A CRITERION FOR ATOMICITY"
James H. Anderson and Mohamed G. Gouda

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712-1188

TR-90-24 July 1990

ABSTRACT

Most proof methods for reasoning about concurrent programs are based upon the interleaving
semantics of concurrent computation: a concurrent program is executed in a stepwise fashion,
with only one enabled action being executed at each step. Interleaving semantics, in effect, re-
quires that a concurrent program be executed as a nondeterministic sequential program. This is
clearly an abstraction of the way in which concurrent programs are actually executed. To ensure
that this is a reasonable abstraction, interleaving semantics should only be used to reason about
programs with “simple” actions; we call such programs “atomic.” In this paper, we formally
characterize the class of atomic programs. We adopt the criterion that a program is atomic if it can
be implemented in a wait-free, serializable manner by a primitive program. A program is primi-
tive if each of its actions has at most one occurrence of a shared bit, and each shared bit is read
by at most one process and written by at most one process. It follows from our results that the
traditionally accepted atomicity criterion, which allows each action to have at most one occur-
rence of a shared variable, can be relaxed, allowing programs to have more powerful actions.
For example, according to our criterion, an action can read any finite number of shared variables,
provided it writes no shared variable.

Keywords: Atomicity, atomic registers, composite registers, history, interleaving semantics,
leader election, models of concurrency, shared variable, snapshot, waiting.

CR Categories: D.4.1, D4.2, D44, F.1.1, F.1.2.

* This work was supported in part by Office of Naval Research Contract NO0014-89-J-1913.

1 Introduction

Most proof methods that have been proposed for reasoning about concurrent programs are based
upon the assumption that only one action of a concurrent program is executed at a time [14, 18, 21,
24]. This model of program execution is often referred to as inferleaving semantics since the actions
executed by one process are interleaved with those of other processes. Interleaving semantics is
desirable because it allows us to view a concurrent program as being equivalent to a nondeterministic
sequential program. Therefore, techniques that have been developed for reasoning about sequential
programs (such as using invariants to prove safety properties and well-founded rankings to prove
progress properties) can be applied to concurrent programs as well,

Interleaving semantics is clearly an abstraction of the way in which concurrent programs are
actually executed. In order to fully exploit the power of a parallel machine, concurrent programs
are usually implemented in a manner that allows the executions of several actions to overlap in
time. To ensure that interleaving semantics is a suitable abstraction, such an implementation is
typically expected to satisfy the requirement that every parallel execution of two or more actions
be “equivalent” to some interleaved one. For example, if a read and a write of a variable overlap in
time, then the read either obtains the value before the write or the value after the write.

The task of implementing a concurrent program so that any parallel execution is equivalent to
some interleaved one may be difficult, unless we restrict our attention to programs with sufficiently
simple actions. For example, consider a concurrent program consisting of processes Py, ..., Pys and
variables Xy, ..., Xoo; each process F;, where 0 < i < 100, consists of a single action X; := (SUM j :
0 < j < 100: X;). If this program is to be executed in accordance with interleaving semantics, then
a high degree of synchronization and coordination among processes will be required. We contend
that such a program will not be “easy” to implement on a parallel machine.

To ensure that programs are easily implementable, interleaving semantics should not be used to
reason about all programs, but only those programs with sufficiently simple actions; we call such
programs “atomic.” The purpose of this paper is to give a criterion for determining those programs
that should be considered atomic.

If ease of implementation were our only concern, then we could stop here and define the class of
atomic programs to include only those programs with the very simplest of actions. However, ease of
implementation is not our only concern. We would also like to ease the burden on the programmer
as much as possible by allowing a rich set of actions. Thus, we are faced with a dilemma: For ease
of implementation, we should be as strict as possible, but for ease of programming, we should be as
lax as possible. How can we possibly satisfy both of these seemingly conflicting requirements?

The roots of this question can be traced back to the seminal work of Owicki and Gries [24], who
were perhaps the first to define a criterion for atomicity. In order to state their atomicity criterion,
it is necessary to first distinguish between two classes of program variables, shared and private. A
variable is shared if it appears among the actions of more than one process; otherwise, it is private.
Owicki and Gries adopted the criterion that each action of a concurrent program has at most one
occurrence of at most one shared variable. For example, if a is private and X and Y are shared,!
then the action X := g+ 15 would be allowed by their criterion, but the actions X := YV + 2 and

Y We will generally follow the convention of using upper-case letters for shared variables, and lower-case letters for
private variables.

Y := Y + 1 would not. The underlying assumption here is that it should be possible to read or
write any shared variable in a single action. Owicki and Gries attribute the “observation that the
memory reference must have ‘reasonable’ properties” to John Reynolds [24]. For this reason, the
Owicki-Gries atomicity criterion is sometimes known as Reynolds’ Rule [17]. This atomicity criterion
has gained widespread acceptance since its introduction.

Owicki and Gries, in effect, resolve the dilemma noted above “by definition” because they do
not defend their atomicity criterion on any formal basis. We are thus led to question their criterion
on two grounds. First, it is not clear whether this is a viable criterion from an implementation
standpoint. In fact, its “reasonableness” in this regard probably qualifies as a folk theorem [17].
Second, we question whether this criterion is unnecessarily restrictive. That is, it might be possible
to relax the Owicki-Gries atomicity criterion somewhat without making programs any harder to
implement.

In this paper, we remedy these two shortcomings by providing a formal framework for defining
the class of atomic programs. This formal framework is based upon three concepts: primitive
actions, wait-freedom, and serializability. We introduce these concepts now by returning to the
central question posed above: What kinds of actions should an atomicity criterion allow, given the
conflicting requirements of ease of implementation and ease of programming?

Clearly, an atomicity criterion should allow one process to communicate with another, i.e., it is
unreasonable to disallow all actions that access shared variables. We therefore choose to allow some
actions that access shared variables, but to ensure that programs are easily implementable, we will
begin by insisting that each such action be as restrictive as possible. This gives rise to the notion
of a “primitive” action: an action is primitive if it has at most one occurrence of a shared bit, and
each shared bit is read by at most one process and written by at most one process. For example, let
a and b be private bits and let X and Y be shared bits that are read by at most one process and
written by at most one process. Then, the action a, b := X, —b would be considered primitive, but
the actions a, b := X,—X and X := Y would not. Our starting point, then, is the assumption that
each primitive action is reasonable enough to implement.

Given this assumption, it seems reasonable to allow certain nonprimitive actions as well. In
particular, we also choose to allow any action that can be implemented in terms of primitive actions
without a high degree of synchronization or coordination among processes. We illustrate this by
considering two examples. First of all, consider the first nonprimitive action given above, i.e.,
a, b:= X, ~X. This action can be implemented in terms of primitive actions by introducing a new
private bit ¢ as follows.

c:=X; a, b:=¢, me
Such an implementation seems sufficiently simple, so we conclude that our atomicity criterion should
also allow an action such as a, b := X, ~X.

Next, consider the other nonprimitive action mentioned above, i.e., X := V. It turns cut that
this action can be quite difficult to implement in terms of primitive actions. In particular, consider
the following concurrent program, where initially X £ V.

process P: X =Y process (J 1 YV = X

According to interleaving semantics, either process P executes its action first or process @ does. In
either case, the program terminates in a state satisfying the assertion X = Y. However, ag shown

in Section 5, if we implement each action X := ¥ and Y := X in terms of primitive actions, then
at least one of the two processes P and) must busy-wait in order to enforce the necessary mutual
exclusion. A process that busy-waits may execute an infinite number of primitive actions, and hence
may never terminate. Thus, it is impossible to implement the actions of this program in terms of
primitive actions so that the program always terminates in a state satisfying X = Y. We therefore
conclude that it is unreasonable to allow an action such as X =Y.

With this motivation in mind, our atomicity criterion can be described as follows. We define a
program to be afomic if it can be implemented in a wait-free, serializable manner by a primitive
program. A program is primitive iff each of its actions is primitive. Our notion of serializability
is reflected by the implementation of the action a, b := X, =X given above. In particular, this
notion requires that whenever two or more implemented actions are executed concurrently (i.e.,
the primitive actions that implement them are interleaved), there exists an equivalent sequential
execution.

Any program allowed by our atomicity criterion is easily implementable because it can be “re-
duced” to one with only primitive actions. It turns out that our atomicity criterion includes all
programs allowed by the Owicki-Gries atomicity criterion.? This confirms their choice of actions
from an implementation standpoint. However, as we shall see shortly, our atomicity criterion allows
some rather complicated actions that are not allowed by the Owicki-Gries criterion. For example,
our criterion allows an action to read any finite number of shared variables, provided it writes no
shared variable. Thus, our results establish that the traditional Owicki-Gries atomicity criterion is
too restrictive.

The rest of this paper is organized as follows. In Section 2, we present our model of concurrent
programs, and in Section 3, we present the proposed atomicity criterion mentioned above. The
task of checking whether a program is atomic is nontrivial if we appeal directly to this criterion.
Therefore, we present a method that allows this task to be performed systematically. We outline
our approach to justifying this method at the end of Section 3. The actual justification is given in
Sections 4 through 8. Concluding remarks appear in Section 9.

2 Concurrent Programs

A concurrent program consists of a set of processes and a set of variables. A process is a sequential
program specified using Dijkstra’s guarded commands [10]. Each variable is either unsubscripted or
subscripted. Unsubscripted variables are defined using integer, boolean, and subrange (e.g., 0..K)
types. Subscripted variables are defined using an array type; the elements of an array are of type
integer, boolean, or subrange. Multi-dimensional arrays and arrays with an infinite number of
elements are allowed.

Each variable of a concurrent program is either private or shared. A privaie variable is defined
only within the scope of a single process, whereas a shared veriable is defined globally and may be

accessed by more than one process. We assume that the elements of an array are either all shared

2 At least, for the kinds of programs considered here. We require processes to be specified using ordinary sequential
programming statements, whereas Owicki and Gries also allow the possibility of an await statement. Such a statement
obviously cannot be implemented in a wait-free fashion, and hence should not be allowed.

or all private to the same process. We also make the simplifying assumption that only expressions
over private variables are used as array subscripts.
In the remainder of this paper, the term “variable” is meant to refer to either an unsubscripted
variable or an element of an array — we do not refer to an entire array as being a single variable.
The processes of a concurrent program are allowed to access shared variables only by executing
assignment statements. An assignment statement has the form

Ty, ..., en:=Fy, ..., En

where each z; is a distinet variable and each £} is an expression over a finite number of variables. This
statement is executed as a single action as follows: first, the expressions F;, ..., En are evaluated
along with any array subscripts appearing in z1, ..., @y; then, the value of each expression Ej is
assigned to the corresponding variable ;. We say that the variables appearing in the expressions
Ey, ..., En and the array subscripts appearing in 21, ..., 2y are read by the assignment statement,
and the variables zy, ..., ¥x are writlen by the assignment statement. For example, consider the
assignment statement X[i], ¢ := V[j], j+ 1. This statement reads the variables i, , and Y[j], and
writes the variables ¢ and X[i].

Associated with each shared variable is a set of processes that are allowed to read the variable,
and a set of processes that are allowed to write the variable. These two sets of processes must be
specified as part of the definition of every shared variable. An assignment statement of a process
may read (write) a shared variable only if that process has read (write) access to that variable.

(Presumably, a runtime error would occur if this rule is ever violated.)

3 Atomicity Criterion

In this section, we define two important classes of programs, “primitive” and “atomic.” Informally,
a program is primitive if its processes communicate only by means of single-reader, single-writer,
shared bits. More precisely, a program is primitive iff it satisfies the following six constraints.

(0) Each shared variable is a single bit.

(1) Each shared variable is read by at most one process.

(2) Each assignment statement reads at most one shared variable and does so at most once.
(3) Each shared variable is written by at most one process.

(4) Each assignment statement writes at most one shared variable.

(5) An assignment statement does not both read a shared variable and write a shared variable.

