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1. Introduction

Methods of converting parametric equations to their implicit equations are of fundamental
importance in computer modeling and computer graphics. Several methods to find the implicit
equations and inversion maps for a set of parametric equations have been presented. The first
method is based on elimination theories [Sederberg, 1984]. The second method is based
on Grobner bases [Arnon & Sederberg, 1984] and [Buchberger, 1987]. A method to find
the implicit approximation of parametric equations of curves and surfaces was presented in
[Chuang & Hoffman, 1989]. Recently, a method to compute the image of parametric equations
was given in [Wu, 1990] and [Li, 1990]. But the following example shows that in general case,
the parameters may not be independent. At first sight, one may think that the parametric
equations

(1.1) z=u+v, y=u’+0°+2uv -1, z=u®+0° +3u%v+30%u+1

represent a space surface. Actually, they represent a space curve, because let ¢t = u + v, then
the above parametric equations become

c=t, y=1t'-1, z=1+ 1.

For the above example, each point of the curve corresponds to infinitely many values of u
and v. Hence the concept of the inversion map here is not clear. This paper will address the
implicitization problem for this kind of parametric equations.

In this paper, we give a method to find a group of independent parameters as well as the
implicit equations for a set of parametric equations. We also present a method to compute the
inversion map of parametric equations with independent parameters and as a consequence, we
can decide whether the parametric equations are proper, i.e., whether the curves or surfaces
are multiply traced by the parametric equations [Faux and Pratt 1979].

If the parametric equations are not proper, naturally we may ask whether we can repa-
rameterize them so that the new parametric equations are proper. Generally speaking, the
answer is negative. However, in the case of algebraic curve, this is true by Liiroth’s theorem
[Walker, 1950] and a constructive proof of Liiroth’s theorem actually provides an algorithm to
construct a set of proper parametric equations. Recently, Sederberg gives a new solution to
the problem of finding proper parametric equations in the case of algebraic curves [Sederberg
1986]. In this paper, we shall show that as an application of our method, we can also find
a proper reparametrization for a set of parametric equations of an algebraic curve and our
method does not need to randomly select sample points on the curve as Sederberg’s algorithm
does.

For the case of algebraic surfaces, if the ground field K is the complex field C then
there always exists a proper reparametrization for the original improper parametric equations
[Castelnuvo 1894], however if the base field K is Q or R this need not to be the case [Segre
1951]. If the variety represented by the parametric equations are of dimension > 2 then even
for K = C some improper parametric equations do not exist proper reparametrization [Artin
& Mumford 1971]. As far as we know there exists no constructive proof for Castelnuvo’s
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theorem. We show that by using a similar method for the case of curves, we can find proper
parametric equations for certain kind of improper parametric equations of surfaces or variety
of higher dimensions.

This paper is organized as follows. In section 2, we give some basic definitions and prop-
erties of parametric equations. We also give the main theorem of this paper. In section 3, we
give a proof of the main theorem. In the appendix, we give a brief introduction to Ritt-Wu’s
decomposition algorithm which is the computation tool of our algorithm.

2. Preliminaries on Parametric Equations

Let K be a computable field of characteristic zero. We use K|[z1,...,2,] or K[z] to denote
the ring of polynomials in the indeterminates z1, ...,z,. Unless explicitly mentioned otherwise,
all polynomials in this paper are in K[z]. Let E be a universal extensionof K ,i.e., an algebraic
closed extension of K which contains sufficiently many independent indeterminates over K.
For a polynomial set PS, let

Zero(PS) ={z = (21,...,2,) € E" | VP € PS5, P(z) = 0}.
For two polynomial sets PS and DS, we define

Zero(PS/DS) = Zero(PS)— Ugeps Zero(d).

Let ty,...,1,, be indeterminates in £ which are independent over K. For nonzero polyno-
mials P, s Pry @1y, @ in Ky, 0yt ], we call

Pl Pn
'5"'7 veny Ly = Zé—'
i 7
a set of (rational) parametric equations. We assume that not all ; and ¢; are constants and

ged(P;,@;) = 1. The maximum of the degrees of P; and Q; is called the degree of (2.1). The
image of (2.1) in E" is

(2.1} Ty =

IM(P,Q)={(z1,....,2,) | Ft € E™(a; = Pi(1)/Q:(1))}.
We have
Lemma 2.2. We can find polynomial sets PS; and polynomials d;, « = 1,...,%, such that

(2.2.1) IM(P,Q) = Ul_, Zero(PS:/{d;}).

