OPTIMAL CHANNEL PIN ASSIGNMENT
Yang Cai and Martin D. F. Wong
Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712-1188

TR-90-25 August 1990



Optimal Channel Pin Assignment *

Yang Cai and D.F. Wong
Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712

August 6, 1990

Abstract

We study in this paper the channel pin assignment problem subject to position constraints, order
constraints, and separation constraints. The problem is to assign two sets of terminals to the top
and the bottom of a channel to minimize channel density. The position constrainis are given by
associating with each terminal a set of allowable positions. The order constraints specify the relative
orderings of the terminals on the top and the bottom of the channel by a pair of partially ordered
sets. The separation constraints require the distance between each pair of consecutive terminals to
be within a certain range. We show that the problem is NP-hard in general and present polynomial
time optimal algorithms for an important special case in which the order constraints are specified
by two linearly ordered sets (i.e., relative orderings of the terminals on the top and the bottom
of the channel are completely fixed). We introduce the problem of channel routing with movable
modules and show that it is a special case of cur problem and hence can be solved optimally. We
also discuss how our algorithms can be incorporated into standard-cell and building-block layout
design systems. Experimental results indicate that substantial reduction in channel density can be
obtained by allowing movable terminals.

1 Introduction

In the physical design of VLSI circuits, a significant portion of the chip area is used for channel routing.
Ordinary channel routers assume that all the terminals (pins) on each side of the channel are fixed
[4, 5, 6, 9, 16]. However, it is typical in practice that after the placement phase, the positions of the
terminals on the boundaries of the modules are not completely fixed, and they still have some degree
of freedom to move at the beginning of the routing phase. The existence of movable terminals can be
used to our advantage to make the subsequent routing task easier and hence obtain reduction in routing
area. Figure 1 shows that by allowing movable terminals, a significant reduction in channel density can
be obtained.

The problem of minimizing the width required to route a channel has been shown to be NP-hard
[15]. On the other hand, channel density is a fairly accurate measure for the minimum width that can

be achieved, and can be computed fast and easily. Although channel density is not the only lower bound
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Figure 1: Reducing channel density by moving terminals

for channel width [2, 3], in most practical situations it is a good measure for estimating the width during
placement and global routing phases [13]. The situation in which other lower bounds exceed channel
density are extremely rare and easily recognizable, they can be dealt with separately. In fact, many
existing channel routers achieve widths that are usually within one or two tracks of the corresponding
channe} densities [4, 5, 6, 16].

The Channel Pin Assignment (CPA) problem is the problem of assigning positions for the terminals,
subject to all possible constraints imposed by the design rules and the designs of the previous phases,
so as to minimize the density of the channel. It has various forms depending on how the pin assignment
constraints are specified. Some special forms of this problem have been investigated by several other
researchers. In [8], the authors considered the channel routing problem with movable terminals. They
assumed that all nets are two-terminal nets, having one terminal on each side of the channel, and the
terminals are movable but their relative orderings on both sides of the channel are to be preserved.
Under the assumption that the length of the channel is unbounded, they were able to develop an
optimal algorithm for minimizing the width of the channel. In [10], the channel offsetting problem was
considered. This problem is identical to the ordinary channel routing problemn except that the sides
of the channel can be laterally shifted. An offset of the sides of the channel is to be computed which
minimizes the density of the channel. This problem was generalized to the channel rotation problem in
[1]. In this case, one side of the channel is allowed to be circularly shifted and a rotation minimizing
the density of the channel is to be found. Optimal algorithms are given in [12] for the CPA problem
where there are no pin assignment constraints. Finally, [11] considered the permutation channel routing
problem, in which some sets of terminals are allowed to be permuted. Heuristic algorithms were proposed
to minimize channel width.

In this paper we consider the CPA problem in which the assignment of terminals is subjected to
position consirainis, order consirainis, and separalion consirainis. The position constraints are given

by associating with each terminal a set of allowable positions. The order constraints specify the relative



orderings of the terminals by a pair of partially ordered sets. T he separation constraints require the
distance between each pair of consecutive terminals to be within a certain range. We first consider the
CPA problem with position and order constraints. We show that the problem is NP-hard in general, even
if all nets are two-terminal nets having one terminal on each side of the channel. For an important case
where the relative orderings of the terminals are completely fixed, we are able to develop a polynomial
time optimal algorithm to minimize channel density. We then extend our algorithm to optimally solve
the problem in the case where there are also separation constraints between consecutive terminals in
polynomial time. Our algorithms are general enough that the channel offsetting problem [10], the
channel routing problem with movable terminals [8], and a generalization of them, the channel routing
problem with movable modules (Section 5.3) can all be solved by them as special cases. Experimental
results show that by allowing movable terminals, significant reduction in channel density (up to 25%)
can be obtained. We believe our algorithms can be incorporated into placement/routing systems to
further reduce routing area.

We formulate the CPA problem with position and order constraints in Section 2, and present the
NP-hardness results in Section 3. An optimal algorithm for the case where the relative orderings of
the terminals are completely fixed is presented in Section 4, and its extensions to handle separation
constraints are discussed in Section 5. In Section 6, we discuss how our algorithms can be applied to
both standard-cell and building-block layout designs. Section 7 reports some of our experimental results.

Finally, we conclude the paper in Section & with some general remarks.

2 Problem Formulation

In this section we give 2 mathematical formulation for the CPA problem with position and order con-
straints. We assume there is a virtual grid superimposed on the channel, and terminals can only be
placed at the grid points on the top and bottom of the channel.

Let L be the length of the channel, and N be the set of nets to be routed. The set of terminals
on the top of the channel is denoted by TOP, and the set of terminals on the bottom of the channel
is denoted by BOTTOM . There are two types of constraints imposed on the assignment of terminals,
namely, the order consirainis and the posilion consirainis. The order consiraints are modeled by two
partially ordered sets (posets for short), Rr and Rp, on TOP and BOTTOM, respectively. The
position constraints are modeled by two sets, T and B, of subsets of all possible positions on the top
and the bottom of the channel, respectively. Formally, an instance of the CPA problem is an 8-tuple

® = (L, TOP,BOTTOM,N,T,B, Rr, Rp), where



e L is the length of the channel;
e TOP = {i1,42,.. .4}, p< L, is the set of terminals on the top of the channel;
e BOTTOM = {b1,ba,...,bs}, ¢ < L, is the set of terminals on the bottom of the channel;

e N = {N;,Nz,...,N,} is a partition of TOP U BOTTOM giving the net list of the channel, where

