A THEORY FOR AUTOMATED SYNTHESIS
OF ARCHITECTURES FOR REPETITIVE
MULTI-RATE ALGORITHMS

Sanjay R. Deshpande

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712-1188

TR-90-28 August 1990

To my parents,

Nisha and Raghunath Deshpande

A THEORY FOR AUTOMATED SYNTHESIS OF
ARCHITECTURES FOR REPETITIVE

MULTI-RATE ALGORITHMS

by

SANJAY R. DESHPANDE, B.TECH., M.S.

DISSERTATION
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN
May, 1990

Acknowledgments

I would like to thank my supervisor, Prof. J. C. Browne, for his con-
stant support and encouragement. My deep gratitude goes to Dr. P. P. Jain
for his role as my co-supervisor, support, help, and especially for making avail-
able his valuable time for the innumerable discussions we had throughout this
research. I would like to thank Prof. R. M. Jenevein for his support through-
out, the many valuable discussions during the early stages of this research, and
his help during the preparation of the final draft of this dissertation. Thanks
are also due to Professors G. J. Lipovski, D. S. Fussell, H. G. Cragon, and

R. H. Flake for serving on my dissertation committee.

T would like to extend my appreciation to Cheng-Liang Lin and Mukund
Belliappa for implementing the DDGTool. Thanks are due to Peter Newton
and Steve Sobek for many helpful suggestions. Thanks also go to Karen Nordby

for her help in preparing this document.

There are some others that I would like to mention here. Their pres-

ence made it all seem a little easier.

I will like to thank Roy Jenevein again for being a dear friend. Special
thanks go to Lucille Jenevein for her loving friendship and for making me feel a
part of the family. Thanks to Matt Sejnowski for being a dear and close friend.
Our post-tennis discussions over Conan'’s pizza were always intellectually in-
vigorating. Thanks go to Ravi Rao for willingly tolerating my lay curiosity in

Physics, which often lead to long illuminating discussions, and for the after-

v

noon cappuccino. Last, but not least, I would like to thank the members of my
family — my parents, my sister Nanda, brother-in-law Anil Pradhan, nephew
Nilay, and niece Madhumita. Their love, support, and encouragement saw me

through many a dim day.

Sanjay R. Deshpande
The University of Texas at Austin
May, 1990

A THEORY FOR AUTOMATED SYNTHESIS OF

ARCHITECTURES FOR REPETITIVE

MULTI-RATE ALGORITHMS

Publication No.

Sanjay R. Deshpande, Ph.D.
The University of Texas at Austin, 1990

Supervisors: James C. Browne and Prem P. Jain

A theoretical framework is developed to achieve automated architectural syn-
thesis for data-independent, repetitive, multi-rate algorithms from their behav-

ioral specifications.

Multi-rate functions are formally defined. It is shown that systolic
architectures for algorithms incorporating multi-rate functions make inefficient
use of hardware components and that a multi-clock design style can produce

more efficient architectures.

A graph-oriented language, called Data Dependency Graphs (DDGs),
‘s introduced to facilitate the specification of multi-rate computations. Com-

putational semantics suitable for multi-rate computations are associated with

vi

the nodes and edges of the DDG. A compatible model for function execution
by hardware components is proposed. A bus-based architectural scheme is also

proposed.

The synthesis process is seen as translation from DDGs to a architec-
tures. Analytic techniques are introduced to extract design information from
the DDGs. Synthesis problems are formulated, and heuristic approaches are
suggested for their solution. An implementation of a heuristic synthesis system

is described. The implementation is evaluated via experiments.

vii

Table of Contents

Acknowledgments
Table of Contents
List of Tables
List of Figures

1. Introduction

1.1 Overview of the synthesis process - ov e ee e e
1.2 Background and related worko e
1.3 Research goal . . o v oo v v n o
1.3.1 Motivations . .« v v v o e e e e
1.3.2 Research goal« o oo
14 The new synthesis approach and problem definition
1.4.1 Synthesis problem for multi-rate algorithms
1.5 Outline of the dissertation« o v oo v vt

1.6 Research contributions« oo oo e

2. Multi-rate algorithms
91 Multi-rate functions and algorithmso oo
91.1 Definitions . .« . « o o o e e e s s e
21.2 Sources of multi-rateo oo e
9.2 Why multi-clock design?o e

iv

vill

xii

xiil

-

10
10
13
14
16
18
20

991 Need for multi-clock implementation . . .

3. Data Dependency Graphs, Architectural Models

and Comparis.ons

3.1 Data Dependency Graphs
311 DDGmnodes« oo
312 DDGEdges« v oo
31.3 An ExampleofaDDG-

3.2 Architectural Modelso
3.2.1 Architectural Characteristics . . - . . . - -
3.9.2 Execution models of hardware components

3.3 Comparison with other synthesis systems
3.3.1 Systolic approacho
332 Sehwa . . o . oo oo
3.3.3 Cathedral systems

4. Analyses of DDGs
41 Token Rate Equations o« -« oo o v
49 Token Count Equations. - - oo oo
4.3 Subgraph collapse and hardware composition . . .
431 Sub-DDG Collapse-
4.4 Execution graphofaDDGo oo
4.4.1 Construction of the execution graph
4.5 Equivalence transformations - -
4.5.1 Equivalence transformation for delays . . .

4.5.2 Equivalence transformation for tokens . . .

ix

4.6 Initial tokensinloops v v o oo e e e 114

46.1 Conditions for deadlock freedom in loops 115

. Synthesis of Architectures 120
5.1 Optimization criteria . . .« . . v oo 121
5.1.1 CurTent SCOPE . . « v v o o oo b n e e e e e 122

5.9 Minimum latency scheduling oo e 124
5.2.1 Delay semantics in execution graphs- 124

5.3 Integer programming formulationo 131
54 Acyclic DDGs . . . o o oo oo 135
5.5 DDG with a single outerloop o . oo oo 139
5.5.1 An iterative heuristic algorithm 140

5.6 Scheduling of multi-rate DDGs with independent and nested loops146

5.6.1 DDG with independent loopso 146
562 DDGs with nestedloops« oo oo e 148

. Implementation of a heuristic scheduler 163
6.1 Synthesis methodology« « o oo 164
6.2 DDGT00l . . vt e e i e 165
6.2.1 Graphical capabilities. oo 166
6.2.2 Specification of DDGs using DDGTool 167
6.2.3 Schedulerinput o o oo 170

6.3 Design of the heuristic scheduler« o v oo 171
6.3.1 Node ordering heuristic.« .o v v 172
6.3.2 Slotting heuristico 176
6.3.3 The assignment problemo 183

ps

6.4 Extensions to the heuristic scheduler v v o o o o v u s 190

6.5 Storage considerationso c e 192
6.6 Examples oo o 196
6.6.1 Fifth order elliptical filter 196

6.6.2 Phase modulator e 197

6.7 Timing comstraints« ..o 201

7 Further extensions and future directions 208

7.1 Data dependent to data independent structure transformation . 208

7.2 Synthesis for multiple DDGso oo e 214

7.3 Hierarchical design and internally pipelined components 216
8. Summary and conclusions 220
BIBLIOGRAPHY ' 223
Vita

%1

1.1

3.1

3.2

6.1

List of Tables

Some high level synthesis systems.o 3
Comparison with other pipeline design methodologies. 61
Comparison between Sehwa and the present approach. 74
Costs of architectures for fifth order elliptical filter. 197

Architectural characteristics for the phase modulation circuits. . 201

¥x1i

1.1

1.2

3.1

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

List of Figures

The Y-chart for silicon compilation.« oo oo 4
The synthesis process« « o oo 17
Semantic specification of the AND and SR firing disciplines. . . 40
Examples Of Nodes o« o oot v v oo oo e e 43
DDGforadpoint FIRo oo v v oo 45
Connectivity model of a hardware component. 48
Schematic of the proposed scheme for architectures. 53
The proposed execution model for a hardware component. . . . 54
V02044 Schematic. . .« v v o v v v e e e e e e e e e 57
V12044 Timing diagram.« « o o o oo e 57
Execution model for the first configuration. 58
Execution model for the second configuration. 59
Atwostage FIR oo 64
A systolic cell for FIR computation 65
A multi-clock implementation of an FIR 66

A critical path and a non-critical path within the same time-step. 69
Flow graph of the 16 point FIR filter. 70

The DDG representing the FIR filter. 71

X111

3.17 The schedule with graph latency of 600 ns obtainable by the new

approach. 72

3.18 The schedule with graph latency of 820 ns obtainable by the new

APPIOACH. o ¢ i i e e e e e 73
41 A Dependency.« oo oo e e 79
42 APathsFrompToqgo oo oo oo 81
43 A TreeForm UDDG oo oo oo s 83
4.4 A Cycle Within ACDDG 86
45 ASubgrapho 95
4.6 Single Node Equivalent Of The Subgraph 96
4.7 A loop in the UDDG lying partly inside the subgraph. 97
4.8 An example of a compositionl 102
4.9 Translation of an edge in a DDG to a bipartite graph. 103
4.10 Examples of edge translations. f e e e e e e 105
4.11 Delay transformations.o ..o e 108
4.12 Delay transformations for subgraphs. 110
4.13 Token transformations.« o v o oo oo 112
4.14 Token transformations for subgraphs. 113
4.15 A DDG loop with zero initial tokens and no deadlock. 114
4.16 Interlocked loops with distributed initial tokens. 115
51 Distribution of delay over edges in the execution graph. 125

xiv

5.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.11

6.12

Delay configuration for a link-edge c in the maximal delay span-

DING ETEE. o« v v v e e e e e e e e e 130
Relationships between Ly, Ls and m-Ls. . . .o o oo oo e 142
A DDG with independeﬁt I00PS. « v v v e e e 147
Asetof nested loops. 152
Two paths from invocations of the loop start node. 159
DDGs for the example illustrating uniform-criticality. 162
The Definitions form in DDGTool.« . v oo e e 169
NoOdE ICOMS. + v v e v e e e e e e e e e e e e e e e e 169
The form used to specify anode.o oo 170

The form used in DDGTool to specify dependency information. 171

An execution subgraph. 173
DDG representing a 16-point FIR filter.. 179
DDG with an irregular topology. . - . . .o oo e 182

Graph-theoretic formulation of the simplified assignment problem.184

Architecture for the convex hull algorithm for input latency of

Modified connectivity model under the look-ahead heuristic. . . 195

(2): DDG for the fifth order elliptical filter.. 198
(b): DDG for the fifth order elliptical filter (continued). 199
Block diagram' of a phase modulator. 200

XV

6.13 (a): Top level DDG for the phase modulation computation. . . . 202

6.13 (b): Sub-DDG for the “prefilter”. oo 203
6.13 (c): Sub-DDG for “g”. 204
6.13 (d): Sub-DDG for the modulation computation. 205
7.1 DDG to computeconvex hull. 211
7.2 A data-independent DDG.o 213

73 A DDG for the beam forming computation using only data de-
pendencies. e e e 216

7.4 The two DDGs for the Beam-former example. 217

xvi1

Chapter 1

Introduction

A continuing trend towards miniaturization of feature sizes and a
move towards design automation has fueled the growth of the Application-
Specific IC (ASIC) industry. Over the last few years, the progress of VLSI
technology has made it less expensive to invest in a dedicated hardware system

and thus obtain very high speed-ups.

The interest in ASICs, and even board-level application-specific com-
puting engines in general, is engendered from several quarters. First and fore-
most, are the algorithms in signal ?rocessing, In the past, typically, these
algorithms were executed off-line on large and powerful main-frame computers.
More and more, however, for applications such as radar and sonar, and on re-
mote computing platforms such as in avionics or space-based instrumentation,
the processing of signals is done on-line and in real-time. Moreover, increas-
ingly, digital signal processing is also finding its way into systems which hereto-
fore were the realm of analog processing, such as television and radio. The on-
line execution of these extremely compute-intensive algorithms demands very
high processing rates. These considerations, in effect, disqualify main-frame
based solutions, and, on the other hand, promote special purpose systems as
solutions. Similar considerations also hold for vision and control applications in
robotics and in real-time graphics processing, where computational geometry

replaces signal processing. The last but not the least impetus is received from

1

the desire and feasibility of embedding algorithms, previously executed on gen-
eral purpose processors, in hardware, at low cost, thereby gaining substantial

speed advantage over the conventional solution.

All integrated circuits benefit from the speed gains resulting from
faster device technologies and reduction in the feature sizes, but ASICs derive
their speed advantage by employing only those hardware functions that are
used by the algorithm, and by customizing their interconnections. But ASICs,
since they are typically manufactured in smaller volumes, are beset by the
problem of high design overhead per unit. Therefore, an increased level of

design automation is imperative to make them economically attractive.

Automated design of algorithm-specific circuits has often been called
silicon compilation [27, 11], in which, the computation to be performed is de-
scribed in some suitably abstract machine-readable form. This specification
is then automatically translated into a low level description of a circuit, and

ultimately layout, that implements the computation.

Over the last decade, a significant amount of research has gone into
advancing the state-of-the-art in silicon compilation. The effort has ranged
from defining new design description languages, VHDL, ZEUS, and ISP [53,
19, 6], to cite a few, to the construction of complete design environments,
MAHA, Yorktown Silicon Compiler, Cathedral I, II, and III, and HAL [45,
7,25, 13, 41, 47], for example. Table 1.1 gives a more comprehensive list of

synthesis systems described in the literature.

In [11] Gajski and Thomas characterize different aspects of silicon
compilation using the Y-chart, reproduced here in Figure 1.1. The three axes
of the Y-chart represent three different domains of design description: behav-

joral, structural, and physical-form. The chart has the characteristic that the

System Site Reference
Cathedral I IMEC [25]
Cathedral II IMEC [13]
Cathedral 1II | IMEC [41]
BUD-DAA AT&T [38]
Elf Audesyn Inc. [20]
Emerald/Facet | CMU [59]
EMUCS CMU [22]
Flamel Stanford [58]
HAL Carlton U. [47]
Hercules Stanford [39]
MAHA USsC [45]
SAW CMU [57]
SLICER U. Illinois [42]
YSC IBM (Yorktown) | [7]

Table 1.1: Some high level synthesis systems.

descriptions farther from the center are more abstract than those closer to it.
Thus the innermost level corresponds to the lowest level VLSI circuit primi-

tives, and the outermost level corresponds to system-level descriptions.

Silicon compilation can usually be divided into two steps: 1) trans-
lation from behavior to structure, and 2) translation of structure to geometric
form for layout. By convention, the former step is called synthesis, and the

latter is comprised of floor-planning, placement, and routing.

The research reported herein falls under the category of synthesis. In
particular, the research deals with high-level architectural synthesis. In it, the
goal is to describe algorithms in a suitable high level programming language
and to produce an architecture using pre-designed building blocks, such as

ALUs.

In the following section, an overview of the architectural synthesis

Structural Behavioral
Domain Domain
PMS Systems
HW modules Algorithms

ALUs, MUXs, Regs
Gates, Flip-flops

Register transfers
Boolean functions

Transistors, Wires Transfer functions

—— Layout
_1. Modules
—1 Floor plans
—~ Clusters

—1— Physical partitions

Physical

Domain

Figure 1.1: The Y-chart for silicon compilation.

process is given. In Section 1.2, a survey of related work is given. In Section 1.3
the goals of this research are stated. Section 1.4 contains an outline of the
approach developed in this research. Section 1.5 contains the outline of the
remaining chapters of this dissertation. Finally, in Section 1.6 the contributions

of this research are briefly previewed.

1.1 Overview of the synthesis process

High level synthesis starts with a specification of the computation in

an abstract programming language which obscures the details of the hardware

components that will eventually implement the operations. Typically, before
an architecture is designed, this specification goes through translation phases

involving, perhaps one or both of:

o Behavior level transformations: Certain parts of the computation may be
transformed into operations that are implementable in hardware. Loops
may be unrolled creating a loop-free computation. Temporary variables

may be inserted or removed to simplify the computation.

e Specification language transformation: The translation process may use
an intermediate form of specification that is easier to analyze. Most
often, textual input specifications are translated into directed graphs. For
example, many synthesis systems employ Value Trace, a directed acyclic

graph representation developed at CMU [54], as an intermediate form.

Subsequent to the above steps, decisions are made about architectural

issues. These include,

e Choice of computational primitives: The computational operations in the
algorithm are bound to types of components. For example, both additions
and subtractions may be executed on a common ALU. Similarly, divide-

by-2 operation may be done using a “right-shift” component.

e Choice of communication primitives: The data transfers among the com-
putational components have to be effected via a communication structure.
Tt is essential to determine the components such as busses, multiplexers,

cross-bar switches, etc., out of which this structure will be constructed.

e Choice of clocking scheme: All or almost all synthesis systems produce

designs which are synchronous, and therefore must decide the nature of

the clocking scheme based on an underlying global clock. Apart from the

decisions related to technology, there can be three basic choices:

1. all registers in the architecture are clocked with the edges of the

global clock (e.g. in a systolic design),

9. each registers is clocked by one of a small number of inter-related

clocks derived, prior to synthesis, from the global clock, or

3. clocks for individual registers in the buffer are specified by the final
design.

Characteristics of an architecture produced by the synthesis system
greatly depend on the decisions made regarding the above issues. These deci-
sions act as constraints, and in effect define its component domain (C), subject
to which the synthesis process must design. These, in turn, help partly de-
fine its algorithmic domain (A), the types of operation that can be “faithfully”
translated from the input language, and consequently, the types of synthesiz-

able algorithm.

(By faithful is meant, without any intermediate modification at the al-
gorithm specification level. For example, if a complex-multiplication operation
is specified in the algorithm, the synthesis system may either choose to resolve
it into component operations and implement them via adders and multipliers,
or it may utilize 2 complex-multiply component. The latter is considered a

faithful translation.)

In this view, synthesis is seen to be a mapping from components and
algorithms to architectural designs (D), (CxA) — D. The mapping implied

in the synthesis process is different from the mapping of an algorithm onto an

architecture in the traditional sense: in the latter, the architecture is prede-
fined, whereas in the former, there exists an extra degree of freedom and the

architecture has to be “computed” from the demands of the algorithm.

The synthesis process must produce designs to achieve one or more
objectives including cost, utilization, and speed of computation. These ob-
jectives along with the abovementioned constraints guide the formulation of

algorithms employed in the synthesis process.

The term synthesis methodology is used to mean collectively, the com-
ponent domain of the synthesis process, its design objectives, and the collection

of analytic techniques and algorithms it embodies.

1.2 Background and related work

In this section a brief look is taken at other approaches to synthesis
of architectures from behavioral specifications. The salient aspects of these

approaches are indicated.

There have been many successful efforts at obtaining a systolic ar-
chitecture for a given algorithm. These methods are based on the principle of
retiming presented in [35], in which the algorithm is modified such that the
algorithm execution is pipelined and each unit of computation has a delay less
than or equal to the cycle time of the global clock. Some examples of such
efforts are [50, 9, 49, 24]. However, as this research has shown (see Chapter 2),

for multi-rate algorithms, systolization does not produce efficient architectures.

All synthesis approaches are characterized by the absence of a pre-
determined number of components in the architecture and the connectivity
between them. Thus any design approach which does not make assumptions

about these two aspects can be considered a synthesis approach.

Renfors and Neuvo in [51] built upon the transform techniques of
Fettweis [17] to obtain a minimum latency architecture for recursive digital
filters under hardware delay constraints. However, they did not consider the

effects of multi-rate operations or components.

Schwartz in [52] showed the existence of cyclo-static schedules to exe-
cute computations defined by signal flow graphs on synchronous homogeneous
multiprocessor systems. The cyclo-static schedules are found to require the
minimum number of processors determiﬁed from the computational require-
ments of the algorithm under given input latency. Schwartz also used an ex-
tended form of the transform technique of Fettweis, in addition to some other
techniques such as blocking, to obtain the schedules. However, the approach
developed in [52] is not extensible to real-time, on-line, multi-rate algorithms

and the use of heterogeneous multi-rate hardware components.

Lee and Messerschmitt, in [34], presented a technique for scheduling
multi-rate computations on a uniprocessor. They also extended the technique
to schedule the algorithm on a shared-memory multiprocessor. For the latter,
they assumed that all the processors were identical. Since they also made
an assumption about the number of processors in the architecture as well as
their connectivity instead of computing it, their results are not applicable for
architectural synthesis. Nonetheless, they introduced synchronous data flow

graphs of which the Data Dependency Graphs, used here are, an extension.

The Sehwa pipeline synthesis system was one of the first pipeline
synthesis systems to be described in the design automation literature [44].
Sehwa is part of the MAHA synthesis system described in [45], and is based on
the graph-partitioning concept. The single rate algorithm to be implemented

is input as a directed acyclic graph. The synthesis system partitions the graph,

a partition being executed within a single clock cycle. An edge that spans
neighboring partitions results in the insertion of a buffer and adds to the cost
and delay of the architecture. The edges internal to a partition get merged into
multiplexers. The computational components are not shared within a clock
cycle, but can be shared during different clock cycles, leading to a reduction in
cost. The MAHA system uses the concept of freedom, the difference between
the ALAP and ASAP scheduling times of an operation, and uses the heuristic of
scheduling the operation with least freedom first. The Sehwa pipeline synthesis

algorithm is examined in greater detail in Chapter 3.

The HAL synthesis system, described in [46], is also oriented towards
synthesis of pipelines for repetitive single rate algorithms. The algorithm to be
implemented is input as a data flow graph, and the system produces an archi-
tecture with minimum number of components. The significant contribution of
the HAL system is the steepest-descent heuristic-based, global load balancing
scheduling algorithm used to minimize the concurrency of use of individual

types of components [47].

In [7] Bryton and others describe the Yorktown Silicon Compiler. The
system consists of an array of languages and tools for behavioral synthesis from
algorithm specification to layout synthesis. The algorithm to be implemented
is specified in a language called Yorktown Intermediate Format. The synthesis
‘tself is divided into the three steps of: structural synthesis, logic synthesis and
layout design. The structural synthesis refers to the architectural synthesis be-
ing considered herein. The central scheduling procedure in structural synthesis
is called control state splitting; it is used to allocate increasing number of clock

cycles for long operations.

System Architect’s Workbench (SAW) from Carnegie Mellon Univer-

10

sity ([57]) is tuned specifically to automating microprocessor design. The al-
gorithm being implemented is input in Instruction-Set Processor Specification
(ISPS) and translated into a value trace, 2 directed acyclic graph [54]. The
value trace is then scheduled by the system’s CSTEP module using a modified

list scheduling technique.

The Slicer silicon compiler ([42]) accepts the behavioral description
in a Pascal-like input language and converts it into a control/data flow graph
(CDFG). It subsequently uses critical path analysis of the graph to schedule
the operations by giving the operation with the least amount of slack (called

mobility in Slicer terminology) highest priority.

1.3 Research goal

This section discusses the objectives of this research. It starts by

discussing the motivations behind the current research.

1.3.1 Motivations

The current research was aimed at extending the applicability of the
synthesis process in two directions: 1) handling of multi-rate algorithms and, 2)
optimization of communication hardware along with computational hardware.

Motivations for seeking these extensions are as follows:

Moulti-rate algorithms

High levels of integration has made it attractive to embed large al-
gorithms in hardware. Many such algorithms involve operations that result
in changes in data rates. These operations accept a certain number of input

operands and produce a certain different number of output operands per exe-

11

cution. For example, a decimation-by-four operation takes four data items as

input and produces one data item at the output.

Operations such as decimation, that cause change in data rates, are
herein called multi-rate functions, and the algorithms incorporating them are
referred to as multi-rate algorithms. Instances of multi-rate algorithms appear

in diverse application areas such as:

Signal processing: e.g., modulation/ demodulation, sonar beam-forming,

and phased array radar.

Adaptive control.

e Graphics: e.g., interpolation, anti-aliasing computations.

Coding theory.

e Data encryption and recovery.

In the above application areas, certain algorithms are inherently multi-
rate by virtue of computational definition. However, multi-rate behavior may
also occur in common hardware components which multiplex data over their
ports. Such components are said to share their ports, and are referred to as

shared port components.

As the level of integration increases, the number of available external
connections do not grow as fast as the area of the circuit. In fact, it has been
observed (Rent’s Rule, [40]) that the number of connections grows only as 4g%°,
where g is the number of gates in a VLSI circuit. The implication is that, the

larger the circuit is, the more likely it is to share external ports and behave

12

as a multi-rate function. A hierarchical design style, often adopted for large

designs, furthers this necessity of sharing ports.

Traditionally, multi-rate algorithms are divided into smaller sub-computations
which have constant data rates. These sub-computations are synthesized into
separate circuit components, which are subsequently interconnected via man-

ually designed interfaces.

In addition to being slow and expensive, this traditional approach
‘s not well defined and can often result in inefficient designs. A single step
synthesis process is required to produce efficient architectures. Such a single
step process must support abstractions to adequately model the multi-rate

behaviors of functions.

Optimization of communication hardware

Another extension was aimed at optimizing communication hardware.
Most of the synthesis methodologies described in the literature relegate to the
optimization of communication hardware a secondary status. It is done a poste-
riori to the optimization of the computational components and storage. How-
ever, when the number of communication components in the architecture is
large, and when each of these connects together several computational compo-
nents, it is important that optimization of communication hardware be given

a serious consideration.

It is true that communication requirements can be traded against
storage requirements, since, for every postponed data-transfer, a buffer must
be included to hold that datum. However, because the area cost of a commu-
nication component, say, a bus, connecting multiple c;)mponents is larger than

that for buffer registers, the trade-off is considered worthwhile. This can be

13

expected to be especially true for architectures with large number of computa-

tional components.

1.3.2 Research goal

The overall three-part goal of this research effort has been:

1. Develop a framework to

e Express repetitive, multi-rate algorithms with the following con-
straints:
— Repetition rate is constant
— No data-dependent computations are allowed
— Operations are ‘data,-va;lue independent

— Operations always opérate on the same numbers of data items
e Express behaviors of multi-rate functions
e Formulate synthesis problems as optimization problems

¢ Propose solution methods to these problems
2. Develop solutions techniques for the synthesis problems

3. Demonstrate the feasibility of a synthesis methodology based on the
above framework, the solution methods, and known scheduling heuris-

tics.

It is important to emphasize here that the techniques and methods
developed during this research, and presented herein, were oriented towards
repetitive algorithms. Different techniques would be required for non-repetitive

algorithms.

14

The result has been a theoretical framework supporting an architec-
tural synthesis process for repetitive, multi-rate algorithms, and a methodology
based on this framework. In Section 1.4, the approach taken in this research is

outlined. Before that, other related work is reviewed.

1.4 The new synthesis approach and problem defini-
tion
This section gives a brief overview of the new synthesis approach

developed in this dissertation.

The new approach (i.e. the approach developed herein) to the prob-
lem of developing a methodology for synthesis of repetitive multi-rate algo-
rithms, using multi-rate components, involves the development of a theoretical
framework to support expression of multi-rate algorithms and their translation
to efficient architectures. The framework can be divided into the following

aspects:

e A representation basis for expressing algorithms
e A new model of execution for hardware components
e Definition of an architectural schema

e Formulation of the synthesis problems as constrained transformation from

algorithms expressed in the representation basis to an architecture.

Development of certain analytic techniques to assist in the synthesis pro-

Cess.

In the following paragraphs, these aspects are touched upon in greater

detail.

15

The representation basis chosen is called the Data Dependency Graph
(DDG). A DDG is a data flow graph augmented to provide a mechanism for
specifying multi-rate operations. The computational model is assumed to be

data-driven data flow.

The user specifies an algorithm by drawing a DDG and providing the
necessary specifications for its nodes and edges. Such direct graphical repre-
sentation eliminates the need for a procedural language to express algorithms
and the translation step of transforming the input specification into an inter-
mediate graphical form. It also has the advantage of being able to express the

available parallelism.

The user specifies the repetition rate of the algorithm by indicating

the inverse quantity called the input latency.

It is assumed that each operation in the algorithm is executed by a
unique type of hardware component. This mapping of computational opera-
tions to components is provided by the user. On the other hand, throughout
this work it is further assumed that the communication operations are executed

via busses.

A DDQG, for which the input latency is specified and an operation-to-

component mapping has been provided, is referred to as an annotated-DDG.

The new model of execution for hardware components is a determin-
istic, multiple clock-cycle model, with phases for input, operation execution,
and output, which may perhaps overlap each other. This model supports com-
binational and internally sequential components, and provides a satisfactory
model for multi-rate components as well. Furthermore, it is compatible with
the computation model of multi-rate functions and can thus be used for their

analysis.

16

It is assumed that target architectures are synchronous (i.e. using
a global system-wide clock), and are controlled via a ROM-based control pro-
gram. The control program is obtained statically by the synthesis process. The

control ROM is addressed via a counter.

Using the DDG-specification of the algorithm, the execution model
of the components, and the user-provided input latency, analysis is carried out
to determine the number of executions of each node of the algorithm, and in
the case of acyclic DDGs, also the numbers of components required in the
architecture. Following this the synthesis is carried out, which involves the

steps of scheduling and assignment of operations to hardware components.

The last two steps, namely analysis and synthesis, are part of the

automatic synthesis system.

The overall synthesis process appears as shown in Figure 1.2.

1.4.1 Synthesis problem for multi-rate algorithms

In the light of the framework outlined in the preceding, the synthesis

problem can be stated as follows:

For a given multi-rate repetilive algorithm, given that

e each operation in the algorithm is data-independent,
e cach operation is executed on a unique component, and

e communication operations are ezecuted via busses.

Assuming that the cost of the architecture is computed in terms of

the total number of computational components and busses, and the connectiv-

Algorithms

User

DDGs

Annotated DDGs

W
m
W

3

Analysis of DDGs

Wy
o
w

Synthesis

Operation to
component-type binding
(delays and execution
model); latencies

aaaaaaaaaaa

TREs, TCEs,
Consistency
conditions,
Execution graph

Scheduling (time) &
Assignment
(Operations to
components)

Figure 1.2: The synthesis process

17

18

ity of the architecture (i.e. number of connections between the computational

components and the busses),

e for a cyclic DDG, establish the lower bound on the input latency (mini-

mum input latency).

e given the input latency for the algorithm, find a minimum cost architec-

ture

In the next section is given a brief outline of the other chapters of this
dissertation. The section following it contains a summary of the contributions

of this research.

1.5 Outline of the dissertation

Chapter 2 contains a formal definition of multi-rate functions and
algorithms. It further explains the concept of a shared port and shows the
similarities between the implementation of a multi-rate function and a multi-
rate component using shared ports. It contains motivational arguments for
choosing a multi-clock scheme over the systolic scheme for efficient synthesis

for multi-rate algorithms.

The following chapter, Chapter 3, contains the definition of the Data
Dependency Graphs, the algorithm representation basis of the new approach.
It also contains the definition of the associated computational model, the defi-
mition of the execution model for hardware components, and the specification
of the general structural characteristics of the architectures generated by the
synthesis process. After these are discussed, the stage is set to compare the
new approach with some other approaches with respect to their effectiveness

and the general architectural characteristics.

19

Chapter 4 describes a number of analytic techniques to which an
algorithm specification can be subjected, to obtain design information, and
to assist in the synthesis processes of scheduling and assignment. Specifically,
the techniques include the token rate equations, the token count equations,
the erecution graph of the DDG, and the equivalence transformations. The
chapter also contains a discussion of initial tokens in directed loops of a DDG.
A necessary and sufficient condition for guaranteeing the absence of deadlock

in a directed loop is given there.

