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A distributed neural system consists of localized populations of neurons — neu-
ronal groups — linked by massive reciprocal connections. Signaling between
neuronal groups forms the basis of functioning of such a system. In this thesis,
fundamental aspects of signaling are investigated mathematically with par-
ticular emphasis on the architecture and temporal self-organizing features of

distributed neural systems.

Coherent population oscillations, driven by exogenous and endoge-
nous events, serve as autonomous timing mechanisms and are the basis of
one possible mechanism of signaling. The theoretical analysis has, therefore,
concentrated on a detailed study of the origin and frequency-amplitude-phase
characteristics of the oscillations and the emergent features of inter-group reen-

trant signaling.

It is shown that a phase shift between the excitatory and inhibitory

components of the interacting intra-neuronal-group signals underlies the gener-

Vi



ation of oscillations. Such a phase shift is readily induced by delayed inhibition
or slowly decaying inhibition. Theoretical analysis shows that a large dynamic
frequency-amplitude range is possible by varying the time course of the in-

hibitory signal.

Reentrant signaling between two groups is shown to give rise to syn-
chronization, desynchronization, and resynchronization (with a large jump in
frequency and phase difference) of the oscillatory activity as the latency of
the reentrant signal is varied. We propose that this phenomenon represents
a correlation dependent non-Boolean switching mechanism. A study of tri-
adic neuronal group interactions reveals topological effects — the existence of

stabilizing (closed loop) and destabilizing (open loop) circuits.

The analysis indicates (1) the metastable nature of signaling, (2) the
existence of time windows in which correlated and uncorrelated activity can
take place, and (3) dynamic frequency-amplitude-phase modulation of oscil-
lations. By varying the latencies, and hence the relative phases of the reen-
trant signals, it is possible to dynamically and selectively modulate the cross-
correlation between coactive neuronal groups in a manner that reflects the map-
ping topology as well as the intrinsic neuronal circuit properties. These mech-
anisms, we argue, provide dynamic linkage between neuronal groups thereby
enabling the distributed neural system to operate in a highly parallel manner

without clocks, algorithms, and central control.
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Chapter 1

Introduction

Artificial intelligence has heretofore concentrated on the description of
information processing problems at a high level, for example, in terms of sym-
bols and programs and mathematical and logical operations (Charniak and
McDermott, 1985; Winston and Brown, 1979). However, for certain tasks,
such as pattern or even character recognition, this is not adequate: a computer
system can recognize predetermined character sets rather well but even small
distortions can cause a complete loss of recognition. The problem is that we do
not know how characters, patterns, and symbols are represented. A different
problem arises in robotics where the issue is reducing a large number of de-
grees of freedom to a few relevant ones to execute a particular task (Bernstein,
1967). A table matching strategy (Raibert, 1986) soon breaks down when the
complexity of the task increases. In this case, as in several physical systems, it
is the nonlinearity that causes a reduction in the number of degrees of freedom

(see, for example, Kelso and Tuller, 1984).

In recent years, the problems of information processing have also been
pursued in several areas of connectionist and cognitive science (Rumelhart and
McClelland, 1986; Feldman and Ballard, 1982). However, these models sim-
plify the architecture, ignore the self-organizing features of neural systems, and
invoke ad hoc assumptions about signal processing. To gain an understand-

ing of these problems it is necessary to pursue their organic basis, and since
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the brain is the source of what we regard as ‘intelligence’, the biological issues
cannot be neglected (Reeke and Edelman, 1988). In the present study, we pur-
sue the biological approach rigorously, particularly with regard to its spatial
and temporal self organizing features, in order to understand the fundamental

processes underlying the functioning of complex neural systems.

The organization of the brain reflects the tendency of all complex non-
linear systems to clump into coherent structures. A growing wealth of experi-
mental data suggests that the brain is a distributed system with functionally
segregated units (Mountcastle, 1978; Alexander et al., 1986; Goldman-Rakic,
1988; Zeki and Shepp, 1988). Repertoires of these units form a distributed
system which transcends the notion of hierarchy (Mountcastle, 1978). Each
module in this system is a localized population of tightly connected neurons
termed neuronal groups (Edelman, 1978). The neuronal group serves as the
fundamental input/output unit imposing transforms determined by its circuit
properties, as well as its extrinsic connections (Mountcastle, 1978). For exam-
ple, groups such as the cortical columns, serve as redundant and degenerate
elements (von Neumann, 1956; Winograd and Cowan, 1963) which ensure that

signals and their variants are recognized in a reliable manner (Edelman, 1987).

Such a distributed system serves a distributed function — because no
single region receives or processes all aspects of the input (or endogenous activ-
ity), recognition of and the response to the external world has to be achieved
by signaling between the fundamental units. Signaling between the neuronal
groups, therefore, forms the basis of functioning of the system. Signaling has
to perform many functions: integration and linkage of disjunctive aspects of
the input, association and disassociation (von der Malsburg and Schneider,

1986), switching and gating (Evarts et al., 1984), maintenance of spatiotempo-



ral continuity of objects and events (Reeke et al., 1989), and conflict resolution
(Finkel and Edelman, 1989), among others. Signaling is a real time process in
distributed systems; the temporal aspects of this process are the subject of the

present study.

It is the physical process of signaling and the emergent features thereof,
not the specific tasks which are performed that is given importance in this the-
sis. Such an approach may be contrasted with models of neural computation
such as the logical calculus that emerges from neural activity when neurons
perform a thresholding function (McCulloch and Pitts, 1943), the approach to
a fixed point of interacting symmetrically connected neurons (Hopfield, 1982;
Hopfield, 1984), the minimization of error between the expected output and
actual output for a class of inputs that has been determined a priori in the
parallel distributed programming (PDP) models (Rumelhart and McClelland,
1986), the search for specific computations that are necessary in carrying out a
task such a edge or motion detection in visual perception (Marr, 1982), and the
analog computations arising from complex biophysical interactions at the level
of neurons, synapses, dendrites, and spines (Koch and Poggio, 1987). There is
growing evidence to suggest that the underlying operations are correlative and

associational and not computational in the algorithmic sense.

It is believed that a basic study of signaling would then be useful
in studying the more complex problems of co-ordination, memory, adaptive
behavior, and learning, none of which are addressed here. Symbols, meaning,
logic, reasoning, language etc. (the basis of cognition) arise at a much higher

level than the ones we consider and are beyond the scope of this thesis.

Implicit in the approach we have taken is the view that signaling

cannot be understood in terms of some nuance of an impulse; rather, it is the



result of the simultaneous cooperative interaction of impulses (Bernstein, 1967).
Such a view is consistent with the notion of spatial self-organization discussed
above. The physical basis of signaling, its nature, origin, and characteristics

are studied analytically and augmented with numerical studies.

Physiological (Brazier, 1977), theoretical (Wiener, 1961), and psy-
chological (Poppel, 1978) considerations suggest the rhythmic organization of
temporal phenomena in the brain. Recent experiments and computer simula-
tions (Traub et al., 1988; Traub et al., 1989; Gray and Singer, 1989) indicate
that oscillations generated by localized populations of neurons underlie the pro-
cess of signaling in neural systems. Oscillations in spatially separated parts of

the visual cortex have been found to reflect global stimulus properties (Gray

et al., 1989).

The present study has, therefore, focussed on the origin, generation,
and characteristics of oscillations and the inter-group interaction of oscillatory
signals. An analytical study allows us to underpin the critical aspects of the
dynamics of interacting oscillatory signals in the distributed system and look for
novel emergent phenomena. The mathematical models we use are derivations
and extensions of the Wilson-Cowan model (Wilson and Cowan, 1972; Wilson
and Cowan, 1973) for the functional dynamics of interacting subpopulations of

excitatory and inhibitory neurons in localized populations of neurons.

A distributed system necessarily involves time delays. In a distributed
system, access to specific signals can be deferred in time thereby serving as
memory and ensuring temporal continuity in representation of the signals from
the external world. Therefore, in the analytical models we consider, particular
importance has been given to latency in the transmission and transduction of

specific signals. In the present study, fundamental and qualitative changes in



the dynamics are found when synaptic and transmission delays are introduced.
Whereas in computer systems, time delays are a nuisance that have to be com-
pensated for, in neural systems, time courses of signals dynamically controlled
by neurotransmitters and neuromodulators, may serve very useful roles, as the
present thesis seeks to show. The complex phasic effects, arising from the de-
lays of signals, are shown to give rise to a diverse set of phenomena which are

studied in some detail.

Neuronal groups provide a stable locus for the cooperative spatiotem-
poral interaction of excitatory and inhibitory neurons to generate coherent os-
cillatory signals. It is shown that a particularly robust method for generating
the oscillations is delayed inhibition or slowly decaying inhibition which causes
a phase shift between the excitatory and inhibitory components of the interact-
ing intra-neuronal-group signals. Theoretical analysis of the oscillations shows
that a large range of frequency and amplitude is possible by varying the time

course of the inhibitory signal.

The analysis is then extended to study the interaction of oscilla-
tory signals between two groups. The results indicate a correlation dependent
switching involving synchronization, desynchronization, and resynchronization
of the oscillatory activity. By varying the latencies of the reentrant signals
(modulated by neurotransmitters) it may be possible to dynamically control
the cross-correlation between coactive neuronal groups. The logic expressed
by such dynamics, it may be argued, is correlation dependent and hence non-

Boolean.

A study of triadic neuronal group interactions reveals topological ef-
fects in signaling in distributed systems. Signals from the third group can

dynamically control the diadic cross-correlation in a robust and selective man-



ner. The existence of stabilizing and destabilizing global mapping topologies
is suggested. The cross-correlation of co-active groups is dependent, therefore,

on the mapping topology as well as the intrinsic neuronal circuit properties.

In short, the results indicate the metastable nature of signaling in dis-
tributed neural systems and the dynamic manner in which the cross-correlation

of co-active groups can be modulated.

In the following Chapter, the nature of the distributed system and the
nature of signaling are elaborated along with the theoretical framework for the
analysis pursued in the present study. The generation of robust oscillations in a
localized population of neurons due to delayed inhibition is discussed in Chap-
ter 3. These coherent oscillatory signals form the basis of reentrant signaling
between neuronal groups. The emergent features of signaling, in particular the
effects of delayed reentry on diadic and triadic neuronal group interactions are
the topics of Chapters 4 and 5 respectively. The results and their implications

are summarized in Chapter 6.



Chapter 2

Nature of Signaling in Distributed Neural Systems

There are fundamental differences between signaling in computer and
neural systems. An important feature of the von Neumann architecture is
the separation of logical aspects from circuit design. A consequence of this
separation is the need for an external clock and the physical and conceptual
separation of the processing unit from memory in computer systems. The
clock, whose (fixed) frequency is controlled by a crystal oscillator, drives the
basic processing elements — switches such as AND, NAND, and OR gates. In
such a system, all operations including error correction follow a strictly Boolean
algebra. The basic process, then, involves the fetch-execute-store operation on
a sequence of instructions which are a subset of the algorithm (program) under

execution.

It is somewhat odd that some of these features had their origin in
the neural network model of McCullough and Pitts (1943) (see Aspray and
Burks, 1987 pgs. 7 and 32). For, neural systems possess autonomous timing
mechanisms, driven both by endogenous and exogenous events. Furthermore, in
these systems, the underlying process is statistical, nonlinear, non-algorithmic,

and adaptive.

In seeking to develop a general theory of automata, von Neumann
(1956) had already noted the need for ‘highly mathematical and more specifi-

cally analytical theory of automata’ in view of the refractory nature of logical
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analysis and emphasized in particular the need for a ‘deeper mathematical
study of the nervous system’. Wiener (1961), in developing the theory of cy-
bernetics, had noted several neurophysiological details which emphasized the

role of nonlinear feedback processes for control and error correction.

Given the progress in neuroscience over the past few decades, it is pos-
sible to pose the issues related to the functioning of complex newural systems in
terms of the architecture and self-organizing features of neural systems. In this
chapter, we elaborate on one important mechanism of signaling in distributed
neural systems. Such a consideration explains the particular theoretical formu-

lation followed and developed in this thesis.

2.1 Nature of the Distributed System

In distributed neural systems, there are functionally specialized units
which process specific attributes of exogenous or endogenous signals or events.
For example, in the visual system, there are regions specialized for processing
motion, form, and color (Zeki and Shepp, 1988; DeYoe and van Essen, 1988).
Specialized structures which represent signals topographically, for example in
the sensory cortex, (Mountcastle, 1978) and columns for orientation or occular

dominance in the visual cortex (Hubel and Wiesel, 1977) are well known.

The basic unit of this distributed system has been conjectured to be
a neuronal group (Edelman, 1978). The neurons in such a group are tightly
connected, i.e., the mean intra-group synaptic strength and density are greater
than the mean inter-group synaptic strength and density respectively. In the
primary receiving areas, these groups serve as elementary recognizers to map
and represent signals from the external world. For example, an orientation col-

umn in the visual cortex may recognize an object with a particular orientation.



In the higher areas, the processing is more abstract and not well understood

(Mountcastle, 1978).

In reviewing the nature of the distributed system, Mountcastle (1978)
has noted that ‘. -- the processing function of neocortical modules is qualita-
tively similar in all neocortical regions. Put shortly, there is nothing intrin-
sically motor about the motor cortex, nor sensory about the sensory cortex.
Thus, the elucidation of the mode of operation of the local modular circuit
anywhere in the neocortex will be of great generalizing significance’. However,
in conjunction with this observation, it is also important to note that such a

neuronal group is constantly interacting with other groups.

2.2 Reentrant Signaling

One of the ubiquitous features of such a distributed system is the
presence of reciprocal connections between the groups forming the distributed
system. These connections, like the recurrent connections within the groups,
have a quasi-random character. The reciprocal connections need not be neuron
specific. For example, neuron A in group G may be connected to neuron A’ in
G’ which may in turn be linked to A through an intermediary neuron C in G.

Such multiple pathways provide redundancy in signaling.

Signaling now becomes a statistical process because no longer is the
correlated firing of two neurons required. Thus, if specific neurons are re-
fractory, signaling need not be disrupted since there exist multiply connected
pathways ensuring redundancy in the signaling process. Signaling itself is then
the result of cooperative nonlinear interactions within and between neuronal

groups.

It is instructive to compare such a schema with the proposal of Hebb
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(1949). Hebb proposed the idea of cell assemblies in which diffusely connected
neurons form a closed loop when activated by specific inputs. However, given
the considerable feedforward and feedback connectivity in neural systems, such
point to point signaling between neurons would be difficult to achieve and in-
deed such a mechanism of communication would easily loose specificity. Signals
may spread out diffusively rendering the reverberating pathway structurally
unstable. Moreover, it is easy to see that such a system does not possess re-
dundancy - if a neuron in one of the closed loops is refractory, signaling would

be completely disrupted.

2.3 Organization of Temporal Phenomena

A variety of physiological and psychological experiments and observa-
tions suggests the thythmic organization of temporal phenomena in the neural
systems. The well known EEG oscillations (Brazier, 1977), oscillations in the
central pattern generator in the motor system (Cohen et al., 1987), oscillations
in the olfactory cortex (Bressler and Freeman, 1980), the thalamic oscillations
(Steriade et al., 1990) and the recently observed cortical oscillations (Gray and
Singer, 1989; Eckhorn et al., 1988), all affirm this.

The rhythmic organization of temporal phenomena in the brain is
also suggested by studies of reaction times to visual stimuli (Poppel and Logo-
thetis, 1986) and several neuropsychological experiments on speech production,
delivery, and related cognitive phenomena (Poppel, 1978). With respect to mo-
tor activity, Bernstein (1967) has noted that a diversity of rhythmical human
movements may be interpreted to a great accuracy with the sum of three or

four harmonics in the oscillations.
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2.4 Role of Oscillations in Signaling

Oscillations (see section 2.5) could serve as the basis of coherent sig-
naling and as autonomous timing mechanisms. Wiener (1961) noted that oscil-
lations could serve to gate specific inputs — thus, for example, signals arriving
within a certain time gap are likely to be combined. Based on several psycho-
logical experiments and observations, it has been noted that sensory integration
is likely to be aided by oscillations transduced by the different sensory modal-
ities (Poppel et al., 1990). Integration of new and unexpected signals such as
those required to take into account reactive phenomena in motion are likely to
be aided by oscillations (Bernstein, 1967). Oscillations also serve as the ba-
sis for establishing dynamical correlations for sensory segmentation underlying

pattern recognition (von der Malsburg and Schneider, 1986).

Oscillations provide a particularly effective mechanism to create a
spatiotemporally continuous representation of objects or events — the so-called
perceptual update — (Edelman, 1978; Reeke et al., 1989) in view of its own
cyclic and continuous nature. Globally mapped oscillatory signals may also be

involved in neural control of state (in the sleep-wake cycle, for example) as well

(Hobson and Steriade, 1986).

These observations have been given an impetus by recent experiments
on the cat visual cortex (Gray and Singer, 1989; Gray et al., 1989; Eckhorn
et al., 1988) indicating that oscillations in the frequency range 20 — 80 Hz.
occur in several areas of the neocortex when the animal directs its attention to
meaningful stimuli. The oscillations, occurring in spatially separated regions,
can be synchronized in a manner that reflects global stimulus properties. These
experiments suggest an important role for oscillations in overall integration in

distributed systems in order to obtain a coherent reconstruction of visual scenes.
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2.5 Population Nature of the Oscillations

While individual neurons can fire rhythmically (Llinas, 1988), it is
unlikely that given the massive recurrent connections between neurons this
represents the dominant mode of signaling in a distributed neural system. On
theoretical grounds, it may be argued that the oscillations must represent col-
lective phenomena (Wilson and Cowan, 1972). Such oscillations have the ad-

vantage of being robust and stable to random fluctuations.

The computer simulations of Traub et al. (1988, 1989) have recently
elucidated the nature of the population oscillations. The work of these scien-
tists on the CA3 slice of the hippocampus indicates that the temporal activity
consists of rhythmic population oscillations in which the number of neurons
firing per unit time oscillates synchronously, even though single neurons may
fire asynchronously. The firing of single neurons is largely stochastic and un-
predictable. The amplitude and frequency of this emergent rhythmic activity
depend on intrinsic cellular properties, such as refractoriness, as well as delay
in the inhibitory feedback and the connectivity and strength of both excitatory
and inhibitory synapses. An important indication of the population nature of
the activity is that the population firing rate (the fraction of neurons firing per
unit time) can be faster than the refractory period of single neurons. Further-
more, when the model slice is cut laterally, it is found that a certain minimum
size is needed to sustain coherent oscillations. Variable levels of excitation and
inhibition and their relative timings are found to be critical in determining the

characteristics (in particular the frequency and amplitude) of the oscillation.

Experimental evidence also suggest that cellular firing is usually less
well correlated with the EEG than are synaptic potentials (Traub et al., 1989).
Eckhorn et al. (1988) have noted the difficulty of detecting thythmic oscillations
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in single unit activity even when the local field potential and multi-unit activity
indicate coherent oscillatory activity. Therefore, it is unlikely that the critical
character of the oscillations is likely to be understood by considering the firing

of single neurons, or even a few interacting neurons.

2.6 Approach to Theoretical Analysis

An important characteristic of complex systems is that nonlinearity
serves to decrease the number of degrees of freedom. This allows us to represent
the aggregate dynamics by a few state variables. Such an approach is necessary
to pursue a theoretical and analytical study of signaling. It allows us to provide
a theoretical underpinning of several recent complex experiments and computer
simulations, besides looking for qualitatively new phenomena. Even computer
simulations of a thousand neurons in some detail requires considerable resources

to explore even a limited parameter range.

The experiments of Traub et al. (1988, 1989) suggest that the relevant
population variables are the fraction of excitatory and the fraction of inhibitory
neurons firing per unit time. A mathematical framework for studying the
functional dynamics of populations of neurons was developed by Wilson and
Cowan (1972, 1973). In the subsequent chapters this model and its variants are
used to study the generation of population oscillations within a neuronal group
and the reentrant signaling between neuronal groups. It would, however, be
a mistake to interpret the present approach in terms of neuronal fields (Arbib
and Amari, 1989) since we study the interaction of coherent signals within and

between localized segregated populations of neurons.

An important modification of the Wilson-Cowan model that has been

introduced in the present study is delay in the transmission and transduction
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of specific signals. Delays in models of physiological control systems have been
found to result in important qualitative and quantitative differences (Murray,
1989). In most theoretical models of neural systems, delay has been neglected

although its importance has been noted by von Neumann (Aspray and Burks,

1987).

It is important to note here that the spatial effects of connectivity
within the neuronal group have been somewhat sidelined since in a distributed
system the most important topological effects are thought to arise from map-
ping between neuronal groups. The connectivity within a localized population
of neurons is statistical and the collective phenomena are more or less inde-
pendent of the precise wiring. From such a systems point of view, the main
problem is to study the frequency-amplitude-phase characteristics of the os-
cillatory activity and the effect of reentrant signaling on inter-group activity

cross-correlation.



Chapter 3

Theoretical Analysis of Population Oscillations

3.1 Introduction

The mathematical study of the firing characteristics of a single neuron
itself presents enormous difficulties (Tuckwell, 1988). The behavior of a single
neuron is extremely complex — it is a highly nonlinear element which has sev-
eral voltaged gated channels controlling its membrane potential and hence its
activity. When we consider that this neuron is interacting with several hundred
other neurons through synaptic and dendritic interactions that are themselves
gated by complex voltage gated channels and receptors coupled to second mes-

senger systems (Shepherd, 1988b), the complexity becomes enormous.

In spite of this complexity, the firing pattern of a population of neu-
rons must have a simpler characteristic in order that the signaling be coherent.
Nonlinear interactions, between excitatory and inhibitory neurons in a local-
ized population, give rise to collective behavior thereby serving to reduce the
extreme variability that is possible in the firing of single neurons. Such popu-
lation oscillations obviate the need for control and precise timing of individual

impulses.

As we have seen, on several grounds it may be argued that the neuron
is unlikely to be the fundamental unit of signaling in neural systems. There
is evidence that the fundamental I/O unit in neural systems (at least complex

ones) is likely to be a neuronal group (Mountcastle, 1978; Edelman, 1978).

13
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The neurons in a group are tightly coupled, i.e., the synaptic strength within
a group is much stronger than that between groups. Therefore, the neuronal
group could serve as a stable locus for spatiotemporal signaling in a distributed
system. Within this stable unit, a great deal of dynamic control of the oscil-
lations is possible by varying, for example, the time courses of activation of
neurotransmitters and synaptic strengths, as the simulations of Traub et al.
(1988, 1989) have shown. Moreover, a large variety of neurotransmitters pro-
vides mechanisms to dynamically change the characteristics of the oscillations

of the same circuit (Marder et al., 1987).

In light of the experimental and computational results discussed above,
indicating the stochastic nature of firing of single neurons, we take a statistical
approach to study the origin and characteristics of coherent oscillations gener-
ated by interacting excitatory and inhibitory neurons. The model we consider
was proposed by Wilson and Cowan (1972) to study temporal phenomena in
a localized population of interacting excitatory and inhibitory neurons and is
based on the technique of renormalization which is widely used to study col-

lective phenomena in the physical sciences (see, for example, Frohlich, 1983).

The redundant and the quasi-random nature of the circuitry in a neu-
ronal group allows us to represent the mean temporal activity by renormalized
variables for the fraction of excitatory and inhibitory neurons firing per unit
time (Wilson and Cowan, 1972). In the present model, the actual renormal-
ization step consists of replacing the summation of excitatory and inhibitory
potentials on the membrane of a neuron by the summation of excitatory and
inhibitory signals from interacting subpopulations of excitatory and inhibitory
neurons (Cowan, 1971). This approach is useful in studying the dynamics of

the aggregate, particularly when cellular refractoriness is not negligible com-
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pared to the other time scales in the problem. The model therefore deals with
coherent interacting excitatory and inhibitory signals. Such an approach may
be contrasted with the EEG related studies of interacting neuronal oscillators
(Freeman and Skarda, 1985; Li and Hopfield, 1988) and studies of the rhyth-
mic response of central pattern generators using ‘phase models’ (Kopell, 1988;

Rand et al., 1988).

The focus of the present chapter is in exploring the role of delayed
inhibition and a slowly decaying inhibitory signal in inducing robust oscillations
in neural systems. The time courses of inhibition, mediated by, for example,
the slow and fast neurotransmitters GABA,4 and GABApg, play a critical role
in regulating the frequency-amplitude characteristics of the oscillations (Traub
et al., 1989). Our aim here is to analytically underpin the basis of such dynamic

response.

One of the reasons it has been difficult to analytically study the
frequency-phase-amplitude characteristics of the Wilson-Cowan model is that
without delay in the inhibition or a slowly decaying inhibition, strong feedback
is needed to generate oscillations. Strong feedback results in the generation of
strong harmonics which makes it difficult to carry out any detailed theoretical

analysis. This problem has been overcome in the present study.

The organization of this Chapter is as follows: in Section 3.2 we
describe the mathematical model of Wilson and Cowan and propose a simple
extension to study temporal activity due to delayed inhibitory signals. In
Section 3.3 the asymptotic stability of the linearized equations is considered.
It is found that for a wide range of parameters delay in feedback from the
inhibitory neurons can destroy stability of the fixed points, thereby inducing

limit cycle oscillations. To study periodic solutions, the method of harmonic
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balance is briefly described in Section 3.4, and in Section 3.5 this method is used
to derive nonlinear algebraic equations governing the frequency, amplitude, and
phase of oscillations for the piece-wise linear sigmoid. In Section 3.6 it is shown
that a linear approximation is inadequate to study the oscillations. We consider
a detailed nonlinear theory in Section 3.7. Section 3.8 summarizes the main

results.

