DOMAIN-SPECIFIC PROGRAMMING:
AN OBJECT-ORIENTED AND
KNOWLEDGE-BASED APPROACH
TO SPECIFICATION AND GENERATION

Neil Allen Iscoe

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-90-37 December 1990

© Copyright, 1990, Neil Allen Iscoe

All rights reserved including rights to transmit electronically

DOMAIN-SPECIFIC PROGRAMMING: AN OBJECT-ORIENTED AND
KNOWLEDGE-BASED APPROACHTO
SPECIFICATION AND GENERATION

Neil Allen Iscoe, Ph.D.

The University of Texas at Austin, 1990

Supervising Professor: J. C. Browne

Programmers must have an understanding of both programming knowledge and
application domain knowledge to write application programs. But while programming is
well enough understood to model and teach, application domain knowledge is not yet well
understood, and is codified only in an informal ad hoc manner. Because representations
that precisely characterize application domain knowledge do not currently exist, errors are
frequently made when gathering and mapping specifications from the informal to the
formal.

This dissertation defines a meta-model for application domain knowledge and
describes a methodology for its instantiation into domain-specific models. Domain models
are representations of application domains that can be used for a variety of operational goals
in support of specific software engineering tasks or processes. The meta-model and
methodology in this dissertation facilitate understanding and analyzing application areas and
eliciting and formalizing software requirements and specifications. The emphasis is on
general characterization techniques that can be used to instantiate models from different
application domains.

The meta-model begins with primitive arzributes that capture the semantics of
domain properties in terms of scales (from mathematical measurement theory); units,
quantities, and granularity (from the physical sciences); population parameters (from
statistics); and value set transitions. The next level constructs are classes that encapsulate a
set of attributes, provide for the definition of derived attributes, allow additional operations
to be defined, are responsible for object instantiation and deletion, provide for the definition
of axioms, and maintain summary statistics on object sets.

Domain models are instantiated by representing specific application domains in terms of
attributes and classes. Classes are organized and structured using hierarchical
decomposition to create subclasses, and composition and association to construct larger
classes from smaller ones. Examples are given in terms of library, accounts receivable,
and other related problems.

Acknowledgements

This dissertation would not have been possible without the assistance and guidance of
J1.C. Browne, who by knowing what he sees has helped me to do the same. I also thank
John Werth, who helped me to translate informal ideas into formal definitions without
losing perspective. Ican no longer even guess at the number of weekend meetings which
were an integral part of this dissertation research. Ican never thank these two professors
enough.

I would also like to extend thanks to my other committee members for their valuable
comments on the dissertation proposal, drafts, and final defense. In particular, I would
like to thank David Barstow for his comments on domain modeling, multiple inheritance
and part-of relationships, Woodrow Bledsoe for his comments on knowledge
representation issues, and Al Dale for his comments on the accounts receivable example.

Although not a member of my committee, Gerry Williams played an integral part in this
dissertation. He provided an independent verification and validation of the accounts
receivable model, as well as providing insightful comments on several other aspects of the
dissertation.

Bill Curtis has been both a mentor and a friend. I am grateful for his guidance,
support, enthusiasm, and technical contributions to all areas of my research.

At the risk of leaving someone out, I'd also like to list those others that reviewed
sections of the dissertation, provided encouragement, or other valuable insights. These
people include in alphabetical order: Bob Balzer, Susan Gerhart, John Hartman, Mitch
Lubars, Jean Ludl, Bob McKenzie, Colin Potts, Charlie Richter, Bill Robinson, Richard
Waters, and Larry Vansickle.

As indicated by the dedication, this dissertation would not have been possible without
my parents and grandmother, whose encouragement helped me to finish this and many
other projects. I’d also like to thank my sister Ellen, and my brother Craig for their
continual support in this and other areas of my life.

Finally, I would like to thank those friends who provided encouragement, typing and
drawing assistance, and moral support: Rick Alterman, Nader Bagerzadeh, David and
Cheryl Conley, Jay Gribble, Gina McVay, Jonathan Mack, Nancy MacMahon, Ida Miller,
Jim Middleton, Lori Najvar, Jayne Noble, Lila Anne Parker, Mary Tonsager, Paul Toprac,
and Neeta Vallab.

I am indebted to you all.

Meil Iscoe
May 1990

Table of Contents

Chapter 1 - Introduction....... teenersececresesestsaserrsrsasasesassssonnsnanss cassssses . |
1.1. Organization of the DiSSETTAtiON.....coccommiiiiiiimiiiiiiiiiiiieceeieceeeens 2
1.2. The Mapping PrOCESSouiiiiniiiieiaiiiiiien it ees e e 2
1.2.1. Life Cycle Paradigms 4
1.2.2. Users Must Create Their Own Programs 4
1.2.3. Automating the Mapping 5
1.2.4. Application Programming 5
1.2.5. Application Domain Knowledge 6
1.3. Requirements/SpecifiCatONSvveeiriiimiei ettt 6
1.3.1. Specification Errors Result From A Lack of Domain Knowledge 6
1.3.2. Reasonable Requirements Are Often Wrong 7
1.3.3. Terms Are Ambiguous Without A Domain Context 8
1.3.4. Semantic Informaton is Required to Solve Conflicts 8
1.3.5. Requirements and Specifications Change 9
1.4. Solution Paradigm......coiiiiiiiiiiiiiiiiiie e 9
1.4.1. System Users or Agents 10
1.4.2. Dissertation Focus is on Domain Experts 11
1.4.3. Program Generation 11
1.4.4. Domain Models and Meta-Models 11
1.4.5 Domain Model Instantiation 12
1.5. The Dissertation Researchoocoviviiiiiiiiiiiiiiiiiiieieie e 12
1.5.1. Example Domains 13
1.5.2. Programming-in-the-small 14
1.5.4. Previous Research 15
1.5.5. Formality and Notation 16
1.5.6. The Model 16
Chapter 2 - Attributescccovreeccocccscnnsinciascecccacsconsocnes sesesessssssssesanse 19
2.1, Introduction t0 AtTIDULES ..ottt iiiieae e ren e caee s 19
2.2. Formal Definition. . ..oooiiiiii it 20
2.3. Scaling Theory and Value Sets V{A) ..., 20
2.3.1. Nominal scales 21
2.3.2. Library Example 22
2.3.3. Ordinal Scales 22
2.3.4. Quantities: Units and Granularity 23
2.3.5. Measurement Granularity and Precision 24
2.3.6. Unit Analysis 25
2.3.7. Interval Scales 26
2.3.8. Ratio Scales 26
2.3.9. Scale Summary 27
2.4. Fundamental Units and QuUantities. ...ttt 28
2.4.1. Unit Conversions 29
2.4.2. Derived Quantites 30
2.5. Population Parameters PP(A)oooiiiiiiiiii 31
2.5.1. Normal Distributions 32
2.5.2. Poisson Distribution 32
2.5.3. Exponential and Other Distributions 32
2.6. Initalization Procedure J(A) .. it 33
2.6.1. Defaults 33
2.6.2. Multiple Defaults 34

v

D
00 ~1

o
0

2.11.

Chapter 3 - Classes

3.1

3.2 Atributes - Primitive P(C) and Derived D(C)

3.3 Naming Attributes N(C)

3.4 Additional Restrictions on Atiribute Values

3.5 Operations

Axiom Summary X(A) . ..o e eereiireriniiiiir it ee e eiaaens
. Transformational Code Generation Issue€sS...............

2.10.1. Data Storage
2.10.2. Elicitation of boundary information

2.10.3. Exploration of alternatives--"What if?" analysis
ATIDULE SUMIMATY ..ttt e e e e eeee

INtroduction 10 ClaS S8 ittt ieieeirertonteascasansarsereaseascsoneneosenns

3.1.1 Class Definition
3.1.2 Object Definition

3.2.1 Derived Attributes D(C)

3.2.2 Arithmetic Functions on Attributes
3.2.3 Semantics of (Plus A1 A2) -> A3
Statement 1-5 Validity of Addition

Unit Coercion Statement 6, 25-28, 31-56
Statement 8, 21-24, 57-67: Granularity Coercion
Statement 10-14: Quantity, units, granularity
Statement 15-17: Value Set Creation
Statement 18: Expected Value

Statement 19: Variance

324 Semantics of (Plus A1 C) -> A3
3.2.5 Semantics of (Times Al C) -> A3
3.2.6 Semantics of (Sub Al A2) -> A3
Statement 4

Statement 10

Statement 14

3.3.1 Existence and Domain Specificity

3.3.3 Naming Attributes and Data Base Schemas
Referential Attributes, Foreign Keys

Functional Dependencies

3.4.1 Requiring Unique Values
3.4.2 Restricting Null Values

3.5.1 Instantiating Objects
3.5.2 Deleting Objects R(C)

..................

..

..................

2.6.3. Displaying Information

2.6.4. User Override of Default Values

2.6.5. Checking Input — Confidence Intervals

2.6.6. Confidence Intervals — Unknown Distributions
Transitions Within Value Sets — Probability of Change PC(A)..................
Measurement Scales M(A) and State Transition Relations R(A)

2.8.1. Nominal scales

2.8.2. Nominal Scale Example

2.8.3. Ordinal Scales

2.8.4. Probabilities assigned to relations

2.8.5. Interval Scales

2.8.6. Ratio Scales

2.8.7. Summary of Transition Relations

............................

ooo

.......................................

...

.......................

.......................

3.5.3 Other Operations

3.5.4 Access & Update Operations

3.5.5 Example — latitude and longitude revisited
3.6 Summary Statistical Functions............coieivieiniinini.

3.6.1 Class Summary Statistics S(C)

3.6.2 Atribute Summary Statistics SA(C, A1)

3.6.3 Attribute Defaults Revisited
3.7 Class AXIOmMS X{A) oot

3.7.1 Intraobject attribute axioms

3.7.2 Interobject attribute axioms

3.7.3 Interclass axioms
3.8 Transformational Implementation Issuesococviiiienanenn.
3.9 Organizing Classesocoeivieiiiieniiiiniiiens
Chapter 4 - Hierarchical Decomposition............ cesssessassssss cesesesseses coe
V.0 B 315 (o o [+ 1o 5 (o) 1 W RSP P PSS SO

4.1.1 Atribute Restriction AlF, V, B

4.1.2 Inheritance

4.1.3 Aggregation

4.1.4 Instantiation
4.2 Using Population Parametersccooevreteieeimieiiiiiieia..
4.3 Hierarchical Decomposition & “Birds Fly”......ccoocciiieiiiiinns

4.3.1 Definitional Components
4.4 Hierarchy Evolution..........cooiiiiiiiiis
Chapter 5 — Class Compositioncccoecersrscscosessessoscoccosess cessassssssesnsss
5.1 IntroduCHON c.vteiir et e e eee e
5.2 Composition without COnfliCtscooiiiiiiiiiiii.

5.2.1 Library Bock

5.2.2 Person

5.2.3 Defining a Client
5.3 Composition With Conflicts.......ccccociiiiiiiii.
5.4 Relation to other paradigmsocoiiiiiiiiineiienrereerieieieinn,
Chapter 6 - Class Association....ccccconsseeccnceccsees
6.1 INroQUCHON . .eunieei it i ittt itirt et eanseeneeaneaaneens
6.2 Association as CONtTattoeviiiiiiveiitiniiiiieieaineeeeneeanenas
6.3 Semantics of Instantiation & Deletion.........ooooiiiiiiiiiiinonn.
6.4 N-ary assoCIationS.......coviviiiiiiiiiiiiiie i
6.5 Transformational Implementation Issues ...,
Chapter 7-Related Work......cooeevnirinncinciciessienconicecscnsioncncs
7.1, INtrodUCHOM «.ov it ittt ettt ee e

7.1.1. Object Oriented Design and Programming

7.1.2. Data Base Schemas

7.1.3. Design Methodologies

7.1.4. Knowledge Representation KL_ONE
7.2. Domain Modeling ..o

7.2.1. Knowledge-Based Transformation Systems

.............

.............

.............

.............

.............

.............

................

.............

.............

...............

.............

.............

.............

.............

.............

eeeeeeeeeeeee

.............

..............

7.2.2. GIST 99
7.2.3. PSI, PECOS, LIBRA, CHI 99
7.2.4. FNIX 100
7.2.5. Requirements Apprentice 100
7.2.6. IDeA,ROSE 100
7.2.77. KATE, ASAP, AHS 100
7.2.8. RML 101
7.2.9. UCI—DRACO 101
T A Previous ResearChi. o ottt ettt ia e teaeesaneaanan 102
Chapter 8 — Conclusion.....ccccveeeecieccarccccscescensesscscsssscosossssssssssssscss 105
O D - T 1 - PP UPPPEPPP 105
B. 2. Future RESEATC . ittt it irtinisieseneersannsecessacccasssrssscsssssnsersones 106
Appendix A - Library Example.....ccccocrannecianecosscsosssssccsrsssossssssssess 109
Appendix B - Accounts Receivable Example.....ccccccceceecccccssccsasososse 111
Appendix C - Attribute Grammar (Partial).....ccccccccccccconcccsssnccsces 131
Appendix D - Definitionsc.c.ccccisssssccssocscanscocsassacescssssscssosssssssssos 137
BibHOZraphy ceccceececscsciecasescosesssssscescssssssnsocasassosesascssosossscsnssansssssse 143

vii

List of Definitions

Chapter 2 - Attributes

Definition 2. 01— AUTIDULE ... vttt et e et eiaioeersniaarearnnneassscannscnoesssnns 20
Definition 2.2 — Nominal SCaleioiiiiiiiiiii i rasaeeeacne e aans 21
Definition 2.3 — Ordinal SCale....oiiiiiiiiiiii it i i ae e 23
Definition 2.4 — QUANTITY ..ottt e e eeiee et seaas e 23
Definition 2.5 — Interval Scale..oiiiiiiiiiiiiiiiiiii e 26
Definition 2.6 — Ratio SCAlE .. vviriiiiiiitiiiii it e eeiietiiiirareraeaaneeeannacass 26
Definition 2.7 — Rule to Determine Default Category for a Nominal Scale 33
Definition 2.8 — Immutable At butes ... oeei i eeiiiiiiiiieiiiia e eeicaaneeoees 37
Definition 2.9 — Identity Relation........oooiiiiiiiiiiiiiiiiiiiicii, 37
Definition 2.10 — Additional Ordinal Scale Transition Pairs..........coocoeieiiiiiaine 39
Definition 2.11 — Relation Subsets of Interest in an Interval Scale 41
Definition 2.12 — Additional Subsets of Interest in a Ratio Scale...................... 42
Chapter 3 - Classes

Definition 3.0 — ClaSS vt ittt ittt ie ittt eaaanneeeoeanocsioanssaarsraasasnnannaees 47
Definition 3.2 — ObBJECT vnviuitiiitiiitiie et e eee e et ettt 48
Definition 3.3 — Class (Primitive and Derived Attributes)ooooviieiiiieiiaae. 49
Definition 3.4 — Naming AttriDUtesoiiiiiiiii e 58
Definition 3.5 — Referential Atibutes. . vuviteeieiieereiaeiiiorasriaonrenaaaoaaoaasoacns 60
Definition 3.6 — OPerations.......c.c.vuiiiiiiriiriaiiiireeaeac it 62
Definition 3.7 — Class Statistical Functionsccceeieeiiiiiiiiriiinreeainnoeieaences 65
Definition 3.8 — Class AXIOINIS .iiuriiireeeitierenreeennneesinetisnsesesesnnsosaseenens 67

Chapter 4 - Hierarchical Decomposition

Definition 4.1 — Subclass and Superclass.....iiiinin 73
Definition 4.2 — Attribute ReSIICHONovtiiiiiiiiiiiiiiciiaieiee e, 74

Chapter 5 - Class Composition
Definition 5.1— Composition Process Algorithm ... g1

Chapter 6 - Class Association
Definition 6.1— ASSOCIAIION. .. iiiriiiiiiieeeiteeenaieneneiierenarieetssonsnoeaeseorsoons 89

viii

List of Figures

Chapter 1 - Introduction

Figure 1.1 — Instantiating Domain Models ... 1
Figure 1.2 — Mapping Requirements To Implementationcc.oooeiienniinen 3
Figure 1.3 — Latitude Mapping EItorcooooiiiiiiii 7
Figure 1.4 — Determining the Age of an Automobileoooviin. 8
Figure 1.5 — Some Interpretations of Ageof aCar ..o, 9
Figure 1.6a — Solution Paradigm ..., 10
Figure 1.6b— Agents & Modulesooeieiiiiiiiiii 10
Figure 1.7 — Generalized View of MIS Transaction Application Domains 13
Figure 1.8 — Library SyStemcccuoeiiieiiiiiiiiiiiiiiiiiees 14
Figure 1.8b— AR System........oiiieiiiiiiiiiiiiiiiiiiiiii 14
Figure 1.9 — Simplified View, Business transaction cash flow 15
Figure 1.10 — Overview of the Modelooooiiiii 16
Chapter 2 - Attributes

Figure 2.1 — Mapping from Attributes t0 Bytes...........ooooiii 19
Figure 2.2 — Defining a Work-hour ... 24
Figure 2.3 — Scales & Value Sets........ooeveiiiiiiiiiniiiii 28
Figure 2.4 — Defining the derived quantity Salary (ime/money).........c.ccooveeev. 30
Figure 2.5 — Dollar/hour is one instance of salarycoooooiiiiiin 31
Figure 2.6 — Scale Type Determines Population Parameters and Displays 31
Figure 2.7 — Screen to Elicit Nominal/ordinal Attribute Categories.........cooooevc. 34
Figure 2.8 — Confidence Intervals Under A Normal Curve ... 35
Figure 2.9 — State Transitions for Marital Status........covvninvniiiinn. 38
Figure 2.10 — Screen to Elicit Value Set Transitionscooi 39
Figure 2.11 — Check-Out Status, State Transition Probabilities.........cccooeniei 41
Figure 2.12 — Value Set Transitionscoeiiiiiiiiiii 42
Chapter 3 - Classes

Figure 3.1 — Object Instantiations.........coccevmreriniiiiniiiiin, 50
Figure 3.2 — Necessary Conditions for Adding Ratio Scaled Attributes............. 53
Figure 3.3 — Attribute Semantics (Plus A1 A2)-> A3 ..., 55
Figure 3.4 — Proof E(x+y) = E(X) + E(¥)..ceveeriiniiiiiii 57
Figure 3.5 — Proof V(A1+A2) = VIAD) + V(A2)...cooiiiiiii 58
Figure 3.6 — Attribute Semantics (Plus A1 C) -> A3 59
Figure 3.7 — Proof V(X+C) = V(X).eooiimiimiiiiii 59
Figure 3.8 — Attribute Semantics (Times A1 C) -> A3 ... 60
Figure 3.9 — Proof V(CX) = C2V(X)...ciiiuriiiiiiiiiiiiis 60
Figure 3.10 — Attribute Semantics (Sub AT AZ) -> A3 ... 61
Figure 3.11 — Book Classoouiiiiniiiiiniiiiiii it 63
Figure 3.12 — Domain-Specific Interpretations of Add & Delete........oovenniis 66
Figure 3.13 — Class Access OpETationscermuiuiinrinriiinnianieneens 69
Figure 3.14 — Latitude and Longitude Class......ccomiiniininiinnnnnnnn. 70
Figure 3.15 — Partial Definition of Person Object.....ccooimiiiiiiiiiinnnnn. 72
Figure 3.16 — Relevant Type Manager Functions.....oiinn 74
Figure 3.17 — Class Population Parametersc..coovriiiiniinii . 76
Figure 3.18 — Overview of the Model........cooiiiiiii 77

ix

Chapter 4 - Hierarchical Decomposition

Figure 4.1 — Partitioning a Company Classc..oooiiiiii.
Figure 4.2 — Using GRE Score to Partition a Class...........coooiiiiinne
Figure 4.3 a— Bird Class..........c.oooiiiiiiii
Figure 4.3 b — Bird Class with Population Parameters........ocoveeneieenncncns
Figure 4.4 — BIrds FIyooviiiiiii
Figure 4.5 — Elephant Legs............ooiiiiiii

Chapter 5 — Class Composition

Figure 5.1a — Library SyStem..........oooiiiiiiiiiiii
Figure 5.1b — AR SySIem......o.oiiiiiiiiiiiiii i
Figure 5.2 — Library_book = (= Book Ttem_to be Loaned) . ..oooiiiivinniiaanionen.
Figure 5.3 — Base Definition for a Lending Item............oooooiin.
Figure 5.4 — Book_in_the_library = (= Book Lending Item)...........c..ooeiis
Figure 5.5 — US_AdAIessccoiiiiiiiiiiiiiiiiiiiiii e
Figure 5.6 — Creation LoCation.......cccocovmniiniiiniiiiinen
Figure 5.7 — Company_ DasiC........oiviiiiuiiiiiieiiiiiiiiii
Figure 5.8 — Company_Class = (= company_basic creation_location

LS Te (o = orc) I R SRTREE

Figure 5.9 — Client = (= (OR Company Person) Billing_Info Payment_Info). ..

Figure 5.10 — Determining Age & Weight of an Automobile..........ccocoiiine
Figure 5.11.— Scaled Version of Automobile ...
Figure 5.12 — Classic view of Multiple Inheritance........ccccoiiiininne
Figure 5.13 — Composition Within A Domain Model...............cooon.

Chapter 6 - Class Association

Figure 6.1 — ASSOCIALIONS..ieutiiiiiiiiiiiiiieeeeeei ittt
Figure 6.2 — Library EVENtSooooiiiiiiiiiiiiiii
Figure 6.3 — AR Relationship Events ...,
Figure 6.4 — Checkout Classoooiiiiiiiiiiiiii
Figure 6.5 — Invoice Class.........ccoi

Chapter 7 - Related Work
Figure 7.1 — Some Considerations in (Object-Oriented)* Programming..............

Chapter 8 - Conclusion

Figure 8.1 — Overview of the Model ...
Figure 8.2 — Instantiating Domain Models............ooii
Figure 8.3 — Future Researchoooviiiiiiii

Chapter 1 - Introduction

Programmers must have an understanding of both programming knowledge and
application domain knowledge to write application programs. But while programming is
well enough understood to model and teach, application domain knowledge is not yet well
understood, and is codified only in an informal ad hoc manner. Because representations
that precisely characterize application domain knowledge do not currently exist, errors are
frequently made when gathering and mapping specifications from the informal to the
formal.

This dissertation defines a meta-model for application domain knowledge and describes
a methodology for its instantiation into domain-specific models. Domain models are
representations of application domains that can be used for a variety of operational goals in
support of specific software engineering tasks or processes. The meta-model and
methodology in this dissertation facilitate understanding and analyzing application areas and
eliciting and formalizing software requirements and specifications. The emphasis is on
general characterization techniques that can be used to instantiate models from different
application domains. Figure 1.1 shows how informal application domain knowledge is
instantiated into formal domain models.

/ Application
Domain

Modeling Methodology

Domain
Model

Figure 1.1 — Instantiating Domain Models

Domain models are instantiated by representing specific application domains in terms of
attributes and classes. Classes are organized and structured using hierarchical
decomposition to create subclasses, and composition and association to construct larger

bd

classes from smaller ones. Examples are given in terms of library, accounts receivable,
and other related problems.

1.1. Organization of the Dissertation

This chapter gives the background and motivation for the dissertation research. It
outlines the mapping process from specifications to implementation, and shows where
problems occur in the process of converting informal views to formal computer programs.
A solution paradigm is proposed in which the results from this dissertation and others like
it will eventually allow designers, who are neither computer programmers nor domain
experts, to construct application programs by declaratively describing and refining
specifications for the programs that they wish to construct. This chapter concludes with an
overview of the meta-model and modeling methodology.

Chapters 2 through 6 describe the model in more detail. Standard computer data types
are semantically bare methods of representation that are unable to capture fundamental
concepts in an application domain. Chapter 2 defines attributes as meta-model primitives
that capture the semantics of domain properties in terms of scales (from mathematical
measurement theory), units, quantities, granularity (from the physical sciences), population
parameters (from statistics), and value set transitions.

Chapter 3 definesclasses that encapsulate sets of attributes, provide for the definition of
derived attributes, allow additional operations to be defined, are responsible for object
instantiation and deletion, provide for the definition of axioms, and maintain summary
statistics on object sets.

Chapter 4 defines hierarchical decomposition; the process of developing a class
hierarchy by using attribute restriction to specialize a class into subclasses. Sub (and
super) class definitions, along with our interpretations of the terms inheritance,
generalization, specialization, aggregation, and instantiation are explained in chapter 4.

Chapter 5 defines class composition; the process of creating a new class from two or
more other classes by taking the union of their sets of attributes and using domain
knowledge to resolve conflicts, eliminate unnecessary attributes, and add new attributes as
needed.

Chapter 6 defines class association; the process of creating a new class that establishes
a relationship between at least two other classes by taking the union of their naming
attributes and using domain knowledge to add new attributes as needed.

Chapter 7 reviews related work, and Chapter 8§ summarizes the results of the
dissertation.

1.2. The Mapping Process

Creating an application program is a process that begins with a person’s conception of
an imagined program, and ends with a binary representation of information that can be
executed by a machine. This mapping process can be viewed as beginning with a set of
requirements or specifications, and ending with a composition of primitive operations that
define an implementation. Producing a successful mapping is a process that is intrinsically
difficult, usually iterates, and rarely terminates. Furthermore, the stages of the process
tend to blur as decisions made in the various stages of implementation inevitably effect and
change the original specifications [Swartout 82].

Requirements & Specifications

Domain
Models

1 Vertical
~ Integration -

Computer Hardware
Figure 1.2 — Mapping Requirements To Implementation

Figure 1.2 shows a view of the mapping process as it progresses from requirements
and specifications expressed in terms of an application domain through computer science
and programming language domains to a final level of implementation. While the figure is
a rough abstraction, it provides an outline to which we will refer in future sections of the
dissertation.

Computer Scientists are accustomed to classifying information in terms of bare data
types such as boolean, integer, real, enumerated, and others that have been mapped up
from computer architectures. These types are useful abstractions that provide more power
and generality than simple bits. Unfortunately, these types are semantically bare from the
point of view of application domain modeling; reflecting the fact that much semantic
information is lost in the mapping process.

When a domain is well defined and bounded, it is possible to cleanly separate
specifications from implementation. In a structured model of program development! code
is written to satisfy specifications which are derived from requirements about a particular
problem. But since most application domains are neither well defined nor clearly bounded,
mapping from the ambiguous world of application requirement and specifications into
computer language data types often results in an information loss [Curtis 88].

Information about each of the domain levels is lost between mappings because the
information needs of each domain result in different representations. Furthermore, the lack
of a formal model to represent information at the application domain level means that
semantic information can only be represented in an informal manner. This can create
critical problems because high level specification changes can no longer be mapped into the

! such as that described by [Dijkstra 721, [Hoare 721, [Hoare 73], [Hoare 85},

code that implements those specifications. Consequently, our focus is on modelling
application domains, which are shown at the top of Figure 1.2.

The vertical box on the left side of Figure 1.2 is to indicate that vertical integration of
the various domains is one way of achieving efficient mapping. Efficiency issues
addressed in using vertical integration are discussed in [Hufnagel 89] but are not the subject
of this dissertation. Instead, we are concerned with the box labeled "Domain Models,"
and only attempt to model simple (programming-in-the-small) application domains.

1.2.1. Life Cycle Paradigms

For the last two decades, the waterfall model has been a classic description of the
mapping process within software development. The model, which takes its name from the
stair step diagram of development stages which resemble a waterfall, was first published by
Royce [Royce 701, and further popularized with an expanded version by Boehm [Boehm
76]. Figure 1.2 can also be viewed as a waterfall (e.g., classic sequential) model of
software development.

There have been many critiques of the model [McCracken 81], and there is general
agreement that new paradigms are needed for software development. Although the basic
concept of mapping from requirements to implementation still exists, there are now other
life cycle models which more faithfully reproduce the reality of software development.
Prototyping [Boehm 84] is the key idea behind most of the approaches. Refinements on
prototyping include: operational specifications and transformational systems [Agresti 86a],
[Agresti 86b], as well as rapid throwaway prototypes, incremental development,
evolutionary prototypes, reusable software, and automated software synthesis [Davis 88].
All of these methods are based around the old software engineering principle that says you
always have to build a system and throw it away before you know what it is that you really
wanted to do [Brooks 75]?2 These models provide mechanisms for more immediate
feedback for application developers. They are all attempts to provide the user with an
earlier view of a proposed finished product than the more static waterfall model.

The only real change to Brook's statement of fifteen years ago is that system designers
will eventually no longer need to be computer professionals. With the popularized use of
personal computers, spreadsheets, and simplified data base programs, many people who
had previously never touched a computer are now responsible for their own program
maintenance. Unfortunately, this creates a whole new set of problems.

1.2.2. Users Must Create Their Own Programs

Users must begin to directly create and maintain their own programs because it is
unreasonable to expect that there will ever be enough professional programmers to meet the
continually increasing demands for software. The problem is somewhat analogous to the
difficulties that occurred with the proliferation of telephones during the early part of this
century; it was predicted that if the telephone growth rate continued, eventually every mar,
woman, and child in the United States would have to become a telephone operator. And of
course everyone eventually did. Networking technology eliminated the need for patch

2"The management question, therefore, is not whether to build a pilot system and throw it away. You will
do that. The only question is whether to plan in advance to build a throw away, or lo promise to deliver the
throw away to customers.... Hence, plan to throw one away; you will, anyhow."

boards by solving the procedural aspects of call routing, but placed the burden of
declarative specification (i.e. specifying a phone number to be called) on the enduser. A
similar solution to the problem of creating and maintaining complete programs within well
understood application domains is both necessary and achievable.

1.2.3. Automating the Mapping

Because one of our goals is to remove the application programmer from specific
application programming tasks, this general area of research is sometimes referred to as
automatic programming. However our goal is to formalize an approach to application
domain modeling. As [Barstow 84] has observed, “... a primary goal of automatic
programming research should be the development of a model of domain-specific
programming and techniques for building domain-specific automatic programming
systems.”

How has the view of automatic programming changed throughout the decades? It is
interesting to realize that in 1958, the term automatic programming was used to
differentiate the language FORTRAN from lower level assembly and machine languages
[Rich 88a]. Through the development of programming languages, computer science has
given programmers progressively better tools with which they can map their understanding
of program specifications more directly to the computer by using high level constructs
instead of machine specific operation codes.

The first step in automating programming was the development of assemblers that
could assist in the task of composing these operation codes. Compilers immediately
followed assemblers, and were viewed by many as an interesting, though originally
inefficient, scheme for allowing programmers to work at a higher level of abstraction than
is possible with assembly language. The construction of early compilers was ad hoc, but
researchers have changed the construction process from a craft to a science, and have
directed research towards specific subjects such as grammar types, parser construction,
code optimization and so on. By separating the concerns of compiler construction from the
issues of language design, the computer science community has been able to proceed with
investigations into substantive language issues without usually having to carry the baggage
of compiler or interpreter design. But even as languages reach to higher and higher levels,
as [Smoliar 83] points out, “no matter how high the level, it’s still programming.”

1.2.4. Application Programming

Creating application programs within well understood domains is a programming in -
the-small process that can be accomplished by people who understand both programming
and a specific application domain. Although there is a general belief [Neighbors 84a],
[Barstow 84], [Adelson 85], that knowledge of a domain is a prerequisite to being able to
write good programs within that domain, the specificity of this knowledge means that in
addition to learning programming, programmers must often spend years learning the
characteristics of a particular domain [Curtis 88]. This knowledge is used to build
application programs, but is rarely codified in a way that allows it to be well understood
enough to be reused by others.

Even when a domain is well understood, application programming is a difficult process
that extends into the real world of human computer users. Most real world domains are

neither well defined nor clearly bounded and consequently large amounts of effort are
required to elicit and clarify the users image of an application program. While today’s
professional programmer is more likely than his or her predecessor to be able to construct
and verify the correctness of a particular section of code, the gathering and refining of the
specifications for that piece of code is still a black art—a skill which we are attempting to
partially automate.

1.2.5. Application Domain Knowledge

Even though definitions vary with the operational context, researchers agree that
domain knowledge:

° is necessary to write good programs within a domain [Adelson 85];
o is a requirement for program generators [Barstow 84]; and
o is poorly defined and frequently takes years to gather [Curtis 88].

Software designers implicitly use and reuse application domain knowledge to prevent
specification errors, and it is the absence of this knowledge that allows many types of
errors to occur. Although domain knowledge is an integral part of many fourth generation
and other special purpose languages, it is almost never formally represented and rarely
codified in a way that allows it to be well understood enough to be used by others. What
then is application domain knowledge? How can it be represented? What kind of errors
can it prevent? How can it help in the design and construction of application programs?
This dissertation outlines an approach to answering those questions in terms of a new
paradigm for application programming.

1.8. Requirements/Specifications

The failure to capture domain knowledge results in a variety of different problems in the
creation of specifications. Examples of some of these problems are given in the remainder
of this section and are summarized as follows:

® An inadequate understanding of the mapping between specifications and code.

e The failure to recognize errors in specifications.

® Misunderstanding of terms that are operationally defined within a particular
domain.

® The difficulty of communicating between domain expert and application
designers.

e An insufficient understanding of the implementation level resource tradeoffs that

are inherent in a specification.

1.3.1. Specification Errors Result From A Lack of Domain Knowledge

Problems result when a programmer neglects to acquire enough domain experience.
One modern software engineering tale concerns the navigational system of the F-16 fighter
plane. In this story, a simulated F-16 flipped 180 degrees during a computer simulation of
a routine flight from the Northern to the Southern Hemisphere. The behavior happened at
the equator, where the plane’s navigational program apparently was unable to handle the

situation in which previously decreasing latitudes were now increasing without a change of
direction.

L
vy Ak . -
(7%l 7e b‘nk

Application @D 0
i A T [
s NN\ ttws 4
3
Implementation
Domains

Implementatio:

Figure 1.3 — Latitude Mapping Error

What is it about the specification that caused, or failed to prevent, this mistake? While
our answer is only conjecture, we assume that if the plane hadn’t crossed the equator that
there wouldn’t have been a problem. Therefore, the error was caused by the failure of the
programmer to recognize that there are no negative latitudes. This might have been caused
by the programmer visualizing the world as mapped to a Cartesian Coordinate Plane where
the y-axis was latitude, and a latitude of zero represented a position at the bottom of the
map. Other interpretations are possible, but the overall point is that errors can result when
domain knowledge is lost in the mapping process.

1.3.2. Reasonable Requirements Are Often Wrong

The next example illustrates a subtle problem of the dangers of believing specifications
as they are given without using a broader domain-knowledge view to interpret those
specifications. The following two requirements are taken from the statement of the
definition of a library system [Kemmerer 85] (further discussed in Appendix A):

Regquirement 1

All copies in the library must be available for checkout or be checked
out.

Requirement 2

No copy of the book may be both available and checked out at the
same time.

These requirements seem reasonable, and when axiomatized in a specification system
such as Larch allow theorems such as the following to be proved:

If a book is not checked out and is not available, then it is not a library book at all
[Wing 87].

