THE GENESIS DATABASE SYSTEM
COMPILER: USER MANUAL

Don Batory

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712-1188

TR-90-27 August 1990

« B .
-copmsnsea (O

Department of Computer Sciences
The University of Texas at Austin

The Genesis Database
System Compiler:

User Manual

Don Batory
Department of Computer Sciences
The University of Texas
Austin, Texas 78712

August 1990

©DSEatory

bugs - 1

Features and Known Bugs

DaTE. Not everything is perfect. DaTE has bugs that trash memory or make illegal
memory references. Unfortunately, some of these bugs are very difficult fo track down and fix,
due to the memory management scheme of the Macintosh. Simply put, the errors aren't always
reproducable. You'll discover the do's and don'ts on your own; it isn't difficult to make DaTE work
for you. At least with a bit of alchemy. | highly recommend that you install a version of MacsBug
to trap these errors.

DaTE tries to check for design errors. Most of the time, it caiches mistakes and reports
them to you. However, if you create a storage system which references itself, don't expect things
to work.

We've already alerted you to DaTE's other quirk - the need for the Convert Refs
application. See the end of Phase 1 for an explanation.

The size (in terms of number of lines) of each layer, as registered in DaTE is not accurate.
We are in the process of determining how to count line numbers (should comments be included,
etc.) and will be updating these numbers shortly. Yes, there are 70,000+ lines of Genesis source,
but removing headers and commenis (which are essential to understand what's going on) will
reduce this number.

Finally, don't mess with trying to define new layers or altering existing layer definitions,
unless you know what you are doing. Technical reporis exist which explain the basic ideas. Once
you know what each button, etc. means, then you can proceed to experiment.

Genesis Source. You may have noticed that there is source code or references to a
db_cache recovery, grid file structure, and references to Ziv-Lempel encoding. Right now,
db_cache and grid have some bugs which we are trying to track down. Ziv-Lempel encoding does
work on Sun3s, but does not work on Mac lls. A pori revealed that the Ziv-Lempel algorithms we
are using require enormous byte arrays, larger than Think C can handle. So we eliminated it.

Also, B+ trees are known not to work when at most iwo records fit per node/block.
Debugging B+ tree code is painful, and this is still on our to do list.

Gdefine & Gdml. Again, nothing is perfect. Gdml somehow leaks memory. A
consequence of this is that very long scripts will not execute to completion before Gdml blows up.
You can go quite some time before something happens, but something will happen eventually.

Another problem is that presently, all genesis databases are stuffed inio individual
volumes of a single, predefined size. For Mac lis, the size is 2000 blocks of 512 bytes. To change
this, you'll need fo edit genesis_tun.h, which is subfolder headers in the GenSource folder. Asa
general rule, and header file (genesis, jupiter, or system) _tun.h contain constants that you can
change. Just be careful.

©DSBatory

intro - 2

introduction

Genesis is the first software building-blocks technology for database management systems.
It is also one of the first examples of large scale sofiware reuse. This paper describes how to
assemble DBMSs using Genesis. The design and implementation techniques utilized in Genesis are
described elsewhere. Instructions on how fo install Genesis on a Mac Il are given in the Appendix
along with a list of known bugs. :

Getting Started

Genesis consists of a configuration editor (DaTE) and prewritten software modules called
layers. On Macintoshes, the Genesis folder contains all Genesis software. The DaTE folder
contains DaTE and its files; the Genesis 2 folder contains building-block source code:

I
|

Hl

O Genesis
2 items 44,217K in disk

[

DaTE Genesis 2

<2l =

o<

There are three phases in the life-cycle of a Genesis DBMS: specification, assembly, and
usage. The specification phase involves using DaTE to define a target database management
system. The output of DaTE is a set of configuration files that specify the interconnections
between layers of the target system. The assembly phase is the actual creation of DBMS
executables. This is accomplished by compiling the generated configuration files with the Genesis
library. The usage phase deals with assembly validation, schema creation, compilation, database
loading, and database processing.

The following chapters will explain each of these phases in more detail. As a running
example, we will show how an approximation o University Ingres can be generated.

©DSBatory

Phase 1 - 1

Phase I: DBMS Specification

The most complicated and most interesting phase of DBMS generation is that of
specification. DaTE (or Database system Type Editor) is a graphical language for composing
software building-blocks. The DaTE folder contains the DaTE and Convert Refs applications and
three folders: DaTE Lib, Arch Lib, and Sys Lib. DaTE Lib has definitions of all primitive Genesis
building blocks. Arch Lib and Sys Lib respectively contain the architectures and systems
generated by DaTE.

SN Jg———— S|
8 items 52,580K in disk 26,157K available
- s
i yamN
Teenesis COHIERT
DaTE DaTE L Sys Lib Arch Lib ConvertRefs =~

&l |

Clicking DaTE begins its execution, which starts by reading primitives from the DaTE library.
Convert Refs is needed only to transport architecture designs from one disk o the next. We'll
consider its use at the end of this Phase.

{Note: as of this writing, the Sys LIb and Arch Lib folders are a convention which we
strongly recommend readers to follow; they are not required by DaTE. The DaTE Lib folder is
required).

Historical note: Primitives in the DaTE/Genesis library were considered, at one lime or another,
to be softiware ICs. The Gensesis icon - a wire wrapper or soldering iron - was chosen io
symbolize the interconnection of ICs into software systems. The permanence of this icon
remains to be seen.

The name DaTE - Database system Type Editor - was chosen at a time when the distinction
between layers and parameterized types was not recognized. The permanence of "DaTE” as a
name aiso remains ic be seen.

DaTE Diagrams

Building-blocks of Genesis are parameterized layers, a concept akin to a parameterized
type. DaTE depicts layers as boxes and parameters as ovals. Layers M and N are shown below; M is
unparameterized and N has two parameters, X and Y:

M N

unparameterized parameterized
layer M Tayer NCX, ¥)

© DSBatory

Phase1- 2

An architecture is a rooted graph. DaTE supporis the definition of four progressively
more complex types of architectures: file structure, storage sysiem, network, and relational. An
architecture is compilete if it has no unbound parameters (i.e., no ovals). Complete
architectures are trealed as primitive, unparameterized layers by DaTE.