Note that these constraints can be checked syntactically. In particular, constraint (0} can be checked
by simply noting the type of each shared variable. Constraints (1) and (3) can be checked by counting
the number of processes that are allowed to read or write each shared variable. Constraints (23,
(4), and (5) can be checked by counting the number of occurrences of shared variables in each
assignment statement. This can be done on a syntactic basis, given our assumptions concerning

variable declarations. (For example, consider the statement a, b := X[i], X[j], where @ and b are
private. By assumption, either all elements of the array X are shared, or all are private to the same
process. If each element of X is shared, then there are two occurrences of shared variables in this
statement, namely X[i] and X[j]; if, on the other hand, each element of X is private, then there are
no occurrences of shared variables in this statement.)

As stated previously, we assume that any primitive program is easily implementable. Qur def-
inition of the more general class of atomic programs reflects this assumption. Simply stated, this
definition is as follows.

Atomicity Crilerion: A program is afomic iff it can be implemented by a primitive
program.

The notion of “implements” referred to here is formally defined in Section 4. Informally, we im-
plement an atomic program by replacing each assignment statement that fails to satisfy constraints
(0) through (5) by a program fragment whose statements satisfy (0) through (5). Different program
fragments in different processes may be executed concurrently (i.e., their statements may be inter-
leaved); each such execution, however, is required to “resemble” one in which the program fragments
are executed in sequence. The program fragments are restricted to be wait-free, i.e., busy-waiting
loops that can iterate an infinite number of times are not allowed. This restriction guarantees that a
process executes each of its implemented assignment statements in a finite amount of time, regardless
of the activities of other processes.

In general, the task of proving that a given program satisfies our proposed atomicity criterion
is nontrivial. A proof must establish that whenever two or more of the above-mentioned program
fragments in different processes are executed concurrently, there exists an equivalent execution in
which they are executed in sequence. As we shall see later, the number of different cases that must
be taken into account in order to establish this proof obligation can be considerable.

The main contribution of this paper is to give a simple method for checking whether a given pro-
gram satisfies the proposed atomicity criterion. In many cases, this method amounts to a syntactic
check of the program text. (For instance, see the example below.) In particular, we prove that a
program is atomic if its assignment statements satisfy the following three conditions.

e FErxact-Wriling: The shared variables can be partitioned into classes, where each class either
consists of a single variable, or a number of unsubscripted variables, such that the following
condition holds: if an assignment statement writes a variable from some class, then it writes
every variable in that class and no variable from any other class.

e Single-Phase: If an assignment statement of one process reads a variable that is written by
another process, then that assignment statement does not write a shared variable.

¢ Flinile-Reading: If an assignment statement reads an element of an infinite shared array, then
it reads no other shared variable.

We call these three conditions atomicily constraints. The Exact-Writing and Finite-Reading con-
straints can be checked on a syntactic basis by simply checking the shared variables that are written

and read, respectively, by each assignment statement. By contrast, it may be necessary to take the

semantics of a program into account in order to check whether Single-Phase is satisfied. For exam-
ple, consider the assignment statement X[i] := Y[j] of some process p. To determine whether this
statement violates Single-Phase, it is necessary to determine whether Y[j] is written by a process
other than p — but, this may depend on the value of j. Note that we are, in effect, viewing each
statement such as X[i] := Y[j] as being a separate statement for each of the possible values of i and
]

The Exact-Writing constraint specifies the conditions under which an assignment statement may
write several shared variables. Intuitively, this constraint implies that we can view the set of shared
variables written by a given assignment statement as a single “compound” variable. (For the sake of
simplicity, we have made Exact-Writing more restrictive than is necessary. In particular, we allow a
class to consist of more than one shared variable only if each variable in the class is unsubscripted. In
[4], a more permissive version of Exact-Writing is considered in which a class may consist of several
subscripted variables. This version of Exact-Writing is considered in Section 9.) The Single-Phase
constraint specifies the conditions under which an assignment statement may both read and write
shared variables. As we shall see in Section 6, this constraint implies that any assignment statement
can easily be implemented in terms of assignment statements that either read shared variables or
write shared variables; hence the name “Single-Phase.” The Finite-Reading constraint specifies the
conditions under which an assignment statement may read several shared variables. Note that this
is a very permissive constraint, as it only restricts those programs that have infinite shared arrays.

We illustrate the atomicity constraints by the following example.

Example: Consider the concurrent program in Figure 1. This program consists of a coniroller
process and N device processes that communicate by means of five shared variables V, W, X, Y,
and Z. Variables V, X, and Y are written by the controller, and variables W and Z are written by
the devices. Variables V and X are read by the devices, variable W is read by the coniroller, and
variables ¥ and Z are read by all N + 1 processes.

The five variables V, W, X, Y, and Z are used as follows. V stores a “request” as produced by
the controller and X identifies the device for which the request is intended. The particular device’s
“reply” to the given request is stored in W. A request is “pending” iff Y # Z; Y is updated by the
coniroller and Z by the devices. The protocol followed by these processes is simple. The controller
repeatedly consumes replies and produces requests, and each device repeatedly consumes requests
and produces replies.

To verify that Exact-Writing is satisfied, we partition the shared variables into classes as follows:
the tuple {V, X, Y} is a class, and the pair {W, Z} is a class. Observe that the only assignment
statements that write shared variables are

V, X, Y := request, dev, =Y

and
W, Z,:=reply, 2

Thus, because V, X, and ¥ are always written together, and because W and Z are always written
together, Exact-Writing is satisfied. Note that the only assignment statement that both reads and

shared var V, W : integer;
X :1.N;
Y, Z : boolean

initialization (W = default value) A (¥ = Z)

process controller
private var request, reply : integer;
dev : 1..N;
pending : boolean
begin
do true — reply, pending :=W, (Y # Z);
if —pending — consume reply; produce next request, dev;
V, X, Y 1= request, dev, =Y
[| pending — skip
&
od
end

process device(j : 1..N)
private var request, reply : integer;
dev : 1..N;
pending, z: boolean
begin
do true — request, dev, pending .=V, X, (Y # Z);
if pending A dev = j — consume request; produce reply;
z = 7y
W, Z :=reply, z
[—pending V dev# j — skip
f
od
end

Figure 1: An example program.
writes shared variables is the statement
V, X, Y = request, dev, =Y

of the controller. Because variable Y is written only by the coniroller, this implies that Single-Phase
is satisfied. Finite-Reading is trivially satisfied because there are no infinite shared arrays. Notice

that this program violates the traditional atomicity criterion of Owicki and Gries. |

The remaining sections are dedicated to justifying the proposed atomicity constraints: Exact-
Writing, Single-Phase, and Finite-Reading. In particular, we show that any program satisfying these

atomicity constraints is atomic. We also show that Exact-Writing and Single-Phase are necessary
in the following sense: for each of these constraints, there exists a nonatomic program violating
that constraint, but satisfying the other two constraints. This shows that if we remove either of
these two constraints from our set of constraints, then we can no longer make the claim that every
program satisfying our set of constraints is atomic. As yet, we do not know whether Finite-Reading
is necessary in this sense. However, this constraint does not appear to be a severe limitation, as it
only restricts those programs that have infinite shared arrays.

To establish the necessity of Exact-Writing and Single-Phase, we consider in Section 5 the prob-
lem of two-process leader election. We first show that there is no primitive program that solves this
problem. Then, we exhibit two programs that solve this problem, one that violates Exact-Writing
and satisfies Single-Phase and Finite-Reading, and another that violates Single-Phase and satisfies
Exact-Writing and Finite-Reading. Neither of these two programs can be implemented by a prim-
itive program, because we know that such a program does not exist. Thus, both programs are
nonatomic. This establishes the following theorem.

Theorem 1: There exists a nonatomic program violating Exact-Writing (or Single-Phase), but
satisfying the other two constraints. O

To establish the sufficiency of our atomicity constraints, we consider in Section 6 a shared data
object called a composite register [2, 3]. A composite register is an array-like variable consisting of
a number of components. An operation of the register either writes a value to a single component,
or reads the values of all of the components. As shown in Section 6, any program satisfying our
proposed atomicity constraints can be implemented by a program with processes that communicate
only by reading and writing composite registers. Thus, we can establish the sufficiency of our
atomicity constraints by showing that a composite register can be implemented in terms of single-
reader, single-writer, shared bits. Given the structure of a composite register, this proof obligation
can be broken into several steps. The register constructions for these steps are described in Section
6; one of the constructions is presented in detail in Section 8. These constructions establish the
following theorem.

Theorem 2: Any program satisfying Exact-Writing, Single-Phase, and Finite-Reading is atomic.
0

4 Implementing Atomic Programs

As stated in Section 3, a program is atomic iff it can be implemented by a primitive program. In
this section, we formally define what it means to implement one program by another.

Terminology: If program P is implemented by program @, then we refer to P as the implemented
program, and ¢ as the implementalion.]

Definition: An implemeniation is obtained by replacing each shared variable of the implemented

program by a set of variables, and each assignment statement of the implemented program by a
program fragment. In principle, such a program fragment can be expressed as follows:

SQ; dOBl — Slﬂ HBN — SNOd

where each B; is an expression over private variables, and each S; is an assignment statement. O

As we shall see later, an implementation is correct iff it is wait-free, sequentially correct, and

serializable. Informally, these conditions are defined as follows.

e Wait-Freedom: Each program fragment is free of busy-waiting loops that can potentially iterate
an infinite number of times.

e Sequential Correciness: When executed in isolation, each program fragment has the same
“effect” as the assignment statement that it replaces.

e Serializability: Whenever two or more program fragments in different processes are executed
concurrently (i.e., their statements are interleaved), there exists an “equivalent” execution in
which the program fragments are executed in sequence.

In this section, we formally define these conditions. We motivate our formal treatment by con-
sidering the following example. As this example shows, it is usually straightforward to define an
implementation so that wait-freedom and sequential correctness hold. The principal difficulty lies
in satisfying serializability.

Example: Consider a concurrent program with a process that includes the assignment statement
X =4, where X is a single-reader, single-writer, four-bit, shared variable. Note that this statement
violates constraint (0) in the definition of primitive programs given in Section 3. To implement the
given program by a primitive program, it is necessary to replace X by a set of single-bit variables.
One way to do this is to partition variable X into four separate single-bit variables Xy, X, X», and
Xs. Then, we can replace the statement X := 4 by the following program fragment.

KXo 1= 0;
Xy =0
KXo = 1
Xg =0

Each other assignment statement of the implemented program that reads (or writes) X would
similarly be replaced by a program fragment that reads (or writes) each X;.

The above program fragment for X := 4 is loop-free. Moreover, executing this program fragment
in isolation clearly has the effect of assigning the value 4 to variable X. Thus, this implementation
is both wait-free and sequentially correct. However, a read of X may obtain an incorrect value if it
is executed concurrently with a write to X. Suppose, for example, that the program fragment for
X =4 is executed when X =15 (i.e, when Xy = X; = Xy = X3 = 1). If a program fragment that
reads X (by reading each X;) is executed between the write of 0 to X; and the write of 1 to X,
then the incorrect value 12 will be obtained for X (i.e., Xo = X; =0 and Xy = X5 = 1). Thus, this

simple implementation is not serializable. o

Terminology: In order to avoid confusion, we henceforth refer to the variables of an implemented
program as higher-level variables, and the variables of an implementation as lower-level variables.
Note that each higher-level variable corresponds to some set of lower-level variables. We capitalize
terms such as “Read” and “Write” when they apply to higher-level variables, and leave them un-
capitalized when they apply to lower-level variables. O

In the above example, the higher-level variable X corresponds to the set of lower-level variables
{Xo, X1, X2, X3}. The assignment statement X := 4 “Writes” the value 4 to X. The assignment
statement X3 := 1 “writes” the value 1 to Xs.

Definition: Consider a program fragment that replaces an assignment statement S of the imple-
mented program. We say that the program fragment Reads (respectively, Writes) each higher-level
variable that is read (respectively, written) by the assignment statement S; the set of all such higher-
level variables comprise the Read Set (respectively, Write Set) of the program fragment. A program
fragment is only allowed to access the lower-level variables that correspond to the higher-level vari-
ables in its Read Set and Write Set. O

Consider, for example, the program fragment for X := 4 given earlier. The Write Set for the
program fragment consists of the single variable X, while the Read Set for the program fragment
is empty. Note that the program fragment does not actually write X, but rather writes the corre-
sponding lower-level variables Xy, X;, X3, and X3; variable X exists only on a logical basis in the
implementation.

