CODE 1.2
USER MANUAL AND TUTORIALS

John Werth, Dwip Banerjee, J. C. Browne, Ravi Jain,
Steve Lin, Peter Newton, Ravi Rao, and Steve Sobek

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-90-35 November 1990

ABSTRACT

The CODE 1.2 Manual describes the use of the parallel programming environment
CODE. This environment is a hierarchical, graphical, architecture independent sys-
tem for the design and development of parallel programs.

Keywords: Software development environments, parallel programming, graphical
programming.



Table of Contents

1. Introduction

II. SUC Nodes

III.  Data Dependencies

Iv. Switch Nodes

V. Exclusion Dependencies

VI.  Subgraphs

VII. Replicated Dependencies and Nodes

VII. Executing the CODE Program

IX. Miscellaneous

Appendix A

Appendix B.
Appendix C.
Appendix D.

Appendix E.

Code Publications

Code Window and Menu
Command Menu
Exclusion Constraints

Developing CODE Programs for the IBM 3090

Tutorial - Example 1: SUCs, Data Dependencies, and Exclusion Dependencies

Tutorial - Example 2: Subgraphs

Tutorial Example 3:  Replicated Structures



1.
2.
3.

How to Use this Manual

Read the Introduction, Section I
Do the Tutorial Examples 1 and 2

Read the remainder of the manual

11/15/90 CODE 1.2 Manual - Introduction



CODE 1.2

I. Introduction
A. Qutline and purpose

The purpose of this document is to outline the model of computation behind the
CODE system, and to describe its use. In this introduction we give a quick and simplified survey
of the model and an easy example. In later sections we expand on the model and give detailed
examples of its use.

Roughly, one can picture the CODE 1.2 model of computation as a dataflow graph which allows
more flexible execution rules for some node types and which allows data sharing among the nodes.
However, there are many other features of both the model and the implementation. These are
further discussed in this introduction.

The implementation is distinguished by the software engineering features which have been
incorporated to facilitate its practical use. These features encompass the user interface, provisions
for reuse of program fragments, and facilities for structuring programs. The system has been
through several versions and has had substantial use by graduate and undergraduate students in
classes.

A bibliography of CODE related documents appears in Appendix A.

B. A simplified discussion

CODE is a program development system for parallel programs. In CODE, programs are
organized as graphs with three possible types of nodes and two possible types of arcs. The nodes
are associated with computations, and the arcs are associated with data.

1. Directed arcs (denoted by arrows, also called data dependencies) indicate data
being generated by the source node, and then flowing to the sink node.
2. Hyperares (undirected arcs potentially joining more than two nodes, denoted by

dotted lines and also called exclusion dependencies) indicate data which is shared by the
computations represented by the nodes joined by the hyperarc. The hyperarcs have associated
constraints that control access to the data; this is the basic mechanism for preventing race
conditions.

3. Schedulable Units of Computation (SUC) nodes (denoted by circles) are
associated with some computation. They are distinguished by only being able to execute when
data is present on all incoming directed arcs. They place data on all of their outgoing directed arcs
at the end of their execution.

4. Switch nodes (denoted by diamonds) perform specialized computations
associated with making choices as well as merging and distributing data. They are enabled for
execution if data is present on any input arc. These nodes may also place data on any subset of
their outgoing directed arcs after execution.

5. Subgraph nodes (denoted by boxes) encapsulate computations performed by
entire graphs.

11/15/90 CODE 1.2 Manual - Introduction i-2



Program development with CODE requires first specifying the graph (which represents the overall
organization of the computation) and then providing details about each graph element:

For SUC nodes,
the user supplies a computation in the form of a subprogram which may come from
a library or be written from scratch.

For switch nodes, the user supplies a condition on each input arc which describes the
conditions under which data on that arc are to be passed through the node and on to
the destination node(s) to which it is routed.

For directed arcs, the user supplies a data name and data type.

For hyperarcs, the user supplies a data name, a data type and a data sharing constraint
to be preserved by the system among the nodes sharing the data . (We will see
later that this condition is actually specified by annotating the nodes)

Once program development is complete, the user is able to request translation of the program to
any of several executable forms. Each executable form is targeted to the specific hardware and
software environment in which the program will be executed. By analogy with the compilation
process, the system specific portion of CODE which creates these executables is called a backend.
The current version of the software supports backends for Ada and Fortran on a variety of
architectures.

C. Two easy examples

These examples are meant to give a quick feel for the CODE model, for the experienced
programmer of parallel systems, they may raise as many questions as they answer. Beginning in
Section II, we answer these questions in detail. For now we employ a mix of real and idealized
notation to illustrate all of the major elements of CODE. These two examples are used as Tutorial
Examples 1 and 2 presented later in this document.

i. Example A. (Illustrates SUC nodes, directed arcs and hyperarcs)
Consider a program to add a vector of numbers V = (vi: i =1, N). The computation proceeds by
splitting the vector in half, then forming the partial sums of the halves, and finally adding the
partial sums.

There are four SUC nodes:

Init
Initializes the vector V
Initializes the variable Sumto 0
Divides Vinto V1 = (vi: 1 =1, N/2) and V2 = (vi: 1 =(N/2 + 1), N).

Addl
Adds the elements of V1 to produce Suml
Updates Sum to Sum + Suml

Add2
Adds the elements of V2 to produce Sum2
Updates Sum to Sum + Sum?2

PrintSum
Prints the value of Suml
Prints the value of Sum?2
Prints the value of Sum

11/15/90 CODE 1.2 Manual - Introduction I-3



There are four directed arcs:

(Init, Addl) data itemis V1
(Init, Add2) dataitemis V2
(Addl, PrintSum) data item is Sumli
(Add2, PrintSum) data item is Sum2

There is one hyperarc

{Init, Add1, Add2, PrintSum} - data item is Sum and exclusion condition is
Init mutex AddImutex Add2 mutex PrintSum.

That is, at most one of Init, Add1, Add2, and PrintSum may simultaneously
access Sum. We specify the nodes of a hyperarc using set notation since no
ordering of nodes is implied by the hyperarc.

Figure 1 is a drawing (rather than a screen dump) of the CODE graph specifying this computation.
This drawing includes detail about the nodes and the exclusion constraint that is suppressed in a
real drawing from CODE. Figure 2 is a screen dump of the actual graph from the CODE system.
In CODE, the information about the nodes, arcs and constraints is entered using a mix of graphics
and menus.

11/15/90 CODE 1.2 Manual - Introduction 1-4



Init
Initialize V

Create V1, V2
Sum =0

V2

Add1

Compute Sum?2
as sumof V2
N Sum = Sum+8um?2

Compute Sum1
as sum of V1
Sum = Sum+Sumi

Sumi Sum2
Print Sumt
Print Sum2
Print Sum
PrintSum

Figure 1
CODE Graph for Example A

11/15/90 CODE 1.2 Manual - Introduction 1I-5



Choose an object to open using left button.

Graph of code.graph

I,

ADD2

Figure 2
Actual CODE System Window for Example A

11/15/50 CODE 1.2 Manual - Introduction



ii. Example B, (Illustrates switch nodes and subgraphs) The previous
example illustrated the dataflow and data sharing possibilities of CODE; this example illustrates
switch nodes (which are used for making choices) and the subgraph node (which is used for
hierarchical structuring).

Consider a program to read a number N and then read N vectors, forming the sum of the elements
of each vector and printing the sum of each vector. After finding the last sum, a closing message is
printed.

There are four nodes in the computation graph:

Read N SUC
Reads N, the number of vectors to process

Wrap_Up SucC
Prints a closing message

Sum_Vector Subgraph
Reads a vector, adds its elements, prints its sum, and
decrements the loop control variable. This subgraph is the
obvious modification of Example A.

Loop Switch
Controls the execution of the loop
The switch condition specifies two tests.

Test 1: If N (the initial value read) <= 0 then
Transfer to Wrap_Up
Else
Pass N to Sum_Vector
Execute Sum_Vector

Test 2: If at any point Loop_Control_Out <=0 then
Set Final_N to Loop_Control_Out
Transfer to Wrap_Up
Else
Pass Loop_Control_Out to Sum_Vector
Execute Sum_Vector

There are four directed arcs

(Read_N, Loop) data itemis N

(Loop, Sum_Vector) data item is Loop_Control_In, the loop control value
(Sum_Vector, Loop) dataitem is Loop_Control_Out, the new loop control value
(Loop, Wrap_Up)  dataitemis Final N

Figure 3 is a drawing (rather than a screen dump) of the CODE graph specifying this computation.
This drawing includes a good bit of detail about the nodes and the subgraph that is not explicitly
displayed in a real drawing from CODE (note the substitution of LCO and LCI for
Loop_Control_Out and Loop_Control_In respectively). Figure 4 is a screen dump of the actual
graph from the CODE system.

11/15/90 CODE 1.2 Manual - Introduction 1-7



Read_N

Sum_Vector
<=0 go to Wrap_Up LCI -

If N > 0 go to Sum_Vector Read vector;
LOOD Sum vector;

If LCO <= 0 go to Wrap_Up/ Print Sum;

ctor LCO =LCl-1
LCO
Final_N
Wrap_Up
Print Messags;
Figure 3
CODE Graph for Example B

11/15/56 CODE 1.2 Manual - Introduction I-8



Ciick left button to display the parent graph.

Graph of code_graph

READ.N

0BP_CONTROL.

Y] SUM.VECTOR
LOOPCONTROL_OUT

Figure 4
Actual CODE System Window for Example B

11/15/90 CODE 1.2 Manual - Introduction



D. Multiple identical objects (Replication dependencies and nodes)

Graphs often contain repeated nodes and dependencies. These reflect parallelism achieved
by allowing multiple copies of the same program to work on data objects of the same type. Such a
graph might look like Figure 5, which represents the process of dividing a data structure into
substructures, passing these substructures to copies of the same routine to compute partial results,
and then assembling the partial results. This same information is captured using less screen area
with the notation of Figure 6, in which concentric circles and brackets are used to indicate multiple
copies of a SUC, and brackets on the data name indicate multiple instances of a data type. This
style could have been used in the first example, rather than having the two (nearly) identical
routines Addl and Add2.

Divide data into
subsiructures, Di

Assemble
partial
resulis,

Pi

Figure 5
Multiple Identical Objects

11/15/90 CODE 1.2 Manual - Introduction 1-10



11/15/90

Divide data into
substructures, Di

Array of substructures

S[] Array of copies of SUC S

Array of partial results

Assemble

partial
results, Pi

Figure 6
Replication Node

CODE 1.2 Manual - Introduction



E. Some limitations of CODE 1.2
1. Use of names

a. The name space of the graph is entirely global, so scoping effects cannot be
achieved at the graph level. In particular, subgraphs are not a scoping mechanism. Two arcs
whose sources and sinks are disjoint are allowed to have the same label. Of course, the name
spaces of the individual nodes are completely private except for those variables shared with other
nodes by using the exclusion dependency mechanism.

b. Naming is clumsy in some instances since CODE 1.2 uses the name of data
flowing on a directed arc to refer to the arc. This is handy in many ways, but since there is no
separate arc name, there is no way to allow the same data name to be associated with different arcs
impinging on the same SUC. This causes problems when one wishes to pass a data name or item
through a node since a new name will have to be used for the output value even though the data
may be unchanged

2. Subgraphs
Replicated subgraphs are not allowed.

3. Exclusion dependencies
A node may participate in at most one exclusion dependency. This dependency
may involve more than one data item but not more than one constraint.

4. Replication Nodes
The structure does not allow arbitrary mapping of replicated dependencies to
replicated nodes.

5. Dynamic Graphs
There are only limited facilities for dynamic graphs. The notation used for
multiple SUCs allows the input of a parameter denoting the number of copies to make. See
Section IX.

6. Switch Nodes
a. There are clumsy constructs needed to handle some frequent cases.
Perhaps the worst is when the data on one arc must be tested to see if the data on another
arc will be passed forward. See Section IV.

You should now do the Tutorial Examples 1 and 2

11/15/90 CODE 1.2 Manual - Introduction I-1

(S



II. SUC Nodes
This chapter assumes that the reader has read the introduction and has worked through Example 1
and Example 2.
A. Introduction
The idea behind CODE graphs is that the program is described by two components: a
collection of units of computation (the SUC nodes) which do the actual work and a high level

graph which describes the parallelism and the interaction among these components.

At program construction time SUC computations are programs structured as a template
generated by the system, filled in with user inserted code.

At execution time the two defining characteristics of the SUC nodes are:

1. They interact with other nodes in the graph only at the following times:
a. At the beginning of execution they consume a unit of data from each input
data dependency
b. At the end of execution they output one unit of data to each output data
dependency
c. During execution they may read and write shared variables
2. The programmer may not assume that a SUC retains state between executions of

the node. (This is discussed further below)

B. Entering SUC Nodes

SUC nodes are entered and named as in Tutorial Example 1. The programs at a SUC are
made up of two parts:
a. a template generated by the system
b. user inserted code.

