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Abstract

A major disadvantage of the two-phase commit (2PC) protocol is the potential unbounded delay that trans-
actions may have to endure if certain failures occur. By combining a novel use of compensating transactions
along with an optimistic assumption, we propose a revised 2PC protocol that overcomes these difficulties.
In the revised protocol, locks are released when a site votes to commit a transaction, thereby solving the
indefinite blocking problem of 2PC. Semantic, rather than standard, atomicity is guaranteed as the effects
of a transaction that is finally aborted are semantically undone by a compensating transaction. Relaxing
standard atomicity interacts in a subtle way with correctness and concurrency control issues. Accordingly, a
correctness criterion is proposed that is most appropriate when atomicity is given up for semantic atomicity.
The correctness criterion reduces to serializability when no global transactions are aborted, and excludes un-
acceptable executions when global transactions do fail. We devise a family of practical protocols that ensure
this correctness notion. These protocols restrict only global transactions, and do not incur extra messages
other than the standard 2PC messages. The results are of particular importance for multidatabase systems.

1 Introduction

The most common protocol for ensuring atomicity of multi-site transactions in a distributed environment is the
two-phase commit (2PC) protocol [Gra78]. It guarantees that either all or none of the effects of a multi-site
transaction are committed despite site and communication failures. Typically, the 2PC protocol is combined with
the strict two-phase locking protocol [BHG8T7], where locks are held until the end of transactions, as the means
for ensuring atomicity and serializability in a distributed database. The implications of this combination on the
length of time a transaction may be holding locks on various data items might be severe. At each site, and for
each transaction, locks must be held until either a commit or an abort message is received from the coordinator
in the second phase of the 2PC protocol. Since the 2PC protocol is a blocking protocol [Ske82] the period of time
locks are held can be unbounded. Specifically, if the coordinator or a communication link to the coordinator fail
in a certain critical time, locks are retained until the failure is repaired. Moreover, even if no failures occur, since
the protocol involves three rounds of messages (request for vote, vote and decision) the delay can be intolerable

for both the committing transaction, as well as transactions that are waiting for access to the locked data items.
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The impact of indefinite blocking and long-duration delays is exacerbated in multidatabase systems — a
specific type of distributed database system where several heterogeneous and eufonomous database management
systems (DBMSs) are integrated to enable the processing of multi-site, or global, transactions [Gup89]. One of the
distinctive features of a multidatabase is the requirement that the integration does not impair the autonomy of the
local DBMSs. In particular, it is required that a local DBMS has full control over the execution of local transactions
executing on behalf of global activities. However, once 2PC is imposed in a multidatabase environment, a local
DBMS becomes a subordinate of an external coordinator, and therefore autonomy is certainly compromised if
not sacrificed. A local DBMS can no longer unilaterally determine the fate of those local transactions that are
executing as part of global transactions. Moreover, by holding onto locks and other resources for very long
periods, global transactions delay local transaction processing, thereby restricting autonomy. Since some of the
local DBMSs in the multidatabase may actually prohibit holding locks on data items for such long durations; this
renders the execution of multi-site transactions impossible.

It is not possible to have a non-blocking commit protocol that is immune to both site and link failures [BHG87].
Therefore, the 2PC protocol is a compromise, and the problems we have outlined seem to be an inevitable penalty.
In this paper, we introduce an alternative to the standard 2PC protocol that alleviates the virtually inevitable
blocking and lengthy delays problems. The new protocol is applicable whenever the atomicity problem of a
multi-site transaction surfaces. It can benefit distributed database systems in general and multidatabase systems
in particular.

The protocol does not guarantee transaction atomicity in the standard sense, but rather a weaker notion re-
ferred to as semantic afomicily [GMB83]. A salient contribution of this paper is the examination of the consequences
of the protocol and this weaker atomicity notion in terms of serializability, and correctness in general. We extend
the standard serializability theory to account for transaction failures and their recovery by compensating transac-
tions, and specify an appropriate correctness criterion. We also outline an implementation that preserves this crite-
rion. The importance of our study of correctness issues is underlined by the growing popularity of advanced trans-
action models that are based on semantic atomicity [GM83, GMS87, AGMS87, KR88, Reu89, Vei89, GMGK'90],
and by the lack of specific correctness criteria in this domain.

The remainder of the paper is organized as follows. Section 2 provides an operational overview of the basic
protocol. Several techniques and assumptions that are used in the construction of the protocol and its correctness
criterion are clarified in Section 3. In Section 4, we discuss the need for a new correctness criterion. Section
presents the correctness criterion and a sufficient condition for ensuring it. In Section 6, based on this condi-
tion, another component of the protocol is presented, whose task is to ensure the correctness criterion. Some

implementation remarks are also presented in this section. We sum up with conclusions in Section 7.



2  The Basic O2PC Protocol

The 2PC protocol is pessimistic in nature. Holding the locks until the end of the second phase, which is the
cause of blocking, is necessary only if the transaction at hand is to abort. If such aborts occur rarely, then most
of the potentially long-duration waits induced by 2PC are unnecessary. Basing a revised commit protocol on an
optimistic assumplion that in most cases the protocol terminates successfully (i.e., the transaction commits) can
dramatically reduce waiting due to data contention, thereby improving the performance of the system. Such an
assumption is valid for most practical settings. The validity of the optimistic assumption is orthogonal to the
protocol correctness. However, if the assumption is unfounded, the overhead incurred by the protocol is likely to
outweight its benefits.

We describe such an optimistic 2PC (O2PC) protocol that is a slightly modified version of the standard
combination of the 2PC protocol and strict 2PL protocol. As in the standard protocol, a multi-site transaction
T'is associated with a coordinator which initiates the protocol by sending a VOTE-REQ message (also referred
to as PREPARE message) to all participating sites. If a site votes to abort T, then as in the standard protocol,
an abort message is sent back to the coordinator, and the locks held by the transaction are released as soon as
the transaction is locally undone (rolled-back). However, if a site votes to commit T, all locks held by T are
released at once, withoul waiting for the coordinator’s final commit or abort message. In this case, we say that T
is locally-commitied at that particular site.