N; is the set of terminals belonging to net i, 1 <i < n;

e T={T: C{1,2,...,L} : 1 < k < p} specifies the position constraints for the terminals on the

top of the channel, i.e., {; can only be assigned to positions in Ty, 1 < k < p;

e B={By C{1,2,...,L} : 1 < k < g} specifies the position constraints for the terminals on the

bottom of the channel, i.e., by can only be assigned to positions in By, 1 <k < ¢;

e Rr = (TOP,<r) is a poset defining the order constraints for the terminals on the top of the

channel, i.e., if t; <7 1;, then ¢; must be assigned to the left of {;;

e Ry = (BOTTOM,<g) is a poset defining the order constraints for the terminals on the bottom

of the channel, i.e., if b; <p b;, then b; must be assigned to the left of b;,

A solution to ® is an ordered pair of functions 7 = (f,g), where f : TOP — {1,2,...,L}, and
g:BOTTOM — {1,2,...,L}, such that

1. flte) €T, VE 1Lk < p;

2. gby) € By, VE,1LEk<L g

3.4 <7 iy = flls) < f(2;),V 4,15, € TOP;

4. b; <p b; = g(bs) < g(b;),V bi,b; € BOTTOM;
5. both f and g are injective functions.

That is, 2 solution to @ is an assignment of the terminals to the top and the bottom of the channel
satisfying the given constraints. Intuitively, f(#;) = k means that ¢; is assigned to the kth grid point
(from the left) on the top of the channel (i.e., the top endpoint of column k). Similarly, g(b;) = k means
that b; is assigned to the kth grid point on the bottom of the channel. Conditions 1 and 2 require the
position constraints to be satisfied, and conditions 3 and 4 require the order constraints be satisfied.
Condition 5 ensures that no two terminals are assigned to the same grid point. (Recall that a funciion

f is injective if and only if for any =z, y in its domain, z # y = f(z) # f(y).)
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Figure 2: Illustration of the proof of Lemma 3.1

An instance of the CPA problem is feasible if and only if it has at least one solution. Note that a
solution to an instarice of the CPA problem defines an instance of the ordinary channel routing problem.
The channel density of this instance of the ordinary channel routing problem is said to be the density

of that solution. A solution is opiimal if and only if it has minimum density.

3 NP-hardness Results

In this section we show that the CPA problem with position and order constraints is NP-hard in general,
and hence very unlikely to be solved efficiently. Readers who are not familiar with the theory of NP-

completeness are referred to reference [7].

Lemma 3.1 Given any instance ® of the CPA problem, il 1s NP-compleie 1o delermine whether & is

feasible, even if all neis are two-terminal nets having one terminal on each side of the channel

Proof: The problem is in NP because we can guess an ordered pair of functions 7 = (f, g) and test if
it is a solution to & in polynomial time. To show that it is NP-complete, we construct a polynomial
time transformation from the CLIQUE problem. (See [7] for a definition of the CLIQUE problem.)
Given a graph G = (V, E) and a positive integer K < |V (without loss of generality, we may assume
|E| > K(K - 1)/2), we construct an instance @ = (L,-TOP, BOTTOM,N,T,B, Ry, Rp) of the CPA
problem, with
L = |N|
= |VI+|E}
N = {N,={t,b} veVIU{N. ={t.,b.}:e€ E};
Ry = (TOP,4), i.e., no order constraints on TOP,;
Rp = (BOTTOM,{(v,e): e isincident on v}), i.e., the endpoints of an edge
precede the edge in BOTTOM;

TOP = {t,:zeVUE}



BOTTOM = {b,:y€VUE}
T. = {1,2,...,L}, Va2 € VUE, i.e, no position constraints on TOP;
B, = {.,2,... K}
VKK +1)/2+ LK(K+1)/2+2,... K(K-1)/2+ i}, YveV;

B, = {1,2,...,L}-B,, Ve€ E,veV.

Intuitively, there are no constraints on the assignment of terminals on the top of the channel. The
bottom of the channel is divided into four parts, as illustrated in Figure 2. The terminals in BOTTOM
which correspond to the vertices of G must be assigned to the first and third parts. The terminals
in BOTTOM which correspond to the edges of G must be assigned to the second and fourth parts.
Furthermore, for any e = {u,v} € E, we have by <p b and 3, <g be, t.c., both by and b, must be
assigned to the left of b,. We claim that G has a clique of size > K if and only if ® so constructed is
feasible. This is because exactly K (K — 1)/2 terminals in BOTTOM corresponding to the edges of G
must be assigned to the second :part of the bottom of the channel in any solution to & (because of th
position constraints), and this is possible if and only if G has a clique of size K, such that the terminals
in BOTTOM corresponding to the vertices of the clique are assigned to the first part of the bottom of
the channel (because of the order constraints). The lemma follows because the transformation can be
carried out in polynomial time. O

The following theorem now follows directly from Lemma 3.1 and the definition of NP-hardness [7].

Theorem 3.2 The problem of computing an optimal solution 1o a given instance of the CPA problem

is NP-hard, even if all nets are two-terminal neis having one {erminal on each side of the channel.

In fact, we can show a stronger result that the CPA problem remains NP-hard even if the given
instance of the CPA problem is known to be feasible (Theorem 3.4). To prove this, we first show in
Lemma 3.3 that the following decision version of the problem is NP-complete. Theorem 3.4 then follows

directly from this lemma.

CPA-d
INSTANCE: A feasible instance @ of the CPA problem, an integer d > G.
QUESTION: Is there a solution to & with density < d7

Lemma 3.3 The CPA-d problem is NP-compleie for any fized integer d > 0, even if all nels are two-

terminal neis having one ferminal on each side of the channel
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Figure 3: Illustration of the proof of Lemma 3.3

Proof: The problem isin NP by Lemma 3.1. To show that it is NP-complete, we construct a polynomial
time transformation from the VERTEX COVER problem. (Again, see [7] for a definition of the VERTEX
COVER problem.) Given a graph G = (V, E)), we construct an instance of the CPA-d problem so that
& has a vertex cover of size < K if and only if the instance of the CPA-d problem so constructed has a
solution.

