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ABSTRACT

Based on the Grishner basis method, we present algorithms for a complete solution
of the following problems in the implicitization of a set of rational parametric equa-
tions. (1) To find a basis of the implicit prime ideal determined by a set of rational
parametric equations. (2) To decide whether the parameters of a set of rational
parametric equations are independent. (3) If the parameters of a set of rational
parametric equations are not independent, to reparameterize the parametric equations
so that the new parametric equations have independent parameters. (4) To compute
the inversion maps of parametric equations, and as a consequence, to give a method
to decide whether a set of parametric equations is proper. (3) In the case of alge-
braic curves, to find proper reparameterization for a set of improper parametric
equations.
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1. Intraduction

For curves and surfaces, methods of converting parametric egquations to their implicit
farm are of fundamental importance in computer modeling and computer graphics. Several
trethods to find the implicit equations and inversion maps for a set of parametric equations
were given by various researchers. Sederberg was the first to address this preblem using
elimination theories [Sederberg, 1984]. [Arnon & Sederberg, 1984] appeared to be the first
to address this problem using the Grobner basis method. Buchherger selved this problem in
more general cases using the Grébner basis method [Buchberger, 1887]. A method to find
the implicit approximation of parametric equations of curves and surfaces was presented in
[Chuang & Hoffman, 1989). Recently, a method to compute the image of parametric equalions
was given in [Wu, 1989] and [Li, 1989].

However, in mote general cases, there are many problems untouched, For example, the pa-
rameters of a set of parametric equations might not be independent as shown by the following
example. At first sight, one might think that the parametric equations

u+tw _2112—1-21:,3 _21r3+ﬁu21:
w—v'? fe—v) ' (w—v)
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represent a space surface. Actually, they represent a space curve, because let t = ﬂ'—:, then
the ahove parametric equations become

=t yp=t'+1, z=1* -1

For the above example, each point of the curve corresponds to infinitely many values of u and
v. Hence the solution of the inversion problem here is not clear.

In this paper we will address the implicitization problem for rational parametric equations
in a more general form. Qur algorithms are based on the Grébner basis method, a powerful
toll in computer algebra [Buchberger, 1985] introduced by Buchberger in 1965,

We will show that each set of rational parametric equations determines a unique prime
ideal which will be called the mplicit prime ideal of the parametric equations. In [Buch-
berger, 1987], a method was given to compute & basis of the implicit prime ideal for a set of
polynomial parametric equations. Buot a straight [orward extension of Buchberger’s method
to the implicitization of retions! parametric equations may not work {see Remark 3.6 be-
liw ) because of the existence of base points, In [Kalkbrener, 1990], a method to find the
implicit prime ideal for raifona! parametric equations of space curves and surfaces has been
given. In this paper, by extending their methods we present a method of finding the prime
ideal for general rationel parametric equations. We also give a method to decide whether the
parameters of a set of rational parametric equations are independent. If the parameters of
the parametric equations are not independent, we can reparamelerize them so that the new
parametric equations have independent parameters.

If a set of parametric equations has independent parameters, we present a close form
solution of the inversion problem in certain cases, i.e., we give a method to compute the



inversion maps of the parametric equations. As a consequence of our method, we can decide
whether the parametriec equations are proper, i.e., whether the implicit curves or surfaces are
tiot multiply traced by the parametric equations [Faux and Pratt 1979].

If the parametric equations are not proper, naturally we would ask whether we can repa-
rameterize lhem s that the new parametric cquations are proper. ln general cases, the
answer is negative. However, in the case of algebraic curves, the existence of a proper
reparamettization for the original improper parametric equations is gnaranteed by Liiroth’s
{theorem [Walker, 1950]. A constructive proof of Liiroth's theorem actually provides an algo-
rithin to ronstruct a set of proper parametric equations. Recently, Sederberg gave 2 method
ti2 find proper reparametrization for any set of improper parametric equations for algebraic
curves [Sederberg 1986]. As an application of our method, we provide a new method to find a
proper reparametrization {or a set of improper parametric equations of an algehraic curve and
our method does not need to randomly select sample points on the eurve as Sederberg’s algo-
rithm does. In the case of algebraic surfaces, if the ground field & is the complex number field
C, then there always exists a proper reparametrization for the original improper parametric
equations [Castelnuvo 18394]. However if the base fleld A is Q (the field of rational numbers)
or R (the field of real numbers), this needs not to be the case [Segre 1951). If the implicit
variety determined by the parametric equations are of dimmension > 2, then even for & = C
there exist improper parametric equations that do not have a proper reparametrization [Artin
& Mumford 1971).