Chapter 5 addresses the two synthesis problems for multi-rate algo-
rithms enunciated in the last section. In particular, the synthesis for cyclic
DDGs is resolved into multiple sub-cases, and each sub-case is considered sep-
arately. The general case is a DDG with multiple interconnected loops. For
this general case, the problem is known to be NP-hard and is formulated as an
integer programming problem. The special case of an acyclic graph is solvable

in polynomial time, and a scheme is presented to achieve the same.

For the special case of DDGs with independent loops, the complexity
of the synthesis processes can be reduced by a divide and conquer heuristic.
In it, the scheduling of a loop is done independently of that of the rest of the
DDG, albeit at the risk of forsaking the global optimal solution. In the case of
the DDGs with nested loops a similar heuristic approach is possible, in which a
loop is scheduled without regard to the loops nesting it and the loops it nests.
However, this is only possible if the loops satisfy the condition of uniform
criticality. This condition is stated in Section 3.5, and there it is shown that
the nested loops that satisfy this condition, can be correctly scheduled in the

manner stated above.

The special case of a DDG with an outer loop is equivalent to the DDG

20

without the loop, but on which graph latency constraints have been imposed.

This problem is NP-hard, and for it an iterative algorithm is proposed.

Chapter 6 contains description of the implementation of a fast, heuris-
tic synthesizer for acyclic DDGs. Specifically, the chapter contains discussions
of the various heuristics and their performance. It also describes the extensions
made to the basic synthesizer to make available a limited ability to explore the
architectural solution space. The chapter also contains a demonstration exam-

ple of an elliptical filter.

Chapter 7 contains illustrations of some desirable extensions to the
present methodology. The contents of the chapter are intended to point to

future directions in which the present research may be carried.

Finally, Chapter 8 summarizes the findings of this research and con-

tains concluding remarks.

1.6 Research contributions

This research has focused on the development of a theoretical frame-
work to support the synthesis of multi-rate algorithms and the use of multi-rate
components, and on the development of a methodology based on this frame-

work. Following salient contributions are reported herein:

o Formal definition of multi-rate functions and algorithms. Also,
it is shown that a non-systolic multi-clock architectural scheme is more

efficient for synthesis of multi-rate algorithms.

¢ Shared port as a source of multi-rate behavior. It is recognized
that the increasing levels of integration lead to shared port components,

and therefore multi-rate behavior.

21

o Unified representation for multi-rate behavior. It is recognized
that multi-rate components can be abstracted as multi-rate functions as

well, and that both can be analyzed formally in an identical manner.

¢ Data Dependency Graphs (DDGs). The DDGs are used as a sin-
gle unified means for specifying a multi-rate algorithm. The DDGs also
permit the explicit inclusion of data communication operations. A data-
reordering communication primitive called the SR-communication node
is introduced to facilitate the specification of multi-rate behavior of com-

ponents in a DDG.

e Execution model for hardware components. An execution model
suitable for multi-rate components is formulated. This model can cap-
ture the behavior of computational components as well as communication
components. These components may have execution delays that are sin-

gle or multiple clock cycles long, and may be combinational or sequential.

e Analytic techniques to assist the synthesis process. The tech-

niques include:

— Token rate equations.
— Token count equations.
— Execution graph.

— Equivalence transformations.

e Formulation and solution of synthesis problems stated in Sec-

tion 1.4.1.

e Extensions. Extensions are proposed to synthesize architectures for

22

1. Algorithms incorporating data-dependent computations.

2. Multiple algorithms combined via count dependencies.

e DDGTool and a heuristic synthesis system. The synthesis method-
ology based on the above concepts is demonstrated by implementing a
graphical front-end, called DDGTool, to draw DDGs, and a heuristic
synthesis system. The heuristics are introduced for scheduling of oper-
ations and for assignment of pre-scheduled operations to components to

minimize the connectivity of the architecture.

Chapter 2

Multi-rate algorithms

As seen in the previous chapter there has been an intense interest in
the area of high level synthesis of hardware pipelines, and increasingly more
complex algorithms are being implemented in hardware. The systolic design
approach [32] and the design approach of Sehwa [44] represent two systematic
and formal approaches to the area of synthesis of efficient pipelined architec-
tures. Although these two approaches have been applied to diverse application
areas, as was indicated in the previous chapter, there are algorithms which fall
outside their domain. In this chapter, this extended domain of application is

specified; its implications for the design process are also discussed.

2.1 Multi-rate functions and algorithms

Algorithms that are executed repeatedly fall into two broad cate-
gories: single rate, and what will be defined here as multi-rate. The first can
be informally described as one in which the data rates remain the same along
any path in the computation graph of the algorithm. The latter can be de-
scribed as one in which the data rate may change along a path in the algorithm
graph.

In multi-rate algorithms, the change in data rate may be functional in
origin, meaning that it is part of the specification of the computation. As indi-
cated in the last chapter, multi-rate computations occur in various application

areas such as signal processing, adaptive controls, graphics, etc. For example,

23

24

in decimation filtering — a well-known signal processing algorithm, the amount
of data to be processed is reduced by eliminating part of the input data, and

thus the reduction in data rate is part of the computational specification.

On the other hand, the data-rate variation may have an implementa-
tional origin, meaning that it may be dictated by its hardware design. In either
case, the effect is the same, the candidate algorithm available for the design

process becomes multi-rate.

In this section multi-rate functions and algorithms will be formally
defined. The concept of a shared port is presented as the source of multi-rate

behavior in hardware components.

2.1.1 Definitions

Formal definition of a multi-rate function is given first. For the
present, attention will only be on computations with single input and out-
put domains. But as will be seen later, the concepts are readily extensible to

those with multiple input and output domains.

Single input and output domain functions

Definition 1 A relation R over sets A and B (from A to B, denoted as A —
B) is a set of ordered pairs (g, b), where a and b are sets and a € A and b €
B.

Since the interest here is in the computational aspects of algorithms,
the sets a and b will be assumed to be sets of primitive data items. Note

that a and b are sets of primitive elements. Often, in the literature, a and b

25

are themselves primitive elements. The definition given here reduces to the

+raditional one when sets a and b each include just a single element.

Definition 2 A function F is a relation which satisfies the property: Va,
Vbl,Vbz {(a,bl) < F /\(a,bg) € F = bl = bg]

Definition 3 A function F from A— B for which ¥(a,b) € F, o] =m, bl =7,

is denoted as | D

Definition 4 A function F™™ is p-input-unique ifVa;, a; € Domain(Fm;n),
jai = Uil =p, P2 1.

i
Definition 5 A function Fm" s g-output-unique if Vb;, b; € Range(Fm;n)}
i — Jbil=¢, ¢2 1. |

J#

A p-input-unique, g-output-unique F™™ is denoted by Fg’l:f" Here
consideration will only be given to functions which have m=p and n=q. For
brevity these functions are denoted as simply Fp;q- These functions effectively
operate on unique sets of input data (ai’s), such that the individual data values

are not shared between the domain sets a;. Similarly, the output images b;s do

not share data elements.

In general, p and q may be different, although it is certainly possible
to have p = q.
To define multi-rate functions, the concept of time must be introduced

into the last definition. This is done by asserting the following:

For Fp;g> each element of input set a; is accessed at distinct time

instant; the same is true for elements of the output set b;.

26

In other words, each operand belonging to a domain is accessed at
a distinct time instant. Note that the above requirement does not rule out a

concurrent access of an element of set ¢; and an element of set b;.

It will be convenient to assume that consecutive time instants are
separated by a fixed time-interval, and that a primitive element of a domain
is accessed one per time-interval. Thus, for Fp;qa the input set occupies p

time-intervals, and the output set occupies q time-intervals.

Single rate and multi-rate functions can now be formally defined:
Definition 6 An Fp;q: where p = g, is called a rate-invariant function.
Definition 7 An Fp;q: where p = q = 1, is called a single rate function.
Definition 8 An Fp;q: where p # g, is referred to as a rate-varying function.
Definition 9 An Fp;q: where p = q, or p # g, 1s called a multi-rate function.

Notice that one may define a multi-rate rate-invariant function as one

for which p = q # 1 — rate-invariant functions leave the data rate unchanged.

Single and multi-rate algorithms can also be defined.

Definition 10 An algorithm in which all functions are single-rate is called a

single-rate algorithm.

Definition 11 An algorithm is called a multi-rate algorithm only if it is not a

single rate algorithm.

27

Notice that the definition of multi-rate functions allows p to be equal,
or unequal, to g. However, of more importance in the next section will be
the latter case of p#q, i.e. the rate-varying functions. Thus, although the
term “multi-rate” subsumes both rate-invariant and rate-varying functions,
throughout the rest of this dissertation, unless explicitly stated, it will imply a

function of the latter type.

Multiple input and output domains

A generalization to multiple input and output domains is straight-

forward.

A multi-rate function operating on multiple input and output domains
is denoted by Fpl D9y G152yee" Here, p1, p3, . . - are cardinalities of input sets
ai, az, ... from domains Ay, A, ... respectively, and g1, g2, . . . are cardinalities

of output sets by, b, ... from codomains By, B, ... respectively.

As in the case of single domain functions, for multi-domain functions
the uniqueness of time of access is required only for inputs belonging to same

domain.
A function thp%“; 41,2, 18 defined to be single rate if V 7, 7, p
A function FPLP%---; q1,G2,--0 is defined to be rate-varying if
Single and multi-rate algorithms have the same definitions as before.

In Chapter 3 a multi-rate function will be represented by a node in a
directed graph. The input domain will be represented an input edge and the

output domain will be represented by an output edge. And the integers p and

28

q will be associated with the input and output edges respectively.

2.1.2 Sources of multi-rate

There are two sources via which multi-rate behavior may become part

of the hardware implementation of a function:

1. computational definition, and

2. implementational constraint.

Regardless of the source, the behavior of the implementation can be
formally described with the same abstraction: Fpl PYreess Q152w This unified
representation permits the synthesis methodology to deal formally at once with
algorithms that are cemputatibna,ﬂy multi-rate (such as decimation), and with
algorithms that are made to take on multi-rate behavior through the incorpo-

ration of predefined hardware-implemented functions.

Computational definition

A function may inherently be defined in terms of a time-series of data,
as is the case for many signal processing functions. For these the inputs and
outputs are defined as functions of time instants (e.g. sampled signals). A
hardware implementation of this abstract definition of the function receives
input data values over a number of time-intervals, and similarly, produces out-
put values over multiple time-intervals. Now, if the cardinality of input set is

unequal to that of the output set, the result is a multi-rate component.

This occurs, for example, for functions such as decimation and in-

terpolation, and in serial-parallel converters, and are therefore characterized

29

as multi-rate functions. In these particular cases, the input and output data
elements are also unequal in number; i.e., p#q. For instance, an 8-to-1 serial to
parallel converter collects eight bits of data and produces a single byte. Such

a converter can be described as Fg;l.

Implementational constraint: Shared port component

A port of a computational component is called a shared port when
the constraint of sharing electrical conductors, in the form of pins, wires, or
pads, imposes the requirement of time-multiplezing more than one distinct
logical operand over it. When so used, the individual operands are transferred
over different time-intervals, thereby imparting the component a multi-rate

behavior.

As the VLSI technology moves toward higher levels of integration,
there is a tendency for the computations cells to become increasingly complex
and thus large. However, as the area of a cell increases, its input-output capac-
ity increases approximately only as its area’s square root — a consequence of
its 2-dimensional implementation. Thus there is a growing necessity to share a
port for multiple operands, for both input and output. The same phenomenon

also occurs during hierarchical design of systems.

As an example of a component with shared-port induced multi-rate
behavior, consider a multiplier implemented in VLSI which inputs two 16-bit
quantities and produces a 32-bit output. Assume that the input and output
pads are distinct. If for the sake of economy of pads, the two halves of the
output are multiplexed on a set of 16 pads, a shared port component results.
Such a multiplier behaves as a multi-rate function which can be described as

FL;;Q. If the two inputs were to be multiplexed as well, the component can be

30

specified as Fz;z, a rate-invariant function.

2.2 Why multi-clock design?

In the last section, a precise meaning was given to the term multi-rate
function. In this section, reasons will be presented as to why, for multi-rate
algorithms, formulation of synthesis techniques different from the ones used for

single rate algorithms are required to obtain efficient architectures.

2.9.1 Need for multi-clock implementation

Functions, according to their mathematical definition, are memory-
less, and thus would correspond to purely combinational circuits. In a combi-
national implementation of a function, an output in the range of the function
is obtained by inserting all corresponding input data values at once. However,
for multi-rate functions, Fp;qs: the inputs arrive during distinct time-intervals.
This requires internal storage and therefore sequential implementation which

may be either synchronous or asynchronous.

It will be assumed throughout the rest of this dissertation that a syn-

chronous style of design is selected for the sequential implementation.

The sequential style implies a global clock that is supplied to the com-
ponent. The time-intervals, introduced earlier for defining multi-rate functions,

can now be identified with individual cycles of this global clock.

Single-clock-rate-efficiency

Consider a synchronous implementation of Fp;q- Without any loss of

generality, assume that the input arrives sequentially, at most one element per

31

clock cycle. The same is assumed to be true for the output. Note that some
cycles are allowed, during which no elements may be input or output, and also

during which the function is computing the image set b; for an input set a;.

Definition 12 An implementation opr;q is single-clock-rate-efficient (SCRE),
if after a finite initial delay, it can accepl a valid input element and produce @

valid output element during every clock cycle. Otherwise the function is single-

clock-rate-inefficient (SCRI).

Notice the word “valid” in the above definition. The word is added
to the definition to disallow inclusion of null (or don’t-care) elements into the

data stream.

A systolic system is a Moore machine which uses a single global clock
to clock all its storage elements (registers) [36]. Each clock cycle, a systolic
system inputs new valid values and, computes and generates new valid outputs.

So it can be concluded,
Lemma 1 A systolic system is SCRE.

Consider a finite storage synchronous implementation of a multi-rate
functions Fp;q. Assume that Fp;q is SCRE. The implementation will be further
assumed to be causal in the sense that Vaj, aj, if a; is input before a;, b; is

output before b;.

First assume that p<q. It takes p cycles to input an a; and it takes g
cycles to output the corresponding image b;. Since Vaja;,i #j = a;Na; =0,
a b; can be computed as soon as the corresponding a; is input, and may be
output after a finite latency; and the a; can subsequently be discarded. So

storage requirements for only the b;s may be analyzed.

32

Consider the p-q clock cycles starting with the cycle during which
the first element of an a; is input. During these cycles q a;s are input, and
this results in q b;s. Now consider the p-q cycles starting with the cycle during
which the first element of the first b; so produced is output. Only p b; elements
are output during this interval. The remaining g-p b;s have to be stored and
output during subsequent cycles, increasing the delay after which the next
sequence of q b;s are output. Thus there is a net build-up of delayed b; elements
requiring unbounded storage and latency, contradicting the finite storage and

finite latency assumption.

If p>q, then similar analysis requires a diminishing latency for every
subsequent b;. Since latency is bounded below by zero (due to causality prop-
erty of a synchronous circuit), the implementation is forced to introduce cycles

during which no output takes place.

The above arguments may be expressed as the following observation:
A synchronous implementation of an FM when p#q is SCRL

The above observation is important because, when considered along

with Lemma 1, it implies the following proposition:
Proposition 1 A multi-rate function, Fp,q, p#q, is not efficiently systolizable.

The proposition implies that if FM, p#q is implemented as a systolic
system, the hardware will not be utilized efficiently. Or equivalently, if it is
implemented as a systolic system, the execution will entail insertions of null
clements in the data streams. An illustration of this proposition is presented

in Section 3.3.

33

Typically, systolic designs are € fficient in terms of utilization of hard-
ware components, since during each clock cycle, every component does useful
work. However, if an SCRI component is connected to a systolic sub-system,
or, in general, an SCRE sub-system, the latter will be forced to be spend idle

cycles, and therefore become inefficient. This leads to,

Proposition 2 An architecture for an algorithm involving multi-rate func-
tions, if synthesized using the same clock to clock all its storage elements at

every clock cycle, does not utilize its hardware efficiently.

The above proposition predicts that it will be inefficient to synthesize
an architecture for the entire multi-rate algorithm as a single systolic array.
The question therefore is: what alternative techniques may be used to obtain

efficient designs?

The proposition hints that a non-systolic approach, using multiple
clocks, might be more appropriate. Such a synthesis approach will be called a

multi-clock design.

In the next chapter is introduced a suitable execution model for hard-
ware components. There, abstract representations of hardware components
are proposed and the semantics of these representations are discussed. The

abstractions will be used to specify algorithms.

In this chapter the algebraic notation of FM was used to represent
multi-rate functions. In the subsequent chapters, an equivalent graphical repre-

sentation is used instead. This representation is explained in the next chapter.

Chapter 3

Data Dependency Graphs, Architectural Models
and Comparisons

The process of high level synthesis starts with a specification of the
desired computation. A special type of graph, the Data Dependency Graph
(DDG), is employed as a medium for this purpose. This chapter contains a

detailed discussion about DDGs and their component parts.

The translation of DDGs to architectures requires a precise definition
of the characteristics of the target architecture, the specification of primitives,
and the model of execution assumed for hardware components, which will actu-
ally implement the operations of the algorithm. The architecture is envisioned
to be synchronous, containing multiple computational components intercon-
nected via register files to a communication structure comprising of multiple
busses, and with the execution of the intended algorithm mediated by a static
schedule stored in a control ROM. All these aspects, along with an example
of a multiplier, illustrating the modelling of its behavior as a DDG node, are
also covered in detail in the chapter. As will be seen, there exists a dual rela-
tionship between a DDG node and its counterpart in hardware — the former
is an algorithmic abstraction of the latter, and the latter is an implementation

satisfying the behavioral abstraction depicted by the former.

This chapter also contains a comparison with other high level synthe-
sis paradigms, high-lighting the differences in the underlying execution and ar-

chitectural models and the results of the methodologies based on these paradigms.

34

3.1 Data Dependency Graphs

A Data Dependency Graph (DDG) is used to express algorithms.

A DDG is a connected, directed, labeled, and specified graph, where
nodes define computation or communication operations and directed edges rep-

resent data dependencies between pairs of nodes.

The use of directed graphs to specify computations for the purpose of
automated design of architectures, and more generally for silicon compilation,
is a familiar practice [16, 30, 26, 54]. In the area of automated synthesis,
specifying computations directly in graphical form has a practical advantage
over specifying them in textual form: one of avoiding the intermediate step
of translation from a textual language to an internal graphical form, common
in most synthesis approaches. As will be seen later in Chapter 4, the DDGs
provide a further advantage of enhanced representation power consistent with

the analytic techniques used for architectural synthesis.

The node at the tail of an edge is the source of data and the one at
its head is the destination of that data. These nodes are called parent and
child nodes, or alternatively from- and to- nodes, respectively. The edge repre-
sents an input dependency of the child- or to- node and an output dependency
of the parent- or from- node. A node may have multiple input and output

dependencies.

The nodes are classified as start, stop, and intermediate. The start
nodes do not have any input dependencies and the stop nodes are without
any output dependencies; the rest are the intermediate nodes. Although this
definition allows a DDG to have multiple start and stop nodes, the discussion

here will be restricted only to single-start—single-stop DDGs.

36

The nodes are presumed to have a data-independent behavior associ-
ated with them and so the DDGs, in general, also represent data-independent
computations. Later in Chapter 7, however, there is described uses of DDGs
to represent non-data dependencies as well as certain types of data-dependent

computations.

The execution of the algorithm represented by a DDG is carried out
‘0 a manner similar to that of the traditional data-flow model of computation
(28, 14]. The nodes execute via the firing of the corresponding hardware com-
ponent, absorbing data elements or tokens from their input dependencies, and
producing tokens over their output dependencies. Each execution of a node is
referred to as an invocation. The tokens flow from the parent node to the child

node over the dependency edge between them.

Although DDGs can, in principle, represent a computation which is
executed once, it will be employed to specify a repetitive computation wherein
the entire graph is repeated infinite number of times at some regular interval

of time. This notion of regularity is refined in a later section.

3.1.1 DDG nodes

In a DDG, a node may represent either a computation or a com-
munication operation. One of the key contributions of this research was to
recognize the need for, and the possibility of, giving an explicit representation
for communication operations in the form of communication nodes. Semantics
are introduced into the communication primitives at the representation level
so as to have expressive power adequate for describing hardware behavior, and
yet be similar in form to computational operations. By so representing all data

communication explicitly at the algorithmic level, it is possible to analyze all

37

types of operations, including communication, uniformly. This leads to better

utilization of communication hardware in the final architecture.

A fully specified DDG node has associated with it a 4-tuple

<o, I, 0, F>, components of which are:

o: Operation executed by the node

e I: The set of input token markings
e 0: The set of output token markings

F: Firing discipline of the node

Each of these components is now discussed.

Operation

The association of an operation with a node is specified by the user as
part of the specification of the algorithm. A DDG may have two classes of node:
computational and communication. Computational nodes represent arithmetic,
logic, serialization/ parallelization, and decimation/interpolation operations etc.,
and communication nodes represent communication operations between nodes
of the first type. A communication operation is simply looked upon as a special
type of computation in which there is no transformation of data. Throughout
the test of this dissertation, wherever relevant, computational nodes will be

depicted by larger circles and communication nodes by smaller circles.

The operation represented by a node is treated as being atomic, irre-
spective of its internal complexity. That is, although an operation internally

might involve a multi-step computation incorporating sub-operations more

38

primitive, when expressed as a node at the DDG level, it is treated as being
non-interruptible, and irresolvable further into simpler sub-operations. This
restriction in the semantic definition of a DDG node justifies the solution ap-

proach that each DDG node is mapped to a hardware component.

The operation is also assumed to be independent of the values of the
operands. Besides being atomic, the operations represented by the nodes are
assumed to not carry any state information that is relevant to the synthesis
process from one invocation to the next. Thus an operation is also independent

of its previous invocations.

Input and output token markings

An integer associated with each dependency denotes the number of
tokens absorbed (in the case of input dependency) or produced (in the case of
output dependency) during every invocation of the node. The integers asso-
ciated with the input dependencies are called input token markings and those
associated with the output dependencies are called output token markings. This
definition of the behavior of a DDG node is similar to that of a node in the par-
allel computation model of Karp and Miller [28] and is the same as synchronous
data flow graphs of Lee and Messerschmidt [34]. However, the semantics of the
nodes is extended beyond those in [34] by the introduction of the concept of

firing discipline discussed below.

As will be discussed shortly, each dependency has a port-id associated
with it. The token-markings corresponding to dependencies bearing the same

port-id’s and related to similar but distinct nodes, must be the same.

All tokens corresponding to a given dependency are of the same size

(or, bit-width), but tokens corresponding to two dependencies may have differ-

39

ent sizes.

Clearly, such a nodal specification of operations is suitable for rep-
resenting multi-rate functions defined in the previous chapter. The integers
assigned to the dependencies correspond to the subscripts p; and g; of a func-

tion sz PZrees) 9149250

Firing disciplines

A firing disciplineis a rule that states the conditions on input operands
under which a node is allowed to fire. Two firing disciplines are defined: AND
and SR. The formal semantic specification of the two disciplines appears in

Figure 3.1.

AND discipline

The AND firing discipline requires that a node not fire until each of
its input dependency carries tokens which in number are equal to or more than
its token marking. All computational nodes are assumed to use the AND firing
discipline.

A communication node using the AND firing discipline has only one

input dependency and one or more output dependencies with token markings

each of 1; such a node represents a broadcast communication.

SR discipline

The presence of multi-rate functions, arising either from computa-
tional definition or from implementational constraint, may make it necessary
at times to specify a particular ordering of operands. For example, consider a

component for the modulus operation. For the sake of illustration, assume that

er; Input edge i

eo; Output edge j

ers Selected input edge number

€os Selected output edge number

€lmas Maximum number of input edges

€0mar Maximum number of output edges

t2, # of tokens available on ey

to, token marking on ey

t’;“OJ token marking on egp;

tl . # of tokens transferred from ey

ti,, # of tokens transferred to ep;

AND

forever do ‘

D Vite, 2 e, — o == 4%
Execute function;
Vi pub t7;, tokens on eop;;

od

SR

ers=e0s=0; Vitl =0;V] te,, = 0;

forever do
0 t,.>0— te;, =
Transfer token to eps;
tizs++; tim++;
H tf,, =t — (er++) mod er..;
; tt =tl, — (eost+) mod €o,,,.;
o

Figure 3.1: Semantic specification of the AND and SR firing disciplines.

40

41

it shares the input port for transferring divisor and the dividend and uses a sep-
arate port to output the modulus. If the order in which the two operands are
input determines which one is treated as the divisor and which the dividend,
it is necessary to specify the order in which the operands should be fed to the
component. At the DDG level, this ordering is specified using a communication

node with the SR firing discipline.

Only a communication node may be defined to have the SR firing dis-
cipline. The SR (standing for serializing/reordering) firing discipline, requires
a node to “act” each time there is a token on an input dependency, selected
according to a mechanism described below. The “action” is carried out by a
firing of a communication component; i.e., a bus. Upon firing, the token is

passed to the selected output dependency.

The selection of the input and output dependencies is ordered by
their port-id’s. Thus, at first, both input and output dependencies with port-
id’s of 1 are selected; then those with port-id’s of 2 are selected; and so on.
Each dependency remains selected for a number of firings equal to its token

marking, before the next dependency in the port-id order is selected.

The token markings for a node with the SR firing discipline satisfy
the condition that the sum of token-markings of its input dependencies equals

the sum of token-markings of its output dependencies.

The semantic specification of the SR discipline is formally expressed

in Figure 3.1.

It is important to note that, in functionality, the SR communication
node is a generalization of the behavior achievable via an arbitrary intercon-
nection of the switch and merge (or distributor and selector) data-flow language

nodes with pre-determined control inputs [5, 14, 12, 37].

42

Components modeled by an SR-communication node

Throughout this dissertation, and in the implementation of a heuristic
scheduler described herein (Chapter 6), it is assumed that the type of communi-
cation components used in the architectureis a bus (discussed in Section 3.2.1).
In the context of a bus, the SR-communication node indicates ordering of data
transfers over the bus. However, the choice of the communication compo-
nent need not be limited to a bus; multiplexers and demultiplexers may also
be used. An SR-communication node, with multiple input dependencies and
a single output dependency, also accurately models the behavior of a multi-
plexer; a demultiplexer can be modeled by an SR-communication node with

single input dependency and multiple output dependencies.

Figure 3.2 contains examples of some types of nodes that might be
used in a DDG. The figure contains two types of “+” nodes, one with two
input dependencies and the other with only one input dependency but which
accepts two input tokens. Thus the choice of the representation used in a DDG
is dictated by the component chosen for implementation, and vice versa. The

figure also contains examples of the two types of communication nodes, with

SR and AND firing disciplines just described.

3.1.2 DDG Edges

The edges of a DDG represent data-dependencies between pairs of
nodes. The transfer of data along an edge is constituted by the first in first
out (FIFO) flow of tokens over it. Thus when the from node fires, the tokens
produced by it queue up behind the tokens already present on the edge, and

when the fo node fires, it absorbs tokens from the front of the queue.

Qince nodes themselves do not carry any state information, it 1s con-

43

2 1
1 1 1 1
1 1 1 4

1-4 Up-Sampler

Some Computation Nodes

2 1 :
1 1
3 / e ©
Serializing— Broadcast or
Reordering Point-to-point
(SR)

Communication Primitives

Figure 3.2: Examples Of Nodes

44

tained wholly in the values of the tokens present on the edges, the firing of the

nodes causing the state transitions.

As mentioned earlier, a node may have multiple input and output
dependencies. Each input dependency is semantically identified by assigning
it a unique positive integer called the input port-id. The input dependencies
bearing the same semantic relationship to two distinct DDG nodes representing
an identical operation on different data, must have the same input port-id’s
associated with them. The reverse is also true. By convention, port-id’s are
unique positive consecutive integers This requirement also holds for output

dependencies; the corresponding ports are given output port-id’s.

The above semantics are meaningful in the light of the fact that a
DDG node is mapped to a hardware component, that each of its dependency
corresponds to the data accessed via a port of the component, that a port is
identified by its distinct port-id, and that the dependency is ordered accordingly

and has an associated port-id.

Edges may be assigned initial tokens by associating a non-negative
integer with them. The integer denotes the number of tokens available at the
start of the algorithm for the particular to-node to absorb. (In the graphical

form, these tokens are shown alongside the edge.)

The values of these tokens are not important to the synthesis process;
their number is of consequence, however. Later, it will be shown that for cyclic
DDG@s, the number of initial tokens present on the edges of a directed loop will
determine whether the loop will deadlock or not, and that they also determine

the minimum possible value of the input latency.

45

TR R
C = £ ={) L =)
1 1 1 1
1 1 1 1
o O O 6
1 1 1 1
1 1 1
1 2 : 1 2 : 1 2 :

Figure 3.3: DDG for a 4-point FIR

3.1.3 An Example of a DDG

Figure 3.3 contains a DDG for a 4-point FIR computation. There
are several interesting features to the DDG. Firstly, the “Add” nodes have
only one input dependency on which both input operands flow. These are
an example of shared-port components. Secondly, as discussed above, these
necessitate the use of SR communication nodes. Also notice that every two
computational operations are interposed by a communication operation. This
is imperative since a uniform treatment to communication and computation
nodes is intended, and as such must explicitly specify all data communication
operations between computational operations. Further notice that, unlike the
traditional signal flow graphs popular in signal processing literature, there are
no sample delays, instead there are initial tokens on some of the edges. The
multiplers have a single input dependency which inputs a single token — the
other operands, the coefficients, are assumed to be fixed and not explicitly

shown.

46

3.2 Architectural Models

The DDGs define the domain of the synthesis process. In this section
the co-domain of the synthesis process, the expected parameters of the final
architecture, is discussed. With a parametric definition of the domain and co-
domain in hand, the synthesis process (i.e., the translation from a DDG to an

architecture) can be formulated.

This section is divided into two parts. In the first, the overall system
characteristics are discussed, and in the second an execution model for hard-
ware components is proposed. The latter deals with modeling of behaviors of
hardware components as multi-rate functions and contains the illustration of a

shared output port multiplier.

3.2.1 Architectural Characteristics
Synchroneity of architectures and global clock

The architectures generated will be synchronous. That is, there will
be a single time-base in relation to which all events in the system can be spec-
ified. Clearly, self-timed sequential circuits, or asynchronous communicating
circuits such as arbiters and phase locked loops, cannot be considered. The
synchroneity of the architecture will be achieved via the presence of a single,
(possibly, non-overlapping two phase,) fine-granularity global clock. All events

will be scheduled to occur at the “ticks” of this clock.

The architecture will contain combinational and sequential circuits.
And by construction, an occurrence of a purely combinational loop will be pre-
vented by introducing hardware buffers at the input of every hardware compo-

nent, computation or communication. This is not an artificial measure, but, on

47

the contrary, is in conformance with the computation model of a node which
requires that it not fire until affer the necessary input tokens are available on

the input edge.

Buffers

The buffers to hold the input tokens are in the form of edge-sensitive
registers which may be clocked by clock edges derived from, and coinciding
with, the edges of the above-mentioned global clock. These registers will be
assumed to have a high-impedance state at their outputs when the output
‘s not enabled. An MSI example of such registers is the 74374 circuit [56].
However, multiple of these registers are grouped together into register-files
with an addressing mechanism to select only one of the group. The inputs and
outputs of all the registers in a single register file are respectively connected
together; thus at any given time only one of the registers of a register-file can
be written or read. But a read and a write of the same register or different

registers of a single register-file may proceed simultaneously.