Each execution of a program fragment has the effect of Reading a value from each variable in
the Read Set of the program fragment, and Writing a value to each variable in the Write Set of
the program fragment. The value “Read from” or “Written to” a given higher-level variable can be
defined formally by specifying a function over the values read from and written to the lower-level
variables that correspond to that higher-level variable. For instance, in the example considered at
the beginning of this section, “the value Written to X” is defined by the function vy -+ 2v; + 4v, 4 8u3,
where each v; is the value written to X;. Thus, associated with each program fragment is a set of
functions, one for each higher-level variable in the program fragment’s Read Set and Write Set.
Note that if a variable appears in both the Read Set and Write Set of a program fragment, then two
functions must be specified for that variable, one that defines the value Read from that variable,
and another that defines the value Written to that variable.

We now define several concepts that are needed in order to formally define what it means for
an implementation to be wait-free, sequentially correct, and serializable. The following definitions
apply to any concurrent program.

Definition: A siale is an assignment of values to the variables of the program. One or more states
are designated as inilial stales.]

10

Definition: An event is an execution of a statement of a program. (In the case of a do or if
statement, “execution of a statement” means the evaluation of each guard in the statement’s set of

guards, and the subsequent transfer of control.)]

Definition: Let ¢ and u be any two states. If u is reached from ¢ via the occurrence of event e,

then we say that e is enabled at state ¢ and we write {—u. 0
Definition: A hislory is a sequence 1024, <% Unless noted otherwise, the first state {5 is as-
sumed to be an initial state. 0

A given statement may be executed many times in a history. Each such statement execution
corresponds to a distinct event.

Definition: Event ¢ precedes another event f in a history iff e occurs before f in the history. O
The remaining definitions apply to an implementation.

Definition: Let Sp; do By — 51] --- [By — Sn od be a program fragment of the implemen-
tation that replaces some assignment statement of the implemented program. Let & be a history of
the implementation. The set of events in A corresponding to an execution of the program fragment
— starting with an event that occurs as a result of executing statement Sy, and followed by all events
that subsequently occur as a result of executing the statementsindo By — S1] -+ [By — Sy od
— is called an operation.]

Definition: An operation p precedes another operation ¢ in a history iff each event of p precedes
all events of q. o

Observe that the precedes relation is an irreflexive total order on events and an irreflexive partial
order on operations.

We now formally define the notions of wait-freedom, sequential correctness, and serializability.
These concepts are defined with respect to the histories of an implementation.

Definition: A history of an implementation is waii-free iff each operation in the history consists of
a finite number of events. O

Next, we define what it means for a history of an implementation to be “well-formed.” In a well-
formed history, the values Read from and Written to the higher-level variables by each operation
are well-defined. In defining sequential correctness and serializability, it is sufficient to consider only
well-formed histories.

Definition: A history of an implementation is well-formed iff each operation in the history is com-

plete, i.e., the execution of the corresponding program fragmeni terminates. O

11

Definition: Let p be an operation in a well-formed history of an implementation, and let
®y, ..., zx = FEy, ..., Ex denote the assignment statement of the implemented program that
corresponds to p. Let v; denote the value Written to z; by p, and let Vj denote the value obtained
by replacing each variable appearing in F; by the value Read from that variable by p. We say
that p is sequentially correct if the condition v; = V; holds for each 7. A well-formed history of an

implementation is sequentially correct iff each operation in the history is sequentially correct. O

Next, we define what it means for a history of an implementation to be serializable. According to
this definition, if several operations are executed concurrently, then the net effect should be equivalent
to some serial order. Our definition of serializability is similar to the definition of linearizability given
by Herlihy and Wing in [13].

Definition: Let A be a well-formed history of an implementation. History & is serializable iff the
precedence relation on operations (which is a partial order) can be extended® to a total order
where for each operation p in h and each variable z that is Read by p, the value Read by p from =z
is the same as the last-Written value according to [C. More specifically,

e if there exists an operation ¢ that Writes z such that ¢ T p A —(3¢’ : ¢/ Writesz : ¢ C ¢’ T p),
then the value Read by p from z is the same as the value Written by g to z;

e if no such ¢ exists, then the value Read by p from z is the same as the initial value of z as
defined in the implemented program. O

We are now in a position to formally state the correctness condition for an implementation.

Definition: An implementation is correct iff each of its histories is wait-free, and each of its well-
formed histories is sequentially correct and serializable. o

5 Necessity Results

In this section, we establish the necessity of Exact-Writing and Single-Phase. In particular, we show
that for each of these constraints there exists a nonatomic program violating that constraint, but
satisfying the other two constraints. This implies that if we remove either of these two constraints
from our set of constraints, then we can no longer make the claim that any program satisfying all
of our atomicity constraints is atomic.

The above-mentioned impossibility results are proved by considering the problem of two-process
leader election; we call our version of this problem the binary election problem. We first show that
this problem cannot be solved by a primitive program. We then give two programs that solve this
problem: the first program violates Exact-Writing, and the second program violates Single-Phase.
It follows, then, that neither of these programs can be implemented by a primitive program.

We now define the binary election problem.

Binary Election Problem: We are required to construct a program consisting of two processes.

3 A relation R over a set § extends another relation R’ over § iff for each ¢ and b in S , aR'b = aRb.

12

shared var X, Y, 7 :0..2

initialization X =Y =2 =0

process p process g
private var private var
eleclp : boolean; /+ decision variable */ electy : boolean; /+ decision variable %/
¢,d: 0.2 e, f:0.2
begin begin
0: X, V=1, 1; 3Y, Z:=2, 2
lre, d:i=Y, Z; 4:e, =X, Y;
2: if (e,d) = (1,2) — electp:= true 5: if (e, f) = (1,2) — electq := true
[(e,d) #(1,2) — electp:= false [(e,f)#(1,2) — electq:= false
fi fi
end end

Figure 2: Proof of Theorem 4.

Each process has a private boolean decision variable that it writes only once. The program is
required to satisfy the following three conditions.

o Wait-Freedom: All histories of the program are finite.

e FEquily: For each process, there exists a history with a final state in which the value of that
process’s decision variable is true.

e Validity: In the final state of every history, the value of one of the decision variables is true
and the value of the other decision variable is false. |

In [5], we prove that the binary election problem cannot be solved by any program satisfying
constraints (4) and (5) in the definition of primitive programs. In particular, we show that if such a
program satisfies both Equity and Validity, then it has an infinite history, violating Wait-Freedom.
Similar proofs have been obtained independently by Chor, Isracli, and Li [9] and by Herlihy [12].
This establishes the following theorem.

Theorem 3: The binary election problem cannot be solved by a primitive program.]

We now show that the binary election problem can be solved if either Exact-Writing or Single-
Phase is violated.

Theorem 4: The binary election problem can be solved by a program that viclates Exact-Writing.
Proof: Consider the program given in Figure 2. Statement 0 of process p and statement 3 of process
q together constitute a violation of Exact-Writing. In particular, it is impossible to partition the

variables X, Y, and Z into classes such that each of these two statements writes every variable from

one class and no variable from any other class. This program satisfies Wait-Freedom because

13

(0,0,0)
0 3

(1,1,0) (0,2,2)

3/ \0

(1,2,2) (1,1,2)

Figure 3: Possible values of (XY, Z).

shared var X : boolean

process p process ¢
private var private var
electp : boolean [+ decision variable %/ elecig : boolean [+ decision variable %/
begin begin
X, electp =X, X X, electq :=—X, X
end end

Figure 4: Proof of Theorem 5.

it is loop-free. To see that the program satisfies Equity and Validity, consider Figure 3. This figure
depicts the possible values of (XY, Z); each arrow is labeled by the statement that causes the state
change. Based on this figure, we conclude that either the final value of the pair (¢, d) equals (1, 2)
and the final value of the pair (e, f) differs from (1, 2}, or vice versa. This implies that Equity and
Validity are satisfied. 0

Theorem 5: The binary election problem can be solved by a program that violates Single-Phase.

Proof: Consider the program given in Figure 4. Note that the assignment statement of each process
both reads and writes the shared variable X and hence violates Single-Phase. It is easy to see that

this program solves the binary election problem.]

6 Sufficiency Results

In this section, we discuss the proof strategy for establishing the sufficiency of our atomicity con-
straints. We prove that any program satisfying the three atomicity constraints is atomic; that is,
such a program can be implemented by a primitive program (as described in Section 4). The im-
plementation is facilitated by considering a shared data object, called a composite register [2, 3]. A

composite register is an array-like variable that consists of a number of components. An operation

14

L bits per component

component §
Reader 0
. component ¢ .
- Reader N — 1
component K — 1

Figure 5: K/L/M/N composite register structure.

of a composite register either writes a value to one of the components, or reads the values of all of
the components. For convenience, we designate the structure of a given composite register by a four-
tuple K/L/M/N, where K is the number of components, L is the number of bits per component,
M is the number of writers per component, and N is the number of readers. The structure of a
K/L/M/N composite register is shown in Figure 5. Note that this figure only depicts the writers
for component <.

We now present two theorems that reduce our proof obligation in establishing the sufficiency
of our atomicity constraints to one involving only composite registers. First, we show that if the
processes of a program communicate only by means of 1/1/1/1 composite registers, then the pro-
gram is primitive. Second, we show that any program satisfying our atomicity constraints can be
implemented by a program in which processes communicate only by means of K/L/M/N composite
registers. It follows from these two theorems that in order to establish the sufficiency of our atom-
icity constraints, it suffices to prove that a K/L/M/N composite register can be constructed from
1/1/1/1 composite registers.

Theorem 6: If each shared variable of a program is a 1/1/1/1 composite register, then the program

is primitive.

Proof: A 1/1/1/1 composite register is a single-reader, single-writer, shared bit. Recall that a

program is primitive if its processes communicate only by means of such bits. 0o

Theorem 7: Any program satisfying our proposed atomicity constraints can be implemented by a
program in which each shared variable is a component of a K/L/M/N composite register.

Proof Sketch: Consider a program P that satisfies the three atomicity constraints: Exact-Writing,
Single-Phase, and Finite-Reading. Program P can be implemented by a program @ in which no as-
signment statement both reads and writes shared variables. In particular, suppose that the following
assignment statement appears in some process p of P,

Zi, .., zy=Fy, ..., En

If this statement both reads a shared variable and writes a shared variable, then, by Single-Phase, it

15

reads no shared variable that is written by a process other than p. This implies that we can replace
this statement by the two statements

Vi, o.., UN =By, ..., Eng

Tly =ooy TN ==V, ..., UN

where each v; is a new private variable of process p. By similarly replacing each assignment statement
of P that both reads and writes shared variables, we obtain program Q.

Now, we show that) can be implemented by a program R in which each assignment statement
writes at most one shared variable. Consider an assignment statement of that writes several shared
variables Z3, ..., Zx. By Exact-Writing, each Z; is an unsubscripted variable. Furthermore, if an
assignment statement writes some Z;, then it writes each Z; and no other shared variable. We can

therefore combine 7, ..., Zg into a new “compound” variable ZNEW as follows:
ZNEW : record Zy :iypey; -+ Zx :typex end

where type; is the type of Z; in Q. (Note that ZNEW is really just an integer or subrange vari-
able. We are using the record type only as “syntactic sugar” to indicate that the bits of ZNEW
are partitioned into various fields.) Each assignment statement of ¢ that writes the X variables
Zy, ..., Zk is replaced by an assignment statement that writes the single variable ZNEW . We also
have to replace each assignment statement that reads some Z;. For example, the statement

a, bi=2y +Zs, Zs+ Zs4
(where ¢ and b are private variables) would be replaced by the statement
a, b= ZNEW .Z1 + ZNEW .Zy, ZNEW .Z3+ ZNEW .7,

Program Z is obtained by making similar replacements for each class of shared variables given by
Exact-Writing.