The uncoordinated local commitment resulting in the early release of locks is the crux of the protocol. On
the one hand, the early release of locks solves the problems of blocking and the local commitment keeps the sites
autonomous. On the other hand, the uncoordinated commitment of updates may violate the standard all-or-
nothing atomicity guarantee of a transaction, if at least one of the sites voted to abort it. A situation may arise
where, at some sites T is locally committed, whereas at some other sites T is aborted. In this case, the effects
of T must be undone at sites where it is locally-committed. Undoing the effects of a locally-committed T' is
problematic, if not impossible, using standard recovery techniques. If a transaction which read 7’s updates has
already committed, this execution is deemed non-recoverable [BHGS87]. Even if the transactions that read from
T are still active, the only way to undo T7s effects is via cascading aborts; all transactions that have read from 7T
must be also aborted. Cascading aborts is an undesirable phenomenon since it can result in uncontrollably many
transactions being forced to abort because some other transaction happened to abort.

The key to an adequate solution is the notion of compensating iransaciions. Compensating transactions are
intended to handle situations where it is required to undo a transaction whose updates have been read by other
transactions, without resorting to cascading aborts. The concept of compensation is formally defined in [KLS90]

and the essential details are reviewed in Section 3.2.



We propose to use compensating transactions, in conjunction with the O2PC protocol, as the means to ensure
transaction atomicity despite of the uncoordinated commitment of updates at different sites. After voting to
commit 7', a site still carries on with the second phase of the regular 2PC protocol (despite having released
locks held by 7). If the site receives a decision message from the coordinator to abort T, then it invokes the
corresponding compensating transaction. Since it is more likely that the decision would be to commit T', the gain
by the early release of locks should outweigh the overhead associated with those cases requiring compensation
for 7. The message transfer in the O2PC protocol between the coordinator and a participating site is depicted
pictorially in Figure 1.

Instead of the familiar all-or-nothing semantics, the protocol ensures a similar, though weaker, atomicity guar-
antee referred to as semantic aiomicity. Decomposing a multi-site transaction into a set of single-site transactions,
semantic atomicity states that either all subtransactions are locally-committed (and then the entire transaction is
committed), or all locally-committed subtransactions are compensated-for. We acknowledge that not all transac-
tions are compensatable. Transactions involving real actions [Gra81] (e.g., firing a missile or dispensing cash) may
not be compensatable. The adjustment for transactions involving non-compensatable actions is simply to retain
the locks and delay real actions until a commit message is received (as in standard 2PC) in all sites performing
these actions. All other sites running subtransactions on behalf the multi-site transaction can still benefit from

the early lock release.
Coordinator: VOTE-REQ Participant site:

Vote: Commit/Abort
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Figure 1: A schematic view of the O2PC protocol
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3 Preliminaries

In order to discuss the correctness of our protocol we must first introduce some assumptions and terminology that
are used in our exposition. These issues concern the underlying distributed transaction management architecture,

compensating transactions, and the exact locking discipline of the O2PC protocol, and are presented in this order.



3.1 Transaction Management Architecture

We distinguish between local and global transactions. A local transaction accesses data at a single site, whereas a
global transaction accesses data located at two or more sites. A global transaction T; that requires access to data
located at sites Sy, Sa, ..., Sk is submitted for execution as a collection of local subtransactions Tj1, Tia, . . ., Tik,
where Tj; is executed at site S;. We make a distinction between a local subtransaction that is executed on behalf
of a global transaction, and an independent local transaction.

This abstraction of global transactions as a set of local subtransactions is most appropriate for understanding
our protocol and its formal properties. However, several comments concerning some practical issues are in order.

Each global transaction is associated with a global transaction manager whose functions are to spawn local
subtransactions, monitor their execution and terminate them by playing the role of the 2PC coordinator. It is
irrelevant to our discussion whether a single transaction manager in the system supervises all global transactions,
or whether there are several such managers, each responsible for some global transactions.

The decomposition of a global transaction into local subtransactions conforms to one of two models [Joh90].
In the first model, all the requests of a global transaction to a particular site constitute the local subtransaction
at that site. FEach subtransaction can be viewed as an arbitrary collection of reads and writes against the local
data. That is, no predefined semantics is associated with a subtransaction. This model is elaborated in [CP87]
and is the standard model in distributed databases. Henceforth, this model is referred to as the generic model.
The generic model is also considered as the general framework in the multidatabases context [BS88, BSTI0].

An alternative model is one in which each global transaction is decomposed into a possibly structured col-
lection of local subtransactions, each of which performs a semantically coherent task. The subtransactions are
selected from a well-defined repertoire of operations (i.e., subtransactions) forming an interface at each site in
the distributed system. This model is referred to as the restricied model, hereafter, and is suitable for a feder-
ated distributed database environments [fdb87]. The distinction between the two models becomes relevant once
compensating transactions are introduced. Our work applies to both models; however, fitting the ideas in each

framework is bound to be different, and probably easier in the restricted model as we explain later.
3.2 Compensating Transactions

We denote the compensating iransaction that is specific to the forward transaction 7; by C7;. C7; undoes T;’s
effects semantically without causing the cascading aborts of transactions that have read from T;. The intention
is to leave the effects of transactions that read from T} intact, yet preserve database consistency. Therefore,
compensati@ﬁ for T; does not guarantee the physical undoing of all the direct and indirect effects of 7;. The state
of the database after compensation took place may not be identical to the state that would have been reached,

had T: never taken place. Compensation does guarantee, however, that a consistent state is established based on



semantic information. In [KLS90] we formally characterize the outcome of compensation based on the properties
of T; and on properties of transactions that have read from T;. By the nature of compensation, C7} is always
serialized to come after the corresponding T; (though not necessarily immediately after).

Compensating transactions cannot voluntarily abort, nor are they subject to a system-initiated abort. Also,
their completion is guaranteed despite system crashes by either resuming them from a save-point, or retrying them.
Finally, a compensating transaction must be designed to avoid a logical error leading to abort. Consequently,
it is guaranteed that, once compensation is initiated, it completes successfully. This stringent requirement is
referred to as persistence of compensation and is recognized in [GMS87, GM83, Vei89, GMGK ™90, Reu89, KLS90].
The rationale behind persistence of compensation is preserving semantic atomicity. Initiating a compensating
transaction parallels a decision to abort the transaction in the traditional setting — definitely a non-reversable
decision. The persistence of compensation requirement implies that design of a compensating transaction is a
complex and application-dependent task. The fact that CT; always executes afier T; must be used to alleviate
this difficulty. Essentially, the log records of 7} should contain enough information for C'T; to execute properly.

| This information should include input parameters for T;’s operations for example. Observe that persistence of
compensation implies that there is no need to use a commit protocol to ensure the atomicity of a compensation
transaction in a distributed environment.