(~checkedOut(1,b) A ~available(l,b)) = b ¢ aliBooks(l)

But books that have been lost, or stolen, or damaged, can violate requirement 1. In our
view, the specification is wrong because it was based on a library model where critical
knowledge about the domain was not captured. Consequently, proofs based on this
requirement, while correct within the bounds of the proof system, are results that would
not be acceptable for librarians.

Our concern is with the levels of the application domain that map to the real world. We
believe that a formal model of a library application domain would prevent errors such as
these and others pointed out in [Wing 88]; thus, we are concerned with creating a model of
an application domain that will avoid, among other problems, specification errors of the
type demonstrated above.

1.3.3. Terms Are Ambiguous Without A Domain Context

Within any particular application domain, a variety of domain-specific terms are always
used. Some domain analysis techniques [Neighbors 84a], used these domain-specific
terms as the basis for a grammar which is then considered to be a model of a domain.
While this is a useful and successful technique, it is limited to any particular domain of
application. Our approach is to attempt to build general models that allow otherwise
ambiguous terms such as "2/10 net 30" to be incorporated directly into constructs of the
model.

1.3.4. Semantic Information is Required to Solve Conflicts

The following example of a specification problem concerns the ambiguity of simple
terms without clarification by domain-specific use.

{ power age weight color

Figure 1.4 — Determining the Age of an Automobile

In Figure 1.4, an engine has a power rating, an age, and a weight. A chassis also has
an age and a weight, but does not have power and does have a color. Clearly, an
automobile should have at least the properties Power (inherited from Engine), and Color
(inherited from Chassis). But what about Weight and Age? Assuming that the ages of
Engine, Body, and Automobile are all measured in the same unit (say years), aufomobile
age could be calculated in at least the ways shown in Figure 1.5.

Average_componeni_age
automobile.age = {(engine.age + chassis.age)/2

Sum_of_component_ages
automobile.age := engine.age + chassis.age

Age_of eldesi_componeni
automobile.age = max(engine.age, chassis.age)

Ages_of components
automobile.age :=set of {engine.age, chassis.age}

Age_since_manufaciure
automobile.age := current_date - Automobile.create_date

Figure 1.5 — Some Interpretations of Age of a Car

Within the domain of car buyers, most people would say that automobile age would
best be calculated by the Age_since_manufacture operation that uses the date that items are
assembled to form the basis for the age. But what about other domains? For example, the
following are all reasonable criteria for engine age in the domain of engine repair:

® Age of automobile engines is measured in miles .
° Age of automobile engines is measured in years.
® Age of boat and airplane engines is measured in hours.

Domain knowledge is used to answer this potentially ambiguous question about the age
of an engine. This is one of the types of information, normally lost in the creation of an
application program, that a domain expert can capture in a domain model.

1.3.5. Requirements and Specifications Change

Finally, requirements change. Even when requirements and specifications are correctly
gathered, refined, and then transformed correctly into executable code, the nature of most
real world applications is that requirements and specifications mutate throughout the
existence of a program. These modifications are neither caused by the sometimes mercurial
nature of endusers nor by sloppiness in the original design process, but are the result of
natural occurrences such as workload modifications, environmental changes, new
technologies, economic disturbances, legal mandates, and so on, that remove old
requirements and create new ones.

Automating the transformational mapping of specifications to code and allowing the full
program specification to be stored in terms of the domain will mean that users can change
specifications and then regenerate their application program.

1.4. Solution Paradigm

From the perspective of program development, the eventual goal is to allow designers,
who are neither computer programmers nor domain experts, to construct application
programs by declaratively describing and refining specifications for the programs that they
wish to construct.

Figure 1.6a is an overview of the solution paradigm as described in this dissertation
and Figure 1.6b is a more detailed schematic. The top right portion of Figure 1.6b shows a
representation for domain knowledge that can be used as the basis for generating domain-

10

specific application program generators. This dissertation focuses on modeling domain
knowledge (the top rectangle of the figures). In particular, the focus is on a precise and
operationally useful set of modeling techniques that will facilitate the elicitation of domain
knowledge from domain experts.

Solution Paradigm Solution Paradigm

Domain Modeling <==<====3

; Domain Modeling 7=~~~
Domain

¢ Domain

#
! i
A modeling technique that allows ¢ Knowledge ! ¢ Knowledge
use of the same representations ¢ H i ‘
and algorithms across many H [f f

s i D .
. : : Domain Knowledge lg of ObjoctOriented *
’ : " Expert |g.g| Editor # 7 Attributes /
8 # Values i
¢ [Operations
H g ¢ Censtraints ¢
/ ¢ g Seales & Units ¢
¢ # i Class le.n‘anes g
é]] iR ‘&:mposxtmn /
; : g [y L e |
—_— ‘ Edior :

¢ ;
Application] g i
‘f"'-“ﬂ“"} Designer y L
k
cafon
* l Specxﬁmk;"Jl fons ‘
Program Given an instantiated domain Program “/ Transformation System
Generation wedel, it s used to specify and Generation

generate programs within that
domain

Enduser
|

Figure 1.6a — Solution Paradigm Figure 1.6b — Agents & Modules

1.4.1. System Users or Agents

There are three types of human users or agents that are of interest in this paradigm.
Figure 1.6b shows these users as domain experts, application designers and endusers.

This dissertation is primarily concerned with domain experts. Domain experts are people
who, through years of experience, understand an application domain [Curtis 88].

Although domain experts may have had experience with computer systems they are
presumed to be neither computer scientists nor programmers. Instead, they understand
application domains through training and experience. Domain experts are library scientists,
inventory control managers, retail specialists, and so on. The purpose of the domain model
is to capture their knowledge of the application domain. The modeling of that knowledge
is the subject of this dissertation.

Endusers are the final users of an application program as shown on the lower left of
Figure 1.6b. Although endusers use application programs, this dissertation describes a
system designed to be used primarily by domain experts and secondarily by application
designers. Consequently, within the context of this dissertation system a user is actually a
domain expert or application designer. In a management information systems context, end
users are the clerks, secretaries, and perhaps managers, who directly use an information
system. Within the context of real time domains such as telephony, endusers are the people
who access or use the system.

11

Application designers will vary in technical sophistication, and range in expertise on a
continuum from domain expert to enduser. We use the term to distinguish them from
experts who are presumed to have an all encompassing view of the domain, and from
endusers who are the class of users at the end of the development chain. An application
designer might be a librarian in Peoria, Illinois who knows enough about a library to
specify their own system. Or they might be a receivables supervisor who is intimately
familiar with the operations of their company. From an operational view, application
designers are anyone who has a thorough enough understanding of their needs to be able to
interactively specify a systemn.

1.4.2. Dissertation Focus is on Domain Experts

This dissertation is primarily concerned with the aspects of domain model and the
modeling methodology that facilitate the elicitation and structuring of knowledge possessed
by domain experts. Throughout the dissertation, examples are given in terms of their
expected use by domain experts. However, since an ultimate result of the paradigm is to
provide for antomatic code generation, we are concerned with application designers and
endusers. Consequently, we describe aspects of the model that effect them in places.
Unless otherwise specified, the users of the system are considered to be domain experts.

1.4.3. Program Generation

The lower portion of Figure 1.6b shows a domain-specific transformational program
generation system. Application designers interact with a design editor to create a set of
application specifications. Given a set of application specifications, a transformation
systemn creates a composition of primitive functions to be executed by a type manager that
operates within a computer system. This portion of the system completes the mapping
from the application domain to the executable code. Research of this type is sometimes
called narrow domain automatic program generation [Rich 88a], and is further described in
Chapter 5 on related work. Our meta-model and methodology are intended to serve as a
basis for an interactive support system for development of domain-specific application
generators. The emphasis is on the top portion of Figure 1.6b. Although the creation of
executable programs by performing a series of transformations on application specifications
is not the subject of this dissertation, we have done work in this area [Iscoe 88a] with
Batory’s [Batory 88] database domain model.

1.4.4. Domain Models and Meta-Models

Throughout this dissertation we use the terms meta-model, domain model, and
modeling methodology. Figure 1.1 illustrated our view of these terms. The meta-model
consists of a set of primitives that can be instantiated to produce a domain model within a
particular domain. The modeling methodology is the methodology that a domain expert
uses to instantiate a particular domain model using attributes, classes, inheritance, and
composition. The meta-model and its associated methodology for instantiating domain
models is sometimes referred to as the modeling technique.

12

1.4.5 Domain Model Instantiation

Instantiating a domain model is a process requiring an expert with a comprehensive
understanding of the domain. Because the domain expert has mentally traversed the depth
and breadth of a design space, they have a well defined conceptual model of an application
domain [Curtis 88] which allows them to instantiate domain models in fewer design
iterations than would be required by someone with less domain knowledge. This expert
knowledge is acquired through experience and is the way that much design is performed.
As Alexander states in reference to architectural domains:

A moment’s thought will convince us that we are never capable of
stating a design problem except in terms of the errors we have
observed in past solutions to past problems. Even if we try to
design something for an entirely new purpose that has never been
conceived before, the best we can do in stating the problem is to
anticipate how it might possibly go wrong by scanning mentally all
the ways in which other things have gone wrong in the past.
[Alexander 64]

While structuring a model is inherently an iterative process, by assuming domain expert
sophistication we can present a methodology with more of a top-down than a bottom-up
flavor. Consequently, certain aspects of our approach differ in both definition and spirit
from other object-oriented approaches.

1.5. The Dissertation Research

The creation of a meta-model and associated modeling methodology was in itself an
exploratory and iterative procedure. In our research, the process began with an
examination of existing models and modeling approaches (summarized in Chapter 7). The
meta-model was constructed in the manner that Davis [Davis 88]describes as system
evolution. That is, a basic model of attributes and classes was developed, and then an
iterative process of prototype development and model refinement was pursued. Several
computational platforms were used to prototype portions of the model and methodology.

After initial attribute and class definitions were completed, an iterative series of steps
were taken in which Macintosh screen and menu interfaces were designed from the
viewpoint of domain expert use. These interfaces were used with examples to further
refine the model definition which was then reprogrammed on the Macintosh. Some of the
Macintosh screen dumps used to develop the meta-model are shown as figures in Chapters
2 and 3.

Using a different computer system, Prolog was used in two different ways. As more
fully described in [Iscoe 88a], a system was constructed to assess the utility of
transformational implementation of executable specifications based on high level
requirements. Additionally, unit conversion and other aspects of unit domain information
described in Chapter 2 were prototyped in Prolog.

In order to resolve ambiguities that might be present from a text explanation of the
algebraic meta-model definition, portions of an attribute grammar [Knuth 68] were defined
to more fully describe semantics such as attribute addition. Attribute grammars have been
used by Wills [Wills 87]to define a system for reverse engineering) and by a variety of
other researchers. The attribute semantics described in Chapter 3 and summarized in

13

Appendix C represent the beginnings of a compositional calculus. Appendix D contains
summaries of the meta-model definitions.

1.5.1. Example Domains

The meta-model and methodology generalize across transaction-oriented business
application domains. This generalization is illustrated with examples for a library system
and an accounts receivable system. Library systems are computer systems that keep track
of and provide for the check-out and return of books. The library example, which is
summarized in Appendix A,was selected because of its general use within the software
engineering community [Wing 88].

Accounts receivable systems are responsible for the management and control of
collecting customer balances. The accounts receivable (AR) problem was selected to assess
the generality of the modeling approach. An independent validation of the AR model was
performed by a member of The Center for Strategic Technology Research at Andersen
Consulting, the consulting branch of a Big Six accounting firm.

Other example problems such as the the automobile composition problem [Cardelli 84]
[Cardelli 85]were chosen as a way to illustrate the capturing of application semantics by
composition are used in the dissertation to illustrate specific features of the meta-model.

Library systems and accounts receivable systems are commonly treated as completely
different types of application programs. They exist for different purposes, they are written
for different applications, they are sold as different products, and the domain experts are
different people because these are different application domains. Not only are they
different application domains, but even within a domain like accounts receivable, scores of
both custom and generalized programs exist which perform different functions in a variety
of computational platforms.

This dissertation presents a generalized approach — the meta-model — that can be used to
model aspects of both of these application domains. In addition, the same overall model
can be used, with few additional extensions to model generalized rental systems.

Merchandise|

Information

Billable
Time

Product Sale/
Billable Time

Charge/Expense

Figure 1.7 — Generalized View of MIS Transaction Application Domains

14

Figure 1.7 shows a high level view of the entities and associations within business
application domains. Within these types of application domains, there are entities that can
be added and deleted according to customs and policies of an organization. In addition,
there are policies, operating procedures, and laws that effect the association between those
entities. Policies and procedures that govern the addition and deletion of entities and the
creation and removal of associations between those entities constitute a large portion of the
specifications of an application domain. This dissertation will show how this information
is modeled within the terms of the modeling methodology.

In Figure 1.7, the box labeled invoice represents a transaction in which a business or
person purchases a product or service. This figure can be viewed in a variety of different
ways. Focusing on the left side of the picture and assuming that a product is selected, the
figure illustrates an inventory control system. However, if instead of selecting a product,
the domain expert selects a service such as billing hours, then the left side of the diagram
illustrates a professional time tracking system. This dissertation uses as an example the
right hand side of the picture, which represents a generalized accounts receivable (AR)
program. In general, AR programs are those that keep track of payments for goods or
services. A variety of conditions may be attached to those payments. For example, goods
sold on a "2/10 ner 30 basis" are materials that need to be paid for in 30 days, and for
which a 2% discount is given if payment is received within 10 days. Additional interest
might also be charged for payments made after 30 days.

Figure 1.8a — Library System

1.5.2. Programming-in-the-small

The term accounts receivable is used by different people in different ways. It could
mean a billing system, a point of sale system, or an inventory system. In large operational
environments, these programs rarely exist in isolation. Within a software engineering
context, examination of a small, perhaps out of context, but well-understood domain is

called "programming-in-the-small." In contrast, programming-in-the-large problems are
generally poorly defined, cover a number of domains, and have a host of other problems
which exclude them from consideration in our research.3

Even within limited domains, it is possible to acknowledge and interact with other
systems. Figure 1.9 shows different ways that an invoice makes cash balances in various
parts of even simple accounting systems. Since this dissertation addresses only
programming-in-the-small, any application of the meta-model and the associated
methodology to programming-in-the-large problems is an open research problem.

Produd Line lerrv/
Inventory $ (asset)

ADO+¢ Eem i Addl$
+% &
MR INVOICE Cust Balance
TOTAL {sub ledger)
(GLacct)
°$
&
$ Add: §

Figure 1.9 — Simplified View, Business transaction cash flow

1.5.4. Previous Research

In previous research [Iscoe 86], a lower level, detailed system was constructed to elicit
and implement the lower level specifications associated with attributes such as field length,
types of characters to be allowed in a name, and so on. The goals of that research were
much more narrow but consequently more completely implemented. That system was
capable of generating FORTRAN, Pascal, Cobol, and Basic code which made calls to the

3 A complete discussion of these problems is not relevant to this dissertation, but good discussion of
programming-in-the-large problems can be found in [Brooks 75], [Wegner 84], [Brooks 87], [Curtis 87].

16

type manager that handled all of the detailed enduser screen interaction for text oriented
screens.

1.5.5. Formality and Notation

While some researchers believe that informal information [Biggerstaff 89] is a
necessary part of their domain models, we have formalized most portions of the meta-
model presented in this dissertation. As Davis states in his analysis of life cycle methods:

Where do you apply a formal technique and where do you apply

something else? The answer is: use a formal technique when you
cannot afford to have the requirement misunderstood. [Davis 88].

While it is true that certain aspects of requirements and specification information are not
yet well enough understood to be formalized into a domain model, we see lack of
formalization as an obstacle to be overcome. Although excessive formality can sometimes
stand in the way of completion of "scruffy” operational goals, we have tried to make our
approach as formal as possible by providing definitions and, where necessary, additional
semantics in the form of an attribute grammar.

Formality, however, should not be confused with rigid rules of syntax. It was not our
intent to create yet another object-oriented language. Instead, portions of this model can be
used in already existing and future languages.

1.5.6. The Model

Reusable
Attribute
Deﬁniﬁon .

e
o e Class
ey

Y

n
,/ iy Class Class
Class Class Class
@/

Ciassl lClass I

/I ;l\
\

! A

Figure 1.10 — Overview of the Model

Figure 1.10 shows an overview of the model showing attributes, classes, composition
(indicated by the symbol @), and association (indicated by the symbol ®). While many
object-oriented and knowledge representation schemes use these concepts, our

17

methodology is more definitional, strongly typed, and structured than most other
approaches. This is possible because our design decisions were predicated on the notion
that the model will only be instantiated on well understood domains. We have traded
structure for exploration. The emphasis in this methodology is on providing a meta-model
that domain experts can use to record their knowledge instead of an exploratory system in
which novices make discoveries about an application domain. This tradeoff allows us to
avoid many ambiguities and much confusion such as that introduced by overloading the
meaning of the term IS-A link [Brachman 83].

As was explained in section 1.1, Chapters 2 through 6 define the elements of the meta-
model and give examples of their use. The meta-model begins with attributes which are
defined in chapter 2, and continues with classes defined in chapter 3. Chapter 4 explains
and defines structuring through hierarchical decomposition, while chapter 5 and 6 define
the class construction operations composition and association.

Chapter 2 - Attributes

2.1. Introduction to Attributes

Attributes are type descriptions that characterize value sets within application domains.
In most programming languages, values are classified in terms of boolean, enumerated,
integer, real, and other data types that have been mapped up from computer architectures.
Unfortunately, standard computer types are semantically bare methods of representation
that are unable to capture fundamental concepts in an application domain. Although many
specification and database languages go beyond basic programming language data types by
characterizing attributes in terms of set and logical formalisms, these approaches still
neither capture the underlying semantics of an application domain nor provide structuring
mechanisms for eliciting this information.

This chapter introduces an approach for representing attributes in such a way that
semantic information is captured with a generalized formalism that can be instantiated in a
domain-specific manner. Attributes represent information that ordinarily is not maintained
throughout the development and evolutionary lifecycle of a program. Instead of a
representation mapped up from computer architectures, an attribute is a representation that
maps downward from application domain concepts. It preserves the constraints imposed
by an application domain and facilitates the transformational implementation of program
specifications. Figure 2.1 is an attribute oriented view of the transformational mapping
process from application domain to implementation.

Figure 2.1 — Mapping from Attributes to Bytes

20

2.2. Formal Definition

Attributes encapsulate state and state change information about the measurement of
entity properties. This information is expressed in terms of scales, units, and granularity
that constrain the sets of allowable attribute values and the transitions on those values.
Changes in attribute state are described by state transitions within value sets which are pairs
of values (old_state, new_state).

The sets of possible attribute values and the relations on those values are further
constrained by population parameters that assist the domain expert in structuring domain
information and can be used by a runtime program to infer default information, display
information, and maintain integrity constraints. An initialization procedure maintains
information about default values and uses value set distributions to determine the defaults
that should be displayed to the enduser. A probability of change is associated with each
attribute to help the domain expert with classification decisions (discussed further in
Chapter 4) and to aid in future transformational implementations.

Definition 2.1 is the formal definition of an attribute within the meta-model and is the
subject of the remainder of this chapter.

An attribute, A, consists of :

a unique name AfA)

a measurement scale (A) and (when appropriate) unit & granularity [Section 3.4-5]
a set of values V/A) [Section 3.3]
a set of population parameters PP(A) [Section 3.6]
an Initialization procedure I{A) [Section 3.7]
a probability of change PC(A) [Section 3.9]
a state transition relation ®/A), VA) x VA) 2 R(A) [Section 3.10]

Definition 2.1— Attribute

2.3. Scaling Theory and Value Sets 7A)

The typical programming language characterization of attributes as basic data types such
as integer and real numbers, or the specification language characterization of attributes as
sets does not capture the semantic information required to eliminate specification problems
such as those discussed in Chapter 1. Furthermore, simply achieving the mapping shown
in Figure 2.1 is not sufficient, because it is critical that a systematic means of specifying
value set restrictions—a modeling methodology—be made available to the domain expert.

Atiributes represent the natural value restrictions of an application domain instead of
relying on simple data types. In creating a definition of an attribute, we pursued a more
formalized approach instead of relying on text annotations or other ad hoc informal
methods. Scaling theory is a mathematical methodology that provides the theoretical
foundations for the measurement and classification system used for value sets in the meta-
model and methodology.

Mathematical scaling theory is used for classification in a variety of fields and is not a
new field of study. Most of the results in use today have been unchanged for over 30
years. Furthermore, their characteristics are so well understood so that we will not prove

21

their properties in this dissertation. The following references are some of the more well
known contributors to scaling theory: [Stevens 46], [Coombs 53], [Coombs 60],
[Suppes 58], and [Torgerson 58]. Generalized summaries of scaling theory include:
[Blalock 72], [Stamper 73], [Stevens 74], and [Curtis 80].

Scaling theory was developed as a methodology for describing measurements of
psychological, social , and physical information. Widely used in political science,
economics, psychology, and other fields, scales are designed to characterize properties.
Consequently they serve as ideal vehicles for capturing, structuring, and storing attribute
semantics within a domain model. Scales are used in a domain model as a means for
characterizing attribute value sets by restricting the values, the relevant population
parameters, the initialization procedures, the transition relations, and the transformational
implementation of those value sets in a manner that is both formal and constrained enough
to capture the necessary domain semantics to achieve our operational goals.

The next few sections describe the four basic scale types! as they relate to this modeling
technique. The discussion begins with the most basic scale type, the nominal scale. The
qualitative ordinal scale is then introduced and followed by the more quantitative interval
and ratio scales. Each of the scale types is defined along with the restrictions that they
place upon a value set, their mathematical properties, the population parameters that are
used for their characterization, and the allowable transitions upon their value sets.

2.3.1. Nominal scales

A nominal scale is the most basic measurement scale, and can be defined as follows:

A nominal measurement scale m is a set of categories Cfm) = {Cy, . .. Gy} .

Definition 2.2 — Nominal Scale

In use, a nominal scale can be thought of as a partition of a set of items U into a set of
subsets AI’AZ"‘Azf These subsets are the categories of the scale, where a category? is

simply a grouping of items. The semantics of an application domain are maintained by
creating categories in such a way that items to be categorized are as homogeneous as
possible within a category and as heterogeneous as possible between categories. The
modeling methodology presumes that domain experts have the knowledge to create these
categories.

A nominal scale is the most fundamental scale; all scales are nominal scales and
possess, at least, the characteristics of nominal scales. Examples of nominal scales abound
and map cleanly to the notion of enumerated type. For example, a nominal scale to
categorize automobile color selections might be the colors red, yellow, green, and blue:

1 In this dissertation, we introduce only the four most basic scale types. Although these are sufficient 1o
illustrate the modeling methodology, other scale types are discussed in the literature such as logarithmic and
partial order scales. See [Labovitz 70] and [Labovitz 72] for an additional discussion of some other issues
in scaling theory.

2 The term category is used in the sense of group or equivalence class and has no relation to mathematical
category theory.

22

Colors : Nomingl_scale (Red, Yelow, Green, Bue),;
my_tuck.oolor = Blue;

The important population parameters of nominally scaled attribute value sets are
proportions, percentages, and ratios, and can be calculated for any finite set U in the
following manner:

proportion Ajis [Aj /U]
percentage Ay is [A; YU x 100
ratio Ajto Ajis [Aj 1A |

Equality and inequality are the only natural mathematical relations among items that
have been placed in a nominal scale.

2.3.2. Library Example
In the library example (Appendix A), two of the constraints were:

All copies in the library must be available for checkout or be checked
out.

No copy of the book may be both available and checked out at the
same time.

The first constraint states the two categories for a nominal scaled attribute that indicates
the checkout_status of a book.

checkout_status: Nominal_scale (checked out, avail for_checkout)

The second constraint is a standard property of a nominal scale, (i.e. a nominal scale is
a partition of a set of items U, where each item is contained in one and only one class Ai

from the partition {Al’“‘An}). Assuming that the preceding constraints are correct,
[Wing 87] shows that:

If a book is not checked out and is not available, then it is not a
library book at all

~checkedOut(1,b) » ~available(l,b) = b ¢ allBooks(l)

The problem with this conclusion is that it does not address the cases of lost, missing,
or stolen books. This is not the fault of Larch3, but rather illustrates the danger of a literal
interpretation of specifications without the benefit of domain-specific knowledge—semantic
information that is captured by a domain model. A more appropriate scale is:

Check-out_staius:
norminal scale (not_checked out, checked _out, lost, missing sfolen)

This scale takes into account lost or stolen books. This example continues when
transitions between states are discussed later in this chapter.
2.3.3. Ordinal Scales

Nominal Scales are used when there is no ordering information about the categories in
a scale. Ordinal Scales are nominal scales for which a strict ordering between categories is

3 Larch is the specification language used by J. Wing in this example.

23

obtained by ranking the categories according to the relative value they possess of some
characteristic as defined by the scale4

Il An ordinal scale is a nominal scale in which a total ordering exists among the categories Ci.

Definition 2.3 — Ordinal Scale

Mathematical relations of interest in ordinal scales include the equality and inequality
relations of nominal scales as well as the following additional relations:

>>— rarked higher than
<<~ ranked lower than

Given that A >> B >> C, one has no information about the numerical differences from
AtoB,BtoC, or AtoC. Although rankings on ordinal scales may be obtained in a
variety of ways, an ordinal scale provides no information about the magnitude of
differences between categories of items. Continuing the automobile color example, colors
can be placed on an ordinal scale of perceived warmth as follows:

Colors : Ordinal_scale (Red >»> Yelow >> Green>> Blg)

2.3.4. Quantities: Units and Granularity

Nominal and ordinal scales are often called qualitative measures because they do not
measure properties in terms of numerical units. This is, of course, why addition and
subtraction are not valid operations on these scales. The following definition of quantity is
required to introduce the more quantitative interval and ratio scales.

A quantity is defined in terms of:
e a unit defined in domain-specific operational terms
e a measurement granularity, that is the highest degree of precision to which a unit
is normally expressed within a domain.

Definition 2.4 — Quantity

For example, in a domain such as a law office, the quantity time has a unit of an hour
and a measurement granularity of quarter hours (granularity 0.25) or tenths of hours
(granularity .01).

The selection of unit and granularity is a domain-specific decision that is based on both
tradition and technology. The quantity time, for example, is measured in unit minutes for
long distance telephone call (with the granularity determined by the long distance carrying
company), unit seconds for football games (with a granularity of 1), unit seconds for
Olympic events (with an increasingly finer granularity determined by the timing devices)
and unit millennia for geologic transformations.

Some examples of quantities expressed in terms of their units are: cost in dollars,
distance in miles, and weight in pounds. Later in this chapter, derived quantities will be

4 A5 was mentioned, partial order and other similar scales have been defined but are not used in this model.

24

introduced; these include more complex quantities such as speed in miles/hour, salary in
dollars/hour, salary in dollars/year, and salary in dollars/academic-year.

Choosing a unit can have many consequences. For example, human age is usually
discussed in unit years (with a granularity of 1) and is calculated by subtracting birth date
from the current date. Although years are a measure normally sufficient for most human
purposes, a unit granularity of one year fails to give complete information in cases where a
finer granularity is needed (such as at a pediatrician’s office). In the case of young
persons, age in unit years (with a granularity of 1) doesn't take into account that ages of:

e Children under 18 months are generally measured in unit months.
e Children under 3 months are generally measured in unit weeks.

e Children under 1 week are generally measured in unit days.

Using an age derived from birthdate where the measurement granularity of the base
time unit is day, it is simple to calculate ages based on days, weeks, months, or years.
Note, however, that when age is calculated from the leap year corrected difference between
current date and birth date that it would be incorrect to express the resultant age to a finer
granularity than day. This issue will be further discussed in Chapter 3 in the section on
derived attributes.

Cluster Name:| Professional | | Unit Name :
Fundamental 0ty: [_time] Measurement Granularity |

Instance of:[_hour | [Primitive Domain Unit

(Define Unit]

19 ”work—houri N X inverse always valid

[wurk_dag ~--> 8 work_hour !
g work hour -—> work day

40 work hour -—> work week e

160 work hour ~-> work month

2000 suork holiy -3 janrl 5o

Figure 2.2 — Defining a Work-hour

2.3.5. Measurement Granularity and Precision

The rules of measurement and measurement combination are intimately tied to the
physical characteristics, applicable technology, and customs of any particular application
domain. Measurement granularity is determined in a domain-specific manner by the
instruments available for measurement, the enduser perception of the unit, and the expected
use of the item being measured.

The effects of measurement granularity can be observed in many systems. For
example, in most professional time and billing systems, an hour is a unit of billable time.
But in some offices, hours are measured in ten sub units (a granularity of tenths of an

25

hour), while in other offices hours are measured in four sub units (a granularity of a quarter
hour). This seemingly trivial difference has major effects on how a system is used. A five
minute phone call might be charged as a billing unit in a tenth of an hour system, while the
same call might not be billed at all in a quarter hour system. Similarly, a twenty minute call
might be billed as .50 hours or .25 hours in a quarter hour system, or in a tenth of an hour
system as.30 hours or .40 hours. Even in systems that are not automated, the choice of
granularity can have major effects on operations, revenues and a client's perception of
correctness.

The rules of measurement granularity are generally either ignored in most computer
system implementations, or captured in an arbitrary or ad hoc style. A goal of the meta-
model and domain modeling methodology is to capture units and measurement granularities
of quantities and to provide consistent enforcement of measurement rules and operations.

The physical sciences give us many measurement rules that can be maintained by all
domain models. For example, freshman chemistry and physics students quickly learn that
in order to properly interpret a measurement, it is incorrect to €xpress an answer to more
significant figures than are justified by the accuracy of the observed data. In basic lab
work one learns that measurements should never be expressed to more significant figures
than are justified by the accuracy of the algorithm, the accuracy of the original
measurement, or by the purpose to which they are to serve. Furthermore, derived
information should never be expressed at a finer level of granularity than is justified by its
component parts, the algorithms used to compute it, or by its original level of measurement
granularity. The rules of measurement precision are rules that are easy to apply if the initial
measurement information is captured. Furthermore, if this information is maintained, these
integrity rules can be computed and enforced by an automated system. These rules will be
shown to be of particular importance in the next chapter in the sections concerning derived
attributes and attribute composition.

2.3.6. Unit Analysis

Although unit checking is a well understood concept, it is frequently ignored at the
implementation level of an application program. The necessity of having identical units for
both sides of an equation is so fundamental that, in practice, obvious units are often omitted
from software specification documents and sanity checks are rarely conducted on
specifications. For example, ambient air temperatures in the United States are generally
recorded in Fahrenheit while ambient air temperatures in Europe are recorded in
Centigrade. Frequently, the only time that quantities are introduced is when there is a
perceived danger of ambiguity in the interpretation.

The problem is that when the magnitudes attached to these units are mapped from a
domain into an implementation, the semantic information represented by the quantities is
lost. Consequently, mistakes such as the F16 example described in chapter 1 often occur
in actual practice. These problems could be avoided if higher level semantic information
about units, quantities, and granularity were maintained. A domain model enforces these
restrictions.

A quantity and magnitude are required to completely describe a value on an interval
scale. The next two sections introduce interval and ratio scales and present a formalized
way to preserve this information.

26

2.3.7. Interval Scales

Interval Scales are ordinal scales that categorize items according to their position on a
scale of standardized intervals or units.

An interval scale is an ordinal scale that has an associated quantity and assigns a unigue
multiple (called the magnitude) of the measurement granularity of the unit of the quantity to

each category.

Definition 2.5 — Interval Scale

Interval scales have all the properties of ordinal scales, where the ordering is induced
by the magnitude, but in addition, the classification of items by magnitude makes it
meaningful to apply addition and subtraction functions to items classified according to the
scale. The additional population parameters for value sets characterized by interval scales
include the mean, median and standard deviation as well as those parameters previously
mentioned.

Continuing the previous example, colors could be placed on an interval scale that
measures wavelength in nanometers.

Colors : Inferval_scale (wavelengthin nanomelers)
Red 640,
Yelow 580,
Green 520,
Blue 430.

Not all interval scales have the same properties. Consider a United States weather
forecasting example where the the unit is Fahrenheit degree, and the unit granularity is one.
Although the interval scale Fahrenheit allows the operations addition and subtraction, it
does not allow multiplication and division because the Fahrenheit scale does not have a
non-arbitrary or absolute zero point. Consequently, it is impossible to make meaningful
statements such as "temperature X is twice as hot as temperature Y" using a Fahrenheit
scale, or to make any other type of ratio comparisons within the scale. This is because the
zero in an interval scale has no real meaning within the application domain. Interval scales
in which it is possible to meaningfully discuss such comparisons are called ratio scales.

2.3.8. Ratio Scales

Ratio scales are interval scales that have an absolute or non-arbitrary zero point. A non-
arbitrary zero, sometimes called an absolute zero, is a point on a ratio scale that means the
complete absence of an item being measured. For example, the zero point in temperature
Kelvin has a special meaning in Physics, while the zero point in temperature Fahrenheit, or
the zero point in Temperature Celsius (both of which are interval scales) does not mean the
absence of heat.

A ratio scale is an interval scale that has a non-arbitrary zero and allows only non-negative

magnitudes.

Definition 2.6 — Ratio Scale

Multiplication and division can be performed on ratio scales in such a way that the
operations are meaningful within the context of the domain. Unfortunately, unless this
style of domain modeling approach is used, interval (and sometimes even ordinal and
nominal) scales are usually implemented as integer or real numbers that permit
multiplication by a positive constant. This multiplication is not correct with respect to the
semantics of an application domain for any attribute scale type except ratio. As was
discussed in the temperature example, multiplying a Fahrenheit temperature by two does
not mean that the newest temperature is twice as hot as the old one. This point will be
examined in context with the other scale types in the section on state transitions in this
chapter.

The date scale is another example that illustrates differences between interval and ratio
scales. Many date scales exist, but the one normally used in Western civilizations is based
on the Gregorian calendar which is an interval scale with a non-absolute zero point. Days
(which represent rotations of the earth) and years (which represent rotations of the earth
about the sun) are two different units that are superimposed on the same scale. Since they
are not even multiples of each other, complicated systems are used to convert between the
units of the scale.

Because dates are attributes from an interval scale, it is not possible to make ratio
comparisons between them. Much of the confusion that arises in computer
implementations that deal with date and time occurs because of the lack of recognition that a
date is a fundamentally different types of scales then an age or any other ratio attribute that
measures quantity.

However, the difference between two interval scales results in a ratio scale. For
example, age is an attribute typically derived from the leap year corrected difference
between two dates. Since age is a ratio scale, it is possible to make proportional
comparisons between the ages of two people. However, it would be impossible to make
these same type of comparisons between two dates on a calendar.

2.3.9. Scale Summary

From a meta-classification level, the four scale types that have been discussed can be
mapped on the following ordinal scale:

Nomirg << Ordingl << Interval << Ralio whereY w< X meansxisascae o ey

Scaling theory has been introduced as a well defined system for classifying value sets.
Nominal scales categorize items and are the most basic scale type. Ordinal scales are
nominal scales for which a strict ordering between categories can be maintained. Interval
scales are ordinal scales with well defined units and a measurement granularity, and ratio
scales are interval scales with a non arbitrary zero point. The relations between the
different scale types are illustrated in Figure 2.3.