From the above construction, if an assignment statement of program R accesses a shared variable,
then it either writes a single shared variable or reads one or more shared variables. Moreover, by
the Finite-Reading constraint, if an assignment statement of R accesses an element of an infinite
shared array, then it either reads that element or writes that element, and accesses no other shared
variable.

Based upon these observations, we now show that R can be implemented by a program in which
each shared variable is a component of a composite register. The implementation is obtained as
follows: each element of an infinite shared array in R is replaced by a composite register with only
one component; the remaining shared variables of B {other than elements of infinite shared arrays)
are replaced by a single composite register, with each variable corresponding to one component of
the register. From the construction of program R, it follows that each assignment statement can
be implemented by either a write operation of one component of a composite register, or a read
operation of all components of a composite register. O

Example: We show that the example program considered in Section 3 can be implemented by a
program with processes that communicate only via a single composite register. The corresponding

16

type Ctype = record VW :integer; X :1.N; YZ:boolean end
shared var C : array[1..2] of Ciype [+ composite register =/

initialization (C[2]. VW = default value) A (C[1].YZ = C[2]. YZ)

process controller
private var request, reply : integer;
dev:1.N;
pending, ¥ : boolean;
¢ array[1..2] of Cilype
begin
do true — read ¢ :=C;
reply, pending := c[2)VW, (c[11.Y Z # c[2].Y Z);
if —pending - consume reply; produce next request, dev;
read ¢:=C; y:=—¢[1].YZ;
write C[1] := (reguest, dev, y)
[l pending — skip
fi
od
end

process device(j : 1..V)
private var request, reply : integer;
dev:1..N;
pending, z: boolean;
¢ array[1..2] of Ciype
begin
do true — read ¢ =
request, dew, pending = c[1].VW, [11.X, (c[1].YZ # [2].Y 2);
if pending A dev = j — consume reguest; produce reply;
read ¢:=C; z:=—¢[2].YZ;
write C[2] := (reply, 1, z)
| =pending Vv devs j — skip
fi
od
end

Figure 6: Example program, revisited.

program is shown in Figure 6. There is a single composite register C that replaces the five shared
variables V', W, X, Y, and Z of the original program. C has two components, the first of which is
written by the coniroller, and the second of which is written by the devices.

To explain the structure of C, we return to the original program given in Figure 1. As suggested
by Exact-Writing, we partition the five shared variables of this program into two classes {V, X, YV}
and {W, Z}. Each of these classes corresponds to one component of C: the class {V, X, Y} corre-
sponds to the first component of C, namely C[1], and the class {W, Z} corresponds to the second
component of C, namely C[2]. Note that the class {V, X, Y} contains an integer variable, a variable
of type 1..N, and a boolean variable, while the class {W, Z} contains an integer variable and a
boolean variable. To accommodate both classes, we define each component of C to include a field
VW of type integer, a field X of type 1..N, and a field YZ of type boolean. The correspondence
between the shared variables of the original program and the composite register C is then as follows:
variable V' corresponds to C[1]. VW, variable W corresponds to C[2]. VW, variable X corresponds
to C[1].X, variable Y corresponds to C[1].YZ, and variable Z corresponds to C[2].YZ. Note that
C[2].X is unused.

Using our tuple notation, C' would be classified as a 2/c0/N/N + 1 composite register: it has
two components; each component consists of an infinite number of bits (since each VW field is an
integer); each component can be written by N processes (although the coniroller actually only writes
the first component and the NV devices the second); and all N + 1 processes can read C. Note that
in Figure 6 we have annotated the program with the keywords read and write to emphasize those
assignment statements that access the composite register ¢'. This convention will also be adopted
in the remainder of the paper. O

It follows from these two theorems that in order to establish the sufficiency of our atomicity
constraints, our proof obligation is reduced to the following.

Proof Obligation: Show that a K/L/M/N composite register can be implemented in terms of
1/1/1/1 composite registers. N

Fortunately, this proof obligation can be divided into a series of steps, one for each of the
parameters K, L, M, and . Constructions for these steps can be found in the Ph.D. dissertation
of the first author [4], as well as in the literature. The steps involved in constructing a K/L/M/N
composite register from 1/1/1/1 composite registers are illustrated in Figure 7. Each arrow in this
figure is labeled by a reference to the paper(s) in which the corresponding register construction(s)
appear.

One of the steps shown in Figure 7 is considered in detail in Section 8. In particular, we present
a construction of a 1/L/1/1 composite register from 1/1/1/1 composite registers. This construction
is included to give the reader (of this paper) some idea as to the structure of a composite register
construction. Our 1/L/1/1 construction is the first that we know of that explicitly addresses the
case in which L is allowed to be infinite.

In proving that a composite register construction is correct, the principal difficulty that arises is
that of establishing that all well-formed histories of the construction are serializable. The definition

i8

1/1/1/1

l [16, 27]

1/L/1/1

[7, 15, 23, 26]
1/L/1/N
1, 2] [6, 19, 25, 28]
K/L/1/N 1/L/M/N
(3] [1]
K/L/M/N

Figure 7: Constructing a K/L/M/N composite register from 1/1/1/1 composite registers.

of serializability given in Section 4, while intuitive, is rather difficult to use directly. In the next
section, we present a lemma that gives a set of conditions that are sufficient for establishing that
a well-formed history of a construction is serializable. Intuitively, a history is serializable if each
operation in the history can be shrunk to a point; that is, there exists a point between the first and
last events of each operation at which the operation appears to take effect. For this reason, this
lemma is referred to as the “Shrinking Lemma.”

7 Shrinking Lemma

Before presenting the Shrinking Lemma, we first describe the basic structure of a composite register
construction. We define a construction in a rather abstract way: we focus only on the Read and Write
operations of the constructed register, while ignoring the processes that invoke these operations.
More specifically, a construction consists of a set of Writer procedures and a set of Reader procedures
that communicate via a set of lower-level variables. A Writer procedure is invoked by a process in
order to Write a value to a component of the constructed composite register. A Reader procedure
is invoked by a process in order to Read the values of all of the components of the constructed

composite register. Each Writer procedure has one input parameter indicating the value to be

15

Written; each Reader procedure has one output parameter for each component of the constructed
register.

The Writer and Reader procedures of a construction correspond to the program fragments in-
troduced in Section 4. The Read Set of a Writer procedure consists of the single input parameter of
that procedure, while its Write Set consists of the single component Written by that procedure. The
Read Set of a Reader procedure includes all of the components of the constructed register, while
its Write Set includes all of its output parameters. In a history of a construction, the Writer and
Reader procedures are invoked in an arbitrary manner.

The correctness condition for a construction is the same as defined in Section 4. That is, a
construction is correct iff each of its histories is wait-free, and each of its well-formed histories is
sequentially correct and serializable. Establishing that a history is wait-free and sequentially correct
is usually straightforward. The major difficultly lies in establishing that a history is serializable, so
it is this requirement that we will concentrate on here.

It is rather difficult to prove that a history of a composite register construction is serializable
by appealing directly to the definition of serializability given in Section 4. The Shrinking Lemma,
given below, reduces our proof obligation to five distinct conditions. Before stating this lemma, we
first introduce some terminology.

Definition: A Write operation of component k& of the constructed composite register, where
0 < k< K, iscalled a k-Write operalion. O

In order to avoid special cases when proving the correctness of a construction, we make the
following assumption concerning the initial Write operations.

Initial Writes: For each k, where 0 < k < K, there exists a k-Write operation that precedes each
other k-Write operation and all Read operations. o

Shrinking Lemma: A well-formed history & of a K/L/M/N composite register construction is
serializable if for each k, where 0 < k < K, there exists a function ¢ that maps every Read operation

and k-Write operation in & to some natural number, such that the following five conditions hold.

e Unigueness: For each pair of distinct k-Write operations v and w in h, ¢x(v) # ¢x(w).
Furthermore, if v precedes w, then ¢;(v) < ¢p(w).

e Iniegrily: For each Read operation » in h, and for each k in the range 0 < k < K, there exists
a k-Write operation w in h such that ¢3(r) = ¢p(w). Furthermore, the value Read by r for
component £ is the same as the value Written by w.

e Prozimily: For each Read operation r in h and each k-Write operation w in h, if » precedes w
then ¢ (r) < ¢1(w), and if w precedes 7 then ¢ (w) < ¢p(r).

e Read Precedence: For each pair of Read operations r and s in h, if (Jk =2 ¢x(r) < ¢1(s)) or if
r precedes s, then (V& 1 ¢p(r) < é5(s)).

e Write Precedence: For each Read operation » in /i, and each j-Write operation v and k-Write

20

operation w in &, where 0 < j < K and 0 < k < K, if v precedes w and ¢p(w) < ¢3(r), then

$i(v) < 45(r). =

Note that for K = 1, Write Precedence is a direct consequence of Uniqueness.

The correctness proof for the Shrinking Lemma is given in Appendix 1. The proof is somewhat
tedious, but is not hard. The proof strategy is as follows. We first augment the precedence relation
on operations in history /i by adding pairs of operations. These added pairs of operations are defined
based on the five conditions of the lemma. We then show that the resulting relation is an irreflexive
partial order, i.e., it is irreflexive and transitive. Finally, we show that any extension of this relation

to an irreflexive total order satisfies the conditions in the definition of serializability given in Section
4.

8 1/L/1/1 Construction

In this section, we establish that a 1/L/1/1 composite register can be constructed from 1/1/1/1
composite registers (even if L is infinite). The construction is described informally below, and its
correctness proof is given in Appendix 2.

The construction is depicted in Figure 8. (We assume that any arithmetic expression involving
L in this figure is replaced by oo for the case in which L is infinite.) We begin by giving a brief
description of how the construction works; a more detailed deseription is given below. The Reader
and the Writer communicate by means of four “buffers.” Each buffer is an array of bits. The Writer
Writes a value to the constructed register by copying the binary representation of this value into
one of the four buffers. The Reader Reads a value from the constructed register by scanning one of
the four buffers. To ensure that the Reader obtains a correct value, the Reader and the Writer are
coordinated so that they never access the same buffer at the same time. This technique has been
employed in several other similar constructions; see, for example, Burns and Peterson [8], Kirousis
et al. [15], and Tromp [27].

The following shared variables are used in the construction.

Yli, jl: A buffer that is used to store the binary representation of a value as Written by a Write
operation. There are four such buffers since ¢ and j each range over {0,1}. Each buffer is an
array of bits that is written by the Writer and read by the Reader. If L is finite, then YT|i, j]
has 2L +1 elements, and if L is infinite, then Y4, j] has an infinite number of elements. (Note
that Y is really a three-dimensional array. However, in describing how the construction works,
we find it convenient to view ¥ as a two-dimensional array, where each element is itself an
array.)

Qlils An integer auxiliary variable that is written by the Writer and read by the Reader. There are
two such variables since ¢ ranges over {0, 1}. Note also that the Reader and Writer each have
a private auxiliary variable called id. These auxiliary variables have been introduced solely to
facilitate the proof of correctness.

The following shared variables are used to ensure that the Reader and Writer never access the
same buffer at the same time. This is described in detail below.

21

type Yiype = array[0..2L] of 0..1
shared var Y : array[0..1][0..1] of Yiype;
Z : array[0..1] of 0..1;

@ : array[0..1] of integer; /% auxiliary variable »/

WP,RP:0.1

initialization WP = RP A (Vi,5:0<i<1 A 0<7<1:(Fk:k>0:Y][, 28] =0)

procedure Reader returns valtype
private var
¢d : integer; /+ auxiliary variable #/
val : valtype;
ralt,rp, z,y: 0..1;
k:0.L+1
initialization
rp= RP
begin
0: read rp:= WP;

1: write RP :=rp;

2: {read ralt := Z{rp]; read id .= Q[rp]);
3: wal, £:=0, O

4: dok<IL —

read = := Y{rp, ralt][2k];
fr=0 — exit Jz#£0 — skip fi
read y = Virp, ralt][2k + 1};
val, ki=wval +y-2% k+1
od;
5: return{vael)
end

procedure Writer(val : valtype)

private var

id : integer; /% auxiliary variable /
d,wp,walt : 0..1;

n:l1.0;

k:0..L

initialization

begin
0:

end

U o

d=0 A d=wp= WP

id :=1d + 1;
read d := RP;
wp, walt, n:=d@ 1, walt® 1, number of bits in val;
write Y{wp, walt][2n] 1= 0;
k=0
dok<n —
write Y{wp, walt][2k] = 1;
write Y{wp, walt][2k + 1] 1= val[k];
ki=k41
od;

{ write Z[wp] ;= welt; write Qlwp] 1= id);
write WP := wp

Figure 8: 1/L/1/1 construction.