It will be assumed that the bit-width of the registers is equal to the
bit-width of the data it stores; i.e., each register stores exactly one token. But
since tokens corresponding to different dependencies may have different sizes,
the corresponding registers may have different sizes. So by convention, the
grouping of the registers will be such that all the registers in a register-file will
have the same size. Since all tokens flowing over a given edge have the same

size, the registers may be grouped by the edge they correspond to.

As said previously, buffers are inserted at the input of every hardware
component. Since every edge is input to some component, this is equivalent to

saying, every edge corresponds to set of buffers (i.e., a register file). It is logical

48

Register-files

—
—— e
0 g T
— =1 L
—{
2 1 st >
—sf
Input Output
ports ports

Figure 3.4: Connectivity model of a hardware component.

that every edge be translated to a set of buffers because it is on the edges that
the tokens constituting the state of the computation reside and storage devices

are required to store them.

In general, an edge gets translated into wire connections, via one or
more associated register files, to an input port of the respective computational
or communication to-node. However, it is more convenient to associate register-
files with the ports of only the computational components, each register-file
corresponding fo a unique pair of a port and a communication component.
This leads to the connection model of a component shown schematically in
Figure 3.4. This model will be used later in Chapter 6 while dealing with
the problem of minimizing total connectivity in the architecture for a given

schedule.

Components

The architecture, in general, will contain multiple instances of a com-

ponent type, including the communication components, which are shared by

49

the operations of the algorithm. Each operation of the algorithm is mapped
one-to-one to a type of physical component that can perform it, and as dis-
cussed earlier, this mapping is provided by the user at the DDG level as part
of the specification (o) of the node. Also, a given component type implements

exactly one type of operation.

A firing of a node in the DDG corresponds to an execution of its
operation by a hardware component. This execution is assumed to require
non-zero time (or delay) which is independent of the values of the operands (or

alternatively, data elements or tokens) involved.

The DDG may refer to multiple types of communication operations,
and hence the architecture may have multiple types of communication com-
ponents. However, the current research has focused on a single type of well
understood and easily sharable communication component — a bus', and on
the communication capabilities afforded by it. As discussed in Section 3.1.1,
both AND and SR types of communication operations are generally needed,

and these a bus can support.

The DDG may refer to multiple types of busses, different busses dis-
tinguished by their bit-widths. The bit-width of a bus is assumed to be the
same as the bit-width of the tokens it transfers. Thus each token takes a single
invocation of the respective communication operation. Different busses may be
used to transfer different sized tokens and although all examples cited herein

refer to a single bus size and a single token size, it is not an inherent limitation.

A bus is assumed to be a passive device used to carry signals from a

1As noted earlier, the SR-communication node can also represent the behavior of multi-
plexors and demultiplexors.

50

source to one or more destinations. Typically, a bus will be in the form of a
group of wire-connections from the source buffers with high impedance outputs
which might be transferring tokens on it and with input connections to the
destination buffers. Any other technological requirements such as terminations
and drivers will be of no concern here. A communication operation is executed
over a bus by enabling the source buffer for output and the destination buffer(s)
for input. A communication operation may, in general, occupy more than one
cycle of the global clock, although in all the examples used in this dissertation
it is always assumed that every communication operation can be completed

within a single clock cycle.

Pipelining and latencies

As stated in the previous section, the computation represented by
s DDQ is assumed to be repetitive and consequently is repeated at regular
intervals. If the execution time for a single invocation of the DDG computation
is longer than the period of its invocation, operations corresponding to more
than one invocation execute simultaneously necessitating a pipelined execution
of the computation. However, unlike in the traditional pipelined or systolic
systems, the architectures obtained will not contain registers clocked by the
same clock, every clock cycle. Instead, they are clocked at different times to

match the times of generation of the held tokens.

In a repetitive computation, the period of invocation of its start node,
called the input latency, is specified. Or, instead, the inverse of this value, called
the sampling rate, may be specified. As will be seen in the next chapter, for
single-rate computations, such as signal flow graphs, the sampling rate also

cefers to the rate of invocation of every node in the graph. But, for multi-

51

rate computations, in general, this may not be the case, since the nodes may
each execute different numbers of times. Hence, two distinct terms, Ly and
Ls, which determine-the periods of invocation of the input node and the entire

DDG respectively, are defined below.

Input Latency (L;): The definition of input latency is consistent
with that used in the context of signal flow graphs: It is the period of invocation
of the start node of a DDG and defines the interval, in terms of number of clock

cycles, between the onset of two consecutive invocations of the start node.

Schedule Latency (Ls): Thestart node of a multi-rate DDG must
be invoked certain minimum number of times (see Chapter 4) to complete a
single invocation of the DDG computation. This minimum number is denoted
by Ns,in: Schedule latency is defined to be Ls = Ng,,.-Ly. This definition

makes Lg the period of initiation of a DDG computation.

Schedule Cycle Length (Lsey): It may be desirable to compute
s schedule for more than one initiation of a DDG. This may correspond to
Ng invocations of the start node, instead of the Ns_., above. (As shown in
Chapter 4, it turns out that Ng must be an integer multiple of Ns,,,.) The
schedule cycle length, Lsch, is defined to be Ng-Lj.

The repetitive schedule implemented in the architecture is periodic
with Lges. That is, from one period of Lscn clock cycles to the next, the times
of execution for invocations of nodes are identical modulo-Lgen. The times
are not required to be periodic with respect to any smaller period, however.
Thus, aithéugh DDG computations are initiated periodically every Ls clock

cycles, the overall schedule is not periodic with it as the period. Which means,

although the invocations of the start node are periodic with a period of Ly,
(and, therefore, of course, Lg,) invocations of other nodes might not be. Con-
sequently, the invocations of the output node of the DDG might not be periodic
with a period of Ly either. If this aperiodicity of the output is undesirable from
a practical point of view, however, additional buffers can easily be inserted to

achieve the periodicity.

ROM based static schedule

It has been assumed that the computation represented by a DDG is
data-independent. Under this assumption, it is possible to compute statically
(i.e., pre-compute) the execution schedule for the DDG. Such a schedule will
specify the starting times of executions of individual invocations of all computa-
tional as well as communication operations. Further, given that the operation
of a component is independent of data values, the sequence of micro-orders
to control its operation can be statically specified. Thus, the schedule control
information can be combined with the sequences of micro-orders for various
components to obtain times at which each micro-order is issued. The result is
a micro-program which has no data-dependent branches. This program, there-
fore, can be stored in a ROM and accessed by merely sequencing through its
addresses in consecutive order. Each address corresponds to a cycle of the
global clock and contains micro-orders that are to be issued during that cycle.

The size of the ROM is Lg. locations.

Figure 3.5 shows a schematic representation of the architecture which
will result from the design process. The box labeled “Components” forms the
execution hardware structure for the algorithm. The output of the control

ROM asserts or negates the various control points. Here, one bit per control

53

Modulo Lgs., Counter

|

Addr

N\ Components

e N

Control
ROM

Figure 3.5: Schematic of the proposed scheme for architectures.

point has been assumed to produce a completely horizontal micro-program

structure. A modulo-Lg., counter is used drive the address lines of the ROM.

3.2.2 Execution models of hardware components

This sub-section introduces an execution model for hardware compo-
nents. The execution model is applicable to both combinational and internally
sequential single-rate and multi-rate components. The description of the exe-
cution model is followed by an illustration where an off-the-shelf component is
modeled as a multi-rate function and the dual aspect of applying appropriate
control signals to the component to make it behave according to the model is

illustrated.

Execution model for hardware components

The choice of an execution model for hardware components is moti-

vated by the following considerations:

54

0]

Figure 3.6: The proposed execution model for a hardware component.

e The model must be deterministic, statically defined, and uniform for all

components.

o The model must be multi-cycle to accommodate multi-rate functions and

components (See Chapter 2).

o The model must be compatible with the abstract model of computation
of node. The abstract model of the firing of a node in a DDG expects a
node to fire only upon the availability of all input tokens, upon firing to

absorb all input tokens, and subsequently to produce all output tokens.

Any model that satisfies these requirements is acceptable.

The proposed execution of a hardware component is comprised of
three phases: input (I), ezecution (E), and output (O). These phases may over-
lap as shown Figure 3.6. The execution begins with the start of the I-phase
and ends with the completion of the O-phase. The phases always occupy one

or more consecutive cycles of the global clock.

For an internally sequential component, a token is input over an input
dependency every clock cycle of the input phase until all the necessary tokens
are input, and a token is output over an output dependency every cycle of the

output phase until the necessary tokens have been output. Thus, the length of

35

the input phase in clock cycles equals the maximum number of tokens input on
any input dependency, and the length of the output phase equals the maximum

number of tokens output over any output dependency.

It is easy to see how the above model is adequate for the three types
of components mentioned previously. For combinational components, all three
phases completely overlap each other. This model covers both single and mul-
tiple cycle execution delays. For a single;rate internally sequential component,
both input and output phases are single clock cycle long. For multi-rate com-

ponents, the input and output phases have different lengths.

The ezecution delay of a DDG node is defined to be that of the exe-
cution of its operation by a component. The latter is defined to be the number
of cycles from the start of the input phase of the execution to the end of its

output phase.

For any computational node or an AND communication node this
definition poses no problem, since, as discussed in an earlier section, a commu-
nication node behaves like a combinational computation node. But, for an SR
communication node, a single invocation of the node involves multiple firings,
one for each token transferred, with idle clock cycles between them. Neverthe-
less, a definition for the delay of an SR communication node that is consistent
with the interpretation of a single invocation of the node is necessary. There-
fore, the execution delay of an SR communication node is defined to be: the
product of the delay for a single firing and the sum of the token markings on
its input (or output) dependencies. Clearly, because of the intermediate idle
cycles, an invocation may extend over more cycles than those defined by its

delay, but it will never occupy fewer cycles.

56

Example

Two related aspects of multi-rate abstraction of hardware components

are now discussed with the help of an illustration.

The first aspect of abstraction has to do with being able to describe
hardware components as multi-rate components with a timing behavior model
of Figure 3.6. The second aspect is of controlling a hardware component so
that it behaves according to the execution model of a multi-rate component
just described. The discussion is carried with the help of an example of an
off-the-shelf multiplier chip, VL2044, from VLSI Technology Inc. The chip is
Jlustrated in two different multi-rate configurations. Although the example
used is one of a predesigned component, the same considerations can go into
designing a new component, in which input and output signals are multiplexed

over the scarce external connectors.

V12044 is a single chip multiply-accumulator circuit with flexible in-
put and output controls. (The block diagram of the circuit is displayed below
in Figure 3.7.) There are two parallel input ports, X and Y, for injecting two
16-bit quantities and a 32-bit port for the output. The inputs can be clocked
independently using two separate clocks CLKX and CLKY respectively. There
is a separate clock, CLKP, for the output. There are other inputs to control the
functionality of the circuit, but since these inputs are not relevant here, they
will be ignored — it will be assumed that these inputs will be set so that the

circuit performs a 16-bit x 16-bit multiplication to produce a 32-bit product.

In the next figure, Figure 3.8, are shown timing relationships between
different signals. The set-up times for the two inputs are 25 ns (min.), so
a system clock time of 40 ns is chosen. This will provide for other signal

propagation delays as well. The clock period of 40 ns corresponds to a clock

37

S i S My sy
[seamman @——o| asasTen N & v meamTER
i 3
r 16 B 18 YRA.TISUBR ARRAY J
L -—-——0{7:1- :--o-fru [wes mscwrss T e no-ﬂ.n__l
1
A Y7
T
= : 7e
kS < (2

Figure 3.7: VL2044 Schematic.

frequency of 25 MHz, an easily achievable frequency for today’s technology.

For the sake of this illustration, a multiplication time of 90 ns is
assumed.

Let both configurations have a single output port. From specifica-
tions, it is found that the least significant 16 bits of the output are physically

connected to the same pins over which the Y input goes in. The most signifi-

ts : th
3 i [
paTA _ X K
i ¢ H
CLKX, CLKY ,2 \
%e———-——-—an

tmMa |
CLKP ’ \

H
H

Figure 3.8: VL2044 Timing diagram.

58

|

I l E 0O 1

Figure 3.9: Execution model for the first configuration.

cant part of the input, however, has separate output path. By choosing to have
a single output port of 16 bits, a choice is made to multiplex both 16-bit halves
of the output over the same port as one of the inputs, specifically, the Y input.
This choice, of course, does not pose a serious problem in terms of abstracting
the multiplier, and it is also compatible with the abstract connectivity model

of the multiplier.

Why choose to multiplex the two halves of the output when the chip
already has two separate ports? The reason a designer might want to make such
a choice is because it would reduce the number of busses to which the multiplier
has to be connected — that is, assuming only 16-bit busses are available — and
this would mean less area for communication. This is a reasonable choice, if
the time penalty of multiplexing does not outweigh the area penalty otherwise,
and if the multiplier is not to be used in a pipelined manner. It will be assumed

here that both of these conditions are true.

Let the first configuration be the one in which both the inputs, X
and Y, are fed simultaneously (and in parallel). Given this choice, the abstract
behavior of the multiplier will be as shown in Figure 3.9. The behavior has an
input phase of a single clock cycle, followed by an execution phase of two clock

cycles, followed by an output phase of two clock cycles.

To make the multiplier behave in the fashion of Figure 3.9, the fol-

I }t E—=r<— 0™
Figure 3.10: Execution model for the second configuration.

lowing control signals must be asserted.

End of cycle 1: CLKX and CLKY
End of cycle 3: CLKP

During cycle 41 TSL

During cycle 5: TSM

For the second configuration, the two inputs are multiplexed as well.
The corresponding abstract behavior is shown in 3.10. The only difference in
the two behaviors is that in the second configuration, the input phase is two

cycles long. The corresponding control signals will be:

End of cycle 1: CLKX
End of cycle 2: CLKY
End of cycle 4: CLKP
During cycle 5: TSL
During cycle 6: TSM

Notice that in defining the control signals, certain signals are specified
to be asserted throughout the cycle while certain others, only at the end of the
cycles. This is a common practice in hardware design and an equivalent effect

is easily achieved in VLSI using two-phase clocks.

60

3.3 Comparison with other synthesis systems

In the last chapter synthesis approaches of other related research ef-
forts were reviewed. This is an appropriate place to compare the new approach

to some of these approaches.

As will be seen in the following, none of the methodologies consid-
ered deal explicitly and formally with the concept of multi-rate functions and
shared port components. Often, the assumed model of execution of hardware
components is limited to single clock cycle execution, which rules out both in-
ternally sequential components and combinational components with multi-cycle
delays. Most effort in these systems is in the area of providing a language to
express algorithms and an environment to automatically or semi-automatically
translate the algorithm into an architecture. The languages provided are of-
ten procedural and textual. The latter is an important difference between the
present approach and these other approaches in that the input language used
by the present approach is graphical. The major task in these systems is the
translation of the algorithm specified textually in the input language into an
intermediate graph-oriented form, which is then scheduled and its operations

are assigned to hardware components.

Here, a comparison is made of the present approach and of the charac-
teristics of architectures generated by it with other hardware design paradigms.
Of theoretical interest is the comparison with the systolic approach and of in-
terest in terms of efficiency of design is the comparison with the synthesis ap-
proach of Sehwa [44]. Finally, Cathedral I [25], T1 [13] and III [41] are compared
from methodological point of view. An overall methodological comparison is

presented in Table 3.1.

Parameter Systolic | Sehwa Cathedral 1 | Cathedral III | New
Component Delay | 1 Clock < 1 Clock | 1 Clock 1 Clock Multiple
Model cycle cycle cycle cycle clock cycles
Multi-rate No No No No Yes
Components

Multi-rate Ne No No Ad hoc Yes
Computations

Treatment of Dedicated | Handled | Handled Handled Treated
Communication hardware | separately | separately separately uniformly
hardware

Component None Limited None Ad hoc Full
Sharing

Table 3.1: Comparison with other pipeline design methodologies.

61

62

3.3.1 Systolic approach

Strictly speaking, the systolic approach is not a synthesis methodol-
ogy, but a algorithm-transformation methodology. Yet its design process, and
the architectures generated by it, can be compared with those of the present

approach.

The systolic methodology is used to design spatially and temporally
parallel special-purpose architectures employing the pipelining concept. The
process of systolization involves introducing buffer registers such that, if two
registers are connected via a combinational data-path, its delay is less than or
equal to the clock cycle. This is required to ensure correct operation under the

constraint that every register is clocked every cycle of a single global clock.

In the following, the data-paths, between the buffers introduced by
a methodology, are called primitive operations, of simply operations. Thus,
the above is equivalent to saying that the primitive operations in a systolic
architecture all have the same delay (or unit delay), and those allowed by the

present methodology may have longer delays.

There are three fundamental differences between the systolic approach
and the new approach presented here: the synthesis process, the treatment
of individual operations, and input latency. The new approach differs from
the systolic in that, whereas the input to the systolization process is a single
sequential circuit which is transformed into a “systolic” circuit via retiming
[36], the transformation being based solely on the delay criterion just stated,
the present approach partitions the combinational data-paths on the basis of
functionality and does not require the delay of the path to be less than or equal

to the basic clock cycle.

Thus, the systolic approach does not treat the operations as being

63

atomic and registers may be introduced within these operations. In the present
approach, on the other hand, the operations specified in the algorithm are

treated as being atomic and retained as such in the architecture.

Another characteristic of systolic architectures is that the input la-
tency is also equal to the unit delay defined by the global clock. Clearly, in
this respect, systolic architectures are seen to be a special case of architectures

producible by the new approach.

There are other major architectural differences between the two design

styles. Many arise from the above differences.

In systolic architectures hardware components are not shared among
primitive operations, either computational or communication, whereas in the
new approach operations share components whenever possible. As pointed
earlier, this capability of component sharing is advantageous in presence of
multi-rate operations. This concept is demonstrated via the following example
of a decimation filter with two FIR blocks flanking the decimation block. In
presence of a rate change operation of decimation of order 2, the subsequent

computation is folded and mapped onto an array half in size.

Consider the two stage filter shown in Figure 3.11. The filter is com-
prised of two FIR filter blocks of orders K1 and K2 with a decimation block in
the middle. Assume, for the purpose of illustration, that the decimation factor

‘s 2 and that K2 is an even number greater than or equal to 4.
An FIR filter of order K is described by the following recurrence

relation:

Yo = GoTn+ Q1Tn-1 Tt G2Tn-2 doeee + AR -1 Ta-K4+1 (3.1)

K~-1
= Z QiTpmi » (32}

1==0

64

K1 Order ¢ K2 Order
FIR FIR
Decimation
Block

Figure 3.11: A two stage FIR

One possible systolic implementation of an FIR filter presented in [4]
uses a cell structure shown in Figure 3.12. Using this cell structure the systolic
implementation uses a single chain of K cells to implement a K-order filter.
Thus using a single clock, K1+K2 cells are needed to implement the two stage

filter.

If the existence of the rate change operation between the two FIR
blocks is taken into account, however, a filter that is lower in cost can be

obtained.

In the alternative design, three clocks C1, C2 and C3 are used. Clock
C1 has twice the frequency as C2 and C3, and C3 has the phase opposite to
(2. The K1 order FIR is implemented, as before, using the C1 clock. The K2
order FIR can be implemented as shown in Figure 3.13. This design can be

looked upon as being piecewise systolic or folded systolic.

In this design there are only half as many systolic cells as in the
single clock design, but they continue to be clocked by C1. However, during
alternate cycles, the cells compute different halves of two different sums which
are eventually combined to produce the correct output. To match the speeds
of the x and y inputs of each cell so that the cells collect appropriate terms, an

extra register has to be added per cell in the y path.

65

FIFO

<2
]

e
|
[|l
el

FIFO

Figure 3.12: A systolic cell for FIR computation

To compute the cost differential between the two approaches assume

the following:

A Cost of an adder.

M Cost of a multiplier.

R Cost of a register.

m Cost of a multiplexer.

¢ Number of registers per systolic cell (¢ 2 3).

The cost differential between the two designs is given by,

0
2
K2
= '?(A+M+(C~2)R—m)'—ﬁ~23 (34)

ACost = (A+M+cR) - -I—{-z-g(m%—QR) —A-2R (3.3)

G K} cells

LJ -
X ax3.; g

Co Co

Figure 3.13: A multi-clock implementation of an FIR

66

67

The ACost is positive if A + M + (c-2)R > m + % (A+ 2R), that
is, if (1 - %)A + M+ (c—2— %)R > m, which is generally true in practice

since M > m.

In the above implementation, the same clock rate (clock C1) was used
to drive the array and the computation was multiplexed over a half-sized array.
Instead, the same sized array but a clock half as fast could be used, or in other
words, clock C2, could be to drive the array, allowing the use of slower but less

expensive components.

3.3.2 Sehwa

There are several differences between the Sehwa methodology and the

new one.

Sehwa starts with an acyclic directed graph denoting the computation,
and partitions it into multiple subgraphs using cut-lines (imaginary lines that
cut across directed cutsets of the original graph), each subgraph corresponding
to a time-step in the pipeline execution. The edges of these cutsets are the sites
of latches which hold results of the stage computation at the end of the clock

cycle. The critical path of a stage determines the clock-cycle of the pipeline.

One of the major differences between Sehwa and the current formu-
lation is that Sehwa computes the clock’s period, and this determines the par-
titioning of the computation graph: the length of a critical path in every sub-
graph is no longer than the clock cycle. In the case of the new approach, there
exists a high frequency clock in terms of whose period all delays are counted,

and no attempt is made to partition the graph.

Implicit in the objective of the Sehwa methodology is the absence

of any clock other than the one used to latch inter-stage results. Thus, in

68

Sehwa, the basic building block is a combinational hardware component, and
its methodology disallows internally sequential components. This is a serious
restriction in view of the stated goals of this dissertation. Clearly, multi-rate
functions and algorithms and use of shared port components are also outside
the application domain of the Sehwa methodology. Furthermore, since Sehwa
requires that the length of a critical path in a subgraph be no longer than the
clock cycle, Sehwa implicitly disallows multi-cycle combinational components

as well.

The fact that Sehwa puts latches only at the boundaries of the sub-
graphs and not on the edges within it makes the Sehwa methodology superior
to the new methodology in terms of number of registers used. But insertion
of input registers for each hardware component allows sharing within a Sehwa

clock-cycle and is therefore cost-advantageous.

For example, consider a subgraph which has a path with a multipli-
cation and an addition and a separate path with only an addition operation.
(See Figure 3.14.) It is clear that Sehwa will require the clock-cycle to be of a
minimum period equal to the sum of the delays of a multiplier and an adder,
and will disallow the sharing of a single adder for the two additions. The new

methodology will, however, allow the such a sharing of an adder.

To illustrate the above with an example, consider the sixteen point
FIR filter in Figure 3.15 presented in [44]. Figure 3.16 displays a DDG for the
same filter with the explicit inclusion of communication operations. Assuming
that the execution times for adders and multipliers to be 40 ns and 80 ns
respectively, as assumed in [44], communication operations to have a delay of
20 ns each, and input latency of 300 ns, again, as assumed in [44], with a

stage time of 100 ns, Sehwa requires 5 adders and 3 multipliers to produce a

69

Figure 3.14: A critical path and a non-critical path within the same time-step.

pipeline with graph latency of 600 ns. Figure 3.17 presents a feasible schedule,
producible via the new approach presented herein, with the same graph latency
of 600 ns (actually 580 ns) and yet which requires 2 fewer adders. In that figure
the vertical lines denote the clock ticks of a global high frequency clock with
a clock cycle of 20 ns. The transfers of data over busses are also assumed to

take 20 ns each, which is the same as the latch time for Sehwa.

Furthermore, Figure 3.18 shows a feasible schedule which further re-
duces the number of adders required by 1 at the expense of increase in graph
latency to 820 ns and with a schedule latency of 600 ns. Since, for pipelined
architectures, the graph latency is not of primary importance, this may be a

more attractive solution.

The above difference is further amplified by the following exercise. For
the sake of the ensuing comparison, let the graph latency be 900 ns. Clearly,
the schedule need not change for the new approach. For Sehwa, assuming,
as before, a stage time of 100 ns, this will translate to a graph latency of 9
time-steps. This implies that Sehwa will introduce 8 cut-lines in the graph to
partition it. Given that the input latency is of 300 ns or 3 time steps, each

time step will correspond to the overlapped execution of 3 partitions.

70

Figure 3.15: Flow graph of the 16 point FIR filter.

Since Sehwa does not share components within a time step, the mini-
mum number of adders required by Sehwa is the maximum number of additions
appearing in any of the time-steps. Thus to reduce the number of adders neces-
sary in a Sehwa architecture, attempt must be made to minimize the maximum
number of additions per time-step. The best one can do; (although, it cannot be
guaranteed that it is always possible to partition the graph to achieve this,) is to

distribute the additions uniformly such that each partition has at most one less

i additions‘l

than the maximum. The maximum in this case is given by [number o 5

= [2] = 5, which is still the same as before. Thus Sehwa does not reduce the
number of adders required even when the graph latency is allowed to increase
by 50% of its minimum. In fact, no matter how large a graph latency is allowed,
as long as the stage time remains 100 ns and the input latency remains 300
ns, the same requirements will result; the Sehwa methodology is insensitive to

changes in graph latency.

Table 3.2 summarizes the above comparisons.

(53 €2 e7 <8

=] [34} iSO <16

Figure 3.16: The DDG representing the FIR filter.

71

72

c1s ki 4 STIERYL BRIy j
wiia o wdit S Al S
Bus ¢ b1d k3| kS| k9! E7I E1Z £l
s [s O e [i R s [W [s
(_:_"1'5‘ £2 20 8 c21 c13
o et e peao A
Bus 2 £10 &8 €22
— O =
8] Bi1Z 28 Bi%
Adder 1 -
a2 24 a7 a8 ag
Adder 2
all =3 a8 213 LH 210 a2t
Adder 3 -
. m 1 ma 7
Multiplier 1 -
. m2 5 8
Multiplier 2 - -
L 'm3 me
Muitiplier 3
R i

Figure 3.17: The schedule with graph latency of 600 ns obtainable by the new
approach.

73

St 2 e c3 <3 3] c1d ket 11 7 s'3 c'9 c_lj A
- 00 SN it S wihk R Vol B nLY whall R W Sk R il et
- - e —— S _— S——~ e _— - W— —
it 7 c1¢ z'2 v <13 B c2q ®i§ 24 &'S
o] S B W el Bl Dl Fed beod bed [o e
bt NG D SN 1 2 L b beeed Do ped e e
56 o2 2 <8 =1 18 2 5y 23 X
AR B Ml - windt BENS IRG QU il R -3 S < G S
N . - N D (VUM D WA R IR g S e T e
1 e 1 "1 <4 ct s'8 18 25 B Xi 2l
et L% N WA R W <t R W e —
- SUNN D SN D SR B WS pa N N . -
ano jat 5t 57 ad nt 2'8 21q @l a1 212 @'l X at 2'S 21
%6 a2 a3 51 s (29 =3 laé a1 2'2 X 21d Bt 58 a1
™S Sl mé ma m
m2 b ms all m'e
m:_ m'e m3 m'g m7 m' 3 m
-

Figure 3.18: The schedule with graph latency of 820 ns obtainable by the new
approach.

74

Parameter Sehwa Present

Input Latency 300 ns | 300 ns | 300 ns | 300 ns

Graph Latency | 600 ns 900 ns | 600 ns | 900 ns

of Multipliers 3 3 3 3
of Adders 5 3 3 2
of Busses Muxes | Muxes 2 2

Table 3.2: Comparison between Sehwa and the present approach.

Note that the timing results obtained by the present approach are
actually better than asserted in the foregoing, as they are biased adversely by
the time taken for the communication operations. In Sehwa, on the other hand,
the time taken for communication between components within a control step

is not explicitly accounted for and so reflect as shorter execution times.

Of note is also another a,dvantage of using the present approach: the
explicit accounting of communication operations. By following the premise
of inserting a buffer in front of every hardware component, it is possible to
give computation and communication operations a uniform treatment. The
benefit gained is that it is possible to analyze a priori the communication
requirernents of the architecture and provide a well defined semantic structure

to the communication architecture using busses.

The advantage of this can be seen in terms of the number of busses
‘0 the architecture. Although [44] does not report on the number of busses in
the architecture, [21] reports the number of busses for the same algorithm to

be 6.

75

It is important to point out, however, that communication resources
can be directly traded against buffers. Thus one must expect more buffer
registers in a design obtained using the new approach. This issue is discussed

further in Chapter 6.

3.3.3 <Cathedral systems

Cathedral 1, II, and III are three, high level, automated synthesis
systems directed toward three different design styles. Cathedral I and I
are better suited for signal processing applications and design of algorithm-
specific pipelines, whereas Cathedral II is more general purpose. Cathedral I
is oriented toward bit-serial architectures while Cathedral III handles bit-slice
architectures. Following paragraphs will compare and contrast each of these
with the new approach on the bases of models of computation and architectural

characteristics.

None of Cathedral I, IT and III has formally defined execution models
for hardware components which the respective methodologies use. However,
all three use predefined library components in terms of which all operations
are implemented. All three assume combinational single rate components,
and so multi-cycle and multi-rate components are outside the scope of the
three methodologies. Cathedral IT and III, however, do handle multi-rate algo-
rithms involving decimation and interpolation, but they do soin an ad hoc and
semi-automatic manner involving designer participation, the designer providing
strategies for sharing components, as necessitated by the presence of multi-rate
operations. Furthermore, the multi-rate operations are restricted only to those
of decimation and interpolation, and serialization and parallelization; the gen-

eral methodology to handle multi-rate components is not part of the Cathedral

76

systems.

Unlike in the new approach, the three Cathedral systems treat com-
munication operations separately from computation. Cathedral I and I11 as-
sume dedicated wire paths between computation elements with multiplexers
used to switch between data sources. Cathedral II, on the other hand, attempts
to combine communication operations into bus structures after the scheduling
process is complete. Cathedral II may, therefore, be expected to require more

busses than the minimum required by the new approach.

Of the three Cathedral systems, only Cathedral 11 incorporates a gen-
eral component sharing scheme. Cathedral I and III inherently do not support

sharing of hardware.

Similar to the new approach, the primitive operations in Cathedral 1
and II are atomic, but Cathedral IIT uses the concept of retiming and allows
insertion of registers within a component circuit to ensure that a data path

between any two registers is no longer than the clock cycle.

Cathedral I uses a textual, applicative language called SILAGE as
the input medium to express algorithms and translates it to the intermediate

graphical form of Value Trace [54].

Chapter 4

Analyses of DDGs

As a first step in the automated synthesis process, a multi-rate algo-
rithm specified as a DDG must be examined for correctness. The correctness
here implies the DDG’s amenability to obtaining a feasible architecture. Next,
the DDG is analyzed to extract design information such as number of compo-
nents, their shareability, the minimum possible input latency, and the schedule

latency to be later used for scheduling and assignment.

In this chapter, analytic techniques to assist in these steps are pre-
sented. These include the token rate equations, the token count equations, and
the equivalence transformations. A rate consistency condition, presented in
Section 4.1, must be satisfied by a DDG for a feasible architecture and exe-
cution schedule to exist. A directed loop in a DDG may deadlock if sufficient
number of initial tokens are not present on its edges. The condition for the
freedom from deadlock in a loop is derived in Section 4.6. An extended graph
called the ezecution graph of a DDG is used to establish the lower bound on
the input latency and to schedule the computation. The construction of this
structure is covered in Section 4.4. The technique of subgraph-collapse is useful
for defining a multi-rate component that executes a multi-rate sub-algorithm.

This is described in Section 4.3.

77

78

4.1 Token Rate Equations

In this section DDGs are analyzed to obtain architectural design in-
formation such as number of hardware elements required in the architecture.

To do this, the concept of token rate equations is introduced.