1. Template
The template is of the following form (exact syntax depends on the language):
Subprogram Header (with parameter list)
Declarations of parameters and shared variables
Comment Section describing parameters
Comment Section describing shared variables
(*User Written code*)
Return and/or End Statements
NOTE. An extremely important point is that the update operation will completely rewrite
this template. Only the user written code between the template comments and the Return/End will

be carried over into the new template. Any other user written code will be deleted. So
keep your code in the user areal!

11/15/90 Code 1.2 Manual - SUC Nodes Im-1



2. Example templates
Assuming a node ADD1 with input dependency V1, output dependency SUM1, and shared
variable SUM the followin ggre the templates generated in the different languages:

Ada

type yyty0 is array(0..49) of INTEGER ;

procedure ADD1( V1 :in yyty0; SUMI : out INTEGER; SUM : in out INTEGER ) is
-~ VI1ISINPUTONLY

-- SUM1 IS OUTPUT ONLY

-- SUM IS SHARED (BOTH INPUT AND OUTPUT)

-- begin user-written code --

end ADD1;

C
#define BOOLEAN int
ADDI1(V1,SUMIL,SUM)
int V1[50];
int *SUMI;
int *SUM;

/% V1ISINPUTONLY */
/% SUM1 IS OUTPUT ONLY */
/% SUM IS SHARED (BOTH INPUT AND OQUTPUT) */

{
/* User Written Code*/
}

Fortran

subroutine ADD1(V1,SUM1)
integer V1(50)
integer SUMI
COMMON /SUM/SUM
¢* V11IS INPUT ONLY
# SUMI1 IS OUTPUT ONLY
c* SUM IS SHARED AS COMMON BLOCK
c* begin user-written code

[¢]
¥

return
end

11/15/90 Code 1.2 Manual - SUC Nodes I- 2



3. User written code

An extremely important point is that the update operation will completely rewrite the area
belonging to the template. Only the user written code between the template comments and the
Return/End will be carried over into the new template. Any other user written code will be
deleted. So keep your code in the user area!! (We know we said this twice but it's
important)

There are no limitations on user written code other that those imposed by the normal rules
of the language and the requirement to respect the naming conventions imposed by the CODE
generated template. Of course, it is best if users stick to ANSI standard/portable constructs unless
they know their target system well. You should avoid process related system calls.

4. Replicated SUC nodes
See the discussion in Section VIL

C. Execution of SUC node programs

At execution time the two defining characteristics of the SUC nodes are:

1. They interact with other nodes in the graph only at the following times:
a. At the beginning of execution they consume a unit of data from each input
data dependency
b. At the end of execution they output one unit of data from each output data
dependency
c. During execution they may read and write shared variables
2. The programmer may not assume that a SUC retains state between executions of
the node

Each of these has some practical effects on the programmer's efforts.

Condition 1 implies that all input data is available immediately at the start of execution. It also
implies that SUC nodes cannot be used to trigger execution selectively depending upon what data
is available, nor can they be used to distribute data selectively to output nodes. Each of these tasks
must be performed by a combination of switch node (to do the selecting) and SUC nodes (to do the
computation).

Condition 2 implies that to achieve the effect of retained state (for example the seed of a random
number generator) the programmer must either

1. use what amount to self loops in the style of Figure 3 (see discussion below) or
2. use exclusion constraints and shared variables or
3. adopt the dangerous tactic of programming outside the model (based on some

special knowledge about the actual execution environment).

11/15/90 Code 1.2 Manual - SUC Naodes -3



D. The SUC Form

Forms are just records containing information about a CODE object. A typical SUC form
is shown in Figure 1; this form is for SUC INIT from Tutorial Example 1. The fields of a SUC
form are listed and defined in Figure 2.

Sucs LINIT 1

Bounds L ]

Termination Node?: EBlNo [[ves
Input Dependencies: #% none #%
Output Dependencies: V1 V2

Exclusion Dependencies: SUM

Code File: LINIT

Language: [JAda [JC [E Fortran

Constraint Type?: [EMutex [[]Shared

I edit code l l update code ] ! quit |
Form for SUC INIT
Figure 1
Suc: ;SUC name
Bounds: :number of identical SUCs represented by this symbol
Termination Node: ;yes or no, does execution of this node imply termination of
;the program?
Input Dependencies: ;list of input dependencies for this SUC. Information
;supplied by system.
Output Dependencies: :;list of output dependencies for this SUC. Information
;supplied by system.
Exclusion Dependencies: :list of exclusion dependencies in which the SUC participates
:(at most 1 in CODE 1.2). Supplied by the system.
Code File :name of file holding actual code of SUC
Language: :choice of Ada, C, Portran
Constraint Type? ;type of participation in an exclusion dependence if there is
;one, meaningless otherwise. Default is mutex
Form Actions
edit code: -enter user code into the SUC
update code: :rewrite template. This may be invoked repeatedly as the
:connecting dependencies are changed
quit: ;exit the form
Fields of a SUC Form
Figure 2

11/15/90 Code 1.2 Manual - SUC Nodes -4



The fields of the SUC form (Figure 2) are generally self explanatory, but there are
some potential confusions:

1. Termination Node

In a parallel program, an important issue is knowing when to terminate the program
and kill all active processes which may have been spawned during execution. Designation of a
node as a Termination Node is a signal from the programmer that the full program should be
terminated when execution of the Termination Node is complete. More than one node may be so
designated.

2. Constraint Type

A SUC may participate in an exclusion dependency in one of two ways: as a mutex
node or as a share node. This is discussed in more detail in Section V, Exclusion Dependencies,
but briefly, a node designated as share may access the exclusion dependency data simultaneously
with any other share node but not with any mutex node. A node designated mutex may not share
access with any other node, whether share or mutex.

3. Update Code - (re)generates the template to match the graph

This Form Action causes the template to be (re)written to match the graph. The
system does not automatically maintain consistency between the graph and the SUC node
program. Whenever the dependencies involving a node are changed, this Action must be invoked.
A key point is that any user written code which appears outside the allocated user area will be
deleted when this action is invoked.

4. Edit Code - allows user to enter code

This Form Action invokes the user's default editor on the complete node program.
Note that this means the user can edit the template portion of the program, a very dangerous
action!

E. Remarks
1. Using "Self Loops™ to Retain State

Suppose that SUC N has a variable v whose state (value) is to be retained between
executions. Suppose also that the value of v is to be provided by a external input variable v_initial
on the first execution of the SUC. In addition, suppose that the SUC has input data dependency I
and output data dependency O. Then the SUC of Figure 3 has the desired behavior, where the
switch node is used to handle the two different cases of initialization and persisting value. Note
that a simple self loop on N will not work since the SUC N cannot fire unless it has data on all
input dependencies. If the dependencies v_persisting and v_initial were directly incident on N,
then at initialization there would be no data on v_persisting, and on later executions there would be
no data on v_initial.

An important point about this example is that three distinct names such as v, v_initial,

v_persisting must be used. The naming conventions of CODE prevent the use of v for all three or
even any two.

11/15/90 Code 1.2 Manual - SUC Nodes -5



O

v_initial
SAVE
v_persisting
!
Vv
N —
v_persisting
C
Figure 3

Using Self Loops to Retain State

11/15/90 Code 1.2 Manual - SUC Nodes II- 6



III. Data Dependencies

This chapter assumes that the reader has read the introduction and has worked through Tutorial
Example 1 and Tutorial Example 2.

A, Introduction

Data dependencies are a key element in CODE graphs. They represent data produced and
consumed by the SUC nodes. Ultimately, they represent data communication required for the
execution of the CODE program. As such, a key runtime issue for CODE graphs is the buffering
capacity implied by these communication pathways.

Data dependencies are quite different from exclusion dependencies, at least in their uses,
but because of the many similarities in entering the two types of dependencies, a single form is
used for both.

Entering dependencies in lists to be associated with arcs is an area which causes some
problems for users.

B. Entering Data Dependencies
Single data dependencies are entered and named as described in Tutorial Example 1.

1. Lists of dependencies (this discussion applies also to exclusion dependencies)

To reduce screen clutter, more than one dependency may be associated with an arc. This is
referred to as a list of dependencies. The arc for such a dependency is fatter than an arc which
carries a single dependency. The name of the arc is taken to be that of the first dependency on the
list. This naming convention sometimes leads to trouble, both because the arc (a graphical
element) does not have a name of its own and because the names of dependencies other than the
first cannot be seen without opening the dependency.

2. Creating and modifying lists of dependencies

To associate multiple dependencies with a single arc, create a single dependency, open its
form and use the actions at the bottom of the form

Form Actions: first, previous, next, last, add, delete, quit.
All except quit (which has its usual meaning of exit (or close) form)are used to create and
modify a list of either data or exclusion dependencies. The actions have exactly the meanings you
would expect from their names. First, previous, next, and last are used to move backward
and forward through the list. As you move through the list the form changes to reflect the current
dependency being viewed. Add and delete are used to modify the list.

a. Adding new dependencies to the list

Add will create a new dependency in the list immediately behind the current
dependency. A new form is presented to the user to be completed. Unfortunately, for a variety
of practical reasons having to do with the interface, the process of completing this form is filled
with opportunities for making errors. These errors are essentially typographical in nature, but
frustrating anyway. The key point is that the cursor must be within the field being
completed and that the entry must be terminated with a 'return’. Startling effects can
be achieved if these rules are not followed, since entries typed will go into the field in which the
cursor happens to lie, and even though data may be typed into the correct field, it will not be
captured unless the 'return’ is entered. If an error is made in entering a dependency (e.g. wrong
names is entered), the safe way to correct it is by deleting and re-adding.

11/15/90 Code 1.2 Manual - Data Dependencies nr-1



Once add has been chosen, a dependency will be added to the list unless an
error is detected by the system. You will not be allowed to quit until the dependency's name has
been supplied.

b. Deleting a dependency

Delete will delete the current dependency being displayed, except that the first
dependency (which is also the arc name) cannot be deleted except by deleting the entire arc! This is
done by using the Delete icon from the main menu bar.

3. Replicated switch nodes
See the discussion in Section VIL

C. Execution time

The key questions about data dependencies at execution time are the sizes and queuing
disciplines of the buffers associated with them. In CODE 1.2 the buffers are FIFO and "infinite";
that is, they are allocated from a heap and may become as large as the available memory.

If the data dependency is an input to a SUC, then at the start of execution, one data item is
removed from a dependency’s buffer. If it is an output from a SUC, then at end of execution a
data item is added to the buffer. These buffers are organized as FIFO queues.

D. The Data Dependency Form

A typical data dependency form is shown in Figure 1; this form is for data dependency V1 from
Tutorial Example 1. Animportant point is that a single formis used for several different
purposes, namely to describe data dependencies, exclusion dependencies, and routing for switch
nodes. Consequently, some fields are used only for certain of these cases and otherwise left
blank. A list of the fields and their meanings is found in Figure 2.

11/15/90 Code 1.2 Manual - Data Dependencies -2



Dependencys LVi

Bounds: E

Kind @ [Eldsta [Jexclusion Clreplication
Input SUC/Switch 3 INIT
Qutput SUC/Switch 3 ADDL
Full Start ¢ INIT
Full End s ADDL

Data Tupe @ [Jint [Jreal [Ibool [Jchar [ int array [Jreal array [lbool array Clchar array

fAirray Size: Lgo }

Defaults L i

Exclusion SUCs:

Exclusion Constraint:

l first ] ['previous l I next I I last i l add ] l delete l l quitJ

Form for Dependency V1
Figure 1

Dependency :data dependency name
Bounds -number of identical data dependencies represented by this symbol
Kind: :data
Input SUC/Switch/Subgraph ;name of source
Output SUC/Switch/Subgraph ;name of sink
Full Start -actual source SUC in the case source is a subgraph
Full End -actual sink SUC in the case sink is a subgraph
DataType -one of int, real, bool, char, or arrays of any of these
Array Size ;length of the array
Default ;exclusion dependencies only
Exclusion SUCs ;exclusion dependencies only

Exclusion Constraint ;exclusion dependencies only
Passing Conditions and Receivers  ;for dependencies whose sink is a switch

Form Actions -All but quit are used to create a list of dependencies to be associated
-with a single physical arc in the CODE graph
first :display form for the first data item in the list
previous :display form for the previous data item in the list
next :display form for the next data item in the list
last -display form for the last data item in the list
add ;add new data item to the list
delete -delete the data item from the list whose form is currently displayed
quit: :exit (close) the form

Fields of the Dependency Form
Figure 2

11/15/90 Code 1.2 Manual - Data Dependencies -3




The fields of the data dependency form (Figure 2) are generally self explanatory, but there
are some potential confusions:

1. Full Start
This will generally be the same as the entry for the Input SUC/Switch/Subgraph
field of the form. However, when the source is a subgraph, this field records the name of the
actual node within the subgraph to which the dependency is connected. See dependency
LOOP_CONTROL_OUT in Tutorial Example 2 for an example.