For each vertex v € V, we have a “vertex net” N, = {#,,b,}; for each edge ¢ € E, we have two “edge
nets” N, = {te,b.} and N, = {1,,b,}. In addition, we also have d “enforcing nets” N; = {t:,b:},
i=1,2,...,d. The structure of the channel is illustrated in Figure 3. The terminals of the enforcing
nets are completely fixed, and all the enforcing nets cross the middle part of the channel. Hence they
contribute d to the density at each column in the middle part of the channel. The first and the last d
columns of the channel are reserved for the enforcing nets. The remaining nets can only be assigned
to the middle |V| + 2|E| columns of the channel. Except for this, there are no additional position
constraints on the bottom of the channel. Whereas the middle [V + 2|E] grid points on the top of the
channel is further divided into four parts. The first part consists of K grid points reserved for vertex
nets, the second and fourth parts each consists of |E| grid points reserved for the edge nets, and the
third part consists of |V]| — K grid points reserved for the vertex nets. Furthermore, if ¢ € £ is the ith
edge in E, then both ¢, and ?,/ can only be assigned to the ith positions in the two pérts reserved for
the edge nets. There are no order constraints on the top of the channel. On the bottom of the channel,
if e = {v;,v;} € E and i < j (here we have assumed that V = {v;,vs,...,9y}), then b, must be
assigned to the left of b, and b,; must be assigned to the left of b_..

Formally, we have & = (L, TOP, BOTTOM,N,T, B, Ry, Rg), where

L = [V|+2\E|+2d;

TOP = {t,:veV}IU{t, t,e€ EYU{ls,ta,...,1a};



BOTTOM = {b,:veV}U{b.,b, :e€E}U{bsba, ... ba};

N = {Ni={t;,b}:1<i<d} (* enforcing nets *)
U{N, = {t,, b} v eV} (* vertex nets *)
U{N, = {te, b}, N, = {t,,b}:e€ EY; (* edge nets *)

T, = {[V|+2|B|+d+1i}, fori=1,2,...,4d;

T, = {d+1,d+2,...,d+K}

U{|E|+ K +d+ L|E|+ K+d+2,...,|[V|+|E|+d}, VveV;

T. = T,

= {K+d+j|V|+|E|+d+j}, ifeisthe jthedgeof £, 1 <5< |El;
By = {i},fori=12,...,4;
B, = B

= B,

= {d+1,d+2,..,|V|+2|E|+d}, VveEV,e€ E;
Ry = (TOP,¢), i.c., no order constraints on TOP;

Rp = (BOTTOM,{(v;,e),(vj,ei) te= {vi,v;} € E and i < j}).

It is straightforward to verify that ® can be constructed in polynomial time and that it is feasible.
Furthermore any solution to @ has density > d (due to the enforcing nets). If @ has a solution with
density d, then the two terminals of each vertex or edge net must be assigned to the same column.
This is possible if G has a vertex cover § of size < K. Since 5 is a vertex cover of G, for each edge
e = {u,v} € E, either u € S or v € S. Hence for any edge e, either b, or b,/ is preceded only by
terminals b, with w € S, depending on which endpoint of e is in 5. Therefore if we assign the vertex
nets corresponding to the vertices of S, together with K — |S| other vertex nets to the first K columns
of the middle part of the channel, then there exist |E| edge nets which can be legally assigned to the
next |E| columns without violating the order or position constraints {one edge net from each pair N,
N,/). Now the next [V|— K columns can be assigned to the remaining vertex nets and the remaining
|E| columns can be assigned to the remaining edge nets. On the other hand, if G has no vertex cover of
size < K, then exactly K grid points on the top of the first K + |E| columns of the middle part of the
channel must be assigned to terminals of vertex nets (due to the position constraints). Whereas either
more than K grid points on the botiom of these columns are assigned to terminals of vertex nets, or

for some ¢ € E, both b, and b, are assigned to grid points on the bottom of these columns {due to the



order constraints). In either case there exists some net whose terminals are not assigned to the same

column. Hence & cannot have a solution with density d. This proves the lemma. O

Theorem 3.4 The problem of finding en optimal solution for a feasible instance of the CPA problem

is NP-hard even if all nets are two-terminal neis having one lerminegl on each side of the channel

4 An Optimal Algorithm

We present in this section an optimal algorithm for an important case of the CPA problem with position
and order constraints where both R7 and Rp are linearly ordered sets. We will refer to it as the Linear
CPA problem. Without loss of generality, we may assume that {; <7 2 <7 ... <7 fp, and by <p by <p
...<p by. In other words, #; (respectively, b;) must be assigned to the left of t; (respectively, b;) if and
only if i < j. We simplify our notation by writing f(¢) for f(¢;) and g(j) for g(b;). For convenience of
description, we augment the channel with an auxiliary column 0, and introduce two trivial nets {nets
consisting of only one terminal) Ny = {{o} and Ng = {bo} with &g <7 %1, bp <p by and Ty = TOP,
By = BOTTOM. In the rest of this section, ® will stand for such an augmented instance of the Linear
CPA problem.

We define densily funciions in Section 4.1, and introduce crossing numbers in Section 4.2, which will
be used in our algorithm. The algorithm is then presented in Section 4.3. Some remarks pertinent to

the algorithm are given in Section 4.4.
4.1 Density Functions

A solution to @ is called an (3, 7, k)-solution if it assigns exactly 43,73, ...,%¢;, 61,02, ...,5; to the first &
columns of the channel. The maximum of the densities at the first k& columns of an ordinary channel
routing instance is called the k-density of the channel. Recall that the density at a column ¢ in an
instance of the ordinary channel routing problem is equal to the number of nets crossing column ¢, f.e.,
the number of nets with its leftmost terminal to the left or on column ¢, its rightmost terminal to the
right or on column ¢, and at least one terminal outside of column c.

A function d: {0,1,...,p} x {0,1,...,¢} x {0,1,..., L} = I° U {400}, where I® denotes the set of

nonnegative integers, is called a densily function with respeci 1o @ if it satisfies:

P1 For all 0 <i<p,0<j<gand 0<k <L, if & has an (4, §, k)-solution, then d(¢, 4, k) is equal to

the minimum of the k-densities of all (%, j, k)-solutions to &;

P2 Forall 0 € k < L, if @ has no (p, g, k)-solution, then d(p, ¢, k) = +oco. In particular, if @ is not
feasible, then d{p, ¢, L) = +co.
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Figure 4: Four types of (4, j, k)-solutions

The following lemma can be directly deduced from the definition of density functions.

Lemma 4.1 Ifd is a density function with respect 1o @, then @ is feasible if and only if d(p. g, LYy < +oo.

Furthermore, if ® is feasible, then d(p, g, L) is equal {0 the densily of any optimal solution to &.