28

* Inherits

Wamih
Ble < Green < Yelow << Red

Biue Green VYelow Red

Figure 2.3 — Scales & Value Sets

2.4. Fundamental Units and Quantities

Units and scales have long played a critical role in knowledge representation. Six
fundamental units are used as the primitives for construction of almost all models in the
physical sciences. The fundamental quantities and units defined in the International System
of Units (SI) are Length in unit meters, Mass in unit kilograms, Time in unit seconds,
Temperature in unit Kelvins, Electric current in unit amperes, and Luminous intensity in
unit candelas. Fundamental units are operationally, or procedurally, defined as illustrated
in this definition of a meter:

The meter is a length that is exactly 1,650,763.73 times the
wavelength of the orange light emitted when a gas consisting of the
pure krypton nuclide of mass number 86 is excited in an electrical
dés]charge, the wavelength being measured in a vacuum. [Shortley
7.

In other domains, the same quantities exist, but different or additional quantities may be
considered fundamental. For example, the quantity Value in unit dollars is a fundamental
quantity within the class of United States business application domain models. In
economic terms, a dollar is a value that was at one time directly related to the price of gold.
However, the Gold Standard was eventually abandoned, and the actual value of the dollar
now "floats”. The United States government has operationally defined a dollar with the
inscription found on the upper left portion of a one dollar bill:

29

THISNOTEISLEGAL TENDER
FOR ALL DEBTS, PUBLIC AND PRIVATE

Part of the task of modeling a domain is to identify the fundamental scales and units that
are used across groups of domains. Beyond the scope of this paper are the philosophical
issues involved in the belief that certain attributes are fundamental®. The meta-model
recognizes these fundamental quantities and units so that they can be used as a basis for
developing domain models. The quantities defined in the generalized meta-model are:

e length
° mass
° time
e temperature
» electric current

luminous intensity
value

2.4.1. Unit Conversions

Unit Conversions are another element of domain knowledge that are maintained within
an attribute representation. Unit conversions implicitly represent the policies and
procedures within different application domains. For example, the number of hours, and
months within a year differs from industry to industry and represents policy decisions
within any particular industry. In most industries, a work year consists of anywhere from
2.000 to 2,200 hours while the number of hours in a calendar year depends upon whether
or not that year is a leap year. Furthermore, the number of months in a year depends on
both accounting and policy decisions (e.g. an academic year is 9 months).

As was previously discussed, since calendar day and year are two distinctly different
scales, it is difficult to make conversions between them. In most applications, unit
conversions are performed only on ratio scales that measure quantities. The following
predicates show some examples of unit conversions for the quantity time (These type of
conversions are required for the unit_coercion discussed in Chapter 3:

unit_up(second, minute, 60),
unit_up(minute, hour, 60),
unit_up(hour, day, 24),
unit_up(day, week, 7),
unit_up(month, year, 12),
unit_up(year, decade, 10),
unit_up(decade, century, 10),

unit_dn(minute, second, 60),
unit_dn(hour, minute, 60),
unit_dn(day, hour, 24),
unit_dn(week, day, 7),

unit_dn(work_day,hours,8)
unit_dn(work_week, hours,40)
unit_dn(work_month, work_days, 20)

5 [Wegner 88] discusses this from the standpoint of OOP. The philosophical discussion begins with Plato.

30

unit_dn(quarter, work_months, 3)
unit_dn(work_year, work_days,250)
unit_dn(year, days, 365)

2.4.2. Derived Quantities

Derived quantities are expressed in terms of fundamental quantities, and their units are
specified in terms of the units that were used to create the particular quantity. In a domain
model, these derived quantities are used to define attributes as well as being the basis for
consistency and integrity checks. Recall that a necessary condition for the truth of any
equation is that the units of each side be identical and that they make sense. The meta-
model can go further and allow the domain expert to exclude derived quantities that will
never make sense. For example, $/unit time, $/unit_length, $/ (unit_length)2, $/
(unit__iength)3, are all reasonable unit combinations for an accounts receivables system but
$/(unit_length)# and $2/unit_length are meaningless combinations of quantities.

While some may claim that derived quantities such as $/(unit_length)4 could be
meaningful in some systems, the modeling methodology rules out that particular derived
quantity for all business applications. The line of reasoning follows.

The interpretation for $/(unit_length) is a derived quantity that is applied to buying
rope, cable, or anything else which is measured by a linear dimension which is linear foot.
A domain interpretation for $/unit_length2 (which can also be expressed as $/unit_area) is
a derived quantity that is used for expressing purchases of things measured in two
dimensions such as rugs, sod, or wall paper. In the third case, things that are purchased
by unit volume such as oxygen are measured in $/(unit_length)3 (which can also be
expressed as $/unit_volume). Although the preceding derived quantities have an
interpretation within the physical world, there is no obvious extension to give meaning to
the derived quantity $/(unit_length)*. Figures 2.4 and 2.5 show screens to elicit these
derived quantities and units.

[I&==—————— Qty Derived =

Derived Quantities ala 0
I money/length
money/lengih*lecs

1]

2l

ISalary

Derived Units

Money |] ;

[Time | 1 Cancel

Figure 2.4 — Defining the derived quantity Salary (time/money)

31

S =e==———— 0ty Derived
Derived Quantities ala pney; tird]
money/length
Salary moneu/length*ie(

Derived Units

| Money |] '

| Time 1] | Cancel

Figure 2.5 — Dollar/hour is one instance of salary

2.5. Population Parameters FPA)

Associated with each attribute is a set of population parameters, PP(A), that describe the
distribution of values within a value set. The characteristics of these distributions are used
to create attribute subdivisions, determine input checks for the runtime system, determine
default values, and infer missing values. While the values of the actual population
parameters are always domain specific, the types of parameters are determined by the scale
type as shown in Figure 2.6. The inheritance arrows in the figure show that while all
scales have the statistical characteristics of nominal scales, additional characteristics are
gained by scale type.

Central . Display
Tendency Frequencies Types

Percentage,
Absolute
Frequencies

Inter-Quartile, Cumulative
Inter-N-tile, Bar Graph |

8d
Deviation,
Range

Figure 2.6 — Scale Type Determines Population Parameters and Displays

Even within a scale type, certain parameters are more appropriate than others. For
example, the median is more appropriate than the mean to measure central tendency fora

32

highly skewed ratio-scaled attribute such as salary. The choice of the appropriate
parameters is made by the domain expert but guided by standard statistical modeling
principles (such as those described in [Blalock 72] and [Labovitz 72]). While anything but
a cursory discussion of statistical techniques and probability distribution functions is
beyond the scope of this paper, the next few examples are intended to convey the
adaptability of well defined and accepted statistical techniques to domain modeling.

Population parameters are assigned by the domain expert, who is presumed to have
knowledge of the overall population of an attribute value set within a specific domain.
Throughout this dissertation, both the term population parameter and the term statistic are
used. In general, a population parameter is assumed to be derived from complete
knowledge of an entire population while a statistic is derived from a sample of that
population.

Probability distribution functions are used to characterize value sets within physics,
economics, manufacturing, operating systems, and a multitude of other fields. The next
few sections briefly discuss a few of the most commonly occurring distribution functions.

2.5.1. Normal Distributions

A normal distribution is a smooth, symmetrical, bell-shaped curve that characterizes the
distributions of many attribute value sets. Normal curves can be completely specified by a
mean and a standard deviation. Because the normal curve is both symmetrical and
unimodal, it's mean, median, and mode are all equal. A normal curve is shown in Figure
2.8, in the section on defaults.

2.5.2. Poisson Distribution

The Poisson Distribution is another commonly occurring distribution that is often used
to represent a variety of time based phenomena such as the number of: radioactive
particles emitted from a source, telephone calls arriving at a switchboard, or electrons
emitted from a cathode ray tube during a fixed time, T. In order for a value set to be
characterized by the Poisson Distribution, several assumptions must be made. The most
important assumption is that the item count is independent of the particular interval of time,
T. The poisson distribution is defined as follows:

e M () B/ (ni)

2.5.3. Exponential and Other Distributions

Another common distribution is the exponential distribution and its specializations the
gamma and the chi-square distribution. The exponential distribution is defined as f(x) =
oie-0% with the mean and variance defined as L = 1/o 62= /o2,

Related to the exponential distribution is the gamma probability distribution which

contains an extra parameter r. When the r parameter of the gamma distribution equals 1,
the gamma distribution is equivalent to the exponential distribution. Finally, the chi-square

distribution is a special case of the gamma distribution obtained whenr =n/2 and a = 1/2
and n is a positive integer.

While the distribution of value sets is often normal, it is not unusual to find value sets
described by other types of distributions.

2.6. Initialization Procedure I(A)

The preceding sections of this chapter have introduced a method of classifying the value
sets of an attribute. One of the benefits of this classification is that it may be used to
accomplish tasks such as eliciting intelligent default information in a systematic well-
organized manner without resorting to ad hoc methods or specialized code attachments.

Knowledge about the proper way to initialize an attribute is stored within a domain
model as an initialization procedure. There are several issues to be considered when
examining initialization. Default values, mandatory entry requirements which exclude null
values, optional entry which allows null values, system defined values and user overridden
values are some of the issues which must be considered for initialization of an attribute.
Portions of the discussion concerning initialization of attributes must be deferred undl the
following chapter on classes, when context sensitive initialization of attributes is discussed.
However, default values are an important part of a domain model, and the following
section describes a methodology for their determination.

2.6.1. Defaults

Default values are system generated values intended only to assist users in filling in
values, and not to make extended inferences about the information in a domain model. In
Chapter 4, domain structuring using attributes and classes is further discussed, along with
its relation to the artificial intelligence concept of defaults. While portions of the meta-
model relate to that question, this section is concerned only with the generation of default
values for the runtime enduser.

Some default values can be automatically generated by the runtime system through the
use of PP(A). Consider the nominally scaled attribute of a company defined with the
following categories and proportions.

Cormpany _type: Nomirgl_Scale
{{Corporation .54) (Partnership .21) (Sole_ Proprietorship .23) (Other .02))

Because of the domain model's information about the relevant proportions, the runtime
system can generate corporation the appropriate default using the algorithm shown in
definition 2.6.

For a set of categories ¢/m) = {Cy, ... Cy} ina nominal scale AJm),
the default category C; is the max(Proportion(Cy), . . ., Proportion(Cp)).
where Proportion(Cy) = 10;\/1{01, . Gl

Definition 2.7 — Rule to Determine Default Category for a Nominal Scale

Similarly, the default value for an interval or ratio scale scaled attribute is the expected
value of that attribute. It is possible that the expected value will not be a member of the
value set. In this case, additional more sophisticated strategies can be used.

34

Attribute Name | company..type

® Nominal O Ordinal DEFAULT
Category Proportion in Xl Calculated
Name Population Minimum : Minimum

DIpotalgd ‘{} Threshold§ Difference
parinership 21
sole_bproprifll .23 i

Number of Categories E Category Mode |corpor

Figure 2.7 — Screen to elicit nominal/ordinal attribute categories

Any default selection scheme may be made more sophisticated by the addition of tuning
parameters. In Figure 2.7, the system is directed to calculate a default using a minimum
threshold and a minimum difference. In this case, a single default value will only be
chosen if it meets the condition of being greater than the minimum threshold and the
condition that it be at least the minimum difference or greater than the next ranked value.

The actual value of Threshold_value depends on a variety of factors that include Type I
and Type II errors, as well as the expert’s perception of risk. Elicitation of parameters of
this type is discussed in [Keeney 76].

2.6.2. Multiple Defaults

Multiple defaults are a more sophisticated form of default value creation. Given that a
domain model is able to generate default values, it can, when appropriate, generate a set of
values from which the enduser can choose because the domain model can produce a set of
defaults rather than just supplying an open ended question for the user, the system is able
to reduce the enduser's task from an open ended question to a multiple choice selection.
That can be displayed in rank order on a menu style display.

2.6.3. Displaying Information

By understanding scale type, the system is able to use predefined methods for
displaying information for the end user. As was mentioned previously, categories of a
nominal scale can be listed by probability in a menu system. Ordinal scales can also be
listed in a menu system although they need to be ordered in the pattern corresponding to
their ranking within the scale. Interval and ratio scales can be displayed in the form of
thermometers, gauges, and other analog devices [Apple 85] as well as being displayed in
ordinary digital format.

2.6.4. User Qverride of Default Values

Overriding default values is a different type of selection than allowing an initialized
attribute to be changed. For example, in a military recruitment system, the gender category
might be set to default to be male, but could be easily overridden to become female.
However, once initialized it could not be changed if the probability of change of that

35

attribute is zero. This issue will be further discussed later in this chapter when PO(A) is
introduced, and also in Chapter 4 when taxonomies are discussed.

2.6.5. Checking Input — Confidence Intervals

Population Parameters can also be used by the runtime system to check user input.
Confidence interval checking is a more sophisticated form of ordinary range checking that
matches runtime input values against the expected distribution of input. By using
confidence intervals, an application designer can instruct a runtime system to suggest that
the enduser be warned, with different levels of severity, about values outside of predefined
confidence intervals.

e

Do
65%

™

7 "

] M
u-2.58 u-1.960 pu-0 u U+ u+1.96 u+2.58

Figure 2.8 — Confidence Intervals Under A Normal Curve

For example, if the distribution of an attribute, A, can be assumed to be normal with
mean |, and standard deviation, G, then the probability of A assuming any particular value,
A .value can be bounded as follows:

Prob {jAq.value] > p+1960) <095

Prob { jAq.value] > u+258c) < 099

Expressed in English, the last two statements tell us that 95% of the values will fall
within 1.96 standard deviations from the mean and 99% of the values will fall within 2.58
standard deviations from the mean. Consequently the run time system has an algorithmic
method of producing warning messages that resemble those produced by weaker methods.
The following two statements give a specification for the run time system:

36

IF({|Aqvalue| > n+1960)
Thensend a message{Waming - only a5% charce of this valeg)

IF (|Aq.value| > p+258)
Thensend a message{WARNING - Orly a 1% charnce of this valug,

Obviously, the probability of an attribute attaining a value more than 3 standard
deviations from the mean is exceedingly small.

2.6.6. Confidence Intervals — Unknown Distributions

The preceding discussion was predicated on the basis of a value set belonging to a
normal distribution. In actual practice, many, but not all distributions can be modeled as
normal distributions. Consequently, it is useful to be able to supply a similar, though less
restrictive, system of confidence interval range checking for distributions that are not
known to be normal. Chebyshev's theorem makes this possible. It states that the
following rules apply for any distribution for which only the mean and standard deviation
are known:

V x Prob(JA1.value - il >= X 6) <=Xx2
Prob(|A{.value] > u+20)<0.75

Prob{ |Aj.value] > n+30)<0.89

These rules allow the same type of confidence interval checking to be performed, and
warning messages to be displayed that were discussed in the section on normal
distributions.

2.7. Transitions Within Value Sets — Probability of Change P0(A)

The probability of change of an attribute, P((A), is a value that ranges from O through 1
and indicates the likelihood that an attribute will ever change state within the lifetime of any
particular domain model. One of the purposes of P((A) is to indicate the types of
distinctions that exist between taxonomic classification devices such as
animal _type(warm_blooded, cold_blooded) and sleep_activity(awake, asleep). In the first
case, P((animal_type) = 0 because the state will never change. While in the second case
P((sleep_activity) = 1 because the state will change on a regular basis.

The decision to allow changes is of course domain-specific. Some attributes may
change, but not within the life of a particular domain model. Depending upon the role of an
object within a model, certain attributes do not change once they are initialized. The
birthdate of a person and the author of a book are examples of attributes that are invariant
for the life of an object. Of course, there are many attributes whose meaning is clear and
invariant within the model, but might be viewed differently outside of any particular
domain. Consider the the gender attribute of a person object:

PersonGender=Nomirgl_scale (Mak, Fernale)

From a chromosome based definition of gender, this attribute can't be changed.
However, if the domain model has some case specific use for knowledge of sex change
operations, then this probability of change is incorrect. In the special case that P0(A) =0,

37

we say that A is an immutable attribute. Immutable attributes will be further discussed in
Chapter 4 as the basis for taxonomic classifications.

| Als an immutable attribute if 20A) =0 2C(A) = 0> RA) =¢

Definition 2.8 — Immutable Attributes

2.8. Measurement Scales #/A) and State Transition Relations RA)

In the preceding sections, we developed the notion of classifying attributes by their
scale type and mentioned some of the potential benefits of such a system. By classifying
an attribute in terms of its scale type, a domain model is able to make a number of
assumptions concerning the characteristics of the attribute value set. In this section we
expand on this idea and classify the state transitions in a way that helps the domain expert
choose those transitions to be allowed.

In order to capture the semantics of an attribute, the meta-model helps the domain
expert define a relation, R(A), on the value set, V, that specifies the possible transitions on
the attribute. Earlier in this chapter, we developed the notion of scale type and showed
how by classifying the scale type of an attribute, the meta-model can define generalized
characteristics of the value set and population parameters for that attribute. In this section,
we exploit the scale type of the attribute to aid the domain expert in selecting the ransitons
which take place on attribute value sets. This is possible because, when an atiribute is
classified by the domain expert as to scale type, the model then can present the domain
expert a list of possible transitions to be included or excluded from an attribute definition.
These transition categories become richer as an attribute moves from a nominal to a ratio
scale.

2.8.1. Nominal scales

Given an attribute classified by a nominal scale that consists of n categories, there are
n? possible transitions among those categories. Although n? possibilities exist, the
semantics of the domain frequently exclude many, if not most, of these possible
transitions. One way to approach the systematic exclusion of transition pairs is to ask the
domain expert if identity transitions are allowed. In most cases an identity pair is a
redundant mapping that comes about as the result of an incorrect assumption about program
operation or a bad specification.

Identity (x, x) € R(A)
Definition 2.9 — Identity Relation

2.8.2. Nominal Scale Example

The following example will make the preceding point clear. Consider a simple nominal
scale, that represents a person's current marital status

38

mariial status = nominal_scale (never_maried, married, divorced, widowed)

Without any domain specific semantic restrictions there are 42 or sixteen possible
transitions among the values of this value set. The modeling technique formalizes these
transitions in terms of a relation with sixteen pairs. The possible state transitions on the
attribute marital status are represented by the relation

R={N,N), (N, M), (N, W), (N, D)
(M, N}, (M, M), (M, W), (M, D)

(W, N), (W, M), (W, W), (W, D}
(D.N), (D, M), (O, W), (D, D)}

Obviously, within the context of Western culture, many restrictions are possible. We
know that never_married can map to married, married to divorced or widowed; divorced to
married; and widowed to married. The allowable transitions can be viewed pictorially in
the following state diagram:

Never Married
N
A oM (MD)
i Married Divorced
1 {OM)
(MW) + Wwm

Figure 2.9 — State Transitions for Marital Status

As Figure 2.9 shows, domain semantics restricts the relation to the following allowable
transitions:

R= {(N.M) (M, W) (M, D) (D, M) (W, M)}

In this simple example it was easy for a domain expert to manually enumerate the
applicable pairs of the relation R. But with other scales, or with nominal scales that have
more categories, the modeling methodology provides a more systematic methodology for
the domain expert's selection of the appropriate subset of MAA) X U A).

2.8.3. Ordinal Scales

For a nominally scaled attribute the identity subset is the only systematic way to exclude
or include a subset of the state relation R. Ordinal scales, however, provide at least four
more well defined subsets that can be easily excluded or included by a domain expert.
Definition 2.10 shows a single step increment, a multistep increment, a single step
decrement and a multistep decrement definition. The definitions define potentially
allowable pairs for any ordinal scaled attribute. This means that if there is enough domain

39

knowledge to classify an attribute as to scale type, that scaling theory and the modeling
methodology facilitate the easy elicitation of allowable pairs.

Single Step Increment (x, y) --> y = succ(x)
Multi Step Increment (x,y) —>y=succ(x) A X <<y
Single Step Decrement (x, y) --> y = pred(x)
Multi Step Decrement (x, y) -->y = pred(x}) A y >> X

Definition 2.10 — Additional Ordinal Scale Transition Pairs

As an example, consider education as an ordinal property of a person that could be
broken into four groups: (No_high_school, high_school, college, graduate_school). The
attribute education means "highest level of education obtained” which raises the
classification of the educational scale from a nominal to an ordinal scale as shown below:

Education: Ordinal Scale
{No_high school << high school << college << graduale school)

We know that there are four possible values in the value set for this attribute.
Realistically, the only transitions that we care about are the transitions which take the
current state of highest level of education attained and change it to another higher state.
Unrestricted state transitions result in nZ possibilities. As was the case in the last example,
there are 16 possible transitions.

But ordinal scales allow more systematic restrictions than a nominal scale. Many times
the number of potential transitions can be restricted, causing the number of transitions to
change from O(n2) to O(n). One way to look at the nZ possible cases is by summing the
following relation subsets.

Identity n possibilities
UpScale (n2-n)/2 possibilities
DownScale (n2-n)/2 possibilities
Total ne

The selection of these subsets is determined by the meaning of the attribute within the
context of the domain. Figure 2.10 shows a screen to gather this information.

g E=E=—————————r— Attribute Functiions

Attribute Name:[Education Level]| Scale Type:[_Ordinal]

X identity
[Becreasing B increasing
[singie Stap X single Step
[Muttistap [Multistep

Probability of Change:| High 66% - 90% Cancei] [0K]

Figure 2.10 — Screen to elicit value set transitions

40

Let us assume that there are not going to be cases where degrees may be taken away.
This would immediately eliminate all the decreasing transitions. Furthermore, assume that
one must complete high school to attend college and must complete college to get a graduate
degree. This reduces the general class of increasing transitions by only allowing single
step transitions. In this example, there are only 3 increment transitions: graduation from
high school, graduation from college, and completion of a graduate degree. We have
excluded identity transitions for all but completion of a graduate degree.

Even with incomplete applications of domain knowledge, the number of potential
transitions can often be reduced from order n? to order n. For example, in the general case,
even if only multistep transformations are eliminated, n? -n possibilities are reduced to 2(n-
1) selections as shown below:

UpScale Single Step n-1 possibilities
DownScale Single Step n-1 possibilities
Total 2n-2

2.8.4. Probabilities assigned to relations

Assigning probability occurrences to each pair of the relation allows the system to order
transitions for selection by the application designer (note that the section on defaults
described how the system used probabilities to select defaults for endusers). In this
manner it is not only a classification scheme, but also a system for prioritizing possible
selections. Furthermore, this representation creates a simple way to accurately represent
information that is usually stated in natural language or other informal terms. For example,
the statement “One fourth of our employees receive graduate degree during their term of
employment” can easily be represented in the model.

Probabilities are further illustrated with this example from the library problem.
Consider the book check_out_status:

Check_out_status:

rorminal scale (not_checked _out, checked_out, bost, missing_siolen)

Figure 2.11 shows state transitions and associated probabilities for this attribute. The
modeling methodology captures three different but highly related probabilities of change
that are associated with each attribute. Each of these numbers is supplied by a domain
expert, but because of the relations between the probabilities, it is not necessary to elicit all
of the numbers to complete the model.

41

Not_Checked_Out Missing/Stolen
79 01

Checked_Out
15

PC(A)=.9
Figure 2.11 — Check-Out Status, State Transition Probabilities

The first set of probabilities to consider are the overall chances that any particular arc
will be taken. From a high level perspective, the figure indicates that 47 percent of the
transitions are book returns and three percent are book losses. However, if we know that a
book has been checked out then the probability that it will be lost, given that it is checked
out, is 6 percent, and the probability that it will be returned, given that it is checked out, is
94 percent.

At the bottom of figure 2.11, pc(a) = .9 shows the overall probability that some type of
state change will ever take place in the attribute. Although for any particular book, the
probability that it will be checked out, given that it hasn't been checked out, equals .98,
pc(a) = .9 shows the overall chance of any transition taking place at any time for all books.
This reflects the fact that it is not necessarily true that a state transition for a book will ever
take place within the lifetime of a system (i.e., there is no guarantee of liveness).

2.8.5. Interval Scales

Because interval scales have a unit (As was presented in 2.3.7), addition and
subtraction operations have semantic meaning for attributes of these scale types.
Consequently, the following subsets of & can be used by the domain expert as a first cut at
further restricting &, In addition to the transitions defined for ordinal scales, the following
transitions are applicable for an interval scaled value set V:

x+le V

Unit addition (X, x+1) A (xe V) A {)
Arbitrary increment x+i)a(xe Vialx+ie V) A(i>0)
Unit subtraction ,x-1)Aa(xe V)a(x-1€ V)
Arbitrary decrement x,x-i)alie V) Alx -ie V) A(i>0)

Definition 2.11 — Relation Subsets of Interest in an Interval Scale

42

2.8.6. Ratio Scales

Ratio scales give domain-specific meaning to multiplication and division operations.
Since ratio scales are interval scales, they inherit the relation subsets defined in definition
2.11 and add the following candidate relation subsets to the selection supplied to the
domain expert for exclusion or inclusion within a domain model:

Multiplicative increase x*)Aalxe Viax e V) A(i>0)
Multiplicative decrease (X, x*)A(xe V)a(x*ile YA (0<i<t)

Definition 2.12 — Additional Subsets of Interest in a2 Ratio Scale

2.8.7. Summary of Transition Relations

Section 2.3 showed the relationship between scale types and value sets. We saw that
an ordinal scale adds additional information to a nominal scale which allows further
characterization of a value set. After units were introduced, it was shown that an interval
scale is a specialization of an ordinal scale and that a ratio scale is an interval scale with a
non-arbitrary zero. Figure 2.3 graphically summarized these results.

Definitions 2.9, 2.10, 2.11, and 2.12 defined potential subsets of R that can be easily
included or excluded by the domain expert. Given that an attribute is classified by its scale
type, the modeling methodology provides an efficient and systematic method for further
characterization of attribute state transitions. Figure 2.12 shows state transitions
characterized in terms of the four basic scale types. Nominal scales are such simple types
that the only systematic way to approach the classification of their state transitions is to
consider the identity state transitions.

Nominal Scales
2

) — " E—CR)
n-1

Increasing

Decreasing

7-3n+2)/2

(17 -3n+2)/2 ey

Interval Scales

Figure 2.12 — Value Set Transitions

43

2.9. Axiom Summary XA)

In a meta-modeling approach such as the one described here, axioms are traditionally
used to place additional restrictions on value sets; or on the operations performed upon
those value sets. Axioms are also used to codify statements about the nature of particular
attributes. In other models or specification languages they facilitate additional storage of
domain knowledge by providing a well defined format in which to store information about
an attribute.

Within this modeling methodology, axioms are defined in terms of the attribute
definition. A statement that might normally be considered a classic axiom such as:

(x : 18 < x < 65) is built directly into the model. While in some systems this statement
might be a constraining axiom listing the minimum and maximum ages of new employees,
in this model this type of information is stored as a population parameter — in this case the
minimum and maximum of a particular attribute.

After derived attributes are defined in Chapter 4, a series of axioms that act on attributes
will be defined. However, the meta-model formalization of an attribute is sufficient to
describe almost all of the restrictions that would be present at the attribute level. Within this
meta-model a formalized system exists that captures the information normally specified by
axioms. There are, however, a few significant omissions.

Depending upon the complexity of a part number, a security code, or other sometimes
obscure types of input, additional restrictions are needed at the detailed input level. In
previous work [Iscoe 86] 1 described in detail the lower level attribute checking features of
a commercial program generation system called CRT Form. Some additional constraints
included in that system but not specified in this dissertation meta-model include display
features such as justification (left, center, right), character conversion (lower to uppercase,
first letter uppercase and so on), number of digits displayed for a number including number
of digits to the right of the decimal point, bit maps of actual characters allowed in text field
and other associated details. These low level and visually oriented features, while
important in actual commercial systems, are details that could easily be added to this meta-
mode] but are not relevant to this dissertation.

2.10. Transformational Code Generation Issues

Although the primary subject of this dissertation is the semantic modeling of domain
concepts, the representation can be easily used to address a number of implementation
issues. These include data storage, elicitation of boundary information, and the exploration
of alternatives which is sometimes referred to as "what if" analysis.

2.10.1. Data Storage

Understanding the range of an attribute allows decisions to be made concerning data
allocation and storage. A nominal scale is a set of items that can be implemented as a byte.
If the definition occurs on a byte boundary, the system can probe for likelihood of change.
For example, if 50 states are defined in a mail order system, then one byte will certainly be
sufficient for the life of the system, however, if a single byte is used to represent 200 city
names, it may be courting disaster for a growing mailorder firm.

44

As a further example, if an attribute classified on an interval scale ranges between 1 and
200, and has a granularity of 1, it can be stored in a single byte with room left over for a
property based on a 56 category nominal scale.

2.10.2. Elicitation of boundary information

In the last example, if the upper limit of a property had a good chance of being 400,
then it would have been foolish to allocate only one byte of storage. Understanding the
potential spread allows the system to elicit more information around sensitive range
boundaries such as 255 or 32,767.

2.10.3. Exploration of alternatives--"What if?” analysis

Users rarely realize the full impact of a particular requirement or specification.
Formalized scales provide the basis for having a system that can allow the user to
interactively explore the effect of specification changes on an application program. Some
of the tradeoffs normally performed by system analysts can be presented to the enduser in a
form that they can understand.

For example, a common design decision is the tradeoff between potential future system
expansion and current system efficiency and storage capability. System analysts are well
versed in this type of decision making, and can phrase questions in an appropriate manner.
However, application designers not trained in computer science would probably not realize
that their request to make an attribute range from 1 to 1,000 would in general give them the
flexibility of expanding that range to 65,000 while setting an initial range at 200 might limit
their expansion to 256 or 512. Furthermore, an automated system can point out the future
effects and cost (in terms of data storage and possible retrieval slowdown) tradeoffs
inherent in a particular specification. Because it is straight forward for a computer system to
understand these type of simple data level mappings, it is possible to set up an interactive
system that can allow the enduser to ask what if questions and give the user tradeoffs that
would ordinarily be provided by a human.

2.11. Attribute Summary

Throughout this chapter, we have described a systematic methodology for helping the
domain expert specify constraints and restrictions on attribute value sets and transitions on
those value sets. The methodology begins by borrowing from scaling theory the
formalisms that have been developed for capturing measurements of properties. For the
more quantitative interval and ratio scales, fundamental and derived units and quantities
were introduced as a way of recognizing standard descriptions that occur in the physical
world. Granularity was introduced as a further specification attached to a unit.

From statistics, we have used the notion of population parameters to characterize the
distributions of the attribute value sets. Initialization procedures were defined as a way to
handle defaults, multiple defaults, and introduce new methods of input checking.

After value sets were defined and characterized, the notion of a transition within the
value set was introduced in terms of the modeling methodology. By classifying an attribute
as to scale type, the domain expert is more easily able to specify the relevant transition
pairs. Finally, attribute restrictions were introduced as a way to further subdivide attribute
libraries.

45

This chapter has specified the meta-model's characterization of an attribute. In the next
chapter, classes, which are collections of attributes, will be introduced. Their introduction
will allow the definition of derived attributes and summary statistics on atiributes.

Chapter 3 - Classes

3.1 Introduction to Classes

Classes encapsulate sets of attributes, provide for the definition of derived attributes,
allow additional operations to be defined, are responsible for object instantiation and
deletion, allow axioms to be defined, and maintain summary statistics about instantiated
objects. The previous chapter described the primitive attributes from which classes are
constructed. This chapter introduces classes and describes how the meta-model further
captures domain semantics.

Domain experts use classes to organize information within application domains. Asa
practical matter, it is often easier to elicit attributes by concentrating on individual classes
than it is to define attributes without the context of a particular class. By creating attribute
and class libraries that can be reused throughout application domain models, a domain
expert can build a set of basic classes that can be used to organize and structure information
within a domain. Chapter 4 explains hierarchical decomposition and how it is used to
specialize classes into sub-classes. Chapter 5 defines composition, the basic constructor of
the modeling methodology and its use in creating larger classes from smaller ones. Finally,
Chapter 6 defines association and its use in establishing operational relationships between
classes.

3.1.1 Class Definition

Definition 3.1 begins the definition of a class. Sections 3.2 through 3.7 expand upon
and elaborate this definition.

e ——

A class Cis:
e a set of atiributes 2(C) and their subsets, {Section 3.2-3.6}
Primitive Attributes ®{C),
Derived Attributes D(C),
Naming Attributes a{C),
Referential Attributes ®(C),
e a set of functions #(C) that are used to create D(C),
These functions are expressed in terms of attributes. {Section 3.2}
e g set of Operations as Follows: {Section 3.5}
Object Instantiation 7{C},
Object Removal ®(C),
Other Operations 0{C},
e g statistical summary function 5(C), {Section 3.6}
e a set of axioms or integrity constraints x(C) {Section 3.7}

Definition 3.1 — Class

47

48

3.1.2 Object Definition

Definitions of objects! differ in many areas, but most share at least the following
definitional fragment: An object, in an object-oriented model, is an abstraction of an entity
that is characterized by its state and a set of operations that access or change that state.
State is defined in terms of the properties or attributes of an object.

In this dissertation, the detailed definition of attributes gives a more detailed meaning to
the term "state". Within the meta-modeling technique, objects are defined as follows:

Given a class C with attributes Ag Ay, . .. A,, an object O of Class C is defined to be a family
of vectors of the form [ag, a1, . .. an] where gje 9//Ajjand where the vectors have a
common value (the name of O) on the naming atiributes of C.

Definition 3.2 — Object

Distinctions between classes and objects vary widely among different object-oriented
systems. In spirit, the class/object distinction defined by the meta-model in this dissertation
is most closely related to Eiffel [Meyer 88]. Classes serve as type-templates for objects and
can be regarded as compile-time constructs that define how runtime objects are to be
created. However, the class construct also maintains runtime information such as summary
statistics about the objects created by a class. Although classes serve as both compile-time
type definitions and repositories for runtime information, the distinctions between objects
and classes is carefully maintained within a domain model. Classes are not objects and are
never instantiated from other classes. Figure 3.1 further illustrates attributes, classes and
instantiated objects Chapter 4 will explain the distinctions between classes, subclasses,
and superclasses and give definitions for how subclasses are created from the attributes of
superclasses.

Person Class

Name
Birthdate
Gender

®
®

s
Attribute n

Mils Hoyker
2/21/48
| Male

Attribute n

| Shauna Bell
47152
| Female

Jack Baird
/255
Male

Atm‘ibute n Atu:ihute n

Figure 3.1 — Object Instantiations

! Some of the more commonly cited are [Dahl 66], [Goldberg 831, [Jackson 83], [Stefik 851, [Cox 86],
and [Wegner 88]. Many other definitions exist. Chapter 7 contains a more detailed discussion of the term
object-oriented.

49

32 Attributes - Primitive PC) and Derived D(C)

By using domain knowledge, atributes are partitioned into two groups within a class.
Primitive antributes are considered to be the fundamental or basic properties of a class,
while derived attributes are computed from primitive attributes and global knowledge
(encoded as system functions) such as current_date.

The characterization of an attribute as primitive or derived is a function of the
application domain and the goals of the domain expert. For example, a rectangle with the
attributes length, width, perimeter, and area can be viewed in different ways. For most
purposes, the atiributes length and width are the primitive attributes from which the
attributes area and perimeter are derived. However, a domain-specific decision to view
other attribute pairs (such as lengzh and area) as primitive attributes is reasonable and
depends on the view of a class in the context of a particular application domain. Definition
3.3 defines primitive and derived attributes as well as introducing the functions F(C)
required to create derived attributes.