3.2 Mathematical Model

The aim of the mathematical model we consider in this and the fol-
lowing two chapters is to “give an expression to the statistical nature of the
interaction of neurons” (Cowan, 1971). The model does not refer to the firing
or activity of single neurons but to the collective behavior of localized pop-
ulations of neurons. Such an approach is consistent with the experimental
and computational results indicating the population nature of the oscillatory
activity (Traub et al., 1989; Eckhorn et al., 1988; Sporns et al., 1989). The
main problem that this model addresses is the nonlinear interaction of excita-
tory and inhibitory signals originating from the more complex spatiotemporal

interaction of individual neurons.

Figure 3.2.1 is a schematic representation of the model. External in-
put and recurrent excitation drive the activity of the excitatory subpopulation.
The inhibitory subpopulation is activated by the excitatory subpopulation and
possibly by external input. The activated inhibitory subpopulation then in-
hibits the activity of both inhibitory and excitatory neurons usually with a

latency.

The nonlinear summation of voltages at the membrane of a neuron can

be renormalized to represent the response of excitatory and inhibitory subpop-
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Figure 3.2.1: A schematic of interacting subpopulations of excitatory E and in-
hibitory I neurons in a neuronal group. External inputs P and @ drive the activity
of the neurons. Cy, Cy, C3, and Cy are the mean synaptic strengths mediating the
inter- and intra-subpopulation interactions. Filled arrows indicate the excitatory ef-
fect, and unfilled arrows, the inhibitory effect of one subpopulation on the other or
itself.

ulations in a localized population of neurons (Cowan, 1971). This represents
a parsing of the complex circuitry within a neuronal group. The interactions
between the subpopulations may then be modeled by the following time coarse
grained and spatially averaged nonlinear differential equations, (Wilson and

Cowan, 1972), for f.(t) and f;(t), the fraction of excitatory and inhibitory

neurons firing per unit time at time ¢,

Tfo(t) = —f(t)+ 1= fi,, folt)dt]oc(z.) (3.2.1)
T:fi(t) = —fit)+[1 = [, fit)dtoi(z:) (3.2.2)
2, = OLfu(t) — Cofi(t) + P

;= Cafe(t) — Cafi(t) + @
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Condition 2 ensures that there is only one fixed point, and condition
1 implies that the fixed point is unstable. These conditions require that there
be a strong negative feedback (C2C5 > CiCy). We will show that limit cycle
oscillations exist for a much wider range of parameters than implied by the

above results.

Eqns. 3.2.1 and 3.2.2 ignore delay in the expression of the inhibitory
signal at the synapse (Hille and Catterall, 1989). Such delays are a typical
feature of inhibitory interneurons and have been shown to be critical for os-
cillations — blocking slow inhibition can prevent partially synchronized bursts
(Traub et al., 1988; Traub et al., 1989). If we denote the time course of the in-
hibitory postsynaptic potentials developing onto the excitatory and inhibitory
subpopulations by a(t), Eqns 3.2.1, 3.2.2 are modified to

T.fe(t)= —fo(t)+ 11— fi,. f(¥)dt']oe(Cr fo(t)

—Cy [t a(t")fi(t — t")dt" + P) (3.2.3)
T.fit) = —f()+[1 - JL,, fit)dt]od(Cafilt)
—Cy fF (i) fi(t —t")dt" + Q) (3.2.4)

Approximating the time course by the delta function, a(t) = 6(¢ — t4), where
t; is the delay in the inhibitory feedback, the above equations are,

T.fe(t) = —fu(t) + 1= fi,, fo(t')dt)o(Cife(t) — Cafi(t — ta) + P)3.2.5)
Tifi(t) = —fi(t) +[1 = Ji,, fi(t)dt'oi(Csfi(t) — Cafi(t — ta) + Q)(3.2.6)

In the next section we show that Eqns. 3.2.5 and 3.2.6 display limit
cycle oscillations for a wide range of parameters when the inhibitory signal

delay, t4, is non-zero.
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3.3 Asymptotic Stability of Linearized Equations

The role of delay in inducing oscillations has been explored in other
neural network models (an der Heiden, 1980; Marcus and Westervelt, 1989).
The aim here is to consider specifically the role of delayed inhibition in a model
with renormalized nonlinear summation of excitatory and inhibitory signals. In
this section, we consider the stability of the fixed points of Eqns. 3.2.5 and 3.2.6
in order to study the effect of delay in the inhibitory signal. A different view
of the origin of the oscillations will be described when a nonlinear theory is

described.

A necessary condition for the existence of oscillations is that at least
one of the fixed points is unstable. Proving existence of limit cycle oscillations
for delay differential equations is quite complicated and no attempt is made to
do so here. However, for the problem at hand, we will interpret the instability
of all the fixed points to mean that oscillations could exist, although this is
a much stronger condition than is actually needed. Numerical experiments

indicate that the only limit sets that occur are fixed points and periodic orbits.

For the stability of a fixed point of the nonlinear functional differential
Eqns. 3.2.5 and 3.2.6 a necessary and sufficient condition is the stability of the
linearized equations (Kolmanovskii and Nosov, 1986). The fixed points, f. and

fi, are given by
fe = (1 - refe)ae(clfe - CZ};’ + P) (331)
fi= (1=rif)oi(Cafe— Cufi + Q) (3.3.2)

Linearizing around the fixed point gives the following characteristic equation

for small r, and r; (see Appendix A.1 for details)

M4 GA+H+Me L Te7h =0 (3.3.3)
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where
G(Ze) = (Kot ki — a0 (Z)Ch)
H(z.) = ri(ke — 0e0(2c)Ch)
[(Ze,%;) = 0L(Ze)0i(Ti)ae;(C2Cs — C1Cy)
J(Z) = oi(Fi)aiCy
ol(@:) = B/(4cosh¥(—Bi(. — x.))) (3.3.4)
0i(z:) = Bi/(4cosh®(=Bi(Z: — xi)))
Teke = 1+r1e0.(Te)
Tiki = 14r0:4(3;)
Tae = 1—r.fe
Ti, = 1—rif;
g, = Cife—Cafi+ P
Z = Csfe—Cufi+Q
The quasi-polynomial (Eqn. 3.3.3) has an infinite number of roots. A necessary
and sufficient condition for the stability is that Re A < 0, for all roots. ol(Z.)

and ol(%;), are the slopes of the sigmoid at the fixed point. ¢’ lies between 0

and % and its maximum value is at the threshold.

The following theorems, proven in Appendix A.2, indicate the nature
of the solutions to the characteristic equation. Here we will discuss only the

implications of the theorems.

Theorem 3.3.1 For sufficiently large delay t; the fized point is unstable if
H < 0.

Theorem 3.3.2 A set of sufficient conditions for stability of a fixed point is:
(3) ta(H + 1) >0 and (i)) G—J > t4|l]
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Theorem 3.3.3 Ift3(H + I) <0, the fizred point is unstable.

The following results indicate when limit cycle oscillations could occur and

the critical delay for which this happens:

(1) If oi(z.) = 0 and o(Z;) = 0 then the fixed point is stable.
Proof: Let o/(z.) = 0i(Z;) = 0. Then G = ke + ki, H = ks > 0, I = 0 and
J = 0, from Eqns. 3.3.4. From Theorem 3.3.2 it then follows that the fixed

point is stable.

Hence, oscillations cannot occur for any value of delay if the slope
of the sigmoid at all of the fixed points is zero for both the excitatory and
the inhibitory components. Typically, the slope of the sigmoids is zero when
either the driving input is too strong or too weak compared to the threshold

for excitation.

(2) An interesting case arises when the sigmoid is a step function so that
the slope is zero everywhere except the threshold where it is infinite. The result
derived in (1), above, indicates that no oscillations are possible in such a case
since the slope is zero almost everywhere. Thus, variance in the subpopulation,
implying a non-step-function sigmoid, may be essential in generating stable
oscillations. Numerical experiments indicate this to be true. Note however

that this result has not been proved rigorously.

(3) If H < 0, which necessarily requires o,(Z.) # 0, there is a time delay, 7,
such that for ¢ > 7, all fixed points are unstable. This follows directly from
Theorem 3.3.1. This result indicates that for a wide range of parameters, all
the fixed points are unstable, and therefore limit cycle oscillations occur for

large enough delay. When r, = r; = 0 and T, = T}, for H < 0, it is necessary
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that C; > Gé(lie), If the fixed point is near the threshold this simply requires
Ci1 > 5

(4) If H+ 1 < 0 for all fixed points, then from Theorem 3.3.3, arbitrarily
small delays can cause the fixed points to be unstable. This result is particularly
important for I oc CoC5—C1Cy = 0, i.e., there is no dominant feedback. Hence,
if the condition C; > é derived in (3), above, is satisfied, even arbitrarily small

delay can cause oscillations. An example of this is illustrated in Fig. 3.3.1.

(5) On the other hand, if H + I > 0, condition (ii) of Theorem 3.3.2,
G — J > |I|t,, gives the delay times for which the fixed point is stable:

17 = [Ke + & — @0L(2)C1 — 01(Z:)iCal /[0 Ze)oi(Zi)aei(C2Cs — C1Cy)]

For t; < maz(ty), where maz is the maximum over all fixed points, every
fixed point is guaranteed to be stable and no oscillations are possible. For
r. = r; = 0, it is easy to see that for a wide range of parameters, stability is

difficult to guarantee.

(6) The role of refractoriness in the excitatory neurons in inducing oscilla-
tions is indicated by the following argument. Let o.(z.) = oi(z;) = 1 (hence
o!(z.) = 0 and 0(Z;) = 0), as we have seen, even large delays cannot destabi-
lize the fixed point. Consider parameters such that when r. = r; = 0, f. = 1.
f. decreases when r. # 0. This follows straightforwardly from Eqn. 3.3.1,
fe= I;% < 1. Now, with a smaller value of f., 0.(Z.) can be less than 1

thereby increasing o’(Z.) to non-zero values, whence delay can induce oscilla-

tions.

(7) Oscillations can occur even if the delay ¢4 is zero and there is no dom-
inant feedback, but the inhibitory decay time is greater than the excitatory

decay time, T; > T.. From Eqn. 3.3.3, when {; = 0, it is easy to see
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fe

Time

fe
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Figure 3.3.1: The fixed point can become unstable when a small delay is introduced
in the inhibitory feedback thereby inducing limit cycle oscillations. (A) The fraction
of excitatory neurons firing per unit time f.(t) for inhibitory delay t; = 0 illustrates
stabilization to a fixed point. (B) f.(¢) for delay {; = 0.05 indicates destabilization of
the fixed point leading to robust oscillations. Results are obtained from the numerical
simulation of Eqns. 3.2.5 and 3.2.6. Similar results hold for the inhibitory component.
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that if G + J < 0, the characteristic equation has a positive real part and
hence the fixed point is unstable. From Eqns. 3.3.4, since J ~ —% and
G ~ —71,:(1 + % — 0!(z.)C1), the effect of small excitatory decay time 7, and
large inhibitory decay time T; is to decrease G + J, thereby causing the fixed

point to be unstable. Fig. 3.3.2 illustrates an example of oscillations when

tg=0but T. < T;.

From these results we note that there exist a wide range of parameters
for which delay in the inhibitory signal or a slowly decaying inhibitory signal can
destabilize the fixed point. In particular, it is not necessary that the coupling
be feedback dominated. Arbitrarily small delays can cause instability of the

fixed points and hence oscillations.

3.4 Method of Harmonic Balance

To study periodic solutions of Eqns. 3.2.5 and 3.2.6 we apply the
method of harmonic balance, which reduces the problem of finding periodic
solutions of differential equations to finding solutions of algebraic nonlinear
equations (Mees, 1981). The method is closely related to the averaging tech-
nique (Guckenheimer and Holmes, 1983).

The solution of Eqns. 3.2.5 and 3.2.6 is taken to be of the form
f ~ f+ fosin(wt). Therefore, the input to the nonlinear sigmoid is of the form
z(t) = B+ Asin(wt + 8) where B is the bias, A the amplitude, w the frequency,
and § an appropriately determined phase. The main problem now is to obtain
an approximate response of the nonlinear sigmoid. The crucial step here is to
approximate the response of the nonlinear sigmoid by the Fourier transform of

o(z) (Bogoliubov and Mitropolsky, 1961),

o(z) ~ BFg(o,A,B)+ AF4(o, A, B)sin(wt + 0)
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Figure 3.3.2: Even with zero inhibitory time delay, ¢4, low frequency oscillations can
be induced when the activity decay time scales, T, and T}, are disparate — T, < T5.
(A) The fraction of excitatory neurons firing per unit time f.(¢). (B) The fraction
of inhibitory neurons firing per unit time f;(¢). (C) The phase portrait showing
non-zero phase between the excitatory and inhibitory components. In this example,
T. = 0.1 and T; = 0.25. The other parameters are the same as in Fig. 3.3.1.
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+ AFl(O‘, A, B) cos(wt + ) (3.4.1)
Fs(o,A,B) = é}ié /0 " (B + Asin(h))de
Fu(0,A,B) = 7{1}1' /0 " o(B + Asin(ih)) sin(s)d

.i. 1 27 i
Fi(0,A,B) = — [ o(B+ Asin(y)) cos()dsp

Fg, Fy, and Fz are the nonlinear gain for the bias, sinusoidal, and co-sinusoidal

components respectively. These gain functions are also referred to as describing

functions (Gelb and Velde, 1967).

Using these approximations, the differential equations reduce to alge-

braic ones.

In the present problem, for the general form of the sigmoid, it is hard
to evaluate the integrals above. However, the integrals can be easily evaluated

by using the piecewise linear saturation function (Fig. 3.4.1)

o(z) = 1.0 z>x+6
0.0 r<x—6

m(z—x)+05 |z —x|<é

where x + 6 is the saturation point, and m is the slope of the sigmoid with

1
om = 3.

The integrals simplify further for the symmetric version of the sigmoid

o' (z)= mz |z|<$é
05 z>46
05 z< -6 (3.4.2)

The gain functions Fp, F4, and Fi for inputs of the form z(t) =
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o(z)

|
x—6 X x+96
z

Figure 3.4.1: Piece-wise linear saturation nonlinearity, o(z). x + & is the saturation
point, m is the linear gain with ém = %

B + Asin(wt + 6) to o* can now be easily evaluated

Fe(B,A) = Z4[g(HE) — g(558)] (3.4.3)
Fa(B,A)= Z[f(HE)+ f(5B)] (3.4.4)
Fl(B,A) = 0 (3.4.5)

where f and g are given by,

g(z)= 2(zsin'z+v1-2?) 2| <1

= |z| lz| > 1 (3.4.6)
flz) = -1 z < —1

= Z(sinlz+av/l—27) [z <1

= 1 z>1 (3.4.7)

(Gelb and Velde, 1967).
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Figure 3.4.2: Strong harmonics can be generated when the input to the sigmoids is
large. The strong even harmonics are due to refractoriness in the excitatory neurons.
The primary frequency is @ = 4.91. C =20, T. = 0.1, T; = 0.2, 7. = 0.5, and
tqg = 0.2.

While in principle higher harmonics can be taken into account, the
complexity of the problem has so far prevented us from tackling these. The
existence of higher harmonics depends not only on the response of the nonlinear
sigmoid but also the linear operator (£)7' ~ L. Thus if the frequency is
low, a pronounced generation of harmonics is possible. Fig. 3.4.2 indicates a
general case where the harmonics can be strong. We will discuss the generation
of harmonics as particular cases are considered in Section 3.7. For example,
when the input to the sigmoid is very large, numerical experiments and theory
indicate that the third harmonic can have an amplitude of about % of the

fundamental. In such cases, the approximation of taking the input to the

nonlinear element as a bias plus sinusoid is incorrect.

In the next section, the method of harmonic balance discussed above

is used to derive nonlinear algebraic equations governing periodic solutions of
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Eqns. 3.2.5 and 3.2.6.

3.5 Frequency-Amplitude-Phase Relations

In this section we derive the frequency-amplitude-phase relations be-
tween the excitatory and inhibitory components of the following equations using
the method of harmonics discussed in Section 4. For simplicity, we temporarily

ignore cellular refractory periods and set r, = r; = 0.

T.fo(t) = —fe(t) + 0e(C1fe(t) = Cofi(t — ta) + P) (3.5.1)
Tifi(®) = —fi(t) + 0:(Cafo(t) — Cufs(t — ta) + Q) (3.5.2)

Shifting the origin to the threshold x, Eqns. 3.5.1 and 3.5.2 are mod-
ified to

Tofo(t) = —fol®) + 0.5+ 05(Cofelt) = Cofi(t —ta) + P — x.)  (3-5.3)
Tifi(t) = —f(1) + 0.5+ 03 (Csfe(t) = Cafi(t —ta) + Q@ — xi)  (3.5.4)

Neglecting the higher harmonics, solutions to these equations may be

approximated by,

fe(t) = fe + feO Sin(wt)
fit) = Ji+ fuosin(wt —6;) (3.5.5)

where 8; is the phase difference between f. and f; which has to be self-consistently

determined from the solution. We assume §; to be constant.

Inserting Eqns. 3.5.5 in 3.5.3 and 3.5.4 gives,

wT, feo cos(wt) = — fo — feosin(wt) + 0.5+
oX([Cife = Cafi + P — X
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+[leeo sin(wt) et Cgfio sin(wt - 0,‘ — wtd)])
wT; fio cos(wt — 8;) = —fi = fiosin(wt — 6;) + 0.5+
oi([Csfe — Cafi + Q — xi]

+[C3 feo sin{wt) — Cy fio sin(wt — 0; — wiy)]) (3.5.6)

The input to the sigmoid o* can be cast into a more elegant form with
a single sinusoidal component. Writing the argument of the excitatory sigmoid

o as z. = B, + Aesin(wt + §,.) the following can be inferred:

B. = Cife—Cofi+ P —x.

A2 = Cifl+ Cifh —2C1Cs feofiocos(8i + wia)
Ausin(8a) = Cafiosin(6; +wia) (3.5.7)
Accos(0ae) = Cifeo — Cafiocos(6; + wiq)

Ci Jeo

tan(f,.) = sin(6; + wtd)/(-é-;};- — cos(; + wtd))

Similarly, writing the argument of o as z; = B; + A;sin(wt + 6,;),

B = Csfe—Cifi+Q—x:

A? = C2f% 4+ C2f2 —2C5C feo fio cos(0; + wiy)
Aisin(0,) = Cafiosin(d; +wia)
Aicos(8es) = Cafeo— Cafiocos(6: + wta) (3.5.8)

A;cos(8a; +0;) = Csfeocos(8;) — Cyfiocos(wiy)

= sin(f; + wty)/ §§_f39_ — cos{f; + wiy))

)
)

A;sin(0u; +6;) = Cafeosin(8;) + Cafiosin(wty)
)

) Cy fio

tan(f,;
Eqns. 3.5.6 can now be written as

W, feo cos(wt) = ~fe — feosin(wt) + 0.5 +
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*(Be + Aesin(wt + 6,.)) (3.5.9)
wT;fiocos(wt — 8;) = —fi — fosin(wt — 6;) + 0.5 +

O';(B;f + A; sin(wt + 9%')) (3510)

Using the nonlinear gain functions described in Section 4, the nonlin-

ear terms in the above equations can be written as,

0*(z.) = B.Fpe+ A.Fa.sin(wt + 8..)
U*(:C,‘) = B;Fp;+ A;Fy; sin(wt -+ 0(“') (3.5.11)

where the functions Fg(B,A) and F4(B, A) are as in Eqns. 3.4.3 and 3.4.4.
Substituting Eqns. 3.5.11 in 3.5.9 and 3.5.10 and equating the bias and coeffi-

cients of cos and sin to zero, we get

f. = 0.5+ B.Fs. (3.5.12)
wl.foo = AcFacsin(bee) (3.5.13)
foo = AeFaecos(bac) (3.5.14)
fi = 0.5+ B:Fg; (3.5.15)
wlifio = AiFaisin(fu+6;) (3.5.16)
fio = AiFa;icos(b,; +6;) (3.5.17)

The nonlinear differential equations, Eqns. 3.5.3 and 3.5.4, have thus
been reduced to algebraic equations, Eqns. 3.5.12 - 3.5.17. In what follows we
attempt to gain some insight into the nonlinear oscillations by studying these
equations. Modification of these equations to take into account refractoriness

in the excitatory neurons is deferred to the latter part of Section 3.7.
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3.6 Linear theory

We first seek the solution to small amplitude oscillations. These os-
cillations are unstable to small perturbations and almost never exist in real
systems; however their study could shed light on the behavior of the nonlinear
system. To solve Eqns. 3.5.12 - 3.5.17 for the frequency, phase, and ratio of ex-
citatory and inhibitory neurons firing in the linear region, we first approximate
the gain functions Fg and F}, noting that -‘%‘Q > 1. These approximations
hold when ¢ is large and the amplitude and bias components of the input into
the sigmoid are small. From Eqns. 3.4.3 - 3.4.7, it follows that Fz ~ m and
Fy ~ m where m = 9—? is the slope of the sigmoid. This result would also

follow from straightforward linearization. Eqns. 3.5.12 - 3.5.17 can now be

written as,

F = 05+ B.m,

wlefo = Aem.sin(f,.)
foo = Acm.cos(0,) (3.6.1)
F = 05+ Bm;

wTlifio = Am;sin(fq + 6;)

fio = Aim;cos(8,; + 6:)

Substituting for A, cos(ba.), Aesin(b,e), A;cos(be + 6;), Aisin(fye + 6;) from
Eqns. 3.5.7 and 3.5.8,

wlefeo = mCofiosin(f; + wiy) (3.6.2

)
foo = m(Cifeo — Cofiocos(b; + wita)) (3.6.3)
wl_Fg'f,'g = mz‘(c;gfeg sin(@i) - C;}fz‘g Siﬂ((&)id}) (364)

)

fio = mé(cs’feocos(gg)+C4f50COS(wtd)) (&6.5
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Eliminating 6; + wty from Eqns. 3.6.2 and 3.6.3 and §; from Eqns. 3.6.4 and
3.6.5,

2 2072
10 meCy

2T T2+ (m.Cy—1)?

(3.6.6)

2
D202 = (Tiw — mCysin(wtg))? + (miCycos(wty) +1)*  (3.6.7)

f
From these equations, the following relation for w may be obtained
2,222
(Tiw — m;Cysin(wty))? + (miCy cos(wiq) +1)* = mem; CsCs (3.6.8)

- T2w? 4+ (mCy —1)2

Some simple results may be obtained when ¢; = 0. In this limit, the

frequency can be solved for,

W= —(A+ 8+ \/w§ + (a? + 5?)? (3.6.9)
TeTgwg = memgCQCP,
T.ao = —\}—é(meCl - 1)
1
T.86 = —=(miCs+1)

V2
The phase difference between the excitatory and inhibitory components is found
to be tan(6;) = ?n—,%%ﬁ If feedback dominates, C3C3 > C1Cy, then w ~ wg =
\/@ The phase difference is tan(9;) = \/%\/W ~Z.

In numerical solution of the differential equations, we tested the the-
oretical frequency and phase results. It was found that the linear theory pre-
dicted much larger frequencies than the correct values. The phase difference
between the components was also in disagreement. This leads us to conclude
that linear theory is inaccurate and inadequate to study oscillations in the

feedback system with delay. Furthermore, as the stability analysis of Section 3

has shown, linear oscillations can be unstable to even small time delays in the

feedback.
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3.7 Nonlinear Theory

As noted above, linear oscillations are guaranteed only in the low
gain limit and are unstable not only to perturbations but also delay in feed-
back. Nonlinear saturation mechanisms then limit the response of the sub-
populations. In addition, refractoriness of the neurons limits the number of
neurons firing per unit time. Next, we study nonlinear oscillations using the
method of harmonic balance discussed in Sections 3.4 and 3.5. The following
equations were derived in Section 3.5 (Eqns. 3.5.12 - 3.5.17) neglecting the
refractoriness in both excitatory and inhibitory neurons (a consideration of the
effect of refractoriness in the excitatory neurons is deferred to the latter part

of this section, see Case & below).

f. = 05+ B.Fg, (3.7.1)
wlefeo = AcFaesin(f,.) (3.7.2)
Jeoo = AcF4ccos(0.) (3.7.3)
fi = 0.5+ BiFg; (3.7.4)
Wlifio = AiFasin(0,; +0;) (3.7.5)
fio = AiFacos(0s; + ) (3.7.6)

Some general observations may be made without explicitly solving

the equations above.

(1) If || > 1 and i%—’i{ > 1 and these terms have opposite sign, Fs =
0 from Eqns. 3.4.4 and 3.4.7. No oscillations occur when Fy = 0. This
implies that nonlinear oscillations, if they exist, must have a strong sinusoidal

component (compared to the bias) to the input activity.
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(2) The phase shift o = 8; + wtq, between the excitatory and inhibitory
signals is critical for the oscillations. It has two components: ; originating from
the feedback coupling and wt; from the time delay in feedback. The response
from the nonlinear sigmoid is proportional to A, sin(,.)Fa. = F4.C2 fio sin(fy).
Since Fy. is bounded by m., the slope of the sigmoid, the response is exactly
zero when 0, = 0. When CoC3 = C,C4, the phase difference 8;, can be zero
(this statement will be proved below) in which case it is necessary that the
feedback time delay not be equal to zero. When 6o ~ £, A2 = CE 2+ C3 f —
2C1Ca feo fio cos(bo) ~ (C2f2 + C? fio), hence the sinusoidal component of the
input to the nonlinear sigmoid could be large, in which case the corresponding

nonlinear response is non-zero.