The main idea of our algorithm is the following: Given @, we first compute a density function
with respect to @ using dynamic programming, and then u.se backtracking to reconstruct an optimal
solution to @. Note that in our definition of density functions, we do not require the condition that
d(i, j,k) = +oco if & has no (i, j, k)-solution to hold for all 0 < i < p, 0 < j < ¢ and 0 < k < L. This
condition is not necessary for Lemma 4.1 to hold, and the inclusion of it would increase the complexity
of our algorithm. Hence it is possible for the density function (with respect to &) d computed by our

algorithm to have d(i, j, k) < 400 even if @ has no (i, j, k)-solution.

4.2 Crossing Numbers

The (i, j, k)-solutions to ® can be classified into the following four types, according to the pin assignment

at column k as illustrated in Figure 4.

@

®

&

Type 3: Both 1;, b; are assigned to column k (Figure 4(d)).

0

Type 0: No terminal is assigned to either endpoints of column k (Figure 4(a});
Type 1: Only t; is assigned to (the top endpoint of) column k (Figure 4(b));

Type 2: Only b; is assigned to (the bottom endpoint of) column k (Figure 4(c});



Lemma 4.2 If =, 7 are two (i, 3, k)-solutions to @ of the same iype, then column k has lhe same

density in both 7 and T

Proof: Let Ri(4,j) denote the set of nets with one terminal in {t1,%2,...,%i-1,b1,b2,. .. ,b;} and one
terminal in TOPUBOTTOM —{t1,12,...,%i,b1,b2,...,b;}, and the net containing ¢, if it is not trivial.
Let Ro(,j) denote the set of nets with one terminal in {t1,%2,...,%,b1,b2,...,bj-1} and one terminal
in TOP U BOTTOM — {t1,%2,...,%i,b1,b2,...,b;}, and the net containing b;, if it is not trivial. Let
Rs(#,7) denote the set of nets with one terminal in {t;,%2,...,%-1,b1,b2,...,b;-1} and one terminal
in TOP U BOTTOM — {t1,%2,...,ti, b1, bg, ..., b5}, and the nontrivial nets containing ¢; or by, if it
is not the case that #; and are the only terminals of the same net. If both 7 and 7 are of type 1
(Figure 4(b)), then the density of column k is equal to |R1(4, /)] in both of them; If they are both
of type 2 (Figure 4(c)), then the density of column k is equal to IR2(i, 5] in both of them; If they
are both of type 3 (Figure 4(d)), then the density of column k is equal to |Ra(i, j)| in both of them.
Finally, if both 7 and 7 are of type 0 (Figure 4(a)), then the density of column k in both of them
is equal to the number of nets with one terminal in {¢;,%2,...,%,b1,b2,...,b;} and one terminal in
TOP U BOTTOM — {t1,%2,...,%;,b1,b2,...,b;}. Hence the lemma follows. O

We can now define the crossing numbers at (i, j, k) as follows:

L +oo . ifk €75
z(i, 4, k) { 1R1(i,§)] otherwise;

. _ +00 if k ¢ B;
y(i, g, k) = { {R2(i,§)] otherwise;

. “+00 fkgTinB;
z(4,5, k) { |Rs(i, j)] otherwise,

where Ri(%,7), Ra2(i,j), Rs(i,j) are as defined in the proof of Lemma 4.2, and z(i, j, k) ({4, 4, &),
z(%, j, k), respectively) is called the crossing nmﬁber of type I (iype 2, type 8, respectively) at (i,j, k).
According to Lemma 4.2, if 7 is any (4, §, k)-solution to @ of type 1, (type 2, type 3, respectively), then
the density of column k in 7 is equal to z{z, 7, k) (y(4, 4, k), 2(3, 4, k}, respectively).

The crossing numbers of type 1 can be computed by the following procedure:

Procedure: Crossing Numbers of Type 1;
begin
fori:=0to pdo
for j:=0togdo
begin

Compute |Ri{Z, 5);
fork:=01t0 L do

z{3, , k) 1= 400

i1



end:
fori:=0 to p do
for j:= 0 to g do
for k € T; do
z(i, 5, k) = |Ra(z, 7))
end;

It is obvious that the above procedure can be completed in O(pgL) time and space. Similarly,

crossing numbers of type 2 and type 3 can be computed in O(pglL) time and space.
4.3 The Algorithm

We are now ready to present our algorithm for the Linear CPA problem. The input to the algorithm is
an instance @ = (L, TOP, BOTTOM,N,T, B, Ry, Rp) of the Linear CPA problem, and the output is
an optimal solution to @, or an indication that no such solution exists. (We have assumed 0—1= 0 for
convenience. )

Algorithm: Linear CPA;
begin
(* Initialization *)
fori:=0 to p do
for j:= 0 to g do
d(1,3,0) := “+o0;
fork:=0to L do
d(0,0,k) 1= 0;
Compute the crossing numbers;
(* Computing d(p, g, L) using dynamic programming *)
fork:=1to L do
for 1 =0 to p do
for j:=0to ¢ do

begin
D = max{d(i = 1,5,k —1),2(4, 5, k) }; (* type 1 solution *)
Dy o= max{d(i, 7 — 1,k —1},9(5 4, k}}; (* type 2 solution *)
Da=max{d(i—1,—1,k—1),2(3, 7, k)}; (* type 3 solution *)
d(s, 3, k) = min{d(i, 5,k — 1), D;, D3, D3}

end;

ifd(p.g, L} =+c0
then return “® is not {easible.”
else begin (* Constructing an optimal solution using backtracking *)
P g =g
for k := [ downto 1 do
ifd(s,5,k) =D,
then f(i) =k i:=i~—1
else if d(i, 5,k) = Dy
then g(j) =4k ji=j7 -1
else if d{i, 5, k) = D3
then f(i§) =k glfl =k i=i~1;, =5~ 1;
return 7 = (f, g)
end
end.

Theorem 4.3 Algorithm Linear CPA correcily solves the Linear CPA problem in O(pgl) time and

space, where p, g, L is the number of terminals on the top of the channel, the number of terminals on

12



the botiom of the channel, the length of the channel, respectively.