I The set of atiributes 4(C), can be viewed as two disjoint subsets: The fundamental, or
primitive, attributes @(C) and the derived attributes D(C);

4(C) = 2C) v D) and PC) N DC) = ¢.

The D(C) require the introduction of a set functions #(C)) = {fi}, such that if
?C)={Pg, P{,...Pn}, DC)={Dg,D1,...Dm}, and S is the special class of system
attributes (such as current date), and DOM(S) is the cross product of the value sets of
the primitive attributes of S, then there is a function fje F(C) such that f; is an onto
function and fi 1 YPg) X. .. X ¥Pn) X DOMS) — VD).

Definition 3.3 — Class [Primitive and Derived Atixibutes)

3.2.1 Derived Attributes D(C)

The class definition introduces operations, F(C), which compute the values of derived
attributes. Examples of an F(C) function are the algorithm to compute the age of a person.
If objects of type person will persist in an application program for more than a year, then
their age will change and will have to be derived from the leap year adjusted difference
between a person's birthdate and the system supplied current date.

This is a domain-specific decision. If one were creating a computer dating service, it
might be better to store age (and therefore it would have to be primitive) rather than to
derive it. The decision to make age a derived (as opposed to a primitive) attribute is based
on the assumption that an object's age will change within the life of an application.

Another example of an F(() is the following cost_replacement function for a library
book.

50

book.cost_replacement =
{plus (plus {imes bookweight shipping_cost_per_pound) (book. cost)) {book.overhead))

In this example, the derived attribute book.cost_replacement is calculated by a formula
that includes primitive attributes representing book weight and cost, a class shipping cost-
per-pound and a factor which is included for overhead.

The functions F(C) sometimes requires system attributes, like system date, that return
values used for calculations. Additional system attributes include standard items such as
system time, and events that indicate user activity such as entering or updating information
about a class. These system attributes were referenced in the class definition as DOM(S)

— VD;). The system events will be further discussed in the section on class axioms.
Finally, it should be noted that derived attributes can be defined in terms of other derived
attributes in a recursive fashion where the recursion is guaranteed to terminate.

3.2.2 Arithmetic Functions on Attributes

Attributes of compatible scale types can be added or subtracted, multiplied or divided
by each other and by constants. The next few sections explain addition and subtraction in
detail. These algorithms will be used again in Chapter 5 when class composition is
discussed.

3.2.83 Semantics of (Plus Aj A2) -> A3

Adding two attributes together to create a third attribute is a conceptually simple
operation that in actual practice requires both domain knowledge and general rules
concerning attributes. For example, it does not make sense to add time and temperature
together, nor to add two dates together to create a third date. Humans intuitively
understand that attributes of different quantities cannot be added together. The modeling
methodology uses well-known techniques and results from statistics and basic
measurement theory to define arithmetic operations between attributes.

One general domain-independent rule based on measurement granularity that helps
determine how measures can be combined is that: neither original nor derived information
should ever be expressed at a finer level of granularity than is justified by its component
parts, the algorithms used to compute it, or by its original level of measurement granularity.
Within the context of physical experiments, this concept is expressed by the rule that final
results must not be expressed to a greater number of significant figures than the number of
significant figures of the least precise measurement.

Domain knowledge and scaling theory tell us that the weight of an automobile built
from only an Engine and a Chassis will be the sum of the weight of the engine and the
weight of the chassis. Within the context of a particular attribute, such a rule might read,
"When you add two weight attributes, you must use a unit at least as coarse as the coarsest
unit of the classes, convert all scales to that unit, and then add weight amounts to produce a
new weight for the composite.”

An informal rule that allows us to determine how to combine two ratio scale attributes is
shown in figure 3.2:

51

A31

[In order to add or subtract two attributes with ratio scales, say Ay and Ay, into a new attribute

1) Aq, A and Agall must be of the same quantity or derived quantity
2) Aj, Ag and Agall must have the same unit measure or derived unit measure
3) The measurement granularity of the unit of Az must be at least as coarse as the most

coarse of the measurement granularities of the units of Ay and A,.

Figure 3.2 — Necessary Conditions for Adding Ratio Scaled Attributes

The following algorithm for the attribute semantic, (Plus Ay + Ap) -> A3 details the
process of adding attributes A1 and A2 to create a new attribute A3. Following the
algorithm a further explanation by line number is given.

(Plus A1 +Ap) -> A3

ENEE B N R

Procedure Add_attribute(A1,A2: Attribute; VAR A3:Attribute)
Begin
IF (A1.Scale = RATIO AND Ap.Scale = RATIO)

AND (A1.quantity = Ap.quantity) AND COMPARABLE (A1.T,

A2.T)

Then Begin

If (A1.unit= A2.unit)
Then
If (Al.gran = A2.gran)
Then Begin
A3.Scale :=RATIO;
A3.quantity := AZ.quantity;
A3.unit := A2.unit;
A3.gran = A2.gran;
A3T =Al1LT,
A3.min = Al.min + AZ.min;
A3.max = Al.max + AZ.max;
build_scale(A3.min,A3.max,
A3.gran,A3.V);
A3EV:=A1EV + A2EV,
A3.8D2:=A1.8D2 +A2.8D2
{assumes independence}
End
Else Begin
coerce_gran(A1,A2, Aprimel, Aprime2);
Add_atmibute(Aprimel, Aprime2, A3);
End
Else Begin
coerce_unit(Al, A2, Aprimel, Aprime2, error);
add_attribute(Aprimel, Aprime2, A3);
End
Else ERROR(“Mismatched Scales™)
End; {add_attribute}

Procedure coerce_unit(Al,A2:Attribute; VAR Aprimel,
Aprime2:Attribute,
VAR error:boolean);

52

Begin

If bigger_unit(Al.unit, A2.unit)

then begin
new_att_new_unit{ A2, Al.unit, A2prime)
Alprime := Al;
end

else begin
new_att_new_unit{ Al, A2.unit, Alprime);
A2prime = A2;
end

End; {coerce unit)

Procedure new_att_new_unit(oldatt:Attribute; newunit:TyUnit;
newatt:Attribute, VAR error:boolean);
Begin
newatt. T :=oldatt.T;
newatt.Scale := oldatt.Scale;
newatt.quantity := old_att.quantity;
newatt.unit = old_att.newunit;
unitfactor(oldatt.unit, newunit, factor);
newatt.gran = old_att.gran/factor;
newatt.min := oldatt.min * newatt.gran;
newatt.max := oldatt.max * newatt.gran;
build_scale(newatt.min, newatt.max, newatt.gran,
newatt.V);
newatt. EV := old_att.EV * newatt.gran;
newatt.SD2 := old_att.SD2 * newatt.gran®*2;
End; {new_att_new_unit}

Procedure coerce_gran(Al,A2:Attribute; VAR Aprimel,

Aprime2: Attribute);
Begin

If bigger_gran(Al.gran, A2.gran)

then begin
new_att_new_gran(A2, Al.gran, A2prime)
Alprime == Al;
end

else begin

new_att_new_gran(Al, A2.gran, Alprime)
A2prime = AZ; end
End; {coerce gran}

Procedure new_att_new_gran(oldatt:Attribute;
newgran: TyUnit; newatt:Attribute);
Begin
newait. T = oldan. T,
newatt.Scale := oldatt.Scale;
newatt.quantity := old_att.quantity;
newatt.unit := old_att.unit;
newatt.gran = newgran;
factor := newgran/oldatt.gran;
newatt.min := oldatt.min * factor;
newatt.max := oldatt.max * factor;

53

80. build_scale(newatt.min, newatt.max, newatt.gran,
newatt.v);

81. newatt. EV :=old_att EV * factor;

82. newatt.SD2 := old_att.SD2 * factor**2;

83. End; {new_att_new_gran}

g4. Procedure unit_factor(oldunit, newunit, VAR unitfactor,
VAR error:boolean);

85. Begin

86. Query(oldunit, newunit, unitfactor);

87. End; {unit_factor)

88. Procedure build_scale(A3.min, A3.max, A3.gran; VAR A3.V);

89. Begin

90. value = A3.min

91. A3V = Null

92. Repeat

93, A3.V ;= Union(A3.V, value)
94. value := value + A3.gran

95. Until value > A3.max

96. End; {build_scale)
Figure 3.3 — Attribute Semantics : (Plus Aj A2) > A3

Statement 1-5 Validity of Addition

Statement one is the procedure declaration to add attribute Al and A2 to create attribute
A3. Statement three requires that both of the atiributes be ratio scales. As was explained in
Chapter 2, neither nominal nor ordinal scales allow addition operations. Although interval
scales allow addition operations, the addition of interval scales to create a new attribute has
no meaning within most application domains.

Statement 4 states that, for two ratio scales to be added together they must, at a
minimum, be of the same quantity and allow the same transitions on their value sets. The
quantity check eliminates obvious semantic problems such as adding time plus temperature.
The restriction on transitions prevents mismatched scales from being combined.

Unit Coercion Statement 6, 25-28, 31-56

Unit coercion is required in the event that the units of the two attributes do not agree.
Consider the addition of two attributes defined as follows:

Al: Time in Hours (granularity .25)

A2: Time in minutes (granularity 1)

Obviously, in order to combine the two attributes, A2 will have to be coerced from
minutes into hours. Statements 31 to 42 determine which attribute needs to be changed,
after this determination, the procedure new_att_new_unit (line 43) is invoked. Unit factor
(line 84) retrieves a factor that accounts for the magnitude of difference between the two
units. Unit factor was first described in Chapter 2, in the section on unit conversions.

After the factor is defined, a new granularity is assigned (line 50) a new minimum and
maximum are defined and a new scale is constructed (line 53). Finally, a new expected
value and standard deviation are computed. The result of the coercion is:

54

A1l: Time in Hours (granularity .25)
A2: Time in Hours (granularity 1/60)

Statement 8, 21-24, 57-67: Granularity Coercion

After the units are adjusted, granularities must be made the same which is done using
the rule previously described. After granularity coercion, both atribute Al and A2 can be
combined:

Al: Time in Hours (granularity .25)

A2: Time in Hours (granularity .25)

Statement 10-14: Quantity, units, granularity

These statements make the assignment of a scale type, quantity, unit, and granularity
into a new attribute.

Statement 15-17: Value Set Creation

A value set is created from the new attribute in the following way. First the minimum
and the maximum value for the new attribute are defined. Then, since the value set of an
attribute is defined in terms of its multiples of unit granularity, a new attribute is created.
Build_scale constructs a value set for scale from its minimum, maximum and unit
granularity.

Statement 18: Expected Value

The expected value of the final attribute is the sum of the expected values of the initial
attributes A1 and A2. Because attributes are characterized, by at least, their mean and
standard deviation, we are able to use well-studied properties for computing the population
parameters. For example, it is straight forward to prove that E(x+y) = E(x) + E(y).2

Let (X,Y) be a two-dimensional random variable with a joint probability distribution. let Z =
Hy(X,Y) and W = Ha(X,Y) .

+00 00
EZe W)= [[[H1(x y) + Halx, y)lftx, y) dx dy
where fis the joint pdf of (X, Y)
+00 +00 +00 +00
= [[Hixy) fxydedy+ [[Ha(xy) fx, y) ox dy
= E(Z) + E(W)

Let X and Y be any two random variables, and Let H1(X,Y) = X, and Ha(X)Y) = Y. then
E(X+Y) = E(X) + E(Y).

Figure 3.4 — Proof E(z+y) = E{x) + E{y)

2 proofs are adapted from [Brownlee 651, [Feller 50], [Feller 71]

55

Statement 19: Variance

In a similar manner we can show that, assuming that A1 and A2 are independent
variables, then V(A1+A2) = V(A1) + V(A2). The independence assumption means that
certain combinations of derived attributes are not able to be combined in this manner.

E(A1 + A2)2 - (E(A1 + A2))2

E(A12+ 2A1A2 + A22) - (E(A1)2 - 2 E(AT)E(A2) - (E(A2))2
= E(A12) - (E(A1))2 + E(A22) - (E(A2))2

V(A1 +A2) = V(A1) + V(A2)

Figure 3.5 - Proof V(A1+A2) = V(A1) + ViaZ)

V(X) = E(X2) - [E(X)]2
V(A1 +A2) =

i

3.2.4 Semantics of (Plus Ay C) -> A3

While two interval scaled attributes are rarely added together, it is common to add either
a ratio or an interval scaled attribute to a constant as shown below:

(Plus A1) -> A3
1. Procedure Add_attribute_plus_C(A1,C:Attribute; VAR A3:Attribute)
2. Begin
3. IF ((A1.Scale = RATIO AND C.Scale = RATIO) OR
(A1.Scale = INTERVAL AND C.Scale = INTERVAL))

4 AND (A1.quantity = C.quantity)
5. Then Begin
6. If (A1.unit= C.unit)
7 Then
8 If (Al.gran = C.gran)
9. Then Begin
11. A3.quantity := Al.quantity;
12. A3.unit ;= Al.unit;
13, A3.gran = Al.gran;
14. A3T :=ALT,
15. A3.min ;= Al.min + C;
16. A3.max = Al.max + C;
17. build_scale(A3.min,A3.max,
A3.gran,A3.V),
18. A3.EV:=A1lEV +C;
19. A3.SD2 :=A1.SD2;
{assumes independence }
20. End
21. Else Begin
22. coerce_gran(A1,C, Aprimel, Aprime2);
23. Add_attribute(Aprimel, Aprime2, A3);
24. End
25. Else Begin
26. coerce_unit(Al, C, Aprimel, Aprime2, error);
27. add_attribute(Aprimel, Aprime2, A3);
28. End

29. Else ERROR(“Mismatched Scales™)
30. End; {add_attribute_plus_C}

56

Figure 3.6 — Attribute Semantics : (Plus Ay C} > A3

(Plus A; + C) -> A3 resembles the algorithm for the addition of two atributes, the
only difference can be found in statements 3, 18 and 19. The proof for Statement 19 is as
follows:

V(X + C) =

Figure 3.7 - Proof V(X+C) = V(X)

3.2.5 Semantics of (Times Ay C) -> Ag

Multdplication by a constant is valid for interval scales in the case where the scale is
being converted from one unit to another as described below.
(Times A1 C) -> A3
;. Igroqedure Times_Attribute_ C(A1,C:Atribute; VAR A3:Attribute)
. Begin
3. IF %(IALScale = RATIO AND C.Scale = RATIO) OR
(A1.Scale = INTERVAL AND C.Scale = INTERVAL))

4 AND (A1.guantity = C.quantity)

5. Then Begin

6. If (Aq.unit= C.unit)

7 Then

8 If (Al.gran = C.gran)

9. Then Begin

11. A3.quantity := Al.quantity;

12. A3.unit ;= Al.unit;

13. A3.gran = Al.gran;

14. A3T =ALT,

15. A3.min := Al.min * C;

16. A3.max = Al.max * C;

17. build_scale(A3.min,A3.max,
A3.gran,A3.V);

18. A3EV:=A1EV *(C;

19. A3.SD2 ;= A1.SD2 * C**2;

20. End

21. Else Begin

22. coerce_gran(Al,C, Aprimel, Aprime2);

23. Add_attribute(Aprimel, Aprime2, A3);

24. End

25. Else Begin

26. coerce_unit(Al, C, Aprimel, Aprime2, error);

27. add_attribute(Aprimel, Aprime2, A3);

28. End

29. Else ERROR(“Mismatched Scales™)
30. End; {add_attribute_plus_C}

Figure 3.8 — Attribute Semantics : (Times A3 C}-> A3

57

Once again, the major difference is in statement 3, 18, and 19. Times_Attribute_C is
also closely related to new_att_new_unit. The proof for statement 19 is as follows:

V(CX) = E{(CX)2) - (E(CX))
= C2E(X2) - C2(E(X))2
= C2[E(X2) - (E(X))?]
= C2V(X)
V(CX = C2V(X)
Figure 3.9 — Proof V(CX) = C2V(X)
3.2.6 Semantics of (Sub AjAg ->Ag

In the discussion of dates in the previous chapter, it was pointed out that the difference
of two interval scales results in a ratio scale. Consequently, when two interval scales are
compared, they are compared in terms of the magnitude of the difference between them. In
the case of current date and birth date, the difference results in a ratio scale age. In the
Fahrenheit weather forecasting example, the difference between two temperatures can be
used to state how much warmer or colder one day was than another. The semantics of
subtraction are as follows:

{Sub A3 Ap) => A3

1. Procedure subtract_attribute(Al, A2, A3)

2. Begin

3. IF(A].quantity = Ap.quantity) AND COMPARABLE (A1.T, A2.T)

4 AND ((A1.Scale = RATIO AND Aj.Scale = RATIO) OR
(A1.Scale = INTERVAL AND A2.Scale = INTERVAL))

5. Then Begin

6. If (A1.unit= A2.unit)

7 Then

8. If (Al.gran = A2.gran)

9. Then Begin

10. A3.Scale := RATIO;

11. A3.quantity := AZ.quantity;

12. A3.unit ;= A2.unit;

13. A3.gran = A2.gran;

14. A3.min = max(0, Al.min - A2.min);

15. A3.max = Al.max - A2.max;

16, build_scale(A3.min, A3.max,A3.gran, A3.V);

17. CA3T =ALT

18. A3.EV =AlEV-A2EV;

19. A3.SD2 = A1.8D2 + A2.SD2; {assume ind}

20. End

21. Else Begin

22. coerce_gran{Al, A2, Aprimel, Aprime2);

23. Add_attribute(Aprimel, Aprime2, A3);

24. End

25. Else Begin

26. coerce_unit(Al, A2, Aprimel, Aprime2, error);

27. add_attribute(Aprimel, Aprime2, A3);

58

28. End
29. Else ERROR(“Mismatched Scales™)
30. End; {subtract_attribute }

Figure 3.10 — Attribute Semantics : (Sub Aj Ag) -> Ag

The subtraction algorithm is similar to the addition algorithm but it has some major
differences. The differences are explained in the following paragraphs.

Statement 4

Although all of the checks for quantity and transition that were present in attribute
addition are also present in attribute difference, the difference operation is equally
applicable to both ratio and interval scales.

Statement 10

This statement declares that regardless of which types of scales are involved the
difference operation is performed upon, the result is still a ratio scale.

Statement 14

Because the result of the difference operation is a ratio scale, the minimum of the new
scale is constrained to be no less than zero.

3.3 Naming Attributes A(C)

What is it that makes one object unique or different from another object? One of the
components of domain knowledge is the recognition of properties that can be used to
differentiate objects. Although classes can always create unique system names for an
object, some classes have natural names that have a semantic meaning within the context of
an application domain. These natural names uniquely identify an object of a class and
correspond to an endusers understanding of the class as well as the domain of interest.

Domain specific considerations cause individuals to be distinguished in a variety of
different ways; phone numbers identify people for political polls, fingerprints identify
people for the FBI, while Social Security numbers identify people for the IRS and many
other institutions. Within the meta-model the attributes that name a class are called the
naming attributes:

"A subset, A¢C) of the 4(C) are the naming attributes. Ae A(C)—null e 7(3) “

Definition 3.4 — Naming Attributes

Identity and naming are also common themes within computer science. For example,
Common Lisp has several functions to test for equivalence. The question of whether or not
two variables are equivalent depends upon how that information will be used. If one is
concerned with identity then the low level function eqg is used.

(eq x y) is true if and only if x and y refer to the same memory location

59

But if one is concerned only whether or not values are the same then the more general
function (equal x y) can be used.”

3.3.1 Existence and Domain Specificity

The domain specificity of equivalence, and an observation on class existence, is
illustrated with an example of the definition of a book. Certain classes exist regardless of
the existence, or the lack of existence, of any particular application domain. Books, for
example, existed well before libraries and library computer systems and they will continue
to exist without respect to whether or not either libraries or computers exist in the future.

Books have a title, an author, a publisher, a copyright date, a cost, a weight (used for
shipping purposes), and an ISBN. The ISBN is a ten digit number (consisting of a group
identifier, publisher identifier, title identifier, and check digit) assigned prior to publication
that was created by book publishers as a means of uniquely identifying books. The
number is constructed in such a way that each ISBN represents one and only one
publisher-title pair. A partial view of a book class as it exists without regard to the
existence of a library is shown in Figure 3.11:

Book = Class

ISBN : Nominal: 1D_Number;

Title : Nominal Title_Type;

Author : Nominal Person_Name_Type;

Copyright_date : Gregorian_date (min 1800);

Cost : Ratio_scale money in dollars (gran .01) (min 1) {max 75);
Weight : Ratio_scale weight in pounds {gran 1) (min 1) (max 35};

@
@

Figure 3.11 — Book Class

Bookstores uniquely identify books by their (title, author) pair or their ISBN identifier.
Libraries also identify books by their titles and author (or by a call number derived from
the author and title), but a library's requirements are different than those of a person or a
bookstore; when a library acquires a book it needs to be able to differentiate between what
otherwise would appear to be identical copies of the same book. If the books are different
editions, the library can append the date of the edition. A more general method is to add a
copy number and form a new unique identifier that consists of a pair such as (ISBNN,
Copy_Number) or (Library_of_Congress_ID, Copy_Number).

3.3.3 Naming Attributes and Data Base Schemas

Naming attributes have long been studied within the data base community. The
following sections explain the relevant portions of data base literature and its relevance o
the meta-modeling methodology.

3 Common Lisp actually has four equality functions: eq, eql, equal, and equalp.

60

Within the world of data base schema evolution, the term primary key is roughly
equivalent to the naming attributes within the meta-modeling methodology. Data base
designers [Date 86] use the term key to mean a set of attributes that uniquely identify a tuple
within a relation. If more than one key exists, then the keys are called candidate keys. The
term “primary key” refers to the particular candidate key that has been selected to identify
the tuple.

Referential Attributes, Foreign Keys

The term referential attribute [Shlaer 88] or foreign key [Date 86] is used to refer to an
attribute of a class which is a naming attribute of a different class.

A subset, ®(C) of the 4(C) are the referential attributes, or ®(C). “
(A(C) 2 RC)) v (RL) N N[C) = ¢)

Definition 3.5 — Referential Attributes

Within the meta-model, referential attributes are used to associate classes as described
in Chapter 6.

Functional Dependencies

Functional dependencies are the primary system for capturing class semantics within
relational database models. A complete discussion of functional dependencies can be
found in [Date 811, [Ullman 80], [Maier 83] and [Date 84],and is beyond the scope of this
paper. The following brief summary is included only for definitional purposes.

First normal form is attained when the value sets of attributes contain only atomic
values. In the meta-model, all classes enforce first normal form. Second normal form is
attained when every nonkey attribute is fully dependent on the primary key. Third normal
form is an additional restriction that requires that every nonkey attribute be non-transitively
dependent on the primary key. Boyce Codd Normal Form (BCNF) was developed to
handle overlapping candidate keys. The case of overlapping candidate keys occurs when
the intersection between the sets of attributes which formed the candidate keys is not null.
BCNF is attained if and only if every determinant is a candidate key. A determinant is
defined as an attribute or set of attributes upon which some other attribute is fully
functionally dependent.

Although functional dependencies were designed to allow the relational model to
capture additional semantics of the external world from which the model was derived,
neither Boyce Codd Normal Form (BCNF) nor third normal form are necessarily desirable
in the meta-modeling technique. Examples of when neither BCNF nor third normal form
conceptualizations are desirable are common. Consider a person class which includes the
attributes name, address, city, state, and zip code. In this example, address, city, state,
and zip code are dependent upon name. Zip code is dependent upon address, city and
state. City and state are dependent upon zip code. And yet, it is normal and customary to
keep all of these attributes together in the same class regardless of the update anomalies
which theoretically may occur. As another example, consider an order form in which
subtotal and sales tax are stored along with the total. Once again, this is a normal way to

view an order form. But Sales Tax is Dependent on Subtotal (and State), Total is
dependent on SubTotal and Sales_Tax. This, of course, violates BCNF.

34 Additional Restrictions on Attribute Values

Certain attribute restrictions are possible to specify at the class level, but impossible to
specify at the attribute level without the context of a class. This is because these restrictions
apply to the set of objects, all of which have the same attribute.

3.4.1 Requiring Unique Values

Unique values are an additional attribute restriction which can be applied at the class
level. This restriction enforces the constraint that, for any new object created by the class,
the value of the attribute will be unique within the set of objects created by that class.
Naming attributes are always required to have unique values, and depending upon the
domain semantics this restriction may be applied to other attributes.

3.4.2 Restricting Null Values

A null value is a special value assigned to an attribute to indicate that the value has not
yet been determined. When an object is in the process of being created, many of its
attributes might have the system assigned value of NULL. A decision to allow an object to
retain null values for any of its attributes is in most cases domain specific. In general, for
an attribute to be allowed to be NULL it must not be used to identify the object, must not
interact with other objects and must not be used in a derived formula.

Null values are frequently problematic in information systems because of their
inconsistent treatment and use. For example, in SQL, it is possible to have the average of
an attribute not equal the sum divided by the count. This is because the count function
returns the total number of records. A sum function returns the sum of a particular attribute
and the average function returns the average of the non-null attribute values but excludes
the nulls in the calculation.

The meta-model avoids this problem by keeping a consistent distinction between a
summary statistic defined on the set of objects of a class and the summary statistic of a

particular attribute within that class. This is further discussed in the section 3.6 which
discusses the summary statistical functions S(C) and S(A).

3.5 Operations

Class operations exist to perform actions on classes. Two special operations are the
procedures for object instantiation and deletion.

62

Classes include:
An instantiation procedure I that uniquely associates any object of class C with some tuple

of YNo) X. .. X ¥Np) (Nje al(C)).

A set of deletion or removal procedures , ®(C) , that remove the objects created by the
instantiation procedure I.

A set of Operations, O(C), that access or update sets of attributes

ST S e eSS

Definition 3.6 — Operations

One of the purposes of the class structure is to be able to instantiate and delete objects
whose type has been defined by the class. Instantiation and deletion are fundamental
operations capture semantics in terms of the meta-modeling technique. Figure 3.12 gives
some of the interpretations for these terms as they appear in business application domains.

Figure 3.12 — Domain-Specific Interpretations of Add & Delete

3.5.1 Instantiating Objects

Adding an object to an application domain is accomplished by the class creation
procedure. As was previously discussed, the selection of a name—the primary key—ifor
an object is determined by the domain expert’s interpretation of an application domain. The
class instantiation procedure must be able to create a name in such a manner that an object
can be located, accessed, and modified during its life in the system. This requires that the
object have some type of unique identification that differentiates it from other objects for the
purposes of system identification. Within a particular domain model, the instantiation
procedure I stores the domain knowledge about how to instantiate objects.

The peculiarities of application domain knowledge force different classes to be defined
for the same entity when these entities are used in different domains. As was described, an

63

ISBN is sufficient to uniquely identify a book for a book publisher of a bookstore, but not
for a library. Libraries require additional attributes such as copy number because they need
to keep track of individual books.

In actual practice, the enduser has a great deal of control over the creation of an object
within a class. Imagine an enduser at a terminal filling in a data entry screen. For each
object entry screen (more details given in [Iscoe 86]), endusers are able to completely finish
filling out an object instantiation, cancel an object definition, and request help functions.
The following system events are predefined for all object instantiations.

Objectinit When the object first appears,
Fileinit When the enduser first start as session,

Objectdone ~ When the enduser finished filling out the object
entry screen,

Objectcancel If the enduser abandons filling out the object
entry screen,

3.5.2 Deleting Objects ®{C)

Although deleting an object is the logical inverse of instantiating that object, additional
complications are introduced for object deletion. Consider the case of a member quitting a
library. If the member has books that are checked out, then a problem is created; How
should the system handle the books that are still checked out by the member? When one
object is linked to another object through a referential attribute, the fate of an object has
reverberations to all other linked objects within a system. Within the data base community
there are three standard methods for handling the deletion of a object that contains
references to other objects.

Cascading deletions -- Deleting an object causes the objects that depend on it to be

deleted. If an object b is referenced by an object a, and a is deleted, then object
b (and all objects dependant upon it), should be deleted. This process
continues (cascades) until no more objects are effected.

Nullifying effected fields -- Objects that are effected by the deletion have their relevant
attribute values set to null. The deletion of a should be allowed to happen but
that the pointer to object b should be set to null.

Restricting deletions -- Object is not allowed to be deleted. A restricted deletion means
that if object b depends upon object a and object b exists, then object a should
not be allowed to be deleted.

These three strategies are reasonable when one considers the effect of deletionon a
static set of data. However, in an application program that includes objects that have an
independent existence in the real world, none of these strategies may be appropriate. For
example, in the library problem, above, neither cascading the deletions (and eliminating the
books) nor nullifying the effected fields (and losing track of who checked out the book) are
acceptable operations. And yet, the member has left the library. From a strictly database
point of view, we are tempted to restrict the deletion until all is resolved (i.e. the books are
declared lost or returned), but this is begging the question of what to do in an application
program.

64

Deletion procedures maintain domain knowledge about events such as the procedure to
follow in the event of a lost or stolen library book.

3.5.3 Other Operations

In addition to defining instantiation and deletion operations, the class definition serves
as the repository for the definition of operations that access or update attributes of a class.
These operations, sometimes called methods in object-oriented terminology, can be applied
to all objects instantiated by a class. In Chapter 2, single attribute operations were
discussed. Because classes have now been defined, we are in a position to discuss the
generalized access and update operations on multiple attributes.

3.5.4 Access & Update Operations

Access operations are those operations which retrieve information, which may be based
on a series of selection or restriction conditions. For example, in the library problem one
of the specifications is that the following request must be satisfiable.

T3. Get the list of books by a particular author or in a particular
subject area;

eget_info(class_name [restrictiction_fist] [selected list])
eget_info(book_class (author x) [book_list])

Figure 3.13 — Class Access Operations

From the standpoint of the domain model, the important consideration is that thisis a
query that identifies individual objects by some combination of their attributes. As such, it
represents the most trivial — but possibly most common — type of information retrieval
within an application program.

It should be noted, that there are many different ways that these queries could be
expressed. This request is a standard data base style query that could be expressed in SQL,
QBE, prolog, or any of a number of other styles.

Update operations are those operations that are used to update an attribute or a set of
attributes. The update operation move is illustrated in the following example.

3.5.5 Example — latitude and longitude revisited

The F16 example that was introduced in Chapter 1 illustrated a specification problem
caused, most probably, by a mapping mistake in which the latitude definition was replaced
by a signed number. As can be seen from figure 3.14, the algorithm for maintaining
correct direction given any particular move allows latitude and longitude to work as
specified. Latitude is defined as the angular distance, measured in degrees north or south
from the equator. Longitude is defined as the angular distance east or west on the earth’s
surface measured by the angle (expressed in degrees up to 180° in either direction) which
the meridian passing through a particular place makes with a standard or prime meridian,
usually the one passing through Greenwich, England.

Clearly the magnitude of latitude is a ratio scale. There are no negative latitudes, and
the zero of the latitude has a real meaning (i.e., it is the point at which north changes to
south). Two attributes are needed to represent latitude; the first attribute is a ratio scale that

65

represents magnitude and the second attribute is the nominal scale that represents north or
south. Longitude is represented in a similar manner.

In chapter 5 after composition has been introduced, an airplane location class will be
defined that combines altitude, latitude and longitude.

Navigational Location = Class

Latitude.direction: Nominal (North .5) (South .5)
Latitude.magnitude: Ratio Angle in Degrees (min 0) (max 180)
Longitude.Direction: Nominal (East .5) (West .5)

Longitude Magnitude: Ratio Angle in Degrees (min 0) {max 180}

Operation move.[latitude | longitude] (compass, distance)
If compass = #.direction

then
begin add(#.magnitude, distance, error, error_amt)
if error then begin
change_state(#.direction);
set_value(#.magnitude, error_amt)
end
end
else
begin sub(#.magnitude, distance, error, error_amt)
if error then begin
change_state(#.direction);
set_value(#.magnitude, error_amt)
end
end

end; operation-move

Figure 3.14 — Latitude and Longitude Class

3.6 Summary Statistical Functions

Classes include a statistical function S(C) that computes summary statistics for the set of
objects instantiated for C, and a set of functions SA(C, Aj) that compute summary
statistics for each atfribute of the set of objects.

Definition 3.7 — Class Statistical Functions
Summary statistics characterize information about the objects created by the class. Two
types of summary statistical functions are defined for classes. The functions S(C) compute

summary statistics for the overall set of objects created by the class, and the functions
S$4/(C, A;) compute statistics for each individual attribute of that class.

66

3.6.1 Class Summary Statistics S(C)

The summary statistics that the class maintains for the object set reflect information
about the function count (t) of the number of objects in the system at time t. The summary
statistics concerning the count of an object set are the average of that count, the standard
deviation of that count as well as the mode, minimum, and maximum of that count.

These are all easily computed by maintaining the count, sum, and sum of square for
each class over the life of a system. Additional statistics such as median about the objects
in the object set requires some notion of system history.

3.6.2 Attribute Summary Statistics SA(C, Ay

For any particular attributes of a class, the kind of attribute statistics available is
dependent upon the scale type of the attribute and were summarized in Figure 2.6 of
Chapter 2. The $4(C, A;) are statistics of the sample of attribute values represented by the
existing objects created by class at any particular point in time. These are statistics derived
from the sample of attribute values represented by the existing objects of the system.

3.6.3 Attribute Defaults Revisited

In the last chapter, default values were discussed in terms of attribute population
parameters. Because we have now introduced classes, we are able to introduce a more
sophisticated system for the calculation of missing information. Using population
parameters, it is possible for the domain model to be able to deduce a missing value for an
attribute of a particular object.

This technique assumes that classes have been partitioned in a careful enough manner
that they truly characterize the application domain? (a further discussion of this point).
Sociologists, marketing companies, and other survey analysts have long used this type of
system to supply missing information. Essentially it works by using values known about
an object to infer other values of that object. For example, a person object might be partially
defined as follows:

Person = Class
Name: Person_name;
SSN: nominal_scale;

residence: nominal_scale (rent, own);
student: nominal_scale (yes, no);
age: ratio_scale. (min 18) (max 99);

Figure 3.15 — Partial Definition of Person Object

In this case if the person is: a student, under 25 years of age, and the type of residence
is left blank, the default mechanism supplied by the modeling methodology could, for this
domain model, automatically assign the the value rent to the residence attribute field.

4 This issue is further mentioned in Chapter 4, and discussed in detail in [Kish 65] and [Rosenberg 68].

67

However, if the object is in a different partition such as if the person is a student and is
over 25 years of age, the default mechanism would not be able to assign a value based on
the preceding information, and would have to examine other atiributes such as income in
order to be able to fill in the missing information.

It should be noted that the continual use of information in this manner creates a
phenomena known as regression towards the mean. The term regression towards the mean
refers to the phenomenon that is created through the continual use of expected values to
supply missing values. This process creates expected values which, as the default
mechanism iterates, progressively draw closer and closer to the mean.

37 Class Axioms X(A)

Classes include a set of axioms or integrity constraints Xx(C):
+ interclass attribute axioms
intraobject attribute axioms
interobject attribute axioms
+ interclass attribute axioms

Definition 3.8 — Class Axloms

Class axioms are a mechanism for supplying constraints to attributes within classes.
The meta-model organizes the axioms by grouping them into categories. One useful
categorization is to split the axioms into disjoint groups:

« Those that work within a particular class (the intra class axioms); and
« Those that work between classes (the inter class axioms).

