INTRA-TRANSACTION CONCURRENCY
CONTROL AND THE NT/PV MODEL*

Henry F. Korth and Gregory D. Speegle
Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712-1188

TR-90-26 August 1990

* Work partially supported by a grant from the IBM Corporation, and TARP grant 4355.

Intra-Transaction Concurrency Control and the NT/PV Model*

Henry F. Korth
Gregory D. Speegle

Department of Computer Sciences

University of Texas at Austin

Austin, TX 78712

Abstract

In nested transactions systems, it is possible for each level of a transaction to have its own correctness
criteria. This results in a complex, multilevel concurrency control problem. We propose an approach to
this problem called the intra-transaction concurrency control paradigm for handling multilevel concur-
rency control applications. This paradigm is based on defining a restricted scope for the concurrency
control protocols used at each level of nesting. As such, the process of deriving multilevel protocols is
simplified. To demonstrate this, two example protocols, one for the class conflict serializability (CSR)

and one for the class conflict predicate correct (CPC) [KS88] are presented.

1 Introduction

Typical database applications, such as banking and airline reservation systems, consist of short transactions
which access a small number of data items and execute in seconds. Such applications require executions to
be equivalent to an execution in which only one transaction executes at a time. This correctness criterion is
called serializability.

However, databases are now being used in applications such as computer-aided design (CAD), computer-
aided software engineering (CASE), office information systems and knowledge bases. These new applications
consist of long-duration transactions which can require weeks to execute. Correctness of such transactions
is based on the state of the database when the transaction terminates, and is often independent of the order
of execution. Thus the requirement of a serial execution as a basis for correctness is unnecessary for these

applications, and therefore serializability is an overly strict correctness criterion.

*Work partially supported by a grant from the IBM Corporation, and TARP grant 4355.

Submitted to the Seventh International Conference on Data Engineering, Kobe,
Japan, April 8-12, 1991.

Therefore, current long-duration transaction systems use informal correctness criteria and ultimately rely
on the users to manipulate the database into a correct state [DG87, HL82, KLMP84]. Not only do these
systems fail to have a mechanism for ensuring correctness, but they also must rely on the user’s ability
to understand concurrent activity as well as their actual project. Although these systems do allow the
performance needed for the new database applications, they do not provide sufficient correctness criteria.

The NT/PV model [KS88, KS90] is an approach which uses formal correctness criteria while providing
reasonable performance for long-duration transaction systems. It includes features required by long-duration
transaction systems, but which are unused in typical database applications. These features are nested
transactions, explicit predicates and multiple versions.

The combination of these features opens new questions for concurrency control. One of these questions
involves the use of different correctness criteria for different sets of transactions. In [KKB88] a case is made
for using different criteria in CAD databases. They propose using two-phase locking to resolve conflicts
between top-level design projects, while more relaxed protocols are used to allow designers to cooperate
within a project. If we generalize their proposal to allow each transaction to define its own correctness
criteria, then multilevel concurrency conirol is achieved.

A transaction system operating under multilevel concurrency control could conceivably have a different
type of transaction manager for each transaction. Due to the complexity of the code of such a system,
this would be impractical. However, it is realistic to limit a system to only a few protocols whose code is
shared by several transaction manager instances. Thus, a system may have one protocol controlling top-level
transactions, another handling cooperation among designers within a project, yet another to provide isolation
between designers within a project, and a fourth to provide complex operation atomicity. At different places
within the transaction, these protocols must cooperate to ensure correctness. There are two approaches to
such a system. The first is to build an ad-hoc protocol which can cooperate with exactly one other protocol,
such as a version of two-phase locking which can cooperate with a version of timestamps. The other approach
is to develop a paradigm for handling general cooperation between transaction managers.

We have taken the second approach in developing the intra-transaction concurrency control paradigm.
This paradigm assigns the resolution of each conflict to a unique transaction manager instance. This is
accomplished by restricting the scope of every transaction manager instance to the subtransactions of a
single transaction. Conflicts at lower levels in the transaction hierarchy are assumed to be resolved by
transaction manager instances associated with lower levels. We present a protocol, called the L-VC protocol
that exploits the intra-transaction concurrency control paradigm for the class CPC [KS88].

The rest of this paper is divided into four sections. Section 2 provides an overview of the NT /PV model.
Section 3 presents multilevel concurrency control and the intra-transaction concurrency control paradigm.
Section 4 presents the L-VC protocol for the class CPC. Finally, Section 5 concludes this paper with some

observations on intra-transaction concurrency control, the NT/PV model and long-duration transaction

systems.

2 The NT/PV Model

In this section, each of the parts of the NT/PV model is presented with informal descriptions. These
parts, nested transactions, explicit predicate and multiple versions, combine to capture the semantics of

long-duration transaction systems. For more details, see [KS8g].

2.1 Nested Transactions

Nested transactions are used in [Mos85] as a model for presenting protocols for distributed databases. They
are used to describe the interactions between designers in computer-aided design applications in [BKK85,
KKB88]. Nested transactions are an important extension of the standard database model, allowing greater
semantics to be captured, and greater concurrency to be achieved.

Nested transactions are based on the concept of the subiransaction. A one-level subtransaction is a
collection of read and write steps which the rest of the transaction views as a single atomic action. In
general, a subtransaction can contain not only read and write steps, but also other subtransactions, thus
changing a transaction from a sequence of steps into a hierarchy of subtransactions.

The two advantages of using nested transactions are greater performance and refined recovery. In the
standard database model, every transaction has a total order for all of its steps. With nested transactions,
each subtransaction can execute concurrently with each other and the parent transaction, thus increasing
performance. In the standard data model, any problem that requires an: abort causes the entire transaction

to be aborted. With nested transactions, only the subtransaction containing the problem must be aborted.

2.2 Explicit Predicates

All database concurrency control is based on the notion that it is possible to determine whether or not a
database is correct. It is also required that if a transaction executes independently on a consistent database, it
will terminate with the database in a state which also satisfies the database consistency constraint. Thus, the
correctness of serial schedules in the standard transaction model relies on the correctness of each transaction
program. This, in turn, requires that each transaction programmer understand the (often implicitly defined)
database consistency constraint.

Another alternative is to state explicitly, using predicate logic, what it means for a database to be correct.
Correctness is then based on the values of the database entities. The values can then be placed into the
formulas, and the correctness of the database can be determined.

In [KKB88), this explicit consistency constraint is put into conjunctive normal form. Thus, there exists a

set of conjuncts, all of which must be satisfied for the database to be correct. For a conjunct to be satisfied,

any one of a set of boolean formulas on data items must be true with respect to the current database state.
With such a database consistency constraint, a new type of correctness can be defined. If for all conjuncts,
a schedule restricted to the data items appearing in the conjunct is serializable, the schedule is predicatewise
serializable [KS88]. Note that the equivalent serial orders for each conjunct can be different. Note also that

every serializable schedule is predicatewise serializable.

2.3 Multiple Versions

In the standard database model, every data item in the database has exactly one value which may change
as updates are made. If instead of writing over the old value of a data item, a new version of the data item
is created containing the new value while saving the old value, it is possible to achieve greater concurrency
[Pap86, BHG87]. This happens because a transaction might need to read the old value, and if it has been
destroyed, corrective action must be taken. A system which keeps old data values for the data items uses
multiple versions.

The greater concurrency of multiple versions is not free. One of the mechanisms required by multiple
versions is some method to determine which of many versions a transaction should read. Typically, a version
manager tries to assign to transactions versions which satisfy the correctness criteria. There exist many

examples of version managers which can be used to ensure serializability [Pap86, BHG87].