This paper is arganized as follows. In section 2, we give some basic definitions and proper-
ties of parametric equations. In section 3, we give a method to compute a basis of the implicit
prime ideal for a set of rational parametric equations. In section 4, we present a method to
reparameterize a set of parametric equations (if its parameters are not independent) so that
the parameters of the new parameiric equations are independent. In section 5, we give a
method to compute the inversion tnaps, and in the case of algebraic curves, give a methed to
find a sel of proper parametric equations for a set of improper parametric equalions. Scetion
G ts & summmary of the paper.

2. Preliminaries on Parametric Equations

Let K be a compuiable field of characteristic zero, e.g., Q. We use &Az,,..,z.] or K[z] to
denote the ring of polynomials in the indeterminates x4, ...,7,. Unless explicitly meniioned
otherwise, all polynomials in this paper are in A'[z]. Let E be a wniversel ezlension of
I, ie., an algebraic closed extension of X which contains sufficiently many independent
indeterminates over K. For a polynomial set PS, let

Zero(PS) = {z =(z),....,2,) € E* |¥YP € PS5 P(z)=0}.
For two polynomial sets P5 and D5, we define

Zero{ PS/DEY = Zeral P8 — Uye p g Zerold).

Let t,,....1, be indeterminates in F which are independent over K. For polynornials
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a set of (rational) parametric equations. We assume that not all F; and @; are constants and
ged( Fi, @) = 1. The maximum of the degrees of F; and @; is called the degree of (2.1). The
image of (2.1) in £® is

IM{P,@) = {{z1,n@n) | It € E™ (2 = P/ Q:())).

We have

Lemma 2.2, There is an algorithm to find polynomial sets PS;, .., PS5, and polynomials
ey, ....dy such that

{2.2.1) TM(P,Q)=U_ Zeva( PS; /{d: }).

Proaf. Tt is obvious that FM(P,Q) = {(x), ....2.) | It € E™(Qi(t)z; — P.(t) = 0AQ:{1) # 0)].
Thus by the quantifier elimination methods for algebraically closed fields (see, e.g., [Tarski,
1951) or [Whu, 1989]), we can find the P5; and d; such that (2.2.1} is correct. 1

Definition 2.3. Let ¥V be an irreducible variety of dimension & > 0in £*, then (2.1] is called
a set of parametric equations of V {or (2.1) defines V') if

(1 TM{P,Q)1C V', and
(2) ¥V — TM(P, &) is contained in an algebraic set with dimension less than d.

Theorem 2.4. Each set of parametric equalions of the form (2.1) defines a unigue irredueible
vartety ¥ in E® whose dimension equals Lo the transendental degree of K {H /... B f4n)
mver AT

Proof Let I={F e K[z] | F(A/Q,.,....F./Q.) =0}, then [ is a prime ideal with a generic
point 71 = { P fQy, ... Fo /Q.) and it is clear that IM(P,Q) C Zero{I). We shall show that
the irreducible variety ¥V = Zero(f) satisfies the condition of the theorem. We only need
ta prove Zero(d) — FM({P,Q) is contained in an algebraic set of less dimension than the
dimension of f. By {2.2.1), IM(P,Q) = Ui_, Zerof PS;/{d;}). Furthermore we can assume
thal [or each PS;, fdeal{ FS;) (the ideal generated by PS;) is a prime ideal and 4; is not
in fdeall PS;) by the decomposition thecrem in algebraic geometry. Since 5 € TM(P, Q). #
thust e in some components, say in Zerol{ F 5, /{d, }}. Note that  is a generic point for |
and Zero{ P5,) C Zero{l), then fdeal(FS;) = I. Hence Zerve(!) — IM{P, Q) = Zere(l U
{eh V)= Wi, Zerol PS, f{d:}). Thus Zero(l} — IM(F, Q) is contained in Zero{l U {d;}) the
dimension of which is less than the dimension of § since d; is not contained in § = Jdeal{F5,).
Since # is a generic point of J, the dimension of [ is equal to the transendental degree of
ROy oy By e ) over K. Tt is obvious that Zero{[) iz uniguely determined. I



By Theorem 2.4, a set of rational parammetric equations of the form (2.1} defines a nnigue
irreducible variety, hence a unique prime ideal in &[z|. We call this variely {or prime ideal)
the implieit varicty (implicil prime ideal) of (2.1).