In the context of the O2PC protocol, compensation is employed as follows. If 7} is a global transaction, C7;
is also a global transaction that consists of CTj1, CTie, ..., CTy of local compensating subtransactions, one for
each site where 7; was executed. Each compensating subtransaction is submitted for execution at a site just like
any other local transaction, and hence it is subject to the local concurrency control.

Consider a global transaction 7; that is locally-committed at some sites, whereas other sites have voted to
abort it. At a site 5; where 7} is locally-committed, C'Tj; is a special compensation action, since T;’s updates have
been exposed. At a site Sp which voted to abort 7;, the local subtransaction T} is automatically rolled-back. We
model undoing a transaction using the standard roll-back recovery, as a special case of a compensating transaction
where there are no transactions that have read from the undone transaction [KLS90]. Thus, a global CT; is a
blend of standard roll-backs at sites having voted to abort T}, and actual compensating subtransactions at sites
having voted to commit 7;.

The execution of a compensating transaction requires access to the log and other information stored on stable
storage, thus further increasing the cost associated with this type of transaction. For these reasons, we limit
the usage of compensating transactions in our context, for relatively rare pessimistic cases of failures of global
transactions.

It should be recognized that in a system conforming to the restricted model it is easier to apply compensation

techniques than in the generic model. In the restricted model, since each subtransaction performs a semantically



coherent task, supplying a counter-task can be done in advance and should not be that hard (e.g., a DELETE as

compensation for an INSERT subtransaction).
3.3 Locking Discipline

The locking policy described in this section is implicitly assumed throughout the paper. The O2PC protocol is
based on a combination of a strict 2PL and 2PC protocols that is referred to in [BHG87] as distributed 2PL. This
combination (as it is, without our proposed changes) guarantees serializability globally.

The locking discipline of global transactions in O2PC is based on the following:

e No additional locks can be requested by a subtransaction once a VOTE-REQ message for the global trans-

action has been sent by the transaction’s 2PC coordinator.
e A lock may be released only after the VOTE-REQ message has been accepted.

It is assumed that the coordinator of 7; initiates the 2PC protocol only after it has received acknowledgements
for all of 73’s operations. Therefore, when the coordinator initiates the 2PC protocol by sending the VOTE-REQ
messages, 7; has surely obtained all the locks it will ever need. Hence, as locks are released locally only after
the VOTE-REQ message has been received, it is guaranteed that a transaction releases a lock at any site only
after it has finished acquiring locks at all sites. Observe that this 2PL property is characteristic of the original
distributed 2PL, as well as the O2PC protocols, even under the early lock release provision of the latter.

At each site locks for data items residing at that site are granted by the local lock manager to the transactions
and subtransactions executing locally. As was mentioned earlier, locks held by subtransactions are released as soon
as the site votes to commit the corresponding global transaction, or after the local roll-back is completed if the
site votes to abort. Local transactions (i.e., non-subtransactions) follow the strict 2PL protocol. Compensating
subtransactions are treated as local transactions rather than as subtransactions of global transactions with respect
to locking; that is, they also follow strict 2PL locally. The reasons for this important decision are elaborated in
the next section. The bottom line is that at each site, the local execution over local transactions, subtransactions,

and compensating subtransactions is serializable.

4 Correctness, Transaction Failures and Compensations

The local uncoordinated commitment and the use of compensating transactions in the O2PC protocol interact
in a subtle manner with concurrency control and correctness issues. A prerequisite for studying this interac-
tion is the acknowledgement that the theoretic and modeling tools {e.g., serialization graphs) must account for
failed transactions and their corresponding compensating transactions. By contrast, the traditional serializability

theory deals only with committed projections of histories [BHG87]. We adopt this extended approach in our



exposition. Having made this adjustment, one might be tempted to impose serializability over all transactions,
including compensated-for and compensating transactions, as the correctness criterion. There are, however, sev-
eral compelling reasons why this is not a good choice. Essentially, compensating transactions possess several

special properties that render such adjusted serializability notion both unattainable and inappropriate:

¢ Persistence of compensation means that a compensating transaction has a simplified atomicity notion — it
can only commit. Consequently, there is no need to use a commit protocol for compensating transactions in
a distributed environment. Each local compensating subtransaction can terminate independently. Avolding
the use of 2PC to terminate global compensating transactions is critical, since there is no chance to couple
locking decisions with the commit protocol messages, as it is done in the distributed 2PL and O2PC
protocols. Hence, coordinating the scheduling of compensating subtransactions can be done only by extra

messages, thereby defeating the purpose of the O2PC in the first place.

e A second problem regarding the scheduling of compensating transactions stems from the fact that in a
site S;, that votes to abort a transaction 7}, the standard roll-back of Tj; is considered as a compensating
subiransaction, i.e., as CTi. Such roll-backs are automatic and uncoordinated with the initiation and
termination of other compensating subtransactions of the same transaction. This is especially true for mul-
tidatabases, where autonomy prevents constraining the automatic local roll-back. Therefore, serializability
of a compensating transaction may be again jeopardized since the scheduling of the compensating transac-
tion as a whole is not regulated and coordinated. For example, rolling-back a subtransaction T3; as part of

C'T; and releasing locks once the roll-back is complete, violate the 2PL rule for CT; as a whole.

o We observe that at least in the restricted model the executions of the compensating subtransactions are
semantically independent. That is, there should be no value dependencies [DE89] among the different
subtransactions. A compensating transaction in the restricted model can be viewed as a sef of semantically
unrelated subtransactions. This argument and the previous points give the impression that the execution
of a compensating subtransactions is somewhat independent from the execution of its sibling compensating
subtransactions. This observation is underlined once it is realized that compensation, as a recovery activity,
is an afler the faci activity. That is, the forward transaction has executed, and compensation is carried out
based on its effects. It is envisioned that in practice the forward subtransactions would leave traces (in the
form of informative log records, for example) for their corresponding compensations. Then, compensation
would be driven by these independent traces, rather then by a coordinated effort (even in the generic model).
In support of our observation, we cite [Vei89, map89] where a large-scale, commercial application that is

predicated on this independence of compensating subtransactions, is described.



