NEW ROUTING STRATEGIES FOR VLSI

by

SHINICHIRO HARUYAMA, B.S., M.S.

DISSERTATION
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

TR- |- 0oL

THE UNIVERSITY OF TEXAS AT AUSTIN
December. 1990

Dedicated to my father Masaya Haruyama and my mother Eiko Haruyama

VITA

Shinichiro Haruyama was born in Kobe, Japan on December 4, 1957,
the son of Masaya Haruyama and Eiko Haruyama. After completing his work
at Koyo Gakuin High School, Hyogo-ken, Japan, in 1976, he entered Tokyo
University in Tokyo, Japan. He received the degree of Bachelor of Science in

Physics from Tokyo University in March 1981.

He moved to the U.S.A. in September 1981, and received the degree of
the Master of Engineering Science from the Graduate School of the University
of California at Berkeley in 1983. In January 1984, he entered the Graduate
School of the Department of Computer Sciences of the University of Texas at

Austin.

Permanent address: 772-11 Nakano,
Yamaguchi-cho,
Nishinomiya-shi, Hyogo-ken
651-14 Japan

This dissertation was typeset’ with IATRX by the author.

1ATRX document preparation system was developed by Leslie Lamport as a special version
of Donald Knuth’s TpX program for computer typesetting. TEX is a trademark of the
American Mathematical Society. The IWTRX macro package for The University of Texas at
Austin dissertation format was written by Khe-Sing The.

Acknowledgments

I would like to express my sincere appreciation to my co-advisers Dr.
Donald S. Fussell and Dr. D. F. Wong. They have given me constructive criti-
cism about my work and expert knowledge about VLSI CAD. Weekly meetings

with them kept me on track.

I am also deeply grateful to Dr. Miroslaw Malek, Dr. Daniel P.
Miranker of the University of Texas at Austin, and Dr. Robert J. Smith, II of

MCC for their serving as committee members.

My sincere thanks also go to a good friend of mine, Mr. Kazuhiko
Nishi, President of ASCII Corporation, Tokyo, who decided to offer a scholar-
ship all through my Ph.D. years. Without ASCID’s financial help, this doctoral

research would not have been possible.

Finally, I am deeply indebted to members of my family who were con-
stantly giving me encouragement and support : my father Masaya Haruyama,

my mother Eiko Haruyama and my grandmother Kaoru Hidaka.

SHINICHIRO HARUYAMA
The University of Texas at Austin
December, 1990

iv

Abstract

This dissertation describes two methods of routing for VLSI layout :

one method for channel routing and another method for power wire routing.

Our two-layer channel router is designed to find solutions which min-
imize both wiring area and number of vias simultaneously. Our method, called
topological channel routing, analyzes the topological relationship of wires be-
fore the wires are mapped onto the channel. A unique layout design rule called
an interleaving mesh is used. The interleaving mesh prohibits long wires on
one layer from overlapping with wires on the other layer, thus has smaller cross
talks of signals because of smaller capacitive couplings between those wires on
different layers. Experimental results show that the algorithm generates very
good solutions. For example, we have obtained a height of 41 for the famous
Deutsch’s Difficult Example without any parallel overlaps of wires and simul-
taneously a via count of 186, which is one of the best results ever reported in

the literature.

Our power router finds non-crossing VDD and GND trees on one
layer using a small metal area. The solution is obtained under the constraints
of metal migration and voltage drop. Experimental results show that the power
wire area is considerably smaller than a previously developed method for single-

layer routing.

Table of Contents

Acknowledgments
Abstract

Table of Contents
List of Tables
List of Figures

1. Introduction
1.1 Integrated Circuit Design.
1.2 Integrated Circuit Layout
1.3 Design Styles
1.4 Placement and Routing
1.4.1 Placement
1.4.2 Routing of Signal Wires
1.4.3 Routing of Power Wires

1.5 Outline of Dissertation

2. Previous Work

2.1 Previous Work on Channel Routing

2.1.1 Left-Edge Channel Router by Hashimoto and Stevens . .

2.1.2 Dogleg Channel Router by Deutsch

vi

v

vi

xi

o]

2.2

9.1.3 Net-Merging Channel Router by Yoshimura and Kuh . .

2.1.4 Greedy Channel Router by Rivest and Fiduccia

2.1.3

Hierarchical Channel Router by Burstein and Pelavin . .

Previous Work on Power Routing

2.2.1
2.2.2
2.2.3
2.2.4
2.2.5

2.2.6

Left-Right Power Routing by Rothermel and Mlynski . .
Top-left Bottom-right Power Routing by Lie and Horng .
Scan-line Power Routing by Xiong and Kuh
Hamiltonian Power Routing by Moulton
Minimum Wire Length Power Routing by Russell

Minimal Area Power Routing by Chowdhury

3. Topological Channel Routing

3.1
3.2
3.3
3.4

Introduction . . . v v v e e e e e e e e e e

Layout Model oo

Topological Channel Routing Algorithm

Details of Algorithm o

3.4.1
3.4.3

3.4.4

Decomposition of Multi-Terminal Nets
Assignment of Nets to Layers
Construction of Topological Graph
3.4.3.1 Algorithm for Finding a Path with a Minimum

Number of Crossings

3.4.3.2 Algorithm for Updating the Region Graph after
aPathisFound

3.4.3.3 Time Complexity of Topological Graph Con-

SEPUCEION & . v v e e e e e e e e e e e

Mapping of Topological Graph onto Channel

vii

4.