The intraclass axioms can be further broken down into the intraobject attribute axioms
and the interobject attribute axioms.

3.7.1 Intraobject attribute axioms

Intraobject axioms define relationships between the attributes of the runtime objects of a
particular class. For example,

Tax=Total* TaxRdle

specifies an invariant relationship between attributes within a particular object from a
class. It should be noted that this type of integrity constraint is related to but not equivalent
to the situation in which tax is defined as a derived attribute that is computed from the
primitive attribute, total and tax rate.

There are many occasions in which the situation occurs in which an integrity constraint
axiom is used instead of a derived attribute. In data entry applications, the classic example
is that of a check digit. Check digits are computed by an algorithm and compared against
information entered by the enduser. In the tax example, an application designer might
choose to use an axiom to check a tax that had already been computed by a person or by
another system.

At the detailed level of an application design, many situations of this nature arise.
There are other circumstances when the value of one attribute dynamically determines

68

whether or not another set of attributes is applicable. For example, if a company is tax
exempt then its tax identification number is required.
if Tax_Exempt
then Must_Enter (Tax_Identification_Number)
else close_field (Tax_Identification_Number)

If the method of shipment is UPS, then there are three different choices for type of
shipping and so on.

As was discussed in the introduction, the purpose of the meta-modeling methodology is
to specify information at a high conceptual level. In previous work [Iscoe 86] a number of
operations were described for the CRTForm type manager and associated LKP system.
These functions were implemented through a type manager, and served to add additional
dynamic constraints to an attribute definition. While some of the constraints such as entry
sequencing were specified interactively, other types of axioms were implemented as type
manager operations and are the types of constraints that would be used by an application
designer and not by a domain expert. The type manager operations used in the previous
research that are relevant to this research are shown in Figure 3.16.

Erasefield (Field); removes field from the screen.
Gotofield (Field); forces the cursor to a specific field.
Loadfield (Inputdata); loads a string into the Readfield buffer.
Lockfield (Field); protects a field from entry by the user.
Lockset (Set ID); protects a set of fields from entry.
Resetfield;clears and resets a field.
Sendboolean (Field, Flag); sends a Yes or No to a field.
Senddate (DD,MM, YY); sends a date to a field.
Ssenderror (Bellpattern, Atiribute, Message); writes a message and locks the
keyboard.
Sendmsg (Bellpattern, Attribute, Message); writes to the bottom line.
Sendstring (Field, Message); sends information to a field.
Showfield (Field); activates fields which are in memory but not displayed.
Showset (Set_ID); activates fields which are in memory but not displayed.
Showlines; displays line drawings of form on screen.
Unlockfield (Field); changes a field from protected to unprotected.
Unlockset (Set_ID); changes a set of fields from protected to unprotected.
videoinput (Field, Attribute); changes video attributes of field input.
videotit le (Field, Attribute); changes video aifributes of a title.

Figure 3.16 — Relevant Type Manager Functions

3.7.2 Interobject attribute axioms

Interobject attribute axioms constrain the value of an attribute by comparing its value to
the values of the set of objects of that class. The values of a set of objects were previously
defined in the section on summary statistics. These values are derived from the functions

69

S(C). For example, this type of axiom could restrict an employee’s salary to be no greater
than forty thousand dollars more than the average salary.

Emp.salary< mean(emp.salary) + $40,000

373 Interclass axioms

Interclass attribute axioms are axioms that restrict the value of an attribute of a class by
referencing the value of an attribute or attributes or the value of a system function from
another class. For example, one such axiom might be:

maximum_rurmber_of books checked out < court {books) / count (nurmber of people).

There are at least two interpretations of the previous axiom. One interpretation is that
this constraint must hold true only at the time of checkout of the book. Another
interpretation is that the constraint must be maintained throughout the life of the system.
Obviously, the second constraint requires a great deal more overhead in terms of
implementation.

3.8 Transformational Implementation Issues

The runtime characteristics of a class can help to determine the type of storage, the type
of indices, the methods of retrieval, and other aspects of an implementation. For each class
the following questions can be answered by an application designer:

e Current number of objects in a system?

o Current number of objects added per period?

e Objects deleted per period?

o Percent growth rate per period equals (#added per period - #deleted per period)/
(#of objects in system).

This information, when combined with the specification information for a class, allows
a number of optimizations to be performed by the transformational implementation of the
final application program. The type of scenario that an application designer might describe
for a library is as follows:

The annual renewal membership rate for people at the library is 85% and we
anticipate a 25% per-year growth rate. The library receives 4,000 books a

year and loses about 750 through theft and damage. We currently own
about 60,000 books.

Cunent_sizes(person_dass} * Estimated_max_number(person_class)
Current_size(book_class) * Estimated_max_number(book_class)
summation of (size(obj) * max_expected(obj)) < disk capacity.

3 Where current_size is used to indicate bytes, block size, or whatever measure is most appropriate for the
implementation.

70

Figure 3.17 shows the screen that captures class population parameters. As was
shown in Iscoe [Iscoe 88a], this information can be used to facilitate selection of the
appropriate database algorithms for an application program.

of i #of objecls; # of objacts

objecis/ | added per | geleted per

application | peried ! period
Minimum [0 1 i {o | ie |
Mesimum (2,000,000 | ; [1.o00] i[500]
fverage |1,000 | ! | | " |

Number of Periods object

remains in system
I Cancei
Minimem |4 §

Manimum (12 oK 3
o r—

Figure 3.17 — Class Population Parameters

3.9 Organizing Classes

Classes have been defined as constructs that encapsulate attributes, provide for the
definition of derived attributes, allow additional operations to be defined, and at run time
instantiate and delete objects as well as maintaining summary statistics and enforcing
integrity constraints. Several examples were used in this chapter to demonstrate both the
definitional aspects of domain models as well as the methodology for instantiating domain
models.

The definition of class combined with the definition of attribute in the previous chapter
completes the building block definitions for the meta-model. Attributes can be viewed as
abstract data types that capture domain semantics which are normally lost when standard
computer types are used to represent domain values. Classes are higher level abstractions
that encapsulate a set of attributes and provide a structure for capturing additional domain
information.

The next three chapters describe how information stored within the attribute/class
framework is used by domain experts to organize and structure domain models. The main
class structuring concepts are hierarchical decomposition, class composition, and class
association. As was mentioned in Chapter 1, many object-oriented and knowledge
representation schemes use these concepts. However, our methodology is more
definitional, more strongly typed, and more structured than most other approaches. This is
possible because we have traded structure for exploration. The emphasis in this
methodology is on providing a meta-model that domain experts can use to record their
knowledge instead of an exploratory system in which novices make discoveries about an
application domain. This tradeoff allows us to avoid many of the ambiguities and
confusion such surrounding many models.

71

Reusable |

Atibute EES T S I Class
Definitions A -

WY 4

N N N

y N

© N N Class Class

Class Class Class Class

Class Class Class Class | | Class

?‘i\\ | I?l \®/

i Class 7 Class
A /

T e

i I

A YIRS
/

1 / N\
Objects \%

Figure 3.18 — Overview of the Model

Figure 3.18 shows attributes, classes, hierarchical decomposition, composition
(indicated by symbol &), and association (indicated by the symbol ®) Hierarchical
decomposition is the process of developing a class hierarchy by using afrribute restriction
to specialize a class into subclasses. Sub (and super) class definitions, along with our
interpretations of the terms inheritance, generalization, specialization, aggregation, and
instantiation are explained in Chapter 4.

Class composition is the process of creating a new class from two or more other classes
by taking the union of their sets of attributes and using domain knowledge to resolve
conflicts, eliminate unnecessary attributes, and add new attributes as needed. By creating
classes that represent common entities or concepts within an application domain, the
domain-expert is able to build a library of primitive classes that can be used, and reused, in
a variety of combinations to create larger-grained classes. These ideas are further explained
in Chapter 3.

Chapter 6 defines class association; the process of creating a new class that establishes
a relationship between at least two other classes by taking the union of their naming
attributes and using domain knowledge to add new attributes as needed.

Chapter 4 - Hierarchical Decomposition

4.1 Introduction

Hierarchies are a natural way to view and organize information and, at some level of
abstraction, are a part of most object-oriented and knowledge representation languages.
Unfortunately, the simplicity of these concepts can sometimes obscure the semantics that a
model is attempting to capture. We avoid unnecessary ambiguity ! in the modeling
methodology by forcing domain experts to define class decomposition in terms of an
existing well defined attribute as described in definition 4.1.

C'is a subclass of C if:

1. There is an attribute, A, with V{(A) D V' (A)
2. P(C) o P(C) Thatis, the attributes of C’ consist of at most the primitive attributes
of C and additional attributes that can be derived from those primitives.

C is a superclass of C', if C' is a subclass of C

Definition 4.1 — Subclass and Superclass

In general, domain experts create subclasses by selecting an attribute of the superclass
and then using its partitioned value set to defines subclasses. Subclasses contain only
those attributes defined in the superclass, or that can be derived from the attributes of a
superclass. Specialization is the process of partitioning a class on a particular attribute that
is chosen to be appropriate by the domain expert. Figure 4.1 shows a company class that
has been subdivided into three subclasses based on the value of the attribute,
days_overdue. The three subclasses classes are specializations of the parent class derived
by partitioning the parent class on the value set of the attribute days_overdue. The
superclass company class is a generalization of its subclasses.

Company Class

Slow_pay
30< DO <60

i R | e 1
Instantiation

Figure 4.1 — Partitioning a Company Class

1 Such as the multiple interpretations of “is-a” discussed by [Brachman 83].

73

74

4.1.1 Attribute Restriction Alp v, B

Throughout Chapter Two, we developed a system for defining attributes by
systematically characterizing their value sets. In this chapter, we continue the process of
characterization. By creating a systematic methodology for the partitioning of attributes,
the modeling methodology provides a way for the domain expert to be able to organize,
subdivide, and build hierarchies of classes.

Starting with the base definition of an attribute A, it is useful to define a restriction B as
follows:

An attribute B is a restriction of an attribute A (or A is an extension of B} if :
VA) o V(B)
RA) > R(B)

Definition 4.2 — Attribute Restriction

Restrictions allow hierarchies of attributes and scales to be constructed. For example,
the attribute car_color based on the nominal scale colors (red, yellow, green, blue) can be
further divided into two restricted attributes:

Car_colorpamand car_colorepol

where Ycar_oolothwarm) = (red, yellow)
ear_colorlenol) = (green, blue)

Domain experts and application designers can design restrictions based on scale
characteristics that include population parameters as described in the following section.

An attribute restriction was defined as a new attribute whose value set and set of
applicable relations were subsets of the original attribute. In the car_color example,
car_color was a four-category nominal scaled attribute that was mapped into a two-category
nominal scaled attribute. In Figure 4.1, days_overdue was a ratio scaled attribute that was
mapped into a three-category nominal scaled attribute based on cut-off values determined
by the domain expert.

The modeling methodology decomposes classes by selecting an attribute and then
partitioning its value set to create new categories. The process of partitioning a class
generally results in creating a newly derived attribute that represents the mapping from:

o an interval or ratio scaled attribute to an ordinal or nominally scaled attribute.

. an ordinally scaled attribute to an ordinally scaled attribute with fewer categories
than the original or to a nominally scaled attribute.

. a nominally scaled attribute to another nominal attribute with fewer categories
than the original attribute.

. an interval or ratio scaled attribute to an ordinal or nominally scaled attribute.

For example, days_overdue is a ratio scaled atiribute that was reduced to a three-
category ordinally scaled attribute In the car_color example, car_color was a four-category

nominal scaled attribute that was restricted to become a two-category nominal scaled
attribute that indicated color warmth.

4.1.2 Inheritance

Inheritance is the process by which a subclass receives the attributes of a super class as
described in definition 4.1. This definition of inheritance differs from others in that it
exists for definitional, as well as, implementation purposes. This approach is much more
structured than other approaches commonly used with object-oriented programming. It
requires that when a domain expert adds additional values to an attribute value set that those
values will be propagated to the attribute dictionary and available to all classes as opposed
to being only defined locally at a low level in a class hierarchy.

One of the goals of inheritance is to permit a disciplined form of breaks in the veil of
encapsulation for classes. This break is necessary because as the number of classes
increases (and from a designer-programmer standpoint it becomes more important to see
inside a particular class), programmers often cheat. That is, they directly reference instance
variables or use a variety of other techniques to pierce the encapsulation veil.

Snyder [Snyder 88] discusses the dynamic tension that exists between encapsulation
and inheritance. From a software engineering standpoint, object-oriented approaches are
good because they hide detail by encapsulating state and operations, but the benefits of
being able to "see inside" a class or an object cause many designers to decide that strict
encapsulation is overly restrictive. In the modeling methodology a balance is achieved
between encapsulation and inheritance by reusable attribute definitions that provide
common building blocks for class construction.

4.1.3 Aggregation

Aggregation is a frequently used term that refers to the construction of a class based on
observations about object clustering within a particular application domain. Figure 4.1
shows the term aggregation as pointing up from a group of objects to the class that might
have been created through aggregation. Although aggregation is a term used in a variety of
other approaches, we do not use the term in the modeling methodology. This is because
aggregation is a process that has presumably been performed by the domain expert to
produce the conceptual model of the domain. While aggregation is an implicit part of the
domain structure, the non-exploratory nature of our methodology precludes aggregation
from being a class construction primitive.

4.1.4 Instantiation

The term instantiation is used in this dissertation to describe two different processes;
one process occurs at the meta-level and the other process occurs at the domain modeling
level.

At the meta-level, as was discussed in Chapter 1, the term instantiation describes
the process in which a domain expert instantiates the meta-model with domain information
to create a specific domain model. At the domain modeling level, classes instantiate objects
which represent instances of the type defined by the class.

76

4.2 Using Population Parameters

Population parameters facilitate the formation of new attributes. For example, some
graduate admissions committees use interval scaled GRE scores to separate applicants into
acceptance categories. Population parameters allow designers to create new attributes
based on restrictions to the original attribute as shown in Figure 4.2.

GRE_Score: Interval_scale Score in GRE units
(min 400) (max 1600)
(dist normal) (mean 1100) (stddev 125)

GRE_SCORE 1__ |]
N Reject GRE_SCORE! ¢ onsider

(min 400) (max 1000) (min 1001) (max 1449) (min 1450) (max 1600)

GRE_SCORE) 5 ooy

Figure 4.2 — Using GRE Score to partition a class

Figure 4.2 shows the GRE score as an attribute which could be attached to a student.
Understanding the distribution of values within the value set of GRE scores allows
application designers to create partitions in any one of a variety of ways. For example,
assume that an application designer wanted to create an initial partition based on the
requirement “accept all students who score in the top x% on the GRE and reject those who
score in the bottom y%" Given this type of requirement, the domain model contains the
appropriate information to use and algorithm to produce the correct raw score numbers to
achieve such a partition.

Another way that these requirements are sometimes stated is to build a partition based
on an absolute raw score. For example, a requirement like, "accept all students who score
above 1450 on the GRE" can be easily incorporated. Furthermore, this type of
specification can be used interactively so that the designer can juggle between raw scores
and percentiles until the partitions appropriate for the application domain are produced.

4,3 Hierarchical Decomposition & “Birds Fly”

While our approach to domain modeling has more restricted operational goals than the
generalized research of knowledge representation, it is interesting to use this methodology
on the classic problem of representing birds fly. This example usually begins with the
assertion that all birds fly, Vx (bird(x) — fly(x)).

Using the modeling methodology, the first task is to create an attribute (in this case
nominal) whose value set represents all possible states of the attribute. Because can_{fly
has been specified as one state of flight ability, the other option to consider is the absence
of flight, can_not_{ly.

flight_ability: nominal_scale (can_fly, can_not_fly)

77

In a simple system, this attribute is then assembled with a bird_type attribute to form
the bird class shown in figure 4.3a where the value set of flight_ability would be
constrained to the single value can_fly.

Bird = Class
Bird_type: (robin, sparrow,penguin, ostrich, . . .)
flight_ability: nominal (can_fly, can_not fly)

Figure 4.3 a — Bird Class

Once the initial premise (Vx (bird(x) — fly(x))) is assumed to be true, a series of
counter examples are then presented. These questions include the following: What about
penguins? Ostriches? Birds with broken wings? Dead birds? Birds with their feet set in

concrete? The problem then is to identify the no longer correct assertion Vx (bird(x) —
fly(x)) and to retract it along with the facts proved from it.

One way to handle these issues is shown in figure 4.3b. By adding population
parameters, the model addresses the fact that bird(x) neither implies flight or non-flight.
The class no longer contains incorrect information, and the problem posed above is
avoided.

Bird = Class
Bird_type: (robin, sparrow,penguin, ostrich, . . .)
flight_ability: nominal {(can_fly 75) (can_not_fly 25))

Figure 4.3 b — Bird Class with Population Parameters

Our methodology allows us to sidestep the inference question that the logicians are
actually posing, and encourages the domain expert to approach the problem in a different
manner. Notice that the questions posed above fall into two different categories. One set
of questions addresses issues concerning a taxonomy, while the other set refers to
operational considerations of bird flight.

Chapter 2 described PC(A), the probability that an attribute will change value within the
life of a system. In the event that an attribute does not change value within the life of an
application, PC(A)=0. Examination of this characteristic is particularly appropriate when
the domain expert is creating taxonomic partitions, because attributes that are allowed to
change should not be used for taxonomic classification purposes. Obviously, the term
flight_ability has been overloaded to mean both the inherent ability to fly as well as the
operational ability to fly, and was therefore an inappropriate selection to achieve a
taxonomic classification.

Figure 4.4 shows a second attempt at creating a workable class structure. If one cares
about the operational ability of birds to fly, then that ability should be represented by a
(nominal scaled) attribute, flight status. Given that a bird flies it might have two statuses:
A-O.K. means that the bird can fly, while grounded might mean that the bird has a broken
wing, is sick, doesn't want to fly that day, is dead and so on. On the other hand, even
birds that can't fly might have occasion to hitch a ride on a airplane, on the back of a larger
bird, or perhaps be tossed through the air by a young child.

78

Birds
fly:

nominal scale(inherent_ability, no_inherent_ability)

Birds lthat_ﬂy
flight_factors:

N

Birdsl that_don't_fly

method_travel:

nominal(A_OK, nominal{walk,
Broken_wing AmericaWest,
Sick) Charter Flight,
Leased Limo)
Birdsl, o Birds! g oundea

Figure 4.4 — Birds Fly

While this method of representation doesn’t solve the birds fly inference problem as it
is normally posed, it illustrates operational specifications as used within the modeling
methodology. In this case, the original attribute used to partition the class of animals was
not appropriate because it failed to provide a taxonomic partition. By recognizing the two
components of fly, an operational solution was achieved.

4.3.1 Definitional Components

[Brachman 85b] has pointed out that many of the cancellation and default schemes
used in knowledge representation can lead to situations in which a model can be interpreted
in obscure and non-constructive ways. He illustrates this by observing that the concepts of
3-legged-elephants and 4-legged-elephants are sets of properties that are usually not defined
in a way that establishes what the normal or usual situation should be. Figure 4.5 shows a
definitional solution to that problem using the modeling methodology.

Elephant

No_of legs: Interval_Scale (min 2) (min 4)

Elephantl|

non_standard_Jegs

Elephantl

normal_legs

Figure 4.5 — Elephant Legs

79

44 Hierarchy Evolution

This section is a discussion of how a domain expert evolves a domain model. Assume
that a domain expert has defined a book class as one which includes attributes such as
author, title, subject, ISBN, and so on. Let us now assume that when examining the book
class, the domain expert wishes to include a designation for a paperback book. The first
step is to determine whether the paperback designation is a fundamentally new attribute or
simply an extension of an old one.

An example of attribute extension would be adding an additional color to the book color
attribute, an additional subject category to book subject attribute, and so on. In order to
add the paperback designation, the domain expert must decide if this is a new classification
that wasn't originally considered part of the domain, or if it can be incorporated into a
previously existing classification. One way to approach the problem is to consider the
question: "What does it mean to not be a paperback? Or, "Does this attribute partition the
physical characteristics of the class?" This question relates to the original reason that the
expert felt that paperback was an important attribute. Perhaps they are cheaper, or easier to
get, get stolen more often, don't last very long, or some combination of these reasons.

This discussion points out that the decision to include or exclude attributes is domain-
specific. If the reason that a paperback classification is important is that it will be used for
shipping purposes, then the paperback designation might more appropriately be a
specialization of book weight. Similarly, if the purpose of the paperback designation is to
indicate a low cost, then a specialization could be performed based on book cost for books
under $10.00. However, if the paperback classification is in and of itself of interest, then a
new attribute might need to be created. This attribute might also include other values which
were not originally included such as oversized books, books with photographic plates, and
other unusual books.

80

Chapter 5 - Composition

5.1 Introduction

Composition is the basic constructor of the domain modeling methodology, and is the
process of constructively building new classes from previously existing ones by using
domain knowledge to:

1. take the disjoint union of the sets of attributes,

2. resolve conflicts,
3. eliminate unnecessary attributes,
4. add new attributes as needed.

The prefix symbol @ is used to indicate the composition process as in the expression:

Cum:=(® C1Cy...Cp). The following definition gives the basic algorithm for the
composition process.

Cw s a class that is the composition of the classes Cy Cz ... Cn. The algorithm {in which the
subscript « refers to a function completed by the domain expert) is as follows:
Cu=@CiCo...Cp)

1. 2(Cy) = 4(Cy)u 4(Cy v ...2(Cp)), where U is the disjoint union
2. Vx 3y (A (a(Cx)) N AL(a(Cy)) = D) — conflict_resolutiona(A(Cx), A(Cy))

3. 4 (Cu):= 4 (Cy) - irrelevant _attributess(Cwm)

4. 2(Cy) = 2 (Cuw)u selected_new_attributess(atiribute_library)

Definition B5.1— Composition Process Algorithm

Throughout the remainder of this section, composition is illustrated with a series of
examples that show how various types of information are combined, how conflicts are
resolved, and how composition differs from multiple inheritance.

52 Composition without conflicts

Before beginning the detailed analysis of composition, it is useful to examine two
figures introduced in chapter 1. Figures 5.1a shows classes in the context of a simplified
library system, and figure 5.1b shows a simplified accounts receivables system. Explicit in
these figures is the idea that certain classes exist regardless of the existence (or the lack of
existence) of a particular application domain. Books, people, products, and companies, all
exist in a variety of different contexts and are labeled as general classes in the figures.
While domain boundaries vary, certain classes such as lending_information,
member_information, pricing_information, and so on can be viewed as domain-specific
classes because they are always bound to specific domains. The gray areas labeled
association classes will be discussed in Chapter 6.

81

82

Figure 5.la — Library System Figure 5.1b— AR System

In a library domain, library books are composed from a general book class and a
domain-specific lending class. Similarly, library patrons are composed from a
basic_person class and a domain-specific member class. Library books and patrons then
participate in certain associations that define the nature of a library. A similar situation
exists in an accounts receivables domain.

5.2.1 Library Book

Chapter 3 defined a general book class which can be composed with other information
to produce new class definitions such as Library_Book. A book can be composed with a
lending_itern as shown in Figure 5.2:

Book Lending item

Figure 5.2 — Library_book: = (® Book Item_to_be Loaned)

Figure 5.3 gives a simple definition of a lending_item class that could be used for
books, tapes, records, art, and other items that are to be loaned without charge.

Lending_ltem = Class

Loan_count : Ratio_scale count in integer;

L oan_status: Nominal_scale (loaned, not_loaned),
ltem_status: Nominal_scale (OK, missing, damaged);
Acquisition_date : Interval_scale time in days;
Cum_Loan_time : Ratio_scale time in days;

OPERATIONS
Inc_Cum_loan_time: Ratio_scale time in days ((min 1){max 90));
Inc_Loan_Count: Constant time in days (1);
Age: Ratio_scale Time in days (derived Acquisition_date),

Figure 5.3 — Base Definition for a Lending Item

Library_book = Class

Library_of_Congress (Name 1);

Copy_number: Interval_scale ({(min 1) {max 99) (Name 2));
Title : Nominal Title_Type;

Author : Nominal Person_Name_Type;

ISBN : Nominal: ID_Number;

Copyright_date : Gregorian_date (min 1800});

Cost : Ratio_scale money in dollars {gran .01) {min 1) (max 75);
Weight : Ratio_scale weight in pounds (gran 1) (min 1) (max 35);
Loan_count : Ratio_scale count in integer;

Loan_status: Nominal_scale {loaned, not_loaned);

ltem_status: Nominal_scale (OK, missing, damaged);
Acquisition_date : Interval_scale time in days;

Cum_Loan_time : Ratio_scale time in days;

OPERATIONS
Inc_Cum_loan_time: Ratio_scale time in days ((min 1)(max 90}));
inc_Loan_Count: Constant time in days (1).;
Age: Ratio_scale Time in days (derived Acquisition_date).;

Figure 5.4 — Book in_the library = (® Book Lending Item)

Note that a class may have properties that do not need 1o be mapped into the
application. For example, book_weight is an attribute of a book that does not need to be
known by the library, so it is left out.

84

5.2.2 Person

Another case where composition can be applied is when using and reusing the
information required to build classes for common business purposes. Classes without
naming attributes are generally created to be combined with other classes These classes
contain information which, when added to a class with naming attributes, creates a new
application class. Classes without naming attributes are useful mechanisms for storing
domain specific information. Credit information, address information, rental information,
and other domain specific and policy specific information can be neatly bundled up into
these types of classes. These classes are common in other modeling techniques, and are

sometimes called "mixins.” One example of such a class is US_address which is shown
in Figure 5.5:

US_Address = Class

Address: US_street_address;

City: US_City;

State: US_State = Nominal_scale (AL, AK, AZ, AR, CA, CO, CT, DE, DC, FL,
GA, HI, ID, IL, IN, 1A, KS, KY, LA, ME, MD, MA, M1, MN, MS, MO, MT,
NE, NJ, NV,NH, NM, NY, NC, ND, OH, OK, OR, PA, PR, RI, SC, SD,
TN, TX, UT, VT, VA, WA, WV, WI, WY);

Zip5 : Old_Zip_code;

Zip4: New_Zip_code,

Figure 5.5 — US_Address

Figure 5.6 shows a creation_location class. Creation_location is a class without a
naming attribute that can be used in a variety of different situations. When it is composed
with a company_basic class (shown in Figure 5.7) a company class is created as shown in
Figure 5.8. The composition process is indicated as follows:

Company Class : = (® company_basic creation_location)

Creation_Location = Class
Creation_date: Gregorian_date;
City_of_Creation: US_City;
State_of creation: US_State;

Figure 5.8 — Creation Location

Company_basic = Class

NAMING ATTRIBUTES
Name: Company_name;
Federal Tax_ID : Nominal_scale;

Figure B.7 — Company_basic

85

Company = Class

NAMING ATTRIBUTES
Name: Company_name;
Federal_Tax_ldentification_number,;

NON-NAMING ATTRIBUTES
Incorporation_date: Julian_date;
City_of incorporation: Nominal_scale;
State_of incorporation: State_Type;
Address: US_street_address;

City: US_City;
State: US_State
Zip5 : Old_Zip_code;
Zip4: New_Zip_code;
Phone: phone_number;

Figure 5.8 — Company_Class: = (® company_basic creation location US_address)

The creation location can also be composed with a person to create a person class:

person_class: = (® person_basic creation_location). This operation is fully detailed in
Appendix B.

5.2.3 Defining a Client

By organizing information into classes, the domain expert creates a system that allows
different final classes to be created. For example, in Figure 5.9 a client is created from the
classes: company, person, billing_info, and payment_info Note that the OR operator refers
to the domain expert's selection of either a company or a person to be composed.

A client is a person or a company composed with billing and payment information.
Client : = (® (OR Company Person) Billing_Info Payment_Info). In alegal time and
billing system, another class which could be composed to create a specialized client is
shown in figure 5.13. The results of these compositions are shown in Appendix B.

Company Person

[Billing_Info j [Payment_info

&

Client

Figure 5.9 — Client : = (® (OR Company Person) Billing Info Payment_Info).

86

53 Composition With Conflicts

The previous composition examples have not had to deal with the case of naming
conflicts between two attributes. This section examines the ability of the domain model to
facilitate the composition of classes that have attributes which conflict or at least appear to
conflict. The conflict problem was illustrated in the automobile example in Chapter 1.
When composing an engine and chassis to create an automobile, conflicts appeared for both
the age and weight attributes, Figure 5.10 shows this situation. In general, domain
knowledge is required to resolve conflicts between the age and weight attributes.

Figure 5.10 — Determining Age & Weight of an Automobile

Snyder [Snyder 88] describes three syntactic approaches to the conflict problem in
multiple inheritance. Although these strategies provide work around solutions to the
conflict problem, they fail to use any semantic information to resolve those conflicts.
Consequently, the choice of a particular solutions is an ad hoc decision based on
programming language design rather than domain semantics. Our approach uses domain
knowledge to avoid a purely syntactic approach and consequently solves the problem for
classes whose attributes contain the appropriate semantic information.

For example, weight is an attribute that can be composed using the plus operator that
was defined in detail in Chapter Three. The plus algorithm can be summarized as follows:
In order to combine two attributes with interval or ratio scales, say Al and A2, into a new
attribute A3: Al, A2, and A3 all must be of the same quantity , must have the same unit
measure, and the measurement granularity of the unit of A3 must be at least as coarse as the
most coarse of the measurement granularities of the units of Al and A2.

Our definitions of attribute and class have also sidestepped another problem of
classification that is sometimes seen in other forms of representation. For example, even

for a well understood property like weightl, objects in some domains do not always
combine as cleanly as did the engine and chassis. For example, is the weight of a football
team the weight of the biggest player? the smallest player? the average player? the list of all
of the players? This problem can be approached in the model because weight, and all other
attributes are defined in terms that capture semantics.

! The definition of weight in most domains is defined as an object's weight on earth rather than by the

definition of mass times acceleration (with separate instantiations of average gravitational acceleration for
each object). Although in most cases, this is considered common sense, in certain domain-specific
applications such as space vehicle construction, this assumption is violated.

87

Figure 5.11 shows a solution in terms of a domain model.

Engine = Class
Power : Ratio_scale power in horsepower,
Weight : Ratio_scale weight in ounces;
Age : Ratio_scale distance in miles;
Create_Date : Interval_scale time in days;

Chassis = Class
Weight : Ratio_scale weight in pounds;
Create_Date : Interval_scale time in days;
Color : Nominal (red, yellow, green, blus);

Automobile = (® Engine Chassis)

Automobile = Class
Power : Ratio_scale power in horsepower;
Weight : Ratio_scale weight in pounds;
Create_Date : Interval_scale time in days;
Miles: Ratio_scale distance in miles;
Color : Nominal (red, yellow, green, blue};

Figure 5.11— Scaled Version of Automobile

54 Relation to other paradigms

In a discussion of the underlying themes surrounding object-oriented systems, [Stefik
85] wrote that “...a map of the world is necessarily drawn from where one stands....”

This comment seems to be especially true with the composition operator. Composition is a
general purpose constructor that allows the domain expert to build complex classes from
smaller previously existing classes. This definition is sufficiently general that it includes
structuring techniques such as parr of and multiple inheritance as special cases.

The automobile example illustrated composition that in other systems is sometimes
known as a part of relationship. Both the engine and the chassis are parts of an
automobile. This is a common special case of composition, and as has been shown in this
section, leads directly to reuse of commonly occurring classes such as US_address.

The problem with a term such as part of is that while the nomenclature appears to
convey very specific meaning, it is still subject to multiple interpretations. In the previous
paragraph we stated that Figures 5.10, and 5.11 showed that an engine and chassis are
related to an automobile by a part of link. But an equally valid realization of Parz of isas
a composition with no conflicts and no deletions. In the automobile example, this
realization requires that both the age and weight of the engine, and the age and weight of
the chassis, be maintained in the definition of an automobile.

Since composition is an operation that builds larger classes from smaller ones, it is
capable of constructing either of these cases. Throughout this dissertation, we have
attempted to build a methodology that encourages, and many times forces, domain experts

88

to define exactly what they mean by particular constructs. Since part of can be interpreted
in several ways, we avoid its use in the methodology.

Multiple Inheritance is another term that has a variety of meanings in other systems.
While all of these meanings have the effect of combining attributes from more than one
class, interpretations differ as to the procedures for handling conflicts, and the addition and
deletion of attributes. Using the definitions from our meta-model, the muliiple inheritance
(in most systems) violates the constraint that subclasses can consist only of attributes
inherited or derived from their parent. Rather than using the ambiguous term multiple
inheritance, we require the use of composition to specify the case sensitive meaning of the
operation. Figure 5.12 presents an example that will clarify our view.

Amphibious Vehicles
Motorized | |Non-Motorized | [Hybrid | Military
Amphibious| | Amphibious | |Amphibious Land
Vehicles Vehicles Vehicles Vehicle

Military Amphibious Vehicle

Figure 5.12 — Classic view of Multiple Inheritance

The figure shows a classic multiple inheritance example in which an amphibious vehicle
is combined with a military vehicle to create a military amphibious vehicle. This
combination is a reasonable interpretation at this level of abstraction, and in most systems,
it is left up to the programmer in most to define what it really means to be a military
amphibious vehicle. Our definition of specialization precludes this interpretation.

Figure 5.13 illustrates the same situation as modeled with our methodology. At this
level, composition is once again used to combine attributes, and can be viewed as
establishing more part of relationships, or of simply performing multiple inheritance as it is
pictured in Figure 5.12.

1 gl gWatérleE et

DnveTraunI

-
Non-Motorized i Hybrid || Motorized
Amphibious Amphibious| Amphibious
icles Vehicles Vehicles
Military
Land
Military Amphibious Vehicle Vehicle

Figure 5.13 — Composition Within A Domain Model

Chapter 6 - Association

6.1 Introduction

Association is the process of creating a new class that establishes a relationship between
at least two other classes by taking the union of their naming attributes and using domain
knowledge to add new attributes as needed. The association operator can be viewed in
several different ways. At one level of abstraction, it indicates the dynamic nature of a
system. However, from a strictly definitional standpoint, it can be viewed as a
composition operator in which there are guaranteed to be no name conflicts (because this is
a constraint enforced by the model) and all attributes except for naming attributes are
eliminated.

The prefix symbol ® is used to indicate the association process as in the expression:

Cy=®C1Cy...Cp). The following definition gives the algorithm for the association
process:

Cwis a class that is the association of the classes Cy Co...Cn The algorithm is as follows:
Cm=(®CqCo...Cp).

A

(e

=
i

ACq)w A(C2) v ... AUCn))
A (CM) v selected_new_attributes & (attribute_library)

PO
p

(=)

=
i

Definition 6.1 Association

The checkout class creates objects that are linked at run-time to the instantiated objects
of the library book class and library patron class. The association operator can be used to
create an association class from classes with naming attributes. Associations are classes
that capture the semantics of the relationship between two or more other classes. They are
called associations because they contain naming attributes from two or more external
classes, and they associate the objects pointed to by those naming attributes as shown in
figure 6.1, and in the center of the figure 5.1a & b where the association operator, &,
creates a checkout class that associates the library book and library patron.