Consider nodes i and j connected by a dependency as shown in Figure
4.1. Since there is no loss of data during transfer between the two nodes, the
average rate of production of tokens (i.e., data items) by node i must equal the
rate of absorption of tokens by node j. Assuming that p; and p; are average
numbers of elements of typesiand] respectively, and D; and D; their respective

execution delays, the following relation must hold:

ISIAS

I
pi =P3‘"5’_
. 2

In asserting the above equation, a notion of steady-state balance of
rates of in-flow and out-flow of tokens has been used. This notion is similar to
the concept of local-balance used by Chandy in [8] for analyzing steady-state
lengths of queues in a queueing network. The analogy is clear if the edge is

looked upon as a FIFO queue.

Each dependency in a DDG gives rise to a token rate equation (TRE)
of the form shown above. (Note that the equation remains unchanged even
if the direction of the dependency is reversed.) Thus the average behavior of
2 DDG can be expressed in terms of |E| TREs, where E is the set of edges
of the DDG. For the pipeline to function properly, the set of TREs must be

simultaneously satisfied by the vector < p; >.

In general, a solution of the TREs, < p; >, is a vector of rational

numbers. However, the actual number of elements of type i1in an architecture

79

o)

edge e

e

I

Figure 4.1: A Dependency

3]

must be an integer. One may choose n; = [pi], or any larger integer. Given
n; > pi, W = % can be interpreted as the average utilization of n; elements of
type ¢

The above equation can be transformed to read

O L _o
Di p‘ D] p}'—

In the matrix form, the above equation can be cast as:

(3]

P;

Thus, the system of TREs is of the form R - p = 0, in which matrix
R can be factored into two matrices T and D-! such that, matrix T involves
only token markings O, and I, the subscripts refering to the corresponding

edge. and D~ is the inverse of the diagonal delay matrix D of the execution
o g

80

delays of operations. The T matrix is of size |E| x |V|, there being a row per

edge of the DDG.

Clearly, since a DDG is a graph with |V| nodes, the rank of its R
matrix must be < |V, the number of variables. However, for the set of TREs
to have a non-trivial solution (the trivial solution is p = 0), the rank of R must
be less than |V] [55]. It will be shown that the condition stated in Definition 14,
if satisfied by a DDG, makes the rank of its R matrix |V|-1 and therefore

guaranties a non-trivial solution.

But before the above can be shown, it is necessary to establish that

a tree-form DDG always has a non-trivial solution.

Definition 13 An undirected graph obtained by ignoring the directions on
edges of a DDG is called an Undirected DDG (UDDG).

According to the definition, the dependencies of a DDG become edges
in the UDDG. The TREs for the edgesin a UDDG are those for the correspond-
ing dependencies in the DDG. Thus the set of TREs describing the UDDG is
the same as that of the original DDG and the solution to one is the solution to

the other.

Notation: Path-product-ratio

Consider a path s from some node p to some other node ¢ within the
UDDG of a given DDG. (See Figure 4.2.) A path-product-ratio p is formed by
traversing the path s. Starting at p and initially with p, = 1, upon exiting a
node, the denominator of p, is multiplied by the token marking on the edge
leaving the node, and upon entering a node, the numerator of p, is multiplied by

the token marking on the edge entering that node. For convenience, the factors

81

OENOTNE L On ®

Figure 4.2: A Path s From p To q

multiplied into the numerator are denoted as as O; and those multiplied into

the denominator are denoted as I;. Thus,

I10;

&
Ps = F% 5 °
I
If the path contains no edges, i.e., if the start and end nodes of the path are

the same and it does not traverse any edge, then p, = 1 by definition.

Consider the set of TREs corresponding to the dependencies along
the path s. Assume that a path s from node p to g is formed by edges 1,2, ...
;i as shown in Figure 4.2. The intermediate nodes are assigned the same labels

as their respective input edges.

If the set <p;> is chosen such that the set of TREs is simultaneously

satisfied, then the following must hold true:

o _ .k
p? Dp = P D1
0: L

plaDl pravend pzu—b—z—

O A
pi Di - .pq Dq

82

Back substituting, the following relationship is obtained:

-
AS

.
i
ot

D

|

Py = Pp-

-
.z”
ol

1

1]

7

When p, and p, satisfy the above relationship, they are said to satisfy
the set of TREs along the path s.

Notice that,

P
110,
T =
114

g
Thus, the above relation simplifies to py = pp - g—i - ps. This is put in

the form of a lemmas:

Lemma 2 Ifthere is a connected path s between nodes p and q of a DDG, and if
p, and p, satisfy the set of TREs along path p in its UDDG, then p, = pp--gf:«ps,

Theorem 1 : A DDG in the form of a tree has a non-trivial TRE solution.

Proof: Since a TRE is insensitive to the direction of the dependency, consider
the UDDG of the DDG. A solution to the TREs of the UDDG will also be a
solution to the TREs of the DDG.

Assume that the nodes in the UDDG are relabeled uniquely, 1 through
m, with the root being assigned the label ‘1’. (The choice of the root node is
quite arbitrary; any node may be made the root. See Figure 4.3). For each

edge e, the token marking associated with the end closer to the root is denoted

83

Root

Figure 4.3: A Tree-Form UDDG

by O., and that associated with its other end is denoted by I.. Also, of the
two nodes an edge connects, the one that is nearer the root is considered the

parent of the other.

Since the UDDG is a tree, there is a unique path from the root to
every node in the graph. The following values can be chosen as solutions to

the set of TREs for the UDDG. For anode i (i # 1), assign

o — Di .
b = .D1 j 5! Pis

where p; is the product as defined earlier taken along the (unique) path from

the root (node 1) to node i. p; can be chosen to be any rational number other

than zero to obtain a non-trivial solution. O

To see that these assignments do satisfy the set of TREs, consider a
pair of nodes p and q connected by an edge e such that p is the parent of q.

Since the UDDG has the form of a tree, the path from the root to node q is

84

unique and node p and edge e are in it. Therefore, p; = pp -%. It must be
verified that the assignments to p, and pg satisfy the TRE for the edge e.

D,
Py = 'D';’Plpq

_ D O
- Dl pl p? Ig
_ Dy D O
- D1 Dp P1 Py Ie
_ D, D, O.
- Dp : D1 .pl ’ pp : Ie
_ Dy O
- Dp pp .
That is,
L_, 0

Pq - D, Py D,

Notice that the solution < p; > is uniquely determined by the choice

of p;. That is, the solution has exactly one free variable, and not more than
one variable can be independently chosen. Put in matrix terminology, the
corresponding R matrix has the rank of one less than the number of variables.

Therefore, the following lemma can be stated:

Lemma 3 The R matriz of a tree-form DDG with V nodes has the rank of
| V]-1.

Since any DDG contains its spanning tree with all its nodes, it can

be concluded that,

Lemma 4 The R matriz of a DDG with | V] nodes has the rank > |V]-1.

Consistent DDGs

Definition 14 : A DDG is said to be a Consistent DDG (CDDG), if and only
if, it satisfies the rate consistency condition: for every cycle 1 in its UDDG, pi
= 1.

Whether a DDG satisfies the rate consistency condition for a DDG

can verified by using the following algorithm.

Algorithm 1 : Algorithm to check for a CDDG.

o Obtain the UDDG from the given DDG.

o Use a Depth First Search algorithm!.

Assign proot = 1.

e On traversing an edge (u, v) from node u to node v, compute py, = Py * %&,

where O, and I, are markings on the edge (u, v) at u and v respectively.

o For each back edge (u, v), verify that p, = 1.

Consider a dependency loop similar to the one shown in Figure 4.4,
which may be part of a CDDG. It consists of a path a from node p to node q
and an edge b from g to p. If edge b is removed from the loop, only path a is

left and the sub-graph becomes acyclic. The following can be demonstrated:

1As described in [1]

86

Figure 4.4: A Cycle Within A CDDG

Lemma 5 : If a set of p;s satisfies the set of TREs for path formed by all
but one edge of a directed loop of a CDDG, they also satisfy the TRE for the

remaining edge of the loop.

Proof: The proof is developed with reference to Figure 4.4, in which

the path is labeled by the letter “3” and the edge by “b”.

Let Py, - - -, Pg, be the set of values satisfying the TREs along path a.

Then,
D,
Pg = Pp- D Pa-
»
By condition 1 in Definition 14 above,
Os
pr=rpa = L.
Thus,
D, I
Pe=Pp - —O—;
»

87

This lemma implies that in order to obtain a solution for the set of
TREs representing dependencies that form a cycle in a UCDDG, all but one
of the dependencies need to be considered. The solution obtained will satisfy
the TRE for the remaining dependency. In algebraic terms, it means that
the TRE for the last dependency is linearly dependent on the equations for
the other dependencies forming the cycle. Or, in other words, if there are m
dependencies which form a cycle, then at most m-1 of the TREs are linearly
independent. Put differently, if the set of TREs for a cycle are expressed in a
matrix form, since the rank of a matrix is the number of independent rows, the
corresponding R matrix has the rank of m~1. This can be stated in the form

of the following corollary.

Corollary 1 The R matriz corresponding to a set of TREs for the edges of an
m-node loop of a UCDDG has the rank of m-1; each TRE is linearly dependent
on the other m-1 TREs.

Theorem 2 The R matriz of any CDDG with | V] nodes has the rank of | V]-1.

Proof: 1t has already been shown that the rank of the R matrix is

greater than or equal to IV|-1 and that it cannot be greater than |[V].

Consider the UCDDG of the CDDG being analyzed. Let the edges
of the UCDDG be divided into two disjoint sets E; and Ey, such that E; is the
set of edges in a spanning tree of the UCDDG and E; is the set of remaining
edges of the UCDDG. Thus E; U E; is the set of all edges in the UCDDG. The
rank of the R matrix corresponding to the edges in E; is |V|-1 (by Lemma 3).

By the definition of a spanning tree, every edge e in E; creates a simple

cycle when added to the set E,. But by Lemma 1, the edge e does not add to

88

the rank of the R matrix. This is true for every edge in E;. Thus the rank of
the R matrix of the UCDDG, and therefore of CDDG, is the rank of the R

matrix corresponding to the edges in E¢, which is |[VI-1. B

The consequence of the above theorem is that,
Theorem 3 : The set of TREs for a CDDG has a non-trivial solution.

Before going on to the next section, the ranks of the two matrices T
and D~ into which matrix R can be factored, are established: The D! matrix
is a diagonal matrix of size |V|, and therefore has a rank of |V|. However, as
was proved earlier that the R matrix for a CDDG has a rank of |V|-1. It must

therefore be concluded,

Theorem 4 The rank of the iopology matriz T of a CDDG with | V] nodes is
| V]-1.

The last result could have been obtained directly, had the delays of
the nodes been ignored. In the next section the number of invocations of each
node to make up a complete single invocation of the DDG is obtained using
this result. (Note that Lee and Messerschmidt in their paper ([34]) require the

same result to be true for a PASS schedule to exist.)

Uniqueness of the rate solution

The solutions to the set of equations R - p = 0 form the null-space of
matrix R and are called its null vectors. This null-space has the same dimension
as the number of free variables. Since the rank of R of a CDDG is [V]-1, the

non-trivial solution has one free parameter — call it § — to which any rational

89

value may be assigned. Thus given a solution vector p, 8 -p is also a solution,
where 8 is a rational scalar. Typically, however, the free variable will be bound
by the input latency — which is often determined externally by the application,
and the number of input components — which will be assumed to be fixed at

1. The result is: given the input latency, the rate solution is unique for a given

DDG.

4.2 Token Count Equations‘

The execution of the computation specified by a DDG is realized via
the invocations of its nodes. Since a statically defined repetitive execution
schedule for the DDG is desired, the numbers of times the nodes of the DDG
must be invoked, per single invocation of the DDG computation, have to be
established. To this end, the DDG will be analyzed in terms of token count

equations (TCEs) described in this section.

Consider nodes i and j connected by a dependency as shown in Figure
41. The number of times node j is invoked is determined by the number of
tokens available on the edge e connecting the two nodes. Each invocation of
node i produces O, tokens, whereas each invocation of node j absorbs I, tokens.
There may be some initial tokens available on the edge. However, since each
repetition of the schedule contains the same number of invocations of each node,
the number of tokens produced by invocations of node i must equal the number
of tokens absorbed by those of node j, so that at the end of every invocation of
the schedule, the initial tokens are restored to their original number. Assuming
that N; and N; are numbers of invocations of nodes i and j respectively per
:nvocation of the schedule, the choice of N; and N; must satisfy the following

token count equation (TCE):

90

N;-O.,=N; -1,
which may also be written as,

N;-O.—N;-I.=0

This can be re-written in the matrix form as,

[0. -] [Ni]zo

N;

Every dependency in a DDG gives rise to a token count equation
(TCE) of the form shown above. Notice that the above TCE, like the corre-
sponding TRE, 1s independent of the direction of the dependency. Thus the
numbers of invocations of the nodes of the DDG can be expressed in terms of
|E| TCEs, where E is the set of edges of the DDG. For a repetitive schedule,

the set of TCEs must be simultaneously satisfied by the set < N; >.

The system of TCEs is of the form T - N = 0, where T is the
topology matrix encountered in the last section and N is a vector of size [V].

From Theorem 4 the rank of T is known to be |V|-1, and thus,

Theorem 5 : The set of TCEs for a CDDG has a non-trivial solution.

In fact, all the results in the last section have counterparts for TCEs.

Two of them are stated here for completeness and future use.

Lemma 6 If there is a connected path s between nodes p and q of a DDG,
and if N, and Ny satisfy the set of TCEs along path p in s UDDQG, then
j\fq = Np ¢ Ps-

91

Lemma 7 : If for a loop in a CDDG, a set of N;s satisfies the set of TCEs
for path a, they also satisfy the TCE for edge b.

The solution vectors N define the null-space of the topology matrix
T. As before, there is one free parameter, say &, which may be chosen at will.
Thus if <N; > is a solution, so is ¢ - <N; >. Unlike in the case of TREs,
however, no external constraints fix the value of ¢, and any solution may be
chosen. In the next chapter, this freedom will be used to choose the right
solution to obtain an architecture with minimum resource requirement for an

acyclic CDDG.

(Throughout this work only CDDGs, which represent meaningful
computations, will be of concern. Therefore, henceforth, the term DDG will

imply that it satisfies the consistency condition.)

Minimum token count solutions of DDGs

All the entries in the topology matrix T are integers, and so in general
the solution to TCEs can be integers or rationals. Beca,t;se the solution to TCEs
represents numbers of invocations of the nodes, integer solutions are sought.
Of course, as mentioned above, given an integer solution <N; >, and an integer
#, another integer solution é - <N; > can be obtained. Because every node
in the DDG is expected to fire at least once, no element in a solution vector

<N, > can be zero.

Of interest is the minimum integer solution to the set of TCEs. Once
this is obtained, every other integer solution can be found by choosing an
appropriate integer multiplier ¢. Also, given an integer solution <N; >, it is

easy to obtain the minimum integer solution by dividing the greatest common

92

divisor of the individual Ny’s into the original solution. The following definition

will be used for the minimum token count solution of a DDG:

Definition 15 The minimum token count solution of a DDG is the minimum

integer solution to its set of TCEs.
Clearly,
Lemma 8 The minimum token count solution for a DDG is unique.

Proof: If <N! > and <N? > are two distinct minimum token count
solutions of the DDG. Since they are solutions to the same set of TCEs, they
must be related by an integer multiple ¢. Let <N?>=¢ <N} >, ¢#1. But

then by definition, <N? > is not a minimum solution. O

Given the minimum token count solution of a DDG, another token
count solution is obtained by multiplying it by an appropriate integer value for

é. Since the minimum token count solution is unique, it is obvious that,

Lemma 9 Any given token count solution implies, and is implied by, a unique

value of ¢.

4.3 Subgraph collapse and hardware composition

In graph-theoretic terminology, any graph, created by removing a
(possibly empty) subset of nodes, and all edges incident upon the nodes of this
subset or a (possibly empty) subset of edges of the original graph, is called a
sub-graph. In this section, only certain restricted sub-cases of this definition

of a sub-graph will be used.

93

Definition 16 A sub-DDG is a sub-graph created inside a simple closed curve
which intersects the original DDG only in edges and which includes at least
one node. The set of edges intersecting the curve is called the cutset of the

sub-DDG.

The nodes of the subgraph upon which the edges entering the enclosed
region are incident are the input nodes of the sub-DDG. The nodes of the
subgraph upon which the edges leaving the enclosed region are incident are
the output nodes of the sub-DDG. Notice that a node of the sub-DDG may be
both, an input and an output node. If a sub-DDG is acyclic, then some of the
input nodes will have no other input dependencies, and are referred to as the
primary input nodes; and some of the output nodes will have no other output
dependencies, and are referred to as the primary output nodes. If, on the other
hand, the sub-DDG is cyclic, there might be no primary input and/or output

nodes.

Before proceeding with the concept of sub-DDG collapse, note the

following rather obvious lemma in passing:
Lemma 10 : A sub-DDG of a CDDG satisfies the consistency condition.

Proof: If the sub-DDG is not consistent, it would mean that one of the loops of
the corresponding undirected sub-graph violates Definition 14. But this loop is
part of the original DDG as well, which cannot be a CDDG either, as a result.

This is in contradiction to the original premise. Hence this lemma. U

4.3.1 Sub-DDG Collapse

In this section, sub-DDGs are analyzed and a mechanism is formu-

lated, by which a sub-DDG may be implemented on a single composite hard-

94

ware module. There are three main motivations for having this capability. One
is to use a single programmable device for implementing part of an algorithm
and using that device in the overall architecture. Another is the motivation
provided by the standard cell approach to develop library cells for common
computations. Yet another is the ability to do hierarchical design, in which

larger sub-DDGs are implemented using circuits of component sub-DDGs.

The following definition for a subgraph of a directed graph will be

used.

Definition 17 A connected subgraph is a subgraph for which none of its sub-
graphs has an empty cutset®.

Consider the connected sub-DDG G’ shown in Figure 4.5. The input
nodes Aj, ..., Ap, and output nodes By, ..., By, of G’ are as shown in the
figure. Without any loss of generality, assume in the following analysis that
the two sets are disjoint. Let the edges input to the sub-DDG be numbered
a1, ..., a» and the edges output from the sub-DDG be numbered by, ..., bs,
as shown there. The set of input edges, {a1, -+ a,}, can be divided into p
disjoint subsets such that, each subset i1 has all input edges corresponding to
node A;. Similarly the set of output edges, {b1, .- bs}, can be divided into g

disjoint subsets such that, each subset j corresponds to the output node B;.

Let Tg-Ng = 0 be the set of TCEs for the sub-DDG, where Tg is

its topology matrix.

In Lemma 10 it was proved that a sub-DDG of a CDDG is a CDDG.

Therefore, integer solutions exist for the above set of equations. Let < N; > be

2 Alternatively, a connected subgraph is a subgraph which is weakly connected.

Figure 4.5: A Subgraph

95

96

Composite
Node

np O

8

Figure 4.6: Single Node Equivalent Of The Subgraph

an integer solution to the above set of equations. Now consider the composite
node shown in Figure 4.6. Notice that the number of tokens associated with
each input and output edge equals the corresponding number in the sub-DDG
times N;, where N; is the solution value for node i to which the particular
edge belongs in Figure 4.5. This transformation is referred to as the Subgraph-

Collapse Transformation.

It will now be proved that,

Theorem 6 : A CDDG preserves its consistency property under the Subgraph-

Collapse Transformation.

Proof: Before proving the theorem itself, it will be shown that the

consistency condition is satisfied in presence of the node representing the col-

lapsed sub-DDG.

Consider Figure 4.7. The figure shows a loop in the UDDG corre-

sponding to the DDG under consideration. The loop lies partly inside — path

Figure 4.7: A loop in the UDDG lying partly inside the subgraph.

a, and partly outside the sub-DDG — path b. It is already known, ps - po =
1. According to the figure, the token markings I; and O are included in the

product-ratio pe.

Under collapse, only the part of original loop that is also a part of the
sub-DDG — path a, is affected; instead of path a, there is now a composite
node with the shown dependency markings. Figure 47 shows the case where
a path passes through the sub-DDG, in via node 1 and out via node 2. Since
N, and N satisfy the set of TCEs for the sub-DDG, they also satisfy the set
of TCEs along path a. Thus, by Lemma 6, Ny = Ny - po-

The product-ratio for the transformed loop is equal to

(JL)M_ . =1
pbOz JV}Z; "“Pb ;Oa"")

Thus the new loop satisfies the consistency condition.

If a cycle is entirely contained within the sub-DDG, then of course

the resultant CDDG does not have that cycle after the transformation.

98

Therefore, it can be concluded that the transformed DDG satisfies all

conditions of a CDDG. Hence the theorem. U

Although no restrictions have been stated so far on how a sub-DDG
is chosen to form a composite node, in the subsequent it will be assumed that
the candidate sub-DDG will not contain a directed loop of the original DDG
partially; a directed loop will either be contained wholly or it will lie completely
outside. This is because, if a directed loop is partially contained within the
collapsed sub-DDG, as will be seen later, it may not be possible to satisfy
the token markings for the corresponding input and output dependencies of
the composite node in a manner compatible with the intended semantics of its

execution as implied in the lemma below.

The composite node implements the token count solution of the sub-
DDG. It is worthwhile to notice that the number of tokens defined on the
input dependencies of the composite node do indeed permit the execution of
the chosen token count solution of the sub-DDG, and as such the output depen-
dencies will indeed generate the appropriate number of tokens on the output

dependencies. Stating this as lemma:

Lemma 11 If the composite node obtained via a subgraph-collapse transfor-
mation of an acyclic sub-DDG s presented with tokens equal in number fo
the markings on its input dependencies, it can ezecute the corresponding to-
Len count solution of the sub-DDG and produce tokens equal in number to the

markings on its outpul dependencies as a result.

Proof: Since the sub-DDG is acyclic, its nodes can be sorted topo-
logically so that each node in the sorted list depends only on the nodes before

itself and/or on input dependencies of the sub-DDG. All the primary input

99

nodes appear at the head of such a list. These nodes can execute immediately
at the begining since all their input dependencies have tokens on them. Each
of these primary input nodes can fire the number of times determined by the
token count solution used to form. the composite node and its input and out-
put dependency markings. They, therefore, generate tokens on their output
dependencies so that their children nodes can fire the correct number of times
as determined by the token count solution. And so on down the topologically

sorted list. O

Definition 18 Freedom from deadlock of a sub-DDG is defined as the ability
to completely ezecute any of its token count solutions, given that tokens in an

appropriate numbers are supplied over its input dependencies.

That is, each node can be validly invoked the number of times stipu-
lated by the solution. Here “yalidly” implies the satisfaction of the requirements

implied by the node’s firing discipline. Clearly then, from above,
Lemma 12 An acyclic sub-DDG is free from deadlock.

As will be illustrated with an example in a later section, presence of
directed loops may make a sub-DDG (or a DDG) susceptible to deadlock, if
sufficient number of initial tokens are not present on the edges forming the
loop. Assuming that the given sub-DDG is deadlock-free, Lemma 11 can be

extended to conclude,

Lemma 13 If the composite node, obtained via a subgraph-collapse transfor-
mation of a deadlock-free sub-DDG, is presented with tokens equal in number to

the markings on its input dependencies, it can ezecute the corresponding token

100

count solution of the sub-DDG; it thereby produces tokens equal in number to

the markings on its output dependencies.

In the foregoing, a token count solution of the sub-DDG was used
while replacing it with a composite node. The composite node is assumed to
behave like other nodes in the DDG. Thus it has the property of atomicity
and behaves pursuant to the model described in Section 3.2.2. As a result, the
composite node will wait until the numbers of tokens at its input dependencies
equal the corresponding to the token markings on them. The token markings
are proportional to the solution chosen to the TCEs of the sub-DDG. The
larger the solution, the larger the token markings. And the larger the token
markings, larger the waiting time before the composite node can fire. Besides,
larger solution also implies larger computation and may imply larger execution
time and/or more hardware to implexhent it. It would, therefore, make sense to
usually choose the minimum solution to implement the composite node. This
will tend to produce the least expensive functionally complete component with

the fastest possible response time.

Often, the purpose of subgraph-collapse transformation will be to de-
sign a composite node in hardware. In such cases, it may also be desired that
the number of ports in the component be lower than the number of depen-
dencies for the sub-DDG it implements. That is, some of the dependencies
will share a port in the component. This effect is easily specified at the DDG
level by the use of an SR communication node to force the dependencies to
share a port in the hardware realization. These ideas are made concrete via an

example:

Example of composition

101

Figure 4.8a shows a sub-DDQ that computes the Cartesian distance
between two points on the x-y plane. In Figure 4.8a, the subgraph has four
input dependencies. Suppose that the composite node is to have a single port
and therefore the sub-DDG should have a single input dependency. A modified
sub-DDG suitable for this purpose is shown in Figure 4.8b. Notice that the

input node to the sub-DDG is an SR communication node.

The minimum token count solution of the sub-DDG is shown in paren-
theses next to each node in Figure 4.8b. The composite node is shown in Fig-
ure 4.8c. The composite node has only one input dependency and one output
dependency. The token marking on the input dependency is 4 — equal to the
product of the token marking on the SR communication node of Figure 4.8b,

2, and its token count solution value.

4.4 FExecution graph of a DDG

For the purpose of scheduling a DDG, an important step in synthesis,
and for defining the smallest possible input latency for a DDG under hardware
delay constraints, there will be a need to define its execution behavior, in which
it will be necessary to specify precisely which tokens are transferred from which
source invocation to which destination invocation. A DDG’s ezecution graph
will be used to describe this information. The construction of an execution

graph from an annotated DDG is explained in this section.

4.4.1 Construction of the execution graph

For a multi-rate DDG, a complete execution is specified by the the
solution of its TCEs. Each invocation of an AND node in the DDG is repre-

sented by a node in the execution graph and each invocation of an SR node is

102

(c)

(2) (b)

Figure 4.8: An example of a composition

103

Ay Ay ANA
A }/\Z\\ ’)) ‘40\
A
C%e Sf 8‘24 "Séc Séc'*H\ SAe
L =

Ie B B SB B SB
@ Sl Sz I SI¢+1 B

Ny N N

B1 B2 BNs

(a) (b)
Figure 4.9: Translation of an edge in a DDG to a bipartite graph.
represented by a set of nodes, each node corresponding to a token the SR node

transports. These nodes are now connected as follows:

Consider two nodes A and B in the DDG connected by an edge e.
See Figure 4.9a. Let the token markings at the two extremities of the edge be
0. and I, respectively, and let the initial tokens present on the edge be i, as
shown in the figure. Thus the number of tokens emit”;ed by an invocation of
node A is O,, and that absorbed by an invocation of node B is I.. Let each
token emitted by an invocation of A be given an id, the first token being given
an id of 1 and the last, O,. (These id’s will be referred to again in Chapter 5.)
The execution graph has nodes corresponding to the invocations of the two
nodes. Let the numbers of invocations according to the token count solution
be N4 and Np resectively. By the semantics of the token count solution, the
combined number of tokens produced by invocations of A equals N4-O, the
combined number of tokens absorbed by invocations of B equals Ng-lL, and

N 40, = Np-I.. Let this number be denoted by N..

104

Now N, directed edges are added between invocations of A and B to
form a bipartite multigraph. Each of the N, edges corresponds to a single token
that will pass from an invocation of A to an invocation of B during a single
invocation of the DDG, or equivalently, assuming a static schedule, during each

schedule cycle. The edges are drawn as described below.

If either of A or B is of an SR type, then the corresponding nodes in
the execution graph have a single edge incident on them. For nodes of type
AND, each corresponding node in the execution graph gets either O, or L. edges

depending whether it is an A or a B invocation respectively.

Let, for convenience, and without loss of generality, both A and B be
of type AND. Label the A nodes in the execution graph, A; through An,, and
the B nodes, By through Bn. Further assume that they are drawn in order

from left to right.

Now stubs are drawn for each node on which the incident edges will
terminate. Each node of type A has O, stubs and each node of type B has L.
stubs. Label these stubs as $# through Sf, on the A side and SZ through S¥,
on the B side. (See Figure 4.9.)

If the initial number of tokens, i., on the edge e in the DDG is zero,
then the edges are drawn between S;‘ and S:? , 1<j<N,, otherwise stub Sf is
connected to stub Sg-_m) mod N.» 1SISNe. Examples for Ny = 2 and N = 3

for i, values of 1 and 3 are shown in Figure 4.10.

Imitial tokens i, are distributed to the edges of stubs starting with S2,

one per edge at a time and repeating if necessary.

Note that if either A or B is of type “SR”, each invocation would

correspond to O, or I nodes respectively in the execution graph, each of which

105

H N N
y N .
i % k, [N
§ A kY LN AY
] 3 [N >
N
1 % »% N N
t [S N AN
§ 7 i A »
- % hY
[P . N N
2 i) . A} AN
-
,, 3 % 5y kY \\
. 1 3 N .

()i, =1

(b)i, =3

Figure 4.10: Examples of edge translations.

106

would have a single stub associated with it. There will still be the same number

of stubs, namely N., on each side.
The above construction is repeated for every edge of the DDG.

The execution of the nodes in the execution graph follows the “AND”
convention. That is, each node now executes strictly when there is a token
present on each of the incoming edge. And further, each node executes exactly
once every complete invocation of the DDG. Since the entire execution graph is
invoked once every schedule cycle, each node in the graph must execute exactly
once every schedule cycle. Also, the entire execution graph, including the token
assignment just described, is restored to its previous state at the end of the

schedule cycle.

To see why the above distribution of tokens has the correct semantics,
recall that the invocations of the nodes as specified in the token count solution
were numbered starting from 1, which is the order in which the executions will
occur. The initial tokens on the edges signify the tokens which are ready to be
absorbed. The first I, tokens will be absorbed by the first invocation of B, the
next I, tokens by the second, and so on. The above construction, along with
the semantic that a node in the execution graph can be executed when each

input edge has a token on it, achieves exactly this effect

Notice also that after each node in the execution graph has executed,
each of the edges drawn above receives exactly one additional token, which is
also the number of tokens absorbed from it. The edges which received a distri-
bution of the initial tokens are thus restored their original number of tokens,

preparing the execution graph for the next repetition of the DDG computation.

107

4.5 Equivalence transformations

Two equivalence transformations for DDGs are introduced in this
section; one for delays and another for tokens. These transformations are in
the same spirit as those used for signal flow graphs [17] and for systolic circuits
[36].

The delay-transformation is used while analyzing the execution graphs,
whereas the token-transformation is used to draw conclusions about properties
of the DDGs themselves. It will be shown later that when tokens are interpreted

as delays, the two transformations become equivalent.

4.5.1 Equivalence transformation for delays

Figure 4.11 shows two possible transformations of delays across a node
of an execution graph. It shows that configuration a is equivalent to configura-
tion b, and configuration c is equivalent to configuration d. The transformation
a——sb is called the forward delay-transformation and the other, c—d, is called

the backward delay-transformation.

In the pair a—b, a unit delay at an input edge is transported across
the node to the output edges by subtracting it from each input edge and adding
it to each output edge. In the inverse operation, c—d, a unit delay is trans-
ported across the node from an output edge to the input edges by subtracting

it from every output edge and adding it to each input edge.

The first delay-transformation implies that if it is possible to schedule
an invocation of a node a unit delay (e.g., a clock cycle) earlier, then it is
permissible to do so in terms of correctness of the operation and the schedule.

In the signal flow terminology, the delay-transformation is often referred to as

(a} {b)

{c) ()

Figure 4.11: Delay transformations.