For these reasons it is impossible, and sometimes unnecessary, to impose a global locking discipline on a global
compensating transaction. Compensating subtransactions are going to release their locks once they complete
their local processing, regardless of the execution of their sibling compensating subtransactions. As a result,
serializability of global compensating transactions may be lost. That is, cycles with compensating transactions
may occur in the global serialization graphs.

The of loss of serializability would not be relevant if serializability is abandoned in the first place as the cor-
rectness criterion for global transactions. That is, if sagas [GMS87], or their generalization — multi-transactions
[GMGK*90, KR88, Reu89] are used, then the O2PC scheme can be employed as it was presented so far, with-
out any further adjustments. Also, another simple way of taking advantage of the O2PC idea without tackling
correctness issues is to allow only local transaciions to benefit from the fact that global transactions release their
locks early. That is, a global transaction releases its locks and becomes locally-committed only for the purposes
of letting local transactions proceed; other global transactions are still delayed. This simple version of the O2PC
protocol reduces the length of time local transactions are delayed due to global transactions. However, if the
02PC is to be used in the most general manner, to the advantage of both global and local transactions, and if
serializability is of concern, then the problem of loss of serializability that was raised above has to be addressed.
The rest of the paper is devoted to examining this issue.

We illustrate the problem of loss of serializability in the following example. Consider a global transaction
Ty composed of two subtransactions T1; and Ty5 executing at sites Sy and Sy, respectively. Suppose that the
Q2PC is employed and that S; voted to commit 73, whereas Sy voted to abort 1. In site S, updates of T}
are exposed since locks have been released, whereas in site Sy, the updates of 71 were automatically undone. A
transaction Ty (that is serialized before CTi;) sees an inconsistent state by accessing data items in both sites.
A cycle CTy — Ty — CTi is formed in the global serialization graph, and hence global serializability is not
preserved. This scenario is depicted in Figure 2(a), where SG1 and SG2 denote the serialization graphs of sites
S; and S, respectively.

Preventing scenarios like the one shown above by globally coordinating and synchronizing the execution
of global compensating transactions comtradicts their special properties, and is bound to introduce the very
same problems the O2PC was originally set to solve. Therefore, a revised correctness criterion (rather than
serializability) is called for. In the quest for an appropriate alternative let us consider the above example again.
Recalling that a compensating transaction is actually a set of semi-independent subtransactions, we note that a
potential for inconsistency arises due to T3’s participation in the cycle, rather then the fact C'Ty is part of this
cycle. The independence of the subtransactions of C7; implies that C'7; need not see a globally consistent state
as a global transaction. Therefore, cycles whose only global transactions are compensating transactions do not

introduce inconsistencies in the database.



Another important consideration in designing an alternative correctness criterion is the following requirement.
A transaction either reads a database state affected by 7} (and not by CT;), or it reads a state reflecting the
compensatory actions of C'T;. However, a transaction should never read both uncompensated-for updates of 7} as
well as data items already updated by CT;. This important constraint is referred to as aiomicity of compensation
in [KLS90] and is elaborated in [Lev90]. Referring to the execution depicted in Figure 2(a)}, if T reads data items
written by T3 in Sp, and also reads data items written by C73 in S, atomicity of compensation is violated.

Our intention is to propose a revised correctness criterion that takes into account the special properties of
compensating transactions and guarantees atomicity of compensation. It is natural to base the revised criterion
on the requirement that in the absence of transactions failures, serializability is preserved. In the next section,

we formally present our correctness criterion.
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Figure 2: Regular Cycles

5 Theoretical Results

Our correctness criterion is stated in terms of serialization graphs (SGs) that are a slightly extended version of
the standard SGs [BHG8T]. For brevity, we omit the underlying concept of complete histories that is identical to
the definition given in [BHGS8T].

The local serialization graph for a complete local history H over global transactions 7 = {71, T3, ..., Tn}, the

corresponding compensating transactions C7 = {CT1,CTy, ..., CT,}, and local transactions £ = {L1, L2, ..., L}

is a directed graph SG(H)=(V, E).
e The set of nodes V consists of transactions in 7 U C7 and the committed transactions in £.

e The set of edges E consists of all A; — By, A;, B; € TUCT UL, such that one of A;’s operations precedes

and conflicts with one of B;’s operations in H.
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Observe that only aborted local transactions (which are irrelevant for our purposes) are not represented in the
local SG.

A global SG is an SG that corresponds to a history at more than one site. The SG of site a is denoted
S, . Given a set of local SGs, each represented as SG, = (V,, E,), the corresponding global SG is defined as
SGgiopar = (U Va, U Eq).

Intuitively, a history H is correct if the global SG{H) is acyclic, except for cycles that consist of at least one
compensating transaction and local transactions.

The main result of this section is a theorem that prescribes a sufficient condition for obtaining the correctness
criterion and atomicity of compensation. Proofs are given in the Appendix. The strategy in obtaining the main

result is summarized as follows:

e We identify the types of cycles that are not allowed in global SGs, namely regular cycles, and state the

correctness criterion formally (Lemma 1).

e We show that if a regular cycle exists in the global SG then certain conditions, called the cycle conditions,

are implied {Lemma 2).

e We introduce properties of SGs, called sirefification properties whose negation is implied by the cycle

conditions (Lemma 3).
e We conclude in Theorem 1 that by ensuring the stratification properties, regular cycles are avoided.

e Theorem 2 identifies the type of compensating transactions for which atomicity of compensation is guaran-

teed by preventing regular cycles.

5.1 Paths and Cycles

Capital letters at the beginning of the alphabet, e.g., A, B, denote either compensating or regular global
transactions. Given a particular history H, the notation A — B is used to denote that there is a directed path
(of arbitrary length) between the two transaction nodes in SG(H).

Local and global paths are paths {entirely) within a local SG and global 8G, respectively. When specifying a
local path, the local 3G it belongs to, is also specified.