2.4 Definitions

A transaction can be thought of as a mapping from database states to database states. The domain and
range of this mapping are characterized by a pair (I,0) where I and O are predicates on database states.
I is the input condition and O is the output condition for the transaction. Together, these predicates
form the specification of the transaction. A transaction satisfies its specification if for every database state
which satisfies the input condition, the transaction will leave the database in a state which satisfies its
output condition. A transaction specification will maintain database consistency if O—DB, where DB is the
database consistency constraint. In the standard database model it is assumed that I = O = DB.

In the NT/PV model, transactions can be nested. We represent this by associating with a transaction t a
pair (T, P) where T is a set of transactions or operations and P is a partial order on T'. A nested transaction
is a relation over the set of all database states. That is, for a given database state, the transaction will
leave the database in one of a set of database states, It is a relation instead of a function because two
unordered subtransaction could update the same data item. Thus, the result produced by the transaction
is determined by the run time execution order of the subtransactions. A nested transaction maintains
the database consistency constraint if every possible execution of the transaction leaves the database in a

consistent state.

For all transactions #; € T', t is the parent of ¢;. By our definition, any part of ¢ which cannot be divided
into subtransactions is a basic operation of the system. Basic operations are usually thought of as read and
write accesses to the database, but can include other accesses such as increment and decrement operations
[Kor83] or complex design update operations [KLMP84].

We denote a transaction ¢ by a four-tuple (T, P, I, 0), with T', P, I, and O as defined above. We denote
a read (resp. write) access by #; to an entity e by Ri(e) (resp. W;(e)). We use A;(e) when the distinction
between read and write access does not matter. We use t.T to denote the set of subtransactions of ¢, and
t.P to denote the partial order on T. Likewise, t.I and t.O are the precondition and postcondition of ¢
respectively.

It is now possible to define an execution of a transaction. Such an execution must include a relation
on the subtransactions which is consistent with P, the partial order. Although the semantics for including
a relationship between subtransactions remains undefined, it may be helpful to think of this relation as
representing the run-time dependencies between the subtransactions. Also needed in the execution is some
notion of the state of the database before a transaction begins to execute. This is required to check that

transactions fulfill their specifications.

Definition 1 An ezecution of a transaction t = (T, P,1,0) is a pair (R, X) where RC T x T, 15 a relation
on T such that (t;,t;) € P*—(t;,t;) € R*, where P* and R* are the transitive closure of P and R respectively,
and X is a mapping from T to a database state. If ty € T, then X(ty) is the input state of ty.

Note that the mapping X allows multiple versions to exist since for distinct transactions {; and tj, the
version assigned may be different.

For some applications, it is useful to be able to compare elements of transactions at levels below the
current transaction. This is accomplished by recursively taking the union of the subtransactions of all of the

transactions in a level. For this definition, we assume that a leaf in the hierarchy is its own subtransaction.

Definition 2 Let To = T. Then, ¥i,i > 0,7; = €7U xT.
T i1

We use R; to denote the execution relation of the elements in 7;. Note that T 1s the set of database
access steps, and therefore, Ry is the execution order of the database steps. We use the relation < to
indicate that one step executes before another. The < relation is used in order to indicate that two steps

are adjacent in the execution.

3 A Correctness Criterion for Nested Transactions

Nested transactions structure the operations of a transaction into a hierarchy, where significant units of work

are grouped into subtransactions. Such a structure may be of arbitrary depth, and thus requires concurrency

control protocols to manage multiple levels of transactions. Most previous work on nested transactions
[Mos85, KS88, BBG89, BR90] assume that a single concurrency control mechanism is in force at all levels of
the nesting. The CAD model of [KKB88] alludes to the possible need for different mechanisms at different
levels. In that paper, the top-level transactions represent separate projects which require isolation, while all
transactions below the top-level represent design activities which require collaboration. Thus, to implement
the model of [KKB88], the root transaction must impose a protocol on the top-level transactions which
ensures serializability, but each top-level transaction must impose a weaker protocol on the cooperating
transactions which comprise it. Such protocols are proposed in [KKB8g].

Within the NT/PV model it is possible to generalize the concurrency control requirements of [KKB88].
In the NT/PV model, each transaction can define a correct execution for its children. Since this flexibility
is not limited to top-level transactions, it is possible for every transaction within the NT/PV model to be

executing under a different correctness criteria. This situation is called multilevel concurrency control.

3.1 Multilevel Correctness

Under multilevel correctness, each transaction ¢ = (T, P, I, O) has restrictions placed on its execution by its
transaction manager. The set of all relations over subtransactions which satisfy these restrictions is denoted
t. TM. Formally, t. TM is a set of relations over ¢.T' x t.T" such that all elements in ¢.T'M satisfy a set of
constraints and a set of conditions. A constraint is a formula of the form A;(e) < A;(e)— (i, ;) € R, where
Ai(e) € t;.Too, Aj(e) € t;. T, ¢ # j, and < is the precedes operator. A condition is a restriction on the
structure of R. Possible conditions on R include acyclic, totally ordered, and empty. For example, the
condition for a conflict serializable (CSR) execution is that R is acyclic and the set of constraints on R is
{Wi(e) < Aj(e)—(ti, ;) € R, Ai(e) < W;(e)—(ti,t;) € R}. For simplicity, we will consider only transaction
managers which have the condition that R is acyclic.

An execution (R, X) of a transaction t = (T, P, I, 0) is one-level correct if it uses only one version of the
database and R € t.TM. An execution (R, X) of a transaction t = (T, P, I, O) is multilevel correct if T is
one-level correct and Vt; € t.T', ¢; is multilevel correct. Note that all transactions containing only database
access steps are defined to be one-level correct.

Multilevel correctness serves as a good basis for correctness in transaction systems requiring multilevel
concurrency control. However, there are some problems with developing protocols for multilevel correct
executions. First, since different transactions can be executing under different correctness criteria, deter-
mining which protocol should be followed for a particular step is non-trivial. For instance, assume that a
top-level transaction is executing under two-phase locking, but its subtransactions execute according to basic
timestamp order. If a step of a subtransaction conflicts with a sibling subtransaction and another top-level
transaction, is the protocol for two-phase locking or timestamps or both used to resolve the conflict? For an

execution to be multilevel correct, both protocols must be followed. Therefore, the schedules allowed under

multilevel concurrency control would be the intersection of all schedules allowed by all protocols involved
in resolving a particular conflict. Thus, instead of increasing concurrency, improperly designed multilevel
protocols can actually decrease concurrency. Secondly, the protocols must be able to execute in the presence
of other protocols. One way to do this is to develop an instance of each protocol to work with an instance
of every other protocol. For example, there would be an instance of two-phase locking which could be used
with timestamps, and an instance of timestamps which could be used with two-phase locking. This approach
requires each protocol to be more complicated than under single level concurrency control, and limits the
possible combinations of protocols and correctness criteria.

The solution to this problem is not to require multilevel correct executions but, rather, to consider
multilevel correct executions to be the basis for correct executions in transaction systems using multileve]
concurrency control, much like serial schedules are the basis for correctness in the standard database model.
Similarly to the standard database model, correct executions can now be defined as equivalent to a multilevel
correct execution. One useful equivalence for multilevel concurrency control effectively isolates transactions
from all transactions except its parent and its siblings. Since one-level correctness is based on the interleaving
of the siblings, one-level correctness can now be determined without concern over the correctness of other
transactions, or even the correctness of the siblings themselves, since that is determined by the protocols at
lower levels. This equivalence is exploited in the inira-fransaction concurrency control paradigm, which we

describe below.

3.2 Intra-Transaction Concurrency Control

The intra-transaction concurrency control paradigm is a technique for defining the interface between protocols
for different transactions. Under the intra-transaction concurrency control paradigm, each nested transaction
is assigned a version of the database which becomes local to the transaction. The value of a data item in
this local database is either the value of the data item in the local database of the parent, or a value written
by some sibling of the transaction. The subtransactions of the transaction then execute upon this local
database as if it were the database. These subtransactions can then execute in isolation from all of the
actions performed by any non-sibling transaction in the system. Of course, the parent is not isolated, and
therefore restrictions placed on the parent could influence the execution of the subtransactions.