(3) Inter- and intrasubpopulation asymmetries (for example, C1Cy # C2Cs,
or P—x. # @Q—x;) can also result in nonzero phase differences between the ex-
citatory and inhibitory signals. However, the results of Wilson and Cowan (see
Section 3.2) show that rather stringent conditions are required on the asymme-
try in feedback coupling to cause adequate phase shifts to induce oscillations

in the present model.

(4) When the input P is large, no oscillations occur in the excitatory com-
ponent because the effective gain from the nonlinear sigmoid for the oscillating
component, F., is zero: for example consider P such that (6§ — B.)/AT*" < —1
and (6 + B.)/AT*® > +1, i.e. the bias is very large, where A7'*" is (1 + (5, in
which case Fy. = 0. Therefore there exists a P = P™%® such that for P > pP™*¢

no oscillations occur. A similar result holds for the inhibitory component.

(5) If the excitatory subpopulation receives subthreshold excitation, i.e., P
is small compared to the threshold, x., no oscillations occur. The reason is

essentially the same as the one above: the input to the sigmoid has a large bias
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component compared to the maximum possible oscillating component, thereby
reducing the nonlinear gain for the sinusoidal component, Fy4, to zero. Thus,
the oscillations are input driven underscoring the strongly dissipative nature of

the interaction in the absence of external drive.

(6) It is possible for oscillations in the inhibitory component to occur in the
absence of oscillations in the excitatory component. This typically occurs when
P is large so that F, = 0, as discussed above, but the external input @ to the

inhibitory neurons is close to the threshold and hence Fy; # 0.
(7) The frequency of oscillation depends on the connectivities C, C3, Cs,

C, as well as the time scales 4, Te, T; and the inputs P, Q.

It is extremely difficult to solve Eqns. 3.7.1 - 3.7.6 exactly. However,
in the large amplitude limit, -g— < 1, the equations may be simplified as follows.

The nonlinear gain is
Fp(B,A)= Z2[g(HE) - g(5E)]
Fu(B,A)= Z[f(HE)+ F(5P)] (3.7.7)

Let 22| < 1 and |$52| < 1, then substituting for g and f from Eqns. 3.4.6
and 3.4.7,

Fa(B,A) = BAI(EE s () + T (BE))
(352 sin™(558) — /1 - (BE)))]
FABA) = Bl (SE) + 52,1 (BEP)

+(sin™1(258) + &5, /1 — (B )2)] (3.7.8)

Approximating sin™(z) ~ z and /1 — 22 ~ (1 — z%/2) above,

o

2

Fs(B,A) = — (3.7.9)
2 §(6%—3B2

FA(B5 A) == ';;Z - '(_-2’;%""_)' (3.7‘10)
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In making this approximation we are faced with a dilemma: without this ap-
proximation Eqns. 3.7.1 - 3.7.6 are very difficult to solve analytically; on the
other hand, when the approximation is strictly valid the harmonic feedback is
strong and therefore the bias plus sinusoid input to the nonlinear sigmoid is in-
correct. The neglect of harmonics is valid only for moderately strong inputs into
the nonlinear sigmoid, typically A + |B| < 104, i.e., the maximum input into
the sigmoid is within an order of magnitude of §. Also, for (§+ B)/A > 0.6, the
approximations sin™!(z) ~ z and /T — 2% ~ (1 — 22/2) are incorrect. Within

the regime suggested above, the approximations used do give correct results.

Neglecting the O(-5) term in Fy4, Eqns. 3.7.1 - 3.7.6 can be written

as,
fe = 05+8B 2 (3.7.11)
e — ° eﬂAe P Y
WTofeo = Zsin(8,) (3.7.12)
T
2
fo = ;608(0%) (3.7.13)
= 2
fi = 0.5+Bi'7';;1‘; (3.7.14)
2
wT:fio = ;r—sin(9m’+95) (3.7.15)
2
fio = ';COS(gaé“f‘gi) (3.7.16)

From the Eqns. 3.7.11 - 3.7.16, the following may be easily shown,
Tew = tan(fs)
Tiw = tan(fq + 0;) (3.7.17)

where, from Eqns. 3.5.7 and 3.5.8,
sin(f; + wty)

t gae =
a0 (0ac) -g—gfff—-cos(&—kwid)
n(0;
tan(8a:) = = T wha) (3.7.18)

%}%g— — cos(f; + wty)
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We consider here oscillations with P ~ x. and ) ~ x;. The bias B
then depends on the mismatch of the excitatory and inhibitory activity and
not the actual value of the external input. Below, some of the characteristics
of the oscillations for a few different cases are discussed. Except as noted, all
the numerical values quoted are for the following default parameters: Cy =
Cr,=03=C4=50,t=01,T.=T; =01, m; =m; = 0.5, P = ¢ = 4.0,
e = Xi = 4.0, 7o = r; = 0.0. In Case 3 below, r. # 0.0.

Note on Method: The differential equations were solved by fourth-
order Runge-Kutta method with step size 0.005. The numerical values of the
theoretical results quoted were obtained by solving the simplified frequency-
amplitude-phase relations using the symbolic manipulation program Mathe-

matica (Wolfram, 1989).

Case 1 Let C1Cy = CyC3, so that there is no dominant feedback. and similar
excitatory and inhibitory decay time scales, T, = T; = T'. The following results

may be shown:

(1) The phase difference §; between the excitatory and inhibitory compo-
nents is equal to zero. From Eqns. 3.7.18, when CyCs; = C:1Cy, tan(f,.) =
tan(f,;), and from Eqns. 3.7.17 if T, = T;, tan(f,c) = tan(f.; + 8;). It follows
that §; = 0. Figs. 3.7.1 and 3.7.2 illustrate examples of phase locked oscilla-
tions. Note that the zero phase difference is due to the symmetry. In this case,
oscillations exist only because of the ‘hidden phase shift’; wity, caused by the

delay in the inhibitory feedback.

(2) The excitatory and inhibitory components have the same amplitude,

ie., :ffff = 1. From Eqns. 3.7.12 and 3.7.13 eliminating 8.,, and from Eqns.
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Figure 3.7.1: Oscillations with zero phase difference between the excitatory and
inhibitory components can occur under certain symmetry constraints: C7;Cy = C2C3,
T, =T; and P = Y., and ¢ = y;. Such zero phase difference oscillations cannot
arise in the absence of delayed feedback. (A) Fraction of excitatory neurons firing
per unit time, f.(¢). (B) Fraction of inhibitory neurons firing per unit time, f;(%).
(C) Phase portrait of the f; and f, shows zero phase difference. (ID) The frequency
spectrum showing a weak third harmonic. The frequency of oscillation is w = 11.50.
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Figure 3.7.2: When the inhibitory delay is increased, the amplitude and frequency
of the oscillations can change significantly. The number of neurons firing per unit
time increases and the frequency decreases (compare with Fig. 3.7.1). (A) Fraction
of excitatory neurons firing per unit time, f.(¢). (B) Fraction of inhibitory neurons
firing per unit time, f;(t). (C) The phase portrait once again indicates zero phase
difference between the excitatory and inhibitory components. (I3) The frequency
spectrum showing the presence of moderately strong odd harmomnics because the
frequency of the oscillation is smaller (w = 4.30). The inhibitory delay is #; = 0.5.
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{4 | w (num.) | w (theory)
0.05 17.49 19.2
0.1 11.35 13.06
0.2 7.67 8.60
0.5 4.30 4.56
1.0 2.61 2.62
1.5 1.84 1.85
2.0 1.38 1.38
3.0 0.92 0.98

Table 3.7.1: The frequency of oscillation, w, monotonically decreases with increasing
inhibitory feedback delay 4 (comparison of theoretical and numerical results).

3.7.15 and 3.7.16 eliminating ,; + 6;,

o1+ Tlw") = % (3.7.19)
w1+ T = 5 (3.7.20)

The two relations above give f«‘fﬁ = 1. The amplitudes, fo and f;, decrease

with increasing oscillation frequency.

(3) With the above results, Eqn. 3.7.17 may be solved for the frequency of
oscillation,

sin(wty)

Tw = (3.7.21)

For C; = () this is simply Tw = cot(wty/2). If this relation is cast in the form
—i{—z/) = cot(%), where ¥ = wiy it is easy to see that for fixed T' the frequency is
a monotonic decreasing function of the delay ¢4. Table 3.7.1 compares the nu-
merical and theoretical results for the variation of frequency with the inhibitory
signal delay. The results are close, particularly for lower frequency. The time
period of the oscillation is different from any time scale in the problem. As
noted in Section 3.4, the harmonics become important when (1) the input to

the nonlinear sigmoid is large and/or (2) the frequency is small. Fig. 3.7.1
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Clw(num.) ¢4 =01} w (num.) t; = 0.5
4] 11.35 4.29
10 9.66 4.14
20 8.13 3.83
200 5.21 3.07

Table 3.7.2: The frequency of oscillation decreases as the mean synaptic strength C
is increased (numerical results), and its variation is much less when the frequency is
small.

(D) indicates that the harmonics are small when the frequency is large and
the input to the sigmoid is small. Fig. 3.7.2 (D) shows that even when the
input to the sigmoid is small, harmonics can be generated because the nonlin-
ear gain drops as only -3; The theory and approximations used, however, do
not capture the functional dependence of the frequency on C. This is partly
because at larger values of C, the harmonic feedback becomes strong and this
variation is not accounted for. The frequency decreases as the mean synaptic
strength C is increased (Table 3.7.2). For lower frequencies, there is much less
variation of frequency with C, presumably because harmonics are present even

2z ~ z and

with small values (of C). For small C, the approximations sin™
/T — 22 ~ 1 are no longer valid, and the frequency must be obtained by a
detailed numerical solution of the transcendental equations. The frequencies
obtained in that case approach the numerical results even more closely and is

found to increase as C decreases. The details of the calculations are tedious,

offer no particular insight, and therefore are not presented here.

(4) Asshown above, when C = C; = C; = Cs = Cyand T, = T;, feo is equal
to fio, therefore if P = @) = y, the biases B, and B; are zero. In Appendix
A.3 it is shown that the even harmonic feedback is proportional to the bias.

Hence the even harmonics are negligible. As the mean connection strength C
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is increased, it is the odd harmonics that are important. In particular, the
third harmonic can have an amplitude of £ of the fundamental (Eqn. A.3.8).
However if, for example, P is increased beyond the threshold y, the bias B,
will in general be non-zero and the even harmonics, in particular the second

harmonic, would be present.

(5) To study how the frequency varies with -g—;— = Qi*, a general result con-

cerning the frequency of oscillation is proved next (we assume oscillations exist).

Theorem 3.7.1 Forz > 0, the frequency of oscillation given by Tw = _sin(wtg)

z—cos(wig)

monotonically decreases as x increases.

Proof. The expression for frequency is first cast into the form:
z() = 75%3/’-1 + cos(¢) (3.7.22)

where v = %&‘ and ¢ = wty. Let ¢ be the root of the equation above. It is easy
to see that g satisfies 2 < 1y < 7. Now we show that for 0 < o < ¢, z(¥) is
a monotonically decreasing function. The turning point of z(¢) occurs when
z'(¢p) = 0. Let this value be ;. Then, tan(¢;) = %—f Aty =0,z=1+7,
its maximum value. This implies that at ; = 0, z(¢) is a decreasing function.
The next turning point occurs at ¥; such that = < ¢ < 37", which means that
1 > tho. Hence z(1)) is a monotonically decreasing function for 0 < 3 < .

This completes the proof.

From this result it follows that as % decreases, (maintaining C,C3 =

C1C4) the frequency of oscillation increases. Table 3.7.3 compares the the-

oretically derived frequency with numerical results for % = —gf = -?; and

%2- = %} = %2 as a function of the delay ¢;. Comparing Tables 3.7.1 and 3.7.3

we find that the frequency of oscillation increases with decreasing % When
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s tg | w (num.) | w (theory)
&= 1005 18.87 22.47
0.1 12.27 14.30
0.2 8.13 9.05
1.0 2.61 2.66
S=231 0.1 15.03 16.67
0.5 4.75 4.92
1.0 2.76 2.74

Table 3.7.3: The frequency of oscillation increases as the ratio of the recurrent
excitation to feedback inhibition, %2-, is lowered (a comparison of theoretical and
numerical results). The constraint C1Cy = CyC3 is maintained.

—g—; # 1, the mismatch between excitatory and inhibitory activity generates a

bias, hence the oscillations contain odd as well as even harmonics.

Case 2 Consider next the case of disparate decay time scales, T; > T,, again
with CoCs = C1C4. The phase difference, 8;, between the excitatory and

inhibitory components is no longer zero, and f. # f; as shown below:

(1) From T.w = tan(f,.) and Tiw = tan(f,; + 0;), of Eqn. 3.7.17 we now

have,
w(Ti — T.)
14 T.Tw?

Thus the phase difference is no longer zero (see Fig. 3.7.3) but is dependent

tan(6;) = (3.7.23)

on the mismatch between the excitatory and inhibitory decay time scales as
well as the other parameters through the frequency w. We noted earlier the
importance of the phase shift for oscillations to occur. From the expression for
the phase difference, it is therefore possible that when T; > T, oscillations may
occur even when there is no time delay. In Section 3.3, we observed that such

oscillations do occur (see Fig. 3.3.2).
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Figure 3.7.3: Oscillations with disparate decay time scales T, = 0.1 and T; =
0.2. (A) The fraction of excitatory neurons firing per unit time f.(¢) and (B) the
fraction of inhibitory neurons firing per unit time f;() indicate that the amplitude
of the inhibitory component is smaller than the excitatory component as predicted
theoretically. (C) The phase difference between the two components is no longer
zero, the phase difference is about 18°. (D) The frequency spectrum shows the
presence of odd harmonics, the third harmonic in particular is moderately strong.
The frequency of oscillation is 5.37. The inhibitory delay is i; = 0.2.
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T:| t4|w (num.) | w (theory)
0.2]0.05 7.67 8.72
0.1 6.60 8.34
0.2 5.37 6.67
0.5 3.53 4.01
1.0 2.30 2.43
0.510.05 3.53 4.70
0.1 3.22 4.74
0.2 2.91 4.41
0.5 2.30 3.14
1.0 1.68 2.05

Table 3.7.4: The frequency of oscillation decreases with increasing inhibitory delay,
t4, and decay time, T;.

(2) Proceeding as before, from Eqns. 3.7.11 - 3.7.16, the ratio of the am-
plitude of the oscillating components may be obtained, % = \/%. The
amplitude of the excitatory component is thus greater than that of the in-
hibitory component (Fig. 3.7.3).

(3) With the two results above, we can solve for the frequency,

sin(tan=1(2ZzTely | )

Tow = e 13T Tiu? (3.7.24)
1 : - i—de
% —-——J——liTezZz — cos(tan 1(_(___1;"3;6131”2) + wity)

Although complicated, this expression for the frequency is a function of only one
unknown and can be solved symbolically (see note above). Table 3.7.4 compares
the numerical and theoretical frequencies for increasing inhibitory decay time
T: as a function of the delay t;. We note (1) the frequencies progressively
decrease as the T} increases and the decay time scales become disparate, (2)
the frequency monotonically decreases with the delay, and (3) the frequencies

are quite different from any one of the time scales in the system.
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(4) Since feo # fio, the bias is different from zero and in this case there are
even as well as odd harmonics in the oscillation. When T; >> T, the frequency
is small and, as discussed in Section 3.4, harmonic generation can be strong.

In this case the bias plus sinusoid approximation is incorrect.

Case 8 The effect of refractoriness in the excitatory neurons on the oscillations
is explored next. The refractoriness of the inhibitory interneurons is neglected.
Once again we will consider sub-populations with C2Cs = C1C4. In Appendix
7B, the method of harmonics is used to obtain the following equations governing

the periodic solutions in a manner analogous to the derivation in Section 3.5:

7 - 2B, =
fo = 05(1— fere) + (1= fere) (3.7.25)
7 Ae
2 "
Wlefoo = —(1— fere)sin(fac) (3.7.26)
2 _
feO = '7;(1 - fere) Cos(ea.e) (3727)
= 2B,
fi = 05+~ y (3.7.28)
2
wTifio = - sin(f,; + 6;) (3.7.29)
2
Jio = p c0s(fa; + ;) (3.7.30)

These equations are valid if the harmonics, in particular the second and third,
are weak. For T; > T., this condition is not satisfied as discussed above.
Furthermore, in order to concentrate on the critical effects of refractoriness in
the excitatory neurons, the discussion here is restricted to the case of identical

decay time scales, T, = T;. We may now show:

(1) The phase difference between the excitatory and inhibitory components
is zero; this follows from tan(f,.) = tan(6,;), and tan(,.) = tan(f,; + ;) as

shown in Case 1.
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(2) The amplitude of the excitatory neurons firing per unit time is less than
the amplitude of the inhibitory neurons firing per unit time. When T, = T; = T,
from Eqns. 3.7.26 and 3.7.27, foo = mz-ﬁ(l —r.f.) and from Eqns. 3.7.29
and 3.7.30, fio = ;7%7—7 Hence %}l =1 —r.f.. Therefore % < 1.

(3) The effect of refractoriness is to increase the frequency of oscillation.
This result follows from the decrease of %g- and Theorem 3.7.1, since the fre-

o . i s
quency is given by the same expression as in Case I, Tw = o nlwta) e

Catio —cos{witg)

(4) The amplitudes fe, fio both decrease as a result of refractoriness. This
follows straightforwardly from the expressions for f.o and fio derived in (2) and

the increase of the frequency w as shown in (3) above.

(5) If we assume that f. ~ fe0, then approximate expressions for the am-
plitudes and frequency of the oscillation may be derived. With fo ~ fo, feo in

2) above can be solved for, f.q ~ 25——r—=—. Therefore
( ) 7fe 7‘-2;&_}, ’ll+w2T2 9

Joo o1
fo 1+ e

It can now be shown that the frequency of oscillation is a nondecreasing function

(3.7.31)

of r.. A proof of this statement follows: consider the frequency of oscillation
Tw = —zﬁ;%, and assume that the frequency decreases with increasing
Te. Tht’,rifs‘(j’f%l as given by Eqn. 3.7.31 decreases. However, by Theorem 3.7.1,
when -J’f,foﬂ decreases, the frequency increases. This contradicts our assumption

that the frequency decreases with r.. Hence the frequency of oscillation either

increases or remains constant as 7. is increased. This completes the proof.

Consequently, it follows that the amplitudes, fo and fj, are nonde-

creasing functions of r.. If wT < 1, as is typical in the present discussion, it

follows that L2 ~ —t— where 2 < k < 2. Hence the ratio of the number of
fe(} 14are T "

excitatory to inhibitory neurons firing per unit time scales inversely with the
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tg| 7e|w (num.) | w (theory)
0.10.05 11.66 13.20
0.1 11.96 13.34
0.5 12.73 14.20
1.0 13.19 14.97
0.510.05 4.45 4.58
0.1 4.45 4.60
0.2 4.60 4.64
0.5 4.75 4.74
1.0 4.75 4.82
1.5 4.75 4.89
5.0 4.75 5.10

Table 3.7.5: The frequency of oscillation is a non-decreasing function of the refrac-
tory period of the excitatory neurons, r.. Results are shown for two different values
of the inhibitory delay, 5 = 0.1 and #; = 0.5.

refractoriness in the excitatory neurons. With the expression for frequency of

oscillation given by

sin(wty)

G—1—— — cos(wty)

02 1 27,
+ w:;l-l»w? T2

we compare the numerical and theoretical results for the change of frequency

Tw =

(3.7.32)

with increasing r. for two different values of delay t; (Table 3.7.5). The fre-
quency of oscillation either increases or is constant as predicted. It is also found

that the amplitudes of the oscillation decrease and % <1 (Fig. 3.7.4).

(6) The calculations in Appendix A.3 show that the effect of refractoriness is
to introduce a second harmonic, from the product of the integral and the output
from the sigmoid term in Eqn. 3.2.5. Additionally, from Appendix A.3, we note
that the second harmonic feedback from the nonlinear sigmoid is proportional
to the bias (Eqn. A.3.10). With {,fg < 1 as shown above, the bias due to
the mismatch between excitatory and inhibitory activity, B ~ Ci feo — Cafig is

non-zero.



53

T I
L W Ww‘y |

£1
Amplitude

.

¢ 2 .4 & .8 1 0 5 EH) 15 20 25 30 25 a0
fa Proquenay

Figure 3.7.4: Oscillations when the refractoriness of the excitatory neurons is non
zero (r. = 0.5). (A) Refractoriness suppresses the fraction of excitatory neurons
firing per unit time f.(¢). (B) The fraction of inhibitory neurons firing per unit
time fi(t). (C) The phase difference between the two components is almost zero.
(D) The frequency spectrum shows the presence of odd as well as even harmonics
as predicted. The frequency of the oscillation 1s 8.28. T, = T; = 0.1 and 4 = 0.2.
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We conclude with a brief discussion on the case of strong feedback:
C,C3 > C1Cy. In this case, it is found that both the second and third harmon-
ics are strong. From Eqn. A.3.10, the second harmonic is proportional to 7’2—.
When CyCs > C1C4, at least one of B, = Cyf. — Cyf; and B; = Caf. — Cyfi is
large so that the bias then generates a strong second harmonic. In addition a
large sinusoidal input to the sigmoid produces a strong third harmonic as shown
in Appendix A.4. In view of the presence of these harmonics, the method used

in this section is inappropriate to study the case of dominant feedback.

3.8 Discussion

We have studied some aspects of nonlinear oscillations generated by
interacting excitatory and inhibitory subpopulations of neurons in a neuronal
group. As noted in the introduction, the problem with the generation of strong
harmonics, the main hindrance to any detailed analysis of the oscillations, has
been circumvented in the present analysis by introducing delay in the inhibitory

signal. These delays are physiologically meaningful as well.

Delay in the inhibitory feedback can induce limit cycle oscillations by
destroying the stability of fixed points. It is not necessary that the connection
strength be feedback dominant. If the slopes of the sigmoids at all the fixed
points are zero, stability is guaranteed for all feedback delay times, i.e., oscilla-
tions cannot occur. This indicates that for a step function sigmoid oscillations
may not occur. This is interpreted to mean that synaptic and/or threshold
variability is essential for oscillations. Oscillations can occur even when there
is no delay, if the decay time period of the inhibitory activity is greater than
that of the excitatory activity.

The frequency-amplitude-phase relations derived shed further light on
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the role of delay. A non-zero phase shift between the excitatory and inhibitory
components is essential for the oscillations. The phase shift has two compo-
nents: one from asymmetry in feedback coupling or slowly decaying inhibitory
signals (implying asymmetric decay rates) and the other explicitly due to delay.
Only the former contributes to the recorded phase difference between the ex-
citatory and inhibitory components. Delay and/or slowly decaying inhibitory
signals cause a phase shift between the excitatory and inhibitory components;
this phase shift underlies the origin of robust oscillations. Combining these
results, we note that inhibition with time courses such as the alpha functions,
a ~ texp(—t/7), used in the simulations of (Traub et al., 1989), would be

ideally suited to generate oscillatory activity.

The oscillations are input driven and the ideal operating region is
excitation close to the threshold. In the present model, too strong or too
weak excitation is insufficient to induce oscillations as had already been noted
(Wilson and Cowan, 1972). Mathematically, the reason for both of these phe-
nomena is the same: the bias component of the input into the sigmoid is greater
than the maximum possible sinusoidal component. Refractoriness in the exci-
tatory neurons is an abetting factor in the existence of oscillations, because it
causes suppression of excitatory activity and places the fixed point in a regime
wherein the slope of the sigmoid at the fixed point is non-zero so that delayed
inhibition can induce oscillations. In agreement with this observation, we have
shown that ratio of the excitatory to inhibitory neurons firing per unit time,
%, decreases with increasing excitatory refractory period r.. The important
effect of refractoriness in excitatory neurons has also been noted in detailed

simulations (Sporns et al., 1989).

The frequency of oscillation is, in general, different from any time scale
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in the system and depends on the delay, the time scales of decay of activity,
the connection strengths, and the inputs. It is particularly important to note
that even in the simplest approximation, it is not the inhibitory time delay
that determines the frequency of the oscillation, indeed wt; < 27 for a wide
range of parameters. The frequency decreases monotonically with, (1) the delay
in inhibitory feedback, and (2) increasing inhibitory decay time. Phase locked
oscillations can occur when there is a certain symmetry: the decay time periods
are identical T, = T3, there is no feedback dominance C1Cy = C3C3, and both
the excitatory and inhibitory sub-populations are driven at their respective
thresholds. This zero phase difference would not be possible without delay in
the inhibitory signal.

When the neurons are not refractory, the ratio of the amplitudes of
the excitatory to inhibitory neurons firing per unit time, %, is 1, and both fe
and f; decrease with increasing frequency. As the ratio of recurrent excita-
tion to feedback inhibition %21 decreases, the frequency of oscillation increases.
When refractoriness in the excitatory neurons is introduced, the frequency of
oscillation increases, and the ratio of the excitatory to inhibitory neurons firing
per unit time, ‘%ﬁ, as well as the amplitudes, f.o and fi, decrease with increas-
ing excitatory refractory period r.. The fraction of excitatory neurons firing
per unit time scales as 1—+'1n7:’ where, typically, %Z <k < % These results are
in agreement with the observation that, when the excitatory neurons have a
large refractory period, only a small fraction (~ 2.8%) of excitatory neurons

but a large fraction (~ 62%) of the inhibitory neurons fire in a population burst

(Traub et al., 1989).