2. Full End
This will generally be the same as the entry for the Output SUC/Switch/Subgraph
field of the form. However, when the sink is a subgraph, this field records the name of the actual

node within the subgraph to which the dependency is connected. See dependency
LOOP_CONTROL_IN in Tutorial 2 for an example.

3. Passing Conditions and Receivers
Used for dependencies whose sink is a switch; see Section IV, Switch Nodes.

11/15/90 Code 1.2 Manual - Data Dependencies -4



IV. Switch Nodes

This chapter assumes that the reader has read the introduction and has worked through Tutorial
Example 1 and 2.

A Introduction

Switch nodes were introduced in CODE for a variety of reasons. These include

1. selectively distributing data to different nodes depending on conditions
satisfied by the data (Figure 1)

2. implementing looping constructs (really a special case of 1) (Figure 2)

3. non-deterministic merging of data streams (Figure 3)

Each of these uses is based on the key fact that a switch is enabled for execution whenever
data is present on at least one of its input data dependencies (as opposed to all for SUCs) and
that a switch may place output on a subset of its output data dependencies (as opposed to all for
SUCs)

It is important to note that switches do no computations other than testing of data conditions
on the input data and routing of the data to output dependencies. Even more narrowly, a combined
data condition and routing specification may involve only data from a single input dependency.
This is a serious restriction on the capabilities of switches.

B. Entering Switch Nodes
A switch node is placed in the graph, named and has its form filled in as in the Tutorials.

1. Data and routing conditions

The data and routing conditions for a switch are actually associated with the input data
dependencies. These conditions are recorded in the Passing Conditions and Receivers field
of the dependency form. The grammar for these is the following:

PCR -> Cond_Routing_Pair ,' P_C_R
-> Cond_Routing_Pair
Cond_Routing_Pair -> Data_Condition ' Routing
Data_Condition -> true or any boolean valued C expression with relative
operators (<, >, ==, etc) among C expressions. These
expressions may only involve data from the associated
data dependency and constants.

Routing -> list of output data dependency names separated by spaces
Notes: 1. No built in functions, e.g. sin (x). are allowed in a Data_Condition
2. The empty list is not allowed as a routing

A Very Important Warning: The data and routing conditions are not parsed by the
CODE front end. This means the user may enter illegal expressions and not discover the errors
until much later when the declarations file is translated.

Examples :
a. Distributing data (Figure 1)
Suppose there is a input dependency N of type integer for a switch node. If
the goal is to suppress all N <= 0 and to send copies of all N > 0 to nodes A, B, C,
and D, then the data and routing condition would be N > 0 | NANB NC ND

11/15/50 Code 1.2 Manual - Switch Nodes -1



DISTRIBUTE

Figure 1
Switch Used to Replicate and Distribute Data. NA, NB, NC, and ND are copies of N

b. Looping (Figure 2. Taken from Tutorial Example 2)

The data and routing conditions for the input data dependency N of switch node Loop
N > 0| Loop_Control_In, N <=0 | Final_N

For input data dependency Loop_Control_Out the condition and routing is
Loop_Control_Out >0 | Loop_Control_In, Loop_Control_Out <=0 | Final_N

Read_N

Logp_Control_In

Sum_Vector

Final N Loop_Control_Out

Wrap_Up

Figure 2
Looping Using a Switch

11/15/90 Code 1.2 Manual - Switch Nodes -2



C.

c. Merging
The data and routing conditions for each input dependency of a merge switch
(which simply combines two or more data streams as in Figure 3) is

True | Destination (e.g., True | N in Figure 3.)

NA NB NC ND
MERGE
N
Figure 3

Merge Node. N will be one of NA, NB, NC, ND

Replicated switch nodes

See the discussion in Section VIL
Execution time

A switch is enabled for execution when data is present on one of its input data

dependencies. Execution occurs as follows:

From those input data dependencies which have data present, one is chosen non-

deterministically (that is, the user may not program as though they know which arc will be
chosen). Data is removed from this dependency, and the data condition of the dependency is

tested. If the data condition is satisfied, then the data is distributed to the output dependencies of

the switch according to the routing specification.

D.
Figure 1 is the form for the switch node LOOP of Tutorial Example 2. The general list of fields in

The Switch Node Form

the switch form is in Figure 2. They all have their obvious meanings.

11/15/90

Code 1.2 Manual - Switch Nodes V-3



Switch: LOOP

Bounds:

A

Input Dependencies: N LOOP_CONTROL_OUT

Output Dependencies: FINAL_N LOOP_CONTROL_IN

quit
Figure 1
Form for Switch Node LOOP of Tutorial Example 2
Switch: :name of the switch
Bounds: ;number of replications of this switch
Input Dependencies list of input data dependencies for this switch
Output Dependencies ;list of output data dependencies for this switch
quit :Form Action button to exit (close) the form

Figure 2
Fields of a Switch Node Form

E. Remarks
1. Forwarding data based on the state of several dependencies
Suppose you wish to organize a computation Test_and_Forward as follows:

a. There are two inputs, Trigger (produced by computation T) and Data
(produced by computation D). T and D may be the same computation. The computation
Test_and_Forward should test Trigger. If it is greater than O then Data should be
forwarded to node Process. Otherwise, Data should not be forwarded. As CODE is
currently designed, this computation cannot be organized as a single Switch node with
inputs Trigger and Data and output New_Data to Process. This is because a test on Trigger
cannot be used to route data from another dependency (Data). However, a single SUC
cannot be used either since the execution of such a SUC would promise to output
New_Data at the end of each execution. There are three ways to handle this:

1. Use a switch and pass Trigger and Data to the switch node as part of
a single array . This may require changes to T and D. Note that records are not supported
as a data type for data dependencies.

ii. Use a SUC and modify Process to accept some value of New_Data
as an order not to process the data. The SUC can then output that value when Trigger is
<= (.

11/15/90 Code 1.2 Manual - Switch Nodes V-4




ii. Note that i. and ii. may both require modification of the existing
computations T and D. To avoid this you may use a graph like that of Figure 3. In Figure
3 New_SUC does the test and either sets New_Data to Bad_Value or to Data, depending
on the value of Trigger. The data condition and routing on dependency New_Data is

MNew_ Data = Bad_Value | Data’

T DO

Trigger Data

New_SUC

New_Data l

Data’

Process O

Figure 3

In some sense this is an implementation of ii. above, but it has the merit of not modifying Process.

11/15/90 Code 1.2 Manual - Switch Nodes Iv-5



V. Exclusion Dependencies

This chapter assumes that the reader has read the introduction and has worked through Tutorial
Example 1 and Tutorial Example 2.

A, Introduction

Exclusion dependencies are used to share data among SUC nodes. This is a powerful
paradigm for parallel programming. The actual implementation of this data sharing is hidden from
the programmer and is handled by the CODE backends. This eliminates a common source of
errors {data races} in parallel programs. In addition, the user is able to provide an optional default
initial value for the data items.

CODE 1.2 programs are limited in the sense that a given SUC may not participate in more
than one exclusion dependency. Also, it is assumed that termination of execution of a node can
never result in an exclusion dependency error. This excludes conditions of the form: Node A may
only execute and access data item X, if Node B is also executing and able to access data item X.

B. Entering Exclusion Dependencies

1. Dependencies
Exclusion dependencies are entered and named as described in Tutorial 1.

2. Lists of dependencies
The process of creating a list of data items associated with the exclusion dependency 1s
identical to that used for data dependencies. See the discussion in Section IIL

3. Constraints

Constraints are read only in the Exclusion Constraint field of the Exclusion Dependency
Form; they are not entered there. Instead the user specifies in the Constraint Type? field of the
participating SUCs whether the SUC participates as a Share node or a Mutex node. The constraint
may have many nodes of each type. The constraint is satisfied if one of the following is satisfied:

i. no node participating in the dependency is executing
1. one Mutex node is executing and no other node is executing
1il. any subset of the Share nodes is executing and no Mutex nodes is executing

Appendix D is a formal listing of the constraint syntax and its interpretation.

The constraint syntax used to describe constraints in the Exclusion Constraint field of the
Exclusion Dependency Form is the following:

a. Constraint syntax

Exclusion_Constraint -> Mutex _Constraint mutex Share_Constraint
Mutex _Constraint > Mutex Constraint mutex SUC_Node_Id
-> SUC_Node_Id
-> epsilon
Share_Constraint -> Share_Constraint or SUC_Node_Id
-> SUC _Node_Id
-> epsilon

11/15/90 Code 1.2 Manual - Exclusion Dependencies V-1



b. Constraint examples

1. Simple mutual exclusion
Figure 1 is the simple exclusion constraint of Tutorial Example 1. If more nodes
are involved, say Addl, Add2, Add3, Add4, the constraint is

Addl mutex Add2 mutex Add3 mutex Add4.

Dependency: kmm

Bounds? L

Kind 2 [Odata [&exclusion Clreplication
Input SUC/Suitch ¢

Qutput SUC/Suiteh ¢

Full Start

Full End

Data Tupe @ B int [Treal Dibool [lcher [Jint array [lreal array [Dbool array [Jcher array

frray Size: L !

Default: L

Exclusion SUCs: ADD2, INIT, ADDL, PRINTSUH

Exclusion Constraint: ADDZ mutex INIT mutex ADDL mutex PRINTSUM

[First i 1 previous ] [ next ] { last l i add l [ delete { l quit l

Form for the Exclusion Dependency SUM
Figure 1

ii. Readers/Writers
If W1 and W2 are writers and R1, R2, R3 are readers, then the constraint is
W1 mutex W2 mutex (R1 or R2 or R3)

iii. Producer/consumer
If P is the producer and C is the consumer, then the constraint is P mutex C

C. Execution time

At execution time exclusion constraints are regarded as predicates which must be satisfied
by the runtime system at all times. Since the termination of the execution of a node can never
falsify these predicates because of their restricted form, this translates to a condition for allowing a
node to begin execution. The condition is the following:

From those SUCs which are enabled for execution, the runtime system checks to see which
may be started without falsifying the exclusion constraint in which they participate (if
any). One such node is allowed to begin execution.

A constraint is satisfied if one of the conditions i, ii, or iii on the previous page is satisfied.
Appendix D is a formal listing of the constraint syntax and its interpretation.

11/15/90 Code 1.2 Manual - Exclusion Dependencies V-2



D. The Exclusion Dependency Form

The exclusion dependencies and data dependencies share the same form since they have
many fields in common. For the exclusion dependencies we must set an exclusion constraint. In
addition, the user is able to provide an optional default initial value for the data items.

The fields of the exclusion dependency form are given in Figure 2. They are generally self
explanatory except for:

1. Input SUC :This reflects internal information and is not user settable. It
will be deleted soon from the exclusion dependency form.

2. QOutput SUC :This reflects internal information and is not user settable. It
will be deleted soon from the exclusion dependency form.

3. Default :A list of values used to initialize the data. The only syntax
is a list of values separated by commas. This works well for a few simple data items, but more
complex data, for example a large array, should be initialized by invoking a SUC.

Dependency :exclusion dependency name
Bounds :number of identical dependencies represented by this symbol
Kind: :exclusion
Input SUC :not used for exclusion dependencies
Output SUC ;not used for exclusion dependencies
Full Start ;not used for exclusion dependencies
Full End ;not used for exclusion dependencies
DataType :one of int, real, bool, char, or arrays of any of these
Array Size ;length of the array
Default ;initial values for dependency data
Exclusion SUCs ;list of SUCs involved in this exclusion dependency
Exclusion constraint  ;condition that must be satisfied at runtime for use of the data
by a SUC
Form Actions :Many of these are used to create a list of data items to be associated
;with a single exclusion dependency in the CODE graph
first :display form for the first data item in the list
previous ;display form for the previous data item in the list
next ;display form for the next data item in the list
last ;display form for the last data item in the list
add ;add new data item to the list
delete :delete the data item from the list whose form is currently displayed
quit: ;exit the form

Fields of the Dependency Form
Figure 2

E. Remarks

1. A SUC node may not participate in more than one exclusion dependency. That one
dependency may involve a list of data items. The restriction is that a SUC node may be grouped
with at most one set of other nodes to form an exclusion dependency.

2. Switch nodes may not participate in an exclusion dependency.

3. It is assumed that termination of execution of a node can never result in an exclusion
dependency error. Consequently, this excludes synchronizations of the form: Node A may only
execute if Node B is also executing.

11/15/90 Code 1.2 Manual - Exclusion Dependencies V-3




VI. Subgraphs

This chapter assumes that the reader has read the introduction and has worked through Example 1
and Example 2.

A Introduction

Subgraphs are used as a hierarchical structuring mechanism in CODE and are consequently
very important in the actual engineering of CODE programs. They are also a valuable mechanism
for conserving screen real estate.