However, as a result of this isolation, the protocols used under intra-transaction concurrency control do
not have to interact directly with the other protocols. Each protocol is in effect only for the local version
of the database assigned to its transaction. This simplifies the protocols and allows the combinations of
protocols to be determined by the application and not by what the database supports.

Additionally, since only the subtransactions can access the local database, the protocol can consider all
transactions to be three levels deep. The root of each transaction structure is the transaction associated

with the protocol. The second level is composed of the subtransactions the protocol regulates. The third

level is a subset of the database access steps which compose the subtransactions. This subset is the initial
read and final write of each data item by any subtransaction. A step A(e) is an initial read for a transaction
t; if A(e) € t;.Too and for all other steps A'(e) € ¢;.Teo, (A(e), A'(€)) € ti-Roo. A step W (e} is a final write
for a transaction t; if W(e) € ;.Too and for all other write steps W'(e) € t;.Too, (W'(e), W(e)) € ti-Reo-
Note that a blind write can be considered the initial “read” of a data item. All other steps will be regulated
by protocols associated with transactions at lower levels in the structure.

Clearly, the version management system under intra-transaction concurrency control is very important.
For an arbitrary read step, the version assigned to it is the current version of the data item in the local
database associated with the parent of the transaction. Of course, this version could have been inherited
from earlier ancestors of the transaction, but it becomes distinct from those versions. All write steps are
assigned to this version as well. Old versions of data items are immediately discarded, unless the local
protocol uses multiple versions.

Intra-transaction concurrency control is a relaxation of multilevel correctness. For example, assume
there exists a transaction ¢ with two subtransactions, ¢; and t5. Let the condition of £.TM be that R is
acyclic. Let the constraint of t.TM be (A;(e), Aj(e)) € Roo—(ti,t;) € R, where A;(e) (respectively A;(e))
is an access of data item e by some subtransaction of ¢; (respectively ;). Assume that ¢; contains two
subtransactions ¢4 and tg, and that t; contains two subtransactions t¢ and tp. For simplicity, assume that
t,.TM and 5. TM allow all executions. Let AZ: (e) be a step in subsubtransaction j of subtransaction 1.
Then Reo = R2(e)WiA(e)RS (e)WE (e)RE(e)WF (e) is allowed under intra-transaction concurrency control,
but does not satisfy the constraint.

This execution is allowed by intra-transaction concurrency control because the initial read (R{ (e)) and
final write (W{t(e)) of data item e by transaction t; both occur before the initial read (RS (e)) and final
write (W2 (e)) by transaction t; on data item e. However, (t1,¢3) € Rsince R{'(e) < WS (e) and (t2,t1) € R
since WE (e) precedes RP(e). Yet, this execution is acceptable if intra-transaction concurrency control is
used since the step RP(e) would be assigned the version written by Wi (e). Thus, this execution of ¢; and
15 is view equivalent to the constraint, in that ¢, does not read any value written by ts.

In the remainder of this paper we make the following minimum assumptions about transaction managers:
o The transaction manager enforces the constraint Wy (e) < Rg(e)—(ta,t5) € R
o The transaction manager enforces the constraint Ru(e) < Ws(e)—(ta,tp) € R

o The transaction manager enforces the condition R is acyclic.

Theorem 1 If all of the transaction managers are subject to the above conditions, and an ezecution (R, X)
of a transaction t = (T, P,1,0) is allowed under intra-transaction concurrency control, then the execution

is view equivalent to a multilevel correct execution of t.

3.3 An Example Protocol

One of the primary advantages of the intra-transaction concurrency control paradigm is the capability
for using standard database model protocols in a multiple level environment without modification. To
demonstrate this, the following protocol requires the root transaction to use two-phase locking while every
top-level transaction requires their subtransactions to execute according to basic timestamp order. The
following example execution is not allowed under either two-phase locking or timestamps, but it is in CSR
and it is allowed under intra-transaction concurrency control.

Let the transaction system be defined as T = ({to,t1,t2,%s},0, DB, DB), where ¢ is the imaginary initial
transaction which writes the initial database state and t; is the imaginary final transaction which reads
the final database state. Let t; = ({ta,tp},0,DB,DB), where t4 and tp are subtransactions which must
execute in timestamp order with T'S(ta) < TS(tp). Let t2 = ({tc,tp,te}, 0, DB, DB) with T'S(ic) <
TS(tp) < TS(tg). Let t4a = ({R(eo)},0, DB, DB) and let tp = ({R(es), R(eo)}, (R(eo), R(es))), DB, DB).
Let tc = ({W(e1), W(ez2), W(es)}, (W(e1), W(es)), (W(es), W(e2))), DB, DB). Let tp = ({W(er), Wiez)},
(W(e1), W(ez)), DB, DB). Let tg = ({W(e1)},0,DB,DB). Let the execution order of the database steps
be Rp(eo), We(e1), Wp(e1), Raleo), We(er), We(es), Rp(es), We(ez), Wp(e2).

The intra-transaction concurrency control paradigm for two-phase locking at the root and basic timestamp

order at the next level down allows this execution. The following three steps illustrate this point:

e We(ep): This step must be processed by both transaction managers since it is the initial access (and
therefore is considered to be the initial read) of data item e; by both transaction ¢» and subtransaction
tc. The intra-transaction version manager assigns the initial version of e; to this step. Transaction
t; is granted a write lock on the data item. The write step of subtransaction tc is allowed by the
timestamp protocol. Since this step is a final write of e; by subtransaction ¢, the intra-transaction

version manager updates that version. Note that the version assigned to I is not updated at this time.

o Rp(es): This step is also the initial read of e3 by both tp and ¢;. Therefore, it is assigned the value
assigned to t;. In this case, assuming that t; released the lock on e3 immediately after the write by
tc, that would be the value written by the step We(es). Note that if ¢5 has not released the lock on

e3, the step would be blocked. However, subtransaction ¢4 could continue to execute.

e Wp(e1): Since this step is neither the initial read or final write of e; for 15, the two-phase locking
protocol is ignored. The write is allowed because the timestamp protocol allows it. Note that if the
final write for to had already been performed, then t; could have unlocked this data item. However,
this write would still be allowed, since the effects would be contained within ¢, and thus the execution

would still be view equivalent to a correct execution.

Note that this execution would not be allowed under two-phase locking because tp would have to unlock

data item e; between the third and fifth step, but it would have to lock data item ez after the eighth step.

By the rules of two-phase locking, this is not allowed. Note also that this execution would not be allowed
under basic timestamps. In that protocol, transaction t¢ would be assigned a higher timestamp than tg.
Thus, when tp attempts to perform R(es), the transaction is aborted because the read timestamp of the

transaction is less than the write timestamp of the data item.

4 A Protocol for Conflict Predicate Correct Executions

The NT/PV model contains many features which are useful in increasing concurrency control. Multiple
versions, explicit predicates and nested transactions have all be shown to allow executions which are not
serializable in the strictest since, but which are equivalent to a serial schedule by a more general notion
of equivalence. Note that each of these features exploits a different aspect of a database system. Multiple
versions exploits the implementation of the database, while predicates exploit the semantics of the database
and nested transactions exploit the semantics of a transaction. Therefore, it should be possible to gain all
of the benefits of these features in one correctness criteria.

