51 108.58

Table 11: BSP Subdivision, no bounding volumes, BSP Traversal.

traversal costs quickly degrade performance, as shown in Tables 6 and 7.

three schemes in the absence of bounding volumes in the hierarchy. The BSP/octree has
the least void area and performs best. The introduction of bounding volumes into the
hierarchy dramatically improves performance, as indicated by Tables 9 and 10. Now, the best
performance is obtained by using the SA heuristic, with bounding volumes at nodes of the
hierarchy where they are needed. In this regard, it must be clarified that our implementation

of the SA heuristic is different from [17], because of the presence of bounding volumes. At

each node of the hierarchy,

1.

determined by a second binary search.

20

determined by a binary search within the scene extent.

The void area figures in Tables 5, 6 and 7 help explain the relative performance of these

The object median (equal numbers of object primitives on both sides of the plane) is

The area median (equal bounding volume surface areas on both sides of the plane) is

A linear search is performed between the object and area medians. The plane that

best minimizes the criterion function given in Equation 1 is the desired plane choice.

Between the k-d and SA methods, the latter performs better because it exploits all

the mentioned characteristics critical to performance. The k-d hierarchy does not consider
surface areas of the regions when trying to choose a partitioning plane. The SA method also

solves the problem of disproportionately sized objects in a scene.

From an implementation point of view, the BSP/octree schemes are the easiest to im-
plement, since the other two schemes involve searching for a suitable plane location. Using
bounding volumes is definitely an advantage as the figures in Tables 9 and 10 show. The
SA heuristic gives the best performance, although the k-d hierarchy with bounding volumes

comes very close to it.

Lastly, the &-d traversal performs significantly better than the BSP/octree traversal and

its use is recommended when using the BSP or octree hierarchies.

7 Conclusions

A detailed study of space partitioning techniques has been made with the help of charac-
teristics that are critical to performance. Experimental results clearly support the effects of
these characteristics on performance. This has led us to a greater insight and understanding

of the performance of some of the most commonly used ray tracing hierarchies.

8 Acknowledgements
Our thanks to Dr. Roy Jenevein and Applied Research Laboratories for use of their computer

facilities. Gordon Fossum created the arches model. The Spd.Balls, Spd.Tree and Spd.Mount

models were due to Eric Haines [12].

21

Plate 1. Tetrahedra.

Plate 2. DNA.

Arches.

Plate 3.

I
m
o
N
4
et
o
(s

Plate 5. Spd.Tree.

References

[1] James Arvo and David Kirk. Fast ray tracing by ray classification. Computer Graphics,

21(4):269-278, July 1987.

[2] Jon Louis Bentley. Multidimensional binary search trees used for associative searching.

Communications of the ACM, 18(9), September 1975.

[3] Jon Louis Bentley. Data structures for range searching. Computing Surveys, 11(4),
December 1979.

[4] John G. Cleary and Geoff Wyvill. Analysis of an algorithm for fast ray tracing using
uniform space subdivision. Visual Computer, 4(2):65-83, July 1988.

[5] Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed ray tracing. Com-
puter Graphics, 18(3):137-145, July 1984.

[6] Henry Fuchs, Gregory D. Abram, and Eric D. Grant. Near real-time shaded display of
rigid objects. Computer Graphics, 17(3):65-72, July 1983.

[7] Henry Fuchs, Zvi M. Kedem, and Bruce F. Naylor. On visible surface generation by a
priori tree structures. Computer Graphics, 14(3):124-133, July 1980.

[8] Akira Fujimoto, Takayuki Tanaka, and Kansei Iwata. Arts: Accelerated ray-tracing
system. IEEE Computer Graphics and Applications, 6(4):16-26, April 1986.

[9] Donald Fussell and K. R. Subramanian. Fast ray tracing using k-d trees. Technical
Report TR-88-07, Department of Computer Sciences, The University of Texas at Austin,
March 1988.

[10] Andrew S. Glassner. Space subdivision for fast ray tracing. IEEE Computer Graphics
and Applications, 4(10):15-22, October 1984.

25

[11] Jeff Goldsmith and John Salmon. Automatic creation of object hierarchies for ray

tracing. IEEE Computer Graphics and Applications, pages 14-20, May 1987.

[12] Eric A. Haines. A proposal for standard graphics environments. IEEE Computer Graph-
ics and Applications, pages 3-5, November 1987.

[13] Eric A. Haines and Donald P. Greenberg. The light buffer: A shadow testing accelerator.
IEEE Computer Graphics and Applications, pages 6-16, September 1986.

[14] Paul S. Heckbert and Pat Hanrahan. Beam tracing polygonal objects. Computer Graph-
ics, 18(3):119-127, July 1984.

[15] Michael R. Kaplan. The uses of spatial coherence in ray tracing. ACM SIGGRAPH
Course Notes 11, July 1985.

[16] Timothy L. Kay and James T. Kajiya. Ray tracing complex scenes. Computer Graphics,
20(4):269-278, August 1986.

[17] J. David Macdonald and Kellog S. Booth. Heuristics for ray tracing using space subdi-
vision. Graphics Interface, May 1989.

[18] Bruce F. Naylor and William C. Thibault. Application of bsp trees to ray tracing and
csg evaluation. Technical Report GIT-ICS-86/03, School of Information and Computer
Science, Georgia Institute of Technology, February 1986.

[19] Steven M. Rubin and Turner Whitted. A 3-dimensional representation for fast rendering
of complex scenes. Computer Graphics, 14(3):110-116, 1980.

[20] L. Richard Speer, Tony D. DeRose, and Brian A. Barsky. A theoretical and empirical

analysis of coherent ray tracing. Graphics Interface, pages 11-25, May 1985.

[21] K. R. Subramanian. Fast ray tracing using k-d trees. Master’s thesis, Department of

Computer Sciences, The University of Texas at Austin, December 1987,

26

[22] Ivan E. Sutherland, Robert F. Sproull, and Robert A. Schumacker. A characterisation
of ten hidden-surface algorithms. Computing Surveys, 6(1), March 1974.

[23] Kelvin Thompson and Donald S. Fussell. Amalgamated ray tracing, inc. To be submit-
ted.

[24] Hank Weghorst, Gary Hooper, and Donald P. Greenberg. Improved computational
methods for ray tracing. ACM Transactions on Graphics, 3(1):52-69, January 1984.

[25] Turner Whitted. An improved illumination model for shaded display. Communications

of the ACM, 23(6):343-349, June 1980.

27

	tr90-21
	pg22-tr90-21
	pg23-tr90-21
	pg24-tr90-21