3. The Computation of the Implicit Prime Ideal

For a set of rational parametric equations of the form (2.1), let
(3.1) F=Qz,-F, Di=¢izx-1,i=1,..,n
where the #; are new variables, Let
(3.2) ID = ildeal{(F\....Fy, Dy, i)

i.e., the ideal generated by F; and D; in K[t,z. 2].

Theorem 3.3, We vse the same notations as above. The implicit prime ideal of (2.1) is
IDN K[z, 2q)

Froof. By the proof of Theorem 2.4, the implicit prime ideal of (2.1) is
I={Fe K2 FIR/G,. .. B /@) =0}

For B € 1, replacing F;/Q; by &: — F;/Q: in BiPj@, ..., F /Q.) = 0 and clearing denomi-
nators, we have

1

{3.3.1) (I] @F 1Blzvsenzn) =3 C5F;

i=t1 Ji=L
where C; € K[z,#]. Multiplying both sides of (3.3.1) by G = [T}, zf+, we have
{3.3.2) ([T (%@ )B(z1,0nzn) = 3 GO F;
i=1 F=1

Since D; = @z — 1, (3.3.2) shows that B(z,,...,z,) can be expressed as linear combination

of F; and I¥. Therefore I is in JD r K[2]. Thus we have proved I C 70N K[z]. To prove
the other direction, let P € 1D N &[z]. Then we have

F=3 GF+> B;D
i=l J=1

Setting z; = F /@ and z; = 176, in the above formula, we have P(P /..., F. /@) = 0,
ie., Pisin I. This completes the proof. 1

Using the following Lemma and Theorem 3.3, we can compute a basis for the implicit
prime ideal of (2.1}



Lemma 3.4. {(Lemma 6.8 in [Buchberger, 1985]) Let GB be a Gribner basis of an ideal
IDC Klx1, e Tay¥1..-¥x] in the pure lexicographic order & < ... < 25 < #1 < o < Yo
then (B N K[z,....,7] i& a Grobner basis of 1D 0 K{xy, .., 2q].

Example 3.5. For example (1.1}, let
(35.1) P§ = {{v—wlr+v+u(v—uly=20" = 2u” (v —ulz+20° + 6u’o (v - )z — 1}

Under the pure lexicographical order 2 < y < 2 € w < v < 21, the Grobner basis of fdeal[ P5)
is

(3.5.2) ly—2' —Lz—a+ L{z+ 1o+ (—z + 1)y, 2uys + 2+ 1,2v5 + ¢ — 1]

By Theorem 3.3 and Lemma 3.4, a basis of the implicit prime ideal of (1.1)is {p— 2% — 1.2 —
744+ 1},

Remark 3.6. (a) The inequation part B; = 0 (which is equivalent to §J; # 0} is essential for
Theorem 3.3 to be true. In Example 3.5, let PS5 = PS = {{v — u)z; — 1}, then the Grobner
basis GI' of fdenl( PS5 is

(2 4+ 2)0° + 6ur® + 18u%e + [—2° + 627 — 18z + 13)®

((z+ 2pu)e? + 6uv + (-2 + 42° — 8z + 5)u”

(y—2}p° —duv + {(—z° + 4z = 3)u?

((z+2)u"}w+ (=2 +22% — 22 + 1)u®

((y — Du)e + (- + 22 - L)°

e+ 1)+ {2+ 1ju

(z— 2% + 1)n®

(y —«® — 1u?

Note that 1 N A[z] = 0.

(B) Il 7 = 1, then the &); ean be deleted from F$ in (3.2) and Theorem 3.3 is still true.
Tlis is because ged( P, ¢;) = 1 implics that the resultant of F, and &), is 1.

The following are some results about the properties of ithe Grébuer basis for a prime ideal
which will be used in the next two sections. For § C {#i,.....2}, e denote K[$] to be
the polynemial ring of the variables in §. A set of variables 5 is called independent modulo
a prime ideal I ¢ K[z] if I n K[5] = {0}. It is known that if § is a maximal independent
set module I then |§) is the dimension of J [Grébner, 1970]. A maximal set of independent

variables for a prime ideal I is called a parmmeter sefof 1.

Lemma 3.7. Let f be a prime ideal with a parameter set 5 and F be a polynomial not in {,
tlien there is a nonzero polynomial @ € A [S] N fdeal{iu {#}).

Proof. 1t is a direct consequence of the dimension theorem {(p48, [Hartshorne, 1977]).