Strong harmonics, in particular the second and third, are generated

when the frequency of the oscillation is small and/or the activity in the excita-
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tory and inhibitory sub-populations is large. Harmonics with amplitudes up to
(at least) a third of that of the fundamental can be present. Even harmonics
are dominant when the excitatory refractory period is non-zero and the input
to the sigmoid has a strong bias component due to the mismatch in excitatory
and inhibitory activity. A recent experiment on tactile frequency discrimina-
tion in monkeys has confirmed that at low frequency strong second harmonics
can be generated (Mountcastle et al., 1990); at high frequency the harmonics

are absent.

It is interesting to consider why single cell firing has a stochastic
characteristic to it while the population activity is synchronous. An important
clue is the experimental evidence indicating that cellular firing is usually less
well correlated with the EEG than are synaptic potentials (Traub et al., 1989).
This suggests that it is the synaptic events that carry the underlying rhythm
with the cell firing providing the drive. Indeed, if the cell firing is initiated as
a cascade (see Fig. 5 in Traub et al. 1989), or more generally due to random
fluctuations, a certain subset of the pathways will always be blocked as a result
of cellular refractoriness. Consistent with this observation is the finding above
that the fraction of excitatory neurons firing per unit time scales inversely with

the refractoriness.

The redundant and quasi-random circuitry in a neuronal group with
multiple pathways and variability at the cellular level may be the source of
coherent population oscillations. The pattern of recurrent excitation and in-
hibition underlying such circuitry is present throughout several cortical areas
(Shepherd, 1988a). The results discussed above indicate that robust oscillations
occur when there is delay in the inhibitory feedback and/or a slowly decaying

inhibitory signal. It is the separation of time scales along with the redun-
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dant and quasi-random circuitry which may also justify the study of collective

population oscillations with aggregate variables.

Dynamically controlled robust and stable population oscillations from
locally redundant circuits reduce the variability in single cell firing and may

play an important part in temporal signal processing in neural systems.



Chapter 4

Synchronization and Delay Induced Switching

4.1 Introduction

A distributed computer system consisting of communicating proces-
sors needs, (1) a protocol for communication, and (2) protocols to enable events
to carry out any effective computation. Synchronization is both architecture
and problem specific. Complex algorithms are necessary to coordinate inter-
process communication and intraprocess events. This reflects the fact that an
external clock drives the fetch-execute-store cycle, as we noted earlier. Neu-
ral systems, on the other hand, operate in a highly parallel manner without
‘clocks’, spatial markers and algorithms (Edelman and Finkel, 1984; Edelman,
1987). Synchronization and other emergent phenomena, in this case, reflect
the physical process of signaling. In this chapter, we investigate signaling be-
tween two neuronal groups; an understanding of the underlying mechanisms
is important in order to gain insight into the complex functions performed by

neural systems.

In a distributed system it is necessary to reconstruct responses by
global integration. Recent experiments suggest that such a function is per-
formed by the interaction of localized oscillatory signals. Specifically, the ex-
periments on the visual cortex indicate that spatially separated localized pop-
ulations of neurons can synchronize their oscillatory activity, and the degree of

synchronization reflects global stimulus properties (Gray et al., 1989; Eckhorn

39
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et al., 1988).

In detailed computer simulations it has been demonstrated that the
synchronization of the oscillatory activity in neuronal groups can be achieved
by reentrant signaling (Sporns et al., 1989). In this model, the signature of
phase locked oscillations is found, not in the firing of individual neurons which
can fire asynchronously, but in the cross correlation (between groups) of the
number of neurons firing per unit time which is proportional to the experi-
mentally observed local field potential, in agreement with the observations on
the hippocampus (Traub et al., 1988; Traub et al., 1989) and the visual cortex
(Eckhorn et al., 1988; Gray et al., 1989).

The oscillations, as we noted in the previous chapter, are input driven
due to the dissipative nature of the activity in an unexcited group (or one ex-
cited subthreshold). The frequency-amplitude-phase relations indicate that
the frequency of oscillation of the number of neurons firing per unit time de-
pends on several parameters — the delay in inhibition, the decay time periods
of excitatory and inhibitory activity, the refractory period, the mean synaptic
strengths, and the input. Due to variation in virtually all of these parame-
ters, no two groups are likely to have exactly the same frequency of oscillation.
This chapter is concerned with the nonlinear interaction of the excitatory and
inhibitory components from two groups in order to study the origins and char-
acteristics of synchronization and reentry delay induced desynchronization and

resynchronization of oscillatory activity in distributed neural systems.

A critical aspect of signaling in a distributed neural system is the
presence of time delays in the transmission and expression of signals. Delays
in circulating signals would (1) allow differential access to signals in time and

(2) provide mechanisms to ‘hold’ signals for memory related operations. Dis-
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tributed mapping with delays in circulating oscillations would be particularly

useful in maintaining spatiotemporal correlations of objects and events in the

outside world (Reeke et al., 1989).

Such delays can arise from conduction delays and synaptic delays.
The expression of various transmitters with different latencies and time courses
(Marder et al., 1987) implies a large dynamic range for the latencies involved
in inter-group signaling. Transmission delays are not negligible either: cortico-
cortical axons have a considerably slower conduction speed (1m/s) than the
faster geniculo-striate conduction speeds (4 — 40m/s) (Bullier et al., 1988).
Moreover, Bullier et al. report highly specific feedback connections to laminae
2 and 3 of Areas 17 from Areas 18 and 19 with low latency jitter (0.3ms).
Hence intracortical signals to Area 17 from Area 18 would have a mean delay
of 5ms, from Area 19 a mean delay of 10ms, and to the temporal lobe a delay
of 20-30 ms in the transmission (Thorpe and Imbert, 1989). Since these time
scales are much greater than the membrane or activity decay time scales they

may not be neglected.

In the next section, an extension of the Wilson-Cowan model to take
into account reentrant interactions between two groups of neurons is described.
In Section 4.3, some of the phenomena we wish to study are illustrated. Ap-
proximate relations for the frequency, amplitude, and phases of the various
excitatory and inhibitory components of the synchronized oscillatory activity
are derived in Section 4.4. Using these relations, the characteristics of reen-
trant signaling and the resultant synchronization and desynchronization are
studied in Section 4.5. In Section 4.6, we describe numerical studies of some
other models for the aggregate behavior of groups, including ones with multi-

plicative (shunting) nonlinearities, in order to elucidate the critical ingredients
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in establishing synchrony of different neuronal groups. Section 4.7 summarizes

and concludes the discussion.

4.2 Mathematical Model

The mathematical model developed in the previous chapter is ex-
tended here to study reentrant signaling between two neuronal groups. Fig.
4.2.1 is a schematic illustration of the inter- and intragroup interactions be-
tween two neuronal groups G and G', where E and [ represent the excitatory
and inhibitory subpopulations of G and E’ and I’ the corresponding subpop-
ulations of G'. (Notation: Throughout this Chapter, the unprimed variables
refer to the group G and the primed ones to G’.) The fraction of excitatory
and inhibitory cells firing per unit time, f.(t), and fi(¢) for the group G, and
fi(t), and fi(t), for the group G', at time ¢ are given by the following time

coarse-grained and spatially averaged nonlinear differential equations,

Tht) = —f)+ (1= [ ft)dt)oz) (421)
i) = SO+ [ A (4.2.2)
T = —fO+ (- [ Lo (423)
T = =0+ 0= [ ) (424

z(t) = Cife(t)+Cufit—1) - Cafilt —ta) + P

zi(t) = Cafe(t)+Cufit—14)—Cifit —t)) +@Q

z,(t) = fe@) + Cufelt —t.) = Cofi(t —tg) + P
sfe(

zi(t) = t) + Crafe(t — 1) = Cifi(t —tg) + @

2

where z., z;, ., and z} are the activities and o.(z.), oi(zi), o.(2,), and o(z})

are the responses (outputs) of the respective subpopulations. The sigmoids
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Figure 4.2.1: A schematic diagram of two interacting neuronal groups G and G’
each consisting of excitatory and inhibitory subpopulations, £ and I, and E’ and
I’ respectively. External inputs P and @, and P’ and Q' activate the neurons.
The mean synaptic strengths for the intragroup interactions of the excitatory and
inhibitory subpopulations are Cy, C3, C3, C4 for the group G, and Cf, Cj, C3, Cj
for the group G’. Reciprocal excitatory connections Cr1, C};, Cre and C, mediate
reentrant signaling between the groups. Filled arrows indicate the excitatory effect,
and unfilled arrows, the inhibitory effect of one subpopulation on the other or itself.

have the standard form,

S S—
a(z) = 1+exp(—B(z—x))
where B and x are respectively the sigmoid nonlinearity and threshold.

Consider, for example, the equation for the fraction of excitatory cells
firing per unit time, f.(f) (Eqn. 4.2.1) for the subpopulation represented by
E. The time scale of decay of activity in the absence of external excitation is
T,, and 7. is the absolute refractory period of the excitatory cells. Cy, (3, and
s

C!, are the mean synaptic strengths mediating the £ to E, I to E, and E’

to E subpopulation interactions respectively, and P is the (constant) external
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input. The inhibitory signal arrives with a delay, ¢4, and the reentrant signal
with a delay, ¢.. The delay could be due to either synaptic latency, delay
in transmission, or both. Typically, the inhibitory signals are delayed due
to latency in chemical activation at the synapse (Hille and Catterall, 1989),
and the excitatory signals are delayed due to the transmission time. Any
delay in the recurrent excitation within the neuronal group has been ignored
as small compared to the delay in the inhibitory and reentrant signals. Similar
considerations hold for each of the other subpopulations. C,1, Cy2, C;, and C},
will be referred to as reentrant connections although only the mean synaptic

strength is represented in the mathematical model we consider here.

Although synchronization of the activities of the groups is observed for
a wide range of parameters, in order to keep the model analytically tractable,
the following approximations are made: Cy = C; = Cs = Cy = C] = C; =
Ch=Cy=0C,Cly =Cly=Cr =Cy =C,, r. =1, and r; = r[. The activities

of the subpopulations, z., z; and z, z; simplify to,

zo(t) = CL(t)+Cfilt —t) = Cfilt —ta) + P (4.2.5)
2(t)= CL{)+Cfit—t)) = Chilt — 1)+ Q (4.2.6)
S (t)= Cf.t)+Crfelt —t,) = Cfit — 1)) + P’ (4.2.7)
(t) = CfUt)+Crfult = t,) — Cfi(t — ) + @ (1.2.8)

Consistent with the theory of neuronal group selection (Edelman, 1987), we
assume that the mean intragroup synaptic strength is greater than the inter-
group synaptic strength, i.e., C > C;. Refractoriness in the inhibitory neurons

is neglected, and is not critical for the phenomena we wish to study.

For the mathematical analysis of Eqns. 4.2.1 - 4.2.8, it is necessary
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to approximate the sigmoid with a piecewise linear function as in Chapter 3:

o(z) = 1.0 z>x+6
0.0 z<x—6
m(z—x)+05 |[z—x|<é (4.2.9)

where x + 6 is the saturation point, and m is the slope of the sigmoid with
bm = % The approximation preserves the nonlinear saturation characteristics

of the original sigmoid.

Two final notes are in order pertaining to the following discussion:
Parameters: Except as noted, the following default parameters are used in
quoting the results of the numerical studies of Eqns. 4.2.1 - 4.2.8, T, = T; =
T =T/ =01, me =m; =m, = m) =05, xe. = xi = X, = xi = 4.0,
P=Q=P =Q =40,r.=7r,=03,r,=r;=0.0,C =5.0, and C, = 2.0.
Notation: The intrinsic frequencies of the two groups (without reentry) will
be denoted by ) and £’ and the (common) synchronized frequency of the two
groups by w.

4.3 Illustrative Results

In this section, some results from numerical simulation of Eqns. 4.2.1
- 4.2.8 are described in order to illustrate the theoretical problem we wish
to study in the following sections. The two neuronal groups discussed above
can have different frequencies of oscillation depending on several parameters,
important among which are the connection strengths, time periods of decay,
and delay in activation, the refractory periods of excitatory neurons, and the
external input (see Chapter 3). For a wide range of parameters, with the in-

troduction of reentrant signaling, the oscillatory activity of the two groups are
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phase locked. The phase portraits (Fig. 4.3.1) show that although there is
coherent oscillatory activity within a group, the cross components have uncor-
related phases in the absence of reentrant signaling. However, after reentrant
signaling is introduced, both the intra- and intergroup activities are correlated.

Synchronization is typically established within a few cycles.

The intrinsic frequencies of the oscillatory activity in the two groups
are {1 = 8.90 and Q) = 8.28; after the introduction of reentrant signaling,
the frequencies of the two groups are identical, w = 7.67. For small reentry
delays, the frequency of the synchronized oscillation reduces by about 10% in
agreement with the detailed computer simulations of (Sporns et al., 1989). The
phase locking results in an increase in the cross correlation between the fraction
of excitatory neurons firing per unit time (Fig. 4.3.2). Fig. 4.3.3 shows the
oscillatory excitatory and inhibitory components from the two groups along

with the (identical) frequency spectra after reentrant signaling is introduced.

Finally, we note that if both groups are excited close to the thresh-
old, synchronized oscillations are possible even when only one-way intergroup
connections exist. The reason is that, through such a connection, the phase
difference between the excitatory components of the groups (see below) can
still be adjusted in a manner such that the cross components are phase locked.
However, the synchronization is less robust: (1) the intrinsic frequencies of the
groups have to be within 10%, and (2) the phase difference between the groups
is large. For these reasons, we restrict the discussion to reentrant signaling
between G and G’ where the signal from a group is continually mapped in a

reentrant manner.
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£1

Figure 4.3.1: The phase portraits before and after the introduction of reentry in-
dicate that reentrant signaling induces phase coherence in the intergroup excitatory
components. Without reentry, the excitatory f.(¢) and inhibitory f;(f) components
within a group are correlated (A), but the cross components f, and f. are uncor-
related, (B). After the introduction of reentry, both the intragroup (C), and the
intergroup components are correlated (D). The intrinsic frequencies of the groups
are (0 = 8.90 corresponding to an inhibitory delay ¢4 = 0.18 and €’ = 8.28 corre-
sponding to inhibitory delay ), = 0.2. The frequency of the synchronized oscillation

drops to w = 7.67. Similar reductions in the frequency have been reported by Sporns
et al. (1989).
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Figure 4.3.2: The cross correlation between the excitatory components, f () and
fe(t), of the two groups increases after the introduction of reentry. (A) The cross
correlation before, and (B) after the introduction of reentry. The cross correlations
are normalized with respect to the mean and standard deviation of the activity after
introduction of reentry (B). The intrinsic frequencies are the same as in Fig. 4.3.1.
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Figure 4.3.3: The amplitude and frequency of the oscillations in the two groups have
similar characteristics after reentry is introduced. The fraction of neurons firing per
unit time for group G: (A) fe vs. t and (B) f; vs. t. The fraction of neurons firing
per unit time for group G’: (C) f vs. t, (D) f] vs. t. The frequency spectra of (E)
group G and (F) group G’ are identical. The intrinsic frequencies are the same as
in Fig. 4.3.1.
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4.4 Frequency-Amplitude-Phase Relations

In order to study the origin and characteristics of the synchroniza-
tion of the activity of the neuronal groups G and G, the nonlinear differential
equations are reduced to nonlinear algebraic equations governing the frequency-
amplitude-phase relations of the oscillations using the method of harmonic bal-
ance (Bogoliubov and Mitropolsky, 1961; Gelb and Velde, 1967). The deriva-
tion of the relations is outlined in this section— the details may be found in

Appendix 4A.

Neglecting the higher harmonics, solutions to Eqns. 4.2.1 - 4.2.4 may
be approximated by

fe(t) = fe+ feosin(wt) (4.4.1)
fit) = fi+ fuosin(wt - 0;) (4.4.2)
i) = fi+ flysin(wt —6.) (4.4.3)
fit) = fi+ fiosin(wt -0, —6)) (4.4.4)

where 0;, 0, and 8! are the phase differences (assumed to be constant) between
fe and fi, f. and f., and f. and f! respectively. The origin of the piece-wise
linear sigmoid (Eqn. 4.2.9) is shifted to the threshold in order to make it

symmetric:
c*(z*) = mz* [z¥|<é
0.5 z">6 (4.4.5)
0.5 "< -6

where z* = z — ¥, m is the slope of the sigmoid, and ¢ is the saturation point

with mé = 7. Eqns. 4.2.1 - 4.2.4 and Eqns. 4.2.5 - 4.2.8 are modified to

Li) = ~LO+0- [ L@I05+016D) (446

—T e
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T.fi(t) = —fi(t)+ 0.5+ 07(z}) (4.4.7)

T = —f+0- [ REdes+alE) @48

TIfi(8) = —fi(t)+0.5+0} (z}) (4.4.9)
>

i(t) = Cf.A)+Cfit—t)—Cfit—t) +Q —x;  (4.4.11)
t) = CfO+Coft —t,)—-Cfit—t))+ P —x. (44.12)

(
(
(
t) = CLO+Cfit—t)=Cfit—td)+ P —x. (4.4.10)
(
(
() = CW)+Coft —t.)—Cfit —t)) + Q' —xi (4.4.13)

where Xe, Xi, X,, and X} are the respective thresholds of the subpopulations.

Using the method of harmonic balance (Gelb and Velde, 1967), the
response of the nonlinear sigmoid to an input of the form z*(t) = B+ Asin(wi+

9), where B is the bias and A the amplitude, is approximated as follows:

o(z*(8)) ~ BFs(o,B,A)+ AFx(c, B, A)sin(wt + 0)

+ AFl(o, B, A) cos(wt + 0) (4.4.14)
Fy(o, B, A) = 5-35 /O%J(B+Asin(¢))d¢
Fa(o,B,A) = ;% / 7 o(B + Asin(e)) sin(4)d

.i. 1 27 .
Fi(c,B,A) = ;Z./o a(B + Asin(y)) cos(¢p)dyp

Fg and Fj are the nonlinear gain for the bias and sinusoidal components re-
spectively. The nonlinear equations then reduce to the following algebraic
equations when the amplitude of the input to the sigmoid is large compared to
the bias (this requires excitation of the subpopulations at the threshold, i.e.,
P~ Xe, @ ~ xi, P' ~ X', and @' ~ x!) but the harmonics are still weak (see
Appendix B.1):

2B,
TA,

fo o= 0501~ fire) + —=(1 — fere) (4.4.15)



wTe feo
feo

fi
wT; fio
fio

f.
wT,feo
feo

fi

wT; fio
fio

where

tan(f,.) =

-72?(1 — fore) sin(B,)
%(1 — fore) cos(B,.)

2B;
0.5+ ;T—/E

2 .

- sin(6,; + 6;)
2

- at ﬁz’
- cos(bq; + 6;)

2B’ =
’K'Af (1 - fére)

0.5(1 — fure) +

2 (0= iro)sin(0, + )

2(1 = Jir) cos(6l, +6)
T

2B.
0.5 + W_AZ

2
= gin(d’. :
T SID( i T 6:)

2 T
- cos(fy; + 0;)

C, fiysin(0, + wt!) — C fiosin(; + wia)

tan(d),) =

" Cfuo+ Cpfly cos(8, + wil) — C fio cos(8; + wiy)
C flysin(60) + C, feo sin{wt, ) — C fly sin(0: + wi))

CCf, cos(82) + C, feo cos(wt,) — C fly cos(8! + wil)

tan(f,;) = tan(f,e)

tan(@) = tan(6,)

72

(4.4.16)
(4.4.17)
(4.4.18)
(4.4.19)
(4.4.20)
(4.4.21)
(4.4.22)
(4.4.23)
(4.4.24)
(4.4.25)

(4.4.26)

(4.4.27)

(4.4.28)

(4.4.29)
(4.4.30)

The coefficients, B., B;, B!, and B, are the bias and A., A;, A,, and A} the

amplitudes of the activities of the respective subpopulations.

In the next section we attempt to gain some insight into the nonlinear

interaction of the excitatory and inhibitory signals from the two groups by

analyzing Eqns. 4.4.15 - 4.4.30.



73

4.5 Nonlinear Theory

In considering a nonlinear theory of synchronization two points may
first be noted. When one of the groups is driven (much) below its threshold for
excitation oscillations are neither excited in the group nor induced by reentry
because of the strongly dissipative nature of activity in an unexcited group
(Wilson and Cowan, 1972). Specifically, the nonlinear gain for the sinusoidal
component of the input to the sigmoid is zero. Hence, the synchronization
is input driven. Eqns. 4.4.15 - 4.4.30 represent the approximate frequency-
amplitude-phase relations of synchronized oscillations when the subpopulations
are driven close to their respective thresholds. Secondly, when the excitatory
cells are not refractory (r. = 0) the bias component of the input into the
sigmoid is large, so that no oscillations occurred in the present model when
reentrant signals are introduced. With a nonzero refractory period oscillations
occurred because of suppressed excitatory activity (see Eqn. 4.5.3 below).
As discussed in the previous chapter, refractoriness in the excitatory neurons
is an aiding factor in the existence of intrinsic oscillations in groups as well,
because it causes suppression of excitatory activity and places the fixed point
in a regime wherein the slope of the sigmoid at the fixed point is nonzero,
so that delayed inhibition can induce oscillations. Refractoriness in excitatory
cells is particularly necessary when there are reentrant excitatory signals. The
important effect of refractoriness in excitatory cells has been noted by (Sporns

et al., 1989) in their detailed simulations.

In the present discussion, we select the critical variables in the system
to be the inhibitory delay times #; and ¢}, and the reentry delay times ¢ and
t,; the reason being that it allows us to study the effects of the relative phases

of the interacting signals. As shown in the previous chapter, the phase of a
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signal arriving due to a delay 7, when the ongoing oscillation has a frequency
w, is wr, and this (hidden) phase plays an important role in the origin and
characteristics of the oscillations and, as will we see, in synchronization as well.

Except as noted, the remaining parameters are as mentioned in Section 4.2.

For T, =T, =T, = T = T, it is easy to show that 6; = 0, = 0,
feo = flo, fio = figy fo = f, and f; = f!. From Eqns. 4.4.16, 4.4.17, 4.4.22,
4.4.23, 4.4.27 and 4.4.29, the frequency of the synchronized oscillation, w, and
the phase difference, ., between the excitatory components f. and f. of the

two groups are given by,

%”‘ff‘l sin(6), + wt!) — sin(wtq)
Wl = = T G Ta oos(0 ot (4.5.1)
fo T C o cos(0! + wt!) — cos(wtaq)
WT —tan(8)  2sin(f)) + G4 sin(wt,) — sin(8, + wty) .

1+wTtan(6)) % cos(6) + %%3 cos(wt,) — cos(8, + wtl;)
These relations indicate the importance of the phases of the interacting signals.
The effective phase of a signal has two components, one typically referred to as
the ‘phase difference’, for example, #, due to synaptic coupling, and the other
explicitly due to delay in activation of the signal, for example wt.. The phase
difference, 6/, between the excitatory components, f.(t) and fi(%), is exactly
zero only when there is a certain symmetry: if the frequencies of oscillation are
exactly the same and the coupling is symmetric both in strength and delay.
Arbitrarily small phase differences are possible when the intrinsic frequencies
of the groups approach each other, ie., & — Q'. The effect of the excitatory
signal is weighted by :’;—jg, and the reentrant signal by %"-ffﬁg with respect to the
inhibitory signal. The ratio of the mean intergroup to intragroup connection

strength therefore determines the influence of the reentrant signal.

With the approximation f. ~ f.o (see Fig. 4.3.3), and the relations,

%{? =1—rcfe, foo = W(l ~r.f.) and fip = %ljm, the following
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expression for 2 is obtained:

fio
1
J e — (4.5.3)
fo 1+ Aom
If T < 1, as is typical in the present discussion, it follows that % ~ -1-;—1;5,

where 5? <k < % The ratio of the amplitude of the excitatory and inhibitory
neurons firing per unit time scales inversely with the refractoriness of the ex-
citatory neurons and underlies the suppression of excitatory activity necessary

for integrating the excitatory signals from (possibly several) other groups.

From Eqns. 4.5.1 - 4.5.3, we note that synchronization is achieved by
adjusting the amplitudes and phases of the various excitatory and inhibitory

components as well as the frequency of the coherent oscillation.