108

109

the shift-invariance of computation. For the execution model of a hardware
component proposed in the last chapter, it is intuitive that this is indeed so.
The subtraction of a unit delay over one of the input dependencies will force the
input phase to start a unit delay earlier and this will be reflected on all other
input dependencies as well. Since the delay of the operation is independent
of the schedule, the output phase also will consequently terminate earlier by
a unit delay. The second delay-transformation implies a reverse operation of

postponement of an invocation and is equally intuitive.

It should be clear that the delay-transformations may be applied re-

peatedly to a node to transfer multiples of unit delays across a node.

The concept of delay-transformation is generalized to a subgraph as
shown in Figure 4.12. As in the previous case, these transformations imply
shifting in time the cumulative schedule of the entire subgraph. Since this trans-
formation implies that the relative times of execution for invocations within the
subgraph be kept constant, 't follows that none of the data dependencies are

violated within the subgraph.

In the above, it was said that the delay-transformation is permissible
if it is possible. The delay-transformation is possible if the necessary delays
are available on the edges. For example, for the first delay-transformation,
there must be unit delays available on every input edge of the node, and for
the second, 2 unit delay must be present on every output edge. Since a start
node of an acyclic graph has no input edges, the first transformation may be
applied to it any number of times; and since its stop node has no output edges,
the latter transformation may be applied to it any number of time. Similar
arguments also hold for subgraphs with unidirectional cutsets, such as cutsets

that naturally occur for subgraphs of acyclic graphs, and which include either

1 =
°
e ©
=
e
-1 -1
i =
(a) (b}
1
°
== s

(<} (d)

Figure 4.12: Delay transformations for subgraphs.

the start node or the stop node of the graph. These transformations can be
invoked to justify insertion of arbitrary amount of slack in the necessary edges.
This fact will be assumed in the next chapter, where scheduling of acyclic DDGs

is discussed.

4.5.2 Equivalence transformation for tokens

Figure 4.13 shows two possible transformations of tokens across a node

of 2 DD@G. Note that the tokens are transformed in terms of the token markings

111

of corresponding edges. As in the case of delay-transformations, the two token-
transformations are inversely related. As with the delay-transformations, the
transformation a—b is called the forward token-transformation, and the other,

c—d, is called the backward token-transformation.

The token-transformations imply a change of state of a computation
as a result of the execution of an invocation. The first token-transformation
corresponds to the change of the state of the computation after an invocation
of the node, whereas the second produces the state prior to the execution of

the invocation.

Since the number of tokens on an edge can never be negative (see
Section 3.1.2), the first token-transformation also implies the firing require-
ment of an AND node. That is, for a permissible transformation, each input
dependency must have number of tokens no less than the corresponding token-
marking. Despite the differences in the execution semantics, it is easy to see

that the transformation is equally valid for an SR communication node.

If there are no input dependencies for a node, the first token-transformation
is always valid. Thus for the input node of the DDG, the token-transformation
can be applied at any time. Similarly, the second token-transformation may be

applied to the output node at any time.

The concept of token-transformations is extended to a subgraph. This
extension is along the same lines as the subgraph-collapse transformation in-
troduced in the last section, and in fact mimics an execution, and undoing of

an execution, of a token count solution of the sub-DDG under consideration:

The single node shown for the nodal token-transformations is replaced
by the boundary defining the subgraph, and in place of the dependencies of the

node, the dependencies crossing the boundary of the subgraph are used. The

112

(c) (d)

Figure 4.13: Token transformations.

token markings now correspond to the number of tokens transferred over the
dependencies for an execution of the minimum token count solution of the
sub-DDG. The representations of the two token-transformations applicable to

sub-DDGs are shown in Figure 4.14.
Lemma 14 Token-transformations are valid for non-deadlocking subgraphs.

Proof: Since token-transformations for individual nodes are equivalent

to complete executions of their invocations, Lemma 13 implies this lemma. O

Note that the token-transformations for sub-DDGs can be applied
repeatedly to absorb and generate multiples of the token markings referred

above.

As was the case for the input node of a DDG, any non-deadlocking

sub-DDG containing the input node with a cutset directed out from it can

113

oyl
(s) (b}

n‘; '01

(d)

(e}

Figure 4.14: Token transformations for subgraphs.

114

&
port 0 1

Figure 4.15: A DDG loop with zero initial tokens and no deadlock.

be freely transformed to produce tokens over its out-going dependencies. The
numbers of these tokens are determined by the token count solution used for
the sub-DDG. Of course, since the set of edges of a sub-DDG are a subset of
that of a DDG, a token count solution of the DDG also contains a multiple of
the minimum token count solution of the sub-DDG. This multiple may also be

used for the token-transformation.

4.6 Initial tokens in loops

Figure 4.15 shows an example in which the use of SR communication
nodes avoids the deadlock despite the fact that the edges of the directed loop
have zero initial tokens. This is because the execution graph of the DDG does
not contain a directed loop. In general, however, directed loops in a DDG will
result in directed loops in its execution graph and absence of tokens on the

edges will result in a deadlocked execution.

For a single rate DDG, such as a signal flow graph, a single token in

113

Figure 4.16: Interlocked loops with distributed initial tokens.

any of the edges of the loop is sufficient to guarantee freedom from deadlock.
But for a general, multi-rate DDG the number of tokens may have to be more
than one. In this section, the sufficient condition, in terms of number of tokens
that must be present on the edges of a DDG loop, to guarantee freedom from
deadlock, is stated. Analysis here is restricted to the case of a simple loop
with initial tokens distributed such that only one of its edges has sufficient
aumber of tokens to enable the invocation of its to-node. As will be seen later,
certain types of loops, such as independent loops (defined in the next chapter),
which may have initial tokens distributed over more.than one edge can be
reduced to the “single token-carrying edge” case using token-transformations.
For more general loops, which share nodes with more than one loop, it may
not be possible to move all tokens to a single edge of the loop. Figure 4.16,
where all nodes are assumed to have AND firing discipline, shows one example

of this last case.

4.6.1 Conditions for deadlock freedom in loops

Consider the case of a loop that does not share its nodes with any

other loops. The nodes of this loop may have incident on them edges other

116

than the loop edges. All such output dependencies may be ignored, since they
cannot affect the firing of the nodes of the loop. Input dependencies other
than those of the loop may be ignored as well for the following reasons: These
input dependencies go to the ancestor nodes. Since all nodes of a DDG are
reachable from its start node, a sub-DDG consisting of the start node and all
the ancestors of the loop nodes can be identified. Assuming that this sub-DDG
is non-deadlocking, Lemma 14 allows the{assumption that adequate tokens can
be inserted in the said input dependencies to let the corresponding loop nodes
to fire the number of times given by the token count solution of the DDG. Note
that none of the output dependencies deleted earlier could go to any of the
ancestor nodes lest the loop would not be independent of other loops. So, only
the loop and its edges remain, and the effect of initial tokens along these edges

alone need be analyzed. This leads to the following important conclusion:

Lemma 15 An independent loop of a non-deadlocking DDG can be indepen-
dently scheduled.

Proof: As was just seen, a sub-DDG comprising of the start node
of the DDG and all the ancestors of the nodes of the loop can be identified.
Tokens can be introduced on the input dependencies of the nodes of the loop
(other than those dependencies that are part of the loop itself, of course) such
that each node may execute all its invocations corresponding to the token
count solution chosen for computing its schedule. Thus the computation of the

schedule for the nodes of the loop can be made completely independent of the

schedule of other nodes of the DDG. O

The above lemma should not be taken to mean that the schedule of

an independent loop must be obtained independently. It is stated merely to

117

establish feasibility. In fact, scheduling the loop independently will generally
lead to greatly increased response times since the scheduling of the loop will
have to wait until all of the requisite tokens are available on the said input
dependencies. Nonetheless, the lemma is a useful result to know since it permits
the application of the divide-and-conquer technique to reduce the complexity

of DDG scheduling.

In an independent loop, at any given time, there has to be at least
one node ready to fire, or else the loop is deadlocked. For the execution to
continue forever this condition must remain true at all times. If ever after
finite time, the above condition becomes false, the loop will enter dead-lock,

and will remain so forever afterwards.

Consider selecting one of the edges of the loop. Via token transfor-
mations, all initial tokens can be collected on this one edge such that, only
+he node on which the edge terminates can fire, and none other. This process
may leave some tokens on the other edges, but these are not enough to allow
the corresponding node to fire; otherwise, of course, the token-transformation

process is applied again. Before going on, this is formalized as,

Lemma 16 For an independent directed loop of a non-deadlocking DDG, with
initial tokens on more that one edges, token-transformations can always be used
to obtain a configuration in which the initial tokens in the loop enable the firing

of only one of the nodes; all other nodes are disabled and cannot fire.

So now the following scenario exists: There is a directed loop in which
all but one nodes are disabled and multiple invocations of the enabled node

may be fired at once.

118

Lemma 17 The sufficient condition for an independent loop to be deadlock-
free is that the enabling arc carry number of initial tokens equal to or more
than that necessary to complete the execution of minimum token count solution

of the loop.

Proof:

To prove the sufficiency condition, notice the following. Since the
original DDG is consistent, the initial tokens are restored to their original
numbers after the execution of invocations determined by the minimum solution
for all the nodes of the loop and hence another execution of the minimum
solution can be initiated. This can be repeated any integral number of times

to execute any solution of the loop.

The token count solution of the DDG implies an integer multiple of
the same for any of its sub-DDG, and therefore for the loop under consideration.
This leads to the conclusion that the loop will not deadlock during the execution

of the token count solution of the DDG. O

It was assumed in the foregoing that the candidate loop is indepen-
dent of other loops. The implication was that it is possible to apply token-
transformation to move the tokens to one of the edge so that only its to node is
enabled. However, this transformation was merely used to simplify the proof; it
is not a necessary condition. As illustrated in Figure 4.16, for non-independent
loops, it might be impossible to isolate all enabling tokens on a single edge.
Vet if the tokens in the loop allow a complete execution of its minimum token
count solution, it is certain that that particular loop will not enter deadlock on
its own account, since its complete execution restores all initial tokens back to

their original values. Thus the scope of Lemma 17 is broadened thus:

119

Lemma 18 A DDG loop is free from deadlock if, and only if, the initial tokens

on its edges allow a complete ezecution of its minimum token count solution.

It is now easy to see why for a single rate DDG such as one represented
by a signal flow graph, a single token per loop is sufficient to guarantee freedom
from deadlock. This is because, each node in such a DDG executes exactly once
during the invocation of the DDG and absorbs and produces exactly one token

during that execution.

Chapter 5

Synthesis of Architectures

There are three important steps to the synthesis of architectures.
First, a decision must be made on how to implement the operations of the
DDG. As explained in Chapter 3, in the new methodology being described, this
decision is made already by the choice the designer makes about the component-
type for each node. The synthesis process must still compute the number of

each componeni-type that will be present in the architecture.

Second step is to schedule the individual operations of the DDG so
that the sequencing relationshi‘ps are preserved. The scheduling is guided by
the execution graph (discussed in Chapter 4), which defines the necessary prece-
dence relationship between invocations of the nodes. Computation of a schedule
‘nvolves definition of time instant at which an invocation begins its execution
and the sequence of control micro-orders to be issued to the component execut-
ing it. However, as was seen in Chapter 3, the execution model of a component
is known beforehand, and so, once the execution start times are computed, the

sequence of micro-orders is easy to generate.

Third, the invocations have to be assigned to individual instances
of the hardware components. This assignment determines the connectivity
of the architecture, i.e., the information about connections between ports of
components and busses. The connectivity also provides information about the

number of register-files in the final architecture (see Chapter 3).

Often, the scheduling and assignment steps of the synthesis process

120

121

cannot be separated. But in the case of acyclic DDGs, (Section 6.3,) the
two parts can be handled independently, the scheduling process preceding the
assignment process. When the two parts are so separated, the output of the

scheduling process affects the input to the assignment process.

The first section of this chapter lists various design objectives used in

the architectural synthesis for repetitive computations.

5.1 Optimization criteria

Architectures for repetitive computations are synthesized subject to

the following three independent parameters:

e Input latency.
e Graph latency.

o Hardware resource requirements (i.e., number of computation and com-

munication components).

The actual optimization criterion chosen may be a combination of the

above three parameters.

Input latency:

Input latency was defined in Chapter 3. Whenever a DDG and its
execution graph have directed loops in them, there is an upper bound placed
on how often the DDG may be invoked; the bound is imposed by the delays
of the components implementing the operations. Since one important objec-
tive in designing a pipelined architecture is to obtain a high computational

throughput, a question arises: what is the highest possible throughput? Or

122

equivalently, what is the minimum input latency? Often, however, the input

latency is pre-determined by the application.

Graph Latency:

For single rate DDGs, graph latency is defined to be the time delay
between the beginning of execution of the start node of the graph to the end of
execution of its stop node. A definition of graph latency for multi-rate DDGs

is more complicated and will be further expanded upon in Section 5.5.

Graph latency, also sometimes referred to as the response time, or sim-
ply, latency, of the pipeline, is another design criterion of importance. Many
real-time applications with hard deadlines require response to an input to ap-
pear within a pre-specified time period, which implies that the invocation of
the DDG-computation for a given input must be completed within that time
period. (The effect of input latency on the schedule of a directed loop has an

equivalent effect on its execution graph.)

Resource requirements

The synthesis process is always aimed at minimizing the number of
hardware components used in the architecture and thus utilizing them to the
maximum. In the presence of graph latency constraint, however, the complexity
of optimizing this parameter is prohibitively high (NP hard), and, often, a sub-

optimal solution is acceptable.

5.1.1 Current scope

Section 1.3 stated the scope of the current research. To repeat, the

synthesis problems studied here are:

123

For o given multi-rate repetitive algorithm, given that

e each operation in the algorithm is executed on a unique component-type,
o communication operations are ezecuted via busses, and

e the cost of the architecture is measured in terms of numbers of computa-
tion and communication components and the connectivity of the architec-

ture,

1. for a cyclic DDG, find the lower bound on the input latency (minimum

input latency).

2. given the input latency for the algorithm, find a minimum cost architec-

ture

Section 5.2 contains the development of the theory to solve the first
part. It also indicates briefly a method to obtain an architecture which realizes

the minimum input latency.

The general architectural component minimization problem for cyclic
multi-rate DDGs with pre-specified input latency is formulated next in Sec-
tion 5.3. The general problem is NP-hard, and so the subsequent interest has

been in special cases which can be solved more readily.

The exact solution for acyclic, multi-rate DDGs, with unconstrained
graph latency, using a greedy, heuristic scheduling method is considered in

Section 5.4.

Following that, in Section 5.5, a cyclic DDG with a single outside
loop is shown to be equivalent to a DDG with a graph latency constraint.

This problem is known to be NP-hard, and so an iterative algorithm, which

124

presumes the existence of a resource-constraint scheduler, to achieve a graph

latency-constraint scheduler, is presented. Its termination is also proved.

Finally, two special cases of multi-rate DDGs with loops, DDGs with
independent or nested loops, are studied to develop divide-and-conquer schedul-
ing heuristics to lower the complexity of the scheduling process. The effort here
has been to find a condition under which the heuristic can be applied and to

prove that the heuristic will yield a correct synthesis.

5.2 Minimum latency scheduling

In the last chapter the construction of the execution graph for a multi-
rate DDQ was described. Here, appropriate timing semantics, which facilitate
the computation of the lower bound on input latency under hardware delay

constraints, are introduced into the execution graph.

5.2.1 Delay semantics in execution graphs

In the original DDG the delays are associated with its nodes, and
edges have no delays associated with them. In the execution graph, however, it
is preferable to associate appropriate delays with the edges, and not with the

nodes, in anticipation to the transformation to be used.

Recall that the execution of a node has three, possibly overlapping,
phases, namely input, computation, and output. The execution starts with
the input phase when all necessary tokens are available in the input buffers for
firing, and it ends with the termination of the output phase. The length of
the output phase is determined by the maximum number of tokens output per

execution on any of the node’s output edges.

[
[}
(@41

Figure 5.1: Distribution of delay over edges in the execution graph.

A delay equal to the total execution delay of a node minus the length
of the output phase is assigned to each of the output edges of the node. Ad-
ditional delays are assigned to the output edges in accordance with the order
in which tokens are released. The first edge to receive the token is assigned an
extra delay of one time unit, the second, two time units, and so on. Figure 5.1
shows an example of such distribution in the execution graph for a single edge

of the DDG.

Delay semantics of initial tokens in the execution graph

Now, delay semantic are assigned to the initial tokens in the execution
graph. In fact, the delay semantic being introduced is valid for any token. Since
each token in the execution graph is replaced every schedule cycle, a delay of
~Lsen (i-e., schedule cycle length; see Chapter 3) is associated with each token.
This delay is assigned to the edge on which the token resides; the presence
of token is henceforth ignored. Notice that this delay is of the sign opposite
to that of the execution delays assigned above, since it represents the time

awvailable for execution as opposed to the time that is spent during execution.

Consider how this assignment of delays to the tokens makes the delay
and token transformations introduced in Section 4.5 equivalent. Here only
the forward transformation will be explained; explanation for the backward

transformation are similar.

126

Recall that in the forward token-transformation, the edges lose or gain
tokens equal in number to their token markings, and each application of the
token-transformation implies the execution of an invocation. In the execution
graph, the firing of an i nvocation results in absorbing a token from every input
edge and putting a token on every output edge. Thus, it can be concluded,
that each application of the forward token transformation to a DDG node
corresponds in the execution graph to absorption of a token on each input edge

of the respective node and putting out of a token on each of its output edge.

The forward delay-transformation, on the other hand, requires that
equal delay be absorbed from each input edge and the same delay be inserted
in the output edges. Given that each token is equivalent to a delay of Lscx,

this exactly what the token transformation achieves.

In fact, as long as all tokens are assigned the same delay, the two
transformations are mutually equivalent. The choice of —Lg, is dictated by
the fact that a particular invocation in the execution graph is fired exactly
once every Lgen units of time, after which the tokens it absorbed during the

previous firing will have been restored.

Minimum input latency computation

Using the construction described in Section 4.4, the original multi-
rate DDG is converted into an execution graph, in which the nodes fire upon
receiving one token on each of their input edges. Further, tokens are translated
to delays and these are assigned to the respective edges. In effect, a simple
directed graph, with special delay semantics, just described, associated with
its edges, is obtained. The lower bound on the input latency, Ly, , can now

be computed.

127

The arguments used here are essentially the same as those of Renfors

and Neuvo [51]. For multi-rate DDGs, the analysis is presented below.

The choice of input latency is dictated by the loops in the graph since
they impose a self dependency for the operations in them. The value of the
input latency must be such that in every loop, the cumulative delay of execution
of operations must be less than or equal to the delay afforded by the presence

of initial tokens.

As seen previously, the presence of initial tokens in a loop of the
execution graph indicates time available to complete the execution of all the
operations belonging to it. Each token corresponds to Lsen (= Nsck - L7) units
of available time. For each loop in the execution graph, the available time
must equal or exceed the sum of execution delays. The following makes this

idea formal.

Two execution graphs are essentially equivalent if they are obtained by

applying a sequence of delay-transformations described in the previous chapter.

Consider a spanning tree of an execution graph. The edges that belong
to the tree will be called tree-edges, and the remaining are called the link-edges.
Adding a link edge to the spanning tree causes a loop to be formed, if the
directions of the edges were disregarded. These loops are called a complete set

of fundamental loops [17].

For every tree-edge of the spanning tree, a cut-set which includes it
and no other tree-edges can be found. By applying the delay-transformation
for subgraphs to this cutset, the entire delay on the tree-edge can be transferred
to the link-edges. This can be done for every tree-edge, and thus delays from

all the tree-edges can be transferred to the link-edges.

128

If d, is the delay on the tree-edge e, this delay is transferred to a link-
edge as either d. or —d. depending on whether the orientation of the link-edge
coincides with that of the loop — the orientation of the loop matches that of

the tree-edge.

Tt can be shown easily that each link-edge receives the signed sum of
delays of the edges of the fundamental loop it forms. The delay of a tree-edge
adds to the delay of the link-edge if the two edges have the same orientation with
respect to the fundamental loop they a.re‘ parts of. For a directed fundamental
loop, the corresponding link-edge receives all additive delay contributions; for

the non-directed fundamental loops, the contributions are not all additive.

The requirement that the available delays in the directed loops be
greater than or equal to the cumulative execution delays of their respective
operations can be restated in terms of delays on the links following the afore-
mentioned transformations: every link-edge corresponding to a directed loop

carry a non-positive delay.

The non-positivity of the link-edge delays allows the insertion of extra
delays, (or slacks, or shimming delays,) along the link-edges to make the re-
sultant sum to be zero, which is the indication that the execution delays equal

the available delays.

The non-positivity of the link-edge delays, in general, depends on two
factors: 1) the choice of Lse, and, 2) the choice of the spanning tree. It will
be seen, however, that the choice of Ls.» makes the post-transformation link-
edge delays for directed loops non-positive independent of the spanning tree,
and that, given such an Lgc, a spanning tree can always be chosen such that
for it, in particular, the non-directed loop link-edges also carry non-positive

post-transformation delays. The selection of such a spanning tree and the

129

addition of the necessary positive slacks along the link-edges ensures that all
data dependencies are satisfied, which offers a method for obtaining a feasible

minimum-latency schedule.

Fach directed fundamental loop, I, of the execution graph has a delay
of the form (v-(-Lsen) + Di) where Dy is the cumulative delay of operations
in the loop assigned to edges and v is the number of token delays in the loop.

Thus for each loop, I, the following must be true:
(- (=Lser)+ Di) <0

That 1s

vi- Lsen > D

This inequality is satisfied for all loops if

D
Lsqn = max Z{;—!
1

or, since Lscn can be expressed as Lj - NSSC", where Nfc" is the number of

invocations of the start node,
Uz-NSSCh'LI > Dz

L; must be chosen such that,

D,
L] = max{m}

The loops for which this maximum holds are called critical loops.

To see that this choice of Ly, satisfies the non-positivity requirement
for any spanning tree, it merely needs to be observed that for any spanning tree,

each directed loop will contribute one of its edges as a link-edge, and for this

130

path a

&
&

// link-edge ¢
path b
Figure 5.2: Delay configuration for a link-edge c in the maximal delay spanning
tree.

edge the delay sum always remains the same (n;-(-Lsck) + Di), independent of

the link-edge, and therefore the spanning tree.

If this value of L. is substituted in the execution graph delays and
a mazimal delay spanning tree is obtained, the delays for all of its link-edges
will be non-positive. To see this, consider Figure 3.2. Let D, and D; be the
delays along paths a and b, respectively. Assuming that D, > Dy + D¢, paths
a and b are parts of the maximal spanning tree. Edge ¢, with delay D., does
not belong to the tree and is, therefore, a link-edge. After the transformations,

the final delay carried by edge ¢ will be D. - D, + D, < 0.

The selection of the maximal spanning tree following the selection of
input latency and the subsequent insertion of slacks ;n the appropriate link
edges results in the computation of a feasible minimal input latency schedule.
The time instants of the start of execution of different invocations are obtained
by adding up the delays to the corresponding nodes, along the tree, beginning

with the start node, and computing their moduli with respect to Lsca.

The time complexity of finding the most critical loop can be evaluated
by evaluating the complexity of the constituent steps: The number of loops in
a directed graph is bounded to be O(|E|), where E is the number of edges in the
execution graph. The complexity of finding all the loops in the execution graph

and evaluation of their delays is the same as that of labeling all these loops,

131

which can be achieved in O(|E|?) time using depth first search traversal of the
graph and using a stack-oriented data structure. Finding the most critical of
these loops can be achieved in time bounded by the number of loops in the
graph, which is O(|E}). Computation of the maximal spanning tree is O(IED
in time complexity. So, the overall complexity of finding the minimum input

latency schedule is bounded to be O([E?).

It should be noted, however, that although the time complexity of
finding a minimum input latency schedule is polynomial in terms of the num-
ber of edges in the execution graph, such a schedule may judiciously utilizes
the hardware resources of the architecture. In the next section, the resource

minimization is formulated as an integer programming problem.

5.3 Integer programming formulation

In this section the problem of finding a minimum resource requirement
schedule for a cyclic, multi-rate DDG is formulated as an integer programming
problem. The resource requirement is interpreted here as the total number
of hardware components, both communication and computation. (The cost
of buffers and connectivity are ignored in this formulation.) The execution
graph of the DDG is used for defining the problem, and it is assumed that it

corresponds to the appropriate token count solution of the DDG.

As has been assumed throughout the preceding, all delays and times
are measured in terms of numbers of clock cycles of the global system clock.
All references to invocations of the nodes and the dependency edges are in
relation to the execution graph. To begin with, the following notation, used in

formulating the problein, is introduced.

Notation

Tmin
Ns

.
N

Ls

Lsch
<t,7 >
ti
Si,7.kl

€
Tigkd

e
Viikl

132

Number of invocations of the start node as determined by the min-

imum integer solution of the TCEs of the DDG.

Number of invocations of the start node in the schedule = ¢-NJ**",
where ¢ is an integer > 1 which is the number of times the minimum

solution is repeated to compute the schedule (see Section 4.2). '
Number of invocations of node i in the schedule.

Input latency.

Schedule latency = NT*.L;.

Schedule cycle length = ¢-Ls.

j** invocation of no.de i.

Time of start of execution of < 1,7 >.

Slack inserted between < 1,7 > and < k, [>.

Maximum token id emitted by < ¢, > corresponding to depen-

dency edge e and transferred to < k,1 > (see Section 4.4).
Operation represented by node i.

Execution delay of O;.

Length of the output phase of O;.

= D; - 0;.

Minimum number of initial tokens distributed to an execution graph

edge e between < ¢,j > and < k,[>.

133

Neomp Number of types of components.

N Number of components of type k required in the architecture.

To compute the cost of the architecture, the following notation is used.
The contribution to cost by invocation < ¢,7 >, 1s denoted by cf ;, during cycle
7, 0< 7 <Lsch, of the schedule. The contribution reflects the requirement for
a hardware component to execute invocation < 1,5 >.

1 0L [<D,‘,
_ (t,’,j -+ l) mod Lgg, =7

4,7
0 otherwise

The number of components of type k, N7, required during cycle 7
k g <y ’

0< 7 <Lsch, of the schedule is given by

N = ZZCZJ, such that O; = k.
i

The number of components of type k required in the architecture, Ny,
is given by

max N
0$T<L5€h

The cost of the architecture is defined by

ncomp
CA = Z Ck - Nk
k=1
where C.’s are constants.

The constrained optimization problem for a given DDG and a given

input latency, Ly, can now be stated thus:

Given a ¢, the multiple of the minimum token count solution, and

given the following constraints,

134

vi,j,ti; 20,

e t,0=20, and 0 < j < Ny-2, tgj41-ts; = Ly,

Vi, 0<j<Ni=2, ti01-ti; 20,

¥ i,], k, 1, such that 3 an edge from <i,j5 > to < k1>, si560 20,

Vi, j, k, 1, such that 3 a dependency edge e from < i,j] > to < k,1 >,

e e e € .
tk,i“ti,j”‘si“ﬁ,j,k,z = Sz,y,k,i‘LS'Vi,j,k,za

minimize C A-

It has been assumed that there is at least one loop in the execution
graph. If the DDG is acyclic, however, and the problem will become uncon-
strained. It is also assumed that there are no response-time or graph latency
constraints on the schedule, but one may also be imposed. The presence of
graph latency constraint can be incorporated into the above formulation by
supplementing the set of constraints by constraints on the scheduling times for
invocations of the stop node. These constraints typically take the form of rela-
tive delays with respect to the scheduling times of invocations of the start node.
The problem of scheduling under the constraint of graph latency is examined

in a subsequent section.

In the foregoing the general case of scheduling a cyclic DDG was
formulated as an integer programming problem. As explained there, the prob-
lemn combines two known problems into one: one, of multiprocessor scheduling
with deadlines, imposed by the loops in the execution graph, and the other of
scheduling to minimize the cumulative cost. The former is a well-known NP-
hard combinatorial optimization problem. The combined problem, thus, in

general, is NP-hard to solve exactly [18], and so heuristics are often employed

135

to solve it near-optimally. Several heuristic techniques have been presented in

the literature [43, 23].

Note that the above formulation does not account for the contribution
to cost of the architecture from buffers. Usually, to certain extent, buffers can
be traded-off against communication components. This trade-off is further

expanded upon in Chapter 6.

In the following sections, some special cases of DDGs are considered

and scheduling methods for them are proposed.

5.4 Acyclic DDGs

In the last section, it was commented that the resource minimization
problem for an acyclic DDG is one of unconstrained optimization, if graph
latency constraints are not imposed. This problem is studied in greater detail
in this section. Of interest will be the possibility that the resource requirements
in terms of number of communication and computation components can be
determined before the start of the scheduling process, and the fact that the

schedule can be computed in polynomial time.

For repetitive algorithms, which have been the subject of interest, the
primary design objective is high throughput. The graph latency is often not
of importance, and it can be traded in favor of lower architectural cost. This
trade-off will be pursued here. It will be shown that an architecture can be

constructed for an acyclic DDG at the lower-bound cost implied by the set of

TREs.

If for an operation of type i, pi;’s are the TRE-solution values of
the nodes j representing the operation, then the implied lower bound on the

number of components is: [J; pi;|. This resource requirement is henceforth

136

referred to as the Minimum Resource Requirement (MRR). In this section it
will be shown that for acyclic DDGs, the MRR is simultaneously realizable for

all types of operations.

Consider an operation of type i. Let T_; ¢NNi; be the total number
of operations of type 7 in the token count solution used to schedule the DDG,
where ¢ is the multiple of the minimum token count solution discussed previ-
ously. Let Lscn be the schedule cycle length. Given that a static schedule is to
be computed and the total execution delay of the operation is D;, each com-
ponent of type i can execute and perform L%’f-J operations during a schedule

cycle. It follows then, that at least
TioNG | _ (e Ny
Bl | | L
components of type i are needed in the architecture to guarantee that the

number of operations performed by the components equal or exceed that in

the execution graph.

Consider the case where Lg., is an integer mult;iple of D;. The number

of components required is given by,

¢33 Ny
Loy
D;
By recalling Lemma 6, the above expression becomes:
!réz.y Ar;nmpsi} _ I'Eg Nspsal _ Ns Zj psz}
Lccb - L"ch - Lc;b
Dy D; Dy

where p,;’s are path-product-ratios from the start node to the nodes represent-

ing operation ¢ and N, is the token count solution for the start node.

Notice, by definition, N, and Ls., are related by the following rela-

tionship: Lses = N,-Ly. And since the start node fires exactly once every L;

137

time units, if D, is its execution delay, ZNS':; can be substituted by &-. The

above expression therefore resolves to

psDé Zj Psi —
D,

PsDipsi
s3]

Lemma 2 says that the above expression is the same as [¥_; pi; |, which
is simply the sum of requirements predicted by the TREs of the DDG, the lower

bound on the resource requirement.

If Lse is chosen to be a suitable common multiple of all D;, then the

resource requirement for every component will equal its MRR. Thus,

Lemma 19 There ezists an Lscy for a given DDG with which resource require-

ment for each component can be made to equal its MRR.

Before proceeding further, it is important to notice that the only
requirement implied by the above lemma is that the number of operations that
can be performed by components in the architecture equal or exceed the number
of operations in the execution graph of the DDG. It is therefore possible that
s smaller value of Lse, than that stated by the above lemma may be found to
satisfy this requirement. This is especially true if an MRR has a very small

value less than 1.
Consider the following strategy:

The MRR is computed for each component, and choose a suitable
L.s such that the resource requirement equals the MRR for each component.
Then exact times or slots are preassigned at which each component will start
executing. In so doing, care is taken to ensure that the components for a given

operation cumulatively fire at least as many times as the number of operations

138

of that type in the execution graph. Following this a schedule is computed and

an operation is assigned to a free component.