Z[i]: A bit that is written by the Writer and read by the Reader. There are two such bits since 4

ranges over {0,1}.

WP: A modulo-2 “write pointer” that is written by the Writer and read by the Reader. {We use &

to denote modulo-2 addition.)

RP: A modulo-2 “read pointer” that is written by the Reader and read by the Writer,

To simplify the Reader and Writer procedures in Figure 8, we assume that the private variables of

each procedure retain their values between invocations. Observe that Z[i] and the auxiliary variable
Q[i] are written (read) by the Writer (Reader) in a single action. This is denoted by the angle

brackets ‘(" and)’

22

A Write operation Writes a new value to the constructed register by copying the binary repre-
sentation of this value into the buffer Y{wp, walt]. Thus, wp and walt together constitute a two-bit
“pointer” to one of the four shared buffers. The value of wp is obtained by first reading RP and
then incrementing the value read. The value of walt is obtained by incrementing the value assigned
to walt by the previous Write operation. After updating ¥ [wp, walt], the value of walt is made
available to the Reader by writing it to Z[wp], and the value of wp is made available to the Reader
by writing it to WP.

Each pair of bits (Y[wp, walt][2k], Y{wp, walt][2k + 1]), where k > 0, encodes a single bit of the
Written value. The pair (1,0) encodes a bit with value 0 and the pair (1,1) encodes a bit with value
1. The pair (0, —) is used to indicate the end of a string of bits. Note that such a string can be
arbitrarily long since L may be infinite — hence the need for the encoding.

A Read operation Reads a value from the constructed register by scanning one of the four shared
buffers. A Read operation scans the buffer that is pointed to by the pair of bits rp and ralt. The
value of rp is obtained by reading WP and the value of ralt is obtained by reading Z[rp]. The value
of rp is made available to the Writer by writing it to RP.

The correctness of this construction follows from the following fact (which is proved as a lemma
in Appendix 2): if a Read operation executes its do statement while a Write operation executes its
do statement, then rp # wp or ralt # walt. This implies that no Write operation interferes with a
Read operation as it reads from one of the four shared buffers.

We now compute the complexity of our 1/L/1/1 construction. The space complexity of a con-
struction is determined by the number of shared 1/1/1/1 composite registers required. If L is
infinite, then an infinite number of 1/1/1/1 registers are obviously required. So, assume that L is
finite. Then, the complexity of each of the shared variables (other than the auxiliary variable QD
is as follows.

e Yi, 7], where 0 < i,j <1, uses 2L -+ 1 bits.
e Z[i], where 0 < { <1, uses 1 bit.

e WP uses 1 bit.

e P uses 1 bit.

Therefore, the space complexity is 8L + 8. The lower bound to construct an L-bit register is O(L).
Thus, our construction is asymptotically optimal.

The time complexity of a 1/L/1/1 construction is determined by the number of reads and writes
of shared 1/1/1/1 registers required to Read and Write the constructed register. The time complexity
of a Read in our 1/L/1/1 construction is O(L'), where L’ < L is the size (in bits) of the value Read.
The time complexity of a Write is O(L'), where L’ < L is the size (in bits) of the value Written.

9 Concluding Remarks

We have presented a new criterion for the atomicity of concurrent programs along with a simple
method for checking whether a given program is atomic. This method consists of three constraints,

which can often be checked based on the syntax of a particular program. The class of programs

considered atomic according to our atomicity criterion is larger than the class considered atomic
according to the traditional Owicki-Gries atomicity criterion.

Our atomicity criterion is motivated by the following observation: Interleaving semantics is a
suitable abstraction only if we restrict our attention to programs with sufficiently simple actions.
According to our criterion, an action is “sufficiently simple” if it can be implemented in a wait-free,
serializable manner in terms of primitive actions. (In [11], Gouda argues that we should also restrict
our attention to only certain kinds of assertions when reasoning about the behavior of a program
under interleaving semantics. In particular, he considers a restricted notion of parallelism and argues
that for interleaving semantics to be a suitable abstraction for this notion of parallelism, we should
limit our attention to “parallelizable” assertions.)

Our notion of serializability is equivalent to the definition of linearizability given by Herlihy
and Wing in [13], for the special case of implementing a program in which shared variables are
accessed only by assignment statements. A similar notion has also been proposed by Misra [22]. In
particular, Misra gives a set of axioms for constructing concurrent hardware registers, and shows
that if a register satisfies these axioms, then concurrent accesses to the register can be viewed as
being interleaved.

To establish the sufficiency of our atomicity constraints, we considered in Section 6 a shared data
object called a composite register. The notion of a composite register is an extension of an atomic
register, and was first introduced by Anderson in [2, 3]. A composite register is equivalent to the
atomic snapshot primitive defined by Afek et al. in [1]. The notion of an atomic register was first
defined by Lamport [16]. An atomic register is a composite register with only one component,

We should point out that it may be possible to relax the Exact-Writing and Single-Phase con-
straints somewhat, despite the necessity results proved in Section 5. For example, according to
Exact-Writing, if two assignment statements in different processes write a common shared variable,
then they write the same set of shared variables. In establishing the necessity of Exact-Writing,
we considered in Theorem 4 a program in which the two assignment statements X, Y := 1, 1 and
Y, Z := 2, 2 appeared in different processes. Each of these assignment statements writes one shared
variable that is written by the other, and one that is not. This necessity proof leaves open the possi-
bility of relaxing Exact-Writing to allow an assignment statement of one process to write a subset of
the variables that are written by an assignment of another process; for example, X, Y, Z := 1, 1,1
and Y, Z:=2, 2.

It may also be possible to relax the atomicity constraints based upon the semantics of a particular
program. For instance, consider a program in which one process executes the statement X := ¥ and
another process executes the statement Y := X. This program violates Single-Phase. However, if
the two processes are synchronized in such a way so that these two statements are never enabled at
the same time, then it may be reasonable to consider both statements to be atomic. We have tried
as much as possible to avoid the need for analyzing the semantics of a program when appealing to
our atomicity constraints.

As mentioned earlier, the version of Exact-Writing considered in this paper is overly restrictive
because it allows an assignment statement to write several shared variables only if all such variables
are unsubscripted. In [4], a more permissive version of Exact-Writing is considered that allows an
assignment statement to write several subscripted variables. This version of Exact-Writing is similar

24

to the one given in this paper, except for the partitioning of shared variables into classes. In [4], a
class is allowed to consist of several shared variables in the following cases.

e A class may consist of a number of unsubscripted variables.
e A class may consist of all elements of a finite array.

e If A, B,...,C are single-dimensional arrays whose subscripts have the same range, then their
elements can be partitioned by subscript, i.e., A[{], B[i],...,C[i] is a class for each i. Multi-
dimensional arrays may be similarly partitioned.

The above version of Exact-Writing is still, in fact, more restrictive than is necessary. However,
there is a tradeoff here: the more permissive we are concerning classes, the more difficult it will be
to establish the sufficiency of our atomicity constraints.

We leave the question of whether Finite-Reading is necessary as an open problem. To prove
that Finite-Reading is necessary, we are required to demonstrate the existence of a nonatomic
program that violates Finite-Reading, but satisfies Exact-Writing and Single-Phase. On the other
hand, to prove that Finite-Reading is not necessary (i.e., can be removed from our proposed set of
atomicity constraints), we are required to show that any program satisfying only Exact-Writing and
Single-Phase can be implemented in terms of single-reader, single-writer, shared bits. Note that the
approach that we took in Theorem 2 will not work in this case. The principal difficulty that arises
is illustrated by the following example. Consider a concurrent program with a process that includes
the following program fragment, where the infinite array X[0..00] is shared.

¢ = {);
do true — ali], b[d], i := X[i], X[i+1], i+ 1 od

This program violates Finite-Reading because each assignment statement a[], b[3], ¢ := X[¢], X[i+
1], i+1, where ¢ > 0, reads two elements of the infinite shared array X [0..0c0]. In order to implement
the variables of this program in terms of composite registers, it is necessary to partition the elements
of X into finite classes and implement each such class by using a single composite register. This
partitioning is necessary because a composite register, by definition, consists of a finite number of
components. (An atomic snapshot of an infinite number of components cannot be implemented in
a wait-free manner.} However, it is impossible to partition the elements of X so that all shared
variables accessed by each assignment statement come from the same class.

Acknowledgements: We would like to thank Ted Herman and Fred Schneider for their comments on an
eatlier draft of this paper. We would also like to thank the following members of the UT Distributed Systems
Discussion Group for their careful reading of a draft of this paper: Yeturu Aahlad, Bryan Bayerdorfler, Ken

Calvert, Al Carruth, Edgar Knapp, Jacob Kornerup, David Naumann, and J.R. Rao.

Appendix 1: Proof of the Shrinking Lemma

Shrinking Lemma: A well-formed history h of a K/L/M/N composite register construction is
serializable if for each k, where 0 < k < K, there exists a function ¢; that maps every Read operation

and k-Write operation in & to some natural number, such that the following five conditions hold.

25

e Unigueness: For each pair of distinct k-Write operations v and w in h, ¢3(v) # ¢p(w).
Furthermore, if v precedes w, then ¢5(v) < ¢ (w).

e Iniegrity: For each Read operation » in h, and for each k in the range 0 < k < K, there exists
a k-Write operation w in h such that ¢;(r) = ¢r(w). Furthermore, the value Read by r for
component k£ is the same as the value Written by w.

e Prorimity: For each Read operation r in A and each k-Write operation w in A, if r precedes w
then ¢r(r) < ¢r(w), and if w precedes r then ¢r(w) < ¢p(r).

e Read Precedence: For each pair of Read operations r and s in h, if (3k = ¢5(r) < ¢1(s)) or if
r precedes s, then (Vk i1 ¢x(r) < ¢p(s)).

e Write Precedence: For each Read operation r in h, and each j-Write operation v and k-Write
operation w in b, where 0 < j < K and 0 < k < K, if v precedes w and ¢r(w) < ¢(r), then

$;(v) < ¢i(7).

Proof: The proof strategy is as follows. We first augment the precedence relation on operations in
history A by adding pairs of operations. We then show that the resulting relation is an irreflexive
partial order, i.e., it is irreflexive and transitive. Finally, we show that any extension of this relation
to an irreflexive total order satisfies the conditions in the definition of serializability given in Section
4.

In the remainder of the proof, we use r and s to denote Read operations in history h, v and w to
denote Write operations in h, and z, y, and z to denote arbitrary operations in h. We also assume
that ¢, j, and k each range over {0,..., K — 1}. If = precedes y in h, then we write z < y. We let
(2dy) = (z=y V x<dy). We now define six relations 4, B, C, D, E, and F; in these definitions,
we assume that v and v’ denote j-Write operations, and w and w' denote k-Write operations.

¢ A includes all pairs {2, y) such that z < ».

¢ B includes all pairs (w,r) such that ¢i(w) < ¢1(r), and all pairs (r,w) such that ¢z(r) <

e C includes all pairs (r, s) such that (3k :: (7)) < dz(s)).

®

D includes all pairs (v, w) such that (3r :: vBr A rBuw).

@

E imcludes all pairs (v, w), such that v # w and for some v/ and w',
$5(v) < ¢i(v) A v Suw' A gp(w’) < r(w) .

e P = AUuUBUCUDUE

Relation A is the precedence relation on operations in history h. Relation F is obviously an
extension of A. We now show that F is irreflexive and transitive. To prove that F is irreflexive, we
are obligated to show that zF'y = =z # y. If 2 Ay, then because A is an irreflexive partial order,
z # y. If By, then one of z and y is a Read operation and the other is a Write operation, so z # y.
If zCy, then ¢p(z) < ¢1(y) for some k, which implies that z # y. If 2Dy, then because relation B

26

(which is used to define D) totally orders each Read with respect to all Writes, we have ¢ # y. If
zEy, then by the definition of £, & # y. Therefore, we conclude that relation F' is irreflexive.
In the proof of transitivity, we use the following three properties.