94

3.4.4.1 QGreedy Graph Mapping Algorithm
3.4.4.2 Special Treatment for Multi-Terminal Nets . . .
3.4.4.3 Mesh Data Structure
3.4.5 Compactiono
3.4.5.1 Previous Approaches
3.4.5.2 Our Compaction Method
3.4.5.3 Making Space for Better Shaking Results. . . .
3.4.5.4 Post Processing of Shaken Channel

Improvements to Topological Channel Routing

4.1 Topological Routing using Geometric Information

4.2 Assignment of Nets to Two Layers

4.3 Improved Topological Graph Construction

44 ViaReduction v o v i
4.4.1 Local Layer Assignment Modification at Pin Vertices
4.4.2 Local Layer Assignment Modification at Other Vertices .

4.5 Time Complexity o o

. Experimental Results on Topological Channel Routing

5.1 Results on Channel Height
59 Results on the Numberof Vias
5.3 Comparison of Topological Channel Router with and without

Geometric Information«o
5.4 FEffect of Pin Pitch Expansion on Channel Height
5.5 History of Deutsch’s Difficult Example

5.6 Layout Results

5.6.1
5.6.2
5.6.3
5.6.4
5.6.5
5.6.6

Deutsch’s Difficult Example
Yoshimura and Kuh’s Example 3a
Yoshimura and Kuh’s Example 3b
Yoshimura and Kuh’s Example 3¢
Yoshimura and Kuh’s Example4b

Yoshimura and Kuh’s Example 5

6. Area-Efficient Power Routing

6.1 Introduction o v v v b e

6.2 Model

6.3 Algorithm Overview

6.4 Routing without Crossing

6.5 Time Complexity and Experimental Results

7. Conclusion

BIBLIOGRAPHY

Vita

ix

131

135

137

List of Tables

Percentage of Area used by Modules, Wires, and Bonding Pads

Channel Height by Topological Channel Router
Comparison of the Number of Vias by Different Algorithms . . .

Comparison of Topological Router without Geometric Informa-

tion and Topological Router with Geometric Information

97

1.1

1.2

1.3

1.4

3.1

3.2

3.4

3.5

3.6

List of Figures

Gate Array Design Style oo
Macrocell Design Style oo
Example of Channel Routing

Example of Switchbox Routing

Channel Routing Problem whose Vertical Constraint Graph has

Dogleg Solution oo

Solution for a Channel Routing Problem whose Vertical Con-

straint Graph hasa Cycle

Typical Power Routing for a Gate Array Design Style or a Stan-

dard Cell Design Style oo

Top-left Bottom-right Power Routing by Lie and Horng

Example of Constrained Via Minimization
Example of Unconstrained Via Minimization
Meandering of Nets o« oo
Layout Models oo oo
Capacitive Couplings Between Wires

Interleaving Mesh oo

xi

3.7 Overview of Topological Channel Routing Algorithm 32

3.8 Construction of Circle Graph 35
3.9 Two Cases of the Positionsof pin k 36
3.10 Three Vertex Types of a Topological Graph 38

3.11 A Region Graph is Needed To Find a Path in a Topological Graph 39
3.12 Three Types of Region Edges 40
3.13 An Initial Region Graph before any Nets are Routed 41

3.14 Start of Algorithm for Finding a Path with a Minimum Number

of CTOSSIIES .+ « « v« o v v v e e e 42
3.15 Snapshot after Region Vertices of d =1 are Visited 43
3.16 Snapshot when region-vertez4 is Visited from region_vertez 2 44
3.17 Snapshot when region-vertez4 1s Visited from region_vertezx3 44

3.18 Pseudo-code to Find a Shortest Path with Minimum Number of

3.19 Pseudo-code of a Procedure to Set Parameters of Adjacent Re-

gion Vertices o o oo o 47
3.20 Region Graph after the First Net is Routed 43
3.21 Splitting of Region Vertices with No Vias 49
3.22 Splitting of Region Vertices with Vias 50
3.93 States of Vertices of Topological Graph 53
3.24 State Transition of a Pin Vertex T 54

3.95 State Transition of a Via Vertex oo 55

Xii

3.26

3.27

3.28

3.29

3.30

3.31

3.32

3.33

3.34

3.35

3.36

3.37

3.38

3.39

4.1

4.2

4.3

4.4

4.5

4.6

State Transition of a Cross Vertex 55
Example of Greedy Mapping Algorithm 58
Mapping of Multi-Terminal Nets Sharing the Same Pin 59
Mesh[x,y] and Mesh[x,Index[y]] Before New Tracks are Inserted 61