Proof. It is obvious that
IM(P,Q) = {(z1, ., @) | Ft1, -+ Tt (05(D)2; — P() = 0A Qi(1) # 0)}.

Thus by a quantifier elimination theory for the field of algebraically closed field [Wu, 1989],
we can find the PS; and d; such that (2.2.1) is correct. i
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Definition 2.3. Let V be an irreducible variety of dimension d > 0 in E". Parametric
equations of the form (2.1) are called parameter equations of V' (or (2.1) defines V) if

(1) IM(P,Q) C V; and
(2) V — IM(P,Q) is contained in an algebraic set with dimension less than d.

Theorem 2.4. Each set of parametric equations of the form (2.1) defines a unique irreducible
variety in E" whose dimension equals to the transendental degree of K(P1/Qy, ..., Pn/Qn)
over K.

Proof. Let I = {F € Klz] | F(P,/Q1,...,P./Qn) = 0}, then [ is a prime ideal with a
generic point 7 = (P;/Q1,...,P./Qx) and it is clear that IM(P,Q) C Zero(I). We need
to prove Zero(I) — IM(P,Q) is contained in an algebraic set of less dimension than the
dimension of I. By (2.2.1), IM(P,Q) = Ul_, Zero(PS;/{d;}). Furthermore we can assume
that each PS; is a prime ideal and d; is not in PS; by the decomposition theorem in algebraic
geometry. Since n € IM(P,Q), n must be in some components, say in Zero(PSy [{dy}).
Note that 7 is a generic point for I and Zero(PS;) C Zero(I), then PS; = I. Hence
Zero(I) — IM(P,Q) = Zero(I U{d,})— Ul_,Zero(PS;/{d;}). Thus Zero(I) - IM(P,Q) is
contained in Zero(I U {d,}) the dimension of which is less than the dimension of I since d; is
not contained in I = PS;. Since n is a generic point of I, the dimension of I is equal to the
transendental degree of K(P,/Q1,...,P,/Q,) over K. It is obvious that Zero([I) is uniquely
determined. i

Definition 2.5. The parameters ty,...,t,, of (2.1) are called independent if (2.1) define a
variety of dimension m, or equivalently the transendental degree of K(P1/Q1,..., P,/Q, ) over
Kism.

Definition 2.6. Inversion maps for (2.1) are functions

(261) 1ty = fl(xly---vxn)a--'vtm = fm(zl,‘..,xn)

such that z; = Bi(f1, s i )/ Qi f1s ooy fm ) on IM(P,Q), i.e., functions which give the pa-
rameter values corresponding to points on the image of (2.1).

Definition 2.7. A set of parametric equations (2.1) for a variety V is called proper if there
is a one to one correspondence between the points on V and the values of the #; except for
a subset of V and a subset of the E™ (where the ; take values) both with lower dimensions
than that of V.

The main result of this paper is
Main Theorem. For a set of parametric equations of the form (2.1),

(a) we can decide whether the parameters %;, ..., 1, are independent, and if not, reparam-
eterize (2.1) such that the parameters of the new parametric equations are independent;

(b) if the parameters of (2.1) are independent, we can construct a set of inversion maps
of the form (2.6.1) for (2.1), and (2.1) are proper if and only if the f; are rational functions
of 21,.... %



(c) if m = 1 and (2.1) are not proper, we can reparameterize (2.1) such that the new
parametric equations are proper.

3. A Proof of the Main Theorem

In this section, we shall use some results about Ritt-Wu’s decomposition algorithm, a brief
introduction of which can be found in the appendix of this paper.

3.1. The Independent Parameters
For a set of parametric equations

(3.1) P& S £ 3
. 1 sesy Ly Qn

where P; and Q; arein K[ty -+ ,t,], let PS = {Fy,--+,F,} where F; = Q;z;,—P;,i=1,...,n,
DS ={Qy,--,Q,}. It is obvious that

(32) jM(P’Q) - {($17'“axn) ] E(tlv"'ytm)a(tlv'"atmvwla"‘:xn) € ZeTO(PS/DS)}

Note that under the variable order ¢ < «+- <t <@y < -+ < z,, PS={F,---, F,} is an
irreducible asc chain in K[¢,z]. By Theorem 4.3, PD(PS) is a prime ideal of dimension m.
Note that DS is the set of initials of the asc chain PS, then by (4.1.1) we have

Zero(PS/DS) = Zero(PD(PS)/DS).