In the simulations of Sporns et al. (1989), it has been observed that
reentrant signaling reduces the frequency of oscillation. Similar results are also
noted with numerical experiments on Eqns. 4.2.1 - 4.2.8) (see Section 4.3).
For a simple case it is possible to prove, analytically, that the introduction
of reentry reduces the frequency of synchronized oscillation, and the decrease
is proportional to %ﬂ, the ratio of the mean intergroup to intragroup synaptic
strength. The result is essentially an extension of the proof given in the previous
chapter about the decline of the frequency with increasing ratio of recurrent
excitation to inhibition. Consider Eqns. 4.5.1 - 4.5.3 with {3 = ¢/, and ¢, =
t! = 0. The intrinsic frequencies of oscillation of the two groups without
reentrant connections (C, = 0) are identical in this case. With the above
approximations, the phase difference &/ is identically zero and the frequency of
oscillation simplifies to,

sin(wtq)

wTl = tan(f,.) =
(6c) %(1 + %) — cos(wty)

(4.5.4)

Theorem 3.7.1 is useful here and we restate it for convenience:
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fo'

Figure 4.5.1: Increasing the difference in the intrinsic frequencies of the groups, by
selectively increasing the inhibitory delay in one of the groups, causes an increasing
phase shift between the excitatory components, f and f.. The frequency of the the
group G’ is fixed at (' = 8.28, (¢, = 0.2), with the frequency of the group G varied
as follows: (A) Q = 8.59, (14 = 0.19), (B) © = 8.90, (; = 0.18), (C) O = 9.05,
(ta = 0.17), and (D) Q = 9.36, (15 = 0.16).
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Cr | w (num.) | w (theory)
0.0 8.28 8.94
0.5 8.13 8.71
1.0 7.97 8.47
1.5 7.67 8.23
2.0 7.52 8.00
2.5 7.21 1.77
3.0 6.90 7.53

Table 4.5.1: The frequency of the synchronized oscillation decreases when reentry is
introduced and the decrease is proportional to the reentrant connection strength, C,.
In this example, the intrinsic frequencies are identical, = ' = 8.28, corresponding
to inhibitory delays, {3 = ¢/, = 0.2. The reentrant signals have no delay, ¢, = /. = 0.

Theorem 4.5.1 Forz > 0, the frequency of oscillation given by Tw = _sin(wig)

z—cos{wiq)

monotonically decreases as x increases.

Let z = %09(1 + %) Assume that the frequency of oscillation in-
creases as %‘- increases. Then in Eqn. 4.5.3, '%g increases so that = increases.
This contradicts Theorem 3.7.1. Hence we have shown that the frequency of
oscillation, w, decreases when reentry is introduced and, moreover, w decreases
monotonically with increasing % Table 4.5.1 compares the numerical and the-
oretical results for the frequency of oscillation of the groups as a function of

Cr.

The above result is proven only for zero reentrant delay, ¢, = ¢, = 0.
Consider the effect of nonzero delay in the arrival of reentrant signals, with
the same approximations as above, but ¢, = ¢, # 0. In this case also, the
phase difference between the excitatory components of the two groups, &, is
zero. Note however that because of the delay, t,, the reentrant signal now has

a ‘hidden phase shift’, wt,. It is straightforward to show that the frequency of
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t, | w (num.) | w (theory)
0.00 7.98 8.47
0.05 7.67 8.28
0.10 7.82 8.20
0.15 7.82 8.25
0.20 7.82 8.45
0.25 8.13 8.78
0.30 8.74 9.19
0.35 9.36 9.50
0.40 9.36 9.63

Table 4.5.2: The frequency of synchronized oscillation first decreases with increasing
reentry delay, t,, and then increases as the excitatory reentrant signal arrives out of
phase with the inhibitory signal. The intragroup inhibitory signal have delays t; =
t', = 0.2, and the the intrinsic frequencies of the group are identical, & = Q' = 8.28.

Cr _ 1
Here & = 3.

oscillation is given by

Cr a0 gin(wt, ) — sin(wty)

wl = tan(f,.) = ——=L2 4.5.5
(6ee) % %-)%gcos(wt,)—cos(wtd) ( )

with :fffg given by Egqn. 4.5.3. The frequency depends on the phase shifts
wty and wi, of the inhibitory and reentrant signals with the latter weighted
by %, the ratio of the mean intergroup to intragroup connection strength.
When ¢, ~ 14, the two signals are out of phase and qualitatively different
behavior could be expected. For ¢, < i, the frequency is lowered by reentrant
signals, as proven for the case of {, = 0 above, however for £, close to and
greater than ¢4, the frequency can increase. Table 4.5.2 compares the theoretical
and numerical frequencies as a function of {,. As predicted, the frequency of
oscillation decreases for small reentry delays and upon further increase in delay,

increases, clearly showing a lack of monotonicity.

Hence, the relative phases of the incoming signals are critical in de-

termining the frequency of the oscillation. From the symmetry in the example
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considered above, the phase difference, 8, between the excitatory components
of the two groups is constrained to be zero, and no other changes ensue. How-
ever, as we note below, for the m ore realistic case of groups with differing
intrinsic frequencies, functionally important features emerge when the phase

difference @ is not strictly zero.

Next consider the case of differing inhibitory delays in the groups,
14 # t, so that the frequencies of the two groups are different. Let the reentry
delays be zero, t, =t = 0. The frequency of oscillation is obtained by solving

Cr I 4in(6') — sin(wtq)

W = 0 4.5.6
%g + %‘% cos(8.) — cos(wty) ( )
wT —tan(8) L2 sin(6)) — sin(0, + wty) (45.7)

1+wTtan(0)) -J[,f? cos(0.) + %t‘%oﬂ — cos(6 + wih)
Eqns. 4.5.6 and 4.5.7 indicate that the groups phase lock by adjusting the phase

difference, ¢/, and the frequency, w. The ratio of amplitudes of excitatory and

inhibitory neurons firing per unit time, ?’-{? ~ 3 ;ﬂn (Eqn. 4.5.3), typically

changes little (unless w1 changes substantially).

When the frequency of the oscillation in one of the groups is selectively
increased by reducing the inhibitory signal delay, ¢4, so that the mismatch in the
intrinsic frequencies of the groups increases, the phase difference, 8., increases
as indicated in Table 4.5.3. The phase portraits (Fig. 4.5.1) confirm this result.
The sign of the theoretically derived phase difference shows that the activity in
the group with the higher frequency (G) leads the activity in group G'. Note
that the phase difference can become arbitrarily small as the frequencies of the
groups approach each other, i.e., 8 — . The frequency of the synchronized
oscillation also increases with the intrinsic frequency of oscillation of the group
G, emphasizing the cooperative nature of the interaction mediated by reentrant

connections. In the present example, note that there is a negligible phase
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ty | w () (num.) | w (Q) (theory) | @, (theory)
020 | 752 (8.28) |  8.00 (8.94) 0.0
0.19 | 7.52(859) |  8.12(9.25) 0.10
0.18 | 7.67(8.90) |  8.24 (9.58) 0.20
0.17| 7.82(9.05)|  8.37(9.94) 0.30
0.16 | 7.98(9.36) | 8.51 (10.33) 0.41
0.15| 813(9.82) | 8.67 (10.76) 0.52
0.14 | 828 (10.12) | 8.85 (11.24) 0.66
0.13 | 8.44 (10.58) |  9.09 (11.76) 0.84

Table 4.5.3: The phase difference between the excitatory components of the groups,
6. increases as the frequency mismatch between the groups increases. w is the fre-
quency of synchronized oscillations, and Q, the intrinsic frequency of one of the groups
(shown in brackets). €', the intrinsic frequency of the other group is fixed at 8.28.
Q is selectively increased by decreasing the inhibitory delay, t5. The synchronized
frequency, w, also increases with Q.

difference between the excitatory and inhibitory components within a group

because of symmetric intragroup connectivity and identical decay rates for the

excitatory and inhibitory components.

When reentrant connections are introduced, phase locked oscillations,
such as those described above, occur even when the frequencies of the two
groups without reentrant signaling differ by as much as 35%. However, if
the frequencies of the groups differ by 50% or more, synchronization is more
complicated. Let, for example, the intragroup inhibitory delays be 3 = 0.1
and t; = 0.3 so that the frequencies of the two groups differ considerably:
Q = 12.27 and Q) = 6.60. In this case, when reentry is introduced, the spectral
peaks occur at a frequency of w = 6.75, close to, (1) the intrinsic frequency of
G’, and (2) a subharmonic of G (Fig. 4.5.2). The cross correlation between the
activity of the groups is reduced because of the complex spectra which contain

non-overlapping frequency peaks. These results suggest a role for the complex
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Figure 4.5.2: When the intrinsic frequencies of the groups differ by over 50%, sub-
harmonic resonance establishes partial synchrony. (A) The frequency spectrum for
group G shows a subharmonic (w = 6.75) whose frequency is close to half its intrinsic
frequency; (B) The group G’ has a frequency spectrum with its dominant frequency
close to its intrinsic frequency. The intrinsic frequencies of the groups are {1 = 12.27,
(t4 = 0.1) and Q' = 6.60, (t, =0.3).
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harmonics that can circulate in the system — they establish partial synchrony
when the disparity in the frequencies is large or when the intrinsic oscillations

of the groups contain strong harmonics.

Consider next the effect of increasing the reentry delay in order to
understand the effect of signals interacting with different phases. In particular,
we wish to investigate the effect of the phases of the reentrant and inhibitory
signals when the intrinsic frequencies of the groups are not the same. Let the
reentry delays be symmetric, i.e., t, = t.. The frequency and phase, 8., of the

oscillation are given by,

3 %’-% sin(8., + wt,) — sin(wtq)
WI'= —5——p o : ; (4.5.8)
2 4 G4 cos(0, + wiy) — cos(wty)
o (@) _ Bsin(0) + G B dinet,) —sin@ 4 oty) o
1 +wTtan(8) % cos(81) + %—%ﬁ cos(wt,) — cos(6, + wt}) o

As the reentry delay, t,, is increased, the theoretical results indicate that the
phase difference #, between the groups increases and then abruptly jumps by
almost 160°. Concomitantly, the frequency decreases and then jumps to a
higher value. Further increase of the delay is accompanied by a decrease in
frequency and an increase in the phase difference (see Table 4.5.4). This phe-
nomenon is similar to the jump resonance observed in other nonlinear systems
(Stoker, 1950; Guckenheimer and Holmes, 1983) and is characterized by abrupt
changes in phase, amplitude, and frequency. At the transition region, the be-
havior of the system can be quite complex, and the theory is no longer valid
since the phase, 8., is no longer constant. The following functionally important
characteristics are noted in this region: (1) lost phase coherence, (2) persistent
transients, and (3) reduced cross correlation between the groups. Reductions
of 50% in the cross correlation have been observed (Fig. 4.5.3). The frequency

spectra (Fig. 4.5.4) also indicate that the underlying activity is asynchronous.
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t, | w (num.) | w (theory) | 6. (theory)
0.00 7.60 8.24 0.19
0.05 6.90 7.85 0.26
0.06 6.90 7.80 0.29
0.12 9.97 10.27 - 2.49
0.15 9.82 10.21 - 2.74
0.20 9.51 9.79 - 2.84

Table 4.5.4: The phase difference, 6., between the excitatory and inhibitory com-
ponents of the two groups and the synchronized frequency, w, jump abruptly as the
reentry delay, t,, is increased causing the inhibitory and reentrant signals to arrive
out of phase. In this example, the frequencies of the two groups are {I = 8.89 and
€ = 8.28, corresponding to inhibitory signal delays, tg = 0.18 and ¢, = 0.2.

Numerical experiments indicate that the size of the transition region increases
with the mismatch in the intrinsic frequencies () and ') of the groups. Thus,
depending on the phases of the interacting signals, the oscillatory activity of
the groups can be either synchronized or desynchronized. Even when the
frequencies of the groups are exactly the same, asymmetry in reentry delays,
i.e., t, # ', can cause a nonzero phase difference between the excitatory com-
ponents of the groups, as may be seen from Eqns. 4.5.1 and 4.5.2 with {3 = th.
For small differences in the delays, the phase difference, 8., is small. How-
ever, as the mismatch increases, the oscillations display the jump bifurcation
described above wherein discontinuous changes in frequency and phase occur.
Table 4.5.5 compares the theoretical and numerical results on the frequency
and phase changes when ¢/ is increased with ¢, constant. In this case also,
persistent transients are observed near the transition region, and the cross cor-
relation between the groups can decrease substantially even though the intrinsic
frequencies of the groups are exactly the same. The desynchronization of the

oscillations in this case points to the emergent features of phasic signaling.
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Figure 4.5.3: Desynchronization and resynchronization of the oscillatory activity
occurs when the delay in the reentrant signal is increased. (A) The phase difference,
g, between f, and f!, the fraction of excitatory neurons firing per unit time, jumps
abruptly by almost 150° as predicted theoretically. (B) In the transition region,
phase coherence is lost. (C) The cross correlation after the transition is much greater
than the cross correlation at the transition, (D). The reentry delays are ¢, =1, = 0.15
after the transition and £, = ¢/ = 0.1 at the transition point. The intrinsic frequencies
of the groups are, @ = 9.82, (tz = 0.15) and @' = 8.28 (¢ = 0.2). The cross
correlations are normalized with respect to the mean and standard deviation of the
post transition activity (C).
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Figure 4.5.4: The spectra during desynchronized activty and after resynchroniza-
tion. (A) Spectrum of the oscillatory activity of G and (B) spectrum of the oscilla-
tory activity of G' while activity is desynchronized indicate complex non-overlapping
frequencies. (C) Spectrum of G and (D) spectrum of G’ after resynchronization
indicate the basis of the restored synchrony.



86

t, | w (num.) | w (theory) | 0.(theory)
0.00 7.52 8.00 0.0
0.05 7.21 7.79 0.19
0.10 7.21 7.61 0.38
0.15 7.21 7.48 0.56
0.20 7.52 10.25 -2.12
0.22 9.82 10.21 -2.01
0.30 9.66 9.97 - 1.65
0.40 9.36 9.56 -1.22

Table 4.5.5: The synchronized frequency, w, and the phase difference, 8., between
the excitatory components of the two groups jump abruptly as the mismatch in
reentry times increases even when the frequencies of the two groups are exactly the
same. The delay in the excitatory signal from the group G, ., is increased with the
delay of the signal from G’ to G kept fixed at 7] = 0.

These results emphasize the critical role of the relative phases of the

interacting signals and the functionally important role of delay induced phase

shifts.

All of the above results, derived for identical excitatory and inhibitory
activity decay time scales, T. = T;, also hold for the more realistic case of
slowly decaying inhibitory activity, T. < T; which we consider next. Here we
will only sketch some results for the sake of completeness. For simplicity, we
set T, = T!, T; = T/, and ¢, = ¢, = 0. The following relations can be easily
shown: (1) feo = fly, (2) fio = flp and, (3) 8; — 0, = 6;. When T, # T;, the
phase difference §; between the excitatory and inhibitory components within a
group is no longer zero, tan(f;) = % With the approximation f.o ~ fe,
the ratio of the amplitudes of the excitatory and inhibitory neurons firing per
unit time, can be obtained from Eqns. 4.4.16, 4.4.17, 4.4.19, and 4.4.20,

feO 142 T? 1
== - 4.5.10
féﬂ 14212 H_,, - 272 ( >

14w
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If wT. < 1, as is typical in the present discussion, it follows that -%g ~
,/i————:z—%—ﬂ—l;;, where 3? <k < ;2; The ratio of the amplitude of the exci-
tatory and inhibitory neurons firing per unit time (1) scales inversely with the
refractoriness of the excitatory neurons, and (2) depends on the decay times,
T. and T;, and the frequency in a nontrivial manner. The frequency-amplitude-
phase relations are obtained from Eqns. 4.4.16, 4.4.17, 4.4.22, and 4.4.23,

%ﬂ%g sin(0.) — sin(8; + wiy)

WT, = — 4.5.11
Lot G oon(0l) — conll Fwta) D
T. — tan(0’ Lo gin 0!) — sin(6, + 6; + wt/
w an( e) _ fio ( ) ( 2) (4.5.12)

1+wT.tan(6)) %}1 cos(8!) + %‘% — cos(6’, + 0; + wt!)
For t4 = t),, it follows that §, = 0 and §; = 6;. It may be noted that the phase
difference §; reflects intragroup asymmetries (for example, differences in excita-
tory and inhibitory decay time periods) whereas ! reflects intergroup asymme-

tries (for example, differences in forward and backward connection strengths).

In agreement with the results obtained for T; = T., we find (1) the
theoretically determined phase difference increases as the difference between
the intrinsic frequencies of the groups increases, and (2) the frequency of the

synchronized oscillation decreases in comparison to max({2, {)’) (if not both (0

and Q') (Table 4.5.6).

When the frequencies between the groups differ by more than 50%),
circulating subharmonics establish partial synchrony. For the particular case
illustrated in Fig. 4.5.5, O = 7.823 and @' = 4.449, the frequencies differ by
more than 50%. After reentry is introduced, the peak amplitudes occur at w =
6.903 for the group G, and w' = 4.602 for G’, so that % = 2. The generation
of subharmonics, (notice that a subharmonic at weyy = 2.3 circulates in both

the groups), seems to underlie this process. The cross correlation is reduced

due to the complex spectrum with nonoverlapping frequency spectra. We may
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)| w () (num.) | w () (theory) | 8.(theory)
0.10 |  6.44 (7.82) 711 (9.18) 0.00
0.15 6.29 (6.90) 6.88 (8.00) 0.09
0.20 |  6.14 (6.14) 6.51 (7.04) 0.26
0.25 |  5.98 (5.68) 6.15 (6.28) 0.44
0.30 |  5.98 (5.22) 5.81 (5.67) 0.65

Table 4.5.6: The phase difference, 6., between the excitatory components of the
groups increases as mismatch between the frequencies increases. Here the inhibitory
signal decays slower than the excitatory signal (T, = 0.1, T; = 0.2). Note that in
comparison to the case of T, = T;, (Table 4.5.3), the phase differences are smaller.
The frequency of the synchronized oscillation, w, decreases as the intrinsic frequency
Q' (shown in brackets), is selectively reduced by increasing the inhibition delay ¢ in
group . Q = 7.82 is constant, corresponding to inhibitory delay ¢4 = 0.1.

note that for the same values of the delay in inhibitory feedback, t4 and t),
the intrinsic frequencies of oscillation of the two groups differ progressively less
as the inhibitory decay time T; is increased. Hence slowly decaying inhibition
gives the oscillation a certain robustness as far as establishing coherency is
concerned because typically 1 : 1 phase locking takes place; moreover, the

phase differences are smaller as well. However, this observation is not valid if

the intrinsic oscillations in the groups contain strong harmonics.

To summarize, the phase difference between the excitatory compo-
nents of the groups G and G’ is exactly zero only when the frequencies of
oscillation of the two groups are identical and there is symmetry in the cou-
pling and time delays of the reentrant signals. However, the phase difference
can be arbitrarily small when the frequencies of the two groups are close. If the
inhibitory signals are slowly decaying, the frequency differences can be small
for a wide range of parameters (for example, the inhibitory signal delay, the
reentrant signal delay, or the connection strengths). The phase difference be-

tween the groups (1) increases with the frequency mismatch, and (2) depends
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Figure 4.5.5: Circulating subharmonics establish partial synchrony when the intrin-
sic frequencies of the groups differ by over 50%. In this case the inhibitory signal
decays slower than the excitatory signal (7, = 0.1, T; = 0.2). The intrinsic frequen-
cies of the groups are Q = 7.823 (fg = 0.1), and ' = 4.449, (¥}, = 0.4). (A) The
frequency spectrum shows that the group with the larger intrinsic frequency has a
dominant frequency at w = 6.903, and (B) the group G’ has a frequency spectrum
with the dominant frequency at w' = 4.602 so that % = % In this example, C = 6.
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on the reentry delay in a complicated way: it increases with increasing reen-
try, loses phase coherence, and then jumps by almost 150°. The frequency
decreases with the introduction of reentry for small reentry delay times, and
the decrease is proportional to the mean reentrant synaptic strength. However,
as the delay in the reentrant signal is increased and the reentrant signal arrives
out of phase with the inhibitory signal, the frequency can jump abruptly to a
higher value. At the transition region, phase coherence is lost and the cross
correlation between the activities of the groups can decrease by up to at least
50%. When the frequencies of the groups differ by more than 50%, partial

synchrony is established by subharmonic resonance.

4.6 Other Models

We briefly consider some hypothetical models describing the collective
behavior of interacting groups of neurons in order to elucidate the critical
nonlinear ingredients for synchronization. The first model we consider has a
multiplicative type of nonlinearity, wherein the inhibition shunts the excitatory

activity in both the excitatory and inhibitory subpopulations:

Tofe(t) = —fo®) + (1= [, f(t)dt) x 0e(Cfelt) + CLfo(t — 1)) + P)

#(1 — 0:(Cfi(t — ta) + Q) (4.6.1)
Tfit) = —fi()) + (1 = [, filt)dt') x 0u(C felt) + C1fi(t — ;) + P)

*(1 — o (Cfi(t —ta) + Q) (4.6.2)

with similar equations for the group G'. The terms (1 — o;.) and (1 — 0y),
where o;. and o;; are the standard sigmoids, model shunting inhibition. Stable
oscillations are observed in each group but there is no synchronization of ac-

tivity when reentry is introduced. This suggests that nonlinear summation of
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the excitatory and inhibitory components, lacking in the above model, may be
essential for synchronization. Such a mechanism would be consistent with the
fact that cells sum up input in a nonlinear manner. The Wilson-Cowan model
is precisely of this type and, as we have noted, replaces the nonlinear sum-
mation of excitatory and inhibitory voltages by the renormalized population
variables for the fraction of excitatory and inhibitory neurons firing per unit
time, f.(t) and fi(t). A simple modification of Eqn. 4.6.2 so that the inhibitory
subpopulation provides the locus for the nonlinear summation of the excitatory

and inhibitory components:

ﬂfs(t) = '-fi(t) + (1 - ftt--'rg fi(t’)dt,) *
x03(Cfe(t) + CLfe(t — 17) — Cfi(t —ta) + Q) (4.6.3)

is sufficient to synchronize the activity of the two neuronal groups.

The locus of nonlinear summation of the excitatory and inhibitory
components in the subpopulations may be the inhibitory interneurons for the
following reasons, (1) the slow graded nature of the postsynaptic potential of
these neurons could enable the integration of the delayed reentrant signals, and
(2) most inhibitory interneurons, but only a small fraction of the excitatory

neurons, participate in the rhythmic population oscillations at a given time

(Traub et al., 1989).

4.7 Discussion

Reentrant signaling induces phase locking between neuronal groups
with small intrinsic frequency mismatch. In this case, the frequency spectra
of the activity of the groups shows complete overlap reflecting the increase in

the cross-correlation between the activities of the groups. When the intrinsic
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frequencies of the groups differ by over 50%, however, partial synchrony is

established by circulating sub-harmonics.

The synchronization is input driven because of the strongly dissipative
nature of the activity in an unexcited group (or one excited subthreshold). In
the model considered, refractoriness in the excitatory neurons, which suppresses
the number of excitatory neurons firing per unit time is critical for generating
oscillations when reentry is introduced. The number of excitatory neurons
firing per unit time scales inversely with the refractoriness. In the presence of

several interacting signals, refractoriness provides dynamic stability.

Nonlinear summation of excitatory and inhibitory signals, mediated
by the reciprocal connections, is critical for establishing synchrony between
groups. The locus of such interaction may be the inhibitory interneurons whose
firing is much better correlated with the population activity than that of ex-
citatory neurons (Traub et al., 1989). One-way signaling can also induce syn-
chronization but such a scheme suffers from two deficiencies: (1) the phase
difference between the excitatory components of the groups is much greater
than when reentrant signaling is present, and (2) the mismatch in the intrin-
sic frequencies of the groups is restricted to about 10%. In general, as one
may expect, synchronization is more robust with reentrant signaling. How-
ever, one-way signaling may help either to establish coherency when reciprocal
connections are not possible, or reciprocal connectivity exists and the (weaker)
pathway is strengthened by the coherency established by the (stronger) path-

way, thus suggesting developmental implications.

Synchronization is achieved by dynamically adjusting the amplitudes
and phases of the various excitatory and inhibitory components as well as the

frequency of the coherent oscillation. The (relative) phase of the interacting
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signals has two components, one usually referred to as the ‘phase difference’,
for example, @, above due to synaptic coupling, or #; due to the mismatch
in the excitatory and inhibitory decay times, and the other explicitly due to
delay in activation of the signal, for example wt, above. These phases are
important in determining the frequency of the oscillation. The phase difference
between the excitatory components of the groups, 8. is strictly zero only when
there is a certain symmetry: if the frequencies of oscillation are exactly the
same and the coupling is symmetric both in strength and delay. Arbitrarily
small phase differences are possible as the intrinsic frequencies of the groups
approach each other, i.e., 0 — . For small reentry delays, the phase difference
between groups increases with increasing mismatch in the intrinsic frequencies
of the groups. Reentrant signaling reduces the frequency of oscillation when the
reentry delay is small compared to the delay in the inhibition, typically by about
10%, in agreement with the detailed computer simulations of (Sporns et al.,
1989). This decrease is proportional to %“-, the ratio of the mean intergroup to

intragroup synaptic strength.

However, as the reentry delay increases, the reentrant signal arrives
out of phase with the inhibitory signal, and the frequency and phase difference
between the activity of the two groups undergo a jump bifurcation— the phase
changes abruptly by about 180°, and the frequency of the synchronized oscilla-
tion increases (by as much as 40%). At the transition region, phase coherence
is lost thereby reducing the cross correlation. We may term this desynchro-
nization. An extreme example of this process is the desynchronization of the
oscillations of two groups of neurons with identical intrinsic frequencies when

the reentry delay times are asymmetric.

Desynchronization of oscillatory responses in the present case does not
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require synaptic modification as in (von der Malsburg and Schneider, 1986),
nor is it the result of decreased or residual interaction. Desynchronization is
a consequence of signals not arriving with the proper phase relationships. A
simple mechanism to achieve this, as we have noted, is by delayed reentrant
signaling. The role of delays in desynchronizing oscillatory responses has been

noted in a recent computer simulation (Schillen and Konig, 1990).

The jump bifurcation delineates two delay related time windows: (1)
in which correlated activity can take place and (2) in which the oscillations
are decorrelated. These time windows share some of the characteristics of the
atemporal or neutral time windows discussed in the context of transduction of

signals by Poppel et al. (1990).