Mesh[x,y] and Mesh[x,Index[y]] After New Tracks are Inserted . 61

Example of Zone Refining Compaction 64
A Via is Moved Down to the Lowest Position 65
A Wire is Moved Down to the Lowest Position 66
A Wireis Bent to Fita Contour 66
Making Space for Better Shaking Results 68
Channel Height v.s. Make-Space Width 70
Straightening Wires« ... 71
Pruning an Unnecessary Wire 72
Cutting an Unnecessary Loop 72

Two Different Topological Solutions and Their Mappings to a

Channel i e 74
Layer Assignment 76
Example of Position, Span, and Interval 78
Rule 1 . o o v e e e e e e 82
Rule 2 . . . 83
Rule 3 84

4.7

4.8

4.9

5.2

5.3

5.4

5.10

6.1

6.2

6.3

6.4

6.5

6.6

Region Graph after a Net with Two Vias is Routed 85

Via Reduction at Pinso 87
Via Reduction around Cross Vertices 88
Channel Height after n shakes (0 <n <32) 93
Expansion of Pin Pitch 99
Effect of Pin Pitch Expansion on Channel Height 100

History of Channel Height and the Number of Vias by Different

Channel Routers on Deutsch’s Difficult Example since 1976 . . . 102
Layout Result of Deutsch’s Difficult Example 104
Layout Result of Yoshimura and Kuh's Example 3a 108
Layout Result of Yoshimura and Kuh’s Example 3b 110
Layout Result of Yoshimura and Kuh’s Example 3¢ 112
Layout Result of Yoshimura and Kuh’s Example 4b 114
Layout Result of Yoshimura and Kuh’s Example 5. 117
Creation of a Routing Graph 122
6 Vertex Types« o oo 123
Creation of Auxiliary Graph from Routing Graph 125
Example of an Auxiliary Graph 126
Overall Power Routing Algorithm 129
Algorithm to Find a Shortest Path from a Macrocell to a Power

TIEC o o o e e e e e e e 130

6.7

6.8

6.9

Run Time . . o o o o o e e e e e e e e e e e 132

Area by “the Farthest Pin First” Method is about 20 Percent
Larger than Area by “the Most Power-consuming Macrocell First”

Method o e e e e e e e e e e e e e 133

Example of Power Routing for 15 Macrocells 134

XV

Chapter 1

Introduction

This dissertation presents new algorithms for routing the wires of
integrated circuit layouts : a new channel routing algorithm and a new power
routing algorithm. Routing is an important part of the chip design process,
but it is only part of the circuit layout step. Layout, in turn, can be done
only after chip designers specify what a circuit is supposed to do. So we begin
the introduction chapter by describing process of how a chip 1s designed from
concept to product. We show some design styles that are currently widely used.
We then discuss methods used for circuit layout, i.e., placement and routing.

In particular, we focus on signal wire routing and power wire routing.

1.1 Integrated Circuit Design

Rapid progress in intergrated circuit fabrication technology has en-
abled the manufacturing of chips with more than one million devices. It is
now impossible to design integrated circuits of this complexity without the
aid of computers. Integrated circuits are designed by going through the fol-
lowing steps : architecture design, circuit design, circuit layout, and testing.

Computers are used in each step.

In the architecture design step, we define how the chip system be-
haves, how the system is partitioned into units, how and what information
each unit communicates with others, and how and what information the sys-
tem communicates with outside world. Defining the architecture is the first
step in creating a new system, and it is a step primarily requiring human cre-
ativity. So, this step depends less on computer aids than the following steps.
Silicon compilers [22] (ideally) accept behavioral descriptions and produce chip

layouts.

In the circuit design step, logic circuits are specified that perform the
desired architecture. The logic circuits consist not only of such simple compo-
nents as NAND gates and NOR gates, but also large modules such as RAM,
ROM, and PLA. The circuit specification also includes interconnection infor-
mation among these components. Construction of a circuit from a behavioral

specification can be done by computers almost automatically.

In the circuit layout step, circuits are mapped to the two-dimensional
surface of a chip. The mapping process includes floorplanning, placement of
components, and routing of wires between components and power wires. De-
pending on how urgently chips need to be made, and how much performance

is needed, designers can choose from several layout design style options for

mapping circuits. There are three major design styles : gate array design style,
standard cell design style, and macrocell design style. If quick turn-around time
is required, the gate array design style is the best choice. If high performance is
needed, the macrocell design style is preferred, though the design time is much
longer than that of the gate array design style. Standard cell design is between
them in terms of design time and quality. It is also used to design modules
in macrocell design style. The circuit layout of gate array designs and stan-
dard cell designs can now be done completely by computers. But the layout of

macrocell designs still need human interaction to achieve high performance.