The graph in which the subgraph node appears is called the parent graph of the subgraph.
Each subgraph has a dummy start node called the From_Parent and a dummy stop node called
the To_Parent. Any subgraph may flattened into its parent graph, and any collection of nodes in
a graph may be designated as a subgraph.

B. Entering Subgraphs

Method 1. Draw a graph and then designate a portion of it as a subgraph. This is one
of the operations controlled by the menu bar of the main CODE window. Simply select that icon
and then draw a box around the portion of the graph to be reduced.

Method 2. Create an empty subgraph node in an existing graph, and then open the
subgraph and edit it. Afterward, connect the subgraph to the rest of the graph.

1. Connecting a subgraph to the rest of the graph

Given a subgraph, it might be connected to the outside world in several ways: input dependencies,
output dependencies, and exclusion dependencies. The key point is to realize that the computation
has not been completely specified until all dependencies actually connect SUCs/Switches to
SUCs/Switches. That is, a dependency can only connect a SUC/Switch node in the subgraph to
some other SUC/Switch. The user has the option of leaving these dependencies partially
unspecified while creating the CODE graph, but in the end, before the executable code can be
generated, all dependencies must be connected to specific nodes.

a. Input dependency
An input dependency to a subgraph is created by drawing a data dependency from a
SUC/switch/subgraph to the subgraph. At that point the user is asked

"Do you wish to end or to continue?" and there is a confirmation message
"END here with left button; CONTINUE in other graph with RIGHT or MIDDLE button”
“To end" means to defer for the moment the connection of the dependency to a specific
node of the subgraph. Warning: there is no explicit notation showing that the connection has
been deferred. If the user forgets to connect it later, then the first error message will come from the
declarations file generator.
"To continue” means to enter the subgraph and then continue the dependency to the node

(SUC or switch) in the subgraph to which it should be connected. Note this dependency passes
through From_Parent.

11/15/90 Code 1.2 Manual - Subgraphs VIi-1



b. QOutput dependency
An output dependency is drawn from a subgraph node to the To_Parent The user is
then asked

"Do you wish to end or continue” and there is a confirmation message
“END here with left button; CONTINUE in other graph with RIGHT or MIDDLE button”

"To end"" means to defer for the moment the connection of the dependency to a specific
node of the parent graph. Warning: there is no explicit notation showing that the connection has
been deferred. If the user forgets to connect it later, then the first error message will come from the
declarations file generator.

"To continue” means to exit the subgraph and then continue the dependency to the SUC in
the parent graph. Note this dependency passes through the node To_Parent.

c. Exclusion dependency

The method is just like that for a data dependency. An exclusion dependency to be
extended from inside a subgraph to the parent graph is handled like a output dependency from a
node in a subgraph. An exclusion dependency to be extended into a subgraph from the parent is
handled like an input dependency.

2. Replicated subgraphs
See the discussion in Section VIL
D. The Subgraph Form

Figure 1 shows the form for the subgraph of Tutorial Example 2.The fields of the subgraph
form are described in Figure 2.

Subgraph: |SUM_VECTOR

Parent Graph: code_graph
SUCs & Switches:INIT, ADDL, ADDZ2, PRINTSUM
Subgraphs @ %% none %#

Dependencies: LOOP_CONTROL_IN, LOOP_CONTROL, LOOP_CONTROL_OUT, SUM, SUM2, SUML, V2, V1

['read files l l display ! I quit l

Figure 1
Form for Subgraph SUM_VECTOR of Tutorial Example 2

11/15/90 Code 1.2 Manual - Subgraphs Vi-2



Subgraph ;subgraph name

Parent Graph ;parent graph name
SUCs & Switches  ;list of SUCs and Switches found in this subgraph
Subgraphs :list of subgraphs found in this subgraph
Dependencies list of dependencies found in this subgraph
Form Actions
read files ;capability associated with reuse subsystem. See ROPE manual
display ;opens a window and displays the subgraph. This window cannot
:be edited
quit ;exits (closes) the form
Figure 2

Fields of the subgraph form

11/15/90 Code 1.2 Manual - Subgraphs VI-3




VII. Replicated Dependencies and Nodes

A. Introduction

A shorthand is used to indicate static replications of SUCs, switches and dependencies.
This technique allows the user to express regular structures in a compact, legible fashion. There
are some complications in describing the connection patterns implied by the replication notation.
These are discussed below in detail.

At this time, CODE does not formally support replicated subgraphs; this will be changed in
the next version of the system. However, there is a programming technique, discussed in Section
IX, which allows many of the benefits of replicated subgraphs to be obtained.

B. Entering Replicated Objects

1. Replicated nodes and switches.
If G is a SUC or switch node and n is an integer, then we indicate n copies of G by
doing the following:
a. Draw a normal SUC or switch named G
b. In the form for G enter n in the Bounds field.

This will cause the circle or diamond for G to be outlined and denoted by G[n].
This indicates that the node is replicated. The replication factor is n.

2. Replicated data dependencies.
If D is a data dependency and n is an integer, then we indicate n copies of D by
doing the following:
a. Draw a normal data dependency named D
b. In the form for D enter n in the Bounds field.

This will cause the dependency to be denoted by D[n]. This indicates that the
dependency is replicated. The replication factor is n.

An Important Note: The actual value of n must be used. This is a static facility. There
is a small dynamic capability which is discussed in Section IX.

Consider the examples in Figure 1.

i. a single value, A, labels the arc from S to T[10]. The meaning of this is that
a. the Ti, i =1, 10, are identical
b. a copy of A is sent to each Ti.

il. a vector of values, A[10], labels the arc from S to T[10]. The meaning is that
a. the Ti are identical
b. length A[10] equals length T{10] and
c. ai is input to Ti.

ans
o,

15/90 Code 1.2 Manual - Replications VII-1

1
i



iii. a vector of values, A[r], labels the arc from S{qg] to Tip].
let n = number of input dependencies of T
let m = number of output dependencies of S
let d = number of dependencies carried on the arc A
Then the following conditions are implied

a.

b

c.
d.
e.

the Ti are identical and the Si are identical

Either p is a multiple of q or q is a multiple of p

r is a multiple of Max(p,q)

n*p = m*q =r*d

input dependency cj of Tf takes its data from output dependency dk
of Sg where this data is associated with the u-th dependency in the
list A[v] and (f-1)*n+j = (g-1)*m + k = (v-1)*d+u.

Note that conditions b and ¢ insure that if Tf receives any input from Sg then either
Tf receives all its input from Sg or Tf consumes all the input of Sg.

i

11/15/50

........

een

-~ &
=
I~ &

S,
@)
&

Figure 1
Replication Nodes and Arcs

Code 1.2 Manual - Replications VII-2



Consider the even more complex examples of Figure 2.
i. Si supplies p copies of Ai, one to each copy of T

ii. The index ri must be a multiple of p for each 1. Tj then receives
Ai[G-1)*p+1 ... j*p] as input dependencies from Si.

iii. Each triple Si(qi), Ai(ri), T(p) must satisfy the conditions of Example iii in Figure 1
and the dependencies are distributed as in that example.

Figure 2
Complex Cases of Replication for Nodes and Arcs

11/15/90 Code 1.2 Manual - Replications VII-3



3. Exclusion Dependencies.
If E is a exclusion dependency and n is an integer, then we indicate n copies of E by
doing the following:
a. Draw a normal exclusion dependency named E
b. In the form for E enter n in the Bounds field.

This will cause the dependency to be denoted by E[n]. This indicates that the
dependency is replicated. The replication factor is n.

Important Notes:
i. The actual value of n must be used. This is a static facility.
ii. As discussed below, exclusion dependencies act differently from data
dependencies when involved with replicated nodes.

A simple exclusion dependency involving a replicated node is assumed to extend to
all nodes rather than be replicated. For example, in Figure 3.1, we see that the exclusion
dependence E simply extends to all of the nodes. Each node participates in the exclusion constraint
in the same way as its base node. If S is share then so are S[1] and S[2]. If T is mutex then T{1],
T[2], and T[3] are mutex. '

In Figure 3.ii, the dependence E[5] is one dependence of dimension 5 in which all
of the S's and T's participate.
C. Execution time
These replication techniques are for structuring of programs at program-construction time.
The user may imagine that at compile time each such construct is expanded in macro fashion to its

corresponding graph as described above and then compiled. These constructs do not effect
execution time activities

11/15/90 Code 1.2 Manual - Replications VII-4



S[1] S[2]
Q= O

i | E \
: | => \ E
©" SRR
1] T[2] T[3]

S[1] S[2]

@ si2 @ __@

i. | EB) \
| => \ E[5]
©" SRR
T[] T[2] T[3]

Figure 3

An Exclusion Dependence Among Replicated Nodes

11/15/90 Code 1.2 Manual - Replications VII-5



VIII. Executing the CODE Program

This chapter assumes that the reader has read the introduction and has worked through Tutorial
Example 1 and Tutorial Example 2.

A. Introduction

Execution of a CODE program requires three steps. First the graph is translated to a so-
called declaration file. Then the declaration file is translated to a program for the target language
and architecture. This is accomplished by a Translator of A Declaration (TOAD) which has been
specialized for a given language and architecture. Finally, the translated program is compiled and
executed on the target system.

B. Making the Declaration File

This step is performed in CODE and is independent of the target machine. The user
chooses Make Declaration File from the Command Menu. This menu is obtained by clicking the
rightmost mouse button with the cursor in the drawing region.

The message bar displays 'File to contain declarations”. This is a request for a file name
for the declarations file. Enter some standard name like 'decl’ followed by a Return. The message
bar now reads Declarations saved in file decl. The file decl may be viewed with the usual Unix
utilities if you are curious.

Of course, this declaration file should not be generated until the program is complete.
Some checks for completeness and correctness are done at this point. For example, if a
dependency ends at a subgraph and has not been continued to a specific SUC in that subgraph, an
error message will be given.

C. Translating the Declaration File
The TOADs (Translators Of A Declaration) convert the declaration file to a program for the

target language and architecture. There are different TOADs for different architecture/language
combinations. See Figure 1 for a list..

Machine Language Toad Name
Cray Fortran toad_cft+77
Figure 1
Table of Existing Toads

For example, a Cray Fortran translation is produced by the following command:
toad_cft+77 <decl  (‘cft’ stands for ‘cray fortran’)

This produces a Fortran source program crayf77.f , which is ready to be compiled
and executed.

11/15/90 Code 1.2 Manual - Executing the CODE Program VII-1



D. Compiling and Executing on the Target System

Each of these is unique and entirely dependent on the target

1.

11/15/90

Executing Example 1 on the Cray.

A. Move the file crayf77.f to the Cray

B. Compile and execute with the following commands:

cft+77 -a stack crayf77.f :compile to produce object crayf77.0
segldr crayf77.0 ;link to create executable a.out

a.out ;execute program

Code 1.2 Manual - Executing the CODE Program

VHI-2



IX. Miscellaneous

This chapter assumes that the reader has read the introduction and has worked through Tutorial
Example 1 and Tutorial Example 2.

A. Dynamic Graphs

There is a small dynamic capability in CODE. It is enough to allow the run-time specification of
the number of copies desired of a replicated SUC. Figure 1 shows the allowable configuration for
a dynamic graph. N1 and N2 are equal to N at runtime and inform B and C respectively of the
value of N.

An important point is that neither B[N] nor C may have inputs from outside the set {A, B, C}.
Similarly, the outputs of A and B are restricted to the set {A, B, C}.

A
DIN] :
Where at run-time
N =N1= N2
B[N
C
Figure 1
Dynamic Graph
C. Menu Bar Graph Manipulations
1. Moving objects (icon 6 from the top of the menu bar)

This allows the user to rearrange the graph so as to achieve more efficient use of screen real
estate or to improve the understandability or esthetics of the graph.

a. Choose menu bar item 6

b. The message "Draw a box around objects to be moved using left button”
appears in the message bar.

c. In the usual mouse/graphics style, click the left mouse button and draw a
box around the part of the graph to be moved.

11/15/90 Code 1.2 Manual - Miscellaneous -1



d. Click the left mouse button again, an empty box appears representing the
objects to be moved. Move this box to the new location and click the left mouse button again. The
objects then appear at the new location.

2. Redrawing dependencies (icon 7 from the top of the menu bar)

This allows the user to reroute a dependency. This is useful if the wrong sink was chosen
when the dependency was drawn.

a. Choose menu bar item 7

b. The message "Choose a dependency and redraw it using left button”
appears in the message bar.

c. Place the cursor on the dependency to be redrawn and click the left button.
Then proceed just as in drawing a dependency. There is no need to enter a name, since the old
name is kept.
3. Moving names (icon 13 from the top of the menu bar)

This allows the user to move names so as to achieve more efficient use of screen real estate
or to improve the understandability or esthetics of the graph.

a. Choose menu bar item 13

b. The message "Point at the object & click left button to move its name”
appears in the message bar.

c. Click the left mouse button with the cursor on the object (not on the name).
The name then disappears.

d. With the cursor on the new desired location, click the left mouse button
again; the name then appears at the new location.
4. Browsing operations
This is covered in the separate manual discussing the reuse capabilities of CODE
5. Rope management

This is covered in the separate manual discussing the reuse capabilities of CODE

D. Graph Manipulation Commands
These commands are found on the menu brought up by the right mouse button.
1. Redisplay

Redisplay the graph.