‘When considering global paths it is useful to segment such paths into local paths, and represent each such local
path by its end points. For example, consider the paths A — B in SG1, and B — C — D in §G3. The global
path A — D is represented by the local paths A — B in §G; and B — D in SG3. Observe that it is irrelevant

in this case whether C is a local transaction or a local subtransaction, since it is omitted in the representation.

11



Thus, a representation for a given global path lists the local paths constituting the global path in order.
This representation is not necessarily unique. A minimal representation for a given global path is the path
representation with the minimal number of local segments (paths). This representation is also not necessarily
unique. Accordingly, when we say that a global path includes A, we mean that A appears on one of the minimal
representations of this path.

Example 1. Consider the following local paths:

CTy — T in SG
CT1 — Tg —r CTs in SGQ
CT3->CT1 in SGg

Consider the global path C77 — CTs. It has two representations:
1. CTl — Tg iIl SG}_, Tz — CTg in SGg
2. CTl e CTg in SG2

The latter being the minimal representation. Consequently, the global path CT; — (73 does not include 7. &
A regular cycle is a global cyclic path in a global SG that includes at least one regular global transaction.
Observe that there are no regular cycles in Example 1. Figure 2 demonstrates several regular cycles, by presenting

the corresponding segments of the local SGs.

Lemma 1. Any regular cycle includes at least one compensating transaction.
The proof of Lemima 1 is based on the fact that regular transactions follow the 2PL rule.

Our correciness criterion states that a hisiory H is correct if, and only if, SG(H ) coniains no regular cycles.
Lemma 2. If there exisis a regular cycle in a global SG, then the following cycle conditions hold:

C1. There exist distinct global transactions T; and T; such that CT; — T} atf some S5G,, and atf some other
SGy where T; appears, either T; — CT;, or there is no local path between T; and T; in SG,.
Cl= 3T, T i# §:(3a: 0T — Tj in SGa) A(3b: T in SGy : T; — CT; V nopath(b, T;, CT;)))

C2. There exist distinct global transactions T; and Tj such that T; — CT; af some 5G,, without having T; on
that path, and ol some other SGy where T; appears, either CT; — Tj, or there is no local path between T;
and T; in SGy.

C2 = (AT, T :i# j:(Fa:T; — CT; in SGo) A(3b: T; in SGy : CT; — T; V nopath(b, T;, CT})))

Figure 3, schematically depicts the minimal representation of a regular cycle Ag — Ay — ... — A, — Ao

Observe that each A; is not related to Az in SGiyy according to the lemma.
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Figure 3: A generic regular cycle

5.2 Preventing Regular Cycles

For the purpose of avoiding regular cycles we need to identify the pairs of transactions that can cause the formation
of such cycles. Intuitively, regular cycles may be formed when T follows another 7} in the SG before the latter
transaction is globally committed or fully compensated-for (the meaning of this vague statement is to be made
precise soon). See Figure 2(a), for instance, with 7} and T as T; and T}, respectively. Such pairs of transactions
are identified in the following definition:

T; is active with respect to Tj if, and only if, there exist an SG, where the following conditions are met:
e Both transactions appear and it is not the case that T; — T; in SG,.
e There is a path (in either direction) in SG, between CT} and T;.

Next, we introduce a family of characterizations of global SGs, called stratification properties. These properties
are used to ‘stratify’ the global SG, thereby preventing regular cycles. Each property is presented as a formal

assertion. We first introduce four predicates that depend on the transaction identifiers { and j:

Al. At any SG, where T; appears, T; — CT; — T;.

N
S

At any SG, where T; appears, 7; — CT} without having 7} on that path.

A3. At any SG, where both 7 and T} appear, if there is a path between T; and either T; or CT;, then the
path T} — C7; — T is in 5G,.

A4. At any SG, where both T; and T; appear, if there is a path between T} and CT; in SG,, it must be the

path 7} — (7} without having 7} on that path.
Using these predicates we introduce seven siratification properties:

86. (Y3, T : T; is active wrt T : Al)



87.

S3.

S5.

54.

51,

S2.

(VI;, T; : Ti is active wrt T : A2)
(VT;, T : T; is active wrt Tj : A3)
(VT;, T; : T; is active wrt T : A4)
(VT;, T; : T; is active wrt T : A1V A2)
(VTi, T; : T is active with respect to Tj : A1V A4)
(VT;, T; : T; is active with respect to T : A2V A3)
/ S7 / S6 \
N
S5 S4 }/83
NN
S1 52
Figure 4: The lattice of S1...57
Lemma 3. The relationships among S1...S57 are given by the lattice of Figure 4, where each arrow

represents a logical implication in the same direction.

The proof of Lemma 3 is a straight forward exercise in predicate logic.
Lemma 4. The following asseriions hold:

e U1= 51

e 02= 52

Proof.

¢ Consider the path CT; — T; in SG, whose existence is guaranteed by the first conjunct of C1. Because
of this path, 7; is active with respect to 7. By the second conjunct of Cl1, there exist an SG; where
either T; — C'T}, or there is no path between the two. In both cases, the negation of A1(i, J) is implied.
Considering the path C7; — T; in SG, again, we observe that the negation of A4(4, j) holds. Therefore,
we have demonstrated that for T; and Tj, where the former is active with respect to the latter, both = A1

and —A44 hold.

¢ By a symmetric argument the second part of the lemma follows.



Theorem 1. If any of the stratification properties Si (1 < i < 7) hold then there are no regular cycles in
the global SG.

Proof. From Lemma 4 we have that (C1 A C2) = =Si (1 < i< 7). By transitivity of implication applied
on Lemma 2 and the last implication, we have the counter-positive form of the theorem. Namely, if there is a

regular cycle in the global SG, then —Si. ]

As a consequence of Theorem 1, we can develop a family protocols ensuring that the global SG has no regular

cycles in Section 6.

Theorem 2. Ifa history H is correct, and if CT; writes at least all data 1tems written by T, then there is

no case where a iransaction T reads from both T; and C'T; in H (i.e., atomicily of compensalion is preserved ).