Observe here that an invocation of an operation may be postponed
by any amount of time after all of its data dependencies have been satisfied.
This may require inserting slack on some input edges of the invocation. From
the discussion in Section 4.5 about delay-transformation for acyclic graphs, it
is known that it is possible to insert this slack without violating the correctness

of the computation, as long as graph latency constraints are not imposed.

So whenever the operation is ready to execute, the next available
execution slot is found, to which to assign the operation. Since it is already
known that the number of available slots are more than or equal to the number
of operations in the execution graph, it is certain that an unused slot can always

be found to assign a given invocation.

Thus the following important theorem can be concluded:

Theorem 7 It is possible to schedule an acyclic DDG and realize the MRER
for each type of operation by choosing an appropriate Lsch, if graph latency

constraints are relazed.

As part of this research, an MRR scheduler was implemented for

acyclic DDGs. This scheduler will be discussed in detail in the next chapter.

The choice of Ls., depends on the values of Dy, and in the worst
case, if the D;’s happen to be mutually prime, the smallest value of Lgca can
be very large. The effect of this is that the control ROM which stores the
schedule information becomes very large in size. This in itself is not particularly

pernicious as long as the size is within acceptable limits, beyond which the

139

access delays of the ROM begin to affect the requirements on the clock period.
Yet, again, the control ROM can itself be partitioned and interleaved to offset

this effect.

5.5 DDG with a single outer loop

The last section dwelled on acyclic DDGs and concluded with an ob-
servation that an acyclic DDG without graph latency bounds can be scheduled
to realize MRR's for all operations. Whenever a graph latency bound is placed
on the schedule, however, the MRR might not be achievable; the actual num-
ber of components required might exceed that suggested by the MRR. Yet, a

schedule with a minimum number of components is still desirable.

In this section, a special case of DDGs is discussed. The special case
is of a DDG with a single feedback path going from the stop node back to
the start node. Existence of such a feedback path effectively imposes a graph

latency constraint on the DDG.

As noted earlier in Section 5.3, the problem of optimally scheduling
an acyclic DDG with graph latency constraint is NP-hard [18]. There have
been suggested in the literature, algorithms which, given the component-delay
information, heuristically schedule acyclic graphs to obtain a near-optimal so-
lutions in terms of numbers of components. Most approaches use some varia-
tion of ASAP or ALAP and critical path analysis based scheduling techniques.
Most are based on local analysis such as: scheduling the most critical operation
first. However, some scheduling techniques based on global analysis of hard-
ware requirements have also been recently proposed. Paulin [47], for example,
has proposed the force-direcied scheduling technique to obtain a schedule for

(single-rate) computation graphs expressed as a single do-loop, given the max-

140

imum execution delay for the loop. This technique uses the steepesi-descent

optimization heuristic and is found to give good results.

The above-mentioned heuristic techniques can be applied with certain
necessary modifications to schedule multi-rate DDGs. Notwithstanding these
techniques, an iterative heuristic algorithm is presented here, and the proof of
its correctness is given. In the section following this, there will be an opportu-
nity to consider other special cases of cyclic DDGs, and the iterative algorithm
about to be presented will be applicable to those cases as well. This iterative
algorithm is based on a resource-constraint scheduler, the availability of which

is assumed.

5.5.1 An iterative heuristic algorithm

Throughout the discussion so far, the start node of a DDG has been
defined as being one without any input dependency and the stop node as one
without any output dependency. For this section these definitions will be re-
laxed and the start and the stop nodes will be allowed to have one dependency
between them representing the feedback path. It will be further required that
all initial tokens in the graph be specified for this dependency and none other.
Furthermore, the number of tokens so available are restricted to be an integer
multiple of the number absorbed by the start node invocations, the number of
invocations being equal in number to the minimum token count solution for
the start node. Let this multiple be denoted by m. Note that, in the case of a

single rate DDG, m will, in fact, be the number of tokens available.

As before, it will be assumed that the input latency is the period of

execution of the start node.

141

Graph latency for an acyclic DDG

In the case of single rate graphs, it is intuitive what the graph latency
implies: it is the time delay between the invocation of the start node and the
completion of execution of the stop node. However, in the case of multi-rate
DDG, there are, in general, multiple invocations of the start and stop nodes.
It is possible to imply by graph latency of an acyclic graph, the time duration
between the first invocation of the start node and the last invocation of the stop
node, the first and last here are with reference to the token count solution of
the DDG@. It is then possible to state a graph latency bound as a bound on this
time duration without imposing any restriction on the first and intermediate
invocations of the stop node. The times of these intermediate invocations are
dependent on the DDG and its token markings and cannot be defined uniquely
a priori. However, as will be seen next, there is a natural implication for the

graph latency in the case of a repetitive computation.

The semantics for the start node have already been defined: it fires
every input latency. If N is the number of invocations of the start node in
the minimum token count solution for the DDG, then Nmin.L; is the schedule

latency, Ls.

The semantics of the bounds on graph latency have to be consistent
with the definitions of input and schedule latencies. In the case of the class
of DDGs under consideration there is a natural interpretation for the graph
latency constraint: the start node of the DDG must always be schedulable every

input latency.

A few things implied by this definition of the graph latency bound
can be observed. Firstly, it implies that the time delay from the beginning

of execution of the first invocation of the start node to the end of the first

142

Lr ‘ Ly ,) Ls . Ly Lz Ly Ly Ly Ly
| 7 T T ; : 7 ; “'ﬁf % : ; WF %
]) & 3
H 4 ¥ L) :
t $ § ¥ H
] ¥ H H]
s SO AU : ‘ '
, L, ' =< Lg _---‘Q' :-q- --------- LS - - P
4] ¢
! ¥ % ¢
' 1]
: £
) +

.......................... N
e mlg "CTT-Cescescccccsccccaccecnccos b

Figure 5.3: Relationships between L;, Ls and m-Ls.

invocation of the stop node must be m-L,. Similarly, the time delay between the
start of the last invocation of the start node and the end of the last invocation
of the stop node must also be m-L,. The delay bounds on other invocations
of the stop node are DDG-dependent. These relationships are illustrated in
Figure 5.3.

Note that the above definition is consistent with the definitions for the
familiar single rate DDGs. The requirements reduce to the familiar requirement
for the single rate DDG: For example, if m = 1 and the DDG is single rate,
the graph latency requirement reduces to the graph latency being bounded by

the input latency.

The iterative algorithm

In the preceding the semantics for graph latency for multi-rate DDGs
were specified. An iterative heuristic algorithm to obtain a schedule under

graph latency constraint starting with a scheduling algorithm that schedules

143

under resource constraints can now be specified. The following is assumed

sbout the resource-constraint scheduler:

Assumption: The resource-constraint scheduler will not insert any

slack for an operation, if a component is available to execute it.

Algorithm 2

1. Apply resource-constraint scheduling algorithm and obtain an MRR sched-

ule.

2. Loop 1: Do the following until the graph latency conditions stated above

are met:

e Loop 2: Do the following for k=1.. Deomp:

~ Compute cumulative slack for each type of operation. (The cu-
mulative slack is computed by adding together slack introduced
for every operation of the given type.)
— Order the types by decreasing cumulative slack.
~ Loop 3: For each combination of k component types, do the
following:
% Temporarily increment by 1 the number of available compo-
nents for these types, if their number is less than the number
of operations of the same type in the execution graph.

* Apply resource-constraint scheduling algorithm.

* Verify the graph latency conditions stated above. Ifthe graph
latency has decreased, fiz the number of components to the

new values and break out of this loop.

144

— If the latency has decreased, break out of this loop. If it has
not, then increment k. If k > Tomp, increment the number of
available components for all types if their number is less than the

number of operations of the same type in the ezecution graph.

e If the graph latency conditions are met, terminate, otherwise con-

tinue.

The above algorithm starts with an MRR schedule, and then sys-
tematically increments the number of each type of component up to the cor-
responding number of operations appearing in the execution graph. At each

step, it computes the schedule and checks the graph latency requirements.

It will now be proved that the above algorithm computes a schedule
that satisfies the graph latency requirements. The following lemma is proved

first.

Lemma 20 Graph latency is greater than or equal to the length of the critical
path in the ezecution graph.

Proof: By definition of the critical path, graph latency less that the length of

the critical path is not feasible. O

Lemma 21 The algorithm will increment the number of components of each

type to the mazimum value of the number of operations of the same type.

Proof- Loop 3 increments temporarily the number of components and if this
reduces the graph latency these new values are fixed as starting values for the
next iteration. If the graph latency does not decrease, the last step of loop 2
increments the number of components of every type until they are equal to the

number of corresponding operations. O

Theorem 8 Algorithm 2 terminates and finds a solution.

Proof: From the above lemma it follows that the algorithm will increment
the numbers of component types until they equal the number of operations
of respective type appearing in the execution graph. At these numbers of
components, the resource-constrained scheduler will find a distinct component
for each operation and will not insert any slack at all and produce an ASAP
solution. The graph latency in this case will be equal to the length of the
critical path of the execution graph, which is less than or equal to the graph
latency requirements that can be fmpbsed on the graph. Thus the algorithm

must satisfy the graph latency requirement and, therefore, must terminate. U

The above algorithm assumes an existence of a resource-constrained
scheduler. The quality of the graph latency constrained schedule clearly de-
pends on it. A better resource-constrained scheduler may be able to find a

schedule, less expensive in terms of required numbers of components.

The above algorithm was developed with the heuristic scheduler to
be presented in the next chapter in mind. That heuristic scheduler could be
used as a resource-constrained scheduler for the above algorithm. However,
the scheduler creates predefined slots during which the hardware components
are assumed to be available for scheduling. This scheme might introduce dead
times when the components of a given type are not available to the scheduling
process. Such a scheduler, in general, will not meet the lowest graph latency
constraints, such as ones defined by the critical path within the acyclic DDG.
If, however, it is assumed that either the delays of the components are such
that there are no dead times, or the graph latency is sufficiently large to cover
any such dead times that might accumulate, the heuristic scheduler may still

be used.

146

5.6 Scheduling of multi-rate DDGs with independent
and nested loops

The complexity of scheduling is a major concern in synthesis. As was
seen earlier, the problem is NP-hard in the most general case of cyclic graphs.
The exhaustive search techniques which methodically search all possible so-
lutions for the best one are very expensive even for a DDG with a few tens
of nodes so as to be prohibitive. And so, there is an interest in approximate
solutions and ways to expedite the scheduling process. If cyclic DDGs satisfy
certain structural conditions, a divide-and-conquer heuristic can be applied to
reduce the complexity. This can be achieved by breaking up the overall schedul-
ing problem to a number of smaller sub-problems. Albeit, the optimality of

the solution is traded off to achieve it more quickly.

In this section, a structural condition will be enunciated for the loops
of a cyclic DDG. This condition will allow a “correct” application of the divide-
and-conquer heuristic. Throughout this section it will be assumed that all loops

of the DDG are non-deadlocking.

5.6.1 DDG with independent loops

In this sub-section DDGs in which the loops are completely indepen-

dent are examined. The independence of loops is defined as follows:

Definition 19 Two loops, I and ly, are considered to be independent if the
node-sets {m:}1, and {n;}1, corresponding to the two loops respectively are such

that there are no common nodes, i.e., {n:}i, N {ni}y, = ¢.

Figure 5.4 displays an example of a DDG with independent loops.

The loop start nodes of the loops are also shown in the figure; these are defined

147

Figure 5.4: A DDG with independent loops.

to be the first nodes of the loops to be encountered during 2 depth-first traversal

of the DDG starting with its start node.

For the case where all loops are independent, the following divide and

conquer heuristic can be used:

The cyclic portion of the DDG is scheduled first, one directed loop
at a time. Once all the directed loops have been scheduled, the non-cyclic
portions can be scheduled assuming the schedule computed for the nodes that

belong to the directed loops. The overall algorithm looks as follows:

Algorithm 3 Heuristic algorithm to schedule independent loops.

1. Obtain a spanning tree of the DDG.

148

2. Obtain a set of links that form directed loops when added to the spanning

tree obtained in step 1.

9. For each link obtained in step 2, schedule the corresponding directed loop
independently of the rest of the graph.

4. Schedule the remaining acyclic portion of the graph without modifying the

schedules obtained in step 3.

Theorem 9 Algorithm 8 correctly schedules a DDG with independent loops.

Proof: The fact that each independent loop can be independently scheduled
without introducing any scheduling errors is guaranteed by Lemma 15. In step
4, the acyclic portion of the DDG is scheduled, which results in the introduction
of slack which merely postpones entirely the loop schedules without affecting

the relative times of firings of nodes within the loops. U

As mentioned above, the scheduling of individual loops will be treated

in more depth later.

5.6.2 DDGs with nested loops

This section contains analysis of DDGs with nested directed loops,
related by the concept of uniform criticality (to be introduced in this section),
and with initial tokens only on the feedback edges. These types of DDGs
are encountered while representing in graphical form nested loops expressed in

programming languages.

For the set of nested loops satisfying the condition of uniform critical-

ity, a divide-and-conquer algorithm is suggested to heuristically schedule them.

149

The heuristic is aimed at reducing the complexity of the scheduling process.

The major effort here will be to prove the correctness of the heuristic.

As in the previous section, the approach will be to schedule the loops
first and then to schedule the acyclic portion of the DDG. Here, the focus will

only be on the scheduling of loops and not the acyclic portion.

For the purpose of the analysis to be carried out in this sub-section, it
will be assumed that for every loop, exactly one edge carries the initial tokens.
The edge carrying the initial tokens is called the feedback edge. The node at
the head of the feedback edge is the loop start node and the one at the tail
is the loop stop node. The remaining set of edges of the loop are called the
feed-forward edges, and form the feed-forward path of the loop.

Only a set of directed loops which satisfy the following criterion will

be considered.

Definition 20 Tuwo loops, I; and Iy, are considered nested if

1. they do not share a feedback edge,

2. the node-sets {n;};, and {m;}1, corresponding to the two loops respectively
are related by subset relationship, i.e., either {m:};, C {n}i, if b is nested

within I, or {n;}1, C {m}s, if b is nested within b, and

3. they share a path defined over the node-set common to the two loops, t.e.,

over {m; }i; N {ni}s,.

Lemma 22 If loop b is nested within loop k, then L contains all edges of I
ezcept its feedback edge, i.e., i contains l,’s feed-forward path, which is also a

part of its own feed-forward path.

150

Proof: Since 1, is nested within L, {ni};, {n;},- Thus {n:};, N {ni}, =
{n;}1,- The two loops therefore share a path defined over {n;}i,, the nodes of
l,. Since l; has two parts, the feed-forward path defined over its nodes and
a feedback edge and since the two loops 1; and 1; do not share their feedback
edges the path shared must be the feed-forward path of I,

Furthermore, since l; cannot have additional paths defined over the

nodes of 1, it must be a part of 1;’s own feed-forward path. O

Tt is easy to generalize this via the following lemma.

Lemma 23 Let {k --- I} be a set of nested loops such that loop L nests all
loops ity through . Then k contains feed-forward paths of loops L1 through
I, and which are also parts of ils feed-forward path.

Definition 21 A loop is contained within a DDG or a sub-DDG, if it contains

all of loop’s nodes and edges.

Lemma 24 If loop I, is nested within loop L, then (, U feedback edge of I)

contains bp.

Proof- Since 1 is nested within loop 11, {ni};, € {n;};, and it has been shown

above that 1; contains all the feed-forward edges of 1. O

This can be generalized to conclude,

Lemma 25 Let {l --- I} be a set of nested loops such that loop L nests all
loops L1 through L. Then (L U {feedback edges of Ly, -+ Ii}) contains loops

Zz:,}.} thTOUgh I[.

Also,

151

Lemma 26 If loop L is nested within loop h, then there exists a directed path
from the start node of I to the start node of l, which does not involve any other

node in k.

Proof: If the start node of 1, is the same as the start node of 1, then the result
is trivialy true. But if it is not then, since loop 1; is nested within loop 1y, It
contains all the nodes of 1, including its start node. Thus it is reachable by a
directed path from the start node of 1; using its feed-forward path. Assume
that this path includes a node of 1; other than its start node. This implies that
the directed path reaches this node before it reaches the start node. But by
definition of the start node this must then also include the feedback edge of 1,

which is not a part of ;. O

Using analogous arguments the following could be proved:

Lemma 27 If loop I is nested within loop h, then there ezists a directed path
from the stop node of l to the stop node of I, which does not involve any other

node in k.

Figure 5.5 contains an example of three nested loops, 1, 12 and la.
In drawing these loop the following convention is used: the outermost loop is
labeled 1;, the one immediately inside it is labeled 15, and so on, the subscript
implying the nesting level. The figure also shows the initial tokens, Iy, I, and
15, assigned to the three feedback edges. According to Lemma 17, the number
of the initial tokens must equal or exceed that necessary to enable a complete
execution of the minimum solution for the loop. The dotted lines indicate paths

formed over zero or more nodes using only the feed-forward edges.

Lemma 28 If loop is nested within loop h, then a token count solution for

I, contains a multiple of the minimum token count solution for k.

152

o3
o

Figure 5.5: A set of nested loops.

153

Proof: By Lemma 22, 1; contains all edges of 1; except one. Thus a token count
solution of 1; satisfies the token count equations of all the edges of 1, except
one. But by Lemma 7 the token count solution of a loop is the same as that of
its edge-set shy by any one edge. Combining this with Lemma 9, the required

conclusion is reached. O

This can easily be extended to state that,

Lemma 29 Let {k --- I} be a set of nested loops such that loop [nests all
loops liy1 through lj. Then a token count solution of I; contains multiples of the

minimum token count solutions for loops L1 through .

To schedule these loops, appropriate integer multiples of their indi-
vidual minimum token count solutions are used, such that the number of invo-
cations of each of their nodes i's equal to that obtained from the token count
solution of the overall DDG. Because of Lemma 9, these integer multiples are
uniquely determined by the token count solution chosen for the DDG. This fact

and the last lemma leads to the conclusion:

Theorem 10 If {L --- I} are the set of nested loops such that loop I; nests all
loops Liy1 through I, then the appropriate token count solution for L contains

appropriate token count solutions of loops Ly through .

This theorem gives the confidence that when a loop is scheduled using
the part of the solution that refers only to its nodes and edges, the loops nested
within it are also scheduled with the correct solutions. In the subsequent, this
fact will be tacitly assumed. Above, the term “appropriate solution” was used
to refer to the solution that would result from Lemma 9. Henceforth, unless

otherwise specified, a solution will imply the “appropriate solution”.

154

An execution sub-graph is an execution graph that is obtained from
the edges of a sub-DDG but by using the numbers of invocations of its nodes

to equal those specified by the token count solution of the entire DDG.

If loop l; nests all loops Ly through 1;, then the execution graph
corresponding to the solution for the sub-DDG {l; U {feedback edges of loops
li1 --- Li}} are considered. The feedback edges of loops 1; through 1; translate
to edges in the execution graph where they may become feed-forward edges or

feedback edges.

As seen in Section 5.2, the feedback edges in the execution graph
put upper bounds on the time of execution of the operations in the loops of
which they are parts. These timing constraints must be satisfied for a feasible

schedule.

Uniform Criticality
The relation of uniform criticality is now defined.

In Section 5.2 a loop [in the execution graph is called critical if for
it v;- Ny - L., — D, where v; is the number of tokens in the loop, D is the
delay in the loop, N is the number of invocations of the start node of the DDG
and Lj.. is the minimum input latency, is the smallest. A similar quantity,
v+ N, - Ly — Dy, is defined for a given input latency L; and is denoted by oy.
o, represents the maximum amount of slack that may be introduced in the

schedule of loop 1 without violating the timing constraints.

A given loop l; in a DDG is transformed into a number of loops, l;;, in
the execution graph, for each of which oy,; can be determined. The maximum
and minimum values of oy, for all loops corresponding to 1; can be determined

and are denoted as 0imqaz and Fpmin.

135

Definition 22 A loop L is uniformly more critical than another loop l; if, and

only if,

e if (I; U feedback edge of L) contains L, then if there are paths in the
execution graph of the DDG from two distinct invocations of the start
node of i to an invocation of any node in ; such that, one path traverses
only the nodes of L and the other traverses nodes of l; not common to the
two loops, the delay associated with the first path is more than or equal

to that associated with the second.

® Ol,mazx < UZJmin-

This relationship is denoted by I < I;.

An example of the first condition above is shown in Figure 5.6.

In a multi-rate DDG, a path between two nodes in the DDG gets
translated to multiple paths of unequal lengths between the corresponding sets
of nodes in the execution graph, and it is necessary to ascertain that all these
paths satisfy the criticality criterion. As will be found, the relation of uniform
criticality is sufficient to make the scheduling of nested loops independent of

each other.

Notice that the above definition expects a total ordering on the can-
didate loops. [t is important to bear in mind that the subsequent analysis is

valid for only those nested loops that can be ordered by <.
Some notation is introduced now:

Notation: Edges are denoted by the letter e. When the edge refers

to the DDG, it will be denoted by ePPG and if it refers to the execution graph,

156

it will be denoted by €ZC. If it is a feed-forward edge, it will carry a subscript
f; if it is a feedback edge, it will carry a subscript b. The loop it belongs to will
form its second subscript. If both feed-forward and feedback edges are implied,

only the subscript indicating the loop will be used.

Some preliminary results are proved first. These will later lead to a

heuristic algorithm to schedule multiple nested loops.

Lemma 30 If loop I, nests loop b, then every directed path in the ezeculion
graph of the DDG starting with an invocation of the start node of k, and formed
by only the edges from b, is part of a path starting with an invocation of the
start node of Iy in the ezecution sub-graph defined over (I U feedback edge of I).

Proof: (1 U feedback edge of lz) contains . Therefore a path formed by
only the edges of I; is also a path in the execution sub-graph defined over
(1; U feedback edge of 15). Moreover, as has been shown in the foregoing that
there is a directed path in 1; from its start node to the start node of 1; which

does not encounter any other nodes of l,. O

Lemma 31 Every directed path in the ezecution sub-graph of loop is also a

part of some directed loop in the subgraph.

Proof: If there is a path which is not part of a loop, then the terminal invoca-
tion in the path must not have any output edges corresponding to some edge

belonging to the loop, which is not the case.]

From the above two lemmas it can be concluded that,

Lemma 32 If loop L, nests loop b, then every directed path in the ezecution

graph of the DDG starting with an invocation of the start node of b, formed

157

by only the eﬁG edges, and ending with an invocation of the stop node of p, is
part of a loop in the ezecution sub-graph of (I, U feedback edge of L), defined

using an efff edge.

Consider a loop formed in the execution sub-graph of l,. If the effg of
this loop is deleted, it forms a directed path using only the edges e, including
of course some corresponding to efzfa. The above lemma states that such a

path is also a part of a loop defined using a efff.

Theorem 11 If loop L nests loop b, and if h < l,, then it is possible to
schedule correctly the execution sub-graph for L by considering only the timing
constraints imposed by loop created by the edges efﬁ, and opening loops by

deleting all the effg edges.

Proof: It was shown above that every path created by opening a loop within
the execution sub-graph of 1, is part of a loop in the execution sub-graph of
(1; U feedback edge of 1;) using a ef edge. But since l; < Iy, the latter loop
has less available slack than the former. Thus scheduling of the latter without
consideration to the timing constraints of the former will not introduce a slack
that is more than that acceptable for the former. Therefore, satisfying the
timing constraint of the latter loop implies satisfaction of that of the former

loop. O

Theorem 12 If loop L nests loop h, and if & de l,, then it is possible to
schedule correctly the ezecution sub-graph for ki by considering only the timing

constraints imposed by loop created in it by the edges eff.

Proof: All invocations of all the nodes of 1; except its start node can be sched-

uled independently of invocations of all nodes that don’t belong to 1y, if the

158

invocations of its start node can be shown to be independent of them So con-
sider the scheduling of an invocation of the start node of l;.

Each invocation of the start node receives tokens on two dependencies,

one, the e@?G edges, and the other, the e?

gG edges. By Lemma 18, initially, a
certain number of invocations of the start node must be enabled for scheduling.
These invocations can be scheduled immediately. Consider the first invocation
of the start node of I; which cannot be so scheduled. As before it has two types
of dependencies. The one corresponding to the eflf G which come directly from
invocations of the stop node of 1;, and the other which also involves edges and
nodes in 1, that do not belong to 1;. If there are initial tokens along the latter
(implying that the start nodes of I; and 1, are identical), then the invocation of
the start node of 1, being considered can be scheduled as soon as the invocations
of the stop nodes of 1; produce sufficient number of tokens satisfying the former
— which is again independent of invocations of the nodes not belonging to L.
However, if it does not have the presumed initial tokens, then it must depend
on invocations of its parent node belonging to l;, which in turn must depend
on some non-initial tokens generated by invocations of their parent nodes, and
so on, up to the start node of l;. These in their turn must depend on the non-
initial tokens they receive from the feedback dependency eff G and therefore,
the invocations of 1;’s stop nodes and therefore some earlier invocations of the
stop nodes, and hence also the start nodes, of 1. So now there exist two sets
of paths, as shown in Figure 5.6, from the invocations of the start node of 1;
to another invocation of its start node. The first set traverses only the edges
belonging to 13, efG, and the other also traverses edges egc which are not part
of efgg However, by the definition of uniform criticality, if loop 1, nests loop

Iy, and if 1 < 1, the delays associated with the first set of paths are more than

or equal to those associated with the second. Thus again, the invocation under

159

Path i the exscution
subgraph of 11

Invocations of start node

QO @) @)
' @)

Invocations of stop ncde

Figure 5.6: Two paths from invocations of the loop start node.

consideration can be scheduled as soon as the invocations of the stop node of 1;
corresponding to the former set has completed execution, and therefore can be
made independent of execution times of invocations of nodes that don’t belong

to 11.

Notice also that, by the virtue of the fact that l; 4 1y, the slack

introduced in any loop of 1; does not violate the timing constraint of a loop in

l,. B

The above two theorems are combined in the following single theorem:

Theorem 13 If L, and L is a pair of nested loops, and if h 4 b, then [} can

be scheduled independently of I without violating l,’s timing constraints.

This theorem can be obviously generalized to state,

160

Theorem 14 If {li --- [} is a set of nested loops such that loop L nests all
loops liy1 through I, and if I; is more uniformly critical than all other loops,
then L can be scheduled independently of other loops and without violating the

timing constraints of the other loops.

Now, a divide and conquer algorithm is proposed to schedule a set of

uniformly critical nested loops:

Algorithm 4

1. Order the set of nested loops {l --- I}, where [nests all loops L1 through

l;, according to the criterion of uniform criticality.

2. Schedule the most critical loop I; independent of all other loops, using if

any, previously computed schedule of a nested loop.
3. Delete from the set, loops I; through 1.

4. Repeat steps 1 through 3 until is scheduled.

Theorem 15 Algorithm / schedules the loops correctly.

Proof: Follows directly from Theorem 14.

The concepts involved in the above are illustrated with the help of

the following example.

Consider the computation:
Yn = T + Yn-1 + 0.5Yn-2 + 0.5yn-3

Figure 5.7a shows the DDG for the computation drawn in the tradi-

tion of a signal flow graph. Figure 5.7b shows a transformed DDG in which

161

the loops are shown as being nested. The coefficients were chosen in such a
way that only one multiplication is necessary. The simplified DDG is shown
in Figure 5.7c. It is easy to see that loops in Figure 5.7c are related by the
criterion of uniform criticality. Loop b is the most critical and can, therefore,
be scheduled independently of the other two. Since loop a is contained within
loop b, it need not be scheduled separately. Loop c is scheduled last without
modifying the schedule of loop b. Because of uniform criticality, it is certain

that the final schedule satisfies the timing constraints of all three loops.

162

(©)

Figure 5.7: DDGs for the example illustrating uniform-criticality.

Chapter 6

Implementation of a heuristic scheduler

In the previous chapter, theoretical considerations were given to the
problems of pipeline synthesis. In this chapter an implementation of a heuristic
multi-rate scheduler, primarily designed to obtain an MRR schedule for an
acyclic DDG without graph latency bounds, is described. As before, MRR
(minimum resource requirement) is assumed to imply minimum number of
computation and communication components. Number of registers and drivers

are not incorporated directly in the minimization criterion.

The scheduler has been extended to allow an interactive implementa-
tion of the iterative algorithm for a DDG with a single outer loop, as described
in the last chapter. A graphical front-end called DDGTool, used to allow spec-
‘fication of an annotated DDG, is described herein as well. Along with the
DDGTool, the scheduler forms a complete pipeline synthesis system for multi-

rate repetitive algorithms.

The heuristics chosen for the scheduler facilitate the independence of
the two parts of the architectural design process: 1) time-scheduling and 2)
assignment of operations to components. Performance of these heuristics will
be examined with the help of example DDGs and strategies for improvements

will be discussed. A synthesis methodology is enunciated first.

163

164

6.1 Synthesis methodology

The foundations for the methodology about to be outlined have al-
ready been laid in the previous chapters. Here those concepts are brought
together and formulate a stepwise procedure to translate DDGs to hardware
architectures. In later sections individual components of the methodology are

discussed.

Steps of the methodology The high level synthesis methodology broadly

consists of four steps.

1. Express algorithms as DDGs. The first step in the synthesis process

is to express a computation in the form of a DDG.

9 Annotate the DDG. The user makes a choice about which operation
will be executed on which type of hardware component and thereby binds
the operations to component types. This choice determines the delays of
operations, and their firing disciplines, used later during the analysis of

the DDG. Token markings are also specified in this step.

3. Choose input latency and/or schedule cycle length. As seen in
Chapters 4 and 5, these two define the free variables for the TCEs and
TREs for the DDG respectively. These two variables need to be bound

before an architectural solution could be found.

4. Design the solution architecture. With the completion of the first
three steps, the automated synthesis procedure can take over. The syn-

thesis procedure for acyclic DDGs is comprised of the following sub-steps:

(a) Solve TREs.

(b) Solve TCEs.

(c) Compute the number of hardware components necessary.
(d) Construct the execution graph.

(e) Schedule the operations of the execution graph.

(f) Assign operations to components to minimize connectivity.

The first five sub-steps of the last step in earlier chapters have already
been encountered. Of particular interest in this chapter is the specific imple-
mentation of the fifth and the sixth sub-steps. The implementation carries the
synthesis process to the point of defining the start times of invocations and
assigning them to instances of hardware components. Given that the exact se-
quence of control signals to be _applied to the individual hardware components
is known beforehand, the complete encoding of a control ROM can be mechan-
jcally obtained thereafter. To define the connectivity of the architecture, the

implementation computes port-to-bus connectivity for each component.

The implementation of the above steps of the methodology are divided
into two separate software modules. The last two steps are part of the multi-
rate scheduler, whereas the first two are part of DDGTool, which is discussed

next.

6.2 DDGTool

DDGTool is a graphical front-end to facilitate interactive drawing of
DDGs and producing graph specification files that can later be read by the

scheduler. It is based on Guide, a proprietary graph drawing software package

166

from Scientific and Enginnering Software Inc., and is implemented?! to execute
within the Sunviews window based programming environment available on the

Sun Microsystems Inc. workstations.

In this section, various features and capabilities of DDGTool will be
briefly described. For detailed information, the reader is referred to the DDG-
Tool User Manual [15].