In the testing step, the chip is tested to see if it performs correctly
according to the architecture design specification. A computer generates test
patterns, and feeds them to the chip. The output is then compared with the
ideal output of a chip without faults. Even with automatic test pattern gen-
eration, it is impossible to achieve 100% fault coverage, though the percentage

is usually close to 100. We will describe the layout step in more detail next.

1.2 Integrated Circuit Layout

Integrated circuit layout is the process of mapping a logic circuit to
the two-dimensional surface of a chip. The circuits to be mapped are not only

computing elements such as logic gates, but also interconnecting wires.

The main objectives of integrated circuit layout are the minimization
of circuit area and the optimization of circuit performance, i.e., maximization
of speed. If there are N flaws per unit area, and the area of a chip is A,
the probability that a chip is defect-free is e~NA. (See [28]) Because of this
exponential probability, even a small percentage of area reduction improves

the production yield of chips significantly. The maximization of speed, another

objective, can be achieved by various methods such as logic minimization and
minimization of wire length. Minimization of wire length is effective because
a longer wire has a larger capacitance that takes longer time to be charged up
and down. Minimization of wire length is partly achieved by the first objective
of area minimization because shorter wires are needed to run across smaller

area.

Statistics [47] of 1985 show that as much as 40% of chip area was used
for inter-module signal wires, and as much as 20% was used for power wires
(See Table 1.1 for ratios of chip area). As the number of logic gates increases
with the advance of fabrication technologies, the number of wires to connect

them increases even more rapidly. As a result the percentage of the area for

Chip componenis %
Modules 30
Inter-module Wires 40
Power Wires 20
Peripheral (Bonding Pads) 10

Table 1.1: Percentage of Area used by Modules, Wires, and Bonding Pads

wires is becoming larger as compared with that of the area for logic gates. To
achieve the above objectives when the percentage of area occupancy by wires
is increasing, minimization of chip area, especially minimization of wire area,

is becoming more important than ever before.

1.3 Design Styles

There are several popular design styles used today : gate array design,
standard cell design, and macrocell design. A gate array design (See Figure 1.1)

uses horizontal arrays of gate cells separated by channels. The cells are usually

of the same height and the same width. All cells are pre-fabricated, and only
metal wires to connect these cells are user-defined. Only the masks for metal
layers need to be designed on demand for a particular function. Thus the time
to design a chip is significantly less than for fully customized designs. Usually
it is not possible to use all of the transistors because the number of transistors
a user needs to realize the circuit must be smaller than the fixed number of
transistors of a given gate array chip. Since the area for routing wires is fixed,
failure of routing sometimes occurs when a routing algorithm cannot find a

wire layout that can fit in the given area reserved for wires.

Channel

PRI

EEEERRI R

TETET TR

Channel

Camm e U

Channel

FEETE TR R

Channel

Figure 1.1: Gate Array Design Style

The standard cell design style has the same arrangement of cells as
the gate array design style. However, in a standard cell design, cells are not
prefabricated on a chip, so a user has the freedom to place cells at any location

as long as they form a horizontal row. The cells of a standard cell design can

be of variable width, but are of the same height, so that if they are placed on
a row, the top and the bottom of the row form straight lines. The horizontal
channels between horizontal cell rows are used for laying out wires. The height
of each channel is defined by the user. As a result, users do not have to worry
about routing failures due to wire congestion in a channel. Thus, it is always

possible to achieve a 100% routing completion rate.

A macrocell design (See Figure 1.2) is the most dense and the high-
est performing design. A macrocell design chip usually consists of rectilinear
modules called macrocells which may have a fixed shape or a flexible shape
with certain constraints (e.g. aspect ratio constraints). Macrocells include
RAMs, ROMs, PLAs, ALUs, and even standard-cell blocks. These macrocells
are placed inside a near-square area, and they are interconnected by wires using

space between the macrocells.

Figure 1.2: Macrocell Design Style

-~J

1.4 Placement and Routing

The problem of circuit layout is so difficult that there exists no known
polynomial time algorithm to obtain an optimal solution. Usually a divide-and-
conquer method is used to tackle this difficult problem. The layout problem
is usually divided into two sub-problems : placement and routing. Placement
is the problem of placing all the components on a chip with the objective of
minimum area or minimum wire congestion. Routing is the problem of laying
out all the wires that interconnect components. The routing problem is further
divided into global routing and detailed routing. Global routing roughly deter-
mines which regions each wire passes through, and detailed routing determines

the precise location of each wire.

1.4.1 Placement

In the placement step, the positions of cells are determined. The sim-
plest and most intuitive way of placing cells is by initial placement followed by
iterative improvement. Examples of initial placement algorithms are the clus-
ter growth algorithm [13] and the force-directed placement algorithm [32]. In
the cluster growth algorithm, a cell is selected which has the largest connectiv-
ity to already-placed cells. The cell is placed at a location that minimizes the
net length. This continues until all the cells are placed. In the force-directed
placement algorithm, it is assumed that there are attractive forces between
components sharing a common signal, and repulsive forces between compo-
nents having no signals in common. Simultaneous equations specifying the
equilibrium conditions of this physical system are solved to find the placement
of all the components. After initial placement, an iterative improvement proce-

dure is used to improve the placement. One example of iterative improvement

is pairwise interchange. Pairwise interchange iteratively picks a pair of cells
and checks if the total wire length becomes shorter when the cells are swapped.
If so, the cells are actually swapped. All the combinations of pairs are tried in

each iteration.