Proof: We first show that the function d as computed in Algorithm Linear CPA is a density function
with respect to @ We prove by induction on k that if @ has an (4, j, k)-solution, then d(Z, 7, k) is equal
to the minimum of the k-densities of all (4, 7, k)-solutions to . This is true for k = 0 by the way we
chose the boundary values. Assume it is true for £ — 1, 1 < k < L. If @ has an (i, j, k)-solution § with
minimum k-density ds, then S must be either an (4, j, k— 1)-solution, or an (i—1, j, k —1)-solution, or an
(i,7— 1,k — 1)-solution, or an (i—1, j— 1,k — 1)-solution to &. By the induction hypothesis and the fact
that k-density = max{(k — 1)-density, density at column k}, if S is an (4, j, k — 1)-solution to @, then
ds = d(i,7,k — 1); if S is an (i = 1, j, k — 1)-solution to @, then ds = max{d(t— 1,5k~ 1),z(i,4,k)};
if $is an (i,j — 1,k — 1)-solution to &, then ds = max{d(i,j — 1,k — 1),9(5,5,k)}; and if § is an
{i—1,7— 1,k — 1)-solution to @, then ds = max{d(i—1,j— 1,k —1),2(4,5,k)}. Hence we have

ds = min{d(i,j, k—1),
max{d(i — 1, 5,k — 1), z(3, j, b)},
max{d(s,j — 1,k — 1), 9(¢, j, k)},
max{d(i — 1,5 — 1,k — 1), 2(3, 5, k)}}

dii, 5, k).

Il

Therefore, the claim holds for k and consequently d satisfies’ P1.

We proceed to show that d also satisfies P2 by induction on k. By the way we chose the boundary
values, we have d(p, g,0) = +oo if either p > G or ¢ > 0. Hence the claim holds for £ = 0. Assume that the
claim holdsfor k—1,1 < k < L and ® has no (p, g, k)-solution. Then & has no (p, ¢, k—1)-solution either.
Hence d(p, g, k — 1) = oo by the induction hypothesis. Furthermore, either @ has no (p— 1,4,k — 1)-
solution or k € T, (and hence z(p,q, k) = +0c0). Therefore max{d(p— 1,9,k — 1),2(p, ¢, k)} = +oo.
Similarly, we can show that max{d(p,g—1, k—1), y(p, ¢, k)} = max{d{(p—1,9—1,k~1),2(p, ¢, k)}} = +c0.

Consequently

d(p, g, k) min{d(p, g,k — 1),

il

max{d(p-—- 13 qsk - 3-)::8(133 q*k:}}S
max{d(p,g— 1,k—1),y(p, ¢, &)},
max{d(p— 1,0~ 1,k~-1),2(p,0,k)}}

= +00.

Hence the claim also holds for k. Therefore P2 is also satisfied.
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We next show that 7 = (f, g) returned by Algorithm Linear CPA is an optimal solution to @. By
the construction of 7, conditions 3, 4, and 5 in the definition of a solution to & are satisfied. If there
exists 4, 1 < i < p, such that f(i) € Ty, then z(i,j, f(§)) = 2(4, j, f(i)) = +oo for all j’, 0 < j < g,
implying d(p, ¢, L) = +00. A contradiction to the fact that @ is feasible. So condition 1 is also satisfied.
Similarly, condition 2 is satisfied. Thus = is a solution to ®. We can apply similar argument to show
by induction that = is indeed optimal. Therefore, the correctness of the algorithm follows from Lemma
4.1.

The complexity of the algorithm is clearly dominated by the computation of the crossing numbers
and d(p, g, L). Since the crossing numbers can be computed in O(pgL) time and space, the time and

space complexities of the algorithm are both O(pgl). O
4.4 Remarks

1. The channel routing problem with movable terminals considered in [8] can be solved by our algorithm
as follows: We first apply Algorithm Linear CPA with channel length p + ¢. Because the existence of
empty columns cannot decrease channel density, the solution so obtained has minimum density over
all solution to the problem with arbitrary channel length. We then remove all vertical constraints [16]
by splitting any column whose endpoints are assigned to terminals of different nets into two adjacent
columns, with one terminal on each column. This operation does not change the density of the solution,
but the new solution can be routed with channel width equals to its density by the Left Edge Algorithm
[9] because there is no vertical constraint. Empty columns can now be removed to make the length of

the resulting channel at most p+ g. The solution so obtained is 2 minimum width solution.

II. The complexity of Algorithm Linear CPA can be reduced by an order of magnitude if the terminals
on one side of the channel are completely fixed. This is because we can discard one of the first two

variables in the definitions of density functions and crossing numbers.

III. There are possibly many minimum density solutions to a feasible instance @ of the Linear CPA
problem. Figures of merit other than channel density can be used to guide the backtracking process in
Algorithm Linear CPA. In particular, minimum density solutions with the following properties are of

special interest:
1. Acyclicy of the vertical constraint graph;

2. Short longest path in the vertical constraint graph.



One method of reconstructing a minimum density solution with the above properties is the following:
First we compute L* = min{l : dip,g,l) = d(p,q,L)}. We then construct an optimal solution to
¢ = (L, TOP,BOTTOM, N,T,B,Rr,Rg). The L — L* columns at the end of the channel can now
be used to break cycles and long paths of the vertical constraint graph. This is because if (N;,N;)is an
edge of the vertical constraint graph G, then it can be removed from G by splitting every column with
its top endpoint assigned to a terminal of N;, its bottom endpoint assigned to a terminal of V; into two
adjacent columns, one for each terminal. Hence our problem can now be restated as follows: Given an
arc-weighed directed graph (the weight of an arc corresponds to the number of columns needed to be
split in order to remove that arc) and an integer C (= L — L*) > 0, remove a set of arcs such that the
sum of the arc weights does not exceed C, so that the resulting directed graph has the properties listed
above.

This problem is NP-hard in general because it contains the directed Hamiltonian path problem [7].
Hence we have to resort to heuristics for efficiency. We can first compute a feedback arc set (a set of
arcs whose removal eliminates alk directed cycles) of G and remove it from G to obtain a directed acyclic
graph, if its weight does not exceed C. We then adjust the value of C appropriately. The problem
now becomes that of removing a set of arcs such that the sum of the arc weights is minimized, so that
the length of a longest path in the resulting directed acyclic graph does not exceed some prechosen
threshold value. This graph problem is of special interest because it can find applications in channel
routing, where doglegs are being introduced (instead of empty columns) to break vertical constraints
[14). We do not know if this problem is polynomial time solvable. Heuristic methods can be applied to

solve it.

5 Extensions

We discuss in this section how our algorithm can be extended to handle additional pin assignment
constraints. In particular, we consider separaiion consirainis, which require the distance between each
pair of consecutive terminals to be within a certain range.