The leading variable of a nonconstant polynomial P € K[z]is the smallest 4 < = such that
Pe Wry. ...l



Lernma 3.8. Let B be a Grobner basis of a prime ideal [ in the pure lexicographical order
Iy < ... < &, and 5 be the sel of distinct leading variables of the polynomials in G B, then
T = {#,, ..,2o} — 5 is a set of parameters of I and hence [ is of dimension |T7.

Proof Induction on the number of variables n. If n = 1, it is trivial, Suppose the lemma is
true for n = & — 1. Let J be a prime ideal in K[z, ...,7:] with the Gribner basis G B, then by
Lemma 3.4, I = IN K[z, ...,2p_,] is also a prime ideal and GH' = GBN K[z, ...,%;:_1]is a
(irobner basis for J*. Let 5° be the set of the distinct leading variables of the polynomials in
¢ #', then by the induction hypotheses, T* = {#;,...,23_1} — & is a parameter set for J*. If
(7B = 35 then T = f'. The tesult is obvicusly true in this case. Otherwise the set of leading
variables of the polynomials in GB is § = {z:}JUS’. Let P € GH — 7', then P is not in
f. Note that §' is also a prime ideal in K [21,....xi] with a parameter set T' U {}, then by
Lemima 3.7, there is a P € Fdeal(I' U {°}) C I involving the variables in the parameter set
of £, i.e, involving T* U {1: }, alone. Thus z; is algebraic dependent on 7" module £ which
implies that {z,....,za} = § = T is also a parameter set of / and / has the same dimension
as f'. )

Lemima 3.9. Let 8 be the reduced Grobner basis of a zero-dimension prime ideal [ nnder
1lie pure lexicographical order ; « ... < 2, then GB = {41,..., A5 } where A; is a polynomial
of z,....,2; with a power of z; as ils leading term.

Froof. Denote I; = I K[z, .., zi]. By Lemma 3.8 1, — fi_, is not empty. Let F; € 1 be
a polynomial in f; — fj_; with least leading term. The leading term of F; must be a power
of z;, for otherwise Let P, = €, z7* + ... + Cp where the C; are in K[x,,...,z;_:]. Since 7,
is not in f;_;, by Lemma 3.7, 1 € fdea!{;_; u {C, }) or equivalently, 1 = & + BC,, where
&' € I;_,. Then the leading term of %/ = BF; + Gz} € I; — I, 15 z]* which contradicts the
selection of F;. Thus Cy,, is in K. Tt is easy to show that {F, ..., F,} is a Gribner basis of £

4. The Independent Parameters

Wo will use the notations introduced in (2.1}, (3.1}, and (3.2).

Definition 4.1. Tle parameters #,,..,1,, of (2.1) are called independent if the implicit
prime ideal of (2.1) is of dimension m, or cquivalently the transendental degree of the field
K{B Q1. ... Po [0, over K is m (by Theorem 2.4).

Lemma 4.2. {0 and 7D N K[t,«] are prime ideals of dimension m.
Proof, Similar to the proof of Theorem 3.3, we have
1D = {P = -F’:[t:I»_- z] I Plt,, ... ln, Pl,"IQh wrer Pﬂf@na IIQI yemey ]-J'IIIQHJ = D}

te., ID is a prime ideal with a generic poinl (£, ... dm, P/ Qs o P /@0, 1/, 1/ G ).
Therclore, the dimension of 75 iz m. Similarly,

DN K[te]={PcR[tz]| Pltreotm Pri@s o P fQa ) =0}

Therelore £ N K|t 2] is also a prime ideal of dimensicn . I



Let (78 be a Grobner basis of £ in the pure lexicographical order z, < ... < 7, < {1 <
L < by < 2 < . < Z,. Since ID and 8 n K[t,z] have the same dimension (Lemima
4421, by Lemma 3.8, each z; must be the leading variable for some polynomials in (8. Thus
without less of generality we can assume the leading variables of the polynomizals in G# he
Tag 11 Edtdy s o bag lodsdzecnlmyZ1a ey 2n. Therefore, {zy,..., %4, %1, . &} i5 & parameter
set of the prime ideal 7/ and € + s is the dimension of 0, ie., d4+ s = m, by Lemma 4.2.
For the same reason {&1,..,,} is a parameter set of the ideal D N K[z] and the dimension
of D K[z] is 4. Summing up, we have

Theorem 4.3. (a} The implicit prime ideal of (2.1} is of dimension 4 > 0. {b} The param-
eters of {2.1) are independent iff s = 0, ie., each ¢; occurs as the leading variable for some
pulynemials in G 8.

