THE VIRTUE OF PATIENCE:
CONCURRENT PROGRAMMING WITH
AND WITHOUT WAITING®

James H. Anderson and Mohamed G. Gouda

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712-1188

TR-90-23 July 1990

Abstract

We consider the implementation of atomic operations that either write several
shared variables, or that both read and write shared variables. We show that, in
general, such operations cannot be implemented in a wait-free manner using atomic

registers.

Keywords: atomic registers, atomicity, history, interleaving semantics, leader elec-

tion, shared variable, waiting

CR Categories: D.4.1, D.4.2, D.4.4, F.1.1, F.1.2

1 Introduction

The concept of an atomic register is of fundamental importance in the theory of concurrent
programming [11]. An atomic register is a shared data object that can either be read or
written in a single, indivisible operation. Such a data object is characterized by the number
of processes that can write it, the number of processes that can read it, and the number of
bits that it stores. The most primitive atomic register can be read by one process, written
by one process, and store a one-bit value; the most complicated can be read or written by

several processes and store any number of bits.

*Work supported in part by Office of Naval Research Contract N00014-86-K-0763.

The notion of an atomic register lies at the heart of recent research on the wait-free
implementation of concurrent shared data objects. The major objective of this research has
been to characterize those operations that can be implemented without waiting in terms
of single-reader, single-writer, atomic bits. It has been shown in a series of papers that
multi-reader, multi-writer, multi-bit atomic registers can be implemented in terms of such
bits [4, 5, 10, 11, 12, 14, 15, 16, 17, 18]. In addition, new results by Afek et al. [1} and
by Anderson {2, 3] show that it is possible to implement a “snapshot” operation that reads
several shared variables in terms of such bits.

In this paper, we consider the other two possibilities: operations that write several
shared variables, and operations that both read and write shared variables. We show that, in
general, such operations cannot be implemented in a wait-free manner using atomic registers.
This result is established by considering the problem of two-process leader election; we call
our version of this problem the “binary election problem.” The result is proved in two steps.
First, we show that the binary election problem can be solved without waiting if a program
is allowed to have operations that write several shared variables or that both read and write
shared variables. Then, we prove that the binary election problem cannot be solved without
waiting by a program with processes that communicate only by means of atomic registers.

The rest of the paper is organized as follows. In Section 2, we present our model of
concurrent programs, and in Section 3 we define what it means for a process of a concurrent
program to wait. Then, in Section 4, we define the binary election problem and present our
main result. Concluding remarks appear in Section 5.

2 Concurrent Programs

In this section, we give our definition of a concurrent program.

Definition: A concurrent program consists of a finite set of processes (defined below) and

a finite set of variables. 0
Definition: A process is a finite set of actions. Each action is of the form B — z1,...,zm
= F,...,Ep for some m > 1, where B, called the action’s guard, is a predicate over

private variables (defined below); each &; is a distinct variable; and each E; is an expression
over a finite number of variables. m]

Definition: A variable is shared iff it appears among the actions of more than one process;
otherwise, it is private. For simplicity, we limit our attention to programs with only simple
variables, e.g., integers, booleans, and the like. 0O

Definition: A state of a program is an assignment of values to the variables of the program.

One or more states of a program are designated as initial states. O

Definition: An action is enabled at some state iff its guard is true at that state. An enabled
action is ezecuted by performing its assignment statement,. O

Definition: Let s be a state of a program and let ¢ be an action that is enabled at state s.
If ¢ is the result of executing action c at state s, then we write s5t. We call t a successor
of state s. m]

Definition: A history of a program is either an infinite sequence so-3s,3 .. or a finite
sequence sp—3s;5 .. -c:lsk with no enabled action in the final state s;. In either case, the
first state sy is either an initial state of the program — in which case the history is called
an wnitialized history — or is a state appearing in a history whose first state is an initial
state. 0

3 Definition of Waiting

In this section, we define what it means for a process of a concurrent program to wait.
We also establish a necessary and sufficient condition for a particular kind of program —
namely, one that is “supposed” to terminate — to be wait-free.

Definition: A process waits af a subset C of its actions iff there exists a history h that
contains an infinite number of actions in C such that

¢ some action in C is enabled at every state of h, and

¢ starting from each state of h, there exists a history that contains a state in which no
action in C is enabled.

We say that a process waits iff it waits at some subset of its actions. m]
Definition: A program waits iff at least one of its component processes waits. 0

Definition: A program is called potentially terminating iff for each state s in any initialized
history there exists at least one finite history that starts from s. a

Theorem 1: A potentially terminating program is wait-free iff all of its histories are finite.