A fundamental concept in DaTE is the software bus. It is an abstract construct that
allows multiple layers to occupy the same position in an architecture. Software busses are
depicted as a scrollable window. The bus below lists the layers {or architectures) BPLUS and
ISAM:

BPLUS
ISAM

The Add button admits new eniries to a bus. An entry is deleted by clicking it and choosing the
Remove option from the displayed popup menu.

Layers and architectures belong to classes. There are the classes of file mapping layers,
link layers, etc., as well as the class of file structure architectures, the class of storage system
architectures, and so on. If you open the DaTE Lib folder, you'll see the classes presently available
in Genesis. File Struec, for example, is a folder containing different file structure layers.
Recovery is a folder containing different page-based recovery layers.

S=—————Dalf Lib =————-"1
9 items 52,619K in disk 26,118K available
ks
PanN P
Model Link File Mapping Operations
FanN Lo
File Strue Node Block Recovery Types |__
1
<a] | |

Getling back to software busses, DaTE restricts entries of a sofiware bus o belong 10 a
single class. Thus, all entries of a bus are siorage systems, or all are link layers, efc. In
principle, it may be possible (and useful) to have polymorphic software busses; this is a concept
that needs to be explored in the future.

© DSBatory

Phase 1 - 3

A bus can be extended by an operation bus, which permits the entries of a bus o
reference special operations. An operation bus is attached to the software bus it is to complement:

Bus ~ Operation Bus

2

=

<l

The semantics are straightforward: any entry in the primary bus may reference any entry in the
operation bus. The above figure shows entries X and Y in the primary bus, and they may reference
entry Z of the operation bus. Operation busses arise only in FMS and DBMS specifications.

Instantiating Parameters and General Editing Rules

Parameter instantiation in DaTE is accomplished by clicking an oval. The standard
response of DaTE is to display a menu, like the one below:

Information
Customize

File Module

File Structure
File Struct Bus
Storage System
Storage Sys Bus

Selecting Information displays a help window on the selected item. Customize lists the
customizable options of a layer, and allows options to be enabled or disabled. Selecting an entry
below the dotied line causes a scroliable library window 1o be displayed. The members of the
library are legal layers or architectures that can instantiate the selected parameter. A library
window for File Layers is shown on the top of the nexi page.

© DSBatory

Phase1- 4

File Layer Library

[

Del Flag

index

Lempel Ziv Encode
Run Length Encode
Surrogate
Transposition

o

l‘ Open]l { Done]

Occasionally, parameters are bound incorrectly (or better choices are later discovered).
Rebinding a parameter is accomplished by clicking the box that is presently bound to the
parameter. Choosing an alternative binding causes the previous selection to be overridden.
Because DaTE imposes a top-down design methodology, all hierarchical bindings of the earlier
layer may need to be erased as they might no longer apply to the new module. DaTE ftries to save
such bindings whenever possible.

Architectures and Systems

As mentioned earlier, an architecture is a rooted graph of primitive layers. There are file
structure, storage system, network, and relational architectures. A System is a composition of
one or more architectures and supporting primitive layers, such as data types, recovery, and
special operations. File Management Systems (FMSs) and Database Management Systems (DBMSs)
can be defined by DaTE. Configuration files, which are used in Phase 2 1o assemble target systems,
can be generated for FMSs and DBMSs.

in the following sections, we explain how architectures and system are specified, starting
with simplest and progressing to the most complicated.

Note: Each architecture and each system is siored by DaTE in its own file. Architectures,
systems, and configuration files quickly become numerous, and placing them in a single folder is
not a good idea. We strongly recommend that architectures be stored in the Arch Lib folder and
systems and their configuration files be stored in the Sys Lib folder provided with DaTE.

© DSBatory

Phase 1 - 5

Creating a File Structure Architecture

A file structure is a composition of layers that provide the most primitive file storage and
retrieval capabilities needed for DBMS operation. Genesis decomposes file structures into three
distinct layers: FS (file storage), logical block (or nodes), and physical block.

A file structure is created in DaTE by pulling down the File menu, selecting New, and
then File Structure. An empty window is then displayed (a):

1

= Untitlled == = MVHRSH E=—=

HASH

@ UNORD_PRIM_UNSHAR

1
FIKED_ANCH FIKED_ANCH

(8) (b)

The window contains a single FS oval, indicating that a file storage layer must be specified.
Clicking the oval causes a library window to appear that lists all FS layers known to Genesis.
Clicking a layer selects it, and its box is displayed in the window. Depending on the layer, one or
more Node ovals will hang from the layer box. Clicking these ovals in the same way allows Node
implementations to be selected. Nodes have Blocks as parameters, thereby producing a tree of
three levels, as shown above in (b). This particular window shows a HASH file structure whose
data nodes are implemented by the UNORD_PRIM_UNSHAR layer (i.e., unordered records stored in
a primary block with unshared overflow), and primary and overflow physical blocks are

implemented by the FIXED_ANCH layer (i.e., fixed-length records with anchored physical
addresses).

For a file structure architecture to be referenced later, it must be named and saved. This

is accomplished by pulling down the File menu and selecting Save or Save As.... The above
architecture was saved with the name '"MYHASH..

© DESBatory

Phase 1 - B

Creating a FMS

A file management system (FMS) is the kerne!l of a DBMS. It provides basic access
methods, buffer management, and recovery capabilities necessary for DBMS operation. Genesis
provides a standardized architecture for FMSs, where the design customization decisions have been
factored into the selection of file structures, special operations, data types, and a recovery layer.

An FMS is created in DaTE by pulling down the File menu, selecting New, and then FMS.
An empty FMS window is then displayed:

&= Untitled FMS #1

Transactions &
Uolume Operations

i

Buffer Pool

File Operations ;
. . Operations

~File Structure Bus ,,, : Operation Bus
s >
v &
Data Type Bus
Transaction a ik
Recovery d
Before Image d 5
|
Buffer
:
input/Output

The above mentioned design decisions are entered in three busses and a field. Each labeled in small
font as a prompt to an FMS designer. Before Image (Page) logging is assumed as the default
implementation of recovery.