89

90

Class Class
N{c)=Aturibute 7 N{c)=Auribute 2
Atiribute 52 Attribute 46
|]
i B’
T i
I — & - h
l t g ! sSsoiauon [!
Class .
,’ ; 1! “ N(c)=Attribute 2 I“:tat;mmm
i \ Attribute 7 i
I Aturibute 36

Objects

Figure 6.1 — Associations

As was seen in the library example (Chapter 1, Figure 1.3a), when a book is checked
out by a person, the check-out class instantiates an object which records the association
between the relevant person and book object. The domain model goes well beyond
capturing the surface semantics represented by more traditional approaches such as the
entity relationship model [Chen 76]! . The classic ER model, in addition to overloading the
term relationship with a variety of IS-A meanings, captures only the cardinality of object
association. Mapping the ER model to our modeling methodology, one can see that
dependent entities are roughly equivalent to classes without naming attributes. Within a
domain model, classes capture a variety of additional information not typically captured by
data base schemas.

6.2 Association as Contract

One useful way to view the modeling methodology's treatment of an association
between two classes is to view that relationship as an implicit agreement or contract
between those classes. The role of the modeling methodology is to allow the domain
expert to specify that agreement or that contract in terms of the domain model.

Consider some of the functions of the class that associates person and book for the
check-out operation. In this case, the object represents an agreement by a library patron to
return a book within a certain period of time. In the event that the book is not returned, the
object which captures the semantics of that agreement is responsible for a series of events
which will enforce the agreement.

1See also related work Entity Relationship Models

91

When a book is first checked out, the check-out class does relatively little. Itrecords
the fact that the book is checked out by a particular person by creating an object that
associates the person_object with the book_object, and it invokes an operation on the
person_object which increments the count of the current number of books checked out by
that person, and invokes an operation on the book_object which marks the book that was
checked out as no longer available.

If the person returns the book within the normal time allotted for its return, then the
object instantiated by the check-out class is deleted by the delete operation for that class; the
number of books checked out by the person is decremented and the book is marked as once
again available for check-out.

However, consider the case where the book is not returned within the allotted time
period. In this case, the check-out object is responsible for initiating actions to get the user
1o return the book. Depending upon the policies and protocol of the library, the object
might produce an overdue notice or set of notices, followed by a reminder letter followed
by a last notice for return, followed by a statement informing the user that the book was
lost. Also depending upon the policies of the library, it might at some point change the
status of the person in the library from able to check out books to not able to check out
books. Similarly, it might change the status of the book from checked_out to lost or
stolen. These events and their actions are illustrated in Figure 6.2.

Event Time Class Action

End of day processing <n none
n Issue Overdue notice
X Issue 2nd Notice
y Issue Final Notice
z declare book stolen

Return <n None
n<Time<z Calculate fine - assign to person
Time >=1z Issue letter - Too late to return book

Figure 6.2 — Library Events

While the terms of agreements, and the policies for enforcement of these agreements,
may differ radically from program to program, the principles are the same. In the case of
an accounts receivable system, a person or a company receives merchandise and also must
pay for it within a certain period of time. The semantics of the enforcement of that payment
are the policies of a company with regards to accounts receivable. For example, the
statement "our terms are 2/10 net 30" means that the purchaser is given a 2% discount if an
itemn is paid for within 10 days. In the event that the item is not paid for in 10 days the
purchaser is supposed to pay for the item within 30 days. In a more complicated case,
additional interest may begin to accrue after the 30 days have passed. These accounts
receivable terms are illustrated in Figure 6.3:

92

Event Tim Class Action
End of day processing <=10 Amt_due := total- total * discount
10<Time<30 Amt_due :=total
Send notice
Send 60 day notice
send 90 day notice
Payment Made < =10 Amt_due := total- total * discount

10<Time<30 Amt due :=total
Time >=30 Amt_due:= total + total*

Figure 6.3 — AR Relationship Events

Regardless of the actual terms and conditions, the principle is the same. Relationship
classes capture the semantics of agreements, be they explicit or implicit, between other
classes.

8.3 Semantics of Instantiation & Deletion

In chapter 3, instantiation and deletion were introduced as paired operations that were
attached to all classes that created objects. Association classes create objects, but must also
maintain the cardinality of the links to other objects, as well as maintaining link integrity in
the event that a linked object is deleted.

Checkout = Class
Date_Checked_out Gregorian_date

EXTERNAL
CLASS Person (NAME Person_Name)(CARD M))
CLASS Book {(NAME Call_Number){(CARD 1))

OPERATION
Date_due := check_out_length(book.type, person.type) + current_date

Figure 8.4 — Checkout Class

93

Invoice = Class

Date_Purchased Gregorian_date
Sub_total_Purchase: ARDollar
Discount_P: Percent_Money-in_Dollars {min 0) (max .40)
Interest_P: Ratio_Scale_Money-in_Dollars_Modifier (min 0) (max .22)

DERIVED
Discount_period: Ratio_Scale Time in days (min 0) (max 180)
Tax = Sub_total * Company.taxrate
Total_Due := Sub_total + Tax

EXTERNAL
CLASS Customer (NAME Customer_Name)(CARD 1))
CLASS ltem (NAME ltem_ID}){CARD M))

OPERATION
Date_due = check_out_length(book.type, person.type) + current_date

Figure 6.5 — Invoice Class

6.4 N-ary associations

In the examples in this chapter, all of the associations have been binary associations.
However, it is sometimes the case that an N-ary association should be considered. For
example, parts, manufacturers, and suppliers is a case where a three-part relationship is a
common semantic interpretation. While N-ary associations can always be constructed as
compositions of binary associations, this composition process can obscure the semantics of
the high level application domain association. Our approach is similar to Kent’s idea of
two different views of the arity of associations [Kent 78] Internally, composition is
regarded as a binary operator, but to the domain expert, composition is regarded as an N-
ary operator.

85 Transformational Implementation Issues

At an implementation level, all classes map cleanly into tables where each attribute
represents one column and each object one row. Viewed from the standpoint of classic
relational data models, the set of attributes defines a relation, and the class contains the
integrity constraints that determine the creation of new tuples (rows).

Although domain models can always be implemented in this manner, efficiency
considerations dictate that refinements on this scheme occasionally be performed. In the
case of primitive classes (e.g. ones that have not been constructed from composition or
association) that create objects, few options exist besides determining whether or not to
build an index on a particular attribute or set of attributes.

In the case of classes created by the association operator, the options are also quite
limited. Essentially, these classes always include the naming attributes of the classes they
are associating, as well as any additional attributes that are required to add meaning to the
association relationship. Although the association options are limited, a spectrum of
options exist for classes that are created by the composition operator. These

94

implementation options range from irreversible binding to reversible binding of the
attributes.

Totally reversible binding refers to attribute binding that is accomplished by creating a
table that uses naming attributes as pointers that allow indirect access of the attributes in the
classes named by the naming attributes. In contrast, irreversible binding refers to a
composed class implemented by directly storing all of the attributes in the same table.
Irreversible binding allows more efficient access to the attribute values then the traversal of
pointer chains required by reversible binding. Although irreversible binding is inherently
more efficient, it must be prohibited in cases where it would cause update and deletion
anomalies (as described in the discussion of normalization in Chapter Three).

Chapter 7 - Related Work

7.1. Introduction

In this dissertation, we have outlined a domain meta-model and a methodology for its
instantiation into specific domain models. In the introduction to this dissertation, we
pointed out that while programming is well understood enough to model and teach,
application domain knowledge is rarely explicitly modeled. In this chapter, we review
other modeling efforts that are related to our own.

Domain models are representations of an application domain that can be used for a
variety of operational goals in support of specific software engineering tasks or processes.
Operational goals are always implicit in the construction of a model and are essential to
understanding the form and content of a model that captures domain knowledge. Within
software engineering these goals include:

1. understanding and analyzing application areas (domain analysis).

2. eliciting and formalizing software requirements and specifications
(requirements/specifications).

3. providing for new software engineering paradigms (methodologies).

4. assisting in code development and maintenance (system evolution).

5. capturing and communicating design decisions and rationales
{(communication).

6. identifying semantics of existing code (reverse engineering).

7. resolving design decisions (decision modeling).

8. training designers and end users (education).

Our research has been focused on developing a meta-model and methodology that
facilitates achieving the first two goals listed above. In doing this we have also made
progress towards goals 3 and 4.

Domain modeling is a field that draws from research in design methodologies, database
schema, object-oriented programming, and knowledge representation. The next sections
review the antecedents of domain modeling that most effected our research. These reviews
are terse and only intended to review some of the salient high points of these broad research
areas. Following this review, a more targeted review of domain modeling and program
transformation is presented in terms of the origins and genealogies of domain modeling
research. Finally, the results of our research are presented as an incremental improvement
upon current modeling and suggestions for future research are detailed.

7.1.1. Object Oriented Design and Programming

SIMULA [Dahl 66], [Birtwhistle 73] is generally recognized as the first object-
oriented language. Written as an extension of ALGOL 60, this SIMUlation LAnguage was
designed to provide a set of basic building blocks to map discrete event simulation
problems into programs. By adding structuring primitives called classes, [Dahl 72] created
a representation that provided a convenient way to view and program a variety of classical
programming problems.

95

96

Object-oriented programming added two new dimensions to the tradeoffs that have to
be made in programming languages. Figure 5.1 shows inheritance and encapsulation as
new issues in programming.

DELEGATION
INHERITANCE *

CLASS
STUCTURE

TYPING <

EARLY —> LATE
BINDING

Easily Penetrated Absolute

%

Encapsulation

*
Figure 7.1 — Some Considerations in (Object-Oriented) Programming

Hydra is another language important in the history of object-oriented programming
because it was the first major operating system project to use the concept of a class to
express the abstractions inherent in the design and implementation of the kernel of an
operating system. The authors of Hydra decided to approach structuring from the concept
of a class as had been defined in SIMULA, and extended to monitors [Hoare 74]. [Wulf
74] and [Wulf 75] describe the research as it was in progress, while [Wulf 81] is both a
summary and a retrospective view of the project after its completion. Further work using
objects as a structuring device for a vertically partitioned operating system can be found in
[Browne 82] and [Browne 84].

Smalltalk was created as a completely object-oriented programming and execution
environment. First described by [Ingalls 78], the system began as Smalltalk-76 and was
rewritten to become Smalltalk-80. A guide to the language is provided by [Goldberg 83]
and a description of the programming and run-time environment is given in [Goldberg 84].
As was the case in the previously discussed systems, Smalltalk is based on the concept of
an object that stores both instance variables (state) and methods that alter the state, send
messages, or interact with the user.

97

CommonLoops [Bobrow 86] and its predecessor Loops and [Stefik 85] extend the
function calls of Lisp to an object-oriented model that is designed to suit the needs of Al
researchers. Just as Simula was created to provide additional features for use with AL GOL
60, CommonLoops adds its own set of features to Common Lisp.

In addition to supporting class and hierarchical inheritance structures, CommonI.oops
also supports multiple inheritance, which is a technique for inheriting the union of the
instance variables and methods from more than one class or superclass. The structure
resulting from multiple inheritance is an inheritance graph instead of a tree. By a careful
construction of the graph, syntactic precedence relations can be provided by the system
designer. Although multiple inheritance can be used within Smalltalk [Borning 82] and
[Ingalls 86], it has been institutionalized in LOOPS and Flavors [Moon 86]. Further
discussions of inheritance are found in [Lieberman 81], [Meyer 86}, and [Snyder 86].

Comparing our research to standard object-oriented research is difficult, because
object-oriented programming researchers have introduced a myriad of definitions for terms
such as inheritance, delegation, class, object, superclass, subclass and so on. As [Stefik
85] notes in his survey article on object oriented programming, a map of the world is best
drawn from where one stands. Many of the definitions depend upon the viewpoint of the
researcher who designs a system. However, there does seem to be some commonality in,
at least, the definition of an object as paraphrased from ([Dahl 66], [Goldberg 83], [Stefik
85], [Booch 86], [Cox 86], and [Meyer 88]).

An object, in an object-oriented model, is an abstraction of an entity
that is characterized by its state and a set of operations that access or
change that state. State is defined in terms of the properties or
attributes of an object.
Chapter 2 defined our notion of attribute which extends the semantically bare data types
that are used even within object-oriented programming. Our definitions for attribute, class,
object, superclass, subclass, and so on are summarized in Appendix D.

7.1.2. Data Base Schemas

Data base schema design is closely related to certain aspects of domain modeling. Data
models in general, and data base schemas in particular, attempt to capture semantics of the
underlying world. The reasons for doing this are simple. By capturing the semantics of an
underlying domain, data base schemas can be used to design data bases that can be used
efficiently whose integrity can be maintained. By integrity, data modelers normally mean a
set of constraints, axioms, relationships, or specifications that remain invariant throughout
the lifetime of the data stored in the data base.

There are many semantic data models which are surveyed by [Peckham 88],

[Tsichritzis 82], and [Hull 87]. Entity Relationship (ER) modeling was described in a
seminal paper by [Chen 76], and concepts of generalization and aggregation were added by
[Smith 77]. ER models divide the world into entities, which are things that exist in the
world, and relationships, which are the ways those entities are related. ER modeling is
related to our work because it is one reasonable approach to the general problem of
conceptual modeling [Brodie 84]. In ER modeling there is often a question as to the
distinction between entities and relationships. In our model, as was shown in chapter 4 in

98

the section on association classes, this problem is addressed by using domain-specific
knowledge to guide the domain expert to make the appropriate classifications.

7.1.3. Design Methodologies

There are a variety of design methodologies that are used to create application
programs. Although they are not directly relevant to our work, certain methodologies can
also be considered to be modelling techniques, as in an analysis [Bruns 88] that included
Jackson System Development (JSD) [Jackson 83] and Booch's Ada design method [Booch
86] as domain modeling systems.

Jackson Structured Design (JSD) is one of the few methodologies [Jackson 83] that
clearly describes techniques for eliciting the objects and operations for a domain. While
certain of Jackson's views differ from ours, his approach is related to our own from the
standpoint of using a domain expert to try to model system behavior. His approach is
different from ours in his description of entities (classes in our model) for which he states
that:

A JSD entity must: 1) perform or suffer actions in a significant time-
ordering, 2) exist in the real world and not merely within the
system, 3) be capable of being regarded as an individual, and if
there is more than one entity of a type, of being uniquely named.

Two types of entities are considered to exist within our model. There are those entities
that have an existence outside of the (not necessarily computerized) application system, and
those that have an existence only by virtue of the existence of the application system.

Yourdon [Yourdon 79] and SADT [Ross 77] are techniques commonly used in
industrial practice. Both of these have a waterfall model orientation. Shlaer [Shlaer 88]
describes a methodology, within a relational database model, for domain analysis.

7.1.4. Knowledge Representation KL_ONE

Knowledge representation is a large field with operational goals that range from
restricted (such as application domain modeling) all the way to Doug Lenat’s Cyc [Lenat
88A], [Lenat 88B], [Lenat 89], where the eventual goal is to represent all world
knowledge. Summaries of knowledge representation that most closely relate to our own
research are collected in [Brachman 85], [Brodie 86], and [Brodie 84], with a summary
paper by [Mylopoulous 84].

The most direct influence on our work from this area has come from Brachman in his
clear presentation of /S-A links [Brachman 83], his presentation of the importance of
definitional information [Brachman 85b], and the clean separation of concept from
implementation in his KI._ONE language [Brachman 85a] which is a general knowledge
representation system used in artificial intelligence programs.

Our goal has been to establish a system with a clear definitional framework that allows
succinct and unambiguous statements by domain experts about application domains.

7.2. Domain Modeling

The field of domain modeling is young. In September of 1988 and October of 1989,
we organized workshops whose intent was to exchange ideas and arrive at a consensus on

99

domain modeling issues, terms, definitions, and measures of validation. Although
progress has been made, there do not yet appear to be consensus views on all of these
items. This section begins by presenting general approaches to domain modeling from
other research perspectives, and then narrows in on the development of domain modeling
and automated programming.

One difficulty in discussing domain modeling is that researchers have differing views
on the term model. Throughout this dissertation we have used the terms meta-model,
domain model, and modeling methodology. Figure 1.1 illustrated our view of these terms.
The meta-model consists of a set of primitives that can be instantiated to produce a domain
model within a particular domain. The modeling methodology is the methodology that a
domain expert uses to instantiate a particular domain model using attributes, classes,
inheritance, and composition.

7.2.1. Knowledge-Based Transformation Systems

Knowledge-Based Transformation Systems use information about a domain to achieve
good mappings when algorithmic methods are not yet well understood, don’t exist, or are
computationally intractable. Most existing knowledge-based transformation systems
operate in what we are calling computer science and language domains (the middle two
boxes of Figure 1.1 of Chapter 1). This is a critical part of the overall solution paradigm
but is not part of this research.

7.2.2. GIST

GIST represents a fifteen-year effort directed by Bob Balzer [Balzer 85] at the
Information Sciences Institute (ISI) to produce a knowledge-based system for transforming
program specifications to executable code. Because GIST has been developed over a
number of years, there is no single definitive report that outlines all of the features or even
the operational goals of the project. The philosophy at ISI has been to develop GIST
interactively in order to test their evolving ideas about program specification. Further
write-ups are available in [Balzer 78], [Balzer 81], [Balzer 79], [Balzer 76], [Feather
87A], [Feather 87B], [Feather 89], [Wile 83], and [Bruns 86a]. (See also Glitter, a
transformational system by Fickas Glitter was developed by [Fickas 85])

GIST provides many different language features for modeling domains. Essentially, a
GIST model has objects with both single and multiple inheritance. These objects are
related to each other through relations. GIST also has demons, global constraints, and
detailed methods for state transitions.

7.2.3. PSI, PECOS, LIBRA, CHI

The PSI project (described in [Green 76], [Green 78], [Barstow 79A], [Barstow 79B],
[Kant 81A], [Kant 81B], and [Kant 83]) used a knowledge-based approach to synthesize
programs within the domain of computer science. The PECOS component of PSI stored
knowledge about the domain in terms of refinement rules. LIBRA helped create efficient
programs by using its knowledge about costs of computation to limit the number of
refinement rule expansions needed to create a program.

CHI [Green 82], [Westfold 84] was the successor to PSI, and used an internal
representation of objects that served to structure the knowledge base. This structuring of

100

knowledge helped organize the knowledge base. CHI also differed from PSI in its
approach to selection of transformations; it used user supplied information as opposed to
the LIBRA style of cost calculation.

CHI's successor is REFINE [Smith 85] , a currently available commercial system that
is used in a variety of environments.

7.2.4. ONIX

®NIX [Barstow 89] is an automated programming system operating in the domain of
oil well logging tools. Barstow has strongly influenced our work by his long-held belief
that automatic programming systems must be domain-specific, and that domain specific
knowledge should be modeled in a form available to the program [Barstow 84]. The major
effort in the implementation of ®NIX has been directed at the transformational system as
opposed to the specification system.

7.2.5. Requirements Apprentice

The Requirements Apprentice [Reubenstein 891, [Rich 87] is an offshoot of the MIT
Programmers Apprentice project which is further described in [Rich 88B], [Rich 78],
[Rich 82], [Waters 82], and [Waters 85]. The overall goal of the Programmers Apprentice
project is to provide assistance to programmers by freeing them of some of the
administrative details in programming, and it is only tangentially related to our work.

Reubenstein's view of the requirements of an apprentice is as an assistant to an analyst,
who then interacts with a user/client. In this respect, his approach differs from ours in its
concentration on a system for analysts. However, his focus is on the development of a
cliche library that can be viewed in terms of a domain model. Furthermore, he is
"developing a theory of coherent requirements, requirements descriptions and [identifying
and codifying] reusable components and software requirements.”

7.2.6. IDeA, ROSE

The Microelectronics and Computer Technology Corporation (MCC) has several
researchers who either are or have been involved with domain modeling. Most closely
related to our research is the work of Lubars on IDea [Lubars 88]and ROSE [Lubars §9].
Lubars is concerned with differing views of abstract design schema and is targeting his
work towards programming-in-the-large type designs. This work is an extension of his
dissertation research [Lubars 86], [Lubars 87a].

Reverse engineering is the current thrust of Biggerstaff’s research [Biggerstaff 87],
[Biggerstaff 89A], ,[Biggerstaff 89B], which is not directly related to our work.

Also of interest are MCC’s analysis efforts. In one report, [Bruns 88] Bruns and Potts
analyzed five different approaches to domain modeling.

7.2.7. KATE, ASAP, AHS

At the University of Oregon, Steve Fickas [Fickas 87] has developed several projects
that combine artificial intelligence techniques with the software specification process.
These projects include KATE [Fickas 87], a project whose goal is to automate aspects of
the software specification process, ASAP [Anderson 89], and [Robinson 89]. Working

101

with the domain of conferencing, Fickas is building an interactive system that can help the
user analyze their requirements and produce a reasonable specification. One way to view
KATE is as an automated systems analyst.

Our goals are similar, but our approach is substantively different, from that of the
KATE project. While Fickas concentrates on domains, such as conferencing, that are not
well understood, even by domain experts, we are concentrating on domains for which a
domain expert has a clear conceptual model. Furthermore, the type of advice-giving which
is attempted by KATE is not one of our operational goals.

ASAP (automated specifier and planner) is a program that uses planning technigues
within the area of specification design. ASAP assists designers by working with operators
and plans in an attempt to help users achieve desirable goals and prevent undesirable
events. ASAP's goals are high-level ones which attempt to "find a productive division of
labor between a system and a user according to the ability of each.”

Robinson's work [Robinson 89] attempts to integrate specification design with rmultiple
perspectives of a system. He is formalizing Feather's transformational implementation
paradigm [Balzer 81]. He has created a system called AHS which maintains a domain
model of goal perspectives. These goal perspectives can be elaborated by applying a
sequence of specification editing commands which, in effect, operationalize the
perspectives. Assuming the two specifications are in the AHS environment, the
specification components can be merged by applying in sequence: correspondence
identification, conflict detection characterization, conflict resolution, and resolution
implementation.

7.2.8. RML

RML (Requirements Modelling Language) was developed by Greenspan to create "a
knowledge representation approach to software requirements definition." His dissertation
is [Greenspan 84]; an earlier description of RML is [Greenspan 82], and a subsequent
write up is [Greenspan 86].

He approached the problem from the standpoint of knowledge representation. A model
in RML consists of entities, activities, and assertions for representing concepts, which it
organizes through aggregation, classification, and generalization. An RML model is
defined in terms of a translation to first-order logic. He also notes that SADT (Structured
Analysis Design Technique [Ross 1977] can be used as an instantiation methodology.
RML was developed as part of the Taxis project at the University of Toronto [Mylopoulous
84], and is based on the same framework as the Taxis language. However, Greenspan did
not complete RML from the standpoint of operationalizing the definitions.

7.2.9. UCI — DRACO

The term domain analysis seems to have been coined first by Jim Neighbors in
describing one aspect of Draco which he constructed as part of his dissertation research
[Neighbors 80]. (Draco is summarized in [Neighbors 84a] and also described by the
manual [Neighbors 84b].)

Within the context of Draco, the term domain refers to more than just application
domains. In the terms of Figure 1.1 of Chapter 1, Draco would be used to create a
different domain model for each horizontal bar in the figure. Consequently, one way to

102

view Draco is as a meta-system in which all of the domains required to map from
requirements to implementation are able to be defined. In actual practice, Draco has been
used to port itself from UCI Lisp to Franz Lisp [Arango 891, as well as to solve a data base
problem in Neighbor's dissertation.

Domain models within Draco are language based. Each Draco domain consists of a
domain-specific language and a prettyprinter for that language. The language is specified in
a modified BNF notation, that, with backtracking extensions, allows context-sensitive
languages to be defined. Objects and operations within the domain are defined in terms of
a set of refinements which allow mappings from one domain to the next. Transformations,
on the other hand, are designed to map between objects and perform optimizations within a
particular domain.

In Neighbor's view, domain analysis is the process of developing a domain specific
language within the constraints of the Draco paradigm. Neighbors provides no
methodology for this design, but this issue has been addressed by Arango in his
dissertation work which is summarized in [Arango 89]. Arango starts with Neighbor's
formulation that

A domain analysis is an attempt to identify the objects, operations,

and relationships between what [that] domain experts perceive to be
important about the domain.

He then points out that Neighbor's definitior is ambiguous, not operational, and failed
to specify a validation criterion. He further argues

Against the possibility of practical procedures for capturing the
‘true’ ontology and semantics of arbitrary problem domains. If they
existed we would have succeeded in formalizing the scientific
method.

Arango's dissertation is a presentation of domain analysis in terms of a model of reuse.
Arango points out the danger of comparing dissimilar techniques, and concludes that:

‘Pure’ domain analysis strives for the synthesis of (anticipatory!)
theories about domains of reality. This task has eluded
systemization for centuries and nothing suggests that effective
procedures will be developed in the near future.

While the context of Arango's concerns are within the overall analysis of all domains
within Draco, we believe that our research in the area of well-understood, small,

transaction-processing environments has shown that the conceptual models of domain
experts can be codified in a systematic and formal manner.

7.3. Previous Research

In the long run, we believe the automated programming paradigm shown in figure 5.4
is the right way to conceptualize software development. At the lowest level of the system
(Figure 5.4), a type manager will implement the composition of primitive functions that are
the actual application program. In [Iscoe 86], we described CRTForm, a meta-system that
produced type managers that implemented a set of primitive operations for forms on fields.
Although that is not the emphasis of this research, it would be a critical part of large
systems of this type. Other kernel implementations of what we would consider type

103

managers are found in [Almes 83], [Deutsch 83A & 83B], [McCullough 83], [Pollack 81],
and [Wulf 74].

For the purposes of this research, we assume that it is possible to produce a
transformational system that produces executable output. An example of this in our
previous work is ACS [Iscoe 88a], a transformational system operating in the domain of
relational data base systems.

Chapter 8 - Conclusion

8.1. Results

This dissertation has defined a meta-model for application domain knowledge and
described a methodology for its instantiation by domain experts into domain-specific
models. The emphasis is on domain characterization techniques that could be used to
instantiate different domain models.

Reusable
Atribute
Definitions

/T

e
5N

%,

Figure 8.1 — Overview of the Model

Standard computer data types are semantically bare methods of representation that are
unable to capture fundamental concepts in an application domain. Attributes are meta-
model primitives that capture the semantics of domain properties in terms of scales (from
mathematical measurement theory), units, quantities, granularity (from the physical
sciences), population parameters (from statistics), and value set transitions.

Classes encapsulate sets of attributes, provide for the definition of derived attributes,
allow additional operations to be defined, are responsible for object instantiation and
deletion, provide for the definition of axioms, and maintain summary statistics on object
sets.

105

106

{ Application A Application
Domain

Modeling Methodology

Figure 8.2 — Instantiating Domain Models

Domain models are instantiated by representing specific application domains in terms of
attributes and classes. Classes are organized and structured using hierarchical
decomposition to create subclasses, and composition and association to construct larger
classes from smaller ones. Hierarchical decomposition is the process of developing a class
hierarchy by using attribute restriction to specialize a class into subclasses. Composition is
the process of creating a new class from two or more other classes by taking the union of
their sets of attributes and using domain knowledge to resolve conflicts, eliminate
unnecessary attributes, and add new attributes as needed. Finally, association is the
process of creating a new class that establishes a relationship between at least two other
classes by taking the union of their naming attributes and using domain knowledge to add
new attributes as needed.

Examples were given in terms of library, accounts receivable, and other related
problems.

8.2. Future Research

This dissertation has presented a domain modeling technique that generalizes across
programming-in-the-small transaction-oriented business application domains. Our
emphasis has been on the meta-model and the methodology for instantiation of that model
into domain models.

In the long term, we believe that results from this dissertation, and others like it, will
eventually allow designers, who are neither computer programmers nor domain experts, to
construct application programs by declaratively describing and refining specifications for

107

the programs that they wish to construct. Our eventual goal is achieve the paradigm shown
in figure 8.3.

Solution Paradigm
Domain Modeling /== ==""""3
¢ Domain
¢ Enowledge ¢
H]
b . Domain ; :
Omaln Knowledge ; .
Epert |qp| Bir [T) Chiinne
’] Values i
] Operations ¢
¢ Copstraints 4
§ Scales&lUnits 4
¢ ClassLibraries 4
Compeosition
§ ¢
P I— Relationships g
i 4
¢ 1L
. . ’ ’
Application “»
Designer :' L P ———
£ W@___j
Speciications
Program %8/ TarsbmaionSysem /
Generation
Enduser
* : nakneuss

Figure 8.3 — Future Research

There are many possible paths to take with this research. Four areas we are
investigating are:

. Applying attribute characterization techniques to certain aspects of
programming-in-the-large problems.

° Implementing the transformational code generation section of the solution
paradigm.

o Testing the meta-model against larger and more complex examples in order to

better understand domain boundaries.
° Developing a subtraction analogue for composition.

Appendix A - Library Example

The library example is a classic software engineering problem that was introduced by
Susan Gerhart and then published by [Kemmerer 1985] who used it a sample problem to
illustrate a specification language. It was used as a sample problem in the Fourth Annual
Workshop on Specification and Design [IEEE 1987] which resulted in twelve separate
papers each detailing their approach and solution. [Wing 1988], an author of one of the
twelve papers, gives a summary of the solutions presented at the conference. Another
version of a library problem is found in [Jackson 1983]. The problem as presented in
[IEEE 87] was the following:

Consider a small library database with the following transactions:

T1.A) Check out a copy of a book B) Return a copy of a book

T2. A) Add a copy of a book to B) Remove a a copy of a book from the library,
T3. Ger the list of books by A) A particular author or B) In a particular subject area,
T4. Find out the list of books currently checked out be a particular borrower

T5. Find out what borrower last checked out a particular copy of a book.

There are two types of users: staff users and ordinary borrowers. Transactions 1,2, 4,
and 5 are restricted 1o staff users, except that ordinary borrowers can perform transaction 4
10 find out the list of books currently borrowed by themselves. The data base must also
satisfy the following constraints:

C1. All copies in the library must be available for checkout or be checked out.
C2. No copy of the book may be both available and checked out at the same time.

C3. A borrower may not have more than a predefined number of books checked our ar
one time

109

Appendix B — Accounts Receivable Example

The following listing of attributes and classes is a summary of the information for a
domain model for a simple accounts receivables system for a professional time and billing
application. Figure B.1 shows the class structure along with the required composition and
associations.

Person Creation Us. Company
Basic | Location Address Basic
T |
Porformance Person Company
Info /
|
{9 e Billing Payment
- Info Info
Service
Provider
Service Y
Provider Rates .
Client
Time Charge
Inf
10 Expense Payment
Info Tracking

X K Y

Time Expense
Transaction Transaction

Payment

Journal
Entry

B.1. Dates

B.1.1. Attributes

Julian_Date: Interval_scale Time in Days (min 1000) (max 800000)
Date_Current: Restricted Julian_Date (min 1990 year) (max 2050 year)
Date_Historical: Restricted Julian_Date (max 1990 year)

111

B.1.2. Class

Class = Date_mmddyy

Month: Ratio_scale Time in Days (min 1) (max 12)

Day: Ratio_scale Time in Days (min 1) (max 31)

Year: Ratio_scale Time in Years (min 1900) (max 2100)
OPERATIONS (see ¢ routines at end)

cal_mjd (month, day, year, mjd)

mjd_cal (mjd, month, day, year)

mjd_dow (mjd, dow)

mjd_dpm (mjd, ndays)

mjd_year (mjd, year)

B.2. Money

GLDollar : Money in Dollars ((min -1000000) (max 1000000) (gran 01y
dollar_fee: Restricted GLDollar ((min 0) (gran 1))

B.3. Time

Hourly_1: Ratio_scale Time in Hours (min 0) (max 3000)
Hourly_0.25: Restricted Hourly_1 (min 0) (max 3000) (gran .25)
Hourly_0.1: Restricted Hourly_1 (min 0) (max 3000) (gran .1}

B.4. AR Legal System Attributes

Billing_rate: Ratio_Scale Money/T ime in Dollars/Hour
(min 0) (max 1000) (gran .01)
Unit_Billing_rate : Restricted Billing_rate (gran 1)
Dollar_hour: Restricted Billing_rate (min 7) (max 500) (gran .05)
Client_Matter_Codes: Nominal_scale (contract, corporate, criminal,
estate_planning, family_practice, intellectual_property, labor, litigation,
personal_injury, real_estate tax, workmans_comp)

Type_Billing_time : Nominal_scale (billable, non_billable, vacation, education,
public_service);

Billing_level : Ordinal_scale(clerk_typist, secretary, paralegal, summer_clerk,
other_clerk, associate, sr_associate, jr_partner, partner, sr_partner)

Fee_Type: Nominal_Scale (flat_fee, flat_fee w_retainer, hourly_rate_retainer,
retainer_w_max_hours, contingency, nonbillable,
flat_fee_w_max_dollars, retainer_w_max_dollars)

Service_code: Nominal_scale (telephone_consultation, personal_consultation,
court_time, title_search, audit, legal_research, on_site_research, deposition,
witness_interview, document_preparation, negotiation,
proposal_preparation, case_preparation, letter)

Expense_codes: Nominal_scale (travel, phone, copying, client_entertainment,
court_costs)

113

B.5. Defining a Person

Another case where composition can be applied is when using and reusing the
information required to build classes for common business purposes. In the following
example, creation_location is composed with either a basic_person class or a
basic_company class to create a new class with more information. Figure 5.5 shows a
creation_location class:

B.5.1. Person_basic

A person class can be defined in a variety of domain-specific ways. In this example, a
basic person class person_basic, consists of a name and a social security number.

Person_basic = Class

NAMING ATTRIBUTES
FName: Person_name;
MName: Person_name;

LName: Person_name;
SSN: Nominal_scale: Social_Sec_number;

B.5.2. Location

Chapter three introduced several types of location classes. Two are used in this
definition of person.

US_Address = Class

Address: US_street_address;

City: US_City;

State: US_State = Nominal_scale (AL, AK, AZ, AR, CA, CO, CT, DE, DC, FL,
GA, HIL 1D, IL, IN, IA, KS, KY, LA, ME, MD, MA, MI, MN, MS, MO, MT,
NE, NJ, NV,NH, NM, NY, NC, ND, OH, OK, OR, PA, PR, Rl, SC, SD,
TN, TX, UT, VT, VA, WA, WV, Wi, WY},

Zip5 : Old_Zip_code;

Zipd: New Zip code;

Creation_Location = Class

Creation_date: Gregorian_date;

City_of Creation: US_City;

State_of creation: US_State;
Creation_location is a class without a naming attribute that can be used in a variety of
different situations. When it is composed with a basic_company class a company class is
created as shown in Figure 5.7. The composition process is indicated as follows:

Company Class : = (& company_basic creation_location)

114

Company = Class

NAMING ATTRIBUTES
Name: Company_name;
Federal_Tax_ldentification_number;

NON-NAMING ATTRIBUTES
incorporation date: Julian_date;
City_of_incorporation: Nominal_scale;
State_of_incorporation: State_Type;
Address: US_street_address;

City: US_City;
State: US_State
Zip5 : Old_Zip_code;
Zip4: New_Zip_code;
Phone: phone_number,

Company_Class: = Company_Class : = (® company_basic creation location
mailing address)

The creation location can also be composed with a person to create a person class:
person_class: = (@ person_basic creation_location).