The correctness class conflict predicate correct [KS88] (CPC) exploits all of the features of the NT/PV
model while still retaining the conflict ordering properties of criteria like conflict serializability. CPC exploits
multiple versions in order to reduce conflicts from read-write, write-read and write-write, to only read-
write. CPC exploits explicit predicates in order to reduce the potential for cycles in the execution. This is
accomplished by requiring the database consistency constraint to be in conjunctive normal form. It is known
[KKB88] that if the restriction of the execution to the data items in each conjunct is serializable, then the
database consistency constraint is preserved, even if the execution is not serializable. Finally, CPC exploits
nested transactions by allowing multilevel correctness criteria. If an execution is a CPC execution, then the
restriction of the execution of the top-level transactions to the data items in each conjunct is a multiversion
conflict serializable execution. However, each of the lower-level transactions must only execute according to
the partial order of their parent.

The class conflict predicate correct is an excellent source for an example of multilevel concurrency control
because the criteria for top-level transactions is different from the criteria for the root transaction. The
root transaction needs a protocol to ensure the acyclicity of each multiversion conflict graph, one for every
conjunct. Each of the top-level transactions requires a protocol to ensure that their subtransaction hierarchies
execute according to the defined partial orders. Thus, two protocols are needed. The first one for the root
transaction and the other for all lower-level transactions. When these protocols are combined, it must be the
case that only conflict predicate correct executions are allowed. The intra-transaction concurrency control
paradigm defines the cooperation between the protocols. In this section, we present a protocol that allows a
large subset of the executions which are view equivalent to CPC executions. It is called the L-VC protocol,

which means locking for versions and conjuncts.

10

held

R w
L= =
requested R
= <

Figure 1: Lock Compatibility Matrix for Root Transaction

4.1 Protocol for the Root Transaction

The protocol for the root transaction must efficiently manage versions and data items in conjuncts. In
order to do this, constrained sharing [AEA90] is exploited. Constrained sharing is a relaxation of two-phase
locking which allows traditionally conflicting lock modes to be held on the same data item. For example,
two transactions can hold a write lock on the same data item. This enhancement is achieved by requiring
that transactions holding conflicting locks on data items do so in an ordered shared relationship. This
relationship requires that the transactions access the data in the same order as which they acquired the
locks. Additionally, a transaction may unlock a data item only if for all data items the transaction holds
locks on, no current lock holder held the lock when the transaction first acquired the lock. By using these
two restrictions, [AEA90] presents a locking protocol which allows all conflict serializable schedules (the class
CSR).

The protocol for the root transaction exploits constrained sharing for a different reason. The subtrans-
actions of the root transaction are supposed to execute such that the restriction of the execution to the data
items in each conjunct is a multiversion conflict serializable (MVCSR) execution (see e.g. [Pap86, BHG8T7]).
Under MVCSR, if a read step precedes a write step, then they conflict. However, if the write step precedes
the read step, then the read operation can be considered to occur before or after the write step. Unfortu-
nately, under two-phase locking, it is impossible to determine when a step will occur after a lock has been
received. Thus, all read steps must conflict with all write steps. Constrained sharing resolves this problem
by allowing read locks and write locks to be ordered shared. Also, for the L-VC protocol, a W lock on a
data item only allows a transaction to write a data item, but not to read it. In order for a transaction to
both read and write a data item, it must hold both locks. A transaction must release all locks held on a data
item at the same time. Figure 1 shows the lock compatibility matrix for the root transaction. Note that the
compatibility matrix is three-valued, unlike standard lock compatibility matrices which are two-valued (true
and false). The values allowed are shared, denoted <>, ordered shared, denoted =, and conflicting, denoted
&

The L-VC protocol exploits the fact a transaction must be two-phase only with respect to the data items
in a given conjunct. This is exactly the same requirement as in predicatewise two-phase locking presented in
[KKB88]. Thus a transaction can unlock a data item in one conjunct, and then later lock a data item in a
different conjunct. This is allowed since the database consistency constraint is preserved if all conjuncts are

preserved, and if no data items are shared by the conjuncts, the preservation of one conjunct is independent

11

Begin Transaction
Initialize transaction parameters T and P

Create Subtransaction{name,before,after}
insert (before, name) into partial order ¢;.P.
insert (name,after) into partial order ¢;.P.

Lock{data-item, mode}
Consult lock compatibility matrix (Figure 1)
If result is <> then allow lock
If result is 4 then block ¢;
If result is = then insert ¢; into an ordered list of lock holders on data-item

Read{data-item}
Read lock must be held
If ordered shared mode then wait until previous lock holders have executed
Assign version of data-item according to version management protocol

Write{data-item,value}
Write lock must be held
If ordered shared mode then wait until previous lock holders have executed
Create version of data-item according to version management protocol

Unlock{data-item}
If ordered shared mode then wait until previous lock holders have released all locks
Unblock transactions waiting on released lock on first-in/first-out basis

Figure 2: Operations for subtransaction #; of the Root Transaction

of the preservation of another.
Note that here we present the protocol for concurrency control without the version manager. This follows
the concept presented in [AS89)] of treating the version manager and the concurrency control mechanisms as

distinct protocols. The version assignment protocol is presented separately in Section 4.5

4.2 Lower-Level Transaction Protocol

The protocol for each transaction below the root is exactly the same. Each protocol ensures that the
subtransactions execute according to the partial order. Note that if only one version is allowed, then all
descendents of a subtransaction must execute before any descendent of a successor subtransaction executes.
This protocol relaxes this constraint in two ways. First, intra-transaction concurrency control allows all
steps other than the initial read and final write of the data item to be ignored in determining the execution
order of the subtransactions. Second, an execution is correct even if interleaving occurs as long as each read
step reads from the correct write step. Note that both of these relaxations together allow an execution to
be correct if it is view equivalent to an execution which is consistent with the partial order.

If a subtransaction reads a data item, it is assigned a version. The intra-transaction concurrency control

12

Create Subtransaction {name,before,after}
insert (before,name) into partial order ¢;.P
insert (name,after) into partial order ¢;.P

Write{ data-item,value}
Create version of data-item with author t; and value value

Read{data-item}
Select all predecessors of ¢; such that the predecessor wrote a version of data-item
If no such predecessor then assign initial version
If predecessors exist then begin
save the set of predecessors,
perform topological sort of partial order
assign version for which author is last in the topological sort
end

Figure 3: Operations for subtransaction ¢; of a Top-Level Transaction

version manager assigns the set of versions created by the siblings of this transaction plus the version
assigned to its parent. The protocol version manager then selects the versions written by the predecessors
of the subtransaction, as determined by the partial-order of the parent of the subtransaction. The set of all
predecessors which wrote a version is saved for later use. If no such version exists, then the protocol version
manager assigns to the read step the version assigned to the parent transaction. If a subtransaction writes a
data item, it creates a new version with the name of the subtransaction included with the version. Figure 3
provides pseudo-code for these operations.

Once a subtransaction attempts to commit, the validation phase of the protocol begins. A subtransaction

is validated if the following three criteria are satisfied:
1. The subtransaction has terminated
2. All of the predecessors are valid
3. No predecessor wrote a data item after the subtransaction read the data item

The first criteria will be fulfilled by all subtransactions being validated, since the subtransaction will not
be validated until it attempts to commit. The second criteria is required because if a predecessor has not
been validated, then it could write a data item after the validation of the subtransaction has completed and
invalidate the subtransaction. The third criteria is checked by selecting all predecessors which have written
a value for a data item read by the subtransaction. If this set contains predecessors not in the set saved at
the time of the read step, then the subtransaction cannot be validated. Note that this must be checked for

every data item read by the transaction.

13

4.3 Proof of Protocol Correctness

It now remains to show that all executions allowed by the L-VC protocol are view equivalent to CPC
executions. In order to do this, two things must be shown. First, that for every conjunct, the multiple
version conflict graph over top-level transactions is acyclic, and second that every transaction executes
according to its partial order. The first requirement is maintained by the root level transaction manager,

while the second property is maintained by the transaction managers for all lower-level transactions.
Theorem 2 If an ezecution is allowed by the L- VC protocol, it is view equivalent to a CPC ezecution.