Note: Transactlion, Buffer, and Input/Qutput classes in an FMS architeciure are not
customizable in this version of DaTE, as Genesis provides only a single implementation (i.e.,
layer) for each. When multiple layers are available, they too will be customizable.

Also note that an FMS window documents the routing (via dotted lines) of user-issued
operations. Volume and ifransaction operations are serviced by the Transaction layer; buffer pool
operations are handled by the Buffer layer. File operations are processed by either file structures
or special operations. Observe that an FMS is not a strict hierarchy of layers, where all
operations are transformed by layers in a top-down manner.

© DSBatery

Phase 1 - 7

A possible FMS for a census database is shown below. It provides MY_GRID and
MY _UNORD as primitive file structures. The SORT operation is included, along with the data
types INT, CSTRING, and FLOAT. Shadowing is used for volume recovery.

S E=m——————= Census_IMS$
T ti & . : Buffer Pool
Ve lr;amnas%;elroants ions File C}.perat.;ons Oupefarﬁ oonos
File Structure Bus | } Operation Bus
MY_GRID i SORT i
MY_UNORD
L O
H 7 Data | Type Bus
Transaction " INT >
CSTRING
Recovery FLOAT
Shadowing 5
]
Buffer <
l
Input/Output

To generate the configuration file of an FMS, pull down the File menu and select
generate.

Note: Again, we recommend that FMSs and their configuration files be placed in the Sys Lib
foider, so that they are separated from their architecture components. The files that are
generated are text files that contain C precompiler directives and macro definitions. As we'll
see in a later section, these are the files that are compiled with Genesis source to produce DBMS
executables.

Note: As a general rule, one probably doesn't want to genserate only an FMS. When a DBMS is
generated, its underlying FMS is also generated. In fact, generating an FMS produces a
_fms.h file, while generating a DBMS produces both a _fms.h file and a g_dbms.h file. For now, it
is instructive o see what is geing on internally with DaTE, although the generation of an FMS is
likely to be a rare event for most Geneslis users.

© DSBatory

Phaset- 8

Creating a Storage Sysiem Architecture

A file mapping layer maps an abstract file to one or more concrete files. Examples
include mapping a file to an inverted file (i.e., indexing), and mapping an uncompressed file 10 a
compressed file (i.e., compression). Parameters of a file mapping layer are implementations of
the concrete files that it generates. A storage system architecture is a composition of file
mapping layers that terminate with file structure architectures.

A storage system is created in DaTE by pulling down the File menu, selecting New, and
then Storage System. An empty siorage system window is then displayed. As examples of file
mapping modules, the following two windows show the selection of indexing and transposition
layers. Index maps an abstract file to a data file and zero or more index files. The data file
implementation is specified by parameter data and the index file implementation by parameier
index. Similarly, Transposition maps a file to a series of concrete subfiles, one dominant
subfile and zero or more subordinate subfiles. Their implementations are specified via
parameters dom and sub.

E[J&==——— Untitled ARCH #1 =1
indes
|
< data > < index >
]
E[J=——= Untitled ARCH #1 =——"0
Transpositon
1
< dom > <« sub >
&

Note: The concept of dominance is fundamental to conceptual-to-internal mappings. Basically the
idea is that a conceptual file is mapped by DBMS sofiware to multiple internal files. One of the
internal files is distinguishable as its records are in 1-to-1 correspondence with conceptual
tuples. This is the dominant file. Other internal files, called subordinate, do not have this
property.

© DSBatory

Phaset - 9

Consider the storage system used by Rapid, a statistical DBMS. Rapid mapped
schema-defined files to transposed files, where each column was run-length compressed before
being stored in a sequential-unordered file structure. This storage system is defined in two
storage sysiem windows: rapid.ss and subfile.arch. Rapid.ss maps a schema-defined file to its
dominant internal counterpart. Subfile.arch maps subordinate subfiles to their internal

counterparts.

[[==——————= rapid.ss =
Transposition
|
Run Length En... subfile.arch
seq_unord
@
[EC1== subfile.arch ===

Run Length En...

seqg._unord

|

While it seems odd not to have Transposition call subfile.arch twice (as implementations
of both dominant and subordinate files are the same), DaTE permits only one architecture
reference per dominant mapping. (It turns out that permitling multiple storage system
references significantly increases DaTE's complexity without providing greater expressibility.
Otherwise, there is no apriori reason why it cannot be handled).

© DSBatory

Phasei - 10

B == rapid.ss EE==——=5

Transposition

1
subfile.arch subfile.arch

|

A composition that cannot be defined directiy
in DaTE....

As another example, consider the storage system of Ingres: it maps schema-defined files
to inverted files, where data files and index files can be selectively implemented by hash, heap, or
isam structures. The multiplicity of implementation choices is captured by a pair of file
structure busses.

HEe=——————ingres.ss =————1"1|

L]

Indesn

B

: isam_ingres ' heap
heap isam_ingres
hash_ingres hash_ingres

|

Note: The last entry on a software bus is the default mapping. Thus, data files in ingres.ss
default to hash-based siructures if no storage structure directive is provided. (These directives

are specified in schemas, which is discussed in Phase 3). No other significance is attributed to
the ordering of entries on a bus.

© DSBatory

Phaset1 - 11
Creating a Network and Relational Architecture

A neiwork architecture is rooted by a link layer (or link bus). This layer (or bus)
specifies how links - i.e., relationships between files - are to be implementied. The sole
parameter of a link layer (or bus) is the implementation of the referenced files, which may be
expressed as a file structure or storage system architecture.

A relational architecture is rooted by a data model layer (or data model bus). Such
layers map nonprocedural data model/data language interface to a procedural network database
interface. The sole parameter of a data model layer is the implementation of the links of the
network database.

The windows at the top of the next page show a network architecture used in the Total
DBMS (i.e., no high-level data model; links are implemented by ring-lists,and files are stored in
hash-based structures), and the relational architecture of Ingres (i.e., QUEL as the data
model/language, nested loop implementations of links, and files stored in the Ingres storage
system).