The above algorithms have the objective of minimizing total layout
area and total wire length. This objective, as it turns out, is not a good
one. It often causes serious routing congestion at the center of a chip and
sometimes causes the failure of routing. This congestion problem may be solved
by expanding the positions of cells, but that jeopardizes the initial effort to
minimize the area. In 1977, Breuer [4] proposed a new placement algorithm
called the min-cut algorithm, which solved this wire congestion problem at the
time of placement. The min-cut algorithm divides a circuit approximately in
half such that the number of nets connecting the two sets is minimal. An
efficient graph partitioning algorithm by Kernighan and Lin [24] is used to
partition the circuit. The layout area is then partitioned into two parts by
either a vertical or horizontal cut line, and the two sub-circuits are placed at
these two parts of the chip. This min-cut procedure is recursively applied by
alternatively cutting the layout area by vertical and horizontal cut lines. The
algorithm thus finds a placement with minimal congestion, instead of minimal

total area or total wire length.

In 1983, Kirkpatrick, Gelatt, and Vecchi [25] proposed a new place-
ment algorithm based on the technique of simulated annealing. Simulated
annealing can be used not only for the placement problem, but also for var-
ious other combinatorial optimization problems. In a conventional iterative
improvement algorithm, a local adjustment is done if it decreases the cost func-

tion. This often ends up at a local minimum, and once it 1s stuck at the local

minimum, it can never escape from it. Simulated annealing, however, allows an
uphill movement, enabling the escape from the local minimum. The probability
of uphill movements is controlled throughout the optimization process. Since
simulated annealing is capable of minimizing a cost function with many degrees
of freedom, the function can be a combination of total area, total wire length,
wire congestion, or weighted critical net value, thus taking into consideration
many complex placement situations. Even though simulated annealing takes
a lot of computation time, it generally achieves very good placement results.
Various applications of simulated annealing are described in a book by Wong,

Leong, and Liu [49].

The above placement algorithms are used for gate array designs, stan-
dard cell designs, and macrocell designs [40]. The placement of a gate array
design concerns the assignment of gates to cells, because the actual positions
of cells of a gate array are already defined. Since the area of the chip cannot be
changed, the main objective of gate array placement is to be able to intercon-
nect every signal net within the area. The secondary objective is to maximize
the chip performance. A standard cell design, on the other hand, does not have
any pre-fabricated gates. Positions of all the gates are defined by a user. So
the objective of standard cell placement s to minimize the area and maximize
the chip performance. Similarly, macrocell placement has the same objectives,

because the positions of macrocells are not pre-defined.

1.4.2 Routing of Signal Wires

After all the components are placed, the routing step finds a layout
of wires to interconnect these components. The routing usually consists of two

steps : global routing and detailed routing. Global routing determines which

10

channels each wire goes through, and detailed routing determines the path
of every wire precisely in each channel. This approach is effective because it
decomposes the routing problem into a number of smaller problems that are

easier to solve.

There are two main types of detailed routers : maze routers and line
routers. A maze router uses a breadth-first search to route the nets one at a
time. The advantage of a maze router is that it always finds a connection if the
solution exists. The disadvantage is that if many nets are routed by a maze

router, the result depends on the order in which the nets are routed.

A line router finds a path between two points by constructing a se-
quence of line segments from each point. A connection path is found when the
two sequences intersect. A line router is faster than a maze router, but has the
disadvantage that it does not guarantee finding a path even if it exists. There
is also the same disadvantage as a maze router that the result of a line router
depends on the order in which the nets are routed since nets are routed one at

a time.

The above detailed routers are general-purpose routers that can be
used for connecting pins in any situation. However, if we know what type of
detailed routing problem must be solved, we can use problem-specific detailed
routers which perform better than general-purpose routers. There are two main

types of problem-specific routers : channel routers and switchbox routers.

A channel router generates a routing pattern for a channel with pins
on the top and the bottom of the channel as shown in Figure 1.3. The pin
positions on both sides of the channel are usually fixed. The shape of a chan-
nel is usually a rectangle. The left and right sides are open, and wires are

allowed to enter from the left and the right sides. The height of a channel

11

(n

o

i i f I

Figure 1.3: Example of Channel Routing

in a gate array design is fixed, so there exist cases where a channel router
cannot find a solution. However, the height of a channel in a standard cell
design or a macrocell design can be changed. So it is always possible to find
a channel routing solution for a standard cell design or a macrocell design by
adjusting the channel height. Since the nets are not routed one at a time, but
all at once, there is no problem of the order in which nets are routed. The
objectives of a channel router are minimizing the channel area, minimizing the
number of vias (connecting holes between two layers), and minimizing the wire
length. Minimizing the channel area 1mproves the yield of a chip as described
in Section 1.2. Minimizing the number of vias also improves the yield and the
reliability. Wire length minimization helps shorten the delay time of signals
through wires, which improves the speed of a chip. Channel routers are so

powerful that they are used in most computer-aided design systems.