Mreof. For (a), we anly need to show € > 0. Since not all of F} and ¢ are in A and
ged{ F,, ;) = 1, some 2; must dependent on the ¢ efectively, i.e., we must have d > 0. Since
d + s = wn, the parameters of (2.1} are independent il d = m, or s = L I

Theorem 4.4. If the parameters of (2.1) are not independent, we can find a set of new
parametric equations

(4.4.1) = P{QL, - an = P[0,

which has the same implicit prime ideal as (2.1) and a set of independent parameters.

Froof. Use the notations introduced in the paragraph before Theorem 4.3, Then { 24, ..., 44,
t,. ... t, I (d+ 3 =1n)is a parameter set for /0. Thus the idcal JIY generated by [£} in

=Kz, 24,1, ---?t.rHId+11 S ST TR P P DTN zn]
is a prime ideal of zero dimension. By Lemma 3.9, a Griboer basis of [/ under the pure

lexicographical order 2,4, < ... € Tn € a1 € oo € b € 511 < . < 2z, 15 of the following
form

A(Zapr)

An—d(Id+15"'1$ﬂ]

{4'4‘2} B1{$ﬂ+1!"'!$ﬂits+lj
Bm—a{zd+11 T 1zntta+1-_\' . 1tm}
C!{xd-{-l: '-'1xr:?ts+11 ""'"!l'ﬂﬂi ,31}
(:nl:ﬁ..f'd.{.'l*..q Ty ,r,+'| ,...,im 51 ,...1,1?"]

where the leading tertn of each A; (B; and € )is a power of 244, (1. 4; and z; } with coefficient
. The cocfficients of A;, B; and 'y arein A{(z,,...,24,1;,....1;}. Let the least common divisor



of 1lie denominators of the coeflicients of the A;, B;, and i be M, then M is a pulynomial of
2., kg and ty, ... 1. Let By, ..., A, be integers such that when replacing &; by fi;, i =1,.... 5,
M becomes a nonzero polvhomial M’ of z,,...,74. Let P! and ¢} be polynomials obtained
[rom £ and Q; by replacing & by K, i = 1,...,5. In the next paragraph, we will show that
Q% # 0. ‘Thus we have obtained {4.4.1).

Let the implicit varieties defined by (4.4.1) and (2.1) be W and V respectively. We want
to prove W = V. By the selection of by, it is clear that W C V., loreach F\,, k= 1,..n,
sinee Fy, € 1D, we have

n—d Ta— 4 ]
Fa=> HA+ Y 6B+, By
i=1 =1 k=1
where the H,, 7; and E; can be taken as polfynomials in K[!, x, z],because the leading terms
of 4;, By, and )y are powers of variables. Replacing t; by A;, i = 1, ..., 3, in the ahove formula,

we have

n—d - n
(4.4.3) Fy=3 HlA+ D GBj+) EC}

i=1 i=1 E=1
where ) = @) xs — Fy. By the selection of hy, B} and C} are well defined. Since {z1, o zal
is a parameter set of the implicit prime ideal whose zero set is V', there cxists a generic zero
gn = (2], 20} of V such that 2, ...,z are independent variables over K. (It is easy to show
that 4, = 0,.... Ay_;z = 0 can determine such a generic zero.) Without loss of penerality, we
assume that the coefficlents of Bi, as polynomials in R, have the form P/M' where Fis a
polynomial in K [z,,...,24) and M" 15 defined as the above paragraph. Then by the selection of
the x,, we can replace = by zo in B; and obtain a polynomial B;. B! is a nonzero palynomisl
of t,41,...,t; whose leading term is a power of ¢;. Then BY = 0,..., &7 | = 0 can determine
a sct. of solutions for £,4y,...,¢m. Let such a get of sclutions be & ,,...,t,. Similarly, we
can determine a set of solutions 2{,...,z} for z;,...,2, from C},...,C]. Now replacing x by
o, & by 8, i= s+ 1, ...,m,and z by 23, k= L,....m, in (4.4.3), we have @z, — P =
where JF and P} are obtained from €} and P; by replacing & by ¢}, £ = 54 1,...,m. Since
D, =z, — 1 € ID, similar as above we can show that @z, —1 = 0. Thus &} # 0 (hence
¥, # 0). Therefore we have zq = (PY/QY, ... P/ /@, }, i.e., 29 is in the image of {1.1.1) hence
in ¥, This implies V. C W, Thus we have proved V = W, Since V is of dimension d, by
Theorem 4.3, the parameters ¢,41, ..., i of {4.4.1) are independent. |