Property 1: For each pair of Read operations r and s, rFs = (Vk u ¢x(r) < ér(s)).

Proof of Property 1: Assume that »F's holds. Of the five relations that define F', only A and
C can relate two Read operations. Therefore, rAs holds or *C's holds. In the former case (i.e., =
precedes s), by Read Precedence, (Vk :: ¢5(r) < ¢i(s)). In the latter case, by the definition of C,
(3k :: ¢r(r) < #1(s)); hence, by Read Precedence, (Vk :: ¢p(r) < é1(s))-]

Property 2: For each Read operation r and k-Write operation v, rFv = ¢5(r) < ¢i(v) and
vFr = ¢p(v) < ¢p(r).

Proof of Property 2: We prove that 7Fv = ¢5(r) < ¢1(v); the proof that vFr = ¢5(v) < é1(r)
is similar. Assume that rFv holds. Of the five relations that define F, only A and B can relate a
Read operation and a Write operation. Therefore, r Av holds or rBv holds. In the former case (i.e.,
r precedes v), by Proximity, ¢x(r) < ¢x(v). In the latter case, by the definition of B, ¢x(r) < ¢x(v).

O

Property 3: For each pair of Write operation v and w, vAw = vFEw.

Proof of Property 3: Let v be a j-Write operation and let w be a k-Write operation such that
vAw holds. If j # k, then v # w. If j = &, then by Uniqueness, ¢;(v) < ¢;(w), which implies that
v # w. Therefore, letting v/ = v and w' = w, we have

vEw A $i(0) S 6;(v)) A VD W A ge(w') < gr(w)

This implies that vEw.]

To prove that F is transitive, we are obligated to show that 2Fy A yFz = zFz. We have to
consider eight cases since each of z, y, and z can be either a Read operation or a Write operation.

Case 1: 2, y, and z are all Read operations. Of the five relations that define F', only A and C
can relate two Read operations. If 2 Ay and yAz, then because A is a partial order, zAz. Now,
suppose that C'y holds. By the definition of C, we have ¢;(z) < ¢;(y) for some j. By Property 1,
(Vk =2 ¢1(y) < ¢r(z)). Therefore, by transitivity, ¢;(z) < ¢;(2), i.e., 2Cz. Similar reasoning applies
if yC'z holds.

Case 2: # and y are Read operations and z is a j-Write operation. By Property 1, (Vk :: dr(z) <
#x(y)). By Property 2, ¢;(y) < ¢;(2). Therefore, by transitivity, ¢;(z) < ¢i(z), i.e., zBxz.

Case 3: = and z are Read operations and y is a j-Write operation. By Property 2, ¢;(z) < @i (y)
and ¢;(y) < ¢;(z). Therefore, by transitivity, ¢;(z) < ¢;(z), i.e., zCz.

27

Case 4: z is a Read operation, y is a j-Write operation, and z is a k-Write operation. Of the five
relations that define F', only A, D, and F can relate two Write operations. Thus, by Property 3,
yDz holds or yEz holds. If yDz holds, then by the definition of D, there exists a Read operation r
such that yBr and rBz. Because 2Fy A yBr holds, by Case 3, we have zFr. Because zFr A rBz
holds, by Case 2, we have zFz.

Now, consider the case yEz. By the definition of E, there exists a j-Write operation v and a

k-Write operation w such that
¢i(y) < 6j(v) A vdw A ¢i(w) < di(z) .

By Property 2, ¢;(z) < é;(y); thus, by transitivity, ¢;(z) < ¢;(v). If v = w (which implies that
j = k), then ¢r(z) < ¢r(w). If, on the other hand, v <1 w, then by the contrapositive of Write
Precedence, ¢x(z) < ¢1(w). Therefore, by transitivity, ¢p(z) < ¢r(2), i.e., £Bz.

Case 5: z isa j-Write operation and both y and z are Read operations. By Property 2, é;i(z) < ¢;(y).
By Property 1, (Vk :: ¢2(y) < é1(2)). Therefore, by transitivity, ¢;(z) < ¢;(2), i.e., zBz.

Case 6: z is a j-Write operation, y is a Read operation, and z is a k-Write operation. By Property
2, ¢j(z) < ¢;(y) and ¢1(y) < dr(z). Hence, by the definition of B, By and yBz. Therefore, by
the definition of D, zDz.

Case 7: z is a j-Write operation, y is a k-Write operation, and z is a Read operation. Of the five
relations that define F', only A, D, and E can relate two Write operations. Thus, by Property 3,
z Dy holds or zEy holds. If zDy holds, then by the definition of D, there exists a Read operation r
such that 87 and rBy. Because rBy A yFz holds, by Case 3, we have 7Fz. Because 2Br A rFz
holds, by Case 5, we have 2 Fz.

Now, consider the case zEy. By the definition of E, there exists a j-Write operation v and a
k-Write operation w such that

¢j(z) < ¢;(v) A vdw A drl(w) < dp(y) .

By Property 2, ¢x(y) < ¢u(z). Thus, by transitivity, ¢p(w) < ¢x(2). If v = w (which implies that
Jj=k), then ¢;(v) < ¢;(2). If, on the other hand, v <t w, then by Write Precedence, ¢5(v) < ¢;(2).
Hence, by transitivity, ¢;(x) < ¢;(2), L.e., zBz.

Case 8: z, y, and z are all Write operations. Of the five relations that define F, only A, D, and E
can relate two Write operations. Thus, by Property 3, Dy holds or zEy holds, and yDz holds or
yEz holds. If Dy holds, then there exists a Read operation r such that zBr and rBy. Because
rBy A yFz bolds, by Case 4, we have rFz. Because zBr A rFz holds, by Case 6, we have zFz.
The case in which yDz holds is similar.

The remaining possibility is F'y and yEz. Assume that z is an i-Write operation, y is a j-Write
operation, and z is a k-Write operation. By the definition of E, there exist an i-Write operation v,
J-Write operations w and v/, and a k-Write operation w’ such that

zFy A ¢ilz) <di(v) A vdw A gi(w) < ¢;(y)

28

and
y#F 2z A ¢i(y) < i(v) AV Sw' A (v < di(z) .

There are three possibilities to consider: i = j, j =k, and i # § A j # k. First, suppose that
i = j. We show that zEz holds by first proving that ¢;(¢) < ¢;(v’). Because v < w, by Uniqueness,
¢;(v) < ¢;(w). Therefore, by transitivity, ¢;(¢) < ¢;(y). Because z # y, Uniqueness implies that
¢i(x) # ¢;(y). Thus, ¢;(2) < é;(y). Thus, by transitivity, ¢;(z) < ¢;(v").

We now show that xEz. If i # k, then because z is an i-Write operation and z is a k-Write
operation, z # z. If i = k, then by Uniqueness, ¢;(v') < ¢;(w’); thus, by transitivity, ¢;(z) < ¢;(z),
which implies that @ # z. Therefore, we conclude for the case ¢ = j that

zFz A i(x) < i(v) A v duw' A gr(w') < dr(z) .

Thus, zEz.

The case in which j = k is similar to the case { = 5.

Now suppose that ¢ # j and j # k. In this case, we prove that Ez by first showing that
v <d w'. Because i # j and because v is an :-Write operation and w a j-Write operation, we
have v # w. Similarly, because j # k, we have v’ # w’. Hence, v <4 w and ¢/ < w'. Observe
that, by transitivity, ¢;(w) < ¢;(v’). Therefore, by Uniqueness, —~(v' <0 w). Also, observe that
vdw AV dw = vY<dw V vdw. Thus, v <i w'. Hence, the following expression holds.

¢i(2) < di(v) A vdw A gp(w') < di(z)

If ¢ # k, then because z is an i-Write operation and z a k-Write operation, z # z. If, on the other
hand, i = k, then by Uniqueness, ¢;(v) < ¢;(w’); hence, ¢;(z) < ¢;(z), which implies that = # z.
Therefore, we conclude that 2 £z holds.

Thus, we have established that F is an irreflexive partial order. We now show that any extension
of F' to an irreflexive total order satisfies the conditions given in the definition of serializability. The
following property is used in the proof.

Property 4: For each pair of k-Write operations v and w, vFw = ¢p(v) < ¢(w).

Proof of Property 4: Assume that vFw holds. Then, by Property 3, vDw holds or vEFw holds.
If vDw holds, then there exists a Read operation r such that vBr A rBw. By the definition of B,
¢x(v) < $u(r) and ¢5(r) < ¢r(w). This implies that ¢z(v) < ¢r(w). If, on the other hand, vEw
holds, then there exists k-Write operations v/ and w’ such that

61 (v) < B(v) A V' D' A gr(w) < du(w) .

By Uniqueness, ¢5(v") < ¢r(w’). This implies that ¢5(v) < ¢rp(w). By the definition of E, v # w.
Therefore, by Uniqueness, ¢;(v) < é(w).]

Let » be a Read operation. By Integrity, there exists a k-Write operation v such that dp(v) =

¢r(r) and the value Written by v is the same as the value Read by r for component k. By the

29

definition of B, vF'r. Moreover, by Properties 2 and 4, =(3w : w is a k-Write : vFw A whr).
Observe that, by the definition of B, F' totally orders each Read with respect to all Writes. Also, by
the definition of £ and Uniqueness, the Writes on a given component are totally ordered. Thus, any
extension of relation F' to an irreflexive total order satisfies the conditions given in the definition of
serializability. 0

Appendix 2: Correctness Proof for 1/L/1/1 Construction

In this appendix, we prove that the 1/L/1/1 construction presented in Section 8 is correct by
considering an arbitrary history of the construction. We first prove that the given history is wait-
free. We then show that if the given history is well-formed, then it is serializable. {Sequential
correctness is trivial.) In the proof of serializability, we define a function ¢ for the history, and
then prove that the defined ¢ satisfies the Uniqueness, Integrity, Proximity, and Read Precedence
conditions of the Shrinking Lemma. (Note that, because K = 1, we drop the subscript of ¢. Also,
recall that Write Precedence follows from Uniqueness when K = 1.)

The following notational conventions and definitions are used in the rest of this appendix.

Notation: We use 7 and s to denote Read operations, v and w to denote Write operations, p and
g to denote arbitrary operations, and ¢ and u to denote states. We assume that 7 and J each range
over {0,1} and that & > 0. 1

Notation: In order to avoid using too many parentheses, we define a binding order for the symbols
that we use. The following is a list of these symbols, grouped by binding power; the groups are
ordered from highest binding power to lowest.

[LO)

+, &

=#/<>, 5,2, %, %

A,V

unless

=, =

= O
Definition: If event e precedes event f, then we write e < f. We let (exf) =(e=fVe=<f

O

Definition: Let p be an operation, and let z be any private variable of p. Then, ple denotes the
final value of variable = as assigned by operation p. O

Definition: Let p be an operation of some Reader or Writer procedure and let i be a label of 2

30

statement in that procedure. We denote the event corresponding to the execution of statement 7 in
operation p by p:e.]

Definition: If £ is an expression that holds at state ¢, then we write t k& E. o

Whenever we say that an expression is true without referring to a particular state, we mean that
the expression is an inveriani, i.e., is true at each state of every history.

Assumption: We assume that each state in every history is distinct. This assumption is easy to

ensure by introducing an integer auxiliary variable that is incremented with each event. o
Definition: Consider the history ;=2 - - -tg—e—?tg.,_l -+, We say that 7; is the state prior to the event
ej, t;41 is the state following e;, and e; is the event prior o state t;.1. 0

Note that the event prior to a given state is uniquely defined since, by assumption, each state
appears at most once in a given history.