11/15/80 Code 1.2 Manual - Miscellaneous IX-2



2. Zoom In

Enlarges the graph, giving the user the impression of zooming in with a camera. The user
is asked to choose the object to be displayed in the center of the drawing region after the zoom.

3. New Center

Shifts the graph in the drawing region to place the user designated object in the center of the
drawing region.

4. Zoom QOut

Shrinks the graph, giving the user the impression of zooming out with a camera. The user
is asked to choose the object to be displayed in the center of the drawing region after the zoom.

5. Clear

Completely erases the graph in the drawing region. The saved graph (if any) is not
effected.

11/15/90 Code 1.2 Manual - Miscellaneous -3



Appendix A
CODE project publications

M. Azam, C. Lin, "Programming with CODE: A Computation Oriented Display Environment”,
Department of Computer Sciences, The University of Texas at Austin, Oct. 1988.

J. C. Browne, "Formulation and Programming of Parallel Computations: A Unified Approach”, In
Proceedings of IEEE International Conference of Parallel Programming, 1985.

J.C. Browne, M. Azam, S. Sobek, "CODE: A Unified Approach to Parallel Programming”, IEEE
Software, July 1989.

J.C. Browne, T.J. Lee and C. Lin, "ROPE User's Manual: A Reusability-Oriented Parallel-
programming Environment", Department of Computer Sciences, The University of Texas at
Austin, Oct. 1988.

J. C. Browne, T.J. Lee and J. Werth, "Experimental Evaluation of a Reusability Oriented Parallel
Programming Environment,” IEEE Transactions on Software Engineering, Vol 16, No. 2, 1990.

J.C. Browne, J. Werth, and T.J. Lee, "Intersection of Parallel Structuring and Reuse of Software
Components:A Calculus of Composition of Components for Parallel Programs”, International
Conference on Parallel Processing, 1989.

J.C. Browne and J. Werth, "Software Engineering of Parallel Programs in the Computation-
Oriented Display Environment", 1989 Minnowbrook Conference on Software Engineering of
Parallel Programs.

1.C. Browne and J. Werth, "Software Engineering of Large Grain Parallel Programs”, 1989
Workshop on Large Grain Parallelism, Carnegie-Mellon.

T.J. Lee, "Software Reuse in Parallel Programming Environments”, Ph.D. Dissertation,
Department of Computer Sciences, The University of Texas at Austin, 1989.

P. Newton, " Translation from a Declarative Model Of Parallel Computation to Multiple Procedural
Models", Dissertation in progress, Department of Computer Sciences, The University of Texas at
Austin, 1990.

S. Sobek, "A Constructive Unified Model of Parallel Computation”, Ph.D. Dissertation,
Department of Computer Sciences, The University of Texas at Austin, 1990.

S. Sobek, M. Azam, and J.C. Browne, "Architecture and Language Independent Parallel

Programming: A Feasibility Demonstration”, Proceedings of IEEE International Conference of
Parallel Programming, 1988.

Code 1.2 - Publications 11/15/90 Page 1



Appendix B
The CODE Environment

Message Bar (Text Region)

Chouse an icon operation using left button.
Sraph of code graph
Drawing
Region >
Menu Bar
(Icon Bar)
Figure 1

Parts of the CODE Window

Code 1.2 Appendix B 11/15/50 Page 1



Choose an icen operation using ieff button.

Graph of code_graph

Open an object (display information about it)
SUC icon; used to draw SUCs

Dependency icon; used to draw dependencies
Swiich icon; used to draw switches

Subgraph icon; used to create subgraphs

Used to move a group of objects on the drawing region
Redraw a dependency ({to make it neater)

Display the contents of a subgraph

Display the parent graph of a subgraph

Delete an object

Expand a subgraph (flatten it back into its parent)
Show subgraph in a separate window

Move the name of an object

Browse for reusable modules

invoke the ROPE (reuse system) management routines

Figure 2
Annotated CODE Menu Bar

Code 1.2 Appendix B 11/15/90

Page 2



Appendix C
Command Menu (Right Mouse Button Menu)

1. Save Graph File

Save graph in a file. The user supplies the file name in response to a query.
2. Load Graph File

Load a graph from a file. The user supplies the file name in response to a query.
3. Change Rope Search Path

This is covered in the separate manual discussing the reuse capabilities of CODE
4. Make Declaration File

Translate CODE graph to an intermediate form.
5. Redisplay

Redisplay the graph.
6. Zoom In

Enlarges the graph, giving the user the impression of zooming in with a camera. The user
is asked to choose the object to be displayed in the center of the drawing region after the zoom.

7. New Center

Shifts the graph in the drawing region to place the user designated object in the center of the
drawing region.

8. Zoom Out

Shrinks the graph, giving the user the impression of zooming out with a camera. The user
is asked to choose the object to be displayed in the center of the drawing region after the zoom.

9, Clear

Completely erases the graph in the drawing region. The saved graph (if any) is not
effected.

10.  Quit
Leave CODE.

Code 1.2 Appendix C 11/15/90 Page 1



Appendix D
Exclusion Constraints

1. Constraint syntax

Exclusion_Constraint -> Mutex _Constraint mutex Share_ Constraint
Mutex _Constraint -> Mutex _Constraint mutex SUC_Node_Id
-> SUC _Node_Id
-> epsilon
Share_Constraint -> Share_Constraint or SUC_Node_Id
-> SUC _Node_Id
-> epsilon

2. Constraint semantics

At execution time exclusion constraints are regarded as predicates whose truth must be
preserved by the runtime system at all times. Since the termination of the execution of a node can
never falsify these predicates because of their restricted form, this translates to a condition for
allowing a node to begin execution. The condition is the following:

From those SUCs which are enabled for execution, the runtime system checks to see which
may be started without falsifying the exclusion constraint in which they participate (if
any). One such node is allowed to begin execution.

The truth or falsity of a predicate is determined by the actions of an interpreter for the
attribute grammar of Figure 1. Intuitively, a share constraint (or-constraint) is never false,
regardless of the number of SUCs executing. It may be idle {no SUC from the share constraint
executing} or behaving {some non-empty subset of SUCs from the share constraint executing}. A
mutex constraint among a set of SUC nodes may be idle {no SUCs from the set executing} or
behaving {at most one of the SUCs from the set executing}. The exclusion constraint formed
from a mutex constraint and a share constraint is true only if at most one of the share constraint
and the mutex constraint is behaving.

Code 1.2 Appendix D 11/15/90 Page 1



Associated with each constraint is a list of data items (possibly just one) and a set of SUC nodes
participating in the exclusion dependency. Let S be that set of SUCs. Assume that
Executing(SUC_Node_Id) is a boolean semantic function returning true if SUC_Node_Id is
executing and false otherwise.

Exclusion_Constraint -> Mutex_Constraint mutex Share_Constraint
{Exclusion_Constraint. Truth_Value :=
If Mutex _Constraint = idle then
If Share_Constraint = racing then false else true
Elseif Mutex _Constraint = behaving then
If Share_Constraint = idle then true else false
FElse false}

Mautex_Constraintl -> Mutex_Constraint2 mutex SUC_Node_Id
{Mutex_Constraintl.Value :=
If Mutex_Constraint2.Value = idle) then
If (Executing(SUC_Node_Id))) then behaving else idle
Elseif (Mutex_Constraint2.Value = behaving) then
If (Executing(SUC_Node_Id))) then racing else behaving
Else racing}

-> SUC_Node_Id
{Mutex_Constraint1.Value := If Executing(SUC_Node_Id) then behaving else idle}

-> epsilon
{Mutex_Constraint1.Value := idle}

Share_Constraint] -> Share_Constraint2 or SUC_Node_Id
{Share_Constraint1.Value := If (Share_Constraint2.Value =.behaving) or
Executing(SUC_Node_Id) then behaving else idle}

-> SUC_Node_Id
{Share_Constraint1.Value := If Executing(SUC_Node_Id) then behaving else idle.}

-> epsilon
(Share_Constraint1.Value := idle}

Figure 1
Attribute Grammar Defining Truth Value of an Exclusion Constraint

Code 1.2 Appendix D 11/15/90 Page 2




Appendix E.
Developing CODE Programs for the IBM 3090

To run the prograns on the IBM 3090 the following changes need to be made:
A. The names of the variables must be limited to six or fewer characters.
B. Variable names should not contain underscores.

C. Read * should be replaced by Read n, where nis a system defined I/O unit.

Code 1.2 Appendix E 11/20/90 Page 1



Tutorial: Example 1
SUCs, Data Dependencies, and Exclusion Dependencies

The following assumes that the user has read the Introduction (Section I of this manual) and has a
basic familiarity with graphical interfaces which employ mice and menus to communicate with
users, with X windows, and with Unix commands and editors.

Contents of the tutorial

I. Preliminaries

II. General remarks on the interface
A. Windows
B. Input

III.  Entering Example 1
Step 1. Draw and name all the nodes, switches, arcs, and hyperarcs.
Step 2. Use forms to enter all information about the nodes and arcs.
Step 3. Use edit windows to enter the code located at the nodes.

IV.  Executing Example 1 on the Cray

I. Preliminaries

% xstart :Start the X-Windows System

% mkdir examplel  ;Create a directory to hold the files associated with the program.
% cd examplel ;Change directory to the directory created in Step 1

:Create the following README file in the directory to serve as top
:level documentation for the program.

9% more README  ;the following is a listing of the README file for Example 1

Specification:
This program adds a vector of 100 elements and prints the sum.

Algorithm:
First initialize a vector of 100 real numbers. Then divide the vector into two 50
element vectors and add them separately. The resulting partial sums are added to
produce the sum of the elements of the original vector. Finally, print the partial
sums and the final sum.

Implementation
A SUC INIT is used to initialize a vector, V, of 100 real numbers, and then
divide V into two 50 element vectors, V1 and V2. Each of V1 and V2 is then
passed to its own SUC, ADD1 and ADD2 respectively, and added to produce
partial sums SUM1 and SUM2. The partial sums, SUM1 and SUM2, are used by
the ADD routines to update a shared variable, SUM, which at termination should
contain the sum of the original vector. SUM1 and SUM2 are then passed to a final
SUC, PRINTSUM, which prints them and the final sum, SUM.

% [projects/code/bin/xcode_hp ;Start up the CODE system (on HPs). Consult your own
;system documentation for the proper name and directory

Code 1.2 Tutorial - Example 1 11/15/90 Page 1



IT. General remarks on the interface:
A. Windows
There are three types of windows in the system:
1. The CODE window used to create the top level graph

2. Forms used to enter information about objects in the system.
3. Edit windows used to enter subprograms
The CODE window (Figure 1) is divided into three regions:
i. The message (text) region at the top for messages and some text input
ii. The menu bar on the left where operations are selected with the mouse
iii. The drawing region where the CODE graph appears
Message Bar (Text Region)
Choose an icon operation Using left button.
Grapgh of code_graph
Drawing
Region >
Menu Bar
(Icon Bar)
CODE Window

Figure 1

Code 1.2 Tutorial - Example 1 11/15/90 Page 2



B. Input

1. The left mouse button is used to select objects and menu icons, to confirm actions,
and to draw various graphical elements.

2. The right mouse button is used to bring up a menu of top level commands and to
cancel selected actions before they are taken.

3. The keyboard is used to enter alphanumeric information in the text region, in forms
and in edit windows.

III. Entering Example 1

Our goal is to draw the following graph:

Example 1
Figure 2
Users generally encounter the fewest obstacles if they enter their program in the following
order:
Step 1. Draw and name all the SUCs, switches, arcs, and hyperarcs.
Step 2. Use forms to enter all information about the nodes and arcs.
Step 3. Use edit windows to enter the code located at the nodes.

Before we start
Saving your work as you go:
With cursor in the drawing window, the rightmost mouse button brings up
a menu of high level commands. The first of these is Save Graph File.
By invoking this regularly you can save your work as you go.