Example 4.5. In example (1.1), by {3.5.2), {x.u} is a set of parameters of fdeal(F*5). Here
i = 1,4 = 1; hence the parameters © and v are not independent. To reparameterize (1.1,
by Theorem 4.4, we need to compute the Grobner basis of fdeal{ PS) in Kz, u)[y, 2z, 0, 21| in
the pure lexicographical order y < 2 < v < 2;. Such a Grébner basis is
(-2 4+ 1)n 41
(z+1) T )

Then the M in the proof of Theorem 4.4 is 2{x + 1)}u. Selecting a value of , say 1, which
does not make M zero, we get a new paramelric equation

v+ 1 20’ + 2 2v? + by

= U= 2=
1—w (1— v)? (1— o)

{y-z*-1l,z—2>+1,v4+




which has the same implicit prime ideal as {1.1) and has an independent parameter o,

5. Inversion Maps and Proper Parameterization

The inversion problem is that given a set of values (#1,...,4,} on the image of {2.1], find a
set of values {7, ..., T } for the § such that a; = Fiin,. .7 /&, ...Ta i =1,...,n The
inversion problem can be reduced to an equation solving problem [Buchberger, 1987]. In the
following, we show that in certain cases, we can find a closed form sclution to the inversion

problem.
Definition 5.1. Inversion rmaps for (2.1) are funciions
ty = fl[mla"'::rn}?"-:im = Ln{mlumuxﬂ}

such thal 2; = £ fi, oy fn )/ f1s ey fin ) are true on the implicit variety ¥V of (2.1} except
a subset of ¥ which has a lower dimension than that of V.

The inversion problem is closely related to whether a set of parametric equations is proper.

Definition 5.2. (2.1) is called proper if for each {e,,..,a,) € TM{ P, {} there exists only one
{(Tyveeey Tm ) € E™ such that a; = Fi{ry, oo mm ) /Qi(m, T i = Lo me

Now we assume that the paramelers ¢, ..., tm of (2.1} are independent, ie., s = 0, then
{1.4.2) becomes

A1{$m+1]

(53‘} An—m(mm+11«"‘rznj
Bl{$m+11 Tt 1$n111}
Bml:rrrn+]1"'1rn-.-ilj"' ::m}
lI::'-'rl["mf::l'l-l-h Tt r"rn-tl“wtm:zl}
C'I::I.{:rm+1!' "t 1$rn!1---1tm~. Z1. ‘"1zﬂ-}

Theorem 5.4. Using the same notations as above, we have

(a) BTty &) = 0 determine ¢; (¢ = 1, ..., m) as functions of z,,...,2, which are a set
of inversion maps for {2.1).

{b) (2.1) is proper if and only il B; are linear in ¢; for ¢ = 1, ..., m, and if this is case, the

inversion maps are
ty = Iln'lr‘{-'rl'l“wtm = "lm,”-’rm

where the [; and I; are polynomials in K[X].

Proaf. Similar to the prool of Theorem 4.4, let the least common divisor of the denominators
ol the ceellicients of the A;, B, and Cp be M, then M is a polynomial of =;,....z4. Let



" = {(z),...,5)) be a zero on the implicit variety V of {2.1) such that M(z") # 0. Then
similar to the proof of Theorem 4.4, we can show that Bi(2', 6. ...} =0, ¢ = 1,....m,
determine a set of values t' = (t],..., 4 ) for the #; and Ci (2", ¢, =, .., n) =0, k= 1,1,
determine a set of values ¥ = {#],....2.} for the z,. Furthermore, (#',z",2') is & zero of 1D
[see (3.2)). Thus Fa(d,z") = Ptz = Qw(t’) = 0, ie, 7}, = P ('}/Qn{t). Note that
ZerolM)NV has a lower dimension than that of V, we have proved (a).

To prove (b)), first note that the B; =0 (i = L,...,m) are the relations between the r and
£, .....4; in [1¥ which have the lowest degree in #;. Also different solutions of B, = 0 for the
samc ¢ give same value for the z;. Since (5.3) is a basis of a prime ideal I'D’, (b) comes from
the fact that a point & € JM{P,Q) corresponds to one set of values for 4; iff B; are linear in
tiv i = 1,..,m. Let By = Li; — 7; where {; and I'; are in K[z] then the inversion maps are
= Ut'l."l.{{,l:=l,...,fﬂ. |

Theorem 5.4 gives a method te find the inversion maps and a method to decide whether
the parametric cquations are proper.