This operation is shown as being carried out in Figures 5.8 and 5.9.

B.5.3. Person = (® Person_basic creation_location US_address)

For the purposes of this example, person is composed from three primitive classes.
Obviously other classes could be added into the composition if they were determined to be
necessary by the domain expert.

Person = Class

NAMING ATTRIBUTES
FName: Person_name;
MName: Person_name;

LName: Person_name;
SSN: Nominal_scale: Social_Sec_number;

NON-NAMING ATTRIBUTES
date_of birth: Juliian_Date
City_of birth: Nominal_scale;
State_of birth: State_Type;
Address: US_street_address;
City: US_City;

State: US_State
Zip5 : Old_Zip_code;
Zip4: New_Zip_code;
Phone: phone_number;

Person_Class: = (® Person_basic creation_location]

B.6. Company

A Company is defined in a manner analogous to that of a person. For the purposes of
this domain model, the difference between a company and a person is found primarily in
their naming attributes.

Company_basic = Class

NAMING ATTRIBUTES
Name: Company_name;
Federal Tax_ID : Nominal_scale;

B.6.1. Company_Class : = (& company_basic creation_location
mailing_address)

Company = Class

NAMING ATTRIBUTES
Name: Company_name,
Federal_Tax_ldentification_number;

NON-NAMING ATTRIBUTES
incorporation_date: Julian_date;
City_of_incorporation: Nominal_scale;
State_of_incorporation: State_Type;
Address: US_street_address;

City: US_City;
State: US_State
Zip5 : Old_Zip_code;
Zip4: New_Zip_code;
Phone: phone_number;

116

B.7. Service Provider

A Service Provider is a person who provides a service to a client. Performance_info is
a class which contains the information necessary for a firm to track the financial
performance of a service provider.

B.7.1. Performance_info

Class = Performance_info

NON-NAMING ATTRIBUTES
unbilled_hours: Hourly_0.25,
unbilled_amount: Fee,
billed_hours: Hourly_0.25,
billed_amount: Fee,
non_billable_hours: Hourly_0.25,
nonbillable_amount: Fee,
hours_written_off: Hourly_0.25,
amount_written_off: Fee,
number_write_offs,
contingent_hours: Hourly_0.25,
contingent_amount: Fee,
expended_hours: Hourly_0.25,
expended_amount: Fee,

B.7.2. Service_Provider := (@ Person Performance_info)

s
Lo |

Class = Service_Provider
NAMING ATTRIBUTES

FName: Person_name;
MName: Person_name;

LName: Person_name;

SSN: Nominal_scale: Social_Sec_number;
NON-NAMING ATTRIBUTES

Billing_level : Ordinal_scale(clerk_typist, secretary, paralegal, summer_clerk,

other_clerk, associate, sr_associate, jr_partner, partner, sr_partner)

date_hired: date;

Address: US_street_address;

City: US_City;

State: US_State

Zip5 : Old_Zip_code;

Zip4: New_Zip_code;

Phone: phone_number;

unbilled_hours: Hourly_0.25,

unbilled_amount: Fee,

billed_hours: Hourly_0.25,

billed_amount: Fee,

non_billable_hours: Hourly_0.25,

nonbillable_amount: Fee,

hours_written_off: Hourly_0.25,

amount_written_off: Fee,

number_write_offs,

contingent_hours: Hourly_0.25,

contingent_amount: Fee,

expended_hours: Hourly_0.25,

expended_amount: Fee,

118

B.8. Defining a Client

A client is a person or a company composed with billing and payment information.

B.8.1. Payment_info

Payment_info = Class
date_opened: date;
last_statement_date: Julian_date;
last_payment_date: Julian_date;
last_payment_amount:: GLDollar;
payments_ytd: GLDollar;
payments_total_td: GLDollar;

DERIVED ATTRIBUTE

days_overdue: currrent_date - last_payment date

B.8.2. Billing_Info

Billing_Info = Class
Work_description: text
Budget_hours: Hourly_1.0 {max 200)
Budget_amount {min 250) (max 100000}
Fees_due: GLdollar;
Expenses_due: GLDollar;
Advances_due: GLDollar;
Finance_charge_due: GLDollar;
Fee_sales_tax_due: GLDollar;
Expense_sales_tax_due,: GLDollar;
billed_work_in_progress: GLDollar;
billed_wip_tax: GLDollar;
excess_payments: GLDollar;

DERIVED ATTRIBUTE

+ Fee_sales_tax_due + Expense_sales_tax_due, +
billed_wip_tax - excess_payments

Balance_Due:= Fees_due + Expenses_due + Advances_due + Finance_charge_due

billed_work_in_progress +

119

B.8.3. Client := (® Payment_Info Billing_Info Company)

Client = Class (company)
NAMING ATTRIBUTES
Name: Company_name;
Federal_Tax_ldentification_number;
NON-NAMING ATTRIBUTES
Incorporation date: Julian_date;
State_of_incorporation: State_Type;
date_opened: date;
Address: US_street_address;
City: US_City;
State: US_State
Zip4: New_Zip_code;
Phone: phone_number;
last_statement_date: Julian_date;
last_payment_date: Julian_date;
last_payment_amount:: GLDollar;
payments_ytd: GLDollar;
payments_total_td: GLDollar;
Work_description: text
Budget_hours: Hourly_1.0 (max 200)
Budget_amount (min 250} (max 100000)
Fees_due: GLdollar;
Expenses_due: GLDollar;
Advances_due: GLDollar;
Finance_charge_due: GLDollar;
Fee_sales_tax_due: GLDollar;
Expense_sales_tax_due,: GLDollar;
billed_work_in_progress: GLDollar;
billed_wip_tax: GLDollar;
excess_payments: GLDollar;
DERIVED ATTRIBUTE
Days_overdue: currrent_date - last_payment_date
Balance_Due:= Fees_due + Expenses_due + Advances_due + Finance_charge_due +
Fee sales_tax_due + Expense_sales_tax_due, + billed_work_in_progress +
billed_wip_tax - excess_payments

120

B.8.4. Client := (& Payment_Info Billing_Info Person)

Client = Class (person)
NAMING ATTRIBUTES

FName: Person_name;

LName: Person_name;
SSN: Nominal_scale: Social_Sec_number;
NON-NAMING ATTRIBUTES
date_of_birth: Juliian_Date
State_of_birth: State_Type;
date_opened: date;
Address: US_street_address;
City: US_City;
State: US_State
Zip5 : Old_Zip_code;
Zip4: New_Zip_code;
Phone: phone_number;
last_statement_date: Julian_date;
last_payment_date: Julian_date;
last_payment_amount:: GLDollar;
payments_ytd: GLDollar;
payments_total_td: GLDollar;
Work_description: text
Budget_hours: Hourly_1.0 (max 200)
Budget_amount (min 250) (max 100000}
Fees_due: GLdollar;
Expenses_due: GLDollar;
Advances_due: GLDollar;
Finance_charge_due: GLDollar;
Fee sales_tax_due: GLDollar;
Expense_sales_tax_due,: GLDollar;
billed_work_in_progress: GLDollar;
billed_wip_tax: GLDollar;
excess_payments: GLDollar;
DERIVED ATTRIBUTE
Days_overdue: currrent_date - last_payment_date
Balance_Due:= Fees_due + Expenses_due + Advances_due + Finance_charge_due
+ Fee_sales_tax_due + Expense_sales_tax_due, + billed_work_in_progress +
billed wip tax - excess_paymenis

121

B.9. Time Transaction

A time_transaction class requires a Service_provider_rates class and a
Time_charge_Info class.

B.9.1. Service_provider_rates

Class = Service_provider_rates

NAMING ATTRIBUTES
Billing_leve! : Ordinal_scale (clerk_typist, secretary, paralegal, summer_clerk,
other_clerk, associate, sr_associate, jr_partner, partner, sr_partner)
NON-NAMING ATTRIBUTES
Billing_rate_regular: Dollars_per_hour ((min 35) (max 250) (gran 1)) ;
Billing_rate_premium: Dollars_per_hour ({min 35) (max 250) (gran 1));

B.9.2. Time Charge Information

Class = Time_charge_Info
NAMING ATTRIBUTES

Time_Transaction_Number: sys_num;

NON-NAMING ATTRIBUTES
control_time: sys_time;
control_date: sys_date
Service_code: Nominal_scale { telephone_consultation, personal_consultation,
court_time, title_search, audit, legal_research, on_site_research, deposition,
witness_interview, document_preparation, negotiation, proposal_preparation,
case_preparation, letter)
charge_level Nominal_scale (fixed, regular, premiumyj;
minimum: boolean;
min_hours : work_hours (min 0) {max 25);
description: text;

AXIOMS
IF minimum
THEN mustenter(min_hours)
ELSE not_applicable(min_hours);

122

B.9.3. Time_transaction:=
(® Service_provider Service_provider_rates Time_charge_Info Client)

Class = Time_transaction

EXTERNAL CLASSES
CLASS Service_provider (Name Employee_name) (CARD M),
CLASS Client {Name Client_name)(CARD 1);
CLASS Service_provider_rates(Name Billing_level) (CARD 1);
CLASS Time_charge_info (Name Time_Transaction_Number) (CARD Nj;

NAMING ATTRIBUTES
Time_Transaction_Number: sys_num;

NON-NAMING ATTRIBUTES
Hours_billed: hourly_.25,
Billing_type: Type_billing_time
Billing_charge_unit_hour: f(billing_type, Billing_level),
Billing_amt: Dollar_amount,
Description: Text,
elapsed_fime: hourly_0.25;
description: text;

123

B.10. Expenses

Expenses are charges such as copying costs that are recorded independently of time
transactions.

B.10.1. Expense_Info
Class = Expense_info

NAMING ATTRIBUTES

Expense_Transaction_Number: sys_num
NON-NAMING ATTRIBUTES

Expense_codes: Nominal_scale (travel, phone, copying, client_entertainment,
court_costs)

control_date: sys_date

calculate_per_unit, use_minimum: mutex_boolean;
sales_tax: boolean;

fee_per_unit: dollar_fee (min .25) (max 250) (gran .25);
min_fee: dollar_fee (min 100) (max 5,000)(gran .1) ;
billable : boolean;

printable: boolean;

gl_acent_number:

description: text;

AXIOMS
IF calculate_per_unit:
THEN BEGIN
mustenter(fee_per_unit:);
END
ELSE not_applicable(fee_per_unit:);
[F use_minimum
THEN BEGIN
mustenter(min_fee};
ELSE not_applicable(min_fee);

124

B.10.2. Expense_Transaction := (® Expense_info Client)

Class = Expense_Transaction

EXTERNAL CLASSES
CLASS Expense_Info (Name Expense_Transaction_Number) (CARD M);
CLASS Client (Name Client_name) (CARD 1);

NAMING ATTRIBUTES ‘
Expense_Transaction_Number: sys_num

NON-NAMING ATTRIBUTES
Expense_codes: Nominal_scale (travel, phone, copying, client_entertainment,
court_costs)
control_date: sys_date
calculate_per_unit, use_minimum: mutex_boolean;
sales_tax: boolean;
fee_per_unit: dollar_fee (min .25) (max 250) (gran .25);
min_fee: dollar_fee (min 100) (max 5,000)(gran .1) ;
billable : boolean;
printable: boolean;
gl_accnt_number:
description: text;

125

B.11. Payments

Payments are made by the client to offset charges created by time and expense
transactions.

B.11.1. Payment_Tracking

Class = Payment_Tracking

NAMING ATTRIBUTES
Payment_Number: system_num

NON-NAMING ATTRIBUTES
control_date: sys_date
Type_of_payment: Nominal_scale (check, money_order, bank_draft);
amt_of_payment: GLDollar;
gl_acent_number:
description: texi;

B.11.2. Payment := (& Payment_Tracking Client)

Class = Payment

EXTERNAL CLASSES
CLASS Payment_Tracking (Name Payment_Number) (CARD M);
CLASS Client (Name Client_name) (CARD 1};

NAMING ATTRIBUTES
Payment_Number: system_num

NON-NAMING ATTRIBUTES
control_date: sys_date
Type_of_payment: Nominal_scale (check, money_order, bank_draft);
amt_of_payment: GLDollar;
gl_acent_number:
description: text;

B.11.3. Journal Entry

Time transactions, expense transactions, and payments can all be viewed as journal
entries. Journal_entry := (OR Time_transaction Expense_transaction Payment)

126

Class = Journal_entry (Time_transaction)

EXTERNAL CLASSES
CLASS Time_transaction(Name Transaction_Number) (CARD 1);

NAMING ATTRIBUTES
Journal_control: system_num

NON-NAMING ATTRIBUTES
control_date: sys_date;
amt: GLDollar;
gl_accnt_number_debit: gl_acct_number;

gl_accnt_number_credit: gl_acct_number;
description: text;

Class = Journal_entry {(Payment)

EXTERNAL CLASSES
CLASS Payment (Name Payment_Number) (CARD 1);

NAMING ATTRIBUTES
Journal_control: system_num

NON-NAMING ATTRIBUTES
control_date: sys_date;
amt: GLDollar;
gl_accnt_number_debit: gl_acct_number;

gl_acent_number_credit: gl_acct_number;
description: text;

Class = Journal_entry (Expense_info)

EXTERNAL CLASSES
CLASS Expense_info(Name Expense_Transaction_Number) (CARD 1);

NAMING ATTRIBUTES
Journal_control: system_num

NON-NAMING ATTRIBUTES
control_date: sys_date;
amt: GLDollar;
gl_acent_number_debit: gl_acct_number;
gl_acent_number_credit: gl_acct_number;
description: text;

127

B.12. Date RoutinesinC

The following C routines do calculations in modified Julian dates. To get actual Julian
date:

double jd = mjd + 2415020L;

#include <stdio.h>
#include <math.h>
#include "astro.h”

/* given a date in months, month, days, day, years, year,
* return the modified Julian date (number of days elapsed since 1900 jan 0.5),
* *mjd.

cal_mjd (month, day, year, mjd)

int month, year;

double day;

double *mjd;

intb,d, m, y;
long c;

m = month;
y = (year < 0) ? year + 1 : year;
if (month < 3) {
m+= 12;
y-=1
}

if (year < 1582 Il year == 1582 && (month < 10 Il month == 10 && day < 15))
b=0;
else {
int a;
a=y/100;
b=2-a-+a/4;
}

if (y <0)

¢ = (long)((365.25*y) - 0.75) - 694025L;;
else

¢ = (long)(365.25*y) - 694025L;

d = 30.6001*(m+1);

*mjd=b+c+d+day-0.5;
}

/* given the modified Julian date (number of days elapsed since 1900 jan 0.5,),

* mijd, return the calendar date in months, *month, days, *day, and years, *year.
*/

mjd_cal (mjd, month, day, year)

double mjd;

128

int *month, *year;
double *day;
{

}

double 4, f;
double i, a, b, ce, g;

d =mjd + 0.5;
i = floor(d);
f=d-1;

if (f==1){

i+=1;

}

if i>-115860.0) {
a = floor((i/36524.25)+.9983573)+14;
i+= 1+ a - floor(a/4.0};

}

b = floor((i/365.25)+.802601);

ce =1 - floor((365.25%b)+.750001)+416;
g = floor(ce/30.6001);

*month =g - 1;

*day = ce - floor(30.6001*g)+f;

*year =b + 1899;

if (g > 13.5)
*month =g - 13;
if (*month <2.5)
*year = b + 1900;
if (*year < 1)
*year -= 1;

/* given an mjd, set *dow to 0..6 according to which day of the week it falls
* on (O=sunday) or set it to -1 if can't figure it out.

*

mjd_dow (mjd, dow)
double mjd;
int *dow;

{

/* cal_mjd() uses Gregorian dates on or after Oct 15, 1582.
* (Pope Gregory XIII dropped 10 days, Oct 5..14, and improved the leap-
* year algorithm). however, Great Britian and the colonies did not
* adopt it until Sept 14, 1752 (they dropped 11 days, Sept 3-13,
* due to additional accumulated error). leap years before 1752 thus
* can not easily be accounted for from the cal_mjd() number...
*/
if (mjd <-53798.5) {
/* pre sept 14, 1752 too hard to correct */
*dow = -1;
return;

}
dow = ((int)floor(mjd-.5) + 1) % 7; / 1/1/1900 (mjd 0.5) is a Monday™*/

129

if (*dow < 0)
*dow +=T7,

}

/* given a mjd, return the the number of days in the month. */
mjd_dpm (mjd, ndays)

double mjd;

int *ndays;

static short dpm[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
intm, y;
double ¢;

mjd_cal (mjd, &m, &d, &y);
*ndays = (m==2 && ((y%4==0 && y%1001=0)lly%400==0)) 7 29 : dpm[m-];

/* given a mjd, return the year as a double. */
mjd_year (mjd, year)
double mjd;
double *year,
{
intm, y;
double d;
double €0, e1; /* mjd of start of this year, start of next year */

mjd_cal (mjd, &m, &4, &y);

cal_mjd (1, 1.0, y, &e0);

cal_mjd (12, 31.0, y, &el); el += 1.0;
*year = y + (mjd - e0)/(el - e0);

130

Appendix C - Attribute Grammar (Partial)

The following productions are intended to resolve ambiguities in atribute arithmetic.
More complete explanations are given in Chapter 3.

(Plus A1 +Ap) -> A3

1. Procedure Add_attribute(Al1,A2:Attribute; VAR A3:Atribute)
2. Begin
3. IF (A1.Scale = RATIO AND A2.Scale = RATIO)
4. AND (A1.quantity = A2.quantity) AND COMPARABLE (A1.T,
A T)
5. Then Begin
6 If (A1.unit= A2.unit)
7. Then
8 If (Al.gran = A2.gran)
9. Then Begin
10. AZR.Scale := RATIO;
11. A3.quantity := A2.quantity;
12. A3 unit ;= AZ.unit;
13. A3.gran = A2.gran;
14. A3 T =A1LT;
15. A3.min := Al.min + A2.min;
16. A3.max ;= Al.max + AZ.max;
17. build_scale(A3.min,A3.max,
A3.gran,A3.V);
18. A3EV =A1EV + A2EV,
19. A3.8SD2:=A1.SD2 + A2.8D2
{assumes independence}
20. End
21. Else Begin
22. coerce_gran(A1,A2, Aprimel, Aprime2);
23. Add_attribute(Aprimel, Aprime2, A3);
24, End
25. Else Begin
26. coerce_unit(Al, A2, Aprimel, Aprime?2, error);
27. add_attribute(Aprimel, Aprime2, A3);
28. End

29. Else ERROR(“Mismatched Scales™)
30. End; {add_attribute}

31. Procedure coerce_unit(A1,A2:Attribute; VAR Aprimel,

Aprime2:Attribute,
VAR error:boolean});
32. Begin
33. If bigger_unit(Al.unit, A2.unit)
34. then begin
35. new_att_new_unit(A2, Al.unit, A2prime)
36. Alprime = Al;
37. end
38. else begin
39, new_att_new_unit{ A1, A2.unit, Alprime);
40, A2prime = A2;
41. end

131

132

42. End; {coerce unit)

43, Procedure new_att_new_unit(oldatt:Attribute; newunit: TyUnit;
newatt: Attribute, VAR error:boolean);

44. Begin

45, newatt.T := oldatt.T;

46. newatt.Scale := oldatt.Scale;

47, newatt.quantity := old_att.quantity;

48. newatt.unit ;= old_att.newunit;

49, unitfactor(oldatt.unit, newunit, factor);

50. newatt.gran = old_att.gran/factor;

51. newatt.min := oldatt.min * newatt.gran;

52. newatt.max := oldatt.max * newatt.gran;

53. build_scale(newatt.min, newatt.max, newatt.gran,
newatt.V);

54. newatt. EV := old_att. EV * newatt.gran;

55. newatt.SD2 := old_att.SD2 * newatt.gran**2;

56. End; {new_att_new_unit}

57. Procedure coerce_gran(A1,A2:Attribute; VAR Aprimel,

Aprime2:Attribute);
58. Begin
59. If bigger_gran(Al.gran, A2.gran)
60. then begin
61. new_att_new_gran(A2, Al.gran, A2prime)
62. Alprime := Al;
63. end
64. else begin
65. new_att_new_gran(Al, A2.gran, Alprime)
66. AZprime = A2; end

67. End; {coerce gran}

68. Procedure new_att_new_gran(oldatt:Attribute;
newgran: TyUnit; newatt:Attribute);

69. Begin

70. newatt.T :=oldatt.T;

71. newatt.Scale := oldatt.Scale;

72. newatt.quantity := old_att.quantity;

73. newatt.unit ;= old_att.unit;

74. newatt.gran = newgran;

75. factor := newgran/oldatt.gran;

76. newatt.min := oldatt.min * factor;

79. newatt.max := oldatt.max * factor;

80. build_scale(newatt.min, newatt.max, newatt.gran,
newatt.V);

81. newatt.EV :=old_att. EV * factor;

82. newatt.SD2 = old_att.SD2 * factor**2;

83. End; {new_att_new_gran}

g4, Procedure unit_factor(oldunit, newunit, VAR unitfactor,

VAR error:boolean);
85. Begin
86. Query(oldunit, newunit, unitfactor);

87. End; {unit_factor)

Procedure build_scale(A3.min, A3.max, A3.gran; VAR A3.V);

Begin

(Plus A1 C) -=> A3
Procedure Add_attribute_plus_C(A1,C:Attribute; VAR A3:Attribute)

(Times A}

1.
2.

Begin

value = A3.min

A3V = Null

Repeat

A3V :=Union(A3.V, value)
value := value + A3.gran
Until value > A3.max
End; {build_scale)

3. IF ((A1.Scale = RATIO AND C.Scale = RATIO) OR
(A1.Scale = INTERVAL AND C.Scale = INTERVAL))
AND (A1.quantity = C.quantity)

Then Begin

&)

(W -

If (A1.unit = C.unit)

Then

If (Al.gran = C.gran)

Then Begin

A3 .quantity := Al.quantity;
A3.unit ;= Al.unit;
A3.gran = Al.gran;
A3T =ALT;
A3.min = Al.min + C;
A3.max := Al.max + C;
build_scale(A3.min,A3.max,
A3.gran,A3.V);

A3EV:=AlEV +C;
A3.8SD2:=A1.5D2;

{assumes independence}
End

Else Begin

Else Begin

coerce_gran(A1,C, Aprimel, Aprime2);
Add_attribute(Aprimel, Aprime2, A3);
End

coerce_unit(Al, C, Aprimel, Aprime2, error);
add_attribute(Aprimel, Aprime2, A3);

End

Else ERROR(“Mismatched Scales”)
End; {add_attribute_plus_C}

-> As

Begin

. Procedure Times_Attribute_ C(A1,C:Attribute; VAR A3:Atxibute)
. TF ((A1.Scale = RATIO AND C.Scale = RATIO) OR

(A1.Scale = INTERVAL AND C.Scale = INTERVAL))
AND (A1.quantity = C.quantity)
Then Begin

133

134

6 If (A1.unit= C.unit)

7. Then

8. If (Al.gran = C.gran)

9 Then Begin

11. A3.quantity := Al.quantity;

12. A3 unit := Al.unit;

13. A3.gran = Al.gran;

14. A3T =ALT;

15. A3.min ;= Al.min * C;

16. A3.max ;= Al.max * C;

17. build_scale(A3.min,A3.max,
A3.gran,A3.V);

18. A3EV:=AlEV *(,

19. A3.8D2 := A1.SD2 * C**2;

20. End

21. Else Begin

22. coerce_gran(A1,C, Aprimel, Aprime2);

23. Add_attribute(Aprimel, Aprime2, A3);

24. End

25. Else Begin

26. coerce_unit(Al, C, Aprimel, Aprime2, error);

27. add_attribute(Aprimel, Aprime2, A3);

28. End

29. Else ERROR(“Mismatched Scales™)
30. End; {add_attribute_plus_C}

(Sub A1 A} —> A3

1. Procedure subtraci_atribute(Al, A2, A3)

2. Begin

3. IF(A1.quantity = Ap.quantity) AND COMPARABLE (A1.T, A2.T)

4 AND ((A1.Scale = RATIO AND Ap.Scale = RATIO) OR
(A1.Scale =INTERVAL AND A2.Scale = INTERVAL))

5. Then Begin

6. If (A1.unit = A7.unit)

7. Then

8. If (Al.gran = A2.gran)

9. Then Begin

10. A3.Scale := RATIO;

11. A3.quantity := A2.quantity;

12. A3.unit := A2.unit;

13. A3.gran = A2.gran;

14. A3.min ;= max(0, Al.min - AZ.min);

15. A3.max := Al.max - AZ.max;

16. build_scale(A3.min, A3.max,A3.gran, A3.V);

17. A3 T =A1T

18. A3EV :=A1lLEV-A2EV,

19. A3.8D2 := A1.SD2 + A2.SD2; {assume ind}

20. End

21. Else Begin

22. coerce_gran(Al, A2, Aprimel, Aprime2);

23. Add_attribute(Aprimel, Aprime2, A3);

24. End

25. Else Begin

26. coerce_unit(Al, A2, Aprimel, Aprime2, error);
27. add_attribute(Aprimel, Aprime2, A3);
28. End

29. Else ERROR(“Mismatched Scales”)
30. End; {subtract_attribute}

The following productions are intended to give the flavor of the semantics of
PPA).introduced in chapter 2.

Pop parm =
minimum, maximum, mean, variance, median, mode

pdf = £
| uniform
I normal
I poisson
| exponential
| gamma
I chi_square

minimum = (min num)

maximum =% (max num)

min < max;
if A1.Scale = RATIO then min = 0;

mean = (MEAN W) I
min <= } <= max

variance = (VARIANCE c?) |
IF 62 =0

Then
min_num=max_num= jL =M= Mo
Prob(|Aj.valuel=p)=1

Else
V x Prob(lA1.value - pl >=x 6) <=x"2
{Chebyshev’s inequality distribution unknown or not normal}
Prob(1Ai.valuel > u+20)<0.75
Prob(lA1.valuel > u+30)<0.89

median = (MEDIAN M)]
min < M < max

mode => (MODE Mo}]

quartiles = (QUARTILES gl gZ g3)
gQ2=M

deciles => (DECILES dl d2 d3 d4 d5 dé6 d7 d8 d9 di0)
ds=M

135

136

uniform => (UNIFORM C)
p=C
02 =0
normal = (NORMAL L G2 !
u=M = Mo
Prob(|Aj.valuel > p+ 1.966) < 0.05
Prob(lA1.valuel > U+ 2.50) < (.01
poisson = (POISSON 0O |
p=0o
o2 =0
exponential = (EXPONENTIAL o) |
f(x) = oe X
u=1/o
02 = 1/o?

gamma => (GAMMA r o)
r>0

o> 0
If =1 then distribution = EXPONENTIAL

If r = n/2 AND o = .5 then distribution = CHI_SQUARE
chi square = (CHI_SQUARE n) i

L=n

c2=2%nq

Appendix D - Definitions

An attribute, A, consists of :
a unigue name AJA)
a measurement scale #(A) and (when appropriate) unit & granularity
a set of values V/A)
a set of population parameters PHA)
an Initialization procedure I{A)
a probability of change PC(A)
" a state transition relation ®/A), VA) x VA) 2 R(A)

Definition 2.1 — Attribute

HA nominal measurement scale m is a set of categories ¢fm) = {C4, ._.-.-Cn} . “

Definition 2.2 - Nominal Scale

[[5_!1 ordinal scale is a nominal scale in which a total ordering exists among the categories C.

Definition 2.3 - Ordinal Scale

A guantity is defined in terms of:

e a unit defined in domain-specific operational terms

e a measurement granularity, that is the highest degree of precision to which a unit
is normally expressed within a domain.

Definition 2.4 — Quantity

An interval scale is a nominal scale that has an associated quantity and assigns a unique
multiple {called the magnitude) of the measurement granularity of the unit of the quantity to
each category.

Definition 2.5 ~— Interval Scale

A ratio scale is an interval scale that has a non-arbitrary zero and allows only non-negative
magnitudes

Definition 2.6 — Ratio Scale

137

138

For a set of categories ¢/m) = {Cq ... Cq} inanominal scale Afm),
the default category C; is the max(Proportion(Cy), . . ., Proportion(Cy)}.

where Proportion(Cj) = [Ci/i{ Cull-

Definition 2.7 — Rule o Determine Default Category for a Nominal Scale

[Ais an immutable attribute if 2C(A) = 0 PCA) = 0 > R(A) =0 |

Definition 2.8 — Immutable Atiributes

ldentty (x,¥) A x e V(A)) [

Definition 2.9 - Identity Relation

Single Step Increment (x, y) --> y = succ(x)
Multi Step Increment (X, y) >y #succ(x) A X <<y
Single Step Decrement (X, y) --> y = pred(x)

Multi Step Decrement (x, y) -->y = pred(x) A y >> X

Definition 2.10 — Additional Ordinal Scale Transition Pairs

Unit addition X, x+1) Alxe Via(x+1 e V)
Arbitrary increment X, x+)Aaxe VY Ax+ie V) Ali>0)
Unit subtraction ,x-1)alxe Via(x-1e V)
Arbitrary decrement (X, x-i)alie V) Alx -ie V) (i>0)

Definition 2.11 —Relation Subsets of Interest in an Interval Scale.

Muliiplicative increase (%, x *) A (xe V) A (x *i}e V) A (i>0)
Multiplicative decrease X, x*Axe V)Aax*ile VA (0<i<T)

Definition 2.12 — Additional Subsets of Interest in a Ratio Scale

A class C is:
e a set of attributes 2(C) and their subsets,
Primitive Attributes ®(C),
Derived Attributes D(C),
Naming Attributes aA(C),
Referential Attributes ®(C),
e a set of functions #(C) that are used to create D(C},
These functions are expressed in terms of attributes.
e a set of Operations as Follows:
Object Instantiation 1{C),
Object Removal R(C),
Other Operations 0O{C},
e a statistical summary function 5(C),
e a2 set of axioms or integrity constraints x(C)

Definition 3.1 - Class

Given a class C with attributes Ag A, ... A,, an object O of Class C is defined to be a family
of vectors of the form [ag, a1, .. . an] where gj fV{Aj)and where the vectors have a
common value (the name of O) on the naming attributes of C.

Definition 3.2 -~ Object

The set of attributes 4(C), can be viewed as two disjoint subsets: The fundamental, or
primitive, attributes 2(C) and the derived atiributes D(C);

4(C) = 2C) v D) and PC) N D) = ¢.

The p(C) require the introduction of a set functions #(C)) = {fi}, such that if
2?(C) ={Py, P1,...Pn}, DC)={Dg,D1,...Dm}, and S is the special class of system
attributes (such as current date), and DOM(S) is the cross product of the value sets of
the primitive attributes of S, then there is a function fi e F(C) such that f; is an onto
function and fi: VPo) X. .. X ¥Pn) X DOMS) — VD).

Definition 3.3 - Class [Primitive and Derived Attributes)

i{A subset, A(C) of the A(C) are the naming attributes. Ae N(C}—null e V(3)

Definition 3.4 - Naming Attributes

A subset, ®(C) of the 4(C) are the referential attributes, or R/(C). n
(A(C) 2 RC)) v (RLC) N ALC) =9¢)

Definition 3.5 -~ Referential Attributes

Classes include:
An instantiation procedure I that uniquely associates any object of class C with some tuple

of UNg) X. .. X ¥Npn) (Nie a(C)).

A set of deletion or removal procedures , ®(C) , that remove the objects created by the
instantiation procedure L

A set of Operations, O(C), that access or update sets of atiributes

Definition 3.6 -~ Operations

Classes include a statistical function S(C) that computes summary statistics for the set of
objects instantiated for C, and a set of functions $4(C, Aj) that compute summary
statistics for each attribute of the set of objects.

Definition 3.7 ~ Class Statistical Functions

Classes include a set of axioms or integrity constraints x(C):
+ interclass atiribute axioms
intraobject attribute axioms
interobject attribute axioms
* interclass attribute axioms

Definition 3.8 ~ Class Axioms

C'is a subclass of C if:

1. There is an atiribute, A, with V(A) o V" (A)
2. P(C) o P(C') Thatis, the attributes of C’ consist of at most the primitive attributes
of C and additional attributes that can be derived from those primitives.

C is a superclass of C', if C'is a subclass of C

Definition 4.1 - Subclass and Superclass

An attribute B is a restriction of an attribute A (or A is an extension of B) if .
VA o VB)
RA) > RB)

Definition 4.2 - Attribute Restriction

Cu is a class that is the composition of the classes Cq C2 ... Cn. The algorithm, (in which the
subscript = refers to a function completed by the domain expert), is as follows:
Cu={@®Ci1Ca...Cp)

1. 4(Cy)= 4(Cy)u a(Cy) v ...4(Cn)), where u is the disjoint union
2. Wx 3y (A {a(Cx)) n AL(a(Cy)) = D) — conflict_resolutions(a(Cyx), 4(Cy))

3. 4(Cy):= 4 (Cy) - irrelevant _attributes«(Cm)

4, 4(Cym) = 2 (Cy)u selected_new_attributes(attribute_library)

Definition 5.1— Composition Process Algorithm

Cw is a class that is the association of the classes Cq Cz...Cn. The algorithm is as follows:
Cu=(®CiCz...Cp).

1. 2(CMm) = AlC1)u AC2) v ...ACn))
2. 4(CM) = 4 (CM) v selected_new_attributes(attribute_library)

Definition 6.1 Association

Bibliography

[Adelson 85] Adelson, B. and Soloway, E. The role of domain experience in software
design, IEEE Transactions on Software Engineering. Vol. 11, No. 11 (November
1985), 1351-1359.

[Agresti 86a] Agresti, W. “What are the new paradigms?” in New Paradigms for Software
Development (eds. Agresti, W.W.), IEEE Computer Society, Washington, DC, 6-10.

[Agresti 86b] Agresti, W. “Framework for a flexible development process” in New
Paradigms for Software Development (eds. Agresti, W.W.), IEEE Computer Society,
Washington, DC (1986), 11-14.

[Alexander 64] Alexander, C. Notes on the Synthesis of Form, Harvard University Press,
Cambridge, MA (1964).

[Almes 83] Almes, G., Borning, A. and Messinger, E. “Implementing a smalltalk-80
system on the intel 432: A feasibility study” in Smalltalk-80: Bits of History, Words of
Advice (eds. Krasner, G.), Addison-Wesley, Reading, MA (1983), 269.3272.

[Anderson 89] Anderson, J.S. and Fickas, S. A proposed perspective shift: Viewing
specification design as a planning problem, Proceedings of the Fifth International
Workshop on Software Specification and Design, Pittsburgh, PA (May 19-20, 1989),
177-184.

[Apple 85] Apple. Apple Computer, Inc. Addison-Wesley Publishing Company, Inc,
Reading, Massachusetts (1985).

[Arango 89] Arango, G. “Domain analysis: From art form to engineering discipline,”
Proceedings of the Fifth International Workshop on Software Specification and
Design, Pittsburgh, PA (May 19-20, 1989), 152-159.

[Bailin 89] Bailin, S.C. An object-oriented requirements specification method,
Communications of the ACM. Vol. 32, No. 5 (May 1989), 608-623.