In Section 5.1 we present an optimal algorithm for the CPA problem with position constraints, linear
order constrains, and general separation constraints. The complexity of our algorithm is O(pgL®). In
Seﬁtion 5.2, we present O(L®) time algorithms for several important cases of the problem which have
restricted forms of separation constraints. Section 5.3 shows how our algorithm can be used to solve the

channel routing problem with movable modules.
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5.1 General Separation Constraints

In the most general case, separation constraints have the following form: for1<i<p-1,1<ji<¢g—-1
the distance s; between #; and t;.; must satisfy I; < s; < r;; and the distance s;- between b; and b;4q
must satisfy !;- < s; < r;‘ Algorithm Linear CPA can be generalized to solve the CPA problem with
position constraints, linear order constraints, and general separation constraints optimally in polynomial
time.

Letd:{0,1,...,p}x{0,1,...,g}x{0,1,..., L}? = I°U{+o00}, be a function defined by the following

recurrence relations:

d(z',j,O, 'U) = oo, ¥ i,j,’U, i> 0;
d(i, j,u,0) = +4oo, Vi, j,u, j>0;
d{0,0,u,v) = 0, Vu,v;
minulelu{max{d(i -1, v, v),z(i, 5, u)}} fu>v
d{i, j,u,v) = mingeg ey, {max{d(i—1,j— 1,u,v),2(4,5,u)}} ifu=v
min, g ; {max{d(i,j~ 1,u, v, y(i, 4, v)}} ifu<uo,
where
I, = {u’ €{,2,.., L}:u—ri1 < u <u-—Ili-1}
and

I ={v é{l,?,...,L}:’v---r;_,1 <v Sv—-—l}_l}.

We have again assumed ( — 1 = 0 for convenience.

Lemma 5.1 Let @ be an instance of the CPA problem with position constrainis, linear order constrainis,
and general separation constraints. For all0 < i< p, 0<j<q 0 < u,v <L, if @ has an (i, j,w)-
solution which assigns ; to (the top endpoint of) column u and assigns b; to (the botiom endpoini of)
column v, where w = max{u,v}, then d(i, j,u,v) is equal io the minimum of the w-densities of all such

solutions 10 ©.

To prove Lemma 5.1, consider the case where u > v and hence w = u. Because of the separation
constraints, terminal #;—1 must be assigned to the top endpoint of a columnn located at a position u €I,
Since columns w + 1, w +2, ..., u— 1 are empty (if t;~; is assigned to the top endpoint of column

z;}, where w' = max{u, v}, the densities at these columns are less than or equal to the maximal of the
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densities at column w and u in such an (i, j, u)-solution to ®. Let Dy denote the minimum k-density

of any (i, 7, w)-solution to @, 0 < k < w. Then we have

D, = max{D,, density at column u in any (%, J, w)-solution to &}
U'EIM
= min{max{d(i - 1,7, v, v), z(i, §,u)}}
v'el,
= d(i, 7 u,v).

The other two cases can be similarly proven, details are omitted here.

Lemma 5.2 Lel @ be an instance of the CPA problem with position consiraints, linear order consirainis,
and general separation consiraints. For all 0 < u,v < L, if ® has no (p,q,w)-solution which assigns
t, to (ihe fop endpoint of) column u and assigns by to (the botiom endpoint of) column v, where

w = max{u, v}, then d(i, j,u,v) = +oo.

Using dynamic programming, d(¢, j, u, v) can be computed from the previously computed d values
in O(L) time if v # v, or in O(L?) time if u = v. Hence the function d can be computed in O(pgL?) =
O(L) + O(pgL) * O(L?) = O(pgL®) time and O(pgL?) space. (However, if max{r; — li,r; — I; 1<i<
p—1,1<j<g—1} < cfor some constant ¢, then O(pgL?) time and space suffices.) The density of an
optimal solution to & is equal to D = min{d{(p,q,v,v):p<uLL,gLv< L}. Once D is computed,

an optimal solution can be reconstructed by backtracking. Therefore, we have:

Theorem 5.3 The CPA problem with position consiraints, linear order consiraints, and general sep-
aration consirainis can be solved optimally in O(pgL®) time and O(pgL?) space, where p, g, L 1s the
number of ierminals on the top of the channel, the number of terminals on the boitom of the channel,

the length of the channel, respectively.

5.2 Special Separation Constraints

The complexity of our algorithm for the CPA problem with position constraints, linear order constraints,
and general separation constraints is relatively high because the separation constraints are specified in
its most general form. In practice, only some special forms of separation constraints are frequently
encountered, and our algorithm can be tailored to reduce its running time. In the sequel, we consider

the following special forms of the separation constraints:

1. No separation constraints, i.e., the separation constraints are all of the form:

353!‘; =1, and rg,r; = 400, Y1, ]
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2. Adjacency consirainis only, i.e., the separation constraints are all of the form:

I,‘,I; =1, and 7‘,‘,1'; =1 or +00,Y 4, j.

3. Fired distance consirainis only, i.e., the separation constraints are all of the form:
: 7 i ¢ P
(i=rl; = rj), or (15,25 =1land ry7; = 400}, ¢, §.
4. Minimum separalion consiraints only, i.e., the separation constraints are all of the form:
! - .
T, Ty = +00,Y 1, 5.

5. Any combination of the above.

Observe that if [; = 1 (I;- = 1), then #;, #;41 (bj, bj4+1) can be assigned as close to each other as
possible (i.e., no minimum separation constraint). If r; = 4oc0 (r; = 400}, then #;, ti41 (b, bj41)
can be assigned as far away from each other as possible (i.e., no mazimum separgiion constraini). If
I = (I;- = r;-), then #;, #;41 (bj, bj41) must be assigned exactly i (I;) grid points away from each
other (fixed separation constraint). If l; = r; = 1 (I; = ;+1 = 1), then %;, #3341 (b;, bj41) must be
assigned adjacent to each other (adjacency constraint). Hence Case 1 is precisely the case we considered
in the Section 4. In Case 2, the only separation constraints are the requirements that some pairs of
consecutive terminals be assigned adjacent to each other (fixed separation of unit distance). In Case
3, the only separation constraints are the requirements that some pairs of consecutive terminals be
assigned some fixed distances away from each other (it includes Case 2 as a special case). In Case 4, the
only separation constraints are the requirements that some pairs of consecutive terminals be assigned
at least some distances away from each other.