A switchbox is a rectangular routing region with pins on all four
sides. A switchbox router routes wires in the switchbox whose shape is fixed.
See Figure 1.4 for an example of switchbox routing. The shape is fixed, so that
it is not guaranteed that the routing will always succeed. The main objective

of a switchbox router is a 100% routing completion. Additional objectives are

{1

ju a
o —p—i]
e}
= 0
H
H
§
[}

Figure 1.4: Example of Switchbox Routing

minimizing the number of vias and the wire length. Since the dimensions of
a switchbox are fixed, the objectives do not include minimizing the switchbox

area.

1.4.3 Routing of Power Wires

Since transistors cannot function without a power supply, all the cells
need VDD and GND wires. For gate array designs and standard cell designs,
cells are placed to form horizontal rows. So VDD and GND power connections

can be realized by running two horizontal wires through the row.

For a macrocell design, all the macrocells need to be powered. VDD
and GND wires must reach every macrocell. VDD wires and GND wires usually
form a tree whose root is a power pad and whose branches reach macrocells.
If two layers are available for power supply, one layer is used for laying out
the VDD wire tree and another layer for the GND wire tree. However, if
only one layer is available, a VDD tree and a GND tree must be laid out
on one layer without any overlap. Vias are avoided because of their high
impedance. Compared with signal wire routing, there are additional constraints

to be considered for power wire routing : metal migration and voltage drop.

13

Metal migration is a phenomenon where metal destroys itself if an excessive
current is passed though the wire. Metal migration can be prevented by having
wide enough metal wires. Voltage drops must be kept small, because a large
voltage drop between a pad and cells decreases switching speeds and noise

margins. The voltage drop can also be reduced by having wide metal wires.

1.5 Outline of Dissertation

In Chapter 2, we show previous approaches to the channel routing and
power routing problems. In Chapters 3 and 4, we describe our new channel
router called topological channel router, followed by its experimental results in

Chapter 5. In Chapter 6, we describe our new area-efficient power router.

Chapter 2

Previous Work

2.1 Previous Work on Channel Routing

In this section. we describe previous algorithms for channel routing
for VLSL The following algorithms all assume that there are two wiring layers
available. One layer is used for vertical wire segments and another layer is used

for horizontal wire segments. Vias are used to connect vertical wire segments

to horizontal wire segments.

2.1.1 Left-Edge Channel Router by Hashimoto and Stevens

The left-edge algorithm by Hashimoto and Stevens [17] was the first
attempt to find a channel routing solution. Each net is considered as an interval.
Nets are processed in increasing order of the lower bounds of their intervals. A
net is assigned to the first track if its lower bound is greater than the largest
upper bound of nets previously assigned to this track. When no more nets can
be assigned to the first track, the process is repeated for the second track. and

then for subsequent tracks until no nets remain unassigned.

This algorithm is very simple but cannot solve the channel routing
problem shown in the left half of Figure 2.1. where a signal 1 pin is above a
signal 2 pin at one column and a signal 2 pin is above a signal 1 pin at another
column. This is because the algorithm assumes that each net cannot have more
than one horizontal segment. This case in Figure 2.1 has a cyvcle in a vertical

constraint graph. which is defined as follows : A vertical constraint graph is

14

15

a directed graph whose vertices represent nets and whose edges represent the
relative positions of the horizontal wires of a net. When we look at one column
of a channel, if there is a pin which belongs to a net n; on the top of a channel,
and a pin which belongs to a net ny at the bottom of a channel on the same
column, a horizontal wire of ny must be placed above a horizontal wire of ns.
3o there is a directed edge from V; (which corresponds to net ny) to V3 (which

corresponds to net n,) in the vertical constraint graph.

This method produces a minimum track solution when there is no
vertical constraint, i.e., the vertical constraint graph is null. However, if there
are vertical constraints, the solution is often much worse than the optimum,
and it is very dependent on the order in which nets are chosen.

1 2
{

Vertical Constraint Graph

Figure 2.1: Channel Routing Problem whose Vertical Constraint Graph has a
Cycle

2.1.2 Dogleg Channel Router by Deutsch

The Dogleg Channel Router by Deutsch [11] allows a net to be as-
signed to more than one track. The algorithm divides a net into subnets at
terminal positions. This enabled the routing of a special problem shown in
Figure 2.2. Even though there is a cycle in the vertical constraint graph in

the original input, the cycle can be broken by splitting the signal 2 into 2 and

16

2’. The dogleg routing solution for this problem is shown at the right of Figure
2.2. Not only can the dogleg channel router solve some problems which the
left-edge algorithm cannot solve, but it also produces better results than the
left-edge algorithm. However, the dogleg channel router still cannot solve the
problem shown in Figure 2.1. Even if a dogleg is used by dividing a net into
subnets at terminal positions, this special channel routing problem cannot be
solved because there are only two terminal positions for each net. The dogleg
channel router still uses the left edge algorithm, so the dogleg solution is also

very dependent on the order in which nets are chosen.