S[[=——— total ==—=1)7| [E[J== ingres.arch =—=0
_“ Quel
Ring List
Nested Loop
hash
ingres.ss
=]

©® DSBatory

Phase1 - 12
Creating a DBMS

A DBMS is defined in a manner identical o that of FMSs: architectures, special operations,
data types, and a recovery layer must be specified. The only significant difference is that
relational, network, and siorage system architectures are referenced instead of file structure
architectures.

A DBMS window for our approximation of Ingres is shown below: the architecture is
Ingres.arch; special operations are SORT, LFILTER, and CROSS_PROD; data types are INT,
CSTRING, and FLOAT; and recovery is handled by Before Image logging.

Note: LFILTER is a layer required for processing cyclic queries. For further details,
see the DaTE help menu.

[ED___WM Ingres
Transactions & Database Buffer Pool
Ucliume Operations Operations Operations
Architecture Bus Operation Bus
ingres.arch SORT ity
LFILTER
CROSS_PROD
1
Data Type Bus
Transaction g| INT i
CSTRING
Recovery d FLOAT
Before Image d -
|
Buffer 4
|
Input/Output

©DSBatory

Phasei - 13

Statistics about the size of the generated DBMS can be obiained by pulling down the Misc
menu and selecting Statistics. A window similar to the one shown at the top of the next page will
be displayed:

Database Management System Statistics
Lines of Code
Manager/Layer Total Selected % of Library
System Managers 6435 6435 100%
System Layers 4863 4863 100%
System Utilities 1427 1427 100%
File Manager 42463 21485 50%
File Layers 6581 1389 21%
Link Layers 7456 982 13%
Model Layers 2468 1234 50%
Totals 71693 37815 52%

Of the 71K+ lines of code in the Genesis libraries, approximately 52% is referenced in the ingres
DBMS. (Lines that are unreferenced are not included when the Ingres DBMS is assembled). A
similar window exists for FMSs.

Note: System Managers and System Utllitles refer to a standard package of ADTs
(queries, into-lists, efc). that are referenced by virtually all DBMS layers. System Layers is
a generic name given to layers listed on the DBMS's operation bus. File Manager refers 1o FMS
code that is generated. File Layers, Link Layers, and Model Layers refer to file mapping,
link, and data model layers that are referenced.

A DBMS typically supporis only one architecture. However, if one wanis the ‘union’ of
several different architectures (to have the capabilities of several individual DBMSs), one can
click multiple architectures onto the Architecture Bus. A composite architecture is formed by
taking the union of all data models referenced and placing them on a data model bus, the union of all
referenced link layers is placed on a link bus, and the unicn of all storage systems is placed on a
storage system bus. The composite architecture of a DBMS can be viewed by pulling down the
Misc menu and selecting DBMS Overview when the DBMS window is active. The union of
Ingres.arch and rapid.ss is show in the figure at the top of the next page.

©DSBatory

Phase1- 14

T
[]
i

= System Overview EMJE

Quel

Nested Loop

Al ingres.ss
rapid.ss

[

=%

To generate the configuration files of a DBMS, pull down the File menu and select
generate. The following window will be displayed:

Definition Generation Successful
Click Mouse To Continue

FMS Header ingres.fms.h
DBEMS Header ingres_dbms .k
File Struc. Table ingres.FIT
Path Table ingres.PT

Path Entry Table ingres.ET
Schema Options ingres.OPT
Driver Definition ingres.DEF

The FMS Header and DBMS Header files are compiled with the Genesis library to produce
Ingres. The File Structure Table, Path Table, Path Entry Table, and Schema Options
Table are read by DBMS executables to process dml operations. The Driver Definition is a
DaTE readable document that is a copy of the DBMS window that defines ingres. Provided the Sys
Lib folder is empty, the resulis of this generation are shown at the top of the next page.

©DSBatory

Phase1- 15

gDW Sgs Lib ng
7 itemns 44 675K in disk 34 062K available
— — — [
DB
ms| L]

ingres .DEF in. in IT ingr PT ingres.PT

ingre_dms.h ingr._s.h

<A &>

[[<]

Note: Again, we recommend that DBMS designs and configuration files be placed in the Sys Lib
of the DaTk folder.

Window Management and Complex Architectures

Architectures quickly become too large to fit on single windows. This is one reason why
DaTE has different windows for different architectures and different systems. DaTE provides a
convenient mechanism to navigate among interrelated windows/architectures. The figure below
shows relationships between different windows and different parts of a DBMS design:

ingres DBMS
window

ingres.arch
E windew

ingres.ss

AN
s

isam windew heap windew hash window

©DSBatory

Phaset - 186

Recall that complete architectures are ireated as unparameierized layers. When one
clicks on the box of an architecture and selects Information, the window for that architecture is
opened. Since architectures can be nested, navigational paths may become long. To retrace 1o the
parent window, pull down the Windows menu and select Back. Thus, one can navigate the tree of
windows of the Ingres DBMS through menu selections.

Note: At present, we recommend that at least one relational architecture be included in a
DBMS specification. [f a relational architecture is not included, the system that is generated has
only a programming language interface. There is no convenient driver that is available,
currently, to allow users to explore such systems and issue basic database calls without a
considerable amount of programming. If a relational architecture is included, then either SQL or
QUEL - a high level query language is made available for issuing basic calls.

Convert Refs

When an architecture is created, there are references to primitive layers and possibly
other architectures. DaTE saves these references using the Macintosh equivalent of absolute
pathnames. Thus, if you decide to copy you architectures onto another disk, or simply to move
them from one folder to another, you've changed the pathnames of your architectures. DaTE will
choke when it tries to read such files again. As a partial fix to the problem, the Convert Refs
utility is used. Drag it into the folder whose architecture files have been moved. Double-click it
to start it to execute. If all pathnames can be converted properly, it will report success. If some
pathnames can't be converted, the count of the number of errors is reported. Not exactly useful,
but when you run DaTE, it will become obvious which architecture files haven't been properly
translated.

©DSBatory

Phase?2 - 1

Phase 2 - Assembly

A Genesis produced DBMS has two executables: Gdefine and Gdml. Gdefine compiles
schemas and creates files for loading. Gdmi loads empty databases and supports database
processing via nonprocedural query languages. In the following, we assume a Think C (formerly
Lightspeed C) environment for assembling DBMSs. We will also use ingres as a running example.