Proof: If a potentially terminating program has only finite histories, then it is clearly wait-
free. If, on the other hand, a potentially terminating program has some infinite history h,
then there exists a process, call it p, that executes an infinite number of actions in k. Let C
denote the set containing all actions of p. Since p executes an infinite number of actions in A
(and since the guard of each action is an expression over private variables), p has an enabled

action at every state state of h. Therefore, some action in C is enabled at every state of h.
Because the given program is potentially terminating, there is a finite history starting from
each state of h. Each finite history has a state in which no action in C is enabled, namely

its final state. Therefore, p waits at C, and the given program is not wait-free.]

4 Main Result

In this section, we prove that; in general, actions that write several shared variables or
that both read and write shared variables cannot be implemented without waiting using
atomic registers. We begin by defining the class of “atomic” programs; this class includes
all programs whose processes communicate by means of reading and writing atomic registers
or by means of “snapshot” operations, i.e., operations that read several shared variables.
(The results of Afek et al. [1] and Anderson {2, 3] show that snapshot operations can be
implemented without waiting in terms of reads and writes of atomic registers).

Definition: Consider the action B — =3,...,2,, := F,..., E;,. We say that this action

reads each variable appearing in some FE;, and writes each variable z;. 0

Definition: A program is afomic iff its actions satisfy the following two constraints.
o Single- Writing: Each action writes at most one shared variable.
o Single-Phase: No action both reads a shared variable and writes a shared variable. O

Thus, if an action of an atomic program accesses shared variables, then it either writes
a single shared variable or reads one or more shared variables.

In the remainder of this section, we show that there exists a program violating Single-
Writing (respectively, Single-Phase) that cannot be implemented in a wait-free manner by
an atomic program. This result is proved by considering the problem of two-process leader
election; our version of this problem is called “the binary election problem.” The proof is in
two parts. We first give two wait-free programs that solve the binary election problem, one
that violates Single-Writing and another that violates Single-Phase. We then prove that
the binary election problem cannot be solved without waiting by an atomic program. This
implies that neither of our proposed solutions can be implemented in a wait-free manner by
an atomic program. It follows, then, that actions that violate Single-Writing and Single-
Phase cannot, in general, be implemented without waiting in terms of actions that satisfy
Single-Writing and Single-Phase. As pointed out in Section 5, similar results have been
obtained independently by Herlihy [9].

We now define the binary election problem.

Binary Election Problem: We are required to construct a potentially terminating pro-

process 0 process 1

e - X,Y,a,b:=1, 1, false, true e > Y, Z,e f:=2, 2, false, true

b — y0,20,b,¢c:= Y, Z, false, true f = z1,41, FHg=2X, Y, false, true
cA(y0,20) = (1,2) — electl, ¢ := true, false gA(zl,91) = (1,2) — electl, g := true, false
cA(y0,20) # (1,2) — elect0, ¢ := false, false g (z1,91) #(1,2) — electl, g := false, false

Figure 1: Proof of Theorem 2.

(0,0,0)

(1,1,0) (0,2,2)

e‘//// \\\\\a

(1,2,2) (1,1,2)

Figure 2: Possible values of (X,Y,2).

gram consisting of two processes. Each process has a private boolean decision variable that
it writes only once. The program must satisfy the following two conditions.

e Fquity: For each process, there exists a finite initialized history with a final state in
which the value of that process’s decision variable is true.

¢ Validity: In the final state of every finite initialized history, the value of one of the
decision variables is true and the value of the other decision variable is false, 0

We now show that the binary election problem can be solved without waiting if either
Single-Writing or Single-Phase is violated.

violates Single-Writing,

Proof: Consider the program in Figure 1. We adopt the convention of using upper-case
letters for shared variables, and lower-case letters for private variables. Variables X , Y,
and Z range over {0,1,2}; each is initially 0. Variables z1, 0, y1, and 20 also range over
{0,1,2}. All other variables are boolean. Initially, a and e are true, and b, ¢, £, and g are
false. The decision variables are elect(and elect].

process 0 process 1

b — X,elect0,b:=-X, X, false ¢ — X electl,c:=~X, X, false

Figure 3: Proof of Theorem 3.

The first action of each process violates Single-Writing. It is easy to check that this
program is wait-free. To see that the program satisfies Equity and Validity, consider Figure
2. This figure depicts the possible values of (X, Y, Z); each arrow is labeled by the guard of
the action that causes the state change. Based on this figure, we conclude that either the
final value of the pair (y0,20) equals (1,2) and the final value of the pair (z1,yl) differs
from (1, 2), or vice versa. This implies that Equity and Validity are satisfied.]

Theorem 3: The binary election problem can be solved without waiting by a program that

violates Single-Phase.