Proof:

We must show that if an execution is allowed by the L-VC protocol, then the execution is view equivalent
to an execution which is consistent with the partial orders of the subtransactions and which has for every
conjunct, an acyclic multiple version conflict graph.

First, assume that there exists some conjunct such that the restriction of the execution to the data items
in the conjunct produces a cyclic multiple version conflict graph. WLOG, assume this cycle is of the form,
to,t1,. . tn1,t0. Note that we will use i +1 for i+ 1 mod n. For every pair of transactions #;,%;11, there
exists a data item e; such that Ri(e;) € t;.Too and Wiyi(es) € tiy1.Too, and (Ri(e:), Wit1(ei)) € Roo. Note
that the set of all such e; must appear in the same conjunct. By intra-transaction concurrency control,
each such read must be the first read on the data item by any database access step in the hierarchy of the
transaction. Likewise, the write step must be the last such write step. Therefore, by the lock compatibility
matrix for the root level transaction manager, #; must lock e; before ¢;41 locks it. Therefore, by the lock
release rule of [AEA90], ¢; must unlock e; before ;41 unlocks e;1. Therefore, by the form of the cycle,
to must unlock eg before ,_1 unlocks e,_1, which must happen before to unlocks eg. Thus, we have a
contradiction.

Therefore, all executions allowed by this protocol are view equivalent to an execution for which each
conjunct has an acyclic multiple version conflict graph.

Now assume that the execution contains a transaction, T, such that T'is composed of two subtransactions,
t; and t;, such that (ti,tj) € T.P but some step «; € t; T, executes before some step o € t;.T0o. If & does
not access the data item accessed by «;, then this execution is correct because the two transactions do not
depend on each other. If aj reads the data item and «; reads the data item, then the execution is correct
because each transaction will execute exactly the same whether or not the other is executing. If o; writes
the data item and a; reads it, then the execution is also correct because the version manager of the top-level
transaction protocol only assigns versions to t; which are written by predecessors of t;. Thus, the execution
of t; and t; are still correct.

The only remaining case is when o; reads a data item and «o; writes it. The ordering of a; and a; is

relevant only if each step is either the first read on the data item by any database access step in the hierarchy

14

of the transaction or the last write step in the hierarchy. However, in this case, t; will be aborted in the
validation phase of t;. This occurs because by intra-transaction concurrency control, a; will be writing a
version which is visible to the protocol controlling ¢;. Thus ¢; will fail test three of the validation criteria.
Thus this execution cannot occur. Thus, all executions of ¢; and t; will be view equivalent to the partial
order of T

Therefore, every execution allowed under the L-VC protocol is view equivalent to a CPC execution. O

Note that if intra-transaction concurrency control is used for the lower-level transactions, then all execu-
tions allowed for them are not only view equivalent to multilevel correct executions, but they are multilevel
correct executions. This follows since the partial order is maintained if for each data item, all write steps by
a predecessor precede all read steps by a successor. By intra-transaction concurrency control, this holds since
the final write (and therefore all other writes) of a predecessor must precede the initial read (and therefore
all other reads) of the successor. However, view equivalence is still needed when the top-level transactions

are included in the execution.

4.4 Analysis of the L-VC Protocol

Since the L-VC protocol uses the intra-transaction concurrency control paradigm, the set of executions it
allows is incomparable to the set of CPC executions. Recall that an execution is in CPC if for every conjunct,
the multiversion conflict graph of the top-level transactions is acyclic. Since these top-level transactions may
be nested transactions, it is possible for operations to act upon values of data items which are internal with
respect to the top-level transaction. Under intra-transaction concurrency control, some of these executions
are allowed since they are view equivalent to a CPC execution, but the execution itself can violate the
restrictions of CPC.

For example, recall the earlier example of two transactions, ¢; and ¢z, where ?; contains two subtransac-
tions t4 and tp, and t, contains two subtransactions t¢ and tp. Assume this time that the transactions are
top-level transactions executing under CPC. The following execution R, is allowed under intra-transaction
concurrency control, but is not a CPC-execution. Again, let Af-' (e) be a step in subtransaction j of trans-
action 7. Let Roo = RA(e)Wi(e)RS (e)WE (e)RP (e)WP (e). Since (Ri(e), Wy (e)) € Reo, then (t1,12) € R
for the root transaction. Likewise, since (RP(e), WP (e)) € R then (t2,t1) € R for the root transaction.
Therefore R for the root transaction contains a cycle under the constraints of CPC, and the execution is not
a CPC execution. However, note that the execution is allowed under the L-VC protocol since only the steps
Ro, = RA(e)W(e)RS (e)WP (e) are considered. Clearly, this execution generates an acyclic graph under
CPC.

Likewise, there exist schedules which are in CPC, but which are not allowed by the protocol. For example,
consider an example where the only transactions in the system are two flat transactions, {1 and ¢2, where

both transactions read one data item and write a second data item. Assuming that both data items, e and

15

¢’, are in the same conjunct, then the following execution is in CPC, but is not allowed by the protocol.

Let Reo = Wi(e)Rz(e)Wa(e')R1(e). By the rules for constrained sharing in [AEA90], neither ¢; nor 2 can
release their locks, so this execution cannot terminate. However, by the definition of CPC [KS88], since the
execution relation R is empty, it is therefore acyclic, and thus this execution is in CPC.

Note that this example schedule is allowed by a multiversion timestamp algorithm. Thus, it would seem
reasonable to replace the protocol for top-level transactions with a multiversion timestamp protocol [Ree83].
However, the following execution is allowed by the L-VC protocol presented here and is not allowed by
the multiversion timestamp protocol. Again assuming two flat transactions, 11,1 are the only top-level
transactions in the system. Let Ro, = Ri(e)Ra(e)Wi(e). Since t; executes first, it is assigned the lower
timestamp. Therefore, when Wi(e) is performed, the transaction is aborted since Rs(e) should have read

the version created by this step instead of the original version.

4.5 Version Management for the L-VC Protocol

Theorem 2 states that the L-VC protocol allows only executions which are view equivalent to executions
with acyclic multiversion conflict graphs. The next step in proving correctness for multiversion protocols is
to show that all executions allowed by the protocol are equivalent to a one-version serial execution of the
transactions. However, in order to do this, the version control protocol must be defined.

Many version control protocols can be used with the L-VC protocol, such as multiversion timestamping
[Ree83]. Below, a new version control protocol, called the write-order version control protocol is presented.
This protocol assings versions such that the order imposed on the execution by the L-VC protocol is main-
tained by the version assignment function. In order to do this, write steps by transactions must be ordered
consistently with the other accesses.

Before the write-order protocol can be presented, some additional definitions about executions are needed.
A data item is marked if the last access to the data item is a read step. At the beginning of the execution,
all data items are not marked. The version of data item e written by transaction ¢ is denoted Vi(e). Vile)
is a fresh version at a given point during an execution if for all other write steps on e, denoted W'(e), and
all read steps on e, denoted R(e), Wi(e) < R(e)—W'(e) < R(e). The set of all fresh versions relative to a
given version is defined as the version set of Vi(e), and is denoted V2. Formally, V} = {Vi:(e)|VR(e), R(e) <
Wy (e) « R(e) < Wi(e)}. A version Vi(e) is the freshest version if Vy(e) is a fresh version and for every
version Vy/(e) in the version set for Vi(e), if ¢’ and t lock a data item with a result of ordered shared, then
¢ must access the data item after ¢/, and if t and t’ are unrelated by the L-VC protocol, then t locked e for
write after t' locked e for write.