Definition: Let ¢ be the event corresponding to the execution of the statement read z := Y in an
operation p, where 2 is a private variable and Y is a shared variable. If f is the last event to write
Y before ¢, then we say that f determines plz. o

Definition: Let X be a shared variable of the construction, and let p be an operation. The assertion
last(X) = p holds at a state iff the last event to write to X before that state is an event of p. O

Definition: Let e be an event in some history. Then, afier(e) is true at a state iff the state occurs
after the event e. O

Definition: Let A and B be two expressions over the variables of the construction. The assertion
A unless B holds iff for every pair of consecutive states in any history, if A A =B holds in the first
state, then A V B holds in the second state.]

We now establish that the given history is wait-free. The Writer procedure is obviously wait-free.
However, it is not obvious that the do statement of a Read operation terminates (recall that L might
be infinite). This is established below; the following four lemmas are used in the proof. The first of
these lemmas is also used in the proof of Read Precedence.

Lemma 1: The following two assertions are invariants.

WP=wp V RP=rp
WP=rpV RP=d

Proof: 'To prove that the given assertions are invariants, we consider the assertions B0,..., B4
defined below and show that BOV ...V B4 is an invariant.
B0 = 4 = wp = WP = 7rp = RP

Bl = dol = wp = WP&1 rpdl = RP@1

I

B2 = d®1 = wp = WP = rp®l = RPa1
B3 = d¢l = wp = WP = rp = RP®1
Bd = del = wp = WP = rp = RP

To see that BO V- .-V B4 is an invariant, observe the following.

¢ B0 is initially true, and the only statement that can possibly falsify it is statement 2 of the
Writer. But, executing this statement when B0 is true establishes B1.

e The only statement that can possibly falsify Bl is statement 7 of the Writer. But, executing
this statement when Bl is true establishes B2.

o The only statement that can possibly falsify B2 is statement 0 of the Reader. But, executing
this statement when B2 is true establishes B3.

e The only statement that can possibly falsify B3 is statement 1 of the Reader. But, executing
this statement when B3 is true establishes B4.

¢ The only statement that can possibly falsify B4 is statement 1 of the Writer. But, executing
this statement when B4 is true establishes BO.

Thus, we conclude that BOV ---V B4 is an invariant. Observe that (BOV ---V B4) = (WP =
wp V RP =rp),and (BOV.---VB4) = (WP =rp V RP = d). This implies that both of the
given assertions are invariants. 0

The next two lemmas show that no Write operation can modify Y|4, j] while some Read operation
is reading it.

Lemma 2: Let r be a Read operation and let w be a Write operation. Then, after(w:2) A
—after(w:6) A after(r:2) A —after(r:5) = (rp# wp) V (ralt # walt).

Proof: Let r be a Read operation and let w be a Write operation. Define the assertions B and O
as follows.

B = after(w:2) A —after(w:6) A after(r:2) A —afier(r:5)
C = B = (ralt=Z[WP]) V (rp# wp) V (rp# WP)

We begin by proving that assertion C' is an invariant. Note that B is initially false. This implies
that C is initially true. Therefore, to prove that C' is an invariant, we our obligated to show that C
is never falsified. Note that if B is true at some state, then no event that is enabled at that state
can change the value of ralt, Z[0], Z[1], WP, rp, or wp. Therefore, the only events that can possibly
falsify C' are those events that make B true. There are two such events, namely, r:2 and w:2.

First, consider the event r:2. By the text of the Reader procedure, ralt = Z[rp] holds at the
state following r:2. As we now show, (ralt = Z[rp]) = C.

(ralt = Z[rp]) = (ralt=Z[rp]) A (rp= WP V rp# WP)

32

= (ralt = Z[WP]) V (rp# WP)
- C (D)

This implies that C holds at the state following r:2. Thus, we conclude that the event r:2 does not
falsify C.

Now, consider the event w:2. Let ¢ be the state prior to w:2, and let u be the state following
w:2. Qur proof obligation is to show that C holds at state u. If B is false at u, then C holds at u.
So, assume that B holds at «. This implies that v | afier(r:2). Because u is reached from ¢ via
the occurrence of the event w:2, we also have t k= afler(r:2). This implies that r:2 < w:2. By
the text of the Reader procedure, r:1 < r:2. This establishes the following precedence assertion.

Pil<ri2<w:2 (2)

Consider the two events :1 and w:1. Either r:1 < w:1 or w:1 < r:1. We first dispose of the
former case. By the text of the Writer procedure, w:1 < w:2. Therefore,

ril<wil<w:2 . 3)

Because B holds at u, after(r:5) is false at u. (Thus, if the event r:5 occurs in the given history,
then by the definition of state u, we have w:2 < »:5. However, in the proof of wait-freedom, we
cannot assume that the given history is well-formed. So, we cannot assert that the event »:5 occurs
in the given history.) Because u is the state following the event w:2, by (3), this implies that w!ld
is determined by r:1. Therefore, w!d = rlrp. By the text of the Writer procedure, wlwp # w!d.
Hence, wlwp # rirp. Because B holds at u, by the text of the Reader and Writer procedures,
u | rp=rlrp A wp = whwp. Therefore, v = rp # wp. This implies that v | C, which
establishes our proof obligation.

We now consider the other case mentioned above, i.e., w:1 < r:1. In this case, by (2), we have
the following precedence assertion.

wil<rl<r2<w:2

By the text of the Reader procedure, ralt = Z[rp] holds at the state following r:2. Because a fler(r:5)
is false at u, and because u is the state following w:2, the above precedence assertion implies that
ralt, rp, Z[0], and Z[1] each have the same value both at the state following 7:2 and at state u.
Therefore, v = ralt = Z[rp]. By (1), this implies that u |= C. Thus, we conclude that the event
w:2 does not falsify C. This completes the proof that € is an invariant.

We now use the fact that C' is an invariant to establish our proof obligation. Consider a state
i’ such that B holds. Our proof obligation is to show that ' k= (rp # wp) V (ralt # walt).
By the definition of B, we have i’ = after(r:2) A —after(w:6). This implies that w does not
precede r. Therefore, w is not the initial Write operation, because, by assumption, the initial Write
operation precedes all Read operations. So, let v be the Write operation that immediately precedes
w. Because B holds at state ¢/, we have t' = afler(w:2) A —after(w:6). Therefore, because v and
w are consecutive Write operations, the following assertion holds.

t B Zvtwp] = vlwalt A WP = vlwp A walt = wlwalt (4)

33

Because v and w are consecutive Write operations, vlwalt # wlwalt. Therefore, by (4), we have the
following.
' & Z[WP]# walt (5)

Because B holds at #/, and because C is an invariant, we havet’ = (ralt = Z[WP]) V (rp # wp) V
(rp# WP). It | (ralt = Z[WP]) V (rp# wp), then by (5),t' [(ralt # walt) V (rp # wp).
So, in this case our proof obligation is satisfied. Now, consider the other possibility, i.e., assume that
t' |= rp# WP. By Lemma 1,¢ |= (WP =rp) V (RP =d). Therefore, because t' = rp#£ WP,
we have t’ = RP = d. Because B holds at ', by the text of the Reader and Writer procedures,
Y | rp= RP AN wp=d®1. This implies that ' = rp # wp, which establishes our proof
obligation.]

Lemma 3: Let r be a Read operation, and let ¢ equal either 0 or 1. Then, (Vk :: Y[rp, ralt][k] =
¢ A after(r:2) unless after(r:5)).

Proof: Let r and ¢ be as defined in the statement of the lemma, and let ¥ > 0. Let ¢t and u be
consecutive states such that ¢ = Y[rp,ralt][k]=c A afler(r:2) and u | —after(r:5). Because
after(r:2) holds at ¢ and after(r:b) is false at u, the following assertion holds at both states ¢ and
u.

rp = rlrp A ralt = rlralt

Let i = rlrp and j = rlralt. Then, t | Y[jl[k] = ¢. By the definition of unless, our proof
obligation is to show that u = Y[, j][k] = c.

Suppose, to the contrary, that u | Y[i, j][k] # ¢. Then, the event prior to state u is an event
of some Write operation w, and this event writes to Y[, j][k]. By the text of the Writer procedure,
this implies that

t = afler(w:2) A —after(w:6) . (6)

Assertion (6) implies that ¢ | wp = wlwp A walt = wlwalt. Because an event of w writes to
Y1i, jllk], wlwp = i and wlwalt = j. Therefore, t = wp=1i A walt = j. Hence, by the definition
of i and j,

t k= wp=rp A walt = ralt . (M)

Because ¢ and u are consecutive states and ¢ |= afler(r:2) and u = —afier(r:5), we have

t = after(r:2) A —after(r:5) . (8)

By (6), (7), and (8) we have a contradiction of Lemma 2 at state {. Therefore, our assumption that
u = Y[i, jlk] # cis false, ie, u = YI[i, k] =c. o

The following invariant is used in the proof of wait-freedom.
Lemma 4: (V4,7 :: (3k = Y3, j][2k] = 0)).

Proof: The given assertion is initially true by the definition of the initial state. It remains true
because a Write operation assigns the value 1 to Y[¢, j][2k], for some k, only after it has assigned

34

the value 0 to some Y[i, jl[2n], where n > k. Therefore, the given assertion is an invariant. O

Proof of Wait-Freedom: We prove that the given history is wait-free by showing that each Read
operation consists of a finite number of events. Let r be a Read operation. If the event r:2 does not
occur in the given history, then # is incomplete and consists of a finite number of events. So, assume
that the event r:2 occurs in the given history. By Lemma 3, for each k > 0, Y{rp, ralt][k] has the
same value at each state in the interval of states for which after(r:2) A —after(r:5) holds. Therefore,
by Lemma 4, there exists some & such that ¥[rp, ralt][2k] = 0 at each state in this interval. This
implies that the do statement of r does not iterate an infinite number of times. Thus, » consists of
a finite number of events. O

In this rest of this appendix, we assume that the given history is well-formed. (Because the given
history is well-formed, we can assume that each operation considered hereafter is complete.) We
show that the history is serializable by defining a function ¢, and by proving that the defined ¢
satisfies the conditions of Uniqueness, Integrity, Proximity, and Read Precedence of the Shrinking

Lemma. Note that the definition of ¢ depends on the auxiliary id variables.

Definition: Let r be a Read operation and let w be Write operation. Then, ¢(r) = #lid and

b(w) = wlid. 0

We now establish the conditions of the Shrinking Lemma. The following lemma is used in the
proof. Note that this lemma is a strengthening of the Integrity condition.

Lemma 5: Let r be a Read operation and let ¢ = rlrp. Then, there exists a Write operation w such
that: (i) last(Z[i]) = w at the state prior to r:2, (ii) ¢(w) = ¢(r), and (iii) wival = rival.

Proof: Let r and i be as defined in the lemuma, and let ¢ be the state prior to the event r:2.

We first establish (i). By our assumption concerning the initial Writes, there exists a Write
operation v such that v:7 determines r!rp. This implies that vlwp = rlrp; hence, by the definition
of 4, vlwp = i. Thus, event v:6, which occurs before state ¢, writes to Z[i]. This implies that there
exists w such that ¢ = last(Z[i]) = w, establishing (i).

Because ¢ = last(Z[i]) = w, by the text of the Writer procedure, wlwp = i. Therefore, by the
definition of 7,

wiwp = rlrp . (9

Because ¢ |= last(Z[i]) = w, we have t |= Z[i] = wlwalt. Because the Writer updates Q[i] and
Z[i] in a single action, ¢ = last(Q[i]) = w. Thus, t & Q[i] = wlid. Because ¢ is the state prior to
r:2,t k= Z[i] = rlralt A Q[i] = rlid. Therefore, by transitivity, the following assertion holds.

wlwalt = rlralt A whd = rlid (16)

By the definition of ¢, (10) implies that ¢(w) = ¢(r), which establishes (ii). We now meet our
remaining proof obligation (iii), i.e., wlval = rlval. Let u be the state following »:2. Let 7 = rlralt,
and let m = win. By the text of the Reader procedure, rp = ¢ and ralt = j at each state in the

interval between r:2 and r:5. Hence, by Lemma 3, each element of Y[i, ;] has the same value at each
state in this interval. Therefore, to prove that wival = rlval, it suffices to prove that the following

expression holds.
w k= Y[, 4]2ml=0 A (VE:0<k<m:Y[ij2k]=1 A Y[,]2k + 1] = wlval[k])

By the text of the Writer procedure, it is sufficient to show that u k& (Vk : 0 < k < 2m :
last(Y'[4, j][k]) = w). So, let 0 < k < 2m. As stated previously, wlwp = i. By (10) and the definition
of j, wlwalt = j. Hence, by the definition of k, there exisis an event e of Write operation w that
writes to Y'[i, j][k]. By the text of the Writer procedure, ¢ < w:6. Because t = last(Z[i]) = w,
w:6 < r:2. Therefore, ¢ < w:6 < r:2. This implies that either u | last(Y[i,j][k]) = w or
v = last(Y]i, jl[k]) = w’, where w' is a successor of w.