Proof. The definition of ‘reads-from’ is from [BHG87]. We prove the counter-positive form of the theorem.
Assuming that there is 7j that reads from both 7; and CT; in H, we show that SG(H) has a regular cycle.
Because of the given read-from relations the edges 7; — T; and CT; — T} are in SG(H). Let T read a data item
¢ from Ti. By assumption, CT; writes z, too. Since T; reads z from T;, then the write of CT} of z must follow
the read of 7; of z. Therefore, there is an edge T; — CT; in SG(H) and the cycle 7j — CT; — T; is formed.
Since local histories are serializable, this must be a global, and hence a regular cycle. In [Lev90], we elaborate on

other variants of atomicity of compensation and ways to ensure them. O

Vote: Commit Vote: Abort

! Commit

Decision: Abort

Figure 4: Transitions in the marking of a site with respect to a transaction

6 Protocols Satisfying The Correctness Criterion

In this section we present two protocols that ensure our correctness criterion when the O2PC protocol is employed.
As such, the protocols actually complement the O2PC protocol. The protocols prevent regular cycles in the global

SG by implementing the stratification properties. We strive for protocols whose execution requires no messages

other than the standard 2PC messages.



6.1 Marking Sites

The basic building block for implementing protocols that are based on the stratification properties is a simple
marking of sites. With respect to a specific global transaction 7;, a site is either unmarked, or marked. Then,
a site is marked locally-commitied with respect to T}, or marked undone with respect to 7}. Imitially, a site is
unmarked with respect to a transaction T;. A site is made locally-committed with respect to T; once it votes to
commit 7; in response to a VOTE-REQ message. On the other hand, if the site votes to abort T3, the site is made
undone with respect to T;. A site ceases to be locally-committed with respect to 7; and becomes unmarked with
respect to that transaction whenever the site receives the decision message from the 2PC coordinator to commit
T;. If the decision is to abort T3, then the site becomes undone with respect to 7;. At some point, a site ceases
being undone with respect to an aborted transaction and becomes unmarked with respect to that transaction. We
postpone the discussion concerning this transition to Section 6.2. It is important to note that all these transitions
in the marking are triggered either by local events, or by messages that are already part of the 2PC protocol.
Figure 4 summarizes the transitions in the markings.

Using this marking scheme, we devise protocols that ensure that the stratification properties are satisfied. In-
tuitively, the protocol should prevent situations where a global transaction accesses a site that is locally-committed
with respect to another transaction, as well as a site that is undone with respect to that other transaction, since
such a situation can result in a regular cycle. Protocols P1 and P2 correspond to the stratification properties
S1 and S2, respectively. Each of the two protocols can be summarized by a rule that restricts the sites a global

transaction 7; may access:
P1. Let 7} execute at a site that is marked with respect to a 7;. Then for each such T;, either

s all sites in which T} executes are undone with respect to 7;, or

¢ all sites in which T} executes are either locally-committed or unmarked with respect to 73.
P2. Let T; execute at a site that is marked with respect to a T;. Then for each such T3, either

e all sites in which 7} executes are locally-committed with respect to T3}, or
¢ all sites in which T executes are either undone or unmarked with respect to 7.
There is a certain similarity between these protocols and the altruistic locking protocol [SGMAS89]. In our
case, however, an aborted global transaction creates two wakes (see [SGMAR89]): an undone wake and a locally-

committed wake. Similarly to the way altruistic locking restricts entering and leaving a wake, P1 and P2 restrict

accessing both wakes.
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In the context of a multidatabase environment, it is very important to notice that P1 and P2 do not impose any
restrictions on local transactions. Only global transactions are subject to the restrictions posed in the protocols.
Therefore, the autonomy of local database systems is not affected by these protocols.

We introduce data structures for maintaining the markings. For each site, Si, the protocol maintains the set

siternarks.k defined as follows:

(Ti, LC) € sitemarks.k iff Sy is locally committed with respect to T}

(T;, UD) € sitemarks.k iff Si is undone with respect to 1}

These marking sets are updated to reflect the transitions described above, and are read by global transactions in
order to ascertain whether execution at a particular site complies with the relevant protocol. The fact that a site
is unmarked with respect to a transaction is deduced implicitly from the lack of any marking in the corresponding
marking set. In order to preserve the semantics of the sets as defined above, concurrent accesses to the sets must
be controlled. One option is to designate special entities for storing these sets in the underlying local databases.
As part of the database, the sets are accessed by transactions subject to the 2PL rule. Some possible optimizations
are discussed in Section 6.3.

In both protocols P1 and P2, each time a subtransaction is invoked at a new site by the global transaction
manager a check whether the markings of the new site comply with the markings of the sites the global transaction
has already had subtransactions in, is performed. For each global transaction, T}, the protocol maintains a set of

markings, transmarks.j defined as follows:
(Ti, mark) € transmarks.j  iff (I3, mark) € sitemarks.k and Ty was already invoked

The set transmarks.j accumulates the markings of sites where 7} already has subtransactions. This set is used
for the check which is performed by the function compatible(transmarks, sitemarks). This function returns true
if the two sets are compatible with each other accordiﬁg to the protocol rules and false otherwise. The logic of this
function is described shortly. The pseudo-code segment R4 models the compatibility check and the corresponding

actlons.

R4. The first action of Tj; at Sg:
if compatible(transmarks.j, sitesitemarks.k) then
{transmarks.j « iransmarks.k U sitemarks.k
start the actions of Tj }

else reject T}

In case the request to spawn the subtransactions is rejected it can be retried later, unless the incompatibility

1s such that only aborting the corresponding global transaction can resolve the situation (e.g., 7} is executed at a
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site that is locally committed with respect to 7}, and attempts to spawn a subtransaction at a site that is undone

with respect to 7).
6.2 Implementing P2

For the implementation of P2 the marking of sites undone with respect to transactions is actually redundant,
since the protocol allows transactions to access both sites that are undone and unmarked with respect to another
transaction. Hence, we can simplify matters and avoid the undone marking altogether. The following pseudo-code

segments summarize the implementation of P2:

R1. After Si responds to the VOTE-REQ message sent for T;:

if Sp votes to commit T; then sitemarks.k «— sitemarks.k U {(T;, LC)}

R2. The last operation of C'Tj;:
sitemarks.k — sitemarks.k — {(T;, LC)}

R3. After receiving a DECISION message for T;: _
if DECISION is COMMIT then sitemarks.k «— sitemarks.k — {(T;, LC)}

Observe that R3 is required only to discard the LC mark and reclaim its space. It has no consequence regarding
regular cycles, since T; commits.