Let ASC be a characteristic set of PD(PS) under the variable order z; < --- < z, < t; <
.-+ <ty Since PD(ASC) = PD(PS), we have

(3.3) Zero(PS|DS) = Zero(PD(ASC)/DS).

ASC can be obtained by Theorem 4.6. By Theorem 4.3, ASC is irreducible with dimension
m. Hence ASC contains n polynomials. Then by changing the order of the variables properly,
we can assume ASC to be

/‘il(xlf" 7$d+1>

fln—d(xh" : 7mn)

(3.4) By, Zn,ti o ytsnn)

Bm—-s(mlv'”aznatlv"'atm)

where d + s = m. Note that the parameter set of ASC is {&y,...,24,%1, ..., s

P

Lemma 3.5. The transendental degree of K’ = K(P,/Q1, -, P, /Qn)over Kisd=m—s >
0.



Proof. By (3.1), the transendental degree of K/ = K(P1/Qy,---,P,/Q,) over K is the
maximal number of the independent quantities z; = P,/Q,...,%, = P, /Q,, hence is d by
(3.4). Since not all of P; and Q; are constants in K and gcd(P;,Q;) = 1, some z; must
dependent on the t effectively. Hence d = m — s> 0. i

By Definition 2.5, we have
Corollary 3.5.1. The parameters of (3.1) are independent iff s = 0.
Theorem 3.6. (3.1) defines the irreducible variety V' = Zero(PD(A;, -+, An_q)).

Proof. By Theorem 2.4 and Lemma 3.5, (3.1) defines a variety W of dimension d. By (3.2)
and (3.3), it is clear that IM(P,Q) C V. Then W C V. By Theorem 4.3, V is also of
dimension d. Therefore V = W. i

For example (1.1),let HS = {z —u~v,y—u? —v? —2uv+1,2 —u® — 0> — 3u’v - 3v’u—1}.
By Theorem 4.6, under the variable order < y < 2z < u < v, we have Zero(HS) =
Zero(PD(ASC:)) where

(3.6.1) ASCy ={y—2*+1,z-2°> - 1,v+u—z}.

By Theorem 3.6, (1.1) defines a curve Zero(y — #* + 1,z — 2® — 1). Note that s = 1, then the
variable v and v are not independent.

Theorem 3.7. Use the same notations as above. If s > 0, we can find integers hq,..., i, such
that
(3'7'1) $1:P§/Qf1”"7xn:P;/Q;

defines the same irreducible variety as (3.1) and with independent parameters ¢,.1,....%n,
where P/ and Q! are polynomials obtained from P; and Q; by replacing ¢; by h;, 1 = 1,...,s.

Proof. Suppose we already have (3.4). By Theorem 4.5, we can assume the initial I; of B; and
the initial J; of A; in (3.4) are polynomials of the parameters of ASC, ie., z1,...,%a,%1,...,1,.
Since Q; is not in PD(Fy,...,F,) = PD(ASC), by Lemma 4.4 we can find a nonzero polyno-
mial ¢; of the parameters of ASC, i.e., z1,...,24 and ?y,...,1;, such that

(372) g; € Ideal(Al 5 ...,An,_d, Bl, ...,Bm_s, Qg)

Let M = [I.7° I -H?:l q;, and hy,...,h, be integers such that when replacing i; by hs,
i=1,...,8, M becomes a nonzero polynomial of z,,...,24.

We assume that (3.7.1) defines a variety W and (3.1) defines a variety V. By the selection
of h;, it is clear that the image of (3.7.1) is contained in the image of (3.1). Therefore, we
have W C V by Definition 2.3. Since (3.4) is a characteristic set of PD(F,..., F,,), for each
Fy, by (4.1) we have

n—d m—§
JF, =3 GiAi+ y_ C;B;
i=1 i=1
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where J is a product of powers of the initials of A4; and B;. Hence J is a polynomial of
Zi,...,zq and ty,...,t,. Replacing ¢; by h;, i = 1,..., s, in the above formula, we have