Thus, to establish (iii), it suffices to prove that if w’ is a successor of w, then v = last(Y[i, j][k]) #
w’. So, suppose that w' is a successor of w. If w'lwp # i or w'lwalt # j, then clearly v |=
lasi(Y']i, j][k]) # w’. So, assume that w'lwp = i and w'lwalt = j. In this case, we prove that
u | last(Y'[i, j][k]) # w’ by showing that r:2 < w':2. Assume, to the contrary, that w’:2 < r:2.
By the definition of 7 and j,

w'lwp = rirp A w'lwalt = riralt . (1)

Because ¢ |= last(Z[i]) = w and w precedes w’, r:2 < w’:6. Therefore, w':2 < v:2 < w':6. This
precedence assertion implies that v | wp = w'lwp A walt = w'lwalt A rp=rlrp A ralt = rirali.
Therefore, by (11), v = wp=rp A walt = ralt. This implies that Lemma 2 is violated at state u.
Thus, our assumption that w':2 < r:2 is false, and we conclude that r:2 < w’:2. This establishes
(3ii). 0o

Proof of Uniqueness: Uniqueness is satisfied because each Write operation increments the private
variable id of the Writer. 0

Proof of Integrity: Integrity follows from conditions (ii) and (iii) of Lemma 5. O

Proof of Proximity: Let r be a Read operation and let v be a Write operation. Let ¢ and w be
as defined in Lemma 5, and let ¢ be the state prior to the event r:2. Then, by condition (ii) of the
lemma, ¢(r) = ¢(w). Our proof obligation is to show that if 7 precedes v, then ¢(r) < ¢(v), and if
v precedes v, then ¢(v) < ¢(r). We consider the two cases separately.

Case 1: r precedes v. By condition (i) of Lemma 5, { & last(Z[i]) = w. Therefore, w:6 < 7:2.
Because r precedes v (and because the Write operations are totally ordered), this implies that
w precedes v. Ilence, by Uniqueness, ¢(w) < ¢(v). Therefore, because ¢(r) = ¢(w), we have
¢(r) < ¢(v).

Case 2: v precedes 7. Because ¢(r) = ¢(w), to prove that ¢(v) < ¢(r), it suffices to prove that

¢(v) < ¢(w). If v = w, then our proof obligation is satisfied. So, assume that v # w. By the
Uniqueness condition, it suffices to prove that v precedes w.

36

Let w’ be the Write operation such that w':7 determines rirp. (Note that w’ exists by our
assumption concerning the initial Writes.) Then, by the text of the Reader and Writer procedures,
w’ precedes r and w'lwp = rlrp. Therefore, by the definition of i, w'lwp = i. Hence, w’:6 writes to
Z[i]. Because w':7 determines rlrp and v precedes r, v:7 < w':7. Because the Write operations are
totally ordered, this implies that v precedes or equals w’.

Because the Write operations are totally ordered, either v precedes w or w precedes v. In the
latter case, because v precedes or equals w’, w precedes w’. Because w’ precedes » and w':6 writes
to Z[¢], this implies that ¢ |= last(Z[i]) # w. However, this contradicts condition (i) of Lemma 5.
Thus, we conclude that v precedes w.]

Proof of Read Precedence: Let r and s be two Read operations, and assume that r precedes
s. Our proof obligation is to show that ¢(r) < ¢(s). By condition (ii) of Lemma 5, there exist
Write operations v and w such that ¢(v) = ¢(r) and ¢(w) = ¢(s). Thus, it suffices to prove that
#(v) < ¢(w). Assume, to the contrary, that ¢(w) < ¢(v). Then, by Uniqueness (and by the fact
that the Write operations are totally ordered), w precedes v.

Let i = rlrp and j = slrp. By the text of the Writer procedure, w:0 < w:7. Because w precedes
v, w:7 < v:0. By the text of the Writer procedure, v:0 < v:6. By condition (i) of Lemma 5,
last(Z[i]) = v at the state prior to r:2; therefore, v:6 < r:2. By the text of the Reader procedure,
r:2 < r:5. Because r precedes s, r:5 < s:0. This establishes the following precedence assertion.

w i< w:T<v:0<v:6<r:2<r:5=<s:0

Because ¢(s) = ¢(w), by Uniqueness and Proximity, no Write operation succeeds w and precedes
s. Hence, by the above precedence assertion, w and v are consecutive Write operations and v does
not precede s. This implies that s:0 < v:7. Therefore, we have the following assertion.

wl<w:7T<v:0<v:6<r:2=<r:b<s:0<v:7 (12)

We now show that rlrp = slrp = vlwp = wlwp. Note that condition (i) of Lemma 5 implies that
vlwp = i and wlwp = j. Thus, by the definition of ¢ and j, we have the following assertion.

rlrp = vlwp A slrp = whwp (13)

Let s’ be the Read operation that is the immediate successor of ». (Note that s’ exists because

r precedes s.) Then, 7:5 < s':0. Moreover, because r precedes s, s’ precedes or equals s; hence,

§':0 <X 5:0. Therefore, by (12), the following precedence assertion holds.
wil<w:7T<v:0<0v:6<r:2<r:b<s:0<v:7 {14)

Because w and v are consecutive Write operations, this precedence assertion implies that s'lrp is
determined by w:7. Thus,

s'lrp = wlwp . (15)

Let ¢ be the state following the event s:0. Because w and v are consecutive Write operations
and r and s’ are consecutive Read operations, by (14),

t = WP=wluwp A wp=vlwp A RP=rlrp A rp=s'lrp .

37

By (15) and (13), s'lrp = slrp. Also, by Lemma 1,{ | WP = wp V RP = rp. Therefore,
wlwp = vlwp V rlrp = slrp. Consequently, by (13),

rirp = slrp = vlwp = wlwp .

Because vlwp = wlwp = j and w and v are consecutive, v:6 overwrites the value written to 2 [7]
by w:6. By assertion (12) this implies that last(Z[j]) # w at the state prior to s:2. However, by
condition (i) of Lemma 5, last(Z[j]) = w at this state. Therefore, we have a contradiction. Thus,
our assumption that ¢(w) < ¢(v) is false. O

References

[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit, “Atomic Snapshots,”
Proceedings of the Ninth Annual Symposium on Principles of Distributed Computing, 1990, to
appear.

[2] J. Anderson, “Composite Registers,” Proceedings of the Ninth Annual Symposium on Princi-
ples of Distributed Computing, 1990, to appear. Also available as Technical Report TR.89.25,
Department of Computer Sciences, University of Texas at Austin, September 1989.

[3] J. Anderson, “Multiple-writer Composite Registers,” Technical Report TR.89.26, Department
of Computer Sciences, University of Texas at Austin, September 1989,

[4] J. Anderson, Atomicity of Concurrent Programs, Ph.D. Dissertation, Department of Computer
Sciences, University of Texas at Austin, 1990.

[5] J. Anderson and M. Gouda, “The Virtue of Patience: Concurrent Programming With and
Without Waiting,” unpublished manuscript, Department of Computer Sciences, University of
Texas at Austin, 1988.

[6] B. Bloom, “Constructing Two-Writer Atomic Registers,” IEEE Transactions on Compulers,
Vol. 37, No. 12, December 1988, pp. 1506-1514.

[7] J. Burns and G. Peterson, “Constructing Multi-Reader Atomic Values from Non-Atomic Val-
ues,” Proceedings of the Sizth Annual Symposium on Principles of Distributed Computing, 1987,
pp. 222-231.

[8] J. Burns and G. Peterson, “Pure Buffers for Concurrent Reading While Writing,” Techni-
cal Report GIT-IC5-87/17, School of Information and Computer Science, Georgia Institute of
Technology, April 1987.

[9] B. Chor, A. Israeli, and M. Li, “On Processor Coordination Using Asynchronous Hardware,”
Principles of the Sizth Annual Symposium on Principles of Distributed Computing, 1987, pp.
86-97.

[10] E. Dijkstra, A Discipline of Programming, Prentice-Hall, Englewood Cliffs, New Jersey, 1976.

38

[11] M. Gouda, “Serializable Programs, Parallelizable Assertions: A Basis for Interleaving,” in
Beauly is Our Business, eds. W.H.J. Feijen, A.J.M. van Gasteren, D. Gries, and J. Misra,
Springer-Verlag, 1990, pp. 135-140.

[12] M. Herlihy, “Wait-Free Implementation of Concurrent Objects,” Proceedings of the Sevenih
Annuel Symposium on Principles of Distributed Computing, 1988.

[13] M. Herlihy and J. Wing, “Axioms for Concurrent Objects,” Proceedings of the fth Annual ACM
Sympostum on Principles of Programming Languages, 1987.

[14] C.A.R. Hoare, “Towards a Theory of Parallel Programming,” Operating Systems Techniques,
eds. Hoare and Perott, Academic Press, New York, 1972.

[15] L. Kirousis, E. Kranakis, and P. Vitanyi, “Atomic Multireader Register,” Proceedings of the
Second International Workshop on Distributed Computing, Springer Verlag Lecture Notes in
Computer Science 312, 1987, pp. 278-206.

[16] L. Lamport, “On Interprocess Communication, Parts I and I1,” Distributed Computing, Vol. 1,
1986, pp. 77-101.

[17] L. Lamport, “win and sin: Predicate Transformers for Concurrency,” Technical Report, Systems
Research Center, Digital Equipment Corporation, October 1986.

[18] L. Lamport and F. Schueider, “The Hoare Logic of CSP, and All That,” ACM Transactions on
Programming Languages and Sysiems, Vol. 6, No. 2, April 1984, pp. 281-296.

[19] M. Li, J. Tromp, and P. Vitanyi, “How to Construct Wait-Free Variables,” unpublished
manuscript, Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands, 1989.

[20] M. Merritt, private communication, 1990.

[21] Z. Manna and A. Pnueli, “Adequate Proof Principles for Invariance and Liveness Properities
of Concurrent Programs,” Science of Compuier Programming, Vol. 4, 1984, pp. 257-289.

[22] J. Misra, “Axioms for Memory Access in Asynchronous Hardware Systems,” ACM Transactions
on Programming Languages and Systems, Vol. 8, No. 1, January 1986, pp. 142-153.

[23] R. Newman-Wolfe, “A Protocol for Wait-Free, Atomic, Multi-Reader Shared Variables, Pro-
ceedings of the Sizth Annual Symposium on Principles of Distributed Computing, 1987, pp.
232-248.

[24] S. Owicki and D. Gries, “An Axiomatic Proof Technique for Parallel Programs 1,” Acta Infor-
matica, Vol. 8, 1976, pp. 319-340.

[25] G. Peterson and J. Burns, “Concurrent Reading While Writing II: The Multi-Writer case,”
Proceedings of the 28th Annual Symposium on Foundations of Computer Science, 1987.

[26] A. Singh, J. Anderson, and M. Gouda, “The Elusive Atomic Register, Revisited,” Proceedings
of the Sizth Annual Symposium on Principles of Disiribuied Computing, 1987, pp. 206-221.

39

[27] J. Tromp, “How to Construct an Atomic Variable,” unpublished manuscript, Centrum voor

Wiskunde en Informatica, Amsterdam, The Netherlands, 1989.

[28] P. Vitanyi and B. Awerbuch, “Atomic Shared Register Access by Asynchronous Hardware,”
Proceedings of the 27th IEEE Symposium on the Foundations of Computer Science, 1986, pp.
233-243.

40