Dogleg solution by splitting the net 2 into 2and 2'
1 2
| {

Via
input
1 2
I = tl
T T T i
2 2 1
f !

Vertical Constraint Graph Vertical Constraint Graph é

Figure 2.2: Dogleg Solution

2.1.3 Net-Merging Channel Router by Yoshimura and Kuh

The Net-Merging Channel Router by Yoshimura and Kuh [50] was

developed in 1982. Since it is better to assign as many nets to one track as

17

possible, the net-merging channel router optimizes the track assignment before
nets are actually assigned to tracks. They called the operation of assigning nets
to the same track “merging nets”. Since a vertex in a vertical constraint graph
corresponds to a net, the net merging can be done by merging two vertices of
the graph. The algorithm first builds a vertical constraint graph from the input.
Merging of vertices is done so as to reduce the length of the longest path in
the vertical constraint graph. At the end of the algorithm, each merged vertex
represents one wiring track of the channel, i.e., all the nets in the vertex occupy
the same track. Experiments show that the net-merging channel router gives
better results than the left-edge channel router or the dogleg channel router.
The advantage of the net-merging channel router is that it does not depend on
the order in which nets are routed. However, the net-merging channel router

also cannot solve the problem shown in Figure 2.1.

2.1.4 Greedy Channel Router by Rivest and Fiduccia

In 1982, Rivest and Fiduccia proposed a greedy channel router [33].
Their method scans a channel from left to right and routes one column at a
time. Several heuristics are used for routing each column. The greedy channel
router is the first that was able to find a solution for the channel routing

problem of Figure 2.1, as shown in Figure 2.3.

The router is simple and easy to implement. However, it has the
disadvantage that the router attempts to optimize routing at each column in
a greedy manner, consequently creating situations where decisions made early

may eventually increase the height of the channel.

138

Figure 2.3: Solution for a Channel Routing Problem whose Vertical Constraint
Graph has a Cycle

2.1.5 Hierarchical Channel Router by Burstein and Pelavin

The Hierarchical Channel Router was developed by Burstein and
Pelavin [5] in 1983. It is based on reduction of the problem to the case of
a (2 xn) grid and on consistent utilization of a “divide and conquer” approach.
The channel is treated as an (m x n) grid. By grouping vertical grids, an
(m x n) grid can be treated as a (2 X n) grid, i.e., two horizontal strips. An
algorithm to find the minimum length Steiner Tree for a (2 x n) grid is known
[1]. After the tree is obtained, each of the horizontal strips is partitioned into
two (2 x n) subproblems. This is done recursively until a single cell resolution

is reached.

The Hierarchical Channel Router was the first channel router that
was able to find a 19 track solution for Deutsch’s difficult example [11]. The
Dogleg Channel Router produced a solution with 21 tracks, The Net Merging
Channel Router produced a solution with 20 tracks, and the Greedy Channel

Router also produced a solution with 20 tracks.

19

2.2 Previous Work on Power Routing

As explained in the introduction, for gate array designs and standard
cell designs, power wires run through horizontal gate cells, so there is no need
to use a sophisticated power routing algorithm. A typical power wire pattern

is shown in Figure 2.4.

Figure 2.4: Typical Power Routing for a Gate Array Design Style or a Standard
Cell Design Style

For a macrocell design, we must find a power wire connection to all
the macrocells. The macrocells are arbitrarily placed on a chip. So there is a
need for a more sophisticated power wire router to connect all the macrocells to
VDD and GND pads. All the previous algorithms of power routing described

below are concerned with macrocell design.

2.2.1 Left-Right Power Routing by Rothermel and Mlynski

In left-right power routing by Rothermel and Mlynski [34], one tree
extends from the left edge of the chip and the other from the right edge. This
strategy, however, imposes the restriction that the VDD and GND pads have
to be on opposite sides of the chip. The power trees whose edge widths are zero
are formed without considering wire width first, and the edges of the trees are
thickened later based on their electrical current requirements. This method has
the disadvantage that even if trees can be constructed, there is a case where
the thickening fails because there may not be enough routing space between

macrocells.

2.2.2 Top-left Bottom-right Power Routing by Lie and Horng

In top-left bottom-right power routing by Lie and Horng [26], a re-
striction on the positions of pins is imposed such that the VDD pin of each
macrocell must be either on the top or left side, and the GND pin on the bot-
tom or right side as shown in Figure 2.5. This restriction makes the VDD and
GND tree routing simple. However, because of this restriction, macrocells with
pins at arbitrary locations cannot be used. This method has a fixed pattern of
wires so that even if power trees can be constructed, the thickening of power

wires may fail because of insufficient routing area.