N d M-8
(3.7.3) JF, =3 GiA+ > C\B;
i=1 =1

where F = @}z —P]. By theselection of h;, J' # 0is a polynomial of 21, ..., z4. By Theorem
3.6,V = Zero(PD(Aq,...,A,_4)) has a generic zero zo = (2}, ...,2} ) such that zf,...,2) are
independent variables over K. Let B! be obtained from B] by replacing the = by z,. Since
the initial I} of B is a polynomial of zy,...,z4, B’ is a nonzero polynomial of ¢s41,....%; with
with nonzero initials which are free of ¢,41, ..., ¢ . Then BY =0,...,B] _, = 0 have solutions
for typ1,...,tm- Let such a set of solutions be ¢ ,,...,7;,. Now replacing z by zo and ¢; by
t,i=s+1,...,min (3.7.3), we have J"Fy/ = 0. Since J’ is polynomial of z1,...,z4, J"£0
by the selection of 2. Thus F} = Q{a} — P/ = 0. Since ¢; is a polynomial of zy,...,z4 and
1, ts, by (3.7.2) Q) # 0. Hence zq = (P/'/QY, ..., P/ /Qy) isin IM(P',Q") CW. As z; is
a generic zero of V, we have V. C W. We have proved V = W. Since (3.7.1) defines a variety
of dimension d, by Corollary 3.5.1, the parameters {,,1,...,t, of (3.7.1) are independent. §

For Example (1.1), by (3.6.1), M in the proof of Theorem 3.7 is 1. Hence u can take any
integers, say 1. (1.1) becomes

z=v-+1, y=v2+2v§ z=?)3~§~32)2+3v+2

which defines the same curve as (1.1) and has an independent parameter v.
3.2. Inversion Maps and Proper Parameterization

Now let us assume that the parameters ¢y, ...,%,, of (3.1) are independent, i.e., s = 0, then
(3.4) becomes

Al(%,““ﬁmw)

(38) An~m($17"'7xn)
Bl(ajl?"'vxnvil\}

Bm(xl?"'axﬁ>t17”'aém)

Theorem 3.9. Using the same notations as above, we have

(1) Bi(z,t1,..,t;) = 0, 4 = 1,...,m, determine #;, ¢ = 1,...,m, as functions of zy,...,z,
which are a set of inversion maps for (3.1).

(2) (3.1) are proper if and only if B; are linear in ¢;, 2 = 1,...,m, and if this is true, the
inversion maps are

51 = ]1'/({]13“.’5;% = ]m/Um
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where the I, and U; are polynomials of the z.

Proof. Note that B; = 0,7 = 1,...,m, are the relations between the z and ¢, ...,#; in PD(PS)
which has the lowest degree in t;. Hence a set of solutions of ¢; in terms of the z of the
equations B;(2,t1,...,t;) = 0,7 = 1,...,m gives a set of inversion maps for (3.1). The second
conclusion of theorem 3.9 comes from the fact that a point z of the variety V' defined by (3.1)
corresponds to one set of parameter values if and only if B; are linear in ¢;, ¢ = 1,...,m. Let
B, = I;t; — U; where I; and U; are in K[z] then the inversion maps are {; = U; /I;, ¢ = 1,...,m.

S0 we have a method to find the inversion maps and a method to decide whether the
parametric equations are proper.

Remark From mathematical point of view if (3.1) are proper, then the variety V defined by
(3.1) is a rational variety, i.e., V is birational to E™.

Theorem 3.10. If m = 1 and (3.1) are not proper, we can find a new parameter s =
f(t1)/g(t;) where f and g are in K[t;] such that the reparametrization of (3.1) in terms of s

_ () _ Fu(s)

(3101) Ty = 51—(8—), aeey Ly Gn<$)

are proper.

Proof. Since m = 1, (3.1) defines a curve C. Let K’ = K(P,/Q1,..., P, /Q,) be the rational
field of the curve C. Note that Pi(¢;) — Q:(t1)A = 0 where A = Pi($1)/Q:(t1) € K’, then
1, is algebraic over K’. Let f(z) = a,z" + ...+ ao be an irreducible polynomial over K’ for
which f(i;) = 0. Then at least one of a;/a,, say n = a,/a,, is not in K. By a proof of
Liiroth theorem (p149, [Walker, 1950]), we have K’ = K (7). This means that z; = F;/Q; can
be expressed as rational functions of 77 and 5 also can be expressed as a rational function of
z; = P;/Q;, i.e., n is the new parameter we seek. Now the only problem is how to compute

the f.