Since P2 requires marks of only one type, the compatibility check is simply:

compatible(transmarks, sitemarks)

return (Vz : ¢ € transmarks : z € sitemarks)

Reasoning that P2 is a correct implementation of the stratification property S2 follows from the next two

lemmata.

Lemma 5. IfT; accesses a site Sp while it is locally commiiied with respect T;, then if T: finally aboris
T; — CT; at 5G.

Proof. Since the accesse of T3 and CTy; to sitemarks.k conflict, they must be ordered. Since T; accesses
Sy while 1t is locally committed with respect to 73, and since by R2, C'T;; removes the mark (T3, LC), it must be
that T; — CT; at SG;. 0

Lemma 6. If7; accesses a site Sy while it is unmarked with respect T;, T} has executed at Sy not preceded

by T3, and T3 finally aboris, then CT; — T at SGy.



Proof. Similarly to the previous proof, since T}, CT; and T; all conflict when accessing sitemarks.k and
since Tj — CT; by definition, there are two possible orders among the three transactions: T; — T; — C7; at SGy
or T; — CT; — T; at SGj. Had the first path been a valid one, then by R1 S; would have been marked locally
committed with respect to 13, and T could not have accessed Sp while it is unmarked with respect to 7;. o

To complete the proof of correctness of the implementation all we need to observe is that the compatibility

check {R4) enforces the rule form of P2.
6.3 Implementing P1

Similarly to P2, P1 can be implemented using only one type of marks; undone marks in this case.

The main challenge in devising an implementation for P1 is the timing of the transition from undone to
unmarked with respect to 7;. Making this transition too early can cause the formation of regular cycles. Recall
that P1 allows a transaction T; to access sites that are locally-committed with respect to T} as well as sites that
are unmarked with respect to T;. Therefore, T; may access a site that is locally-committed with respect to 7}
and a site that was undone with respect to 7 and was prematurely unmarked. As far as correctness goes, the
precondition for this problematic transition is formulated as follows. A site S; that is undone with respect to T}

can be unmarked with respect to T}, ifi

UDUMO (undone to unmarked). All T; that have accessed sites that are locally-committed with

respect to 7; cannot possibly access 5.

Once UDUMO holds, the undone to unmarked with respect to 7; transition can be safely made. Implementing
UDUMO directly incurs extra messages, however.

One way to alleviate this difficulty is to employ P1 under the provision that undone markings are never
discarded. That is, once a site is marked undone with respect to Tj, it remains so. This alternative might not
be acceptable as it implies ever growing marking sets for sites, incurring both storage overhead and extra time
in performing the checks needed to enforce P1. Even in light of the optimistic assumption that aborts — and
therefore undone marks — are rare, we must provide a rule for discarding undone marks for reasons of efficiency
of the protocol. By novel use of the fact that global transactions obey the 2PL rule, the knowledge needed to
detect UDUMO can be implicitly deduced rather than explicitly disseminated and gathered by extra messages.

Namely, we observe that the condition in UDUMOQ is implied by the following:

UDUM]I. For each site in which T} executes, there is a transaction that has also executed at that site,

while that site was undone with respect to T;.

Once a site S; makes a transition in its markings as specified by UDUMI, there can be no T; that accesses a

site that was locally-committed with respect to 7; and is about to access S. This argument is formalized in the
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following lemma.

Lemma 7. UDUMI implies UDUMO.

Proof. Let T; be a global transaction that has accessed a site that was locally-committed with respect to 7;.
UDUM1 guarantees that at each site Sy, where T} executed, there is at least one global transaction, 7, that
follows T at Sp,. This order results from the observation that T; accessed S, while it was locally-committed
with respect to T;, whereas 7;_ accessed that site while it was undone with respect to 7. Hence, had it been
possible for Tj to access S, it would have been a violation of the 2PL rule (and Lemma 1), as T; would have
followed a T, at Sg. | l

Next we describe how the transitions in the markings are implemented for P1. Implementing UDUM1 may
be cheaper in terms of messages. However, it requires augmenting the data structures. Keeping track of the set
of execution sites for each transaction is necessary. Also, it must be possible to determine at what site a marking
(T;,UD) € transmarks.j was added to the transmarks.j set. For brevity, we do not present here the necessary
augmented data structures. We note, however, that managing these structures does not incur any extra messages.

The following pseudo-code segments summarize the implementation of P1:

R1. The last operation of CTj:

sitemarks.k « sitemarks.k U {(T;,UD)}
R3. Whenever UDUMI is detected:

siternarks.k — sitemarksk — {(T;, UD)}

Regarding R1, recall that if a S votes to abort T3, then the standard undo actions taken locally are considered
to constitute CTjp. UDUMLI is labeled R3 intentionally, since its purpose is similar to that of R3 of P2. Observe
that correctness is not lost by the absence of R3, it is rather the efficiency of the protocol that is affected. R3 is
executed as part of the transaction that enabled the transition; that is, the transaction whose access to S made

UDUM]1 detectable at that site.

Lemma 8. IfT; accesses (reads or writes) a daia item af site Sy while the sile is undone with respect T},
then CT; — T in SGy.

Proof. Since the accesses of Tj; and Uy to sitemarks.k conflict, and since the history at Sy is serializable,
CT; and T; must be ordered. Since T accesses Sp while the site is undone with respect to T;, and by R2, CTj;
adds the mark (7}, U D), it must be that CT; — T in SGp. o

Lemma 9. IfT; accesses a daia ilem at site Sy while the sile is unmarked with respect T;, T} has ezeculed

at Sy not preceded by T, and T} finally aboris, then ecither:

e T; — CT; at all sites where both T; and T; appear.
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o CT; — T; at all sites where both T; and T appear.

Proof. Similarly to the previous proof, T; and C7T; must be ordered. We show a contradiction in case that
T; — CT; in SG4 and CT; — T; in SGy. By R1, Sy was marked undone with respect to 7; before it became
unmarked by R3. By UDUMI, the latter transitionv is enabled only if there exists a T} that was executed at
S, while 5, was undone with respect to T;. That is, T; — CT; — T} in §G,. Considering the transaction
that executed R3 as part of T, we have CT; — T — T in SGy. We have a regular cycle that includes no
compensating transaction — a contradiction to Lemma 1. ]
Given the above two lemmata, we can now establish that protocol P1 ensures that the stratification property S6

is indeed met. To do so all we need to observe is that the compatibility check (R4) enforces the rule form of P1.