Code 1.2 Tutorial - Example 1 11/15/90 Page 3



Correcting mistakes

a. Finish entering the node, dependency or whatever. (There are generally no
provisions for aborting an operation in the middle.)
b. Select the delete icon (the dotted outline with the crossed lines)

(Notice the message bar at the top of the CODE window now says
"Select an object to be deleted using left button.”)
C. Place the cursor on the object to be deleted and click the left button
(Notice the message bar at the top of the CODE window now says
"Please confirm deletion of graph object with left button".
In addition, a banner through the middle of the drawing area says
"CONFIRM delete with LEFT button, CANCEL with RIGHT or MIDDLE

button™)
d. Click left button (assuming you really wish to delete)
Step 1. Draw and name all the SUCs, switches, arcs, and hyperarcs.
A. Draw and name all SUCs and switches:

1. Draw the SUC INIT by

a. Select the SUC icon (the circle) with the mouse from the menu bar
(Notice the message bar at the top of the CODE window now says
"Create a SUC using left button")

b. Click the left button in the drawing region at the desired location
(Notice the message bar at the top of the CODE window now says
"Enter name for the new SUC:".)

c. Enter the SUC name, "INIT", followed by a Return
(Warning: the name is only captured if the cursor is in the drawing region,
(where the cursor is shaped like a pencil).)

2.. Draw the SUCs ADD1, ADD2, and PRINTSUM
At this point the graph looks like Figure 3.
B. Draw and name all data dependencies:
1. Draw the data dependency V1 by
a. Select the dependency icon (the arrow)with the mouse
(Notice the message bar at the top of the CODE window now says
"Choose the dependency starting and ending object using left button.")
b. Place the cursor on the start node (source node) and click the left
?ﬁiﬁie a line is now anchored at the start node and follows the cursor)
o glace the cursor on the end node (sink node) and click the left
utton

(Notice the message bar at the top of the CODE window now says
"Enter name for the new dependency:”)

Code 1.2 Tutorial - Example 1 11/15/90 Page 4



d. Entering the dependency name, "V1", and entering a Return

(Warning: the name is only captured if the cursor is in the drawing region,
(where the cursor is shaped like a pencil).)

2. Draw the data dependencies V2, SUMI1, SUM2

At this point the graph looks like Figure 4.

Create g SUC using left button.

Graph of code._graph

[l
open

-& “_ 0\%

el

O INIT

L aD02
O O

O PRINTSUM

Code 1.2 Tutorial - Example 1

Nodes for Example 1
Figure 3

11/15/90

Page 5



thoose the dependency’s starting $ ending object using ieft button.

Graph of code_graph

INIY

ADD2

Nodes and Data Dependencies
Figure 4

C. Draw and name all exclusion dependencies
(Part of this is like drawing a data dependency)

1. Draw the exclusion dependency SUM by

a. drawing a data dependency between two of the nodes participating in the
exclusion dependency, say INIT and ADD1. This requires a trick to keep
the picture looking nice; bring the line straight out to the left side till it is
above ADDI, click the left button (this anchors the line) and then draw
down to the node ADD1. This gives us a neat elbow and keeps the picture
separate from the one for dependency V1.

Code 1.2 Tutorial - Example 1 11/15/90 Page 6



Now designate this as an exclusion dependency

i. Select the Open icon (the open book at the top)
(Notice the message bar at the top of the CODE window now says
"Choose an object to open using left button.")

ii. place the cursor on the dependency SUM and clicking left

1ii. Place the resulting X window, called the form of dependency SUM,
at some convenient location by clicking the left button. These forms are
discussed in greater detail later.

iv. Use the mouse to choose the box labeled "exclusion” on the third
line of the form (labeled "Kind :")

(Notice that the solid dependency line converts to dotted in the graph . The
other fields of the form will be discussed later)

V. Close the form by selecting "quit" from the bottom line

Dependency:

LU |

Bounds: L

Kind & [Jdata [Eexclusion Cdreplication
Input SUC/Switch ¢

Qutput SUC/Suiteh

Full Start
Full End
Data Tupe :
frray Size:

Default:

Exclusion SUCs: ADD2, INIT, ADDL, PRINTSUM

Exclusion Constraint: ADD2 mutex INIT mutex ADDL mutex PRINTSUM

int [real [TIbool Dlchar [Jint array [lreal arvay [lbool array [Johar array

A i
A |

[ first | | previous | I next | | last I | add | [ delete | | quit |

Form for Dependency SUM
Figure 5

Code 1.2 Tutorial - Example 1 11/15/90 Page 7



c. Extend the exclusion dependency SUM to the node PRINTSUM

i. Draw a data dependency from ADD1 to PRINTSUM and name

it SUM

(Notice the message bar at the top of the CODE window now says

"Do you want to extend an existing exclusion dependency™)

In addition, a banner through the middle of the drawing area says
"CONFIRM delete with LEFT button, CANCEL with RIGHT or MIDDLE
button™)

ii. click left and the previously solid line becomes dotted

d. Extend the exclusion dependency SUM to the node ADD2 as in c.

At this point we have finished drawing the graph, and it looks like Figure 1.

Step 2. Use forms to enter all information about the nodes and arcs
A. Enter information about the nodes
1. Enter information about INIT
a. select the Open icon (the book)

(Notice the message bar at the top of the CODE window now says
"Choose an object to open using left button.”)

b. select INIT using the left button. An X window will be created;
place it in some convenient place like the left corner of the screen. This is
the form for INIT. It looks like Figure 6.

Sucs DNIT }
Bounds: L ‘
Termination Node?: No []Yes

Input Dependencies: %% none #%
Output Dependencies: V1 V2

Exclusion Dependencies: SUM

Code File: Ly«m

Language: L[JAda [C Fortran

Constraint Tupe?: [ Hutex []Shared

l edit code ! I update code i i quit l

Form for SUC INIT
Figure 6

Code 1.2 Tutorial - Example 1 11/15/50 Page 8



Suc:

Bounds:
Termination Node:
Input Dependencies:

Output Dependencies:

Exclusion Dependencies:

Code File
Language:
Constraint Type?

Form Actions

;SUC name f

:number of identical SUCs represented by this symbol

;yes or no, does execution of this node imply termination of
;the program?

;list of input dependencies for this SUC. Information
;supplied by system.

;list of output dependencies for this SUC. Information
;supplied by system.

;list of exclusion dependencies in which the SUC participates
;(at most 1 in CODE 1.2). Supplied by the system.

;name of file holding actual code of SUC

:choice of Ada, C, Fortran

;type of participation in an exclusion dependence if there is
;one, meaningless otherwise. Default is mutex

edit code: -enter user code into the SUC

update code: ;rewrite template. This may be invoked repeatedly as the
;graph is changed

quit: :exit the form

Fields of 2 SUC Form
Figure 7

These fields (Figure 7) of a SUC form are filled with default values. The
meanings of most of them are obvious. The edit code and update code
Form Actions will be discussed in step 3. Information about the exclusion
dependency SUM is actually indicated on this form by setting the field
Constraint Type?; however in the interest of keeping concerns separated, we
will set this field below. At this time we just set the Language and quit.

c. select Fortran as the language

d. close the window by selecting quit on the bottom line

2. Enter information about ADD1, ADD2 and PRINTSUM as in 1.

The one difference is that PRINTSUM must be designated as a
Termination Node.

B. Enter information about the data dependencies
1. Enter information about V1 by
a. selecting the Open icon (the book)

(Notice the message bar at the top of the CODE window now says
"Choose an object to open using left button")

b. selecting V1 using the left button. An X window will be created;
place it in some convenient place like the left corner of the screen. This is
the form for V1 (Figure 8).

Code 1.2 Tutorial - Example 1

11/15/90 Page 9




These fields (Figure 9) are filled with default values. The meanings of some
are obvious. Others are discussed elsewhere in the manual. We set the data type.

c. selecting int array as the Data Type
(Notice that this causes the Array Size to be set to the default value 1)

d. entering 50 as the Array Size followed by a Return. A very
important point: the cursor must be in the field in order for you to type. At
this point the window looks like Figure 6.

€. selecting quit to close the window
C. Enter information about the exclusion dependencies
1. Enter information about the exclusion dependency SUM

The constraint for an exclusion dependency is entered by indicating for each SUC
in the dependency the nature of its participation in the dependency (see Section V
for more discussion of this point). In our simple exclusion dependency the
constraint is

INIT mutex ADDI mutex ADD2 mutex PRINTSUM
which means that at most one of INIT,ADD1, ADD2 and PRINTSUM access SUM
at a time. Since mutex is the default participation style of SUCs (in the interest of
safety), we do not need to take any action.

The system automatically displays the exclusion constraint as in Figure 5.

Code 1.2 Tutorial - Example 1 11/15/50 Page 10



Dependency: Lyz

Bounds: L

Kind @ [Edsta [Jexclusion [Treplication
Input SUC/Switch ¢ INIT
Output SUC/Switch ¢ ADDL
Full Start ¢ INIT
Full End ¢ ADDL

Data Tupe @ Tint [dreal [lbool [char int array [1real array [lbool array []char array

firray Size: bo ]

Default: L 1

Exclusion SUCs:

Exclusion Constraint:

I first ! fprevious i ! next l ! last l I add ] ! delete ! i quit l
Form for dependency V1
Figure 8

Dependency ;data dependency name
Bounds ;number of identical data dependencies represented by this symbol
Kind: :data
Input SUC/Switch/Subgraph ;name of source
Output SUC/Switch/Subgraph ;name of sink
Full Start ;actual source SUC in the case source is a subgraph
Full End ;actual sink SUC in the case sink is a subgraph
DataType ;one of int, real, bool, char, or arrays of any of these
Array Size ;length of the array
Default ;exclusion dependencies only
Exclusion SUCs ;exclusion dependencies only

Exclusion Constraint ;exclusion dependencies only
Passing Conditions and Receivers  ;for dependencies whose sink is a switch

Form Actions ;All but quit are used to create a list of dependencies to be associated
;with a single physical arc in the CODE graph
first ;display form for the first data item in the list
previous ;display form for the previous data item in the list
next ;display form for the next data item in the list
last ;display form for the last data item in the list
add ;add new data item to the list
delete .delete the data item from the list whose form is currently displayed
uit: .exit (close) the form

Fields of the Dependency Form
Figure 9

Code 1.2 Tutorial - Example 1 11/15/90 Page 11




Step 3. Use edit windows to enter the code located at the nodes
A. Components of the SUC Program

The key point to understand in entering the program for a SUC is that such
programs are made up of two parts:

i, a template generated by the system and

ii. user written code.

1. The Template
The template for a node generated by the system is a subprogram with parameters
corresponding to the data and exclusion dependencies of the node. This subprogram is of the
following form (exact syntax depends on the language):

The template is of the following form (exact syntax depends on the language):

Subprogram Header (with parameter list)
Declarations of parameters and shared variables
Comment Section describing parameters
Comment Section describing shared variables

(*User Written code*)
Return and/or End Statements
For instance, the Fortran template for ADD1 of our example is the following:

subroutine ADDI(V1,SUM1)
integer V1(50)
integer SUMI
COMMON /SUM/SUM
c* V1ISINPUT ONLY
¢* SUM1 IS OUTPUT ONLY
c* SUM IS SHARED AS COMMON BLOCK
c* begin user-written code

user written code

ST eI ¢

return
end

2. The User Written Code

User written code goes between the begin statement (begin comment in the case of
Fortran). An extremely important point is that the update operation will completely rewrite the area
belonging to the template. Only the user written code between the Begin and the Return/End will
be carried over into the new template. Any other user written code will be deleted. So
keep your code in the user area!l

Code 1.2 Tutorial - Example 1 11/15/90 Page 12



User written code for ADD1 would be something like the following:

SUM1 =0
Do 100 I=1,50
SUMI1 =SUM1 + V1)
100  Continue
SUM = SUM + SUM1

3. The Complete Node Program

The complete node program is the combination of the template and the user written code.
For node ADD1 the complete program is as follows:

subroutine ADDI(V1,SUM1)
integer V1(50)
integer SUMI1
COMMON /SUM/SUM
c¢* V1IS INPUT ONLY
c¢* SUMI1 IS OUTPUT ONLY
c¢* SUM IS SHARED AS COMMON BLOCK
c* begin user-written code

e

K

c
¢ Add the elements of V1 forming the partial sum SUM1
SUM1 =0
do 100 I=1,50

SUM1 =SUMI1 + VI(D)
100 continue
c
¢ Update the shared variable SUM
SUM = SUM + SUMI1
c
return
end

B. Creating the Components

Each of these components of the complete node program has a Form Action corresponding

to it:
i. update code - (re)generates the template to match the graph
1. edit code - allows user to enter code

1. update code

This Form Action causes the template to be (re)written to match the graph. The
system does not automatically maintain consistency between the graph and the node program.
Whenever the dependencies involving a node are changed, this Action must be invoked. The key
point is that any user written code which appears outside the allocated user area will be deleted
when this Action is invoked.

Code 1.2 Tutorial - Example 1 11/15/90 Page 13



2. edit code

This Form Action invokes the user's default editor on the complete node program.
Note that this means the user can edit the template portion of the program, a very dangerous
action!