By Theorem 3.9, we can find an inversion map Bi(21,...,%,,%1) = 0 of the curve. Then
B, is a relation between the z and t; with lowest degree in #; module the curve, in other
words Bi(z) = Bi(P1/Q1,...;Pn/Qn,x) = 0 is a polynomial in K'[z] with lowest degree in
such that Bi(¢;) = 0, i.e., Bi(z) can be taken as f. So the s can be obtained as follows. If
B, is linear in ¢; then (3.1) are already proper. We can take s = t;. Otherwise let

By =51+ -+ b

where the b; are in K[z]. By (3.1), b; can also be expressed as rational functions a;(%1),
i=1,..,r. Atleast oneof a;/a,,say ag/a.,is not an element in K. let s = a¢/a, Eliminating
t; from (3.1) and a,s — ag, we can get (3.10.1). Note that a; comes from b; by substituting
z; by P;/Q;,j =1,...,n, then b,s — by = 0 is an inversion map of (3.10.1). i

Theorem 3.10 also provides a new constructive proof for Liiroth’s Theorem, i.e., we have

Corollary 3.11. Let g, (), ...,9.(t) be elements of K(t), then we can find a ¢(t) € K(t) such
that K(g1,....9-) = K(g).



Examples 3.12. Consider the parametric equations for a Bézier curve [Sederberg, 1986]:

8s% — 125 + 325% + 248% + 125

88 — 385 4354 4+ 352 +3s+ 1
_ 245° 4 B4s* — 545° — 545”4 30s

Y= T 355 1352 + 352 + 35+ 1

(3.12.1) z =

Let HS = {(s° —35° +35* +35% +3s+ 1)z — (85% — 126" + 325% 4 245% +125),(s® — 3s° +
35t + 352 + 35+ 1)y — (245° + 54s* ~ 545% — 545 + 30s)} and DS = {s° — 35" 4+ 3s* + 35% +
3s + 1}. By Theorem 4.6, under the variable order z < y < s, we have Zero(HS/DS) =
Zero(PD(ASC)/DS) where ASC = {f1, fo} and

fi = as® + bs + ¢ with

a = ((143887242% + 1089290720z + 2205457984 )y* + (—497361902> — 2193776352z* +
444667930562 + 154797872640)y — 2523814652*
—206545301642° + 301488378048z — 1030598219520 + 558403485696)
b = ((107717122% + 872076352z + 1311063296)y” + (—310658882° — 19426453442” +
382821815047 + 95474718720)y — 2275439042*
—154085179682% + 2335754880002 — 8357567109122 + 558403485696)
¢ = 4(9042532% 4543035922 +223598672 )y +6(—31117172° —418551682 41030768592z +
9887192320y — 248375612* — 52460121962 + 67912890048x% — 194841508608z

fy = 22418 + (—2268% + T632)y? + (—542? — 15122 — 480384)y + 3426323 — 42422427 +
1200960z

By Theorem 3.5 and Theorem 3.9, (3.12.1) is a set of improper parametric equations for
the curve f; = 0. To find a set of proper parametric equations for f; = 0, by Theorem 3.10,
we select a new parameter

(3.12.2) t=a/b=(s"+1)/(1~-s).
Fliminating s from (3.12.1) and (3.12.2), we have

v 8s% + 1257 — 365+ 16 —248% + T8s — 54

3+ 352 — 3s Y= 3 4352 — 3s

By Theorem 4.9, we can easily check that the above are a set of proper parametric equations
of fo = 0 with an inversion map

o 32 — (920 4 1768)y — 67522 + 8736z — 26688
T 44y? + (—160z + 2504)y — 723z + 9120z — 26688

If (3.1) defines a variety of dimension d > 2 then generally there is no proper reparametriza-
tion for improper parametric equations. However, the method used in Theorem 3.10 can be
easily extend to the general case and are successful in many cases. Suppose, we already have
(3.8) and B; are not linear in #;, ¢ = 1,...,m, then let

g



where b; ; are polynomials of the z and ¢;,...,%_1, ¢ = 1,...,m. Suppose b s /bi -, are not
elements in K. Let s; = b ,/b;, where b ; and b}, are obtained from b;, and b;,, by
replacing ¢; by s;, 7 = 1,...,m. By Theorem 4.6, we can express z; in terms of s;. If z; can be

;
7,7

expressed as rational functions of s; then s; are a group of new parameters and s; = b} , /b
are the inversion maps of the new parametric equations.

Example 3.13. Consider the following parametric equations.