Remark. In the terminology of algebraie geometry, if {2.1) is proper, then the variety V
defined by (2.1} is a rational variety, i.e., ¥V is birational to E™.

Theorem 5.5, If rn = 1 and {2.1) is not proper, we can find a new parameter s = f{,)/a(t,)
where f and g are in K [#,] such that the reparametrization of (2.1) in terms of &

_ Fils) _ Fals)

5.5.1 =W =
-5.1) = E ey T Gale)

are proper.

Froof. Since m =1, (2.1} defines a curve . Let &7 = K{P /¢, ..., B /@) be the rational
field of €. Note that P (1) = Q1{t;)A = 0 where A = Pi(#;}/@1(¢1) € K', then 4, is algebraic
over K. Let f(y) = .y" + ..- + a; be an irreducible polynomial K'[y| for which f{t,) = 0.
Then at least one of a;fu,, say ¥ = e,/e,, is not in K. By a proof of Liroth's theorem
{p149, [Walker, 1950]}, we have K* = K(n). This means that z; = £;/Q; can be expressed as
rational functions of # and % also can be expressed as a rational function of z, = F, /¢, i.e.,
there is a one to one correspondence between the values of the z; = P, /Q; and . Therefore
5 is the new parameter we seck. Now the only problem is how to compute the f.

Ry Theorem 5.4, we can find an inversion map Bi{&1,...,¢n, 11 ) = 0 of the curve. Then
1) is a relation between the z and {; with lowest degree in f; module the curve, in other
words B} {y) = B1{P1 /@1, Paf@rn,¥) = 0is a polynomial in K”[y] with lowest degree in y
such thal H;{t;) =0, t.e., B{(y) can be taken as f{y). Sothe 2 can be obhtained as follows.
If By is linear in £; then {2.1) is already proper. We can take s = {;. Otherwise leti

By = bt + -+ by

where the & are in A[z]. By (2.1), & can also be expressed as rational functions e;(t; ).

i=1,...,7. At least one of a fa., say ay/fa., is not an element in K. Let 5 = ay/a..
Eliminating t; from (2.1) and a,3 — gy, we can get (5.5.1). Note that e, comes from & by
substituting 2; by F fQ;, 7 = 1,...,n, then s = by fb, is an inversion map of (5.3.1). |
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Theorem 5.5 provides a new constructive proof for Liiroth’™s Theorem, ie., we hawve

Corollary 5.6, Let g, (t),...,g-(t) be elements of K(f), then we can find a g{{) € R(¢] such
that A{gy, .00 = K(g)

Examples 5.7. Consider the parametric equations for a Bézier curve [Sederberg, 1986]:

Bs% — 128% +325% + 2457 + 123
8% — 350 4+ 3874+ 352+ 3541
_ 248° + 548° — 545" — 544% 4 305

T b — 30 433 F 352435+ 1

(5.7.1) x=

Let 5 = {(3% — 3s® + 4a* 4+ 382 + 35+ 1)z — (Bs® ~ 12" + 3265 + 2487 +128), (55 — 35° +
35"+ 387 + 354 1)y — {248% 4 545% — 545> — 548" + 308), (8% — 3% + 357 + 357 +35+ 1)z — L}
Under the variable order y < 5 < 2z, the Grébner basis of fdeal{ HS) in K(z)[s. 3, 2] Is

g = 22p° + { -22682 + T632)y° + (—54x® — 15122 — 480384)y + 312632% — 42422477 4
1200960

gs = (1527322 + 10987927 — YT6TR0R)s? + (728032 4 (—27006z — 125592)y — 174069z" +
R9STERx — 9T6TS08)s — 7280%? + (270062 + 125592)y + 18934227 + 500004z

g = (4887364 300712322 + {334887° +(~ 957182 + 1701432)y — T121342* + 99704887 —
34147328 )s + 27888y + (—81210% + 1297128}y — 58410927 4 88851962 — 39071232

By Theorem 3.3 and Theorem 5.5, {(5.7.1) is a set of improper parametric equations for
the enrve g; = 0. To find & set of proper parametric equations for g, = 0, by Theorem 5.3,
we select a new parameler

_ (T280y* + (—27006x — 125592}y — 17406922 + 598788z — 97THTROR) _ s*+1

(5.7.2) 1,

(1527322 + 10987922 — G767808) l-=
Fliminating s from (5.7.2) and (5.7.1), we have

_ B+ 12) - 361, + 16 —24¢f 4 78, — 54
T #8+38-3, 7 Byui-iy

{5.7.3]

By Theorem 5.5, we can easily check that {5.7.3} is a set of proper parametric squations of
g1 = 0 wilh an inversion map (5.7.2).
6. Conclusions

The main results of this paper can be summaries as follows.