Note that Cases 3-5 can be reduced to either Case 1 or Case 2. Case 4 can be reduced to Case 1
by inserting I; — 1 trivial nets between #; and #;4;, and by inserting I; ~ 1 trivial nets between &; and
b;+1. Similarly, Case 3 can be reduced to Case 2 by‘inserting I; — 1 trivial nets between #; and #;4 if
I; = r;, and by inserting 1; — 1 trivial nets between b; and b;4; if I; = r;. Hence Case § can be reduced
to either Case 1 or Case 2. In the rest of this section, we show how our algorithm can be adapted to
solve Case 2 and hence Case 5.

Because of the adjacency constraints, we need to remember the assignment of terminals on the
previous column when we consider the terminal assignment on the current column (for example, if #;
is to be assigned to column k, and if v,y = l;.; = 1, then %;.; must have been assigned to column

k — 1, otherwise the adjacency constraint would be violated). This is done by introducing three new
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functions: di,ds,d3:{0,1,...,p} x{0,1,.. ey x{0,1,...,L} = I9U {400}, with function d; (dz, ds,

respectively) corresponds to type 1 (type 2, type 3, respectively) solutions (see Figure 4). They can be

computed using the following recurrence relations (the symbol h is used to denote any of the function

symbols d, d1, da, d3):

ifr;_1=1and "';'«1 = 400

if r;-__l = 1 and r; = +0c0

4

—rj_lz 1

i

R(0,0,k) = 0, VE>0;
h{i,7,0) = +oo, Vi, g t+3>0;
( min{max{dy(i - 1,5,k — 1), 2(, 5, K)},
Qi g k) = max{da(i — 1,5,k = 1),z({, 5, k)}} rici=1
max{d(i—1,j,k—1),2({5,k)} if £y = 400;
¢ min{max{da2(%,j — 1,k — 1), y(i, 5, &)},
d‘z{i,:}', k) = ¢ max{d3(z,3 - 1sk - 1): y(z,], k)}} if rj—l =1
max{d(, j — 1,k — 1), 9(i, 5, k)} if rj_; = +00;
min{max{d:(i = 1,5 — 1,k—1),2(4, j, B},
max{d3(i - 173 - 1) k- 1): z(ézj’ k)}}
min{max{da(i — 1,7 — 1,k =~ 1), 2(4, 4, k)3,
ds(i, 5, k) = max{da(i— 1,5 — 1,k — 1), 2(i, 5, k)}}
max{ds(i —1,j— 1, k=1),2(i,5,k)}
max{d{(i—1,j—1,k~- 1), 2(¢, 5, k)}

=7 = 00

7

(i, j, k) = min{d(i,j,k—1),d1(i—1,j,k-—1),dg(i,j-—1,k—1),d3(i-—1,j-—1,3::—1)}.

Here we have again assumed 0 — 1 = 0 for convenience.

Lemma 5.4 Lel ® be an instance of the CPA problem with position consiraints, linear order consiraints,

and adjacency consirainis. For all0<i<p, 0<j< g, 0< k<L, if® has an (4, j, k)-solution of type

I (=1,2,3), then di(i, 5, k) is equal 1o the minimum of the k-densities of all (i, j, k)-solutions of type |

10 ®. Furthermore, for 0 < k < L, if ® has no (p, g, k)-solution of type I, then di(p, g, L) = +o0.

The proof of Lemma 5.4 is tedious but routine. Consider for example, the definition of di(¢, 5, k).

Here #; is to be assigned to (the top endpoint of) column k. If there is adjacency constraint between

#;., and %;, then #;; must have been assigned to (the top endpoint of) column k — 1. Hence the

(i = 1,4,k — 1)-solution must be either of type 1 or type 3, therefore we have

di(3, j, k) = min{max{d, (i — 1,5,k — 1), (3, ], E)}, max{ds(i— 1,7,k —1),z(4,5,k)} }.
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Otherwise there is no adjacency constraint between t;_1 and 1;, and the (i — 1,7, k — 1)-solution can be

any one of the four types. Hence
di(s, 5, k) = max{d(i — 1, j, k — 1), 2(¢, j, k) }.

Similar arguments can be applied to show that the recurrence relations for ds, d3 are also correct. Hence

the following follows directly:

Corollary 5.5 The function d as defined by the recurrence relations above is ¢ densily function with

respect to @,

Using the recurrence relations, d(p, ¢, L) can be computed in O(pgl) time and space using dynamic
programming. Hence an optimal solution can be reconstructed in the same amount of time and space
by backtracking. However, in the cases where fixed separation constraints or minimum separation
constraints are involved, the trivial nets inserted also contribute to the values of p and ¢, hence the

worst case complexity of our algorithm for these cases is O(L?).

Theorem 5.6 The CPA problem with position constrains, linear order constrainis, end any combinaiion
of adjacency consirainis, fized distance comsirainis and minimum separaiion consireinis can be solved
oplimally in O(L?) time and space, where L is the length of the channel. Furthermore, if only adjecency
consiraints present, then the problem can be solved in O(pgL) time and space, where p, g s the number

of terminals on the top, bottom of the channel, respectively.

In fact, if no maximum separation constraints are involved, the complexity of our algorithm for the

CPA problem with order constraints, linear order constraints and separation constraints remains at

O(L?).
5.3 Channel Routing with Movable Modules

The CPA problem with order constraints, linear order constraints and fixed and minimum separation
constraints {(Case 5 in Section 5.2) can be applied to solve the channel routing problem with movable
modules. In this problem, each side of the channel consists of the boundaries of a number of completely
designed modules. The terminals have fixed positions inside each module, and the relative orderings
of the modules on each side of the channel are completely fixed. However, the exact positions of the
modules are not fixed (i.e., they are movable). The objective is to determine the positions of the modules
to minimize channel density. Figure 5 shows an example of the channel routing problem with movable

terminals. This problem can be modeled as a special case of the CPA problem with position constraints,
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(a) Before moving: d = 4 (b) After moving: d =1

Figure 5: Channel routing with movable modules

linear order constraints and fixed and minimum separation constraints by introducing fixed separation
constraints between the terminals inside the same module, and minimum separation constraints between
the extreme terminals of consecutive modules on the same side of the channel, .e., between the rightmost
(leftmost) terminal of 2 module and the leftmost (rightmost) terminal of the module on the same side

of the channel immediately to its right (left). Hence we have the following corollary of Theorem 5.6:

Corollary 5.7 The chennel roziting problem with movable modules can be solved in O(L3) time and
space, where L is the length of the channel Furthermore, if there is only one module on one side of the

channel, then it can be solved in O(L?) iime and space.