The synchronization, desynchronization, and resynchronization of the
oscillations represents a correlation dependent non-Boolean switching mecha-
nism. Such a switching mechanism differs from the on-off response and the
idea of a ‘set cell’ (Evarts et al., 1984), digital switches (McCulloch and Pitts,

1943) and analog computations (Koch and Poggio, 1987).

We predict that similar results will be found for the more realistic
cases of time courses of the signals such as the alpha form (te~*/7). By varying
the time courses of the signals using neurotransmitters (Marder et al., 1987)
it is possible to dynamically control the spatiotemporal correlations even as
the groups signal to each other. This is a specific example of what might be
termed neurotransmitter logic (Finkel and Edelman, 1987). Such a logic differs
fundamentally from Boolean logic wherein the specific time courses of signals
are not relevant: as long as inputs arrive within a narrow time window, a logical

operation is performed.

The phase of a signal arriving from a neuronal group depends on
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the time delay, the synaptic coupling, and frequency of the ongoing oscilla-
tion. The interaction of signals with different phases in turn influences the
characteristics of the ongoing oscillations. The frequency of the underlying
activity itself is a signature of the global activity of (possibly) several groups
acting coherently. In addition, signals can selectively influence the oscillations
and the cross-correlation between the activity of neuronal groups. Moreover,
depending on the phases of the interacting signals, the oscillatory activity of
the groups can be either synchronized or desynchronized. The mechanisms of
synchronization, desynchronization, and phasic signaling discussed above pro-
vide dynamic linkage between coactive neuronal groups thereby enabling the

distributed neural system to operate in a highly parallel manner.



Chapter 5

Topological Effects

5.1 Introduction

The dynamical sampling of the environment leads to the activation
of certain localized populations (neuronal groups) at a given time. Following
further sampling, still other groups of neurons are likely to be recruited with
a fraction of the previously active groups still active. In higher animals these
interactions are further compounded by the presence of preparatory sets which
involve endogenously activated neuronal groups (Evarts et al., 1984; Edelman,
1987). Thus, the set of neuronal groups that are active is continually changing

and forms a global mapping that is dynamic (Edelman, 1989).

A particular subset of the global mapping is an n-tuple: n neuronal
groups coupled in varied topologies (Edelman, 1989). In order to gain insight
into some aspects of signaling between neuronal groups forming a global map-
ping, we consider the triadic interaction of neuronal groups. This problem is
important to study because signals are constantly being mapped between pri-
mary, secondary and association areas in the brain. Several examples of such
interaction may be given: mapping through intermediate areas linking the pre-
frontal cortex and the motor cortex (Fuster, 1986), various visual areas (Zeki
and Shepp, 1988), the cortex-hippocampus-cortex loop and the basal ganglia-
cortex-thalamus loop (Alexander et al., 1986). Such interactions may involve

complete closure in circulating the signals as in the triangular or a partial

96
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closure as in the series interaction.

In the previous chapter we noted the role of coherent oscillations
in signaling in a distributed system and the emergent features thereof. The
present study seeks to extend and generalize some of the results obtained with
the diadic interaction. We will be mainly concerned with the asymptotic be-
havior of three interacting neuronal groups which we will attempt to generalize
to more global mappings. The discussion here is mainly concerned with the ef-
fects of nonlinearly interacting signals, i.e. the nonlinear summation of signals
giving rise to overall integration. It is also the simplest mapping in which the
effect of topology can be studied. Although the details of the connectivities
between and within the groups are relevant, it is believed that the distinction
between gross mapping topologies (triangular vs. series) is the more important.
Significant differences are found between these mapping topologies as a result

of differences between the open and closed circulation of signals.

A study of the triadic interaction gives clues as to what might happen
in more complex settings (e.g. the interaction of several neuronal groups). In
particular, an important question that must be answered is whether the effect
of additionally recruited groups is not merely to modulate the diadic oscillatory

activity but to substantially alter the characteristics of the oscillations.

The setting for studying the triadic interaction may be viewed in two
ways: (1) a study of three interacting groups in its own right and (2) a study
of the dynamic changes caused by third group on the dyadic interaction of the
neuronal groups. The main dynamical interaction can then be understood in
terms of the nonlinear interaction of signals with different phases. In partic-
ular, the delay involved in mapping the activity from one region to another

contributes significantly to the phase. The main problem here is to investigate
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the role of time delays in dynamically correlating and decorrelating the oscilla-
tory activity of neuronal groups and to ask whether the phenomena observed
in the diadic interaction extend to more general cases and how these changes

reflect global mapping.

The outline of this Chapter is as follows: in Section 5.2, a mathemat-
ical model is described to investigate the interaction of coherent excitatory and
inhibitory signals from three groups. In Section 5.3, (an approximate) nonlin-
ear theory is described along with results from numerical experiments in order
to ascertain the important phenomena that can accrue from the aforementioned
triadic interaction. Section 5.4 summarizes and concludes the discussion with

a generalization to possible global temporal effects in neural systems.

5.2 Mathematical Model

We will be concerned with the interaction of excitatory and inhibitory
signals generated by the coherent oscillations in three neuronal groups; the os-
cillatory signals being generated by the interaction of excitatory and inhibitory
neurons within a neuronal group. To study the dynamics of the aggregate, in
the mathematical model the nonlinear summation of excitatory and inhibitory
voltages is renormalized to represent the nonlinear summation of coherent ex-
citatory and inhibitory signals from and within the three neuronal groups. For
the study of certain critical aspects of the nonlinear interaction of coherent
signals, the model is an adequate one. FEach neuronal group is represented
by two population variables f.(t) and f;(¢), the fraction of excitatory and in-
hibitory neurons firing per unit time. Because (1) the neurons in a group are
tightly coupled and localized and (2) single cells may fire asynchronously while
the population firing is collectively synchronized (Traub et al., 1989; Sporns
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et al., 1989), these variables are used in describing the aggregate dynamics.
The model is a straightforward extension of the models developed in Chapters

3 and 4.

Fig. 5.2.1 is a schematic illustration of the inter- and intragroup
connectivity between three neuronal groups Gy, Gy, and G, where £ and I
represent the excitatory and inhibitory subpopulations of G, E' and I’, and
E" and I" the corresponding subpopulations of G'. (Notation: Throughout
this Chapter, the unprimed variables refer to GG, the primed ones to G' and the
double primed ones to G”). Following Wilson and Cowan (1972), the fraction of
excitatory and inhibitory cells firing per unit time, f.(¢), and f;(¢) for the group
Go, fI(t), and fI(t), for the group G1, and f.(t), and f/(t), for the group G,
at time t are given by the following time coarse-grained and spatially averaged

nonlinear differential equations,

TAE) = =5+ 0= [ fE)d)o(e) (521)
Ti®) = ~HO+ (- [ L)) (5.2
T = -0+ [ o) (5.23)
T = O+ 0= [ S (5.24)
TR = O+ /Mg, F(E)dt o (= (525)
OIS HOR (B WAL DEACS (5.2.6)

2o(t) = Cifelt) + Cofilt — 1) + CIfi(t — t0) = Cafilt — ta) + P
zi(t) = Cafult)+Cofl(t — 1) + CLfU(t — 1) — Cafi(t —ta) + Q
(1) = CifUt)+ Cofult — 1) + CLE(E — 1)) — Chfi(t — t) + P/
Z(t) = C3fi()+ Crfult — 1) + CLEN(t — ) = Cafl(t — i) + Q'
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Figure 5.2.1: Two distinct topologies of triadic neuronal group interactions. (A)
Triangular ‘closed loop’ and (B) Series ‘open loop’ interaction of neuronal groups
G, G/, and G”. In each group E and I represent the excitatory and inhibitory
subpopulations. The excitatory connections are indicated with filled arrows and the
inhibitory ones with unfilled arrows. The inter-group signaling is entirely excitatory.
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gy (t) = CIfI() +Crf(t — )+ Clf(t =) — Gy fi(t — tg) + P”
gi(t) = Cifi(t) + Crfet — i)+ Cife(t — 1) — CLfi(t —t3) + Q"

where z,, z;, =., =%, and z¥, = are the activities and oc(x.), o:(x:), oc(x}),
oi(zh), oc(zl), and o;(z}) are the responses (outputs) of the respective subpop-

ulations. The sigmoids have the standard form,

— o A
o(2) = TrewrsE)

where 8 and y are respectively the sigmoid nonlinearity and threshold and
represents nonlinear saturation of the net activation of the respective subpop-
ulation. Consider, for example, the equation for the fraction of excitatory cells
firing per unit time, f.(¢) (Eqn. 5.2.1) for the subpopulation represented by
E. The time scale of decay of activity in the absence of external excitation is
T., and r, is the absolute refractory period of the excitatory cells. The change
in the fraction of cells firing depends on (1) the decay in activity and (2) the
fraction of cells that are not refractory and are active. The fraction of cells that
are not refractory at time t is (1 — f/_,, f(¢')dt') and the fraction of cells that
are active is given by the sigmoid o, as a function of the average activity of the
cells, z.(t). Cy, Cq, C,» and C/ are the mean synaptic strengths mediating the
Eto E,Ito E, E' to E, and E" to E subpopulation interactions respectively,
and P is the (constant) external input. The inhibitory signal arrives with a
delay, t4, and the reentrant signal with a delay, t,. The delay could be due to ei-
ther delay in chemical activation or delay in transmission, or both, as discussed
above. A nonzero intragroup inhibitory delay ¢4, t};, and t] are essential to the
present study because in the absence of such a delay, strong feedback coupling
is required (Wilson and Cowan, 1972). Strong feedback coupling causes gen-

eration of strong harmonics which makes the theoretical analysis extremely
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difficult. Inhibition delays, expressed, for example by GABA4 and GABAp,
provide a large dynamic range for the oscillations (Traub et al., 1989). Any
delay in the recurrent excitation within the neuronal group has been ignored as
small compared to the delay in the inhibitory and reentrant signals. Consistent
with the theory of neuronal group selection (Edelman, 1987), we assume that
the mean intragroup synaptic strength is greater than the intergroup synaptic
strength, i.e., C > C,. Refractoriness in the inhibitory neurons is neglected,
and is not critical for the phenomena we wish to study. Similar considerations

hold for each of the other subpopulations.

For the mathematical analysis of Eqns. 5.2.1 - 5.2.8, it is necessary

to approximate the sigmoid with a piecewise linear function as in Chapter 3:

o(z) = 1.0 r>x+06
0.0 z<y—96
m(z—x)+05 |z—x|<$é (5.2.7)

where x + 6 is the saturation point, and m is the slope of the sigmoid with
bm = -;- The approximation preserves the nonlinear saturation characteristics

of the original sigmoid.

Two final notes are in order pertaining to the following discussion:
Parameters: Except as noted, the following default parameters are used in
quoting the results of the numerical studies of Eqns. 5.2.1 - 528, T, = T} =
T =T =T'=T'=01l,me=m; =05, x.=xi =40, P=Q =P =Q' =
40, re=r =7 =05, r=ri=r!=00,C1=C,=Cs=Cy=C{ =3 =
Ch=Ci=Cl=C=C=C}{=C=6.0,C, =20, C] =20, C = 2.0.
Notation: The intrinsic frequencies of the two groups (without reentry) will
be denoted by Q, ' and 2" and the (common) synchronized frequency of the
three groups by w.
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Although the model could be made even more general, the simplifi-

cations have been chosen to keep the model analytically tractable.

We distinguish between the triangular (Fig. 5.2.1a) and the series
(C! = 0) interactions (Fig. 5.2.1b). It will be seen that the broken symmetry

in the latter case leads to several distinct phenomena.

5.3 Analytic and Numerical Results

The mathematical model described in the previous section is studied
both analytically and using numerical simulations. A nonlinear theory based
on the averaging technique of Bogoliubov-Krylov-Mitropolsky (Bogoliubov and
Mitropolsky, 1961; Gelb and Velde, 1967; Guckenheimer and Holmes, 1983) is
particularly useful in understanding the relationships between the frequency,
amplitude, and phase of the oscillations. These relations, though approximate,
reproduce most of the behavior, aid in searching the solution space for bifurca-
tions and provide insights into the nature of the triadic interaction. Besides, the
relations provide a self-consistent method to evaluate the phase differences be-
tween the various intra- and inter-group excitatory and inhibitory components

of the activities of the groups.

Neglecting the higher harmonics, solutions to Eqns. 5.2.1 ~ 5.2.6 may
be approximated by

fo®) = fe+ fosin(wt) (5.3.1)
filt) = fi+ fosin(wt —6;) (5.3.2)
fot) = fo+ fiosin(wt —07) (5.3.3)
flty = fl+ flosin(wt — 6., — ) (5.3.4)

) = fI+ flgsin(wt —67) (5.3.5)
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) = J'+ o sin(wt — 07 — 67 (5.3.6)

where 0;, 0}, and 8/, are the phase differences (assumed to be constant) be-
tween the intra-group excitatory and inhibitory components f, and f;, f. and

!, f! and f' respectively; 6, and @, are the phase differences (assumed to
be constant) between the intragroup components f. and f., and f. and f”

respectively.

Assuming threshold excitation of each of the subpopulations (P = x,
etc.) and identical excitatory and inhibitory decay rates T, =T, =T/ =T; =
T! =T/ =T, it is easy to show that (1) §; = 6! = 6 = 0 because the input
into the excitatory subpopulation is equal to the input into the inhibitory
subpopulation and (2) fuo = flo = fib, fio = flo = [y fo = Jo = J, and
fi = fI = fI'." With these a,pproﬁc:imations, the frequency of the synchronized
oscillation, w, and the phase differences, 8, (between groups G and G') and 6

(between groups G and G’) are given by,

wl' =
%“-*f&& sin(@, + wt,) + = -—’—fﬂ 8111(9” + wtl) — sin(wty) (5.3
'jffﬂ + %‘ cos(0, + wt,) + bt Lo cos(07 + wit!) — cos(wty)
wl' —tan(f))
14+ wT tan(8)
_ 31n(9’) + —‘"—m 2 sin(wt,) + %ﬂ%‘l sin(0) + wil) — sin(8, + wt}) (5.3.8)
cos(é”) + % —-’-iﬁﬂ % cos(wi,) + —C-P‘%"- cos(” + wt') — cos(8!, +wt}))
wT —tan(0])
1 +wT tan(8”)
| esin(e)) + G Lo sin(wt!) + S0 sin(f] + wil) — sin(67 + wt) (539)
§f§ cos(fy) + %“.ifg s(wtyl) + -‘iﬂ 2 cos(0, + wt}) — cos(87 + wty) o

Using the approximation f, ~ f.o, the ratio of the excitatory to the inhibitory
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cells firing per unit time is given by

Jo ! (5.3.10)

fo 1+
The derivation follows closely the calculations in Chapters 3 and 4 and therefore
are not repeated here. The above, somewhat general results, will be simplified
as special cases are considered. It may however be noted that (1) the relative
effect of each reentrant signal is weighted by (a) ratio of the intergroup to
intragroup connection strength and (b) the ratio of the excitatory to inhibitory
neurons firing per unit time, (2) the relative phases of the signals depends on

the asymmetries as well as the time delays.

The triadic interaction was studied in its two variant forms: the tri-
angular interaction with C, = C] = C} and the series interaction with C, = (]
and C! = 0. The two cases are compared and contrasted to study differences
in mapping topology. For a wide range of parameters, the oscillatory activity
of the groups with disparate frequencies is synchronized just as for the diadic
interaction. We will be mostly concerned with the behavior of the system in

terms of the effect of G” on the oscillatory activity of groups GG'.

5.3.1 Triangular Reentry

First consider the case of triangular interaction of groups with iden-
tical intrinsic frequencies. In the present study, this is achieved by setting the

(intragroup) inhibitory delays to be identical, {; = ¢ = 1.

Effect of introducing reentry With the introduction of reentrant sig-
naling between the three groups, the frequency of oscillation decreases when

the reentry delays are small. The drop is even greater than the one for the
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diadic interaction. This result may be proven for the simpler case of the zero
reentry delays and identical frequencies of the groups. From Eqns. 5.3.7 -
5.3.10, the (common) frequency of the three groups then simplifies to

sin(wty)

wTl =
1+ 2(—é‘=)=§7:*(’)l — cos(wty)

(5.3.11)

Let z = (1 + 2%’*)% Assume that the frequency of oscillation
increases as % increases. Then in Eqn. 5.3.10, {ffg increases so that z =
-jf,fg(l + 2%’-) increases. This contradicts Theorem 3.7.1. Hence, the frequency
of oscillation, w, decreases when reentry is introduced and, furthermore, w de-
creases monotonically with increasing & (Table 5.3.1). Moreover, the factor of
2 in the expression for z implies that the decrease is greater than the one for

diadic interaction under the same conditions (see also Section 4.5).

The reason for the drop in the frequency is that when the reentry
delays are small, and the phase differences 6, and 8 are small, the reentrant
excitatory signals arrive in phase with the excitatory signal within the group
thereby prolonging the excitatory activity within the group. Hence, the de-
crease in frequency is proportional to the strength and the number (two, in the
present case) of the excitatory reentrant signals (modulated by the connection

strengths).

Effect of reentry delays If the reentry delay is increased, the reen-
trant excitatory signals can arrive out of phase with the delayed inhibitory
signal resulting in a large jump in the frequency. In this case, the frequency is
given by

(o - .
273‘%? sin(wt,) — sin(wiy)

A}?g- + 2%% cos(wt,) — cos(wty)

Wl = —

(5.3.12)
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C, | w (num.) | w (theory)
0.0 8.13 9.12
0.5 7.82 8.76
1.0 7.21 8.41
1.5 6.60 8.05
2.0 5.98 7.69

Table 5.3.1: Reentrant signaling reduces the frequency of the synchronized oscilla-
tion; the decrease is proportional to the sum of the reentrant excitatory connection
strengths. In this example, the intrinsic frequencies are identical, @ = @' = Q" =
8.13, corresponding to inhibitory intra-group delays, t; = #; = ;] = 0.2; the reentrant
signals have no delay, ¢, =, =t/ = 0; and C, = C; = (7.

The factor of 2 implies that the effect of the reentrant signal is identical to that
in the diadic interaction with twice the connection strength. A comparison
of the diadic and triadic interactions shows that the jump in the frequency
is larger for the triadic interaction, as predicted theoretically (Table 5.3.2).
The large jump for the triadic interaction is due to the greater suppression
of the frequency when the signals arrive in phase, as noted above. Due to
the symmetry of connectivities, connection strengths, and delays, the phase

differences between the groups are identically zero and so there is loss of phase

coherence of the synchronized oscillatory activity.

Effect of reentry delay mismatch Mismatch in the delay in signals
arriving from G” can result in a phase difference between G' and G'. Further-
more, changing the reentrant signal delay between G” and G can differentially
alter the phase difference between G and G'. To consider a simple exam-
ple, let t; = ), = ¢}, so that the frequencies of the groups are identical, and
¢, = t. = 0.0, so that the phase difference 8, between G and G" is constrained

to be zero, and § # 0. As t” is increased, the phase difference #, does not
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t, | w (num.) | w (theory) || w (num.) | w (theory)
0.00 5.98 7.69 7.21 8.41
0.005 5.98 7.08 7.21 8.37
0.10 5.68 6.66 7.06 7.98
0.15 5.52 6.48 7.06 8.04
0.20 5.52 6.72 7.21 8.33
0.25 5.68 8.31 8.90 8.93
0.30 5.52 10.73 8.44 9.65
0.35 10.58 11.17 9.82 10.09
0.40 10.43 10.93 9.82 10.15

Table 5.3.2: The frequency of synchronized oscillation first decreases with increasing
reentry delay, t,, and then increases as the excitatory reentrant signal arrives out of
phase with the inhibitory signal; a comparison of the results for the cases of three
and two groups. The intragroup inhibitory signal have delays {5 = t;, = t] = 0.2,
and the intrinsic frequencies of the group are identical, @ = Q' = Q" = 8.13, and
Ce — 2
T =%

vary much except when a jump bifurcation occurs when the frequency also
changes substantially thereby causing a large jump in the phase. This result is
in agreement with the observation (see Chapter 4) that asymmetries in general

(see also the case of the series interaction below) give rise to phase differences.

Moreover, the phase differences can reflect global mapping and delay effects.

The nonlinear nature of the relationship between frequency and phase
also implies that, because of the jump bifurcation, small local changes in the pa-
rameters can cause large changes in the global characteristics of the oscillatory
activity. The result also illustrates the possibility of differential amplification of
phases and will be further elaborated below when groups with differing intrinsic

frequencies are considered.

Effect on desynchronization: Reinforcement As noted in the intro-

duction, when the reentry delay between two groups with differing intrinsic
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frequencies is increased, the oscillatory response can be desynchronized before
the jump bifurcation occurs. The size of the desynchronized region is pro-
portional to the frequency mismatch between the groups. What is the effect
of additional excitatory signals arriving from G”? Additional signals could
cause resynchronization of the oscillatory activity, i.e. the phase coherence and
cross-correlation between G and ' are restored. On the other hand, it is also
possible that the correlated diadic oscillatory activity could be decorrelated. In
view of the importance of such dynamic control in distributed neural systems,

a discussion of such interactions is pursued in some detail.

Let t; = 1] # t; and ¢, =t and t = 0. The intrinsic frequencies of
groups G and (', then, differ and the phase difference between these groups is
nonzero § # 0. By symmetry, 87 = 0 and Q" = Q). The frequency-amplitude-

phase relations then simplify to

%ﬂiﬂ sin(8, + wt,) — sin(wiq)

wl = — 10 (5313)
-f,fg(l + %‘) + %“%g- cos(8! + wt,) — cos(wty)
.,fﬁﬂ. . —sz - s
wT —tan(fy) _ _ Fasin(f) +25 53 sin(wt,) —sin(d + wta) (5.3.14)

1 +wTtan(6)) f,fg cos(#’) + 2%‘-%& cos(wt,) — cos(8, + wt))
An examination of the equations shows the reentry scaling factors, (1 + %) in
Eqgns. 5.3.13 and 5.3.14 and 2 in Eqn. 5.3.14, in comparison with the diadic
interaction. Thus, G” can dynamically control the phase of the oscillations of
groups G and G’ in a complex and highly nonlinear manner as already seen
before. What is new in the present case is that not only is the point at which
the jump bifurcation occurs altered by the interaction, but desynchronization
is prevented. As an example, let = 8.13 ({3 = 0.2) and Q = 7.21 (¢; = 0.25),
then for 0.1 < t, < 0.15, the oscillatory activity of G and G’ (sans G”) are
decorrelated. With a secondary signal from G”, as the reentry delay ¢, = ] is

increased, although (by symmetry) 67 = 0 is constant, the phase difference 8,
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t, | w (num.) | w (theory) | €. (theory)
0.0 5.98 7.39 0.37
0.1 5.82 9.13 -2.40

0.15 8.13 9.26 -3.08
0.20 7.98 8.93 -3.03
0.25 7.67 8.55 -2.98
0.30 7.67 8.18 -2.93

Table 5.3.3: The frequency and phase undergo a jump bifurcation as the reentry
delay is increased. The intrinsic frequencies of the groups G and G” are different. Due
to a reinforcing signal from G”, the desynchronizing temporal window is eliminated
in this example. Note also that the delay at which the jump occurs is smaller than
the case in Table 5.3.2, where the intrinsic frequencies are exactly the same; the jump
being smaller as well. The intrinsic frequencies are @ = Q" = 8.13 and Q' = 7.21.
The reentry delays are constrained i, = ¢, and t/ = 0 so that the phase difference
between the groups are 6 = 0.

jumps by about 180°, along with the frequency at a delay of £, = 0.2. (Table

5.3.3). In the present case, desynchronization is not observed.

‘Reinforcement’ from G” effectively decreases the size of the desyn-
chronized region and in the above example, actually eliminates it. The syn-

chronization is particularly robust when the intrinsic frequency of G satisfies

min(Q, Q) < Q" < maz(Q, V).

Thus, triangular mapping alters the size of the decorrelated region
and suggests the general tendency of the completely connected n-couple to
synchronize the activity in a stable manner by efficiently circulating the signals

in a closed loop.