Note: Ultimately, Gdefine and Gdml will be merged; it is only for historical reasons that both
were developed independently. The compilation of Gdefine and Gdml takes about 10 minutes. As
we'll explore later, Universals can eliminate the need for compilation altogether.

There are two ways to produce executables. Either you build versions of Gdefine or Gdml
that containly only the layers that are required for your target system, or you can build a
universal Gdefine and Gdml. Universals, as we will call them, are executables that contain
virtually every building-block in the Genesis Library. Module interconnections are realized at
run-time via dispatch tables. Thus, using Universals, it is possible to go directly from a DaTE
specification to DBMS execution, eliminating the need for compilation. Of course, a penalty 1o be
paid for Universals is slightly slower speeds and the inability to implement certain functions. We
will explain more about Universals at the end of this chapter.

in the following sections, we'll explain how to compile versions (Universal or otherwise) of
Gdefine and Gdml. Producing Gdefine and Gdml executables is a 4-step process.

Step 1 - Renaming Configuration Files

Among the header files that are referenced by Genesis source are genesis_config.h and
jupiter_config.h. Both are transcripts of a DBMS design which partially specify the
interconnections between Genesis layers. (genesis_config.h deals with dbms layers;
jupiter_config.h deals with FMS layers). DaTE distinguishes different config.h files by
prepending the name of the DBMS. The first step in compilation is to rename ingres_dbms.h to
genesis_config.h and ingres_fms.h to jupiter_config.h. Here what the Sys Lib folder should look
like after the renaming:

s ==——————— Sys lLib Ee==——— [
7 items 44 675K in disk 24 062K available
........................ ﬁ

PT ingresPT

ingres.DEF in.T

in FIT ingr_

genesﬁg.h jupitnﬁg.h

& =

L[|

Step 2 - Transferring Configuration Files

Phase 2 - 2

The Genesis 2 folder is shown below. All icons on the right deal with the assembly phase
{the Phase we are now explaining); all on the right deal with the usage phase (the Phase dealing

with schema compilation and DBMS transaction executions).

=[] Genesis 2 OE
15 items 52,698K in disk 26 ,03%K available
2
_—@ e
@ cm: @ El E ’
gdefine gdmi geertify Gdefine Proj GDML Proj
oy L
ut emp (Gdefine Proj) (GDML Proj)
GenConfig GenSource
paces valid test.output BigConfig 6
<a| D&

Drag all of the ingres configuration files in Sys Lib (except for ingres.DEF - it isn't needed) into
the GenConfig folder. After doing this, open GenConfig and you'll see:

=[] GenConfig =iE)
7 items 44 ,345K in disk 34,392K available

, ks

:j ‘
dml.ne genesnﬁg.h jupiir._acnfig.h

‘ '~

ingresE inST ing,PT inT —

\4

& =5[]

The file dml.no is used by Gdml fo parse dml statements. It should never be deleted or removed

from GenConfig.
contains Genesis source).

(Just in case, there is a backup copy of dml.no in GenSource folder, which

Phase2 - 3

Hint: GenConflg usually contains a genesls_config.h and jupiter_config.h file. ltis easy 1o
misspell these names when renaming. We recommend dragging the renamed genesls_config.h and
jupiter_conflg.h separately into GenConfig; a prompt will ask if you want to delete the old version.
{You do). In this way, one is assured that GenConfig has the correct files.

Step 3 - Building Gdefine
There are three icons that are relevant to the construction of Gdefine:

-

Gdefine Proj (Gdefine Proj) GenSource

Gdefine Proj is the Think C document that assembles Gdefine. (Gdefine Proj) is a special
folder associated with Gdefine Proj. GenSource contains Genesis source. Double-click
Gdefine Proj to open it. You'll be greeted with the following menu bar:

&€ File Edit Search Project Source Windows
Gdefine Proj
A Name obj size
¢ ARCH.C 922 K>
¢ G_UTIL.C 188 |
¢ TABLEMGR.C 14968 [
¢ TRANS_UTIL.C 7136 |
e TYPEMGR.C 7452
¢ DEL_FLAG_XF.C o
¢ INTERNAL_XF.C 2320
¢ PTR_ARRAY_XF.C 1204
¢ RING_LIST_XF.C o
¢ RLE_ENCODE_XF.C o Ei
unix 1070
¢ DDL.C 982 [

Step 3.1 - Precompiling Headers

A standard set of header files is included in every Genesis source module. As there are
almost seven thousand lines of headers, rereading and recompiling them for each module is
redundant and time consuming. Think C provides a convenient way to compile headers once. That's
what this step is about.

Phase 2 - 4

Opening GenSource folder you'll see:

11 items 44 91K in disk 34 246K available
<>
N
DDL DML Drivers Expanders Headers Jupiter
=
W=
System Transformers Utilities Precempileh Nubs dml.ne
>
<l |

Open the file Precompile.h by pulling down the Think C File menu and selecting Open. (The
source for Precompile.h should be displayed). Now pull down the Source menu and select
precompile... This will initiate the precompilation.

Note: Precomplie.h, like any of the Genesis source code, should never be moved, updated,

or desiroyed. In the event that it is unreadable, a backup copy - called genesis_
includes_sre.h - can be found in the Headers folder. Also, note the backup copy of dmil.ne in
GenSource.

The precompiled header must be stored in the (Gdefine Proj) folder under the name
genesis_includes.h. There will always be a version of genesis_includes.h in this folder, so

the system will prompt if you want to throw away the old copy. (You do.) The (Gdefine Proj)
folder should always contain only two files:

l";—'[jm (Gdefine Proj) =
2 items 44,367K in disk 34 ,370K available

(E__ g___..__ Q

= =

Y= =
context.h genesis_includes h .
24
<Al [

Note: The context.h file is a small file that tells Think C io precompile Genesis headers for
Gdefine. If one looks in the {Gdm! Proj) folder, a similar pair of files exist. The ceantexi.h
file in {Gdml Proj) is different, and tells Think C to precompile Genesis headers for Gdmiin a
manner thal is different from Gdefine.