Note that the channel offsetting problem [10] is a special case of the channel routing problem with
movable modules, where there is exactly one module on each side of the channel. By Corollary 5.7, our

algorithm solves the channel offsetting problem in O(L?) time and space.

6 Applications

We describe in this section some applications our algorithms. In standard-cell layout design, cells of
equal heights are packed into rows (see Figure 6). Feedthrough terminals (b, ¥,c, ¢,d, d in Figure
6) can be inserted in between the cells. The space between the rows are reserved for routing, which
is usually carried out by a channel router in a 1'ov;7 by row fashion. The rows can be horizontally
expanded by inserting extra spaces in between the cells. By doing so, the positions of the terminals on
the boundaries of the cells are changed. Hence these are instances of the CPA problem.

" There are certain constraints on the assignment of terminals. The feedthrough terminals and their
?elative orderings can be predetermined before the routing phase. The terminals on the boundaries of
the cells usually have fixed positions inside the cells, although the cells can be moved as a whole. TTence
the relative orderings of the terminals are completely fixed. The requirement that the terminals on the

boundaries of the cells must have fixed positions inside the cells can be modeled by the fixed separation
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extra space

Figure 6: Standard-cell layout design

constraints. Furthermore, to avoid feedthrough terminals being inadvertently placed on the boundary of
a cell, and to avoid inadvertently moving some terminals on the boundaries of the cells out of the cells,
we can impose minimum separation constraints on the leftmost (rightmost) terminals on the boundaries
of the cells and the terminals immediately to their left {right). Hence our algorithms can be applied to
minimize the densities of the channels.

Similar situations occur in building-block layout design. The routing area in a building-block layout
can be decomposed into channels, and these channels have to be routed in certain order. For example,
in Figure 7, channel C must be routed after channels A, B, D and E. Similarly, channel ' must be
routed after channels D, E, G and H. The junction terminals {those terminals located on the dotted
lines) usually have fixed ordering and are movable. Furthermore, the widths of the horizontal channels
(channels A, B, D, E, F, G and H in Figure 7) can be expanded. Hence channels C and F are
again instances of the CPA problem. In this case, the pin assignment constraints are similar to those
encountered in the standard-cell layout, hence our algorithms again apply.

In another situation in building-block layout design, where the modules are not fully designed, and
only the relative orderings of the terminals on the boundaries of the modules have been determined,
but not their exact positions. Again consider Figure 8. Suppose we have routed channels A, B, D,
E, G, H and fixed their widths. The terminals on the sides of the vertical channels C and F' can be
moved within the modules. Again the vertical channels are instances of the CPA problem. The pin
assignment constraints in this case are slightly different from those in the previous examples. Instead
of fixed separation constraints, we have position constraints for the terminals on the boundaries of the
modules (they must stay inside the modules), as well as for the junction terminals {they cannot be
moved to the boundaries of modules). Again we have minimum separation constraints imposed on the

topmost (bottommost) terminals on the vertical boundaries of the modules and the terminals adjacent
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Figure 7: Building-block layout design

to them. Our algorithms still apply in this case.

In fact, whenever the terminals have some degree of freedom of choosing their own positions before
the channel routing phase, we have an instance of the CPA problem. Our algorithms apply in many
situations arisen in practice. Due to its simplicity, we believe that cur algorithm can be incorporated

into existing placement/routing systems to further reduce routing area.

7 Experimental Results

We have implemented our algorithms in Pascal language on a Sun 3/50 workstation running on Unix
4.2BSD. The program was tested on several benchmark channel routing problems, including Deutsch’s
famous difficult example (Ex8). The results are shown in Table 1. We have assumed T} = B; =
{1,2,...,L} for 1 <i < pand 1 < j < ¢, and no separation constraints. Example Ex1 is from [8],
examples Ex2 to Ex8 are the examples given in [16]. The “LB” items in the table refer to the minimum
channel densities achievable by moving the terminals {while preserving their relative orderings) if the
length of the channels are allowed to be arbitrarily extended. From Table 1 we can see that reductions
in the channel densities by as much as 25% were obtained.

We have also implemented the algorithm in [8] and compared the minimum lengths of the channels
when density lowerbounds were achieved. The algorithm in [8] differs from our algorithms in that they
assume the length of the channel is unbounded, whereas we assume the length of the channel is prefixed
and cannot be arbitrarily extended. Also their algorithm does not handle position and separation
constraints. The results in Table 2 show that our algorithms use substantially shorter channels to achieve
minimum densities. This implies that even if there is only relatively small room for the terminals to

move, our algorithms are still able to exploit this freedom and to reduce the channel density significantly.
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Ex. | #Nets | Len. | Oldd | Newd | LB | CPU(s)
Exl 15 20 n.a. 5 5 1.05

Ex2 21 35 12 9 7 7.72

Ex3 30 62 15 14 14 | 26.92
Ex4 47 61 17 16 16 40.97
Ex5 54 79 18 16 16 | 66.52
Ex6 57 118 17 15 15 | 169.37
Ex7 62 119 20 17 17 | 137.65
Ex8 72 175 19 18 18 | 656.78

Table 1: Experimental results

Channel length

Examples | Gopal etc. { Our algorithm
Exl 23 20
Ex2 52 45
Ex3 80 52
Ex4 89 57
Exb 108 68
» Exb 165 102
Ex7 143 89
Ex8 255 157

Table 2: Comparisons with the algorithm of Gopal etc.

& Conclusions

In this paper we study the channel pin assignment problem subject to position constraints, order con-
straints, and separation constraints. We show that the problem is NP-hard in general and present
polynomial time optimal algorithms for an important case where the relative orderings of the terminals
on the top and the bottom of the channel are completely fixed. We introduce the problem of channel
routing with movable modules and show that it is a special case of our problems and hence can be solved
optimally in polynomial time. We also discuss how our algorithms can be incorporated into standard-cell
and building-block layout systems. Experimental resﬂts indicate that substantial reduction in channel
density can be obtained by allowing movable terminals.

Several problems still remain open. For example, can our algorithm be generalized to handle the
case of multiple parallel channels as occurred in the standard-cell layout design? What are the other
special cases of the CPA problem which can be solved efficiently in polynomial time, especially when
some sets of terminals are permutable? In general, we feel that the channel pin assignment is a very
promising field of study, both from the theoretical point of view and from the practical point of view,

and many open problems are well worthy of further pursuing.
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