Proof: Consider the program in Figure 3. All variables in this program are boolean. Vari-
ables b and c are initially true. The decision variables are elect and electl. Note that the
single action of each process both reads and writes the shared variable X and hence violates
Single-Phase. It is easy to see that this program is wait-free and solves the binary election

problem. o

In the remainder of this section, we prove that the binary election problem cannot
be solved without waiting by an atomic program. Assume, to the contrary, that there
exists a wait-free program P that solves the binary election problem and satisfies both
Single-Writing and Single-Phase. By the problem definition, P is a potentially terminating
program; therefore, by Theorem 1, we can derive a contradiction by showing that P has an
infinite history. In the remainder of this section, we prove that there exists an infinite history
of P in which neither process ever decides on a value. The proof is similar in structure to
the impossibility proof of [8].

We denote the two processes of P as “process 0” and “process 1.” The following defini-
tion is adopted from [8].

Definition: A state of P is called 0-valent (respectively, I-valent) iff each history starting
from that state ends with a final state in which the value of process 0’s (respectively, process
1’s) decision variable is true. A state of P is called bi-valent iff it is neither 0- nor 1-valent. O

By the Equity and Validity conditions, the initial state of P is bi-valent. Therefore, we
can show that P has an infinite history by proving that each bi-valent state has a bi-valent
successor. Before proving this result, we first state and prove two lemmas. The following

definitions are used in the proof (the first is adopted from [6]).

Definition: Two states of P are compatible iff it is not the case that one is O-valent and
the other is 1-valent. 0

Definition: Suppose that s-5¢ and s—'iu, where e # f. Then, the two actions ¢ and d
commute from state s iff there.exists a state v such that s-5¢3,y and s—dm—c»v. O

Let s denote an arbitrary bi-valent state of P, and let R (respectively, S) denote the set
of successors of s that are reached by executing an action of process (respectively, process

1).

Lemma 1: Both R and S are nonempty:.

every pair of consecutive states in any history, if a process has no enabled action in the first
state, then it has no enabled action in the second state. Thus, it suffices to prove that an
action of process 0 is executed in some history starting from state s.

Because s is bi-valent, there exist two histories A and A’ ; both of which start from s, such
that the value of process (’s decision variable is true (false) in the final state of h (h'). Thus,
because process () writes its decision variable only once, it updates its decision variable in
each of A and &', o

Lemma 2: Suppose that s-%¢ and s—d-m, where ¢ and d are actions of processes () and 1,
respectively. Then, ¢ and u are compatible,

Proof: We first dispose of the case in which ¢ and d commute from s. In this case, there is a
state v such that s-%¢-%y and s-iu—c-w. Ifvis bi-valent, then ¢ and 4 are both bi-valent, and
hence are compatible. If v is O-valent (1-valent), then neither ¢ nor u is I-valent (0-valent),
and thus ¢ and u are compatible.

For the remainder of the proof, assume that ¢ and d do not commute from s. Because
P satisfies Single—Writing and Single—Phase, by symmetry, we only need to consider the
following case: ¢ writes some shared variable z and accesses no other shared variable; d
either reads z and writes no shared variable, or writes z and accesses no other shared
variable.

Consider the state v such that uSy. Note that the local state of process 0 is the same
in both states ¢ and v. Also, because P is wait-free, by Theorem 1, each history starting
from state s is finite, Therefore, starting from each of ¢ and v, we can inductively construct
a history consisting only of actions of process 0 such that in both histories, the sequence

of local states of process 0 is the same, and there is no enabled action of process 0 in the
last state (i.e., process 0 terminates). It follows that process 0 assigns the same value to its

decision variable in both histories, implying that ¢ and u are compatible.]

Theorem 4: The binary election problem cannot be solved by a program that satisfies
both Single-Writing and Single-Phase.

Proof: We prove that the arb‘itrary bi-valent state s, defined above, has a successor that
is bi-valent. This implies that, contrary to our assumption, P has an infinite history, and
hence is not wait-free. Since s is bi-valent, by Lemma 1, it has at least one successor. If
s has exactly one successor (in which case R and S are identical), then that successor is
obviously bi-valent, so assume that s has at least two successors. If all successors of s are
compatible, then at least one of them is bi-valent, since all of them cannot be O-valent or
1-valent. If there exist two successors of s that are not compatible, then, by Lemma 2, both
are either in R— S or in S— R. In the former case, since R— S contains both a O-valent state
and a 1-valent state, by Lemma 2, each state in S is bi-valent. Similarly, in the latter case,
each state in R is bi-valent. Therefore, because R and S are both nonempty, the theorem
follows.]