6.4 Discussion

Several comments concerning the protocols and their implementation are in order.

e Considering the proposed implementation for P1, we note that the marking sets induce extra conflicts
among otherwise non-conflicting pairs of transactions only if one of the transactions aborts. Thus, again,

performance is not offset by overhead under the optimistic assumption.

¢ Alternatively to storing the marking sets as data items in the database, they can be stored and managed
externally. A special software module whose responsibility is the scheduling of global transactions would
maintain the marking sets. This module should implement a concurrency control scheme for accessing the
marking sets. The concurrency control scheme can be custormized to take full advantage of the simple access
pattern to the marking sets. Such an architecture might be preferable in the multidatabase context, since

storing the marking sets in the local database might be cumbersome and even prohibited.

Typically, in a multidatabase system, at each site, an agent of the global transaction manager is running as
an application program, that is, above the local transaction manager. These agents spawn local subtrans-
actions, submit requests originating at the global transaction manager for local execution through these
subtransactions, and participate in the 2PC protocol as the representatives of their sites. The functions of
managing the marking sets can be integrated into these agents. There are yet more problems with 2 MDR

environment like global deadlocks and implementation of persistence of compensation.

e Deadlocks may arise due to contention to the local marking sets. For example, a transactions that read-
locks sitemarks.k in order to perform the compatibility check, may be blocked while attempting to access
a regular data item z that is locked by CTj;. The compensating transaction, on the other hand, may be

blocked too, holding a lock on z and attempting to access sifernarks.k. Consequently, if contention to the



markings sets is may introduce deadlocks, these sets had better be stored as data in the local database, so

that the deadlocks are detected and resolved by the local deadlock handling scheme.

One simple way to avoid this deadlock problem is to perform all the accesses to the marking sets as the
last access of subtransactions. The only problem with this simple remedy is the compatibility check (R1).
Checking for compatibility late results in wasted efforts in case the check fails. An acceptable compromise
would be to perform the check first and then unlock sitemarks.k. In case the check succeeds and the
subtransaction is completed, the check is validated again as the last action of the subtransaction. In a
multidatabase environment, this particular technique is better suited when the marking sets are managed
by the agents, since only then explicit unlocking is possible. To simulate the effect of unlocking sitemarks.k
after the compatibility check in case the marking sets are managed by the local DBMS, a special local

transaction have to be invoked to perform the check and then terminate, thereby releasing the locks.

Ancther way to reduce contention to the marking sets is to split them into individually lockable entities,
one for each mark. Observe that R3 requires locking only of the deleted mark and not the entire set.
Multigranularity locking [GAPTT75] would be very beneficial in this case since R1 and R2 require locking of

the entire set.

Another argument in favor of a customized locking scheme managed by the agents pertains only to R3 of
P2. Observe that the transition specified in R3 can be executed without locking at all. If 7} is globally
committed, there is no risk of forming regular cycles. Therefore deleting the (7;, LC) mark while the
marking set is locked by another transaction can be of no consequence. If the marking sets are managed by

the local DBMS, R3 would have been implemented by a special transaction.

Each of the two protocols is composed out of a permissive clause and a resirictive clause. The permissive
clause of P1, for example, allows transactions to access both sites that are marked locally commitied and
sites that are unmarked with respect to a particular transaction. The permissive clause of P2, on the other
hand, allows transactions to access both sites that are marked undone and sites that are unmarked with
respect o a particular transaction. Based on our optimistic assumptions that transaction aborts are the
exception rather than the rule, it is more likely to have many locally committed markings and few undone
markings. Therefore, it seems that having a permissive clause based on locally committed markings (as
in P1) would result in a better protocol. A restrictive clause based on locally committed marks is more
likely to cause failures in the compatibility checks and hence rejections of subtransactions. These qualitative

assertions, however, must be supported by an experimental study.
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» The optimistic assumption favors P1 over P2 in one more important aspect. In P2, the concurrency control
on the marks sets induces a total order among subtransactions at each site, even if they do not conflict on
regular data. This order is determined by the order in which subtransactions execute R1 and R2 of P2. In
P1, on the other hand, R1 is executed only in the rare cases of a transaction abort, hence contention for
the markings sets and the total order effect is diminished significantly. Under the optimistic assumption,
most of the accesses to the marking sets in P1 would be read accesses due to R4! For the last two reasons,

it is likely that P1 will out-perform P2 under such optimistic circumstances.

e In addition to protocols P1 and P2 there are a variety of other protocols resulting from the other stratification
properties. For instance, a very simple protocol is one that requires that for each transaction 7}, all sites in
which T executes are undone with respect to the same transactions, and are locally-committed with respect
to no transaction. This protocol corresponds to 56. There is a trade-off between the protocol’s simplicity

and the degree of concurrency it allows.

7 Conclusion

Using the 2PC protocol to ensure the atomicity of transaction in distributed environments creates severe, yet
inevitable difficulties. Our O2PC protocol avoids these difficulties by trading standard atomicity for semantic
atomicity. The basic protocol as presented in Section 2 is valuable in the context of global transactions that are
executed as sagas or multi-transactions, and for the purposes of relieving local transactions from the maladies
of using 2PC for global transactions. When standard global transactions are used, as a result of the relaxed
atomicity notion, serializability may be lost. We propose a correctness criterion that reduces to serializability if
no global transactions are aborted, and deviates from serializability only to the extent dictated and allowed by
the special characteristics of compensating transactions.

The O2PC was augmented by P1 to preserve this criterion. A distinctive feature of the O2PC/P1 combination
is that it makes no changes to the message transfer pattern or the structure of the standard 2PC protocol. The
changes are in local reactions to the protocol’s messages. Therefore, O2PC does not contradict standardization
efforts of the 2PC protocol.

Regarding future research, we plan to investigate the duality in the approach to relaxed atomicity notions.
Dually to the way semantic atomicity is obtained by backward recovery using compensating transactions, one
can recover forward using retrial [RELL90]. The duality of retrial and compensation is rooted in the traditional
redo/undo paradigms. Recently, the traditional redo/undo duality was examined in the context of obtaining

standard atomicity in multidatabases [MR91].
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