Intuitively, a version set corresponds to the set of versions which are written between any two read steps
on a data item. This is important since the L-VC protocol ensures that if a write step by transaction {

precedes a read step by transaction ' on a data item, then for all data items which ¢ writes (respectively,

16

reads) and ¢/ reads (writes), the write (read) by ¢ will precede the read (write) by ¢'. The same holds true
if ¢ reads a data item before t/ writes it. Therefore, between any two read steps will exist a set of versions
which should be assigned to the second read step. Fresh versions are the versions which can be assigned to
a read step, and the freshest version is the version which will be assigned.

The write-order protocol has three rules. One concerns the assigning of versions to read steps. The
second rule creates new versions for write steps, and the third rule regulates when transactions can unlock

data items.

o For a read step on data item e performed by transaction 1

— mark e

— assign freshest version of e to Ry(e)
o For a write step on data item e performed by transaction ¢

— if e is marked, then mark all fresh versions as stale
— create new version of e with author ¢

~ unmark e
o For an unlock of a data item e by transaction ¢

— If there exists a data item e’ such that V;(e) is the freshest version of €', or if V;(e’) is now stale
but it was the freshest version in its version set, then delay the unlock until all authors of versions

in the version set of V;(e’) have unlocked e’

— Else, allow the unlock step

Thus, the write-order version control protocol assigns all read steps to the freshest version of a data item.
The freshest version corresponds to the version which would be created after all other versions according to
the order of the transactions established by the L-VC protocol. The unlock rule is used to enforce this order,

and is the same as the unlock rule for constrained sharing [AEA90].

Theorem 3 If an execution (R,X) of a transaction t = (T, P,1,0) is allowed under the L-VC protocol
using the write-order version control protocol, then R is view equivalent to a one-version one-level serial

ececution of the top-level transactions.

Proof:
For brevity, we will use R to denote the execution (R, X). By the definition of intra-transaction con-
currency control and Theorem 2, if all initial read steps return the same values in R as in a one-level serial

execution of the top-level transactions, then all non-initial read steps return the same values. Therefore, it

17

remains to show that all initial read steps return the same values in R as in a serial execution of the top-level
transactions.

Consider the following graphs. The mvcg of R is from theorem 2. A write-read graph contains one node
for each transaction and an arc exists from transaction ¢; to t; if there exists some data item e such that %;
wrote e before t; read it. By arguments identical to those used in the proof of theorem 2 for the mveg, the
wrg of R is acyclic. Likewise construct a freshest version graph (fvg) by having one node for each transaction
and an arc from t; to t; if there exists some data item e such that Vi.(e) and V;,(e) are in the same version
set and V4 is the freshest version in the version set. Let the order graph have one node for each transaction
and contain the union of edge sets of the mvcg, wrg and fvg.

We show that a serial execution S of transaction t exists such that the order graph for S is the same as
for R.

Part 1:

Assume there exists a cycle in the order graph. WLOG, let it be of the form tg,%1,...,tn,to. We will use
the notation i + 1 for i + 1 mod n. An edge appears in the order graph only if at least one of the following
is true for R: (Ri(e), Wiy1(e)) € R* (arc is from the mveg); (Wi(e), Rig1(e)) € R* (arc is from the wrg);
Vi.(e) and V;,,, (e) are in the same version set and V3, ,1(e) is the freshest version in the set. For the first
two cases, by the lock release rule of constrained sharing, it must be the case that #; must unlock e; before
t;+1 unlocks any data item. For the last case, by the unlock rule of the write-order protocol, it must be the
case that ¢; must unlock e; before ;11 unlocks any data item. Therefore, by arguments identical to those in
theorem 2, this requires g to unlock eg before tg unlocks eg. This is a contradiction. Therefore, the order
graph is acyclic.

Thus, the top-level transactions can be ordered according to the order graph. If two transactions are
unrelated in the order graph, then they can be placed arbitrarily, with respect to each other, in the serial
execution. Therefore, all serial executions so generated obey the properties required of the serial execution
S.

Part 2:

Assume that there exists some initial read step of transaction ¢; on data item e, denoted R;(e), which
returns a different value in S and R. Therefore, there exists some write step (possibly written by the
imaginary transaction which writes the initial values of all data items) Wy (e) which writes the value returned
by Ri(e) in R, but another write W;(e) which writes the value returned by R;(e) in S. Therefore, either
Ri(e) < Wi (e) or Wi(e) < Wj(e) < Ri(e) in 5.

If Ri(e) < Wi(e), then there exists an arc from ¢; to t; in the mvcg for S. By the construction of S, such
an arc must exist in R. Since Ri(e) read from Wi (e) in R, there is an arc from #;(e) to ti(e) in the wrg of
R. By arguments identical to those presented in part 1, the wrg and the mvcg of R are consistent. This is

a contradiction. Therefore, R;(e) cannot precede Wi(e).

18

Therefore, Wi(e) < Wj(e) < Ri(e) in S. There are four possible cases which allow this construction in
S. Either there is a path from ¢ to ¢; in one of the three graphs which combine to make the order graph,
or tg and ¢; are arbitrarily ordered this way.

Case 1: t; and t; are arbitrarily ordered. Since both #; and t; both wrote data item e, either the write
steps are in different version sets or they both wrote versions which were not the freshest in the set. Since
R;(e) is assigned the version written by tx, Wi (e) write the freshest version. Therefore, the write steps must
be in distinct version sets. By the definition of a version set, there exists some read step which precedes
one of the writes but not the other. Let this read step be Rn(e). Thus, in R the execution is of the form
Wi(e) < Rm(e) < Wj(e) or Wj(e) < Rm(e) < Wi(e). However, in either case, the order graph would relate
the write steps. Therefore, the transactions must be ordered by the order graph.

Case 2: There exists an arc from %3 to ¢; in the mvcg for S. Therefore, ¢y < ¢; in the mvcg for R.
Therefore, there exists a read step in t; and a write step in ¢;, both on data item e’ such that Ri(e") < W;(e').
By the L-VC protocol, ¢; must unlock e’ before ¢; unlocks any data item. If Wy(e) and W;(e) are both in
the same version set, since Wx(e) is the freshest version in the set, t; cannot unlock any data item until
t; unlocks e. Therefore, neither transaction can unlock any data items, and one must be aborted. If the
versions are in different version sets, then there exists a read step Rm(e) such that Wi(e) < Ru(e) < Wj(e)
or Wj(e) < Rm(e) < Wi(e) in R. Clearly, Wj(e) < Rm(e) < Wi(e) yields a cycle in the order graph
and therefore cannot occur. Therefore, Wi(e) < Rm(e) < Wj(e) in R. By the write-order version control
protocol, R;(e) must also precede W;(e), or Ri(e) would not be assigned Wy(e) (i.e.., Wi(e) would not be
the freshest version). Therefore, ¢; would precede t; in the wrg of R, the wrg of S, the order graph and S.
Therefore, R;(e) could not read from Wj(e) in S, a contradiction.

Case 3: There exists an arc from ¢; to ¢; in the wrg for S. This proof is isomorphic to case 2, making
the appropriate substitution of Wi(e') < R;(e’) for Ry(e') < W;(€').

Case 4: There exists an arc from t; to ¢; in the fvg for S. Therefore, there exists some data item e’ such
that ¢; and t; both had versions in the same version set and ¢; wrote the freshest version. Clearly, the fvg
would contain a cycle if Wi(e) and W;(e) were both also in the same version set, since Wy(e) is the freshest
version in that set. By arguments similar to those presented in case 1, Wi(e) and W;(e) could also not be
in distinct version sets.

Therefore, R;(e) cannot read the version written by W;(e). Therefore R;(e) cannot return a value other
than that written by Wi(e). This is a contradiction.