Dynamic Control of Cross-Correlation If the intrinsic frequency of
G" is such that the mean frequency mismatch between the groups is increased,

the cross correlation between the groups G and G’ can be dynamically con-
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t. =1t | Correlation
0.00 0.78
0.10 0.75
0.15 0.59
0.20 0.50
0.25 0.21
0.30 0.63
0.35 0.71

Table 5.3.4: The relative correlation of groups G and G’ can be controlled by phasic
signaling from the group G” in a robust manner when the introduction of the new
group increases the mean frequency mismatch. The base line correlation is for the
diadic interaction of G and G’ with ¢, = 0; the corresponding correlation when
t, = 0.15 (the delay in the present case as well) is 0.30. The intrinsic frequencies
of the groups are ) = 8.13, ¥ = 7.21, and " = 9.664, corresponding to inhibitory
delays t4 = 0.2, t, = 0.25, and t] = 0.15.

trolled by the signals originating from G”. Consider the case where the os-
cillatory activity of the groups G and G’ are decorrelated due to a non-zero
reentry delay ¢,. When the signals from G” have zero delay, the signals arrive
in phase with the excitatory signals within the groups and this provides a re-
inforcing effect. However, as the delay in these signals increases, the signals
arrive out of phase, and the oscillations can be desynchronized. Following a
jump bifurcation, the oscillations are resynchronized with a ~ 180° phase shift
between the excitatory components of the groups G and G’ and between G’
and G, thereby resulting in phase-frustration where the phases between G”
and G shows a knotted structure. In the context of the present delay differen-
tial equations, the nature of the knotty structure is not understood. The main
result of interest, however, is that the dyadic cross-correlation can be dynam-

ically controlled with the delay in reentrant signaling from G for the reasons

explained above (Table 5.3.4).
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Differential amplification of phases A simpler example of the differ-
ential changes in phase has already been considered. In a more general setting,
differential amplification of phases can occur. For example, suppose the reentry
delay t! between the groups G and G” is increased, how is the phase differ-
ence between G and G', 0., affected? To consider an example, let the intrinsic
frequencies of the groups be different (due to differing intra group inhibitory
delays), and a delay mismatch with ¢, = ¢, = 0 and variable ¢]!. In this case,

the both the phases are nonzero:

wl' = —
%"-%‘l sin(6.) + %ﬂfﬂ sin(0” + wt!) — sin(wty) (5.3.15)
+ %"-%Q cos(8) + %L‘%g cos(67 + wt”) — cos(wity) o
wl —tan(8,)
1+ wT tan(6?)
fﬁ"- sm(l?’) + sm(ﬁ”ﬁ sin(8, + wt})
mcos(@') + & e + cos(@”) — cos(@, + witl) (5.3.16)
wl —tan(6))
1+ wT tan(87)
% sin(67)* + %n%g sin(wt!) + %nf,fg- sin(6.) — sin(8, + wty) (5.3.17)

‘:i‘ff cos(6”) + %ﬂ‘f&‘f cos(wt!) + %ﬁﬁf‘: cos(8!) — cos(8 + wtl))
If the frequency does not change much, the effect of varying ¢ on the phase 6,
is a second order effect as may be seen by comparing the terms marked { and
in the above equations (note that ¢ does not occur in Eqn. 5.3.17). Therefore,
the primary effect is on the phase §/. However, when the jump bifurcation
occurs, the phase difference 6. also increases (because of a large concomitant
change in the frequency) while the phase difference #) jumps by almost 180°.
Similar results hold for the more general case: when, for example, the delay
i, is increased, it is primarily the phase difference ¢, that is affected; however,

when the jump bifurcation occurs, abrupt jumps in ¢ occur.
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In this manner, local changes can result in global changes due to
the highly nonlinear nature of the interaction. Moreover, these changes show

differential ordering in phase as the latencies of signals are varied.

Integration of disparate time scales When the frequencies of the
groups differ by over 50%, partial synchrony is established by circulating sub-
harmonics; the degree of synchronization is however small due to the presence
of several complex non-overlapping subharmonics (see Chapter 4). The intro-
duction of a third group with an intermediate frequency causes robust synchro-
nization, by effectively minimizing the frequency mismatch. As an example,
consider the case where the intrinsic frequencies of the groups are {} = 12.58,
Q' =5.52, and Q" = 7.21. In the absence of signals from G”, the cross correla-

tion between G and G’ is small (Fig. 5.3.1 A).

However, following the introduction of excitatory signals from G” to
G and G’ the cross correlation between the groups G and G’ as well as the
cross correlation between the three groups increases substantially (Fig. 5.3.1
). The origin of this phenomena can be understood by examining the overlap
in the frequency spectra of the oscillatory activity of the groups (Fig. 5.3.2).
By robustly circulating intermediate frequencies (w = 5.98), which are close to
the intrinsic frequency of G”, and its harmonics, the overlap in the frequency
spectrum is considerably increased. In comparison to the diadic interaction,
it may be noted that the complex subharmonics (see Fig. 4.5.2) have been
quenched. There is a small differential effect in the cross-correlation [GG"] ~
[GG'] ~ 0.7 < [G'"G"] = 1.0, (Fig. 5.3.1 B, C, and D). In the case of the series
interaction, where the harmonics are not circulated as effectively, the cross-

correlation can show significant differential effects, as will be shown below.
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Figure 5.3.1: Triangular reentrant signaling increases the cross-correlation of diadic
interactions when the intrinsic frequencies of the groups are disparate. The cross-
correlations between the excitatory activities of groups (A) G and G’ without signals
from G, (B) G and G', (C) G and G”, and (D) groups G’ and G”. There is a
small differential effect in the cross-correlation: GG’ ~ GG" < G'G"”. The intrinsic
frequencies of the groups are { = 12.58, ' = 5.52, and Q" = 7.21.
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Figure 5.3.2: The frequency spectra for groups (A) G, (B) G’, and (C) G”. The
complex subharmonics, present in the diadic interaction of neuronal groups with
widely disparate intrinsic frequencies, have been eliminated thereby resulting in the
large cross-correlation indicated in Fig. 5.3.1. The pairwise overlap in the spectra
indicates the degree of cross-correlation.
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Thus, triangular interaction provides a robust way to integrate oscil-

latory activity over several time scales.

5.3.2 Series Reentry

Many of the differences between the series and triangular interactions
arise from (1) the broken symmetry which can result in large phase differences
8 and 8! due to input mismatch even when the intrinsic frequencies of the

groups are identical and (2) the inability to circulate signals as effectively.

Effect of introducing reentry As a simplification, let the intrinsic
frequencies of the groups be identical with ¢} = tJ and ¢, = ¢/. By symmetry,

6! = 9. The frequency-amplitude-phase relations are given by

2%’-%}1 sin(@, + wt,) — sin{wty)

T=- 5.3.18
) f’ff T 2%“}"3? cos(f! + wt,) — cos(wityq) ( )
wl' —tan(f,) ‘;foﬁ sin(0;) + & 42 sin(wt,) — sin(6;, + wta) 5:3.19)

14+ wTtan(6?) %él cos(8.) + %ﬂﬁf cos(wt, ) — cos(8, + wty)
Input mismatch between G on one hand and G” and G’ on the other due to
the asymmetry in the mapping topology results in nonzero phase differences
between the groups as may be readily seen from Eqns. 5.3.18 and 5.3.19. As
the reentry delay ¢, = t” is increased, although no desynchronization is ob-
served, persistent transients are observed which cause a decrease in the cross-
correlation between the groups. Note that this happens even though the fre-
quencies of the groups are identical. From Table 5.3.5, comparing the results
with the case of the the triangular interaction, it may be noted that the jump
in frequency is much smaller in the present case. This is because in the present
case, at small delays reentry does not depress the frequency to the same ex-

tent as in the triangular interaction. The reentrant signals arrive with non-zero
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t, | w (num.) | w (theory) | . (theory)
0.00 7.06 8.20 - 0.27
0.05 7.06 7.98 - 0.35
0.10 9.66 9.79 - 2.08
0.15 9.64 10.10 - 2.79
0.20 9.36 9.70 - 2.96
0.25 8.90 9.24 -3.11
0.30 8.28 8.80 -3.21

Table 5.3.5: In the case of the series interaction, the frequency and phase undergo
a jump bifurcation at a lower value of the reentry delay, compared to the triangular
interaction. As predicted theoretically, the jump in frequency is also smaller. Al-
though the intrinsic frequencies are identical and other parameters symmetric, the
asymmetry in mapping can result in a large phase difference as shown. The intrinsic
frequencies of the groups are (I = Q' = Q" = 8.13.

phase difference with respect to the intra-group excitatory signal; consequently,

the jump bifurcation occurs at a lower value of the reentry delay in the present

case.

Effect on synchronized and desynchronized activity Reentrant sig-
nals from G” can decorrelate the oscillatory activity of G and G’ in a robust
manner even if G” decreases the mean frequency mismatch between the groups.
For example, as 0" — Q, i.e. the intrinsic frequency of the group G approaches
that of G, desynchronization of the oscillations occurs resulting in a decrease
of over 50% in the cross-correlation between the groups (Table 5.3.6). Similar
results are obtained for ' < Q" < Q. For example, with = 8.13, ¥/ =,
and ) = 7.21 (4 = 0.2, t§, = 0.3, and ] = 0.25) — for 0.15 < #] < 0.3, the

oscillatory activities of G and G’ are uncorrelated.

If the oscillatory activity of the G and G’ is desynchronized due to non-

zero reentry delay ¢, between them, signals from G” reinforce the oscillations
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t! | Correlation
0.00 0.79
0.05 0.67
0.10 0.56
0.15 0.58
0.20 0.36
0.25 0.81
0.30 0.74

Table 5.3.6: Signals from G” can decorrelate diadic interactions in a robust manner.
For 0.1 < t < 0.20, phase coherence between G and G’ is completely lost thereby
resulting in a decrease of the cross-correlation by over 50%. Around t/ = 0.25,
synchrony is restored following a jump bifurcation. The base line correlation is for
the diadic interaction of G and G’ with ¢, = 0. The intrinsic frequencies of the groups
are O = Q" = 8.13 and Q' = 7.21, corresponding to inhibitory delays ¢4 = t)j = 0.2
and t/, = 0.25.

for small delay but desynchronize the oscillations. In the presence of delays, as

has already been noted, the decorrelation is quite drastic (Table 5.3.7).

Thus, there exist broad time delays, for signals from G”, in which the
correlated activity of two neuronal groups can be desynchronized; the range of
the time delay windows is even broader than the case of the diadic interaction.
Numerical studies further indicate that this range of these time delays (for
which the oscillatory activity is decorrelated) increases with (a) the frequency
mismatch between G and G’ and (b) the proximity of the frequency of G” to
that of G.

For the triangular interactions, it may be noted, under the same con-
straints, the oscillatory activity is approximately synchronized even as the jump

bifurcation occurs.

There is, however, no selective entrainment, i.e., it is not the case that

the oscillatory activity of G” and G are correlated while that of G’ and G are
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t! | Correlation
0.00 0.78
0.10 0.53
0.15 0.63
0.20 0.31
0.25 0.34
0.30 0.37
0.35 0.58
0.40 0.61

Table 5.3.7: Signals from G” can partially correlate diadic interactions for small
delay and robustly decorrelate the oscillations for larger delay. For 0.20 <t < 0.30,
phase coherence between G and G’ is completely lost thereby resulting in a decrease of
the cross-correlation by over 70%. Around ¢/ = 0.32, synchrony is restored following
a jump bifurcation. The parameters are the same as in Table 5.3.6.

decorrelated. The reason for this seems to be that when the frequencies of the

groups are not widely different, the signals are circulated through G, i.e., G
provides efficient throughput.

Selective correlation If the intrinsic frequencies of the groups differ
widely, selective correlation of the oscillatory activities is possible wherein an
ordering of the cross-correlations between the groups - [GG"] > [GG'] > [G'G"]
~ occurs. Such selective correlation is established by circulating harmonics.
As an example, let the intrinsic frequencies be = 12.58, ¥ = 5.52, and
0" = 7.21, circulating harmonics from G”. Because the intrinsic frequencies
differ by more than 50%, the cross correlation between the activities of G and
G’ sans G" is small, as we have already seen. However, when the group G” is
introduced, the cross-correlation shows the aforementioned differential effects
(Fig. 5.3.3): [GG"] = 1.0, [GG'] = 0.56, and [G'G"] = 0.2. The correlation

is least among the groups G’ and G which are not directly connected. This
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result may be simply understood by comparing pairwise the overlap in the
frequency spectra of the three groups (Fig. 5.3.4). It may also be noted that the
serial interaction is not as efficient as the triangular interaction in circulating
intermediate frequencies. As the spectra indicate, the frequency throughput
can be small — (1) the primary frequency of G” (w = 7.36) circulates in & but
not in G’ and (2) the primary frequency of G’ (w = 5.68) circulates in G but
not in G”. These mechanisms may be useful in integrating activity over several
time scales without slowing down the responses to a common low frequency in

contradistinction to the triangular interaction discussed above.

Thus, in the series interaction, G” can selectively correlate the activity

of the diadic ([GG']) interaction even as the signals circulate continuously.

5.4 Discussion

The aim of the preceding analysis has been to consider the effect of the
mapping topology on the integration of oscillatory signals, including synchro-
nization, desynchronization and dynamic switching of frequency, phase, and
amplitude and the emergence of delay related temporal windows in distributed
neural systems. Towards this end, the triangulaf and series triadic interaction
of neuronal groups (Fig. 5.2.1) has been studied with particular emphasis on
the dynamic control of diadic interaction by a third neuronal group. The re-
sults confirm that synchronization, desynchronization, and resynchronization
obtained for the case of the dyadic interaction are not specific to it but are
general emergent features of signaling in distributed neural systems. Further-
more, these effects are dependent on the topology of the mapping and are

accompanied by both qualitative and quantitative changes.

For a wide range of parameters, the oscillatory activity of the groups
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Figure 5.3.3: In the case of series reentrant signaling, frequency mismatch between
the groups can result in selective differential cross-correlation. The cross-correlations
between (A) G and G', (B) G and G”, and (C) G’ and G” clearly indicates an
ordering: GG"” > GG’ > G'G". The intrinsic frequencies of the groups are the same

ag in Fig. 5.3.1.
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in series reentrant signaling. By comparing, pairwise, the overlap in the spectra, it
is easy to understand the origin of the differential cross-correlation effects shown in
Fig. 5.3.3.
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is synchronized with a large cross correlation. With the introduction of reen-
try, the frequency of oscillation decreases when the reentry delays and phase
differences between the groups are small. The decrease is proportional to the
strength of the two excitatory reentrant signals incident onto a group. The
frequency decreases even further compared to the drop with two synchronized
groups. This is because the excitatory signals arriving in phase prolong the
excitatory activity within the group. In the case of the series interaction, even
in a perfectly symmetric case (identical intrinsic frequencies and reentrant con-
nection strengths) and the phase differences between the groups are nonzero
due to the input mismatch between G',G” and G. Consequently, the decrease

in the frequency is not as large.

A consequence of the larger frequency decrease in the case of the
triangular interaction is that the jump bifurcation occurs for larger value of
delay in the reentrant signal, compared to the series interaction (see Tables
5.3.2 and 5.3.4). Moreover, in the series interaction, with identical frequencies,
although no desynchronization is observed, persistent transients are observed
which cause a decrease in the cross-correlation between the groups. These re-
sults indicate the destabilizing nature of the ‘open loop’ series interaction. The

nature of this destabilization will be further clarified in the following discussion.

Signals from G” can dynamically control the phase of the oscillations
of groups G and G'. The effects vary considerably depending on the mapping
topology and whether the introduction of G” increases the mean frequency

mismatch between the groups.

In the case of the triangular interaction, if the mean frequency mis-
match is not increased, differential changes in phase can occur as the latencies

of specific signals are varied. For example, if the delay between G and G" is
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changed, the phase difference between those groups changes while there is little
change between the phase differences of G and G’. However, when the jump
bifurcation occurs, an approximately 180° change in 6/ is accompanied by a
large jump in @.. In this manner, because of the jump bifurcation local changes
can result in global changes. These alterations in phase may underlie dynamic
switching of states, if by states we mean the relative phases of the activities of

the neuronal groups.

An important characteristic of the oscillatory activity in the foregoing
analysis is that the desynchronization of G, G’ is obviated by what might be
termed ‘reinforcement’ from G”. This is a direct consequence of the decrease
in the size of the desynchronized region. The result suggests that such closed
loop mapping as in the triangular mapping may synchronize the activity in a

stable manner.

For increases in mean frequency mismatch between the groups, the
signals from G" can control the cross-correlation between the groups GG and G

in a robust manner (Table 5.3.4).

In the case of the series interaction, the behavior is qualitatively differ-
ent. Even without an increase in the mean mismatch of the intrinsic frequencies
of the groups, desynchronization of correlated diadic interactions occurs in a
robust manner. Furthermore, there exist broad time delays, ¢, for which the
oscillatory activity is desynchronized. When the diadic oscillations are desyn-
chronized, the size of these windows is even broader than the one for the diadic
interaction. For these reasons, the ’open loop’ series mapping may be termed

destabilizing.

When the intrinsic frequencies of the groups are widely different, then

partial synchrony is established by subharmonic resonance (Chapter 4). The
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Feature Triangular | Series
Reinforcement strong weak
Desynchronizing windows | narrow broad
Phase differences small large
Integration efficient weak
Circulation of harmonics | strong weak
Selective correlation strong weak

Table 5.4.1: The differences between triangular and series interaction of neu-
ronal groups suggest stablizing and destabilizing topologies respectively.

introduction of a third group with an intermediate frequency causes much more
robust synchronization. In the case of the triangular interaction, each harmonic
is circulated in every group (Fig. 5.3.3), whereas in the series interaction, not all
harmonics circulate in all groups. This gives rise to distinct phenomena in the
two cases. In the former, it provides a robust way to integrate oscillatory activ-
ity over several time scales. In the latter, an ordering of the cross-correlations

between the groups. Thus selective correlation is possible.

The differences between the triangular and series triadic interactions,
summarized in Table 5.4.1, suggest that in the presence of delays, there are

stablilizing and destabilizing topologies.

Several themes emerge from the foregoing analysis. First, closed loop
(multiconnected) n-tuple mapping can integrate the oscillatory activity over
several time scales. It is therefore suggested that efficient integration of the
cortical activity where the frequencies are around 40 Hz. with hippocampal
activity where the theta rhythm has a frequency of 4 Hz., can be achieved by
mapping through secondary regions with intermediate frequencies. Moreover,
the primary frequency is likely to be closer to the frequency of the intermediate

region.
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Second, the dynamic interaction of neuronal groups is metastable:
the metastability arises from two sources (1) the dynamic recruitment of new
groups as the input into the system varies by sensory or motor sampling (Edel-
man, 1987) and (2) the dynamic switching of phase when the oscillatory activity
is uncorrelated. The underlying reason for the metastability is the jump bifur-
cation wherein rhythmic activity can be either desynchronized or synchronized
by newly recruited neuronal groups which are activated by recurrent or incom-
ing signals. Such metastable activity, we may argue, is necessary to prevent
stereotypical and over-generalized responses. It is therefore possible that “...
an identical stimulus can trigger one behavior at one moment and another be-
havior at another moment” (Evarts et al., 1984). While it is as yet hard to
relate these results to the experimental results from the responses of single cells,
the results are in agreement with the observation that the underlying global

interaction is not a simple modulation of signals (Haenny et al., 1988).

Third, there exist broad temporal delay windows and mapping topolo-
gies for which the oscillatory activity of specific neuronal groups can be decor-
related (with complete loss of phase coherence). As already noted, the origin
of these time windows lies in the demarcation of the synchronized an desyn-
chronized activity by the jump bifurcation. Specifically, it is implied that
given a mapping configuration, there exist, for specific signals, time delays
t.1 < t, < t,p for which the global activity is correlated and delays ¢, <1, <i.3
for which the activities are decorrelated. Thus there are distinct time windows
for synchronization and desynchronization. This suggests that only signals
arriving within a certain time window are likely to be correlated. Such mech-
anisms may provide additional timing constraints. These time windows are of

an atemporal and neutral nature (Poppel et al., 1990).
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Consideration of timing effects in neural systems have dealt with the
mismatch between the arrival times of excitatory and inhibitory signals (Koch
et al., 1983). The results obtained here argue for a more global consideration of
timing effects in neural systems. This is particularly true in view of the fact that
the frequency is not just the time inverse of the delay but depends on the the
intrinsic circuit properties such as connection strengths and the time courses
of decay of the signals as well as the topology of the mapping. By varying
the time courses of specific signals onto specific targets, neurotransmitters and
neuromodulators (Marder et al., 1987) may play an important part in the global
signaling. The effect of recruiting additional groups and altering delays is not
merely to modulate the oscillatory activity, but to alter the characteristics
of the oscillatory activity in the robust manner discussed above. Hence, like
global mapping, global temporal effects are dynamic and metastable. Given
the complex nature of the oscillatory and decorrelated activity that is possible,
particularly in the presence of delays, it may not be necessary to evoke notions

of clocks or multiclocks (Kristofferson, 1984) in distributed neural systems.



Chapter 6

Summary, Predictions, and Concluding Remarks

6.1 Summary

This thesis has studied some of the fundamental processes underlying
the functioning of complex neural systems. Neuronal groups serve as the locus
for the generation of coherent oscillatory signals. This oscillatory signal is the
basis of signaling in the distributed system. The origin and characteristics
of population oscillations and their role in and implications for signaling in

distributed neural systems formed the focus of the theoretical analysis.

A phase shift between the excitatory and inhibitory components un-
derlies the generation of oscillations. Delay in inhibition and slowly decaying
inhibitory signals readily result in such phase shift. The time period of the
oscillations is different from any one time scale in the system; for example, for
a wide range of parameters wT, < 1 and wity < 1, where T is decay time scale
of the excitatory activity and ¢4 is the inhibitory delay. In agreement with the
detailed computer simulation of Traub et. al (1988, 1990), it has been found
that a large dynamic range for the frequency of the oscillations as the time
course of the inhibitory signal is varied. When the frequency is low, the refrac-
tory period is large, or the activity is high, strong second and third harmonics
can be generated. Experimental evidence for this result has recently been ob-
tained in a study of tactile frequency discrimination in monkeys (Mountcastle

et al., 1990).

128
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The oscillatory activity of neuronal groups can be synchronized or
desynchronized by nonlinear summation of reentrant signals with the ongoing
oscillatory activity within a group. Self-consistent frequency-amplitude-phase
relations derived show that the frequency, phase, and cross-correlation of the
synchronized response depend critically on the relative phases of the interact-
ing signals. The phase difference between the activities of the groups increases
with increasing mismatch in the intrinsic frequencies of the groups and can be
arbitrarily small when the intrinsic frequencies of the groups are close. The
small phase differences found experimentally (Gray et al., 1989) suggest that
signaling between the spatially separated neuronal groups must be reciprocal
with roughly equal mean forward and backward connection strengths; other-

wise, the input mismatch would have resulted in large phase differences.

Reentrant signaling reduces the frequency of oscillation when the reen-
try delay is small; this is in agreement with the computer simulations of several
thousand neurons organized into neuronal groups (Sporns et al., 1989). How-
ever, when the reentry delay is increased, the reentrant signal arrives out of
phase with the intragroup inhibitory signal, and the frequency and phase dif-
ference between the activity of the two groups undergo large abrupt jumps:
the frequency increases by about 50% and the phase difference flips by about
180°. At the transition region, phase coherence is lost, and the oscillations are
desynchronized. Such a desynchronization of the oscillatory response has been
reported in a computer simulation of interacting neurons (Schillen and Konig,
1990). Therefore, delay in signaling can act as (phasic) switching mechanism

for correlating and decorrelating the oscillatory activity.

The triangular and series reentrant interaction of coherent oscillatory

signals indicates important topological effects of mapping in distributed neural



130

systems. It is found that the triangular interaction (1) results in strong rein-
forcement of the oscillatory response, (2) can prevent the decorrelation of the
diadic oscillatory activity, and (3) can aid in the integration of the oscillatory
activity over several time scales by efficiently circulating harmonics. Series in-
teraction, on the other hand, provides weak reinforcement, and can selectively
decorrelate diadic neuronal group interactions. Synchronization, desynchro-
nization, and the dynamic switching of phases and frequency as well as the
size of the decorrelating time delay windows depend on both the local circuit

properties and the mapping topology.

Delay in signaling can act as switch. Switching as discussed here
is the result of continuous signaling and not a ON — OFF response — it is
correlation dependent. It is important to note that the desynchronization of
oscillatory activity does not result from decreased or residual interaction: it
is a consequence of signals not arriving with the proper phase relationships.
The switching is dynamic ~ it occurs even as signals are being transmitted
and circulated. It is quite possible that such switching may also be induced
by variable inputs, changes in connection strengths or other parameters since
they all affect the phases of the interacting signals. It is important to note that

switching is topology dependent as well.

The dynamic range frequency, amplitude, and phase range of multiple
interacting neuronal groups implies that it is not necessary to evoke the idea of
clocks or multiple clocks (Wiener, 1961; Kristofferson, 1984). We may reiterate
that since the frequency depends on the global mapping, the typical time scale
of neuronal activity in the system, O(w™!) changes dynamically and further-
more the change is dependent on the set of neuronal groups that are selected

to be active at a given time. The metastable nature of the oscillations implies
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that no ‘clock’ will be found. The desynchronization and resynchronization, if

verified experimentally, would be manifestations of phasic signaling.

Since the brain is constantly under the dynamic control of neurotrans-
mitters with complex time courses, the view that emerges, is that signaling in
distributed neural systems is dynamic and metastable due to the modulation
and switching effects discussed above. Real time dynamic control of the cross-
correlation of the ongoing activity of neuronal groups is possible. Signaling
can result in dynamic linkage (association and dissociation) of the groups. The
‘logic’ dictated by phasic reentrant signaling is thus fundamentally different
from the Boolean switching operations. Timing and signaling in neural sys-
tems are part of the same physical process and have features quite distinct
from timing and signaling in computer systems. The mechanisms discussed in
this thesis, provide dynamic linkage between neuronal groups thereby enabling
the distributed neural system to operate in a highly parallel manner without

clocks, algorithms, and central control.

6.2 Predictions

The results obtained suggest that,

1. Phasic reentrant signaling in neural systems will lead to synchronization,
desynchronization, and resynchronization of oscillatory responses with
the characteristics as discussed above. The most obvious origin of these
phenomena is delay in reentrant signaling. By cooling the axons mediat-

ing reentrant signaling, it should be possible to verify these phenomena.

2. Neural switching mechanisms as discussed above, are likely to be closely

related to neural plasticity since both are cross-correlation dependent.
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3. Dynamic fluctuations in frequency-amplitude-phase characteristics of the
oscillations are likely. Due to the constant recruitment of new groups,
their transient interactions, and the jump bifurcation, signaling will be

metastable.