6.2.1 Graphical capabilities

The graphical capabilities of DDGTool are referred to as tools, and
the current capability being invoked is indicated by the corresponding unique
cursor. Specifically, there are seven distinct tools and the following are their

respective functions:

1. Create: This tool is used to draw nodes and edges on the screen, and is
the default tool. A DDG is drawn on a canvas, only a part of which is

displayed within the window on the screen at any given time.

9. Travel: DDGTool has a heirarchical drawing capability. A special type
of node symbol, sub-DDG node (with concentric circles), signifies a sub-
DDG. When such a sub-DDG is to be displayed or drawn, the Travel
t00l is used on the selected sub-DDG node. The sub-DDG denoted by a
sub-DDG node is treated like a macro definition and is expanded at the

time of producing output files.

1DDGTool was conceived and specified by the author and implemented by Mr. Cheng-
Liang Lin and Mr. Mukund Belliappa of the Department of Computer Science, University
of Texas at Austin.

167

3. Erase: This tool is used to delete graphical symbols of nodes and edges
from a DDG.

4. Open: This tool is used to annotate the DDG by specifying properties
associated with nodes and edges in the graph. The tool opens appropriate

forms for the user to fill in the necessary information.

5 Move: As the name suggests, the Move tool, is used to move symbols

around the screen.

6. Square: This tool is used to beautify the DDG by making its edges

rectilinear.

7. Copy: The Copy tool is used to duplicate nodes and sub-DDG nodes.

In addition to the above graphical capabilities, the DDGTool allows
the user to scroll over the canvas, to print the screen, and to access other graph
fles. These functions are invoked via buttons displayed in the window header

banner.

6.2.2 Specification of DDGs using DDGTool

DDGs are specified by drawing them on the screen using icons pro-
vided by the DDGTool. DDGTool provides icons for nodes, and allows drawing

directed arcs connecting the ports of these nodes.

DDGTool has distinct icons for computation, communication, and
sub-DDG nodes. There are two more icons that are displayed but not available
for the user to draw; these are the Enter and Erit nodes of a sub-DDG, which
are automatically drawn by the tool when a “travel” is made to a sub-DDG.

The node icons are shown in Figure 6.2. In the figure, the icons in the top

168

row represent communication operations, the ones in the middle row are used
to represent computational operations, and the icon with concentric circles

represents a sub-DDG.

Each node icon has up to two ports, an input and an output. Icons
representing start and stop nodes of a DDG have only output or input ports,
respectively. Each port of an icon 1s capable of representing multiple pbrts for
an operation and the corresponding component, however. This binding of a
port of an icon to a port of a component is done via edges, as will be explained

below.

Specification of operations

The specification of operations is divided into two parts. First, all the
operations used by the DDG-encoded algorithm are declared globally by open-
ing the form corresponding to the Definitions button (see Figure 6.1). Here,
declarations are made about the mnemonics used to refer to the operations,
and their respective delays and default firing disciplines. The mnemonics de-
clared here are visible for assignment to the nodes. As indicated in Chapter 3,
the default firing discipline of all computational operations is AND, but that
of the communication operation is chosen to be SR. The delays are positive

integers, denoting multiples of the period of the global clock.

Second part of declaration of operations deals with individual nodes.
For each node, information is provided indicating its label, type of operation
— referring to one of the mnemonics declared earlier, and its actual firing
discipline, which for all nodes except the communication, is the same as the
common default for their respective operation, the AND. This specification is

provided using a form invoked via the Open-tool. (See Figure 6.3.)

169

Figure 6.1: The Definitions form in DDGTool.

Q

Figure 6.2: Node icons.

170

Datas 0o Type Firinﬁ Mode

W

Figure 6.3: The form used to specify a node.

Specifications of data dependencies To minimize duplication of informa-
tion, data dependencies are specified using forms associated with edges. For
each edge, the specification includes, an optional label, initial tokens, the port-
ids of the from and to nodes, and the corresponding token-markings. The form

is displayed in Figure 6.4.

6.2.3 Scheduler input

DDGTool provides the capability to produce the specification of the
DDG in the form expected by the scheduler. The Output button on the window
banner invokes the translation function that produces three ASCII files which
together contain the entire specification of the DDG. The following are their

contents.

e The first file contains specification of the types of components to be used
in the synthesis process. This information is derived from operation dec-
laration from the Definitions form discussed above, and contains an entry

for each type of component. Each entry has a unique integer id for the

171

Edge Libal- mmr—

init tokons: TSN

from port:
From tokens:

To port:
To tokens:

Figure 6.4: The form used in DDGTool to specify dependency information.
type of component, its firing discipline, and its delay.

e The second file contains specification of nodes. An entry for each node
contains a unique integer id, an integer denoting the operation it rep-
resents, and its actual firing discipline. Again, as explained above, the
actual firing discipline may be different from the default for the corre-

sponding operation only in the case of communication nodes.

o The third file contains specification of edges, containing an entry for each
edge of the DDG. The entry contains, a unique integer id of the edge, for
each of its from and to nodes, its unique id, port id, and token marking,

and the number of initial tokens present on the edge.

6.3 Design of the heuristic scheduler

To design a MRR architectures for acyclic DDGs, the scheduler traces
the steps outlined in Section 6.1. The scheduler begins by reading in the
files specifying the DDG, which are generated using the DDGTool described

in the last section. It then requests the user for input latency. Given the

172

input latency and the DDG specification, it computes the necessary schedule
cycle length to achieve the MRR (see Section 5.4). It does this by solving
the TREs for the DDG. The scheduler then sets up and solves the TCEs for
the data dependencies of the DDG. Following the solution of the set of TCEs,
it constructs the execution graph. Finally, and importantly, it schedules and

assigns the operations in the execution graph in a two-step process.

In this section the scheduling heuristics will be examined and their
performance will be discussed. At first, a look s taken at the heuristic ordering
among operations — the node ordering heuristic. The next heuristic is the one
which allows the separation of time-scheduling of operations and their assign-
ment to components — the slotting heuristic. This separation gives rise to an
assignment problem. This problem is formulated and a heuristic is proposed

to solve it — the assignment heuristic.

6.3.1 Node ordering heuristic

To the extent that the scheduler is intended to synthesize MRR archi-
tectures for acyclic DDGs, it obtains an optimal solution, this being guaranteed
by Theorem 7. It trades graph latency to achieve that optimal solution. Al-
though graph latency is not of primary concern, it is desirable to keep it as
low as possible without violating the MRR constraint. In this sub-section,
is presented an adaptation of a list scheduling heuristic originally proposed
by Coffman [10]. This heuristic is used to rank operations in the execution
graph when there arises a contention between similar operations for the same
execution time-slot. The contention arises because of the limited number of
components, which are shared by the operations. The operation with lower

rank has a lower priority, and is likely to be postponed to the next available

173

node 1

node 3
node 2

Figure 6.5: An execution subgraph.

slot.

Consider the execution subgraph shown in Figure 6.5. Assume that
the MRR architecture for the DDG requires only one component of each type.
After the execution of node 1, nodes 2 and 3 can execute, and thus contend for
the single adder in the architecture. If node 2 is chosen in preference to node
3, the graph latency for the subgraph increases by the delay of an addition.
However, if node 3 is ranked above node 2 and is given a priority of execution
over it, then the graph latency remains unaffected. This is due to the fact that

node 3 is on the more critical path of the subgraph; node 3 is more critical.

Therefore a scheme is needed by which the nodes are ranked in the
execution graph so that a more critical operation is given a higher rank. The
heuristic about to be presented was proposed by Coffman in [10] for a scheduling
algorithm intended foerbtaining optimal nonpreemptive schedules of acyclic

graphs executing on two identical processors. A similar heuristic was pro-

174

posed by Kaufman in [29] for near-optimal multiprocessor scheduling of a tree-

structured graph.

The heuristic, which is a modification of the latest start time ordering
(LST-ordering) scheme, is applied to the DDG and not its execution graph.
It imposes a total ordering on the nodes of the DDG. The current heuristic
ignores the multi-rate characteristic of the DDG, but does take into account

the delays of the operations.

The basic LST-ordering heuristic ranks DDG nodes using the follow-

ing algorithm:

The algorithm maintains for each node of the DDG a list of immediate
successors — all nodes which can be reached from the node by traversing a
single dependency. It also maintains a list of nodes by the latest time at which
they may start executing. A node remains in the list for the duration of its delay
and is inserted into this list after, and only after, all its successors have exited
the list. A node is assigned a rank when it exits the list. The rank assigned
is the value of a monotonically increasing integer; the integer is incremented
after each rank assignment. If two nodes leave the list at the same time, they

are ranked in an arbitrary order.

The stop node of the DDG is inserted in the list first and assigned

rank 1.

In the LST-ordering, the more critical operations appear later in the
list and are therefore assigned a higher rank. But the scheme assigns ranks
to equally critical nodes in an arbitrary order. Coffman’s modification to this
basic algorithm alleviates this problem by anticipating the potential criticality
of a node. It uses the following criterion to break the tie between two nodes

exiting the list.

178

For any two nodes exiting the list at the same time, their successors’
ranks are compared. The one with a higher ranked successor is given the higher
rank. If for one node the set of its successors is a subset of those of the other,
the tie is broken in favor of the one with more successors. If the set of successors

is identical for the two nodes, the tie is broken arbitrarily.

The ranks assigned to nodes are used by the scheduler to determine
which of the contending invocations in the execution graph gets scheduling
priority. The invocation whose corresponding node in the DDG has a higher
rank is given higher priority. If two invocations of the same node contend for a
slot, the one enabled earlier (i.e., one which has lower invocation number) gets
higher priority.

The scheduling algorithm uses the execution graph of the DDG in the

following manner:

Begin by scheduling the first invocation of the start node at time t=0,

and schedule its remaining invocations once every Ly cycles of the global clock.

For all other nodes, schedule an invocation if
1. there is a token on each of its input edges, and
2. there is a component available to start the execution during that cycle.

Else, postpone the execution of the invocation to the next available slot.

Use the multi-rate execution model introduced in Chapter 3 to sched-
ule the output phase of the execution, and deliver the tokens to appropriate

output edges.

176

6.3.2 Slotting heuristic

At the end of Section 5.4, a strategy was described to schedule an
acyclic graph with number of resources equal to the MRR of the DDG. In it,
execution times were predefined for components, and operations were assigned
to them as part of the scheduling process. This strategy guarantees a feasible
assignment. That is, the scheduling of no operation violates the condition that
there will eventually be a component free to execute a given operation, either

already scheduled or to be scheduled.

Such a strategy is necessary to give the ability to compute a static
schedule locally for each operation. Consider for a moment that such a strategy
were not used. Instead, an operation is scheduled whenever all its dependen-
cies are satisfied and independent of other similar operations. This strategy will
also tend to immediately assign the operation to a component. The static na-
ture of the schedule would then imply that the component may not be used for
any other operation during all times which have the same values modulo Lgcr-
Thus a component is available for assignment if, and only if, the component is
unassigned for the entire duration of the operation. It is now conceivable that a
component may earn assignments such that it is idle long enough between the
planned executions, enough to keep it from being able to take all the assign-
ments necessary for the satisfaction of the MRR criterion. Such fragmentation
of the execution cycle of a component due to “inopportune” scheduling can

only be overcome by a priori decision about the execution slots.

Short of a strategy equivalent to the one being considered, a global
evaluation of the scheduling requirements has to be made. In fact, the force-
directed scheduling heuristic of Paulin [47] is such a global analysis technique

to obtain a feasible schedule.

177

The next question to be answered is: What are the “appropriate”

positions of the slots?

The question is important because “inappropriate” positions can have
the adverse effect of excessively increasing the graph latency of the schedule.

The best arrangement of slots is the one that minimizes this adverse effect.

Clearly, since the lower bound on the adverse effect is 0, there must
exist a best arrangement. Yet, finding the best arrangement of slots would
require determining the schedule without inserting slacks and then determining
the slots so that the increase in graph latency is minimized. The presence of
precedence between operations, however, makes this approach combinatorial in

complexity.

The other option is to choose an @ priori arrangement, which is the

choice made for the current implementation.

In the current implementation of the scheduler, the slots of all compo-
nents are abutted to the first cycle of the schedule cycle, and there are no idle
cycles between consecutive slots; all idle cycles are at the end of the schedule
cycle. This scheme was primarily chosen for its simplicity and execution speed

of the impleméntation.

Obvious variations to this basic scheme are certainly possible, and
could be incorporated in the future versions of the scheduler. For example,
instead of inserting all idle cycles at the end, they could be distributed evenly
throughout the schedule cycle. Or, not all components are slotted aligned to

the first cycle. Or, the slotting pattern could be input externally.

Apart from simplicity and speed, one other significant practical ad-

vantage accrues from this choice: An architecture contains multiple components

178

of the same type. Since because of the choice of the arrangement of the slots
the components of a given type execute in lock-step synchrony, the control for
all components of a given type can be derived from the same bits in the control

ROM, thereby reducing the size, and therefore the cost, of the ROM.

Consider, for example, the DDG corresponding to the FIR filter pre-
sented in Chapter 3. The DDG is reproduced here again in Figure 6.6. Assum-
ing the same input latency as before (i.e., of 300 ns.), and delays of 20 ns., 40
ns., and 80 ns. for a bus, an adder, and a multiplier respectively, the scheduler
finds a schedule which has schedule cycle length of 600 ns. and graph latency
of 1800 ns.

The quality of MRR schedules produced by the scheduler is dependent

on the interplay of

e heuristic used to rank invocations,
e slotting heuristic, and

e relative primeness of the input latency and the delays of the components.

If these three factors are badly matched, the graph latency can be
adversely affected. For example, in the above FIR example, the graph latency
is more than twice the length of the MRR schedule presented in Chapter 3.
The adverse effect can also be in the form of large number of components
when graph latency constraints are imposed. In fact, slots determined a priori
might even disallow satisfaction of graph latency constraints by forcing the

introduction of otherwise unnecessary slacks.

On the other hand, improving the factors can lead to better perfor-

mance. For instance, if the last of the factors is improved in the FIR example

179

Start<;>

@ @ ® ® ® © @ @

o
S s

cl c2 c3 (<] cS cB c7 [~

® 6666 o

3

c30 18 cil ci2 i3 cid
2i® | all | ald | a
clsi clsg czag 2%

¢
a8 13
ci? [+ c

15 cib
aid Q&?
22

L

Figure 6.6: DDG representing a 16-point FIR filter.

180

by choosing the input latency to be 320 ns., the schedule latency drops to
390 ns. as well, and the scheduler obtains an MRR schedule which is merely
1180 ns. long.

The last factor of relative primeness affects in two ways.

The relative primeness of the component delays and the input 1ateﬁcy
tends to increase the schedule cycle length. A schedule cycle length thch is
a large multiple of the input latency implies a combined schedule for multiple
invocations of the DDG. This in turn means that more invocations are likely to
contend for any given slot, and therefore it is more likely that slack will be in-
troduced for any given invocation. The result of introducing slack is camulative

and there is a potential risk of increasing the graph latency enormously.

This pernicious effect can be alleviated by modifying heuristics af-
fecting the first factor. For ekample, one may introduce heuristics involving
critical path analysis, where criticality of unscheduled operations is reevaluated
every time an operation is scheduled. This problem can be handled by fixing

the schedule cycle length externally, as discussed further in Section 6.4.

Secondly, the factor of relative primeness may interact with the slot-

ting scheme:

The major shortcoming of any a priori slotting arrangement is that
it does not take into account the topology and the precedence relations in the
execution graph, and thus risks being a bad choice. This phenomenon is more
likely to be manifested when the topology of the execution graph 1s regular
and when operations with relatively prime delays follow each other. DDGs
with irregular topology can be less prone to this adverse effect. For example,
for the DDG shown in Figure 6.7, the current scheduler produces a graph

latency no worse than any other MRR scheduler.

181

For the DDG of Figure 6.7 and the component delays shown there, for
which the lower bound on the graph latency is 500 ns., the scheduler generates
schedules with graph latencies of 660 ns., 540 ns., 580 ns., and 560 ns., for
input latencies of 200 ns., 240 ns., 280 ns., and 320 ns. respectively. In fact,
it can be shown that, in the case of input latency of 240 ns, no scheduler
which incorporates the operation ordering heuristic of the previous section can

produce a schedule better than the current one.

This particular effect of the regularity of the DDG topology can be
avoided by using variations on the slotting scheme, suggested previously. For

example, the skewing of slots among adders helped in the manually obtained

MRR schedules of Chapter 3.

Separation of scheduling and assignment

In the slotting heuristic presented above, all components of a type
have the same execution time slots. If an operation is to be assigned an execu-
tion time, it is assigned to an execution time slot. But at the time of scheduling
the operation need not be assigned to a particular component, since it could be
assigned to any of its type of component; the actual assignment of operations
to particular components is postponed until after the scheduling process is over

and handled separately.

There are advantages to this kind of separation, since independent
optimization criteria can be applied to the assignment phase. In the next sub-
section one such optimization criterion is stated and a heuristic to solve the

related assignment problem is introduced.

comR

Delays: {in ns.}

Communication: 28

3tare: 48
Add: 48
Subtract: 48
Multiply: 58
Bivide: 288

Figure 6.7: DDG with an irregular topology.

182

183

6.3.3 The assignment problem

The assignment of invocations to physical components is the final
step in the architectural synthesis process. In many methodologies this step
of binding the operations to physical components is performed as part of the
scheduling process. As discussed in the last section, the two steps were sep-
arated in order to: 1) simplify the scheduling process, and 2) allow different
optimization criteria to be developed for the assignment process. The opti-

mization criterion is: minimization of connections to physical components.

The connectivity model of a physical component was introduced in
Chapter 3. Every port of the physical component is connected to one or more
communication components, i.e. busses, over which tokens arrive to, or depart
from, the port. A connection is therefore identified by an ordered pair <port,
bus>. Since a register file interposes between a port and a bus it is connected
to, minimizing connections in the architecture, is equivalent to minimizing the

number of register files in the architecture.

NP-hardness of the assignment problem

The assignment of operations to components to minimize the num-
ber of connection is NP-hard. To be convinced of this fact, consider a very

simplified problem:

Concentrate on only one type of operation in the DDG and the cor-
responding type of component. Focus further on one of its ports and draw the

following conflict graph.

Fach invocation corresponds to a node in the graph. Two nodes in
the graph are connected by an undirected edge, if and only if, transfer of a

token corresponding to the port under consideration for one of the invocations

184

/

Figure 6.8: Graph-theoretic formulation of the simplified assignment problem.

is concurrent with that of the other invocation. See the example shown in

Figure 6.8.

If invocations are assigned to a component such that tokens corre-
sponding to them are transferred concurrently, the component’s port must be
connected to two or more busses, as simultaneous transfers must be accom-

plished over more than one separate busses.

For this simplified case, the problem of minimizing connections is

reduced to the following graph-theoretic problem:

Assuming that n invocations have to be assigned per component, if
there are k components, then the task is to find k sets of n nodes each, such
that the total number of edges spanning intra-set nodes are minimized. Of
course, since only the invocations that are non-concurrent may be assigned to
a component, a set may not contain pairs of nodes which represent concurrent
invocations. The nodes and their incident edges are deleted from the graph

once they are selected to form one of these above sets.

The best possible solution is one in which for each of the k sets, there

are no intra-set edges. But this corresponds to searching for successive anti-

cligues, which is an NP-complete problem. Hence the conclusion:
Lemma 33 The assignment problem of minimizing connectivity is NP-hard.

The above problem is similar to the classic graph-partitioning prob-
lem enunciated by Kernighan and Lin [31], although the objective of the above
problem is the inverse of the graph-partitioning problem; in the graph parti-
tioning problem, the objective is to minimize the inter-partition edges, while
in the above the attempt is to select the sets so that the edges are preferably

between them, than within them.

Assignment heuristic

To solve the assignment problem at hand with the optimization cri-
terion of minimization of connectivity, a two-step heuristic is proposed, which
is used in the current implementation of the scheduler. The first step chooses
a port to optimize at a time, and the second step optimizes the connectivity

for it.

Choice of port

The first step is motivated by the observation that assignment of a
port, and therefore of corresponding operations to the respective components,
results in reservation of busses as well. This reservation leaves the later port

assignments facing worse constraints. So the following heuristic is used:
Assign most busy port first.

An operation and the corresponding type of component may have

one of three possible states, depending on the state of its ports: 1) unassigned,

186

2) partially assigned, or 3) assigned. An invocation all of whose ports have
been assigned, has the state assigned; ones which have only some of its ports
assigned carry a state partially assigned; operations with no ports assigned are
unassigned. For example, an addition operation has three ports, two input and
one output. Initially, the operation of addition is unassigned. Let the output
port be assigned first, after which the addition operation is declared to be
partially assigned. When both the input ports of the operation are assigned,

it becomes assigned.

During the assignment of ports, partially assigned operations are given
higher priority that the unassigned ones. This is motivated by the considera-
tion that the components which have already been bound to invocations are
better assigned earlier, for the freedom of assigning them to minimize the token

transfer conflict no more exists.

To find the busiest port, the maximum number of invocations that
could potentially be assigned to a physical component is computed. For each
such physical component, the number of tokens to be transferred over each port
are calculated by taking the product of maximum number of invocations just
mentioned, and number of tokens transferred over the port. The busiest port

is the one that has the highest product.

The process of assigning a port involves assignment of all of the refer-
enced operations to physical components, as well as assignment of the transfers

of tokens accessed over that port to busses.

It is important to point out that above is only an approximation to the
busiest port, which cannot really be decided prior to the assignment. Observe
that it is not necessary that a physical component has to be assigned the

maximum number of invocations. For example, suppose there are four slots per

187

schedule cycle and there are nine invocations to be assigned, three components
are needed. Suppose further that the arrangement of the invocations in the
schedule cycle is:

il 'ig 7:3 1:4

is s 7

ig 1o
It is easy to see that invocations i1, iz, and i3 can be mapped to one of the
components, is, ig, and i4 can be mapped to the second, and the remaining can
be mapped to the last. This assignment leaves each component idle for one

cycle although the maximum potential number of invocations per component

is four.

Assignment of invocations

The second part of the heuristic, deals with assignment of invocations
to components to minimize connectivity. This problem was expressed in graph
theoretic terms in the last sub-section. As stated there, this problemis NP-hard

and a simple heuristic of NlogN time complexity is used.

The heuristic used for minimizing connectivity for a port is based on
the observation that the potential number of busses that a port may have to be
connected to, is bounded above by the highest degree of any node in the selected
set of nodes. It is therefore reasonable to minimize highest degree chosen. The

easiest way to ensure this is to:

Sort the nodes in ascending order by their degree and choose the ﬁrst n nodes
that are non-concurrent to form a set. Delete these nodes and repeat the

procedure on the remaining graph.

Notice that this is a heuristic and not an exact approach. It suffices

to point out that the number of busses are not equal to the maximum degree,

188

but only bounded above by it. It is entirely possible to find a set that does not

minimize the highest degree contained, but is optimal nonetheless.

Notice also that the heuristic selects an invocation only once, and

there is no facility for backtracking.

The above heuristic attempts to choose n nodes every iteration, in-
stead of choosing an “average” number of invocations per component. This is
not always necessary, as can be easily found out in the following example. How-
ever, it is sufficient to avoid the problem that could arise in the arrangement
below, given that a single pass is made over the list of invocations:

iy 12 i3 I4

15 s 17 I8

g
Here, the subscripts reflect the order of the invocations in the sorted list. It
is possible to assign three invocations per component. However, without an
ability to backtrack, it is likely that the algorithm will assign the invocations
i1, iz, and i3 to the first component, the invocations ig, is, and ig to the second,

and be trapped into an infeasible assignment for iz, ls, and ig.

It is easy to see that the following is true about the heuristic:
Lemma 34 The invocation assignment heuristic finds a feasible schedule.

Proof: Consider the state of a slot described in term of the count of
invocations scheduled to execute in it but yet to be assigned to a physical com-
ponent. Thus, a slot is either empty or non-empty, depending on the number
of unassigned invocations is zero or not. Whenever an invocation belonging to

a slot is assigned, the count is decremented by one.

189

The assignment heuristic assigns a component one invocation per
slot, for every non-empty slot. Thus for each new physical component be-
ing assigned, for every non-empty slot the count of unassigned invocations is

decreased by one.

But the scheduling algorithm guarantees that the maximum number
of invocations per slot is no greater than the number of components available.
That is, for each slot, the maximum value of the count is less than or equal
to the number of components. Thus at the end of the assignment process, the
count of each slot is equal to zero and all invocations are assigned. Also, no

component is assigned more than one invocation per slot. O

The heuristic was evaluated by executing it on the DDG shown in
Figure 7.1. (The DDG is discussed in greater detail in Section 7.1.) Varying
sizes and topologies of the execution graph result when input latencies are

varied.

When the input latency is fixed at 20 cycles, the architecture requires
exactly 1 component of each type, and the number connections necessary are
minimum and should equal the number of ports of the components, i.e. 16. The
scheduler requires 18 connections: 16 corresponding to the connections between
the ports and the bus, and two extra to connect a staging buffer required to
accommodate consecutive transfers over the bus, forced into the schedule by

the dependency spanning two communication nodes.

When the input latency is changed to 10 cycles, the architecture re-
quires 2 busses, 2 divide units, and 1 component of each of the other types.
The minimum number of connections that would be required is 18 and the
worst-case requirement corresponding to each port being connected to each

bus would result in 36 connections. The actual requirement lies between these

190

1
Bus

L] 3 8(1) 8(2) 7 2 H
Busl » ¢
1:XY-Accens §:Multiply
2:Subtract 8:Divide 4
3:Add 7:Adjust
4:|X]

Figure 6.9: Architecture for the convex hull algorithm for input latency of 10
cycles
two bounds. The heuristic results in a requirement of 24 connections. The

resultant structural diagram is displayed in Figure 6.9.

When the input latency is further reduced to 5 cycles, the architecture
requires 3 busses, 4 divide units, and one unit each of the remaining types. This
corresponds to the minimum requirement of 22 connections and a worst-case
requirement of 66 connections. On the other hand, the heuristic results in 35

connections.

6.4 Extensions to the heuristic scheduler

Primary objective of the scheduler is to obtain an MRR schedule

for an acyclic multi-rate DDG. However, other capabilities greatly enhance the

191

utility of the scheduler as a design tool. This section contains brief descriptions

of the extensions made to the scheduler.

Schedule cycle length

The scheduler described herein accepts an input latency value and
determines the minimum schedule cycle length (Lscn) to satisfy the MRR as
predicted from the TREs. In a previous section it was pointed out that obtain-
ing an MRR schedule may require a very large Lscr value, and that this implies
a large control ROM and might also imply large graph latency. It would be
desirable to allow the user to choose a value for Lscx, and thereby exert direct
control over the size of the control ROM and, less directly, control the graph

latency.

A capability of accepting a user-specified Lsch and computing a sched-
ule based on this value has been added to the basic MRR scheduler. The
scheduler computes the numbers of components necessary to guarantee a feasi-
ble schedule, numbers that may be larger than the MRR. The scheduling and

assignment heuristics used are the same as before.

This capability is illustrated in Section 6.6.

Number of components

The MRR schedule defines a single point in the solution space of
the desired architecture and therefore represents a particular trade-off between
hardware and performance. As explained in the last chapter, Section 5.5, a
resource constrained scheduler can be used to iteratively implement graph la-

tency constrained scheduler, and in so doing, explore the solution space by

192

varying the quantity of hardware. For this purpose, the scheduler must pro-
vide the capability of specifying the number of hardware components in the

architecture and of computing a corresponding schedule.

The scheduler is equipped with a capability of accepting the numbers
of components and computing a schedule based on this resource availability.
Since it uses the same underlying scheduling and assignment heuristics as the
MRR scheduler, however, it does not satisfy the assumption in Section 5.5.1.
It nonetheless does provide the capability for exploring the hardware — graph

latency trade-off.

This capability is also used in the examples of Section 6.6.

ASAP schedule

Before exploring the solution space under graph latency constraint, it
is vital to establish the lower bound on it. This bound can be found by assuming
no hardware constraints, and scheduling invocations as soon as they are ready.
This type of scheduling is called as soon as possible (ASAP) scheduling. This
capability has also been added to the scheduler.

6.5 Storage considerations

Throughout this work, storage components have been left out of the
cost formulation. The reason for this choice has been that their contribution to
the cost cannot be given a deterministic formulation prior to actual scheduling
of the other operations, and their sharing can only be determined a posterior:

to component assignments via life-time analysis of data stored.

In this section, attention is given to storage elements and the trade-off

that exists between them and communication requirements. This trade-off also

193

has an implication on the choice of the global clock speed, which is discussed

in greater detail in the next section.

Trade-off between communication and storage components

The model of computation used herein for an operation represented
by a DDG node requires that all tokens be available prior to its scheduling.
This implies that there be placed registers at the input ports of the components
to hold the tokens. No such requirement exists for output tokens. So the output

tokens could be transferred immediately to their destinations.

However, in the present approach, the communication components
are treated like other components and must wait for tokens to be available
at their input before firing. As a result, input registers must be provided for
these tokens as well. Recall from Chapter 3, that these input registers for
communication components are better modeled as output registers of compu-
tational components. And thus the connectivity model of a component shown

in Figure 3.4 has register-files at input as well as output ports.

Since communication components are scheduled independently, the
output register-files of the other components have to hold data until a com-
munication component becomes free to transfer the data. Thus, the more the
number of communication components, the smaller the output buffers should

become.

The sizes of register-files is determined from the life-time analysis of
the data they hold. Chapter 3 describes the behavioral model of a buffer.
According to it, a register of a register-file may be read from and written into

in the same clock cycle. Using this model, the size of a register-file is given by

194

the maximum number of tokens residing in it during any cycle, since tokens

that do not reside in the register-file concurrently can share the same register.

The current approach would prevent the output buffers from vanish-
ing altogether, however. This is due again to the model of a communication
component being same as that of a computational component, according to
which, the input token must be present prior to the transfer. Thus, the fidelity
to the computation model prohibits the trade-off between communication com-

ponents and output buffers to be carried to its extreme.

Notwithstanding the requirement of the model, this inefficiency can

be corrected heuristically under certain timing conditions as discussed below.

The look-ahead heuristic

An example is the best vehicle to present this heuristic and the sup-

porting arguments:

Assume that an algorithm uses only two types of computational com-
ponents: adder and multiplier. Assume that their delays are 20 and 60 ns.
respectively. Assume further that the communication delay over a bus is 15 ns.

The global clock cycle is chosen to be 40 ns.

Under these assumptions, the delays of the adder and the bus are

specified as 1 cycle each, and that of the multiplier is 2 cycles.

But, notice here that, in fact, the addition followed by the transfer of
its result can be achieved within a single clock cycle, and similarly, the multiply
and the transfer of its result can be achieved within two clock cycles. In effect,
the subsequent communication operation can be scheduled overlapped with

either an addition or multiplication.

195

e
0 D
—_—s = To
From 0 > =
R —_ busses
busses =
—s =
2 1 pP—f }—>
— b
Input QOutput
ports ports

Figure 6.10: Modified connectivity model under the look-ahead heuristic.

This possibility can be incorporated into the scheduling process by
explicitly introducing the look-ahead heuristic. According to this heuristic,
the communication operation to transfer a token output by an operation is
permitted to be scheduled concurrently with the token’s production. Of course,
the transfer is postponed in the usual way if a communication component is

not available at the time.

Under this heuristic, it is easy to see, output buffers can be completely
eliminated by increasing the number of communication components. The cor-

responding connectivity model for a component is shown in Figure 6.10.