5 Concluding Remarks

We have shown that, in general, actions that violate Single-Writing or Single-Phase cannot
be implemented without waiting in terms of actions that satisfy Single-Writing and Single-
Phase. This implies that operations that write several shared variables, or that both read
and write shared variables, cannot be implemented without waiting in terms of atomic
registers. Our results imply that most interesting atomic primitives — e.g., test-and-set,
fetch-and-add, etc. — cannot be implemented in a wait-free manner using atomic registers.

Similar results have been obtained independently by several other researchers, including
Chor, Israeli, and Li [7], Herlihy [9], and Loui and Abu-Amara [13]. Herlihy, in particular,
provides a thorough comparison of some of the more well-known atomic primitives that
fall within the class of actions violating Single-Writing and Single-Phase. He also shows
that these primitives cannot be implemented in terms of atomic registers. Perhaps the most
important contribution of Herlihy is a general means for proving that a primitive is universal,
i.e., that it can be used to construct a wait-free implementation of any “sequential” data
object.

Acknowledgements: We would like to thank Ken Calvert and Ambuj Singh for their comments

on this paper.

References

[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit, “Atomic Snapshots,”
Proceedings of the Ninth Annual Symposium on Principles of Distributed Computing,
1990, to appear.

[2] J. Anderson, “Composite Registers,” Proceedings of the Ninth Annual Symposium on
Principles of Distributed Computing, 1990, to appear. Also, available as Technical Re-
port TR.89.25, Department of Computer Sciences, University of Texas at Austin, 1989.

(3] J. Anderson, “Multiple-Writer Composite Registers,” Technical Report TR.89.26, De-
partment of Computer Sciences, University of Texas at Austin, 1989.

[4] B. Bloom, “Constructing Two-Writer Atomic Registers,” IEEE Transactions on Com-
puters, Vol. 37, No. 12, December 1988, pp. 1506-1514.

[6] J. Burns and G. Peterson, “Constructing Multi-Reader Atomic Values from Non-
Atomic Values,” Proceedings of the Sizth Annual Symposium on Principles of Dis-
tributed Computing, 1987, pp. 222-231.

[6] K. Chandy and J. Misra, “On the Nonexistence of Robust Commit Protocol,” un-
published manuscript, Department of Computer Sciences, The University of Texas at
Austin, November 1985.

[7] B. Chor, A. Israeli, and M. Li, “On Processor Coordination Using Asynchronous Hard-
ware,” Principles of the Sizth Annual Symposium on Principles of Distributed Com-
puting, 1987, pp. 86-97.

[8] M. Fischer, N. Lynch, and M. Patterson, “Impossibility of Distributed Consensus with
one Faulty Process,” Journal of the ACM, Vol. 32, No. 2, April 1985, pp. 374-382.

[9] M. Herlihy, “Wait-Free Implementation of Concurrent Objects,” Proceedings of the
Seventh Annual Symposium on Principles of Distributed Computing, 1988.

[10] L. Kirousis, E. Kranakis, and P. Vitanyi, “Atomic Multireader Register,” Proceedings of
the Second International Workshop on Distributed Computing, Springer Verlag Lecture
Notes in Computer Science 312, 1987, pp. 278-296.

[11] L. Lamport, “On Interprocess Communication, Parts I and I1,” Distributed Computing,
Vol. 1, 1986, pp. 77-101.

[12] M. Li, J. Tromp, and P. Vitanyi, “How to Construct Wait-Free Variables,” unpublished
manuscript, Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands,
1989.

[13] M. Loui and H. Abu-Amara, “Memory Requirements for Agreement Among Unreliable
Asynchronous Processes,” Advances in Computing Research, JAT Press, 1987, pp. 163-
183.

[14] R. Newman-Wolfe, “A Protocol for Wait-Free, Atomic, Multi-Reader Shared Vari-
ables,” Proceedings of the Sizth Annual Symposium on Principles of Distributed Com-
puting, 1987, pp. 232-248.‘

[15] G. Peterson and J. Burns, “Concurrent Reading While Writing II: The Multi-Writer
case,” Proceedings of the 28th Annual Symposium on Foundations of Computer Science,
1987.

[16] A. Singh, J. Anderson, and M. Gouda, “The Elusive Atomic Register, Revisited,”
Proceedings of the Sizth Annual Symposium on Principles of Distributed Computing,
1987, pp. 206-221.

[17] 1. Tromp, “How to Construct an Atomic Variable,” unpublished manuscript, Centrum
voor Wiskunde en Informatica, Amsterdam, The Netherlands, 1989.

(18] P. Vitanyi and B. Awerbuch, “Atomic Shared Register Access by Asynchronous Hard-

ware,” Proceedings of the 27th IEEE Symposium on the Foundations of Computer Sci-
ence, 1986, pp. 233-243.

10