4. The degree of cross-correlation between coactive groups can be dynam-
ically controlled by modulating the time courses of individual signals
incident on specific targets. Such a function is likely to be performed by

neurotransmitters and neuromodulators.

5. Integration of activity over disparate time scales is possible by closed
loop mapping of multiply connected neuronal groups. The degree of
integration achieved will depend upon, among other factors, the mapping
topology. In particular, open loop mapping can be easily destabilized by
delays.

6.3 Concluding Remarks

In conclusion, the broader theoretical implications of the results sum-
marized above are discussed in this section. Given the enormous complexity of

the system, the analysis is not without a degree of speculation.

6.3.1 Information in the Oscillations

A pure sine wave carries no information. In analog electronic com-
munication, information is carried by either phase, amplitude, or frequency

modulation (Tanenbaum, 1984).

In distributed neural systems, the oscillations and the dynamical cor-

relations resulting from it are transient in nature. Additionally, turning on the
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oscillations involves the process of recognition by the receptive field in the case

of exogenous events.

Furthermore, the oscillations are never purely sinusoidal — and as we
have seen, due to the nonlinear saturation characteristics of a population of
neurons strong harmonics can be generated. Moreover, the harmonic content
of the oscillations changes dynamically as the different neuronal groups are
recruited. Synaptic modification, which has not been considered here, will

further modulate the harmonic content of the oscillations.

Delay induced desynchronization and resynchronization of the oscil-
lations results in dynamic changes in the characteristics of the oscillations.
Thus, frequency, phase, and amplitude modulation arise from the same neural
circuits. As we have seen, all three forms of modulation of the oscillatory signal
can arise at the same time. In the foregoing analysis, the important effects of
‘noise’ and fine scale temporal effects such as event related potentials (Hillyard

and Picton, 1987) have hardly been considered.

6.3.2 Switching and Gating

In a distributed neural system, switching gates signals along specific
pathways. The need for dynamic switching mechanisms has been stressed by
Evarts, Shinoda, and Wise (1984) who note that: (1) switching underlies se-
lective attention and (2) switching allows for the flexible response to complex
environmental stimuli by enabling the animal to select from a variety of possi-
bilities. Neural switching allows selective gating of signals. Along with neural

plasticity it provides the basis for adaptive behavior (Evarts et al., 1984).

A correlation dependent switching mechanism, such as the one dis-

cussed above, would meet an important condition that has been pointed out
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by Evarts et al. (1984): that of a ‘cycle time’ during which the expected signal
is matched to a postulated response and evaluated. Such a mechanism differs
from the on-off response and the idea of a ‘set cell’ (Evarts et al., 1984) which
could control the efficacy of a pathway through an inhibitory interneuron. Such
a specific cell to cell signaling would be difficult in complex circuits. It also
differs fundamentally from binary computations (McCulloch and Pitts, 1943)
and analog computations (Koch and Poggio, 1987). Rather, it relies on the

delayed time courses of specific signals involved in coherent oscillatory activity.

As discussed above, by varying the time courses of signals incident
on specific targets, it is possible for the system to effectively gate the signals.
Whether this is necessarily accompanied by synaptic modification is unclear. It
is also not clear what the relation between decorrelation and synaptic change is.
There are two possibilities: (1) with decorrelated oscillatory response, the mean
synaptic strength between groups could decrease, or (2) the mean synaptic
strength decreases when the oscillatory activities are out of phase with no
change occurring when the oscillations are decorrelated. In either case, a critical

relation between neural switching and neural plasticity is likely.

Dynamic switching techniques have been found to be useful in the
design of new computer architectures (Hillis, 1985). However, in contradistinc-
tion to the schema in such machines, neural switching of the type postulated
here, can be achieved without any routing algorithms. However, the actual

gating of signals remains a significant challenge to understand.

6.3.3 Time Delays and Memory

In the old computer systems such as the EDVAC (Aspray and Burks,

1987), delay lines served the role of memory. In neural systems, delays provide
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access to signals (and their transformations imposed by the neural circuitry
and the extrinsic receptive field) till it is dissipated, and, therefore, serves as
de facto memory. The results obtained in this study suggest that a delay, ¢4,
in signaling results in transforming the phase of the incoming oscillatory signal

by wtq, where the frequency, w, depends on the global mapping.

The implications of phase transformation of the signal for overall in-
formation processing remains to be investigated. Nevertheless, by providing
delayed access to signals, the system provides a simple form of memory, one

that may be important to maintain spatiotemporal continuity of the external

world (Reeke et al., 1989).

Inclusion of delays may involve novel ideas of memory as well, quite
distinct from the currently popular notions of associative memory (Hinton and
Anderson, 1981; Hopfield, 1982; Hopfield, 1984). Some novel ideas involving
oscillations and delayed inhibition have recently been proposed (Wang et al.,

1990).

6.3.4 Time and Time Perception

It will be a considerable challenge to relate the notion of signaling and
the temporal effects resulting therefrom to the psychological notion of timing,
time perception, and time discrimination (Gibbon and Allan, 1984; Poppel,
1978). As has been noted by Staddon (1984), timing and memory call on the
same processes. It seems unlikely, therefore, that these phenomena can be
understood without relating it to memory, a topic beyond the scope of the

present study.

With regard to temporal discrimination it may be noted that either

because of delays in transduction of signals (Poppel et al., 1990) or the decor-



136

relation of the oscillatory activity as described in the previous section, there

are likely to be time windows in which the ordering can be lost.

While the role of the rhythmic organization of temporal phenom-
ena in decision and cognitive processes (Poppel, 1978) is far from clear, it is
nevertheless suggested that the dynamical aspects of signaling involving co-
herent oscillatory signals possesses several positive characteristics for such a
consideration: (1) dynamic control of the frequency-amplitude-phase of the
oscillations by neurotransmitters and neuromodulators; (2) dynamic switch-
ing of frequency, amplitude, and phase; (3) straightforward integration of new
signals; (4) integration of activity over disparate time scales; (5) dynamic con-
trol of the cross-correlation of spatially distributed oscillatory activity; and (6)
metastable character of the oscillations prevents stereotypical and over gener-

alized responses.



Appendix A

In this appendix we derive the stability conditions by linearizing Eqns.

3.2.5 and 3.2.6 for small r, r;:

T.f(t) = —f(8)+ (1= [, fo(t)dt)oe(z.) (A.1.1)
Tty = —f(t)+ 1 = fi,. fit)dt)o(:) (A.1.2)
T = Cifo(t) — Cofi(t —ta) + P
z; = Cafe(t) — Cafi(t —ta) + @

Substituting fo = f. + e(t) and f; = f; + ¢(¢) in Eqn. A.L.1 above, and

neglecting second order terms we get,
T.e(t) = —e()[1+ 1e0e(Ze)] + [1 — re fe]Cre(t)ol(Ze)

—[1 = rofo]Coi(t — ta)ol(z.) (A.1.3)

Similarly for the inhibitory component,

ng(t) = —Z(t)[l -+ Tz'O'i(fg)] -+ [1 —_ Tgﬁ]c;ge(t)og(i'g)

—[1 — réﬁ]C4z'(t - id)dg(i',') (A14)

These equations can be written in the simplified form :

é(t) = —e(t)ke + Croeol(Te)e(t) — Cooeol(Ze)i(t — ta) (A.1.5)

(1) = —i(t)r; + Cacyol(F:)e(t) — Caouol(Z:)e(t — ta) (A.1.6)
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where,

Teke = 1+r.0.(%)
Tike = 1+4ri0i(%:)
T, = 1— refe

Ty = 1—rif;

With e(t) ~ egexp(At) and i(t) ~ igexp(At), the equations can be written as,

A+ ke — a.0l(Z)Ch a0l (T.)Co exp(—Atg) eo | |0
——aiO'g(itg)Cg A+ g — aia,g(a?i)a; exp(—)\td) 0 10

The characteristic equation, obtained by setting the determinant to

zero, is
A = X2+ GA+ H + Jhexp(—Aty) + Texp(—Atq) = 0 (A.L.7)
where the coefficients G, H, I and J are:

G(Z.) = (ke+ ki— aeo.(E)Ch)
H(z.) = #ki(ke— @eo(Z.)Ch)
I(Z.,%;) = 0u(F)oi(Fi)ae0i(C2Cs — C1C4)
J(#) = o0i(%:)eiCly (A.1.8)
oo(2e) = Be/(4cosh*(—Be(Zc — X))
oi(@;) = Pi/(4cosh®(—Bi(Z:i — x:)))
i, = Cife—Cyfi+ P
F;i = Cafe—Cafi+Q
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In this Appendix, we prove Theorems 3.3.1, 3.3.2, and 3.3.3 concern-
ing stability of the fixed points.

Theorem A.2.1 For sufficiently large delay, t4, if H < 0, the fired point is

unstable.

Proof: Assume that there exists A = A, with positive real part. In

the vicinity of A,, for large delay t4, Eqn. 3.3.3 can be written as
M+GA+H=0 (A.2.1)

The roots of the above equation are (—G + M)/Q If H <0, one of
the roots has a positive real part which implies that for sufficiently large delay
the fixed point is unstable. This root is arbitrarily close to a solution of Eqn.
3.3.3, i.e., there exists a solution with positive real part. This completes the

proof.

We next prove some results concerning stability of the fixed point in the

general case. Rewrite Eqn. 3.3.3 by rescaling A — ;": (we assume tg # 0 but

may be arbitrarily small):

A = X4 Gtgh + H2 + Jtghexp(—=)) + It exp(—A) =0 (A.2.2)

The stability can be studied by using the Michailov criterion (Kol-
manovskii and Nosov, 1986). Let A(fw) = U(w) + ¢V (w), where U and V are
real. From Eqn. 3B.3,

Ulw) = —w?+ Jtawsin(w) + It]cos(w) + Hi; (A.2.3)

V(w) = Gtaw + Jtaw cos(w) — It]sin(w) (A.2.4)
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For asymptotic stability of the linear nth order equation, it is neces-

sary and sufficient that the following condition be satisfied:

argA(iw)|*, = ng- (A.2.5)

The coefficients G, H, I and J depend on the slope of the sigmoid at
the fixed point as well as the connectivities and time scales in the problem. No
general necessary and sufficient conditions could be derived to show stability or
instability of the fixed points. Instead we prove the following theorems which

indicate the behavior of the system for particular conditions.

Theorem A.2.2 A set of sufficient conditions for the stability of a fired poini
18:

(z) td(H+I) > 0 and (zz) G—J> td‘ﬂ-
Proof:
V(w) = t4Gw + tgJwcosw — t3] sinw

> t4Gw — tgJw — 3| |w
> tdw(G —J — tdl”) (A.2.6)
Therefore V(w) > 0 if G — J — t4]I| > 0. This, together with the condition

to(H + I) > 0, implie that argA(iw)|3, = m. The proof of this statement

follows:

1. There exists w; such that U(w;) = 0 since U(w =0) = H+ 1 > 0 and
U(w = o0) = 0o. Now, V(w) > 0 implies argA(iw)|oLo = /2.
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2. As w — 0o, & — 0. Hence argA(iw)|3 = 7/2.

3. Therefore argA(iw)|%2, = 7.

This completes the proof.

Theorem A.2.3 Ift;(H + I) < 0, the fizred point is unstable.

Proof: From U(w = 0) = t3(H + 1), V(w = 0) = 0 and w — o0, § — 0, it
follows that argA(iw)|s%, = +2nm,n = 0,1,2,---. Since argA(w)|3Ly # T,

the fixed point is asymptotically unstable.

A.3

We derive the harmonic feedback for the bias plus sinusoid input to
the saturation nonlinearity. The main results are summarized at the end of the
Appendix. Following the discussion in Section 3.4, the harmonic feedback for

the input z(¢) = B + Asin(wt) is,
f(z) ~ BFs(f, A, B)+ X2, [AFA(f, A, B, k)sin(wt) (A.3.1)
+AFL(f, A, B, k) cos(wt)]
Fu(f, A, B, k)= L2 f(B + Asin(0)) sin(k8)d8
Fi(f, A, B,k) = L (27 {(B 4 Asin(6)) cos(k0)dd
We will only consider the case of large amplitude oscillations in which case

S—iA‘E <1 and %B- < 1. For the piece-wise linear sigmoid, F4(f, A, B, k) can be

evaluated as follows.

T AFA(f,A, B, k)= 2"mf(B + Asin(6))sin(k6)
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= JPom(B+ Asin(§))sin(k) + [ mésin(k6)do
Jf;?m(B + Asin(8)) sin(k6)df — 4’21 *mé sin(k8)do

+ /2" m(B + Asin(6)) sin(k6)dd (A.3.2)
where,
o = sinT(5E)
?vbll = T ¢10
oo = m+ sin’l(é-:—&)
1 = 2r —sin™ (&) (A.3.3)

Eqn. A.3.2 evaluates to,

TAFA(f, A, B,k) = -5”-}-? cos(k6)[L
+24[ L sin((k — 1)0)]8*° — 21 sin((k + 1)8)[3™]

— 28 cos(k)[3: — 2 cos(k6)|5°
+24 L sin((k — 1)6)|52° — = sin((k + 1)8)[7]
+m8 cos(k@)]’p” — 2B cos(k8)|2T.

AL sin((k — 1)0)1%7, — 77 sin((k + 1)0)|%1,] (A.3.4)
We observe that the harmonics scale as 1/k. A similar expression is obtained

for F);( f,A,B,k). The calculations are straightforward but tedious; we will

therefore simply present the relevant results:

FAFA(f, A, B,k =3) = 22B[cos(36%) — cos(367)] + 22£[cos(36+) + cos(367)]
+%—[(sin(26+)+sin(26“))—-%( n(26+) + sin(267))]
TAF(f,A,B,k=2) =mB[sin(26") + sin(26™)] + m6[sin(26+) — sin(267)]
+mAL(cos(36%) — cos(367)) — (cos(26*) — cos(267))]
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Fu(f,A,B,k=2)=0 (A.3.5)

where 6+ = sin™!(#£E) and 6~ = sin™'(&5E). For %B—,-‘S—:AE << 1, Eqns. A3.5

may be simplified by using the approximations cosz ~ 1 and sinz ~ z,

Fa(f,A,Bk=3)= X} (A.3.6)
Fu(f,A,B,k=2)= 0 (A.3.7)
Fi(f,4,B,k=2)= XE (A.3.8)

We summarize the results of this Appendix:
1. The amplitude of the k** harmonic is proportional to 1/k.
2. The second harmonic is proportional to -ﬁi and is phase shifted by 7.

3. The amplitude of the third harmonic can be up to a third of that of the

fundamental.

4. When the bias B is zero, only the odd harmonics are present. (The

calculations for k£ = 2,3 extend to even and odd harmonics respectively).

A4

The algebraic equations governing the frequency, amplitude and phase

of oscillations for r. 5 0, r; = 0 are derived. Let
fo(t) = fo+ feosin(wt)
fi(®) = fi+ fosin(wt —6;) (A.4.1)
be the form of the solution of
Tofu(t) = —fult) + L(t) % 0(C1fo(t) — Cafi(t —ta)) + P)  (A.4.2)
T:fi(t) = —£i(t) + 0:(Cafu(t) = Cafilt — ta)) (A.4.3)
L(t) = 1— L, f()dt
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Then
L)= 1= JE, 1+ feosin(ut! lde
= (1 — fore) — 2L2 sin(%L= Ysin(wt — = ) (A4.4)

The nonlinear response of the sigmoid is BFg+ AF 4 sin(wt+6,.). The averaged
response, taking into account the refractoriness, is < I.($)(BFg+ AFsin(wt +
0..)) >, where <> denotes the averages as in Eqn. 3.4.1. We now note that the
effect of the sinusoidal term in Eqn. A.4.4 is to introduce a second harmonic
proportional to L when this averaging is carried out. Consistent with the
neglect of higher harmonics, we neglect this last term in Eqn. A.4.4. (It can be
shown under very general conditions that this is true. The reason being that
when oscillations exist, the ratio of the bias to sinusoidal input to the sigmoid,

-/%, is typically less than 1.)

With this approximation, proceeding exactly as in Section 3.5, the

following relations may be easily shown :

fo = 05(1 = fore) + (1 — fere)B.Fpe (A.4.5)
wlefeoo = (1= fere)sin(fae) AeFac (A.4.6)
fo = (1= fere)cos(fue)AcFac (A.4.7)
fi = 054 B;Fp; (A.4.8)
wlifio = AiFisin(f,+6;) (A.4.9)

fio = AiFs;cos(6a; + 6;) (A.4.10)



Appendix B

B.1

In this Appendix, the algebraic equations governing the frequency-
amplitude-phase of the oscillation are derived. The refractoriness of the in-

hibitory neurons is neglected, i.e., r; = 0.

With the approximations Eqns. 4.4.1 - 4.4.4 for the firing rates, the
activities of the subpopulations, z*, z¥, ¥ and z;+' (Eqns. 4.4.10 - 4.4.13) can

be written as,

zi(t) = B.+ Acsin(wt +6,.)
:B:(t) = B;+ A; sin(wt + (9(35)
«X'(t) = B.+ Alsin(wt+86..)

2} (t) = Bl+ Alsin(wt + 0,
where the bias and amplitude terms are,

B. = Cfe+C.f,—Cfi+P—x.
Bi = Cl+CJ,-Cfi+Q—x
B, = Cfi+C.f.—Cfi+P —x,
B = Cfi+C.f.—Cl+Q —xi
Asin(6e) = Coflosin(0) +wt') — C fiosin(6; + wia) (B.1.1)

Accos(8,.) = Cfeo+ Crflysin(bl + wil) — C fig cos(; + wiy)
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A = A
Alsin(0)) = Cflysin(8.) + C. feosin(wt,) — C fipsin(f; + wty)
Al cos(8)) = Cflycos(8.) + Cr fep cos(wi,) — C fig cos(8; + wity)
Al = Al

2 €

In order to study analytically the characteristics of the synchronization as a
function of the phases of interacting signals, we use the simplification that
each subpopulation is excited at its threshold, i.e., P = x., @ = xi, P = x{
and Q' = x!. This represents an adequate input drive to excite oscillations.
The bias terms now depend only on the mismatch between the excitatory and

inhibitory activity in the respective subpopulations.

For the piecewise linear saturation function (Eqn. 4.4.5), the nonlin-
ear gain functions F and Fy4 for inputs of the form z(t) = B + Asin(wt + 0)

can be evaluated as in Chapter 3,

Fg(B,A)= % (B.1.2)

Fu(B,A)= % (B.1.3)

The integral involving refractoriness in Eqn. 4.4.6 can be easily eval-

uated:

Lit)= 1= fi [fe+ fosin(wt)dt

= (1- .}?e’re) — 2%9- sin(&’zﬁ) sin{wt — gg:.)

Consistent with the neglect of higher harmonics, terms of the order -%Q may
be neglected, so that I.(t) ~ (1 — fer.). Note that the role of the neglected
sinusoidal term above is to introduce a second harmonic when the excitatory

cells are refractory. With the nonlinear response from the sigmoid given by
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BFg + AFysin(wt + 8,.), and substituting the nonlinear gain functions Fpge.
and Fy. from Eqgns. B.1.2 and B.1.3, we obtain,

2Bi(l — foro)[1 + cos(,e) sin(wt) + sin(fa.) cos(wt)] (B.1.4)

L(t)o(zex) = —

Similarly, for the other subpopulations,

!
I'(t)or (z0%) = ii‘j (1 — flr)[1 + cos(bq.) sin(wt) + sin(fg.) cos(wt)] (B.1.5)
oi(z]) = %—%[1 + cos(8,;) sin(wt) + sin(f,;) cos(wt)] (B.1.6)
o (z7) = ;%[1 + cos(6.,) sin(wt) + sin(,;) cos(wt)] (B.1.7)

Substituting Eqns. 4.4.1 - 4.4.4 and Eqns. B.1.4- B.1.5 in Eqns. 4.4.6
- 4.4.13, and equating the coefficients of the bias, sin and cos components to

zero, the necessary algebraic equations, Eqns. 4.4.15 - 4.4.30, are obtained.



Glossary

Cortex. The outer layer of the brain; occupies a large fraction of the
mammalian brain. The cortex consists of modules each with four to six lay-
ers. Cortical areas include the somatosensory cortex, visual cortex, and motor

cortex, each processing signals primarily related to a specific modality.

Cross-correlation. The cross-correlation of two functions f(¢) and g(t) is
defined as C(7) = %2, f(t)g(¢t + 7)dt. This function is a measure of the extent

to which the activities of groups overlap.

Decay Period. Time in which the activity drops to exp™! of the value at

t = 0 when external excitation is removed.

Desynchronization. Loss of synchronization of the oscillatory activity of
two or more neuronal groups induced by delayed reentrant signaling. Besides
the decrease in cross-correlation, the phase coherence is lost and the frequency

spectra show broad complex peaks.

EEG. Electroencephalogram: Electrical potentials recorded by placing
electrodes in the brain or on the scalp. The field potential is generated by

currents in neural circuits.
Fixed point. Time independent solution(s) to the differential equations.

Frequency Modulation. The process of changing the frequency of the
oscillations. The changes are usually made in a manner such that they can be
decoded to extract information from the oscillations. Similarly ideas apply to

amplitude and phase modulation as well (Tanenbaum, 1984).
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Frequency Spectrum. The power at each frequency present in the
signal. For a signal f(t), the power is defined as P(w) = |S(w)|, where
S(w) = [ f(t)exp(iwt)di. In the present models, the power spectra refer

to those of the fraction of neurons firing per unit time.

Fundamental frequency The frequency at which the maximum of the

power spectrum occurs.

GABA, and GABAg. Fast and slow inhibitory neurotransmitters which

alter the time course of the action of inhibition.

Hippocampus. A cortical structure that resembles the sea horse. The
neural circuits of the hippocampus are simpler than most other cortical areas
and therefore have been extensively modeled and studied. CA3 is one subdivi-

sion of the hippocampus.

Harmonic. Frequency component having a multiple frequency of the fun-

damental frequency.

Jump bifurcation. Large change in the frequency, amplitude, and phase
of the oscillations as a system parameter is varied. This phenomenon is com-
monly observed in nonlinear electrical circuits with feedback (Gelb and Velde,

1967); see also pg. 174 in Guckenheimer and Holmes (1983).

Limit Cycle. Isolated closed trajectory in phase space corresponding to

periodic solutions.

Neuron. A fundamental unit of the nervous system. It receives excitatory
and inhibitory impulses from other neurons through long distance and local
circuits on its cell bodies or processes called dendrites. These impulses are

integrated (nonlinearly) to control impulses to other neurons.
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Neuromodulators. Chemicals activated at the synapse that produce

complex long-lasting effects on the postsynaptic neuron.

Neuronal Group. Localized population of neurons tightly connected to
form a module in the distributed system. These groups are conjectured to
be the fundamental I/O units of complex neural systems (Edelman, 1978).
Examples of neuronal groups include the orientation columns (which respond
optimally to bars placed at particular angles in the visual field and occular

dominance columns (which respond optimally to visual stimuli in the left or

right half of the visual field).

Neurotransmitters. Chemicals released at the presynaptic terminal that
bind to the postsynaptic receptors thereby transmitting information from one
neuron to the other. The time course of the activation of receptors is critical

in determining the characteristics of the population oscillations (Traub et al.,

1989).

Population Oscillations. Rhythmic variation in the number of neurons
firing per unit time in a localized population of neurons. The synchronized
firing of all the neurons is not necessary; indeed, the firing of single neurons

may be asynchronous (Traub et al., 1989).

Reciprocal Connections. The synaptic connections between neurons in
different neuronal groups. These connections are long range compared to the

recurrent connections (see below).

Recurrent Connections. The synaptic connections between neurons in

the same neuronal group.

Reentrant Signaling. Two or more neuronal groups which are mutually
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interconnected can supply one another with positive or negative feedback. Such

mutual feedback can be delayed in time and may be continuous or intermittent

(Edelman, 1978); see also Chapter 4 in Edelman (1989).

Refractory Period. Time during which the neuron can not fire due to

hyperpolarization of the membrane potential.

Renormalization. The technique of replacing the complex response of a
collection of units with the (simpler) response of the average in order to deduce
the critical features associated with the global behavior of the dynamical system

(Guckenheimer and Holmes, 1983).

Resynchronization. Synchronization of the oscillations following jump
bifurcation. The phase difference between the activities of the groups flips by
180°, the frequency jumps by about 50%, and the amplitude shows a small
increase as well. These changes underlie dynamic frequency, amplitude, and

phase modulation of the oscillations.

Sigmoid. The nonlinear saturation function o(z) = Tm’ where

B and y are respectively the sigmoid nonlinearity and threshold.

Subharmonic. Frequency components at a fraction of the fundamental

frequency.

Synapse. Junction of two neurons by which neurons communicate either

electrically or chemically. Synapses may be either excitatory or inhibitory.

Synaptic strength. The ability of a presynaptic neuron to excite or

inhibit the postsynaptic neuron.

Synchronization. Groups with differing intrinsic frequencies can synchro-

nize at the same frequency. Synchronization is accompanied by an increase in
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the cross-correlation between the fraction of neurons firing per unit time for

(two or more) groups, the phase plot indicates a limit cycle, and the frequency

spectra show considerable overlap.

Time Course. The time course of a signal refers to the temporal form of
activation of the signal. Time courses due to synaptic delays are typically of
the form a(t) ~ texp~*/7; additionally, the transduction of signals can also be

delayed due to transmission delays.
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