C. Creating the node programs for Example 1
1. Creating the node program for ADD1
a. open the node ADD1

b. select update code from the Form Actions. This will generate the
template.
c. select edit code from the Form Actions. This will create an edit window

containing the template. Enter the user code from the previous page. At
this point the complete node program should look like the one on the
previous page.

d. close the edit window by issuing the editor quit command
e. close the ADD1 form by selecting quit

2.. Create the node programs for INIT, ADD2, and PRINTSUM in the same way.
Their listings follow:

subroutine INIT(V1,V2)
integer V1(50)
integer V2(50)
COMMON /SUM/SUM
C* V11S OUTPUT ONLY
C* V2 1S OUTPUT ONLY
C* SUM IS SHARED AS COMMON BLOCK
C* begin user-written code
C
integer V(100)
C
C Initialize V(100) to the first 100 integers
do 1001I=1, 100
Vvih=1
100  continue
C
C Partition Vinto V1 and V2
do2001=1,50
Vi) =V
V2(I) = V(50 +1)
200  continue

C Initialize the shared variable SUM
Sum =0

C
return
end

Code 1.2 Tutorial - Example 1 11/15/90 Page 14



subroutine ADD2(V2,SUM2)
integer V2(50)
integer SUM2
COMMON /SUM/SUM
C* V2IS INPUT ONLY
C* SUM2 IS OUTPUT ONLY
C* SUM IS SHARED AS COMMON BLOCK
C* begin user-written code

C

C Add the elements of V2 forming the partial sum SUM2
SUM2 =0
do 100 1=1,50

SUM2 =SUM2 + V2(D)
100  continue
C
C Update the shared variable SUM
SUM =SUM + SUM2
C
return
end

subroutine PRINTSUM(SUMI1,SUM2)
integer SUMI
integer SUM2
COMMON /SUM/SUM
C* SUMI1 IS INPUT ONLY
C* SUM2 IS INPUT ONLY
C* SUM IS SHARED AS COMMON BLOCK
C* begin user-written code
C
C Print the values
Print *, Suml, Sum?2, Sum
C
return
end

1V. Executing Example 1 on the Cray

We now take the first step in the compiling and executing of the CODE graph by
creating an intermediate text form of the program. This intermediate form is called the
declarations file.

A. Creating the Declarations File

1. Press the right mouse button to get the COMMANDS menu. Choose

"Make Declaration File'. The message bar displays File to contain declarations”. Thisis a
request for a file name for the declarations file. Enter some standard name like 'decl’

followed by a Return. The message bar now reads 'Declarations saved in file decl'.

2. The file decl may be viewed with the usnal Unix utilities if you are
curious.

Code 1.2 Tutorial - Example 1 11/15/90 Page 15



B. Creating the Source File
In a separate Unix window (or after exiting CODE) execute the command
toad_cft+77 < decl  (‘cft’ stands for ‘cray fortran’)
This produces a Fortran source program crayf77.f, which is ready to be
compiled and executed.
C. Executing Example 1 on the Cray (using UNICOS)
A. Move the file crayf77.f to the Cray

B. Compile and execute with the following commands:
cft+77 -a stack crayf77.f ;compile to produce object crayf77.0
segldr crayf77.0 ;link to create executable a.out
a.out ;execute program

Code 1.2 Tutorial - Example 1 11/15/90 Page 16



Tutorial: Example 2
Subgraphs

The following assumes a basic familiarity with graphical interfaces which employ mice and menus
to0 communicate with users, with X windows, and with Unix commands and editors. It also
assumes that the user has finished Tutorial Example 1.

Contents of the tutorial
I. Preliminaries
II. Entering Example 2
Step 1. Draw and name all the nodes, switches, arcs, and hyperarcs.
Step 2. Use forms to enter all information about the nodes and arcs
Step 3. Use edit windows to enter the code located at the nodes.

I11.  Executing Example 2 on the Cray

I. Preliminaries
%omkdir example2 :Create a directory to hold the files associated with the program.
Pcd example? :Change directory to the directory created in Step 1

:Create the following README file in the directory to serve as top
:level documentation for the program.

J%omore README :the following is a listing of the README file

Specification:
Read the integer N, then N times do the following:
initialize a vector, add it, and print its sum.

Algorithm:
Read the variable N. If it is positive, then loop repeatedly through the algorithm of
Example 1 until all vectors have been initialized, added and values printed. If N is
not positive, then quit.

Implementation
Use a switch node and variables Loop_Control_In and Loop_Control_Out to
handle the looping. Follow the implementation of Example 1.
% /projects/code/bin/xcode_hp ;Start up the CODE system (on HPs)
:Place the resulting X window (Figure 1) to the right
:side of the screen.

I1I. Entering Example 2

Our goal is to draw the graph of Figure 1.

Code 1.2 Tutorial - Example 2 11/15/90 Page 1



Click left butrton to display the parent graph.
Graph of code_graph

@
Ermmrd

READ_N

SUM_VECTOR
CONTROL, OUT

Example 2 Top Level Graph
Figure 1

Code 1.2 Tutorial - Example 2 11/15/90 Page 2



The subgraph SUM_VECTOR (Figure 2) is essentially the graph of Example 1.

Choose an ohject to open using left button.
Graph of SUNM_VECTOR
FROM.PARENT

LOOP_CONTROL..IN

LOOP_CONTROL ADD2

\ L00P_CONTROL._OUT

TOPARENT

Example 2 Subgraph SUM_VECTOR
Figure 2

Code 1.2 Tutorial - Example 2 11/15/90 Page 3



Step 1. Draw and name all the nodes, switches, arcs, hyperarcs, and
subgraphs.

A, Entering the subgraph
There are two ways to do this: either load the graph for Example 1 and edit it or

enter the entire graph from scratch. We will use the first method since it gives us a chance to try
some different commands.

1. Copy the following files from the directory for Example 1 to the directory
for Example 2 using the normal Unix ¢p command.

gph graph file,

ADDI1 node program for node ADD1

ADD2 node program for node ADD?2

INIT node program for node INIT

PRINTSUM node program for node PRINTSUM
2. Load the graph for Example 1

With the cursor in the drawing region, press the rightmost mouse button. From the
resulting menu choose Load Graph File. This causes the message "File to be read:" to be
displayed. Enter "gph" as the file to be read. Remember that the cursor must be in the drawing
region, and that you must follow the name with a return.

3. Add the data dependency LOOP_CONTROL to the graph just as in Example
1. Its source is INIT, and its sink is PRINTSUM. This is an integer variable. The graph now
looks like Figure 2 EXCEPT the nodes TO_PARENT and FROM_PARENT and the dependencies
LOOP_CONTROL_IN and LOOP_CONTROL_OUT are missing. These will be inserted later
when the subgraph is created and connected to the top-level graph.

B. Forming the subgraph

1. Choose the subgraph icon from the menu bar. The message area reads
"Draw a box around objects to be included in a subgraph using left button”

2. In the usual window interface style, hold down the left mouse button and
draw a box around the graph. When you have the entire graph surrounded, click the left button
once and the graph will disappear to be replaced by a subgraph symbol. The message bar reads
"Enter name for the new object".

One unpleasant thing that can happen is that you may start at a point that
makes it impossible to include the entire graph. Unfortunately once you begin the process, a
subgraph will be formed even if it winds up containing the wrong part of the graph (or is even
empty). If this happens, then the subgraph may be re-expanded using the fifth icon from the
bottom in the menu bar. In that way you can try again. Another alternative is to clear the drawing
region using the rightmost mouse button menu and then loading the graph again.

3. Enter the name SUM_VECTOR for the subgraph

Code 1.2 Tutorial - Example 2 11/15/90 Page 4



Subgraph SUM_VECTOR

CFROM.PARENT

& TO_PARENT

Figure 3
Display Window for Subgraph SUM_VECTOR

C. Displaying the subgraph
There are three ways to display a subgraph.

1. Display the subgraph in a separate window (Figure 3) . This
window is read only and is invoked by the fourth icon from the bottom. You may continue to edit
the top-level graph while viewing the subgraph. Close the window for the subgraph by selecting
"done" in the upper left corner of the subgraph window.

2. Display the subgraph and edit it. This is invoked by icon number 8
(counting from the top). Return to the top level graph by invoking icon 9, and then clicking the left
mouse button in the drawing region.

3. Open the subgraph. This is invoked by icon 1. The form for the
subgraph is then displayed as in Figure 4. One may then choose the Form Action "display graph”
to open the subgraph for editing. Return to the top level graph by invoking icon 9, and then
clicking the left mouse button in the drawing region.

a. Try each of the above methods for displaying the subgraph, each time
returning to the top level. Notice that the system has now automatically inserted the nodes
TO_PARENT and FROM_PARENT in the subgraph. The dependencies LOOP_CONTROL_IN
and LOOP_CONTROL_OQOUT will be inserted later when we connect the subgraph to the main
graph.

Code 1.2 Tutorial - Example 2 11/15/90 Page 5



Subgraph: Lgum,VEcmR

Parent Graph: code_graph
SUCs & Switches:zINIT, ADDL, ADD2, PRINTSUM
Subgraphs  § %% none ##%

Dependencies: LOOP_CONTROL_IN, LOOP_CONTROL, LOOP_CONTROL.OUT, SUM. SUM2, SUML, V2, Vi

['read files I l display I l quit I

Figure 4
Form for Subgraph SUM_VECTOR

D. Complete the top level graph

We use our usual methodology of first drawing and naming everything, then inserting
information in the forms, and finally writing the code for the nodes.

1. Draw and name the SUCs READ_N and WRAP_UP

2. Draw and name the switch LOOP. This is just like drawing a SUC but you
start with the switch icon

3. Draw the dependencies N and FINAL_N
4. Connect the subgraph
a. Draw the dependency LOOP_CONTROL_IN.

When a dependency ends at a subgraph, the message "Do you wish to end
or to continue?" appears in the message bar, and the message "END with LEFT button,
CONTINUE in other graph with RIGHT (or MIDDLE) button" appears across the drawing pane.
We choose to Continue by pressing the right button. This brings up the subgraph in the window,
and the dependency arc continues from the node FROM_PARENT. Terminate the dependency at
INIT. The drawing region reverts back to the parent graph and we name the dependency as usual.

Code 1.2 Tutorial - Example 2 11/15/90 Page 6



b. Draw the dependency LOOP_CONTROL_OUT.

a. Display the subgraph for editing.

b. Draw a dependency from PRINTSUM to the node
TO_PARENT. When a dependency in a subgraph ends at the node TO_PARENT, the message
"Do you wish to end or to continue?" appears in the message bar and the message "END with
LEFT button, CONTINUE in other graph with RIGHT (or MIDDLE) button" appears across the
drawing region.. We choose to Continue by pressing the right button. This brings up the parent
graph (the top-level graph in this case), and the dependency arc continues from the subgraph node,
SUM_VECTOR. Complete the dependency by using LOOP as its sink. The drawing region -
reverts back to the subgraph, and we name the dependency as usual.

Step 2. Use forms to enter all information about the nodes and arcs

Most information about the subgraph is already correct; there are just a few things to
change.

A, Enter information about READ N, WRAP_UP, and PRINTSUM

All are Fortran routines and WRAP_UP (but not READ_N) is a Termination
Node. The node PRINTSUM in the subgraph is no longer a Termination Node. All these changes
require opening the subgraph for editing, if it is not already open.

B. Enter information about the Switch node LOOP

Open the form (Figure 5) for LOOP. There are no changes that need to be made.

Switch? L00P

Bounds:

Lo

Input Dependencies: N LOOP_CONTROL_OUT

Qutput Dependencies: FINAL_N LOOP_CONTROL_IN

quit
Figure 5
Form for Switch Node LOOP
C. Enter data type information about the dependencies N, FINAL N,

LOOP_CONTROL, LOOP_CONTROL_IN and LOOP_CONTROL_OUT.

These are all integer variables (the default, so no changes need to be made).