Other methods to reduce storage requirements The components in an
architecture produced by the new synthesis approach will have registers at the
input ports. It is possible to attempt to reduce their number by applying a
technique analogous to the look-ahead heuristic proposed above. Using such a
technique, the execution of an operation will be scheduled such that the tokens
are transferred directly into a component without being held temporarily in an

input buffer. But this involves making stronger assumptions about the set-up

196

and hold times for input phases of computational components. For multi-cycle
combinational components, this method still does not help, for the incoming
tokens must also be held in a buffer to make them available throughout the

execution phase.

Another method for reducing the number of registers is to do a global
life-time analysis of tokens and to share registers among tokens whose life-times
are non-concurrent. But Whene§er sharing of registers in done in this fashion
in which registers are shared between multiple components, a need arises to
insert multiplexers, demultiplexers, and auxiliary busses, thereby introducing

extra hardware in the architecture.

6.6 Examples

In this section are presented two large examples which illustrate the

capabilities of the synthesis tools described in this chapter.

6.6.1 Fifth order elliptical filter

Here, synthesis is carried out for a filth order elliptical filter described
in [33]. This example was chosen as a bench mark for the 1988 ACM/IEEE
Workshop on High-Level Synthesis. Figures 6.11 a and b show the DDG of the
filter adopted from the Value Trace shown in [60].

The DDG shown in the figure is an acyclic graph obtained by clipping
open the loops of the original filter graph, in which all directed loops have
a single token. As explained in Chapter 5, this acyclic graph must now be
executed under graph latency constraint which is same as the input latency of

the filter.

197

Parameter SPAID HAL Present
Ls 19 19 19125130
+ 2 2 31211
% 11 11 22 12 12
Busses 5 6 31212
Connections 14 45 34115112

1. Pipelined multiplier. 2: Non-pipelined multiplier.

Table 6.1: Costs of architectures for fifth order elliptical filter.

For this example, it was assumed that the delays of adders and mul-
tipliers are 1 and 2 clock cycles respectively, and that the look-ahead heuristic
can be used. Table 6.1 shows architectural costs in terms of numbers of adders,
multipliers, busses, and connections for various input latencies. For compari-
son, designs from two other synthesis systems are listed as well for the input
latency of 19 cycles [21]. Notice that the scheduler described herein needs
fewer busses. But it requires one extra adder to achieve the necessary graph
latency. The latter is the effect of the a prior slotting scheme as anticipated

in Section 6.3.

6.6.2 Phase modulator

This sub-section describes the synthesis of a phase modulation circuit
shown schematically in Figure 6.12. The DDG for the algorithm is shown in
Figures 6.13 (a, b, ¢, and d) drawn using the hierarchical specification capability
of the DDGTool.

The specification of the phase modulation was adopted from [3], with

a modification introduced in the form of the 4-point “pre-filter” FIR to prepro-

198

1 1%

Figure 6.11: (a): DDG for the fifth order elliptical filter.

199

Figure 6.11: (b): DDG for the fifth order elliptical filter (continued).

200

Symbol
Conversion Cos{)

Acos{wet)

-Asin(wgt)

= 8(}]

Pre-filtering

Sin{)

Figure 6.12: Block diagram of a phase modulator.

cess the input signal before modulating the carrier phase with it. The carrier
frequency is assumed to be 32 times that of the input signal. Its specification

is found in Figure 6.13(b).

The phase modulator shown in Figure 6.13(a) is a multi-rate circuit,
computationally specified changes in data rate occurring at the node “8-4x2-

serializer” and inside the sub-DDG “g”, at the node “Repeater”.

Sub-DDG “g” in Figure 6.13(a) represents the modulating convo-
lution implemented as an 8-point FIR. Any of the several modulations de-

scribed in [3] can be applied by employing suitable coefficients in “g” (see

Figure 6.13(c)).

Finally, Figure 6.13(d) shows the specification of the actual carrier

phase modulation computation.

The following delay values, in terms of clock cycles, were used:

201

Parameter Arch. Chars.
Ly 200 | 500 | 1000
Lscn 200 | 500 | 1000
Graph Latency | 875 | 1720 | 2701
Input device 1 1 1
+ 2 2 1
* 7 4 3
Repeater 1 1 1
Serializer 1 1 1
wi*t 1 1 1
Sine 3 2 1
Cosine 3 2 1
Busses 6 3 2
Connections 226 | 69 36

Table 6.2: Architectural characteristics for the phase modulation circuits.

Communication 1 Input 1
+ 2 * 5
Repeater 9 Serializer 5
wl * 1 3 Sine 8
Cosine 8

Architectural characteristics for three different input latencies are
shown in Table 6.2. The latencies input to the scheduler are also specified

in terms of number of clock cycles.

6.7 Timing constraints

In the last section, an example was given to illustrate the concept of
the look-ahead heuristic for scheduling communication operations in order to

reduce the number of register files. The example showed how certain constraints

202

Inputo

pre.filter @

g-4x2-zariaiizer Cb

moduiator

€ oo

Figure 6.13: (a): Top level DDG for the phase modulation computation.

203

Figure 6.13: (b): Sub-DDG for the “pre-filter”.

204

Repsater

Exit B

Figure 6.13: (c): Sub-DDG for “g”.

205

Enter m;m

¥

sin0Q) cesd(

s

5 si0() ces0(

P~

4+
Extti}

Figure 6.13: (d): Sub-DDG for the modulation computation.

206

on delays of computational and communication components led to reduction
of register-files. In this section, the discussion on the use of the new synthesis

approach to meet other timing constraints is carried further.

The ability to accommodate multiple communication component types
also offers a solution to a problem that often plagues automated design sys-
tems. The problem particularly arises when the design involves several VLSI
circuits laid out on a printed circuit board. In this situation, the communica-
tion delays between the VLSI circuits are much larger than those within them,
and using the same delay values for both types of communication can lead to

either pessimistic or erroneous designs.

The above problem is handled in a straight-forward manner in the
present approach: All the busses, both internal and external to the VLSI cir-
cuits, can be assigned equal worst-case delays, corresponding to those charac-
teristic of the external busses. The fact that these communication delays are

several clock cycles long does not affect the scheduling process.

But this method of assigning the same delays for internal and exter-
nal busses makes inefficient use of the higher bandwidth available for internal

busses. A better approach is the following:

The DDG can be partitioned into sub-DDGs, each sub-DDG corre-
sponding to a distinct VLSI circuit. These sub-DDGs are connected via com-
munication nodes which are mapped to external busses. The external busses
may now have delays which are much longer (i.e., many cycles longer) than
those of the internal busses of the circuits. The synthesis process will au-
tomatically schedule “external” communication nodes on external busses and

“internal” ones on the faster busses internal to the circuits.

The current implementation of the scheduler, however, will tend to

207

combine the faster busses of different circuits. Also it will attempt to map
other operations belonging to different partitions to common components. It

is therefore necessary to modify the assignment process to allow specification

of sets of nodes that may share components.

Chapter 7

Further extensions and future directions

So far in this document a basis for high level synthesis of hardware
pipelines has been discussed. This basis represents a suitable step for extend-
ing the range of high level synthesis to algorithms which have variations in
data rates, and extending its domain to multi-rate components. Yet, there are
certain features that the current basis lacks. Some of these features are: 1)
handling hierarchical design, 2) handling internally pipelined components, and
3) handling data dependent computations. In this chapter, these and other
problems as well as some possible solutions will be discussed. The intention is

to indicate some future directions in which to carry forward this research.

7.1 Data dependent to data independent structure trans-
formation

Most of the pipeline design methodologies, as also the one outlined
herein, disallow data-dependent branching in algorithms. The reasons for this
restriction are: when there exist data dependent branches, it is hard to obtain
a “good” prediction for hardware resource requirements, and it is impossible

to obtain a static schedule.

The usual approach taken in the case of data-dependent computations
is to allow for the worst case requirements. For example, Sehwa ([44]), uses the
technique of “Conditional Assignment” to optimize on resource requirements.

Similarly, Cathedral IT uses the “Value Trace” technique to iteratively estimate

208

hardware requirements [13].

Here, two techniques are illustrated by which a data dependent com-
putation is transformed into a DDG whose structure is data independent. Es-
sentially, a control dependency is transformed into a data dependency by choos-
ing an appropriate set of operands, which is further transformed into a data
independent structure. Techniques that achieve the first step by using guards
have been suggested in [2] to facilitate the vectorization of FORTRAN pro-
grams. However, the second step proposéd here makes it possible to obtain a

static schedule.

Convex hull computation

Consider the following computation which is a part of an algorithm
called the Jarvis March, used to compute the convex hull of a set of points in a
two-dimensional euclidean plane. The computation is conducted for each point

; in the set except the seed point represented by coordinates x, and y,.

dz = X3 — Xs;

dy = y1 = ¥s5

6 = dy/(|dz| + |dy]);
if(de <0)§=2-6
else

if(dy < 0) 8 =6 + 4

Assume that the points are all distinct, and therefore |dz| + |dy| #

As presented above, the algorithm contains a data dependent compu-

tation, which depends on the signs of dz and dy.

210

However, the computation can be expressed in terms of two operands
A and B which take on different values depending on the values of dz and
dy: § = A + Bf, where A takes on the values 2, 4, or 0, and B takes on the
values -1, 1, and 1 correspondingiy The three conditions which generate these
pairs of values are: 1) dz < 0; 2) dz > 0 and dy < 0; and 3) dz and dy > 0;

respectively.

A ROM based component can easily be designed which can sense the
above conditions on dz and dy, and generate the appropriate pair of operands
at the output. In this particular case, the component shares its output port
for both operands, and thus is a multi-rate component. If the availability
of such a component is assumed, the algorithm may be expressed as a data
independent DDG shown in Figure 7.1. The node labeled “Adjust” is the node

which generates data dependent values of A and B.

Since B only takes values of -1 and 1, a simple 2’s complement unit
can be configured to achieve the multiplication by choosing it to complement

the operand or not.

In the particular example being considered, this transformation has
made it necessary to introduce into the architecture an extra component-type
for the multiplication. However, in general, this may no be the case, and so

such a transformation might still be justified.

Subsequently, the DDG containing the transformation is analyzed and
an architecture synthesized for it, without paying attention to the dependence
of the computation on data. A consequent practical advantage is, all the de-
sign algorithms developed for data independent DDGs can be used without
modification. The more important benefit of improved architectural perfor-

mance derives from the facts that to preserve the data dependent aspect of the

211

XY Access

SR..comm

Adjust

Figure 7.1: DDG to compute convex hull.

212

computation in the architecture requires the architecture to support dynamic
scheduling of operations by employing the mechanism of a data-sensitive state
machine, and that it is impossible to include the related components in a static

analysis of their utilization and heuristics to improve it.

Operation reordering to obtain common computational form

As in the above, the approach to be illustrated here is based on using
expressive power of DDGs to convert a data-dependent computation involving
a single variable into a data-independent computation. A technique similar
in spirit, yet quite different, was presented by Lin and Messerschmitt in [37].
Their technique depended on the insertion of nil tokens and the use of worst
case computational latencies, whereas operation reordering is used here to ob-
tain results that are more lucrative for hardware synthesis. The motivation in
both cases is to obtain a data-independent computation that can be statically
scheduled, but there is a further interest here in obtaining a data independent

computational structure for the DDG.

The following computation represents two possible executions depend-

ing on the outcome of the boolean test:

if (boolean expression)
y=((a1 + %) * 22) - a3
else

y = (ag * x) + as;

where all a;’s are constants.

Notice, however, that the two computations can be transformed into a

common form as follows. The computation executed if the boolean expression

213

Boolean expression

Evaluate

SR-Comm *

:

Figure 7.2: A data-independent DDG.

is FALSE is left in the same form as before, but the other computation is
transformed to read a; * x + (a2 * a; — as). Notice that the order and number
of operations are now the same in both cases. A node, similar in concept
to the “Adjust” node of the last section can be defined, which evaluates the
boolean expression, and produces at the output two tokens carrying values ap
and (a;*a; —as), or a4 and as. The structure of the DDG, shown in Figure 7.2,

now has a data-independent path of execution.

In addition to the advantages listed above, an architectural benefit
drawn from the transformation, over the architecture employing a dynamic run-
time scheduling alternative is that, since in the former the two computational

path have been reduced to one, the control ROM needs fewer locations.

It may seem that the method suggested above ought to be generalized
by always obtaining a “canonical form” of, say, sum-of-products. But such a

form might not always be the better form. For example, consider

if (boolean expression)

214

y = (x1 + a1) * xg3
else

. * N
y = X3™az + as;

where x;’s are variables and a;’s are constants. For this particular example, it is
better to transform the latter computation to ((xs + 2) * az), which needs only
one each of addition and multiplication. The sum-of-product arrangement, on

the other hand, will necessitate more operations.

The above illustration dealt with a very restricted type of computation
— one involving only one or two variables. Tacitly, it also used concepts of an
identity element, existence of an inverse, and commutativity, associativity, and
distributivity among the arithmetic operations to obtain the final structure.
Extensions to more than two variables and exploitation of other properties of

operations await further investigation.

7.2 Synthesis for multiple DDGs

Thus far the focus of this work has been on the synthesis for a single
DDG, in which nodes are exclusively related by data dependencies. In such
DDGs, by convention, communication nodes interpose between every pair of
computational nodes to depict the transfer of data; two computational nodes

are never connected directly with an edge.

Herein is proposed an extension to the semantics of a:n edge with-
out changing its syntaz. An edge spanning two computational nodes will be
assumed to imply a control dependency rather than a data dependency. Let
this form of dependency be referred to as a count dependency. Such a need

to express the algorithm in terms of count dependencies may occur in many

215

cases. For example, a DDG for a computation with two independent input
sources, since it must use a single start node, must contain count dependencies
connecting the start node and the two nodes representing the input sources.
Another example is in expressing algorithms in which, one part of an algorithm
executes a certain number of times as often as some other. This latter applica-
tion of count dependencies is of interest, since it provides a convenient means of
obtaining a combined architecture for multiple algorithms. These concepts are
demonstrated using a computation that is part of a time-domain beam-forming

algorithm [48], a common algorithm in sonar signal processing.

In the beam-forming algorithm, a set of hydrophones samples sonic
signals at regular intervals. The samples are identifiable by a hydrophone-
time coordinate system, and the computation of a beam involves a set of such
hydrophone-time samples. By choosing the appropriate time-coordinates of the
signal samples for each hydrophone, the sonar is able to “listen” in a particular
direction. A set of samples acquired at a particular time may be used for

multiple beams, each corresponding to a distinct listening direction.

During each sampling period, a computation is carried out for each
beam direction. Each computation involves multiplying each of the selected
set of samples by a shading coefficient, and accumulating these to form a beam
sample which may be further processed. A DDG for the computation, com-
prising of only data dependencies, is shown in Figure7.3. It is assumed there

that each beam sample is composed of 50 hydrophone-time samples.

One design of the computation involves the use of a RAM to store
all the data values. The presence of this RAM forms the external constraint,

subject to which the algorithm must be specified.

The computation involved is now divided into the following two dis-

216

Shading
Coefficient

Figure 7.3: A DDG for the beam forming computation using only data depen-
dencies.
connected yet related parts. These two parts can be represented as independent

DDGs, but must cooperate to produce the correct output.

In one, an address generator unit produces RAM addresses at its
output, choosing the appropriate hydrophone-time samples for a given beam
sample. These samples are passed on to the multiply-accumulate unit which

computes a running value of the beam sample, also at a location in the RAM.

The second part of the algorithm, outputs the final value of the beam

sample after it is computed by accessing the corresponding RAM location.

The DDGs for the two parts are shown in Figure 7.4. The edges with
broken lines are the count dependencies. Part A of the algorithm executes 50

times as often as part B.

7.3 Hierarchical design and internally pipelined com-
ponents

It is most desirable for a synthesis methodology to be hierarchical.

This way one may design small custom hardware blocks and use them to con-

Start

Sample ‘ o™ Coefficient
Address ' ~ Address
Generator : Generator
H
'
2
£
]
]
RAM : RAM
Read '
'
]
LQ
Beam
Sample
Address
Generator

P
-
-
@
- =
-

Part A

217

Beam
Sample

30 ; Address
¢ Generator

! RAM

Read

Beam
Sample
Cutput

Part B

Figure 7.4: The two DDGs for the Beam-former example.

218

struct larger circuits. These circuits in turn form the building blocks of an even
larger system. One major methodological advantage obtained in a hierarchical
design is, the design complexity at each level of the hierarchy can be made
independent of the size of the system being designed. The new methodology is
only partially hierarchical, and making it completely so is an 1mportant future

goal.

The fundamental requirement for a synthesis methodology to be hi-
erarchical is that it must produce a design that executes according to the exe-
cution model of a component. More formally, the methodology must be closed

with respect to the component execution model.

The new methodology is not closed with respect to its component
execution model. In the current execution model, the input and output phases
are comprised of a number of consecutive clock cycles. On the other hand, in
the pipeline design it produces, invocations of the input node are separated
by the input latency. Thus the behavior of the resultant architecture does not

satisfy the component execution model.

Another, and equivalent, way of expressing the reason for the inabil-
ity of the new methodology to support hierarchical design is to say that the
current execution model is not adequate for modeling the behavior of multi-
rate internally pipelined components. However, it is important to note, the
model is adequate to describe the behavior of externally single rate pipelined

components, which can receive inputs and produce outputs every clock cycle.

One way to support hierarchy within the current methodology is to
use the hardware composition technique described in Section 4.7. The inter-
nal pipelined characteristic can be shrouded by enforcing that all inputs are

accepted consecutively and stored in a buffer. The stored values can then be

219

fed to the internal pipeline as specified by its execution schedule.

Another avenue is to develop a more general execution model to uni-
formly support both pipelined and non-pipelined components. Although the
general model is not provided here, the following criteria must be satisfied by

any candidate model:

e The model must be compatible with the definition of a DDG node.

e Delay definitions in the model must be consistent with those in the current
model so that the methodology can set up the TREs, TCEs, and the

execution graph to obtain design information.

e The model must contain adequate information to allow its sharing.

Chapter 8

Summary and conclusions

The decreasing cost of hardware has given a boost to the application,
design, and production of ASICs. This has given rise to a demand for high
level synthesis systems, often referred to as silicon compilers. Many such silicon

compilers have be developed in industry and academia.

The growing level of integration naturally leads to design of compo-
nents which share input and output ports. These components are behaviorally
equivalent to multi-rate functions, such as decimation and interpolation, which
inherently refer to changes in data rates. Past high-level synthesis approaches
have not treated these formally. Neither have communication components been

treated formally.

This work has resulted in a theoretical framework to extend the syn-
thesis methodology to multi-rate components, multi-rate functions, and to com-

munication components, and to treat them formally.

A formal definition was given for multi-rate functions and algorithms.
Under these definitions, it was shown that systolic implementations of multi-
rate algorithms result in inefficient architectures, and that the multi-clock im-
plementation led to efficiency in the architecture. The multi-clock implementa-
tion was shown to produce better architectures than the single-clock method-

ology of Sehwa.

The theoretical framework consists of the representation language of

220

221

the DDGs for expressing algorithms, an execution model for multi-rate hard-
ware components — both computational and communication, that is compati-
ble and consistent with the abstract behavior model of the multi-rate functions
in a DDG, the structural model for architectures, the analytic techniques, and

the synthesis heuristics.

The analytic techniques include the token rate equations, the token
count equations, the token and delay equivalence transformations, and the
execution graph of the DDG. Using these techniques, the DDG can be analyzed
to find the minimum allowable input latency and presence of deadlocks. The
token count solutions for sub-DDGs also suggest a method of hierarchically

composing multi-rate components.

Several synthesis problems were analyzed and the implication on them
of presence of multi-rate was elucidated. In particular, the general problem of
obtaining an architecture, with minimum number of computation and com-
munication components, was formulated for a cyclic DDG with a given input
latency, as an integer programming problem. This being an NP-hard problem,

special cases were further investigated.

It was shown that for acyclic DDGs, a minimum cost architecture,
with the cost predicted from the solution of its TREs, can be obtained. An
iterative heuristic algorithm for a DDG with a single outer loop was proposed.
Finally, a divide-and-conquer heuristic was suggested to reduce the scheduling
complexity for DDGs with independent or nested loops. It was shown that for
DDGs with nested loops the divide-and-conquer heuristic allows scheduling of
loops individually without paying attention to constraints due to other loops.
However, the heuristic can be applied only for DDGs which satisfy the criterion

of uniform criticality.

222

A methodology based on the foregoing theoretical framework was de-
veloped and demonstrated. To this end, the front-end program, DDGTool, was
used to draw DDGs. A fast heuristic scheduler, based on a variation of the list
scheduling heuristic, was developed to synthesize architectures with minimum
number of computation and communication components for acyclic multi-rate
DDGs given in input latency. The scheduler was extended to allow an exter-
nal specification of schedule cycle length and numbers of components in the

architecture.

Two new heuristics were introduced into the implemented scheduler.
One was to predefine execution times of operations by components and to
schedule the DDG accordingly. This heuristic, although simple to implement
and fast to execute, was found to have certain drawbacks, as it had the propen-
sity to produce large graph latency. But since in a pipelined architecture, the
graph latency constraints may not be particularly important, the heuristic is
deemed quite suitable. The main advantage of this heuristic is to disconnect
the assignment and scheduling processes. The second heuristic is applied dur-
ing the assignment step, during which it helps to reduce the connectivity in the

architecture.

In conclusion, the present research has created a unified framework
in which to do synthesis of architectures for an extended domain of algorithms
using an extended class of components. The framework may be further ex-
tended to allow hierarchical design and to facilitate methodological handling

of data-dependent computations and multiple related DDGs.

[1]

2]

3]

[4]

BIBLIOGRAPHY

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley Publishing Company,
1974.

J. R. Allen, Ken Kennedy, Carrie Forterfield, and Joe Warren. Conversion
of control dependence to data dependence. In POPL-83, pages 177-189,
1983.

John B. Anderson, Tor Aulin, and Carl-Erik Sundberg. Digital Phase
Modulation. Plenum Press, 1986.

M. Annaratone et al. The Warp computer: Architecture, implementation
and performance. IEEE Transactions in Computers, pages 1523-1538,
December 1987.

Arvind and David E. Culler. Dataflow architectures. In Annual Reviews

in Computer Sciences, pages 1:225-53, 1986.

M. R. Barbacci. Instruction set processor specification. IEEE Transac-

tions in Computers, pages 24-40, January 1981.

R. K. Bryton et al. The Yorktown Silicon Compiler. In Daniel D. Gajski,
editor, Silicon Compilation, pages 204-310. Addison-Wesley Publishing
Company, 1988.

K. M. Chandy. The analysis and solutions for general queueing networks.
In Proceedings of the Sizth Annual Princeton Conference on Information

Sciences and Systems, 1972.

223

[9]

[10]

(1]

[12]

[13]

[14]

[15]

224

Marina Chen. A synthesis method for systolic designs. Research Report
YALEU-DCS-RR-334, Department of Computer Science, Yale University,
1985.

Edward G. Coffman and Peter J. Denning. Operating Systems Theory.
Prentice-Hall, Inc., 1973.

Editor Daniel D. Gajski. Silicon Compilation. Addison-Wesley Publishing

Company, 1988.

Alan L. Davis and Robert M. Keller. Data flow program graphs. Com-
puter, pages 26-41, February 1982.

H. DeMan, J. Rabaey, P. Six, and L. Clasaen. Cathedral-1I: A silicon
compiler for digital signal processing. IEEE Design & Test of Computers,
pages 13-25, December 1986.

Jack B. Dennis. Data flow supercomputers. Computer, pages 48-56,
November 1980.

Sanjay R. Deshpande, Cheng-Liang Lin, and Mukund Belliappa. DDG-
Tool: A graphics device for drawing Data Dependency Graphs. Technical

report, Department of Computer Science, University of Texas at Austin,

1990.

G. Estrin and R. Turn. Automatic assignment of computations in a vari-
able structure computer system. IEEE Transactions in Computers, pages

755-773, December 1963.

Alfred Fettweis. Realizability of digital filter networks. Arch. Elek. Uber-
tragung, pages 90-96, February 1976.

225

(18] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H Freeman and Company,
1979.

[19] S. M. German and K. J. Liberherr. Zeus: A language for expressing
algorithms in hardware. Computer, February 1985.

[20] E. F. Girczyc. Loop winding —a data flow approach to functional pipelin-
ing. In Proceedings of the International Symposium on Circuits and Sys-

tems, pages 382-385, 1987.

[21] Baher S. Haroun and Mohamed I. Elmasry. Architectural synthesis for
DSP silicon compilers. IEEE Transactions on Computer-Aided Design,
pages 431-447, April 1989.

[22] C. Y. Hitchcock and D. E. Thomas. A method of automatic data path
synthesis. In IEEE Design Automation Conference, pages 484-489, 1983.

[23] E. Horowitz and S. Sahni. Algorithms: Design and Analysis. Computer
Science Press, 1978.

[24] Chua-Huang Huang and Christian Lengauer. An incrementally mechanical
development of systolic solutions to the algebraic path problem. Technical
Report TR-86-28, Department of Computer Science, University of Texas,
1986.

[25] R. Jain, F. Catthoor, J. Vanhoof, B. DeLoore, G. Goossens, N. Goncalvez,
L. Claesen, J. Van Ginderdeuren, and H. DeMan. Custom designof a VLSI
PCM-FDM transmultiplxer from system specification. IEEE Journal of
Solid State Circuits, pages 73-85, February 1986.

[26]

226

C. S. Jhon, G. E. Sobelman, and D. E. Krekelberg. Silicon compilation
based on a data-flow paradigm. IEEE Circuits and Devices Magazine,
pages 21-28, May 1985.

D. Johannsen. Bristle blocks: A silicon compiler. In IEEE Design Au-
tomation Conference, pages 310-313, 1979.

R. M. Karp and R. E. Miller. Properties of a model for parallel compu-
tations: Determinacy, termination, queueing. SIAM Journal of Applied

Mathematics, pages 1390-1411, November 1966.

Marc T. Kaufman. An almost-optimal algorithm for the assembly line
scheduling problem. IEEE Transactions in Computers, pages 1169-1174,
November 1974.

R. M. Keller, G. Lindstrom, and S. S. Patil. Data-flow concepts for hard-
ware design. In COMPCON 80, pages 105-111, 1980.

B. W. Kernighan and S. Lin. An efficient heuristic procedure for partition-
ing graphs. Bell Systems Technical Journal, Vol 49, no. 2, pages 291-307,
February 1970.

H. T. Kung. Why systolic architectures? Computer Magazine, pages
37-46, January 1982.

S. Y. Kung, H. Whitehouse, and T. Kailath. VLSI & Modern Signal
Processing. Prentice-Hall, 1985.

E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous
data flow programs for digital signal processing. [EEE Transactions in

Computers, pages 24-35, January 19387.

227

[35] C. E. Leiserson and J. B. Saxe. Optimizing synchronous systems. In 27
IEEE Symposium on Foundations of Computer Science, pages 23-36, 1981.

[36] Charles Eric Leiserson. Area-Efficient VLSI Computation. PhD thesis,

Department of Computer Science, Carnegie Mellon University, 1981.

[37] Horng-Dar Lin and David G. Messerschmitt. Transforming the data de-
pendencies of data flow graphs. In International Symposium on Circuits

and Systems, pages 408-413, 1989. 4

[38] M. C. McFarland. Bud: Bottom-up design of digital systems. In IEEE
Design Automation Conference, pages 474479, 1986.

[39] Giovanni De Micheli and David C. Ku. Hercules - a system for high-level
synthesis. In IEEE Design Automation Conference, pages 483-488, 1988.

[40] Muroga. VLSI System Design. Wiley, 1982.

[41] S. Note, J. Van Meerbergen, F. Catthoor, and H. DeMan. Automatic syn-
thesis of a high speed cordic algorithm with the Cathedral-1II compilation

system. In IEEE International Symposium on Circuits and Systems, pages

581-584, 1988.

[42] B. M. Pangrle and D. D. Gajski. Slicer: A state synthesizer for intelligent
silicon compilation. In Proceedings of the IEEE International Conference

on Computer Design, 1987.

[43] C. M. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Al-

gorithms and Complezity. Prentice-Hall Inc., 1982.

[44] Nohbyung Park and Alice Parker. Sehwa: A program for synthesis of
pipelines. In IEEE Design Automation Conference, pages 454-460, 1986.

[45]

[47]

(48]

[49]

228

A. C. Parker, J. Pizzaro, and M. Milnar. MAHA: A program for data
path synthesis. In IEEE Design Automation Conference, pages 461-466,
1986. ‘

P. G. Paulin, J. P. Knight, and E. F. Girczyc. HAL: A multi-paradigm
approach to automatic data path synthesis. In IEEE Design Automation
Conference, pages 263-270, 1986.

Pierre P. Paulin and John P. Knight. Force-directed scheduling for the
behavioral synthesis of ASIC’s. IEEE Transactions on Computer Aided
Design, pages 661-679, June 1989.

Roger G. Pridham and Ronald A. Mucci. A novel approach to digital
beamforming. Journal of the Acoustical Society of America, pages 425—

434, February 1978.

P. Quinton. Automatic synthesis of systolic arrays from uniform recur-
rence equations. In Proc. 11th Ann. Int. Symp. on Computer Architecture,

pages 208-214, 1984.

I. V. Ramakrishnan. A Theory Of Mapping Program Graphs Onto Linear
Arrays. PhD thesis, University of Texas at Austin, 1983.

Markku Renfors and Yrjo Neuvo. The maximum sampling rate of digital
flters under hardware speed constraint. JEEE Transactions on Circuits

and Systems, pages 196-202, March 1981.

David A. Schwartz. Synchronous Multiprocessor Realizations of Shift-
Invariant Flow Graphs. PhD thesis, School of Electrical Engineering,
Georgia Institute of Technology, 1985.

229

(53] M. Shahdad. An overview of VHDL language and technology. In IEEE
Design Automation Conference, pages 320-326, 1986.

[54] E. A. Snow. Automation of Module Set Independent Register Transfer
Level Design. PhD thesis, Carnegie-Melon University, 1978.

[55] Gilbert Strang. Linear Algebra and Its Applications. Academic Press,
1980.

(56] Texas Instruments. TTL Databook, 1988.

[57] D. E. Thomas et al. The System Architect’s Workbench. In IEEE Design
Automation Conference, pages 337-343, 1988.

[58] H. Trickey. Flamel: A high-level hardware compiler. [EEE Transactions
on Computer-Aided Design, pages 259-269, March 1987.

[59] C.Tseng and D. P. Siewiorek. Automated synthesis of data paths in digital
systems. [EEE Transactions on Computer-Aided Design, pages 379-393,
July 1986.

[60] Robert A. Walker and Donald E. Thomas. Behavioral transformation
for algorithmic level IC design. IEEE Transactions on Computer-Aided
Design, pages 1115-1128, October 1989.

VITA

Sanjay Raghunath Deshpande, son of Nisha and Raghunath Desh-
pande, was born on 13th September, 1956, in Bombay, India. He completed his
education leading to the Secondary School Certificate Examination in Indian
Education Society’s English Medium School, Bombay, in 1972. In 1979 he re-
ceived a Bachelor of Technology degree in Electrical Engineering from Indian
Institute of Technology, Bombay. In 1982, he received a Master’s Degree in

Computer Science from the University of Texas at Austin.

Permanent address: 3543 Greystone, #1043
Austin, Texas 78731

This dissertation was typeset! with IATEX by the author.

BTEX document preparation system was developed by Leslie Lamport as a special version
of Donald Knuth’s TgX program for computer typesetting. TeX is a trademark of the
American Mathematical Society. The WTEX macro package for The University of Texas at
Austin dissertation format was written by Khe-Sing The.