(3.13.1). z=u? -0, y=2uv, z=u’+v°

Let PS = {x — u? +v*,y — 2uv, z — u? — v*}. By Theorem 4.6, under the variable order
T <y<z<u<vwehave Zero(PS) = Zero(PD(ASC)) where

ASC = {2 —y? —2%,(22 — 22)u® — ¢*, 2uv — y}

By Theorem 3.5 and Theorem 3.9, (3.13.1) is a set of improper parametric equations of the
cone 22 = y? + z%. To find a proper parametric equation, using the method mentioned in the
above paragraph, we select a group of new parameters

(3.13.2) 51 =y /(22 — 22), 8, = y/2s:
Using Theorem 4.6, we can express z,y and z in terms of s; and ss,
= 8 — slsg,y = 28189,% = 3133 + 84

which is a proper parametric equation of (3.13.1) with inversion maps (3.13.2).

Appendix 4. An Introduction to Ritt-Wu’s Decomposition Algorithm

In this section, we give a brief introduction to Ritt-Wu’s decomposition algorithm. A
detailed description of the algorithm can be found in [Wu, 1984] or our new version [Chou &
Gao, 1990]. The implementation of the algorithms in this paper is based on the new version.

Let P be a polynomial. The class of P, denoted by class(P), is the largest p such that
some z, actually occurs in P. If P € K, class(P) = 0. Let a polynomial P be of class p > 0.
The coefficient of the highest power of z, in P considered as a polynomial of z, is called
the initial of P. For polynomials P and G with class(P) > 0, let prem(G; P) be the pseudo
remainder of G wrpt P.

A sequence of polynomials ASC = A;,..., 4, is said to be an ascending (ab. asc) chain,
if either 7 = 1 and A; # 0 or 0 < class(A;) < class(A;) for 1 <4 < 7 and A; is of higher
degree than A,, for m > k in z,, where n, = class(Ay).

For an asc chain ASC = Ay, ..., A, such that class(A;) > 0, we define the pseudo remain-
der of a polynomial G wrpt ASC inductively as

prem(G; ASC) = prem(prem(G; Ay ); Ay, oy Ap1)-

10



Let R = prem(G; ASC), then from the computation procedure of the pseudo division proce-
dure, we have the following important remainder formula:

where .J is a product of powers of the initials of the polynomials in ASC and the B; are
polynomials. For an asc chain ASC, we define

PD(ASC) = {g | prem(g,ASC) = 0}

By (4.1), a zero of ASC which does not annul the initials of the polynomial in ASC a zero
of PD(ASC'). More precisely, we have

(4.1.1) Zero(PD(ASC)) = Zero(ASC|J)U Zero(PD(ASC) U I)

where I is the initial set of ASC.

For an asc chain ASC = A;,...,A,, we make a renaming of the variables. If A; is of
class m;, we rename z,,, as y;, other variables are renamed as u,,...,u,, where ¢ = n — p.
The variables uy, ..., u, are called a parameter set of ASC. ASC is said to be an irreducible
ascending chain if A, is irreducible, and for each ¢ < p A; is an irreducible polynomial of i in
K;_1[y;] where K;_1 = K(u)[y1,...,4i-1]/D where D is the ideal generated by (A;,..., 4;_1)
in K(u)[yr, s ¥io1]-

Definition 4.2. The dimension of an irreducible ascending chain ASC = A,,..., A, is defined
to be DIM(ASC)=n—p.

Thus DIM(ASC) is equal to the number of parameters of ASC. The following results
are needed in this paper.

Theorem 4.3. ASC is an irreducible ascending chain iff PD(ASC) is a prime ideal with
dimension DIM(ASC).

Proof. See [Wu, 1984]. i

A characteristic set of a polynomial ideal D is an ascending chain ASC in D such that
for all P € D prem(P,ASC) = 0. Theorem 4.3 says that an ideal is prime iff it has a
characteristic set which is irreducible.

Lemma 4.4. Let ASC be an irreducible asc chain with parameters uq,...,u,. If @ is a
polynomial not in PD(ASC), then we can find a nonzero polynomial P in the u alone such
that P € Ideal(ASC, Q) (i.e., the ideal generated by @ and the polynomials in ASC).