Therefore, all initial read steps return the same values in R and S. Therefore, all read steps return the
same values in R and S. Therefore, all executions allowed by the L-VC protocol using the write-order version

control protocol are view equivalent to a one-version serial execution of the top-level transactions. O

19

5 Conclusion

The concept of a nested transaction is valuable in modeling long-duration transactions. It is also clear that
concurrency control techniques should be developed which exploit the different correctness criteria possessed
by different transactions. However, in order to do this, a formal notion of multilevel correctness is needed.

We provide this formal notion by the defining transaction managers which are associated with each
transaction. Each transaction manager is a set of constraints on the steps of each subtransaction and a
condition on the execution order of the subtransactions themselves. Typically, such transaction managers
are implemented as protocols. The problem with multilevel concurrency control is the interaction between
these transaction managers. To solve this problem, we propose the intra-transaction concurrency control
paradigm.

Under intra-transaction concurrency control, a transaction manager is only responsible for the initial reads
and the final writes performed by the subtransactions which comprise the transaction associated with the
transaction manager. It is assumed that all other operations are internal to the lower-level subtransactions,
and therefore have other transaction managers to ensure their correctness. The intra-transaction concurrency
control paradigm is used to derive a protocol for the class conflict predicate correct (CPC).

Although the constraints and conditions cover the standard conflict classes, there are many classes which
are not covered. These classes, such as view-serializability-based classes and predicate-based classes [KS88],
can also benefit from intra-transaction concurrency control. As for multilevel correctness criteria, intra-
transaction concurrency control represents only one possible paradigm for exploiting the rich concurrency
possible when multiple notions of correctness are combined in a single transaction.

In advanced database applications, the criteria for correctness for each transaction is unique. Thus, with
complex interactions being performed by long-duration systems, acceptable performance and correctness
cannot be obtained without some notion of multilevel concurrency. However, multilevel concurrency control
is not easy to implement. Therefore, intra-transaction concurrency control is needed as a mechanism to
develop protocols acceptable for these applications. The concept of intra-transaction correct establishes a
minimum level which can be used to define criteria acceptable for these applications.

We have not considered the relationship between our protocols for concurrency and the issue of failure
recovery in this paper. Clearly, the standard undo/redo approach is not sufficient. Rather, we need to

employ a semantically richer technique such as the compensating transaction model of [KL590].

References

[AEA90] D. Agrawal and A. El Abbadi. Locks with constrained sharing. In 9th ACM Symposium on
Principles of Database Systems, 1990.

20

[AS89]

[BBGS9)]

[BHGS7)

[BKK85]

[BRYO]

[DG87]

[HL82]

[KKB8S]

[KLMP84]

[KLS90]

[Kor83]

[KS88]

(KS90]

[Mos85]

D. Agrawal and S. Sengupta. Modular synchronization in multiversion databases: Version control

and concurrency control. In SIGMOD International Conference on Management of Data, 1989.

C. Beeri, P.A. Bernstein, and N. Goodman. A model for concurrency in nested transaction

systems. Journal of the ACM, 1989.

P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database

Systems. Addison-Wesley, 1987.

F. Bancilhon, W. Kim, and H. Korth. A model of CAD transactions. In Proceedings of the 11th

International Conference on Very Large Databases, 1985.

B.R. Badrinath and K. Ramamritham. Performance evaluation of semantics-based multilevel
concurrency control protocols. In SIGMOD International Conference on Management of Data,

1990.

H.C. Du and S. Ghanta. A framework for efficient IC/VLSI CAD databases. In Proceedings of
the 13th International Conference on Very Large Databases, 1987.

R. Haskin and R. Lorie. On extending the functions of a relational database system. In SIGMOD

International Conference on Management of Data, 1982.

H. Korth, W. Kim, and F. Bancilhon. On long-duration CAD transactions. Information Sciences,
October 1988.

W. Kim, R. Lorie, D. McNabb, and W. Plouffe. A transaction mechanism for engineering design
databases. In Proceedings of the 10th International Conference on Very Large Databases, 1984.

H. Korth, E. Levy, and A. Silberschatz. Formal approach to recovery by compensating transac-
tions. In Proceedings of the 16th International Conference on Very Large Databases, 1990. to

appear.

H. Korth. Locking primitives in a database system. Journal of the ACM, 30(1):55-79, January
1983.

H. Korth and G. Speegle. Formal model of correctness without serializability. In SIGMOD

International Conference on Management of Data, 1988.

H. Korth and G. Speegle. Long duration transactions in software design projects. In 6th Inter-

national Conference on Data Engineering, 1990.

J. E. B. Moss. Nested Transactions - An Approach to Reliable Distributed Computing. The MIT
Press, 1985.

21

[Pap86] C. Papadimitriou. The Theory of Database Concurrency Control. Computer Science Press, 1986.

[Ree83] D. Reed. Implementing atomic actions on decentralized data. ACM Transactions on Compuler

Systems, 1(1):3-23, February 1983.

Appendix A: Multilevel Correctness of Executions under Intra-

Transaction Concurrency Control

Theorem 1: If all transaction managers enforce the constraints We(e) < Rg(e)—(ta,tp) € R, and Ra(e) <
Ws(e)—(ta,tg) € R, and the condition that R is acyclic, and an ezecution (R,X) of a transaction t =
(T, P,1,0) is allowed under inira-iransaction concurrency control then it is view equivalent to a multilevel
correct execution of 1.

Proof:

The proof proceeds by induction on the number of levels in the nested transaction hierarchy. The base
case is where the transaction consists of database access steps only. By the definition of one-level correct,
all executions of such a transaction are one-level correct, and therefore are multilevel correct.

The inductive hypothesis is that for all transactions of k levels or fewer, every execution allowed under
intra-transaction concurrency control is view equivalent to some multilevel correct execution of the transac-
tion. It must be shown that for all transactions of k + 1 levels, the theorem holds.

Let t = (T, P, I, O) be a transaction in the NT/PV model with at least k-+1 levels such that the execution
(R, X) of t is correct under intra-transaction concurrency control. We must show that the execution is view
equivalent to some multilevel correct execution of ¢. Therefore, we must show that the execution is view
equivalent to a one-level correct execution of ¢, consisting of a multilevel correct execution for each of the
subtransactions of . The inductive hypothesis proves that the restriction of the execution to each top-level
subtransaction is view equivalent to a multilevel correct execution of the subtransaction, since they can have
no more than k levels each.

Therefore it remains to show that for some execution R’ € t.TM, every read step in Rl returns the
value returned by the read step in Ro. Let R!(e) denote the initial read of data item e by transaction ;
and WF (e) denote the final write of data item e by transaction t;. Below, an algorithm is given to construct

the required execution (R', X') of t. The correctness of the algorithm is proved subsequently.

1. Order all initial reads and final writes of all subtransactions of ¢ such that the value returned by an
initial read step on data item e is the value written by the last write step on data item e which precedes
it.

9. For all subtransactions t; € ¢.T', insert non-initial read steps into the execution as close to the beginning

of the execution as possible, such that

22

o The order of the steps in the equivalent multilevel correct execution of subtransaction t;

o If there exists an ordered pair (¢;,t;) € R and there exists a constraint of the form R, <
Ag—(ta,ts) € R and there exists a step A;j(e) already in R, then the non-initial read must
follow the step A;(e). Note that the step A;(e) may be either a read or a write step.

o If the insertion of the non-initial read step, R;(e) creates a cycle in R', then, while preserving

their relative order to each other, move the following set S of steps to immediately after R;(e),

— If A;(e) follows R}(e) and precedes the inserted non-initial read step R;(e) and there exists
the constraint Ay < Rg—(ts,t3) € R and A;(e) is the same type of database access as Aq
and (t;,1;) is in the cycle, then A;(e) isin S.