Phase?2 - 5

Step 3.2 - Producing Object Files

Pull down the Think C Source menu and select Make. A window similar to that shown
below will appear. The number of source files to compile will be listed as 21. This is incorrect.
Click the Use Disk button to bring this number up to 29. (If you get different numbers, start
again from Step 3.1). Now click the Make button to begin compilation.

Source files to compile: 29

[check ANl |
Libraries to load: 0

e [check Al .c]

G UTIL.C

<+ TABLEMGR.C
+vTRANS_UTIL.C
+ TYPEMGR.C
+vDEL_FLAG.XF.C
v INTERNAL HF.C B
+PTR_-ARRAY XF .C L

| lDon’t Make[‘ Cancel {

Compilation should take about 4 minutes; the number of lines of code that Think C compiles (some
of which generate no object as they deal with layers that are not needed in the target system) is
over 70 thousand.

[Check None)

(usedisk)
X Quick Scan

Step 3.3 - Building Gdefine

To link the object modules in Step 3.2, pull down the Project menu and select Bulld
Application. The executable that is generated should be stored in the Genesis 2 folder (which
will overwrite the previous version of Gdefine). You shouldn't have to specify the Gdefine
name, but you will have fo direct Think C's output to the Genesis 2 folder.

At this time, Gdefine is ready to run.

Step 4 - Building Gdml

The procedure for building Gdml is identical to that of Gdefine, except that the Gdml
Proj is run and the precompiled header is stored in the (Gdmi Proj) foider.

When objects are produced, the number of files to compile will be listed as 25. This is
incorrect. Click the Use Disk buiton to bring the number to 33. If you get numbers different
from these, begin again from the precompilation step.

Phase?2 - 8

Compilation should take about 6 minutes; the number of lines of code that Think C compiles
(some of which generate no object as they deal with layers that are not needed in the target
systemn) is over 90 thousand.

Note: The number of actual lines of source in Genesis is about 70 thousand; there is about 7
thousand lines of headers. The number of lines that are reporied compiled by Think C involves a
certain amount of double counting; some headers aren't precompiled and thus must be read (and
compiled) multiple times. :

Before Proceeding to Phase 3...

Make sure that the versions of Gdefine and Gdml that you created exist in the Genesis
2 folder, and are not in some subfolder. Placing Gdefine or Gdm! in the wrong directory isn't
difficult, and doing so without noticing can cause a lot of errors and confusion. You can be assured
that Gdefine and Gdmi are in the right folders if you are prompted - when Think C is building your
application - when you replace the existing Gdefine or Gdml.

Universals

it is possible to build versions of Gdefine and Gdml that contain virtually all layers of
Genesis. The configuration files for Universals are found in the BigConfig folder of Genesis 2.
That's the folder in the lower right-hand corner. if you open BigConfig up, you'll see the
genesis_config.h and jupiter_config.h files and the Universals created from them.

Virtually all layers can be included in Universals, but there are exceptions. Universals
can only have one recovery layer. So if you want to differentiate Universals that rely on shadowing
from those that rely on before-image page logging, you'll have to create multiple versions of the
Universals,

Open the jupiter_config.h file and scroll to the bottom. That's where you'll see constanis
like:

/*************i** RECGVERY TYPES ﬁ*ii*******ﬁ********/

#define BFIM_RECOV
#define NULL_RECOV
#define SHADOW_RECOV
#define DBCACHE

OO0 =

These commands will define Universals that rely on before-image logging. Altering the use (1)
and nonuse (0} values, one can select different recovery implementations. Remember: only one
entry should be set to 1; the rest must be zeros.

When you are compiling Universals, discard the genesis_config.h and jupiter_config.h
files generated by DaTE and use those in BigConfig. Rename all other configuration files to "demo”,
as this is the name given in the BigConfig universals. (Actually, to change the name to something
other than demo, open up genesis_config.h in BigConfig and edit the #define DB_NAME to
whatever name you'd like). -Other than this, building Universals is no different than buiiding any
other DBMS.

Phase 3 - 1

Phase 3 - Usage

The usage phase deals with the customization of DDL directives, creation of schemas,
database loading, and database processing. To get staried, recall the Genesis 2 folder:

£ Genesis 2 ==&—————— 115
15 jtems 52,698K in disk 26 ,039K available
@ :sns @ El E l
gdefine gdm geertify Gdefine Proj GDML Proji
PN PN Paan

ut emp {Gdefine Proj) (GDML Proj)

GenConfig GenSource

- o l Lo
paces valid test.output BigConfig =

e
Kd| =

We are interested in the icons on the left-hand side. (With the exception of the GenConfig folder,
the remaining files are no longer needed).

As a tour, we created the applications Gdefine and Gdml in Phase 2; they are the
executables of our target DBMS. The application Geertify, and the folders paces and valid, and
the file test.output are used to validate Gdefine and Gdml. (More on this later). The emp and ut
folders are two small databases provided with Genesis. The emp database consisis of a single
relation; the ut database has three highly interconnected relations.

Phase 3 begins by customizing DDL directives.

Customizing DDL Directives

The .OPT file generated by DaTE lists DBMS-specific directives on how to store different
relations and links. DaTE assigns a name for each directive, but the name itseif may not be
syntactically correct or easily rememberable. Customizing DDL directives is, in effect, providing
alternate names.

The names DaTE generates reference labels given to layer parameters or user-defined
architectures. Any sequence of characters can serve as a name for DaTE. However, the current
Genesis DDL only allows names to begin with a leiter, followed by a sequence of letters, digits, or
underscores {_). lllegal names must be repaired by editing.

Phase 3 -~ 2

As an example, open ingres.OPT, which is in the GenConfig folder. You'll see the
following fexi:

Row Tag Next Type Path Fit Name
#
0 1 -1 1 0 -1 ingres.ss
1 2 2 g -1 1 hash_index
2 4 3 0 -1 2 heap_ index
3 8 -1 0 -1 0 isam index
4 10 5 0 -1 0 isam internal
5 20 6 0 -1 1 hash_internal
6 40 -1 0 -1 2 heap_ internal

The only column of interest to us is Name. (Don't change any other entries!l). The label
ingres.ss should be familiar; it is the name of the ingres storage system that we defined in Phase
1. We need to rename this label, 1o say 'ingres’, because it has an illegal character {i.e., the dot}:

0 1 -1 1 0 -1 ingres
All other names are acceptable as is.