[Balzer 76] Balzer, R., Goldman, N. and Wile, D. On the transformational implementation
approach to programming, Proceedings, Second International Conference on Software
Engineering, New York: Computer Society Press (1976), 337-344.

[Balzer 78] Balzer, R. and Goldman, N. Informality in program specifications, JEEE
Transactions on Software Engineering. Vol. 4, No. 2 (March 1978), 94-102.

[Balzer 79] Balzer, R. and Goldman, N. Principles of good software specification and
their implications for specification languages, Specification of Reliable Software
Conference (1979), 58-67.

[Balzer 81] Balzer, R. Transformational implementation: An example, IEEE Transactions
on Software Engineering. Vol. SE-7, No. 1 (January 1981), 3-14.

[Balzer 83] Balzer, R., Cheatham, T.E., Jr. and Green, C. Software technology in the
1990's: Using a new paradigm, JEEE Computer (November 1983).

[Balzer 85] Balzer, R. A 15 year perspective on automatic programming, /[EEE
Transactions on Software Engineering. Vol. SE-11, No. 11 (November 1985), 1257-
1267.

[Bareiss 87] Bareiss, E.R. and Porter, B.W. A survey of psychological models of concept
representation, The University of Texas at Austin, Technical Report AT TR87-50 (April
1987).

143

144

[Barstow 79a] Barstow, D. The roles of knowledge and execution in program synthesis,
Proceeding of the 6th International Joint Conference on Artifical Intelligence, Tokyo,
Japan (August 1979).

[Barstow 79b] Barstow, D. An experiment in knowledge-based automatic programming,
Artificial Intelligence Journal. Vol. 12, No. (August 1979), 73-119.

[Barstow 79¢] Barstow, D. Knowledge-Based Program Construction, Elsevier-North
(1979).

[Barstow 82a] Barstow, D., Duffey, R., Smoliar, S. and Vestal, S. An overview of
FNIX, Second National Conference on Artificial Intelligence, Pittsburgh, Pennsylvania
(August 1982).

[Barstow 82b] Barstow, D., Duffey, R., Smoliar, S. and Vestal, S. An automatic
programming system to support an experimental science, Sixth International
Conference on Software Engineering, Tokyo, Japan (September 1982).

[Barstow 84] Barstow, D. A perspective on automatic programming, Al Magazine. Vol. 5,
No. 1 (Spring 1984), 5-27.

[Barstow 85a] Barstow, D. Domain-specific automatic programming, [EEE Transactions
on Software Engineering. Vol. SE-11, No. 11 (November 1985), 1321-1336.

[Barstow 85b] Barstow, D., Barth, P., Dietz, R. and Greenspan, S. Observations on
specifications and automatic programming, Proceedings of the 3rd International
Workshop on Software Specification and Design, London (1985).

[Barstow 89] Barstow, D. Automatic programming for device control software,
Workshop on Automating Software Design, Detroit, MI (August 21, 1989), 16-33.

[Batory 87] Batory, D. A mollecular database technology, University of Texas Technical
Report (1987).

[Biggerstaff 87] Biggerstaff, T.J. Hypermedia as a tool to aid large scale reuse, MCC
Technical Report, STP-202-87, (July 1987).

[Biggerstaff 89a] Biggerstaff, T.J., J. Hoskins and D.E. Webster. DESIRE: A System for
Design Recovery, Technical Report STP-081-89, MCC (1989).

[Biggerstaff 89b] Biggerstaff, T.J. Design for Maintenance and Reuse, IEEE Computer
(1989).

[Birtwistle 73] Birtwistle, G. in Simula Begin, Auerbach, Philadelphia, PA (1973).

[Blalock 72] Blalock, H. in Social Statistics (eds. Larsen, O.N.), McGraw-Hill, New
York (1972).

[Bobrow 83a] Bobrow, D. and Stefik, M. Knowledge programming in loops, A/
Magazine (August 1983).

[Bobrow 85] Bobrow, D. If Prolog is the answer, what is the question? or what it takes
to support Al programming paradigms, IEEE Transactions on Software Engineering.
Vol. SE 11, No. 11 (November 1985), 1401-1408.

[Bobrow 86] Bobrow, D.G. and Stefik, M. Perspectives on artificial intelligence
programming, Science. Vol. 231, No. 4741 (February 1986), 951.

[Boehm 76] Boehm, B. Software engineering, IEEE Transactions on Computers. Vol. C-
25, No. 12 (December 1976), 1226-1241.

145

[Boehm 84] Boehm, B.W., Gray, T.E. and Seewaldt, T. Prototyping versus specifying:
A multiproject experiment, I[EEE Transactions on Software Engineering. Vol. SE-103,
No. 3 (March 1984), 250-302.

[Boehm 88] Boehm, B.W. A spiral model of software development and enhancement,
IEEE Transactions on Computers. Vol. C-21, No. (May 1988), 61-72.

[Booch 86] Booch, G. Object-oriented development, IEEE Transactions on Software
Engineering (February 1986), 211-221.

[Borgida 84] Borgida, A., Mylopoulos, J. and Wong, H. “Generalization/specialization as
a basis for software specification” in On Conceptual Modelling (eds. Brodie, M., John,
M. & Schmidt, J.), Springer-Verlag, New York (1984), 87-117.

[Borgida 85a] Borgida, A. Features of languages for the development of information
systems at the conceptual level., I[EEE Software. Vol. 2, No. 1 (January 1985), 63-
72.

[Borgida 85b] Borgida, A., Greenspan, S. and Mylopoulos, J. Knowledge representation
as the basis for requirements specifications, IEEE Computer (April 1985).

[Borning 82] Borning, A. and Ingalls, D. Multiple inheritance in smalltalk-80,
Proceedings AAAI (1982), 234-237.

[Brachman 83] Brachman, R.J. What IS-A is and isn't: An analysis of taxonomic links in
semantic networks, JEEE Computer. (1983), 30-36.

[Brachman 85a] Brachman, R. and Schmolze, J. An overview of the KI-ONE knowledge
representation system, Cognitive Science, Vol. 9, No.2 (1985), 171-216.

[Brachman 85b] Brachman, R. I lied about the trees’, or, defaults and definitions in
knowledge representation, The AI Magazine (Fall 1985), 80-92.

[Brachman 85c] Brachman, R. and Levesque, H. Readings in knowledge representation.
Morgan Kaufmann Publishers, Inc., Los Altos, CA (1985).

[Brodie 84] Brodie, M., Mylopoulos, J. and Schmidt, J. in On Conceptual Modelling,
Springer-Verlag, New York (1984).

[Brodie 86] Brodie, M.L. and Mylopoulos, J. in On Knowledge Base Management
Systems (eds. 86], [.), Springer-Verlag (1986).

[Brooks 75] Brooks, F.P.J. The mythical man-month: Essays on software engineering,
Addison-Wesley, Reading, MA (1975).

[Brooks 87] Brooks, F. No silver bullet, IEEE Computer. Vol. 20, No. 4 (1987) 10-19.

[Browne 82] Browne, J.C. and Smith, T. An object-oriented, capability-based
architecture, Proceedings of 16th IBM Computer Science Symposium (October 1982).

[Browne 84] Browne, J.C., er al. Zeus: An object-oriented distributed operating system,
Proceedings ACM National Conference (1984).

[Browne 89] Browne, J.C. and Hufnagel, S.P. Performance properties of vertically
partitioned object-oriented systems, IEEE Transactions on Software Engineering. Vol.
15, No. 8 (August 1989), 935-946.

[Brownlee 65] Brownlee, K.A. in Staristical Theory and Methodology in Science and
Engineering 2nd Edition, John Wiley and Sons, New York (1965).

[Bruce 86] Bruce, K. and Wegner, P. Algebraic and lambda calculus models of subtype
and inheritance, Brown Technical Report, (August 1986).

146

[Bruns 86a] Bruns, G., Bridgeland , D. and Webster, D. Design technology assessment:
Gist., MCC Technical Report Number STP-369-86, Austin, TX (1986).

[Bruns 86b] Bruns, G. Design technology assessmenis: Affirm, CAEDE, Draco, PNUT,
MCC Technical Report Number STP-197-87 , (1987).

[Bruns 88] Bruns, G. and Potts, C. Domain modeling approaches 1o software
development, MCC Technical Report Number STP-186-88 (1988).

[Cardelli 84] Cardelli, L. “A semantics of multiple inheritance” in Semantics of Data
Types, Lecture Notes in Computer Science, Springer-Verlag (1984), 51-67.

[Cardelli 85] Cardelli, L. and Wegner, P. On understanding types, data abstraction, and
polymorphism, Computing Surveys. Vol. 17, No. 4 (December 1985), 471-522.

[Caspari 76] Caspari, J.A. Wherefore accounting data - Explanation, predication and
decisions, The Accounting Review. Vol. L1, No. 4 (1976), 739-745.

[Ceri 89] Ceri, S., Crespi-Reghizzi, S., Maio, A.D. and Lavazza, U.A. Software
prototyping by relational techniques: Experiences with program construction systems,
JEEE Transactions on Software Engineering. Vol. 14, No. 11 (November 1989), 1597-
1608.

[Chambers 72] Chambers, R.J. Measurement in current accounting practice: A critique,
The Accounting Review (July, 1972), 488-509.

[Chambers 73] Chambers, R.J. Accounting principles or accounting policies?, The Journal
of Accountancy (May 1973), 48-53.

[Chen 76] Chen, P. The entity-relationship model: Toward a unified view of data, ACM
Transactions on Database Systems. Vol. 1, No. 1 (March 1976).

[Coad 90] Coad, P. and Yourdon, E. Object-Oriented Analysis, Prentice-Hall, Inc.
(1990).

[Codd 79] Codd, E.F. Extending the database relational model to capture more meaning,
ACM Transactions on Database Systems. Vol. 4, No. 4 (December 1979), 397-434.

[Coombs 53] Clyde, H. Theory and methods of social measurement, Research Methods
in the Behavioral Sciences, Holt, Reinhart, and Winston, New York (1953), 471-535.

[Coombs 54] Coombs, C.H., Raiffa, H. and Thrall, R.M. Some views on mathematical
models and measurement theory, Psychological Review. Vol. 61 (March 1954), 132-
144,

[Coombs 60] Coombs, C.H. A theory of data, Psychological Review. Vol. 67 (1967),
143-159.

[Cox 86] Cox, B.Object Oriented Programming, Addison-Wesley, Reading, MA (1986).

[Curtis 80] Curtis, B. Measurement and experimentation in software engineering,
Proceedings of the IEEE. Vol. 68, No. 9 (September 1980), 1144-1157.

[Curtis 87] Curtis, B., Krasner, H., Shen, V. and Iscoe, N. On building software process
models under the lamppost , Proceedings of the 9th International Conference on
Software Engineering , Washington, DC (1987), 96-103.

[Curtis 88] Curtis, B., Krasner, H. and Iscoe, N. A field study of the software design
process for large systems, Communications of the ACM. Vol. 31, No. (November
1988), 1268-1287.

[Dahl 66] Dahl, O.J. and Nygaard, K. SIMULA—an algol based simulation language,
Communications of the ACM . Vol. 9, No. (1966), 671-678.

147

[Dahl 72] Dahl, O.J., Dijkstra, E'W. and Hoare, C.AR. Hierarchical program structures,
- Structured Programming, New York (1972), 175-220.

[Danforth 88] Danforth, S. and Tomlinson, C. Type theories and object-oriented
programming, ACM Computing Surveys, Vol. 20, No. 1 (March 1988).

[Date 81] Date, C.J. An introduction to data base systems 3rd ed., Addison-Wesley
Publishing, Reading, MA: (1981).

[Date 84] Date, C.J. “Relational database design” in A Guide to DB2, Addison-Wesley
Publishing, Reading, MA (1984), 277-293.

[Date 86] Date, C.J. in Relational Database, Selected Writings, Addison-Wesley, Reading,
MA (1986).

[Davis 88] Davis, A.M., Bersoff, E.H. and Comer, E.R. A strategy for comparing
alternative software development life cycle models, IEEE Transactions on Software
Engineering. Vol. 14, No. 10 (October 1988).

[Deutsch 83a] Deutsch, P. “The dorado smalltalk-80 implementation: Hardware
architecture's impact on software architecture” in Smalltalk-80: Bits of History,
Words of Advice (eds. Krasner, G.), Addison-Wesley, Reading, MA (1983), 113-
126.

[Deutsch 83b] Deutsch, P. and Schiffman, A.M. Efficient implementation of the
smalltalk-80 system, Conference Record of the Tenth Annual ACM Symposium on
Principles of Programming Languages (1983), 297-302.

[Dijkstra 72] Dijkstra, E. “Notes on structured programming” in Structured Programming
(eds. Dahl, O.J., Dijkstra, E'W. & Hoare, C.AR.), Academic Press, New York (
1972).

[Everest 77] Everest, G.C. and Weber, R. A relational approach to accounting models, The
Accounting Review. Vol. LII, No. 2 (1977), 340-359.

[Feather 82] Feather, M.S. A system for assisting program transformation, ACM
Transformations on Programming Languages and Systems. Vol. 4, No. 1 (January
1982), 1-20.

[Feather 87a] Feather, M.S. Language support for the specificaton and development of
computer systems, ACM transactions on programming languages and systems, Vol.
9, No. 2 (April 1987), 198-234.

[Feather 87b] Feather, M.S. The evolution of composite system specifications,
Proceedings of the Fourth International Workshop on Software Specification and
Design (April 1987), 52-57.

[Feather 89] Feather, M.S. Constructing specifications by combining parallel elaborations,
IEEE Transaction on Software Engineering. Vol. 15, No. 2 (February 1989), 198-208.

[Feller 71] Feller, W. in An Introduction to Probability Theory and Iis Applications,
Volume 11, John Wiley and Sons, New York (1971).

[Feller 50] Feller, W. in An Introduction to Probability Theory and Its Applications,
Volume I, John Wiley and Sons, New York (1950).

[Fickas 85] Fickas, S. Automating the transformational development of software, I[EEE
Transactions on Software Engineering. Vol. SE-11, No. 11 (November 1985), 1268-
1277.

148

[Fickas 86] Fickas, S. A knowledge-based approach to specification acquisition and
construction, CIS-TR 85-13, Computer Science Department, University of Oregon,
Eugene, Oregon (1986).

[Fickas 87] Fickas, S. Automating the analysis process: An example, Fourth International
Workshop on Specification and Design (April 1987), 58-67.

[Fickas 88] Fickas, S. and P. Nagarajan. Being suspicious: Critiquing problem
specification, Proceedings of the 7th National Conference on Artificial Intelligence
(August 1988), 19-24.

[Goguen 88] Goguen, J. and Meseguer, J. “Unifying functional, object-oriented and
relational programming with logical semantics” in Research Directions in Object-
Oriented Programming (eds. Shriver, B. & Wegner, P.), MIT Press, Cambridge, MA
(1988), 417-478.

[Goldberg 83] Goldberg, A. and Robson, D. in Smallialk-80: T he Language and its
Implementation, Addison-Wesley, Reading, MA (1983).

[Goldberg 84] Goldberg, A. in Smalltalk-80: The Interactive Programming Environment,
Addison-Wesley, Reading, MA (1984).

[Green 75] Green, C. and Barstow, D. Some rules for the automatic synthesis of
programs, Proceedings of the Fourth International Joint Conference on Artificial
Intelligence (September 1975.), 232-239.

[Green 76] Green, C. The design of the PSI program synthesis system, Second
International Conference on Software Engineering (1976).

[Green 78] Green, C. and Barstow, D. On program synthesis knowledge, Artificial
Intelligence Journal (November 1978), 241-279.

[Green 79] Green, C. Results in knowledge based program systhesis, 6th International
Joint Conference on Artificial Intelligence (1979), 342-344.

[Green 82] Green, C. Knowledge-based programming self-applied, Machine Intelligence .
Vol. 10, No. (1982).

[Green 83] Green, C., Luckham, D., Balzer, R, Cheatham, T. and Rich, C. Report on a
knowledge-based software assistant, RADC-TR-83-195, Rome Air Development
Center (1983).

[Green 86] Green, C. and Barstow, D. On program synthesis knowledge, Artificial
Intelligence, Vol. 10, No. 3 (November 1978, 1986), 241-279.

[Greenspan 82] Greenspan, S., Borgida, A. and Mylopoulos, J. Capturing more world
knowledge in the requirements specification , Proceedings of the 6th International
Conference on Software Engineering, Tokyo, Japan (1982).

[Greenspan 84] Greenspan, S. Requirements modeling: A knowledge representation
approach to software requirements definition, Ph.D. Thesis, Computer Science
Department , (1984).

[Greenspan 86] Greenspan, S., Borgida, A. and Mylopoulos, J. A requirements
modeling language and its logic, Information Systems. Vol. 11, No. 1 (1986), 9-23.

[Guttag 77] Guitag, J. Abstract data types and the development of data structures,
Communications of the ACM (June 1977), 396-404.

[Guttag 85] Guttag, J., Horning, J. and Wing, J. The larch family of specification
languages, IEEE Software. Vol. 2, No. 5 (September 1985), 24-36.

149

[Haase 82] Haase, V. and Koch, G. Application-oriented specifications, IEEE Computer
Magazine (May 1982), 10-60.

[Hirschheim 89] Hirschheim, R. and Klein, H.K. Four paradigms of information systems
development, Communications of the ACM. Vol. 32, No. 10 (October 1989), 1199-
1216.

[Hoare 72] Hoare, C.A.R. Proof of correctness of data representations, Acta Infon}zarica.
Vol. 1, No. (1972), 271-281.

[Hoare 73] Hoare, C.A.R. Hints on programming language design, Computer Science
Department Report , (Oct ober 1973), 27.

[Hoare 74] Hoare, C.A.R. Monitors: An operating system structuring concept,
Communications of the ACM. Vol. 17, No. 10 (Oct ober 1974), 549-558.

[Hoare 85] Hoare, C.A.R. in Communicating Sequential Processes, Prentice Hall (1985).

[Hufnagel 89] Hufnagel, S.P. and Browne, J.C. Performance properties of vertically
partitioned object-oriented systems, IEEE Transactions on Software Engineering. Vol.
15, No. 8 (August 1989).

[Hull 87] Hull, R. and King, R. Semantic database modeling: Survey, applications, and
research issues, ACM Computing Surveys. Vol. 19, No. 3 (September 1987), 201-
260.

[Ingalls 78] Ingalls, D.H. The smalltalk-76 programming system: Design and
implementation, Symposium on Principles of Programming Languages, Tucson, AZ
(January 1978), 9-16.

[Ingalls 83] Ingalls, D.H. “The evolution of the smalltalk virtual machine” in Smalltalk-80,
Bits of History, Words of Advice (1983).

[Ingalls 86] Ingalls, D.H. A simple technique for handling multiple polymorphism,
Proceedings of the ACM Conference on Object-Oriented Programming Systems,
Languages and Applications, Portland, Oregon (November 1986), 347-360.

[Iscoe 86] Iscoe, N. CRTForm: An object-oriented application development system using
type and type-type managers, Masters Report, Dept. of Computer Sciences University
of Texas (August 1986).

[Iscoe 88a] Iscoe, N. A database configuration system that learns while it optimizes ,
Proceedings of the Third Annual Rocky Mountain Conference On Artificial
Intelligence, Denver, CO (June 1988.).

[Iscoe 88Db] Iscoe, N. Domain-specific reuse: An object-oriented and knowledge-based
approach, software reuse: Emerging technology, IEEE Computer Society,
Washington, DC (September 1988), 299-308.

[Jackson 83] Jackson, M. Software development, Prentice-Hall (1983).

[Jalote 89] Jalote, P. Testing the completeness of specifications, IEEE Transactions on
Software Engineering. Vol. 15, No. 5 (May 1989), 526-531.

[Kahn 81] Kahn, K. iMAX: A multiprocessor operating system for an object-based
computer, Eighth Symposium on Operating Systems Principles (1981), 12-36.

[Kant 79] Kant, E. A knowledge-based approach to using efficiency estimation in
program synthesis, 6th International Joint Conference on Artificial Intelligence (1979),
457-462.

150

[Kant 81a] Kant, E. and Barstow, D. The refinement paradigm: the interaction of coding
and efficiency knowledge in program synthesis”, IEEE Transactions on Software
Engineering (September 1981), 458-471.

[Kant 81b] Kant, E. in Efficiency in Program Synthesis, UMI Research Press (1981).

[Kant 83] Kant, E. On the efficient synthesis of efficient programs, Artificial Intelligence
Journal (1983).

[Kant 85] Kant, E. Understanding and automating algorithm design, IEEE Transactions
on Software Engineering (November 1985).

[Keeney 76] Keeney, R. and Raiffa, H. Decisions with multiple objectives: Preferences
and value tradeoffs, John Wiley and Sons (1976).

[Kemmerer 85] Kemmerer, R. Testing formal specifications to detect design errors, IEEE
Transactions on Software Engineering. Vol. 11, No. 1 (January, 1985), 32-43.

[Kent 78] Kent, W. Data and reality, Elsevier North-Holland, New York, 1978.
[Kish 65] Kish, Leslie. Survey Sampling, John Wiley & Sons, Inc. New York (1965).

[Knuth 68] Chapter 1 p. 16 Knuth, D.E. Semantics of context-free languages,
Mathematical Systems Theory. Vol. 2, No. 2 (June 1968), 127-145.

[Kuhn 70] Kuhn, T. in The Structure of Scientific Revolutions, University of Chicago
Press (1970).

[Labovitz 70] Labovitz, S. Statistical usage in sociology: Sacred cows and ritual,
Sociological Methods and Research. Vol. 1, No. (1972), 13-38.

[Labovitz 72] Labovitz, S. The assignment of numbers to rank order categories, American
Sociological Review. Vol. 35, No. (1970), 515-524.

[Lenat 88a] Lenat, D. and Guha, R.V. MCC Technical Report ACA-AI-300-88, The world
according to CYC (September 1988).

[Lenat 88b] Lenat, D., Guha, R.V. and Wallace, D.V. MCC Technical Report No. ACA-
AI-302-88, The CycL representation language (September 1988).

[Lenat 89] Lenat, D.B. Ontological versus knowledge engineering, JEEE Transactions on
Knowledge and Data Engineering. Vol. 1, No. 1 (March 1989), 84-88.

[Lieberman 81] Lieberman, H. A preview of act I, Massachusetts Institute of
Technology, Artifical Intelligence Laboratory Memo, (June 1981).

[Liskov 75] Liskov, B. and Zilles, S. Specification techniques for data abstractions, JEEE
Transactions on Software Engineering. Vol. 1, No. 1 (March 1975), 7-19.

[Lubars 86] Lubars, M.D. and Harand i, M.T. Intelligent support for software
specification and design, IEEE Expert. Vol. 1, No. 4 (Winter 1986), 33-41.

[Lubars 88] Lubars, M.D. The knowledge-based refinement paradigm and IDeA:
Concepts, limitations, and future directions, Proceedings of the Workshop on
Automating Software Design, St. Paul, MN (August 1988), 68-73.

[Lubars 88] Lubars, M.d. The IDeA design environment, Proceedings of the Eleventh
International Conference on Software Engineering, Pittsburgh, PA (May 1989), 23-32.

[Lubars 89] Lubars, M.D. Software design support in the ROSE project, Proceedings of
the Workshop on Automating Software Design IICAI-89, Detroit, MI (August 1989),
176-179.

151

[Lugi 89] Lugi. Software evolution through rapid prototyping, Computer. Vol. 22, No. 5
(May 1989), 13-27.

[Maier 83] Maier, D. The theory of relational databases, Computer Science Press, Inc.,
Rockville, MD (1983).

[McCracken 81] McCracken, D. and Jackson, M. “A minority dissenting position” in
Systems Analysis and Design -- A Foundation for the 1980's (eds. W.W. Cotterman
et al., e.), Elsevier North-Holland , New York (1981), 551-553.

[McCullough 83] McCullough. Vol. No.

[Meyer 86] Meyer, B. Genericity versus inheritance, Proceedings of the ACM Conference
on Object-Oriented Programming Systems, Languages and Applications, Portland, OR
(November 1986), 391-405.

[Meyer 88] Meyer, B.Object-Oriented Software Construction, Prentice Hall, NJ (1988).

[Moon 86] Moon, D.A. Object-oriented programming with flavors, Proceedings of the
ACM Conference on Object-Oriented Programming Systems, Languages and
Applications, Portland, OR (November 1986).

[Mostow 85] Mostow, J. Foreword: What is Al and what does it have to do with
software engineering? IEEE Transactions on Software Engineering. Vol. SE-11, No.
11 (November 1985), 1253-1256.

[Mylopoulous 84] Mylopoulous, J. and Levesque, H. “An overview of knowledge
representation” in On Conceptual Modelling (eds. Brodie & Myolopoulous), Springer
Verlag, NY (1984), 3-17.

[Neighbors 80] Neighbors, .M. Software construction using components, Ph.D. Thesis,
University of California-Irvine (1980).

[Neighbors 84a] Neighbors, J.M. The draco approach to constructing software from
reusable components, IEEE Transactions on Software Engineering. Vol. 10,No. 5
(September 1984), 564-574.

[Neighbors 84b] Neighbors, J.M., Arango, G. and Leite, J.C. Draco 1.3 users manual,
Vol. No. (September 1984).

[Peckham 88] Peckham, J. and Maryanski, F. Semantic data models, ACM Compuiing
Surveys. Vol. 20, No. 3 (1988), 153-189.

[Pollack 81] Pollack, F.J., Kahn, K.C. and Wilkinson, R.M. The iIMAX-432 object
filing system, Eighth Symposium on Operating Systems Principles (1981), 137-147.

[Reubenstein 89] Reubenstein, H.B. and Waters, R.C. The requirements apprentice: An
initial scenario, Proceedings of the Fifth International Workshop on Software
Specification and Design, Pittsburgh, PA (May 19-20, 1989), 211-21.

[Rich 78] Rich, C. and Shrobe, H. Initial report on a LISP programmer’s apprentice,
JEEE Transactions on Software Engineering. Vol. 4, No. 6 (November 1987).

[Rich 82] Rich, C. Knowledge representation languages and predicate calculus: How to
have your cake and eat it too, Proceedings of the AAAI National Conference,
Pittsburgh, Pennsylvania (August 1982).

[Rich 87] Rich, C., Waters, R.C. and Reubenstein, H.B. Toward a requirements
apprentice, Proceedings of the Fourth International Workshop on Software
Specification and Design (April 1987), 79-86.

[Rich 88a] Rich, C. Automatic programming: Myths and prospects, Computer (August
1988), 40-51.

152

[Rich 88b] Rich, C. and Waters, R.C. The programmer’s apprentice: A research
overview, Computer. Vol. 21, No. 11 (November 1988), 11-25.

[Roberts 79] Roberts, F.S. in Measurement Theory with Applications to Decisionmaking,
Utility, and the Social Sciences, Addison-Wesley, Reading, MA (1979).

[Robinson 89] Robinson, W.N. Integrating multiple specifications using domain goals,
Proceedings of the Fifth International Workshop on Software Specification and Design,
Pittsburgh, PA (May 19-20, 1989), 219-226.

[Rosenberg 68] Rosenberg, M. in The Logic of Survey Analysis, Basic Books, Inc., New
York (1968).

[Ross 77] Ross, D. Structured analysis (SA): A language for communicating ideas, JEEE
Transactions on Software Engineering (January 1977).

[Royce 70] Royce, W. Managing the development of large software systems: Concepts
and techniques, Proceedings WESCON (August 1970).

[Schwartz 77] Schwartz, S.P. Naming, Necessity, and Natural Kinds, Cornell University
Press, London (1977).

[Scott 76] Scott, D.S. Data types as lattices, SIAM J. Comput. Vol. 5, No. 3 (1976),
523-587.

[Shaw 84] Shaw, M. “The impact of modeling and abstraction concerns on modern
programming languages” in On Conceptual Modeling (eds. Brodie, M.L. &
Mylopoulos, J.), Springer-Verlag, New York (1984), 49-83.

[Shlaer 88] Shlaer, S. and Mellor, S.J. in Object-Oriented Systems Analysis Modeling the
World in Data, Yourdon Press Computing Series, Englewood Cliffs, New Jersey
(1988).

[Shortley 73] Shortley, G. and Williams, D. in Elements of Physics, Prentice Hall
(1973).

[Smith 77] Smith, J. and Smith, D. Database abstractions: Aggregation and generalization
, ACM Transactions on Database Systems (1977), 1278-1295.

[Smith 85] Smith, D., Kotik, G. and Westfold, S. Research on knowledge-based software
environments at Kestrel Institute, JEEE Transactions on Software Engineering. Vol.
SE-11, No. 11 (November 1985).

[Smoliar 83] Somliar, S. and Barstow, D. Who needs languages, and why do they need
them? or no matter high the level it’s still programming, SIGPLAN: Symposium on
Programming Language Issues in Software Systems, San Francisco, California (June
1983).

[Snyder 86] Snyder, A. Encapsulation and inheritance in object-oriented programming
languages, Proceedings of the ACM Conference on Object-Oriented Programming
Systems, Languages and Applications, Portland, OR (November 1986), 38-435.

[Snyder 88] Snyder, A. “Inheritance and the development of encapsulated software
systems” in Research Directions in Object-Oriented Programming (ed. Wegner, S.A.),
MIT Press, Cambridge, MA (1988), 165-188.

[Stamper 73] Stamper, R. Information in business and administrative systems, John Wiley
and Sons, New York (1973).

[Steensgaard 89] Steensgaard-Madsen, J. Typed representation of objects by functions,
Transactions on Programming Languages and Systems (January 1989), 67-89.

[Stefik 85] Stefik, M.J. and Bobrow, G. Object-oriented programming: Themes and
variations, The AI Magazine (Winter 1985), 40-61.

[Stefik 86] Stefik, M.J., Bobrow, D. and Kahn, K. Integrating access-oriented
programming into a multiparadigm environment, IEEE Software (January 1986), 10-
18.

[Stevens 46] Stevens, S.S. On the theory of scales of measurement, Science 103 (1946),
677-680.

[Stevens 74] Stevens, S.S. “Measurement” in Scaling A Sourcebook for Behavioral
Scientists (eds. Marnell, G.M.), Aldine, Chicago, IL (1974), 22-41.

[Stonebraker 82] Stonebraker, M. A rules system for a realtional database system,
Proceedings of the 2nd International Conference on Databases, Jerusalem, Israel (June
1982).

[Suppes 58] Suppes, P. and Scott, D. Foundational aspects of theories of measurement,
Journal of Symbolic logic, Vol. 23 (1958), 113-128.

[Swartout 82] Swartout, W. and Balzer, R. An inevitable intertwining of specification and
implementation, Communications of the ACM. Vol. 25, No. 7 (July 1982), 438-446.

[Teorey 86] Teorey, T.J., Yang, D. and Fry, J.P. A logical design methodology for
relational databases using the extended entity-relationship model, ACM Comput Surv.
Vol. 18, No. 2 (June 1986), 197-222.

[Torgerson 58] Torgerson, W. Theory and methods of scaling , John Wiley & Sons
(1958).

[Touretzky 86] Touretzky, D.S. The Mathematics of Inheritance Systems, Morgan
Kaufmann Publishers, Inc. (1986).

[Tsichritzis 82] Tsichritzis, D.C. and Lochovsky, F.H. Data Models, Prentice-Hall,
Englewood Cliffs, N. J. (1982).

[Tukey 771 Tukey, J.Exploratory Data Analysis, Addison Wesley, Reading, MA (1977).

[Ullmann 80] Ullmann, J.D. Priciples of database systems, Computer Science Press,
Rockville, MD (1980).

[Waters 82] Waters, R. The programmer’s apprentice: Knowledge based program editing,
JEEE Transactions on Software Engineering. Vol. SE-11, No. 11 (January 1982),
1296-1320.

[Waters 85] Waters, R. The programmer's apprentice: A session with KBEmacs, IEEE
Transactions on Software Engineering. Vol. SE-11, No. 11 (November 1985).

[Webster 88] Webster, D.E. Mapping the design information representation terrain,
Computer. Vol. 21, No. 12 (December 1988), 8-23.

[Wegner 84] Wegner, P. Capital intensive software technology -- Part 2: Programming in
the large , IEEE Transactions on Software Engineering. Vol. 1, No. 3 (July 1984), 24-
32.

[Wegner 88] Wegner, P. “The object-oriented classification paradigm” in Research
Directions in Object-Oriented Programming (eds. Wegner, S.a.), MIT Press,
Cambridge, MA (1988), 479-560.

[Weitzel 89] Weitzel, J.R. and Kerschberg, L. Developing knowledge-based systems:
Reorganizing the system development life cycle, Communications of the ACM. Vol
32, No. 4 (January 1989), 482-488.

154

[Westfold 84] Westfold, S. Very-high level programming of knowledge-based schemes,
Fourth National Conference of the American Association for Artificial Intelligence
(August 1984).

[Wile 83] Wile, D. Program developments: Formal explanations of implementations,
Communications of the ACM (November), 191-200.

[Williams 89] Williams, G.B., Mui, C., Alagappan, V. and Johnson, B.B. Software
design issues: A very large information systems perspective, Proceedings of the Fifth
International Workshop on Software Specification and Design, Pittsburgh, PA (May
19-20, 1989), 238-241.

[Wills 87] Chapter 1 p. 16 Wills, L.M. Automated program recognition MIT Artificial
Intelligence Laboratory, Technical Report 904 (February 1987).

[Wing 87] Wing, J. A larch specification of the Library problem, Proceedings of the
Fourth International Workshop on Software Specification and Design (April 1987), 34-
41.

[Wing 88] Wing, J.Smudy of rwelve specifications of the library problem Technical Report,
Department of Computer Sciences, Carnegie Mellon University (1988).

[Winograd 79] Winograd, T. Beyond programming languages, Communications of the
ACM. Vol. 22, No. 7 (July 1979), 391-401.

[Wulf 74] Wulf, W.A. Hydra: The kernel of a multiprocessor operating system,
Communications of the ACM. Vol. 17, No. 6 (June 1974), 337-345.

[Wulf 75] Wulf, W.A. Vol. No.

[Wulf 76] Wulf, W.A., London, R.L. and Shaw, M. Abstraction and verification in
ALPHARD, Dept of Computer Science, Carnegie-Mellon University (June 1976).

[Wulf 81] Wulf, W.A,, Levin, R. and Pierson, C. in HydralC.mmp, McGraw-Hill
(1981).

[Yourdon 79] Yourdon, E. Managing the structural techniques, Prentice-Hall, Inc., NJ
(1979).

[Zave 82] Zave, P. An operational approach to requirements specification for embedded
systems, IEEE Transactions on Software Engineering. Vol. SE-8, No. 3 (May 1982),
250-269.

[Zave 84] Zave, P. The operational versus the conventional approach to software
development, Communications. of ACM. Vol. 27, No. 2 (February 1984).

[Zave 86] Zave, P. and Schell, W. Salient features of an executable specification language
and its environment, IEEE Transactions on Software Engineering. Vol. SE-12, No. 2
(February 1986), 312-325.

[Zave 89] Zave, P. A compositional approach to multiparadigm programming, JEEE
Software (September 1989), 15-25.

[Zilles 84] Zilles, S. “Types, algebras, and modelling” in On Conceptual Modelling (eds.
Brodie & Mylopoulos.), Springer-Verlag, NY (1984), 441-450.