Proof. See [Wu, 1984]. i

Theorem 4.5. Let ASC be an irreducible asc chain with parameters uq,...,%,, we can find
an irreducible asc chain ASC’ such that PD(ASC) = PD(ASC') and the initials of the
polynomials in ASC” are polynomials of the u.
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Proof. Let ASC = {A;,..., A} and I; = int(A;). By Lemma 4.4, for each ¢ we can find a
polynomial P; of y; and the v and polynomials ¢y (k=1,...,7) such that F; = 21;11 QAL+
Q;I;. We assume that A; is of degree d; in y;. Let A] = Q;A4; + (Z;;ll QrAr)yl, then
ASC' = {A;, A}, ..., AL} is an asc chain such that the initials of A; are polynomials of the u.

Note that the degrees of A} in y; are the same as the degrees of A; in y;, then ASC’ is also
a characteristic set of PD(ASC), i.e., PD(ASC’) = PD(ASC) and ASC’ is irreducible by
Theorem 4.3. |

Let PS be a polynomial set. For an algebraic closed extension field E of K, let
Zero(PS) = {z = (%1,...,2,) € E" | VP € PS,P(z) = 0}
For two polynomial sets PS and DS, we define
Zero(PS|/DS) = Zero(PS) — Uaeps Zero(d).
Then we have the following Ritt—Wu’s decomposition algorithm.

Theorem 4.6. For finite polynomial sets PS and DS, we can either detect the emptiness of
Zero(PS/DS) or find irreducible asc chains ASC;, ¢ = 1,...,1, such that

Zero(PS/DS) = Ul_,Zero(PD(ASC;)/DS)

The decompositions satisfies (a). the initials of the polynomials of ASC;, denoted by J;, are
polynomials of the parameters of ASC;; (b). there are no i # j such that PD(ASC;) C
PD(ASC;); and (c). prem(d,ASC;) #0foralld € DS and i =1,...,1.

Proof. See [Chou & Gao, 1990]. i

Reference.

Arnon, D.S. and Sederberg, T.W. (1984), Implicit Equation for a Parametric Surface by
Grébner Bases, Proc. 1984 MACSYMA User’s Conference (V.E. Golden ed.), General Elec-
tric, Schenectady, New York, 431-436.

Artin, M. and Mumford, D. (1972), Some Elementary Examples of Unirational Varieties
Which Are Non-rational, Proc. London Math. Soc., (3) 25, pp. 75-95.

Buchberger, B. (1987), Applications of Grébner Bases in Non-linear Computational Geometry,
L.N.C.S. No 296, R.JanBen (Ed.), pp. 52-80, Springer-Verlag.

Castelnuovo, (1894), Sulla Rationalita della Involuzioni Pinae, Math. Ann., 44, pp. 125-155.

Chou, S.C. and Gao, X.S. (1990), Ritt-Wu’s Decomposition Algorithm and Geometry Theo-
rem Proving, 10th International Conference on Automated Deduction, M.E. Stickel (Ed.) pp
207-220, Lect. Notes in Comp. Sci., No. 449, Springer-Verlag.

Chuang, J.H., and Hoffman, C.M. (1989), On Local Implicit Approximation and Its Applica-
tions, ACM Tran. in Graphics, 8(4), pp. 298-324.

Faux, ILD. and Pratt, M.J. (1979), Computational Geometry for Design and Manufacture,
Ellis Horwood, Chichester.



Li, Z.M. (1989), Automatic Implicitization of Parametric Objects, MM Research Preprinis,
No4, Ins. of Systems Science, Academia Sinica.

Sederberg, T.W. (1986), Improperly Paramatrized Rational Curves, Computer Aided Geo-
metric Design, vol. 3, pp. 67-75, 1986.

Sederberg, T.W., Anderson, D.C. and Goldman, R.N. (1984), Implicit Representation of
Parametric Curves and Surfaces, Computer Vision, Gragh, Image Proc., vol28 pp 72-84.

Segre, B. (1951), Sull Esistenza, Sia Nel Campo Rationale chenel Campo Reale, Rend. Accad.
Naz. Lincei (8) 10, pp. 564-570.

Walker, R. (1950), Algebraic Curves, Princeton Univ. Press.

Wu, W.T. (1984), Basic Principles of Mechanical Theorem Proving in Elementary Geometries,
J. Sys. Seci. & Math. Scis., 4(1984), 207 -235, Re-published in J. Automated Reasoning, 1986.

Wu, W.T. (1989), On a Projection Theorem of Quasi-Varieties in Elimination Theory MM
Research Preprints, No. 4, Ins. of Systems Science, Academia Sinica.

13