Once the Name column contains legal names, further renaming can be motivated by
examining the semantics of each label. Schema-defined relations that are to be stored via the
ingres storage structure must be tagged with the oplion 'ingres’. When there is only one storage
system - as in our case - using explicit storage system tfags is unnecessary. Tags are needed if
relations could be mapped by several siorage systems. (Recall that muliiple storage systems are
possible when a DBMS has supports multiple architectures). We'll illustrate tagging shortly.

The next three options - hash_index, heap_index, and isam_index - are directives o
store index files in hash, heap, or isam structures. The last three options - isam_internal,
hash_internal, and heap_internal - are directives to store data files in isam, hash, or heap
structures. Again, we'll explain how they are used in schemas shortly.

We'll shorten the labels in rows 1-6 by dropping _internal suffixes and replacing
_index suffixes with %', yielding:

Row Tag Next Type Path Fit Name

¥
0 1 -1 1 0 -1 ingres
1 2 2 0 -1 1 hashx
2 4 3 0 -1 2 heapx
3 8 -1 0 -1 ¢ isamx
4 10 5 0 -1 0 isam
5 20 6 0 -1 1 hash
3 40 -1 0 -1 2 heap

Phase 3 - 3

In general, any name for a label can be used as long as it is unique within the table and does not
conflict with Genesis DDL reserved words. These words are listed below:

int files
csiring links
vsiring database
float rpg
double set

byie char

Defining Schemas

index
primary_key
ring_list
pir_array

Open the file ut.schema in the ut folder. It is shown beiow with labels in bold:

DATABASE ut {
FILES

employees {

empno INT

age INT

dept name CSTRING { 20
name CSTRING { 22 }

} heap ingres;

dept {.
deptno INT
dept name CSTRING (20
chairman CSTRING (22 }
} isam;
prof {
profno INT

prof_name CSTRING (22 }
department INT
} hash;

LINKS
/* 1l:n links */
p_worksin : dept.deptno =
B worksin

/* 1:1 or 1:0 link */

p_empdata prof.prof name
P _chairdata prof.prof name
E_chairdata emplovees.name

dept .dept_name

primary key:

} H

primary key;

) indexed hashz;

primary key:

2
H

prof.department

= employees.dept name

I

employees.name
dept.chairman
= dept.chairman

i

/*®
l/*

/'k
j"k
/’k

ring list
ring list

ring list
ring list
ring list

primary key indexed isamx;

*/:
*/;

*/;

* /s
/o

*/:

Phase3 - 4

Three relations are defined plus five links. The syntax for relgtions is straightforward. Link
syniax is <name> <colon> <join-predicate> <options>. Join predicates must be equality-based with
no disjunctions. Links interrelate a pair of different relations. One is the parent and the other is
the child. Parentage is conveyed by phrasing of the join predicate; the first relation referenced is
the parent. Thus, in P_worksin, the dept relation is the parent and prof relation is the child.

DDL directives are options that can adorn relations, individual fields, and links. In
addition to those in ingres.OPT, there are a few oplions that are reserved: indexed, ring_list,
primary_key, and ptr_array. indexed s used to tag fields that are to indexed;
primary_key tags fields that define the primary key of a relation; ring_list and ptr_array
tag links to specify that their implementations are to be ring lists or pointer arrays. Note that
only primary_key is provided to all Genesis-produced DBMSs. index, ring_list, and
ptr_array are available only if their corresponding layers are present in the DBMS.

To see how these directives are used, look at the employees relation:

employees {

empno INT primary key;

age INT ;

dept name CSTRING (20) ;

name CSTRING (22 } primary key indexed isamx;

} heap ingres;

The field pair (empno, name) is declared 1o be the primary_key of employees. The name field is to
be indexed, and its index file is to be stored in an isam structure. The employees relation is {o be
stored in a heap. The option ‘ingres’ adorns employees to tell Gdefine that employees is to be
stored via the ingres storage system. (As mentioned earlier, the use of the ‘ingres' tag in this
example is not necessary). Normally, when one specifies a field to be indexed, one also must
specify how the correponding index file is to be stored. If multiple options are available, but no
option is given, Gdefine will make a choice and will report its choice during schema compilation.

Now look at the P_worksin link:

P_worksin : dept.deptno = prof.department /* ring list */:

If the ingres DBMS supported ring lists, the ring_list tag would be placed as shown, but not
within comment markers. The P_worksin declaration above is untagged. An untagged link iells
Gdefine that the link must be implemented by a join algorithm.

Note: If there are no link layers, the current version of Gdefine will still recognize links. It is
only during Gdmi execution that references to the link will be recognized as an error.

Phase3 - 5

Defining Databases

All information about a database is stored in a folder labeled with its name. It must be in
the same folder/directory as Gdefine and Gdml. As an example, open the ut folder:

IEDW ut mm—_—:__m—m—mmgg
4 items 41 ,672K in disk 37 ,065K available
_________ >
uT & utdept.data utprofdats ut.employees.data

>
] [

The schema is present, along with three other files. These files, respectively, contain the raw data
that is to be used to load the dept, prof, and employees relations. Their format is straightforward.
Each line contains data for a record. Column values are separated by commas with no embedded
blanks; strings are enclosed within quotes. The naming of raw data files is important. If s is the
name of a schema and r is the name of a relation in a schema, then the name of the raw data file is
's.r.data’. Thus, ut.deptl.data is the raw data file for the dept relation in the ut database.

When Gdefine is run, the following output is generated:

* kAKX Creating Vclmes kA AR ALAXTERX
:ut:ut created
*%x%%% Creating Files ##kkxxikkux

employees created

S$emp iname created

dept created
$dep!dept_name created
prof created

The names of each volume, conceptual file, and internal file that is crealed is listed. Internally
generated files have names prefaced by $. Index file names, for example, take the first three
characiers of the conceptual file, followed by bang (I}, followed by the name of the field. Thus
$emplname is the name given 1o the name index file of the employees relation.