For a set of rational parametric equations of the form (2.1), we have

(a) We can find a basis [or the implicit prime ideal of {2.1).

(b] We can decicde whether the parameters {,, ....1,, are independent, and if not, reparam-
eterize (2.1) such that the parameters of the new parametric equations are independent.
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{¢) If the parameters of (2.1) are independent, we can construct a sct o polynomial
aqualions

B1{I1 _....,J!.'ﬂ,tlj = ﬂ,..., Hm{I1, ...,Iﬂ,il. ,",tm]l =0

the solution of the #; in terms of the #; are the inversion maps of (2.1}, and (2.1) is proper iff
the B; are linear in £;, ¢ = 1,...,m.

{d) If m = 1 and (2.1) is not proper, we can reparameterize (2.1} such that the new
parametric cguations are proper.

T'he general case of (d), i.e., to decide weather the implicit variety of (2.1) i= rational {or
equivalently, birational to E* for some k), and if it is, to find a set of proper reparametrization
[or (2.1], s still open. For the case m = 2, see [Gao & Chon, 1990] for some partial results.

Reference.

Atnon, D5, and Sederberg, T.W. (1984), Implicit Equation for a Parametric Surface by
Grabner Bases, Proc. 798§ MACSYMA User's Conference (V.E. Golden ed.), General Elce-
i1ic, Schenectady, New York, 431436,

Artin, M. and Mumford, D. (1972}, Some Elementary Examples of Unirational Varieties
Which Are Non-rational, Proc. London Math. Sec., (3) 25, pp. 75-95.

Duchberger, B. (1935), Grobuer bases: an algorithmic method in polynomial ideal theory,
Recent Trends in Multidimensional Systems theory (ed. N.K. Bose), I).Reidel Publ. Comp.,
1985,

Buchberger, B. (1987), Applications of Grobner Bases in Non-linear Compntational Geometry,
I..N.C.5. No 296, R.JanBen (Ed.), pp. 52-80, Springer- Verlag.

(astelnuvo, {18594}, Sulla Rationalita della Involuzioni Pinae, Math. Ann., 44, pp. 125 155,

Gao, X.S. and Chon, 5.C. {1990}, Independent Parameters, Inversions and Proper Parameter-
ization, TR-90-30, Computer Sciences Department, The Univ. of Texas at Austin, September,
L,

Chuang, J.H., and Hoffman, C.M. {1989}, On Local Implicit Approximation and Its Applica-
tions, ACM Tran. in Graphics, 8(4), pp. 298-324.

Faux, I.D. and Pratt, M.J. {1579}, Cempuiationa! Geometry for Design and Manufacture,
Ellis Horwood, Chichester.

Gribner, W.(1970), Algebraic Geomelrie I, i, Bibliographisches Institut, Mannheim.
Hartshorne, R.(1977), Algebraic Geometry, Springer-verlag.

Kalkbrener, M.[1990), Implicitization of Rational Parametric Curves and Surfaces, Froc. af
AAFRCO-8,, ACM, New York.

Li, Z.3. (1989}, Automalic Lmplicitization of Parametric Objects, MM Researehi Preprints,
Nod, Ins. of Svstems Science, Academia Sinica.

Sederberg, T.W. {1986), Improperly Parametrized Rational Curves, Computer dided Geo-
metric Lesign, vol. 3, pp. 67-T5, 1986,

13



Sederberg, T.W., Anderson, D.C. and Goldman, R.N. (1984}, Implicit Representation of
Parametric Curves and Surfaces, Computer Viston, Graph, Image Proc., vol28 pp 72-84.

Sagre, B. (1951), Sull Esistenza, S5ia Nel Campo Rationale chenel Campo Reale, Rend. Acead.
Naz. Lincei(8) 10, pp. 564-570.

Tarski, A, (1951), A Decision Method for Elementary Algebra and Geometry, Univ. of Cali-
fornia Press, Berkeley, Calil., 1951,

Walker, R. (1950}, Algebraic Curves, Princeton Univ. Press.

Wu, W.T. {1989), On a Projection Theorem of Quasi-Varieties in Elimination Theory MM
Research Freprints, No. 4, Ins. of Systems Science, Academia Sinica.

14