Code 1.2 Tutorial - Example 2 11/15/90 Page 7



D. Enter Passing Conditions & Receivers for the dependency N
(Figure 6)

1. Open the form
2. With the cursor positioned on the line for Passing Conditions &
Receivers enter the following condition:

N >01LOOP_CONTROL_IN, N<=0 | FINAL_N

E. Enter Passing Conditions & Receivers for the dependency
LOOP_CONTROL_OUT (Figure 7)

1. Open the form
2. With the cursor positioned on the line for Passing Conditions &
Receivers enter the following condition:

LOOP_CONTROL_OUT =0 | FINAL_N,
LOOP_CONTROL_OUT >0 | LOOP_CONTROL_IN

Dependency: [L00p_conTRoL..ouT

Bounds: r

Kind @ data [Jexclusion [T replication
Input subgraph 2 SUM_VECTOR

Qutput SUC/Suitch ¢ LOOP

Full Start 3+ SUM_VECTOR/PRINTSUN

Full End : LOooP

Data Tupe @ B int [Treal [Ibool [Jehar [Jint array [Jreal array [Jbool array [Jchar array

frray Size: L }

Defaults: L i

Exclusion SUCs:

Exclusion Constraint:

Passing conditions & Receivers: {LODP,,CGNTRDL_OUT = O | FINAL_N, LOOP_CONTROL_OUT > ¢ | LOOP_CONTROL.IN_

[ first l ﬁrevicus I l next I l last l l add I l delete l I quit l

Figure 6
Form for Data Dependency N

Code 1.2 Tutorial - Example 2 11/15/90 Page 8




Dependencu: [L.oop_conTRoL_0UT

Bounds: |

Kind @ [Bldsta [Jexclusion I replication
Input subgraph 2 SUM_VECTOR

Qutput SUC/Switch ¢ LOOP

Full Start 2 SUM_VECTOR/PRINTSUM

Full End 3 Loop

Data Tupe @ [ int [Jreal [Ibool [Johar [Jint array [Jreal array [Jbool array [dcher array

Array Size: L I

Default: L |

Exclusion SUCs:

Exclusion Constraints

Passing conditions & Receivers: [LOOP_CONTROL_OUT = 0 | FINAL_N, LOOP_CONTROL.OUT > O | LOOP_CONTROL.IN, |

l ?irstj r;evious | l next ‘ I last i { add l ! delete l [ quit I

Figure 7
Form for Data Dependency LOOP_CONTROL_OUT

Step 3. Use edit windows to enter the code located at the nodes

We need to create SUC node programs for the nodes of the subgraph (INIT, ADD1,
ADD?2, PRINTSUM) and for the nodes of the top level graph (READ_N, WRAPUP). We do this
just as in Tutorial Example 1. Remember that the code is made up of two parts, the template and
the user written code. As we discussed in Tutorial Example 1, there are two different Form
Actions corresponding to these two different parts of the node program.

1. update code - (re)generates the template to match the graph
ii. edit code - allows user to enter code

1. Update Code

This Form Action causes the template to be (re)written to match the graph. The
system does not automatically maintain consistency between the graph and the node program.
Whenever the dependencies are changed at a node, this Action must be invoked. The key point is
that any user written code which appears outside the allocated user area will be deleted when this
action is invoked.

2. Edit Code

This Form Action invokes the unix editor vi on the complete node program. Note
that this means the user can edit the template portion of the program, a very dangerous action!

Code 1.2 Tutorial - Example 2 11/15/90 Page 9



A, Subgraph nodes (INIT, ADDI1, ADD2, PRINTSUM)

The programs for the subgraph nodes are similar to those of the graph of Example 1 but not
identical. The node names are the same, and all of the old dependencies are present and
unchanged. However, there are new dependencies (LOOP_CONTROL, LOOP_CONTROL_IN
and LOOP_CONTROL,_OUT), and some code changes at the nodes INIT and PRINTSUM. All
of the changes needed are made in INIT and PRINTSUM.

1. INIT
a. Open the form for INIT
b. Choose update code from the Form Actions. This will generate a

new template to account for the new dependencies LOOP_CONTROL, and LOOP_CONTROL_IN
incident on INIT

c. Choose edit code from the Form Actions. Edit the code for INIT
to read as follows:

subroutine INIT(LOOP_CONTROL_IN, VL,V2,
+ LOOP_CONTROL)

integer LOOP_CONTROL_IN

integer V1(50)

integer V2(50)

integer LOOP_CONTROL

COMMON /SUM/SUM
C* LOOP_CONTROL_IN is input only
C* V1IS OUTPUT ONLY
C* V21S OUTPUT ONLY
C* LOOP_CONTROL is output only
C* SUM IS SHARED AS COMMON BLOCK
C* begin user-written code
C

integer V(100)
C Initialize V

do 1001=1, 100

V() =1+LOOP_CONTROL_IN

100 continue

C
C Partition Vinto Viand V2
do2001=1,50
Vi) =V

V2(D) = V(50 +I)
200  continue

C

C Initialize the shared variable SUM
Sum =0

C

C Set Loop_Control to Loop_Control_In
LOOP_CONTROL = LOOP_CONTROL_IN
return
end

Code 1.2 Tutorial - Example 2 11/15/90 Page 10



2. PRINTSUM
a. Open the form for INIT
b. Choose update code from the Form Actions. This will generate a
new template to account for the new dependencies LOOP_CONTROL and
LOOP_CONTROL_OUT incident on PRINTSUM
c. Choose edit code from the Form Actions. Edit the code for
PRINTSUM to read as follows:

subroutine PRINTSUM(SUM1,SUM2, LOOP_CONTROL,
+ LOOP_CONTROL_OUT)

integer SUMI
integer SUM2
integer LOOP_CONTROL
integer LOOP_CONTROL_OUT
COMMON /SUM/SUM
C* SUM1 IS INPUT ONLY
C* SUM2 IS INPUT ONLY
C* LOOP_CONTROL is input only
C* LOOP_CONTROL_OUT is output only
C* SUM IS SHARED AS COMMON BLOCK
C* begin user-written code
C
C Print the values
Print *, LOOP_CONTROL, SUM1, SUM2, SUM
C

C Decrement LOOP_CONTROCL

LOOP CONTROL _OUT =L0O0OP_CONTROL. -1
C

return

end

B. Top Level Graph Nodes (READ_N, WRAP_UP)

These SUC node programs are entered as in Tutorial Example 1 and the subgraph
SUM_VECTOR above.

1. READ_N

subroutine READ_N(IN)
integer N

c¢* NIS OUTPUT ONLY

c* begin user-written code

C Read N, the number of vectors to be read
read *, N
return
end

Code 1.2 Tutorial - Example 2 11/15/90 Page 11



2. WRAP_UP

subroutine WRAP_UP(FINAL_N)
integer FINAL_N
¢* FINAL_N IS INPUT ONLY
c* begin user-written code
C
C Print closing message
C
If (FINAL_N .EQ. 0) then
Print *, "Computation successful”
Else
Print *, "Bad value of N"
Endif
return
end

1V. Executing Example 1 on the Cray

This is just like Example 1. We take the first step in the compiling and executing of
the CODE graph by creating an intermediate text form of the program. This intermediate
form is called the declarations file.

A. Creating the Declarations File

1. Press the right mouse button to get the COMMANDS menu. Choose

"Make Declaration File'. The message bar displays File to contain declarations”. Thisis a
request for a file name for the declarations file. Enter some standard name like 'decl’

followed by a Return. The message bar now reads 'Declarations saved in file decl'.

2. The file decl may be viewed with the usual Unix utilities if you are
curious.

B. Creating the Source File
In a separate Unix window (or after exiting CODE) execute the command
toad_cft+77 <decl  (‘cft’ stands for ‘cray fortran’)

This produces a Fortran source program crayf77.f, which is ready to be
compiled and executed.

C. Executing Example 1 on the Cray.

A. Move the file crayf77.f to the Cray

B. Compile and execute with the following commands:
cft+77 -a stack crayf77.f :compile to produce object crayf77.0
segldr crayf77.0 :link to create executable a.out
a.out ;execute program

Code 1.2 Tutorial - Example 2 11/15/90 Page 12



Tutorial: Examples 3
Statically Replicated Objects

The following assumes that the user has finished Tutorial Examples 1 and 2 and has at least
skimmed the entire manual.. On the assumption that the user has mastered the basics of using
CODE, only those parts of the examples representing new ideas are discussed in detail.

This example is an altered version of Example 1. The shared variable SUM is eliminated. There
are now ten adders instead of two and each adder prints its number and a message when it
completes. Replication is used to produce the 10 adders. The requirement that an adder "know its
number” forces us to associate more than one data dependency with a single arc.

I. Preliminaries
These are the same in nature as those for Examples 1 and 2.

II. Entering Example 2

Our goal is to draw the graph of Figure 1. We do this as follows:

A Draw and name the nodes INIT, ADD, and PRINTSUM. In the form for ADD set
the Bounds field to 10. See Figure 2. Remember that PRINTSUM is a Termination Node.

B. Draw and name data dependencies V_IN and SUM_OUT. Note that the system
sets the Bounds field of SUM_OUT to 10 automatically, but the Bounds field of YV _IN must be set
to 10 by you. See Figures 4 and 5.

C. The arc labeled V_IN[10] is heavier than normal because it carries more than one
dependency. To enter the second dependency {ADDER_NUMBER which is the identifying
number of the copy of ADD which receives it} open the form for V_IN and use the add form
action to add another dependency to the arc as described in Section III of the manual. See Figure
6.

Code 1.2 Tutorial - Example 3 11/20/90 Page 1



Braph File read in.

Graph of code_graph

(:) INIT

Y_IN[10]

() ADBLA0]

SUM_OUTL10]

(:) PRINTSUM

Code 1.2 Tutorial - Example 3

Figure 1
Graph of Example 3.1

11/20/90

Page 2




Multiple Suc: DD

Bounds: 10

Termination Node?: EBNe [ves
Input Dependencies: V_IN ADDER_NUMBER
Output Dependencies: SUM_OUT

Exclusion Dependencies: ##% none ##%

Code File: |ADD

Language: [JAda [JC [EFortran

Constraint Type?; [ Mutex []Shared

edit code update code quit

Figure 3
Form for the Replicated SUC ADD

Multiple Dependensy: [y I

Bounds: Lg_o

Kind ¢ [Hdata [Jexclusion [CJreplication
Input SUC/Switeh @ INIT

Qutput SUC/Switch : ADBILO]

Full Start s INIT

Full End ¢ ADD

Data Tupe @ [3irt [Ireal [Ibool [lchar [ int array [dreal array [lbool array [char array

firray 5ize: uo

Defaults L

Exclusion SUCs:

Exclusion Constrainty

| FirstJ | previous | next |l last | | add | | delete | | quit |

Figure 4
Form for Data Dependency V_IN

Code 1.2 Tutorial - Example 3 11/20/90

Page 3




Hul tiple Dependensy: Lsun_our

Bounds? uo

Kind ¢ [@ldeta [Jexclusion Clreplication
Input SUC/Switch 3 ADDLA0]

Dutput SUC/Switch : PRINTSUH

Full Start : ADD

Full End s PRINTSUM

Data Tupe : [B int [Ireal [Ibool [dchar [lint array [dreal array [Ibool array [Jchar array

Array Size: L

Defaults E

Exclusion SUCs:

Exclusion Constraint:

I Firsd [ previous I ‘ next l l last l | add l [ delete ] l quitj

Figure 5
Form for Data Dependency SUM_OUT

Multiple Dependencu: [ADDER_NUMBER |

Bounds: Llo

Kind @ [Edata [Jexclusion Clreplication
Input SUC/Switch o INIT

Qutput SUC/Switch 3 ADDIL0]

Full Start s INIT

Full End ¢ ADD

Data Tupe @ int [real Tlbool [Joher [Jint array [dreal array [dbool array [dchar arrey

frray Sizes L

Defaults ¥

Exclusion SUCss

Exclusion Constraint:

| first | previous i | rext | | last | | add | | delete | { quit |

Figure 6
Form for Data Dependency ADDER_NUMBER

Code 1.2 Tutorial - Example 3 11/20/90 Page 4



T1I.

SUC Code

A. INIT
subroutine INIT(V_IN,ADDER_NUMBER)
integer V_IN(10, 10)
integer ADDER_NUMBER(10)

¢* V_INIS OUTPUT ONLY

¢* ADDER_NUMBER IS OUTPUT ONLY

c* begin user-written code

C
integer V(100)

C

C Initialize V
do1001I=1, 100

V=1

100  continue

C

C Partition V into V_IN(1,1..10) to V_IN(10, 1..10)
do3001I=1,10
do200J=1,10

V_IN(L]) = V(10*(-1) + J)
200  continue
300  continue
C
C Initialize ADDER_NUMBER
do4001I=1,10
ADDER_NUMBER(I) =1
400  continue

C
return
end
B. ADD

subroutine ADD(V_IN,ADDER_NUMBER,SUM_OUT)
integer V_IN(10)
integer ADDER_NUMBER
integer SUM_OUT
c¢* V_INIS INPUT ONLY
¢* ADDER_NUMBER IS INPUT ONLY
¢* SUM_OUT IS OUTPUT ONLY
c* begin user-written code

C
C Add the elements of V_IN forming the partial sum SUM_OUT
SUM_OUT =0
do1001=1,10
SUM_OUT = SUM_OUT + V_IN(I)
100  continue
C
C Print a message
Print *, ADDER_NUMBER, "finishing”
C
return
end

Code 1.2 Tutorial - Example 3 11/20/90 Page 5



C. PRINTSUM

subroutine PRINTSUM(SUM_OUT)
integer SUM_OUT(10)
c* SUM_OUTIS INPUT ONLY
c* begin user-written code
integer SUM
C
C Initialize the value of SUM
SUM =0
C Print the values for each partial sum and accumulate
do 1001=1, 10
Print*, I, SUM_OUT(I)
SUM=SUM+SUM_OUT({I)
100  continue

C
C Print the final sum
Print *, SUM
C
return
end

Code 1.2 Tutorial - Example 3 11/20/90

Page 6