Gdefine produces a large number of additional files that will appear In a database folder.
These files are used by Gdml to know how to perform conceptual-to-internal mappings of
relations and links in the database. When Gdmi is run for the first time on a newly compiled
schema, it will look for a raw data file for each relation, and will load that relation. Hell breaks
loose if the file isn't found. Subseqguent runs of Gdml will not invoke database loading.

Note: To dump a dalabase, one simply has to execule a "select * from relation” and routs the
output fo a text file. The format used in Gdmi to cutput tuples is the same format it uses for
raw data file loading.

Phase 3 - Sf

Database Processing

A Genesis-produced DBMS can run subsets of SQL, QUEL, or both. The Gdml prompt 'SQL"
requests a SQL command; '‘QUEL." prompts for a QUEL command. Typing SQL will switch the DBMS
1o accept SQL commands; typing QUEL switches to QUEL commands. (Switching is possible only if a
DBMS supports both interfaces).

A subset of SQL and QUEL is supported. This doesn't include, unfortunately, nested selects
and aggregations. So oo are join predicates within update and delete sialemenis. {That is, update
and deletion predicates are restricted to reference a single relation).

Note: these restrictions were imposed simply to keep this version of Genesis tractable. There is
no apriori reason that prevents full-blown SQL and QUEL to be supported.

Link names can appear in SQL predicates in place of their schema-defined join predicate.
Thus, the following queries are identical:

select *- select *
from dept, prof from dept, prof
where dept.deptno = prof.department where P _worksin

If gliases are used in an SQL select, link names cannot be used. (The reason is that link names are
bound to schema-defined names of relations, not aliased names). This means that link names
cannot be used in QUEL retrieves, because of the standard use of aliasing relations via RANGE-OF
commands.

If a dml statement becomes too long to fit on a single line, lines can be continued by a
backslash (\) carriage return. Although not shown, the first two lines of both of the above select
statements were terminated by a \.

QUEL has been extended to support ORDER_BY clauses to order the output of retrieval
statements. The syntax is the same as that for SQL. Another simple extension is the * feature for
retrieval:

retrieve (E.*} where...

where 'E.* is a shorthand for all fields of relation E.

Validation

A set of SQL scripts has been developed to validate Genesis produced DBMSs against the emp
and ut databases. For the emp database, the script is file.paces. For the ut database, three
scripts are available: link1.paces tests mullifile retrievals, link2.paces tests multifile
updates, and link3.paces tests cyclic queries. These files are located in the paces folder in
Genesis 2.

Phase3 - 7

To run link2.paces, as an example, type in the statement:
SQL: source :paces:link2.paces

where SQL: is the Gdmi prompt for an SQL command. Input will then be taken from link2.paces
until the file has been exhausted. To validate the output of Gdml, it is necessary to route it both o
the console and to a separate file. This can be done by selecting console+file as the standard
output, and giving ut as the command-line input. (test.output is the file that we use).

Note: routing output just to & file, and not to the console, will generate slightly different output
than routing to both a file and console. The difference is that routing 1o the console wiil introduce
extra line feeds and carriage returns when a line becomes tco long and wraps around.

standard Input: standard Output:
@® console O console

QO file O file
’ @ console+file
O console+printer
Command Line:

gdmi ut

The application Geertify is a simple program that compares two files and determines if
both are identical (OK) or not (files are different’). The table below lists the paces files and their
validated output files.

yalidation files

:paces:file.paces wvalid:file

:paces:linki.paces :valid:link2
:paces:link2.paces :wvalid:link2
:paces:link3.paces -valid:link3

To validate the output of linkz.paces, for example, run Geertify with command line
parameters test.output and :wvalid:link2.

installation - 1
Installing Genesis

Genesis runs on Mac lis with 6-8M of memory. It's best with a 80M hard disk, as databases
can eat up space very quickly. Genesis comes on four 1.4M disks. Mac lic series can read these
disks: original Mac lis cannot. So if you are getiing 'unreadable disk’ errors, then most likely your
drive can't read 1.4M disks.

The disks are numbered, and should be loaded in ascending order. Disk #! contains the DaTE
folder and the Genesis 2 folder. The Genesis 2 folder is incomplete; its contents are (partially)
completed with the addition of the files in Disk #1l. Disk#3 and Disk#4 contain the remaining
files/folders that are to appear in the GenSource folder of the Genesis 2 folder. The figures below
show the individual assignment of each folder and the disk number (I, Ii, Ill, V) on which the folder
is stored. Try to keep the arrangement of folders, as shown below:

ED Genesis 2 ==—————————0T=
15 items S52,698K in disk 26 ,039K available
Gy oy <y i |
gdefine gdml geertify Gdefine Proj GDML Prej
N pany X

I l i il
ut emp {Gdefine Proj) (GDML Proj)

N

it i

GenConfig GenSour-ce

- l

paces valid test.output BigConftig

14
<3| XS
11 items 44 ,391K in disk 34 346K available
<>
o P PN
I it i v v Iel
DDL DML Drivers Expanders Headers Jupiter
{==
i i i i v 1
System Transformers Utilities Precompile.h Nubs dml.no
i
<] =

©DSBatory

instaliation - 2

Some final comments. In case you lose dml.no, you can regenerate it by running the Nubs
compiler (application nc in the Nubs folder of GenSource) with the command-line arguments
"dml.nu dml.no”. This causes nc to translate the file dml.nu (which you'll find in the dml folder) into
the file dml.no.

GenConfig contains Universals and the configuration files for Ingres. So if you proceed to
compile Gdefine and Gdml out of the box, you'll have an imitation of University Ingres. Keep in mind
that when you run Gdml, it will present you with an SQL prompt. That's because you're running a
Universal which presents both SQL and QUEL.

The Genesis Disks contain no Gdefine or Gdmi executables. You'll have to produce these

yourself. (In their place on Disk #| are some empty text files. They're present only to show you
where the executables will be placed once they are created).

©DSBatory