— If Apm(¢’) is between some element of S and R;(e) and there exists some element A, (e") of S

such that (t,,tm) € R, then include Ap(e').

3. For all subtransactions ¢; € t.T", insert non-final write steps into the execution as close to the end of

the execution as possible, such that

o The order of the steps in the equivalent multilevel correct execution of subtransaction t;

o If there exists an ordered pair ({;,t;) € R and there exists a constraint of the form A, <
Ws—(ta,tp) € R and there exists a step A;(e) already in R._, then the non-final write must
precede the step. Note again that the step A;(e) may be either a read or a write step.

o If the insertion of the non-final write step, W;(e) creates a cycle in R', then, while preserving their

relative order to each other, move the following set S of steps to immediately before Wi (e),

— If Aj(e) precedes W (e) and follows the inserted non-final write step Wi(e) and there exists
the constraint Wy < Ag—(ta,t3) € R and Aj(e) is the sa.?ne type of database access as Ag
and (%;,;) is in the cycle, then A;(e) isin S.

— If An(e€’) is between some element of S and Wj(e) and there exists some element A, (") of S

such that (tm,t,) € R, then include Ap,(e').

It now must be shown that the execution (R’, X') exists (that is, the construction specified by the

algorithm is possible), that it is in ¢.7M and that it is view equivalent to (R, X). The first two properties

are shown in Part 1; view equivalence is proved in Part 2.

Part 1: Proof that the execution (R', X') exists and R’ is acyclic.

The proof of part 1 proceeds by induction on the number of non-initial read and final write steps in the

execution.

If there are no non-initial read steps or final write steps, then the execution (R, X’) consists of only

initial reads and final writes. Such an execution must exist since, in intra-transaction concurrency control,

23

the initial reads and final writes are ordered according to t.TM. Likewise, the execution is acyclic by the
restrictions on the condition of t.T'M.

The inductive hypothesis is that for an execution (R, X) with « non-initial reads and non-final writes,
there exists an execution (R’, X') constructed as above, and R’ is acyclic.

Assume that (R, X) has k+1 non-initial reads and non-final writes. Assume that the £+ 1st such step of
the execution is a non-initial read step and it cannot be inserted in the execution (the case for the non-final
writes is similar). Let t; denote the transaction for this step. Therefore, there must exist a step A;(e’)
which must execute after R;(e) by the transaction order of ¢;, but there exists another step A;(e) such that
Aj(e) follows A;(e’) and there exists an ordered pair ({;,#;) € R and there exists a constraint of the form
Ay < Wg—(ta,tg) € R. In other words, either the conflict semantics of the execution or the transaction
order must be violated.

By the inductive hypothesis, the definition of a constraint and the existence of (¢;,t;) € R, it must be the
case that the initial read of e by transaction ¢; must also follow A;(e). Therefore, R}(e) must follow A4;(e’).
However, since Ri(e) must precede A;(e’), then it must precede R(e). By the definition of initial read, this
is not possible. Therefore non-initial reads can be inserted into the execution.

Now assume that the insertion of the k + 1st non-initial read or non-final write of the execution causes
a cycle in (R', X'). As before, assume the step is a non-initial read step of transaction t;. By the inductive
hypothesis, such a cycle must include ¢;. Consider the case where all steps A; (e) which satisfy constraints
which cause a cycle in R’ either precede R} (e) or follow Ri(e). Therefore, all pairs of transactions added
to R’ by the insertion of Ri(e) to R already exist in R because of the existence of RI(e). By the inductive
hypothesis, no such cycles can exist.

Now consider the case where R., is RI(e)...Aj(e)... Ri(e). By the construction of (&', X'), if a cycle
exists, a set of the data items which follow R (e) but precede R;(e) will be moved to follow R;(e). Note that
the order of these steps will be preserved. Denote the sequence of steps moved as M. Denote those steps not
moved as M. After the move, R._ is R(e)... Ri(e)M. Assume this move creates a cycle. Thus, moving the
clements in M adds a set of ordered pairs to R'. These ordered pairs must be of the form (tp,ts) where
t3r is a transaction which has a step in M and tp is a transaction which has a step in M, denoted M'.

By the inductive hypothesis of Part 1, if no new elements are added by moving the steps, then the move
does not generate a cycle. Assume some elements are added to R’ by the move. Thus, there must be a
constraint of the form Ay < Ag—(ta,tp) € R and some access in M’, denoted Ay, is the same access as Aq,
and some access in M, denoted A,,, is the same access as Ag and (tms,tm) ¢ R before the move. Therefore,
it must be the case that A, followed A,, before the move. It also must be the case that (tm,tm') € R
before the move, or Ap would be in M. However, since all such elements added R’ are of the form ({7, tar),
(tm,tm,) cannot be added, so no cycle can be created.

The proof for the non-final write steps is similar. Therefore, we conclude that (R, X') exists and R’ is

24

acyclic under the constraints for t. 7M. Thus, (R', X’) is a one-level correct execution for 1.

Part 2: (R’, X') is view equivalent to (R, X).

Since both executions are over the same subtransactions, all that needs to be shown is that the read steps
return the same values in both executions.

Assume this is not the case. Therefore, there exists some read step in subtransaction t; such that R;(e)
returns a different value in the two executions. Under intra-transaction concurrency control, the value
returned by a read step in (R, X) is either the value returned by the initial read step or the value written
by the write step which precedes it in the equivalent multilevel correct execution of ¢;.

By step 1 of the construction of R', all of the initial read steps returned the same values in both executions.
Now assume that a final write step was moved past an initial read step, or that an initial read step was
moved ahead of a final write step in the execution of R’. We will discuss only the case of the write step being
moved past the read step, because the other case is similar. Thus, the movement is caused by the insertion
of a read step into the execution. Let R(e) be the initial read step which returns the value of VVJF (e) in
R. Therefore, there is no constraint of the form W, < Rg—(ta,ts) € R, because if there were, R!(e) would
also have been moved. Likewise, there can be no constraint of the form Ry < Rg—(ta,15) € R, since RJI. (e)
must also precede RI(e). This would cause (;,t;) € R, and R} (e) would be moved. However, this means
the insertion of a read step can only conflict with steps which follow it in the execution. Since the initial
read step also conflicts with those steps, no cycle can be generated, and thus R{(e) follows W/ (e).

Now consider the case where the step W/ (e) is moved between R} (e) and W[(e), where R](e) returns
the value of VVJF (e) in R. Clearly, no constraints of the form W, < Ws—(ta,ts) € R, can be in the trans-
action manager because I/V]F (e) would also be moved. However, it is also the case that no constraints of the
form Ry < Wa—(ta,ts) € R, can be in the transaction manager either. Recall that Koo is Ri(e)... Ap(e). ..
Ra(e) for anything to be moved. However, in this case we also know that Reo is Ri(e”)...Rf(e)...
RE(e)... Ay(e)... W (e)...WFE(e)...Ra(e") ... R](e). Therefore, if the constraint Ro < Ws—(ta,lp) € R,
held, then there would be a cycle in R, which contradicts the construction of R’. Since all transaction man-
agers must support this condition, this is a contradiction. Therefore, the initial reads return the same values
in each execution.

Non-initial read steps in R return the value written by the most recent write step in its own transaction,
or the Let R;(e) be a step of transaction #; such that R;(e) returns a different value in R and R'. Therefore,
R’ is either R{(e)...Wj(e)... Ri(e) or Rl(e)... Wi(e)...Wj(e)... Ri(e). In either case, a cycle must exist
in R, from the constraints Rq < Ws—(ta,ts) € R, and Wo < Rg—(ta,ip) € R, which all transaction
managers must enforce. This contradicts the construction of R'.

Thus, all read steps in the execution R return the same values as in a one-level correct execution.

Therefore, (R, X') is view equivalent to (R, X). O

25