2.2.3 Scan-line Power Routing by Xiong and Kuh

Other approaches avoid such pin and pad placement restrictions. In
scan-line power routing by Xiong and Kuh [51], as a scan line sweeps across
a layout, the topology of two trees is determined simultaneously. This is an

efficient algorithm since the two-dimensional layout problem is solved by suc-

VDD Pad

GND Pad

Figure 2.5: Top-left Bottom-right Power Routing by Lie and Horng

cessively solving one-dimensional problems on each scan line. This algorithm
does not, however, consider power wire width, i.e., it is only concerned with
the routing completion of two trees with zero width on one layer. Even though
the algorithm imposes no restriction on pin and pad restrictions, the algorithm

does not try to optimize routing parameters such as total wire length or area.

2.2.4 Hamiltonian Power Routing by Moulton

Some existing algorithms try to minimize the total wire length with no
restrictions on pad or pin positions. In Hamiltonian power routing by Moulton
[29], a graph representing the placement is constructed, and a Hamiltonian

cycle in the graph separating the power and ground pins is selected. VDD

22

pins and a VDD pad are connected inside the cycle to form a VDD tree. The
Hamiltonian cycle is deleted and GND pins and a GND pad are connected
to form a GND tree, thus avoiding a crossing of trees. The channel width is

increased when there is insufficient space to place the power wires.

9.9.5 Minimum Wire Length Power Routing by Russell

The minimum wire length power routing by Russell [36] also has no
restrictions on pad or pin positions. A routing graph is constructed from in-
put representing the macrocell placements, and nets are routed using a shortest
path algorithm, which tries to minimize the wire length of multiple trees. How-
ever, the widths of wires are not taken into consideration. This algorithm can
handle more than two power trees. When a wire blocks another wire to be con-
nected to a macrocell, the wire is removed and later re-routed. Even with the
rip-up and re-route method, there are cases when multiple (more than two)
trees cannot be topologically realized on one layer. In those cases, the tree
jumps to another layer and comes back to the original layer in order to jump

blocking wires.

2.9.6 Minimal Area Power Routing by Chowdhury

In minimal area power routing by Chowdhury [9], an algorithm which
attempts to find VDD and GND trees with minimal area under constraints such
as metal migration and voltage drop is presented. However, the topology of the
layout is assumed to be given or manually constructed, so that the problem of
finding non-crossing trees on one layer is avoided. It was found in an experiment
that minimal length power trees may not lead to minimum power routing area,

i.e., even if the total wire length of two different solutions of VDD and GND

trees are the same, the areas may be different.

Chapter 3

Topological Channel Routing

3.1 Introduction

The objective of a channel router is to lay out all the nets in the
smallest possible area using a small number of vias. Most channel routers.
including those in Section 2.1, tend to use a large number of vias because they
put all horizontal wires on one layer and all vertical wires on the other layer,
and horizontal wires and vertical wires are connected by vias. This is called the
reserved laver model. By allowing both horizontal and vertical wires on each
layer. we may be able to obtain results with smaller numbers of vias and smaller
area. Reducing the number of vias is important, because 1t helps increasing

the vield and the reliability, and improving the performance of a chip.

There are two ways to reduce the number of vias : constrained via
minimization (CVM) and unconstrained via minimization (UVM). CVM is
done as a post-processing step after a reserved layer channel router completes
routing, i.e.. given the location of wire segments and vias. find a laver assign-
ment for the wire segments using a minimum number of vias. See Figure 3.1 for
an example of CVM. CVM does not change the topology of the given layout.
Instead. only the layer assignment of wires is re-defined. After CVM is per-
tormed. the reserved laver model becomes a non-reserved layer model. because
each layer allows to have both vertical and horizontal wire segments. CVM
was first proposed by Hashimoto and Stevens [17]. In 1983. Chen. Kajitani.

and Chan showed that the CVM problem can be solved in polynomial time

24

2 2 3
O 3 0
Input 8. n] 8 vias
n {J (i
T
1 2 1
2 2 3
g
gl
'] 4 vias
Qutput
o o
1 2 1

Figure 3.1: Example of Constrained Via Minimization

under certain constraints [6]. Since any good reserved layer channel router can

be used before CVM post processing, CVM is useful in reducing the number

of vias after a compact routing solution is obtained.

Unconstrained via minimization (UVM), on the other hand, deter-

mines routing topology as well as layer assignments of wires. Figure 3.2 is

an example of UVM. After the topology is determined, geometric mapping is

needed to get an actual routing solution. UVM was first introduced by Hsu [18]

7

[19] [20]. It determines how each net crosses others topologically without im-

Input

Qutput

f t* 1 1
3 1 2 1

Figure 3.2: Example of Unconstrained Via Minimization

posing any constraints on the physical wire positions. UVM has more degrees
of freedom than CVM in terms of minimizing vias because the physical loca-
tions of wires are not pre-determined in UVM. However, this freedom makes
UVM more difficult. Hsu [18] conjectured that UVM was N P-hard, which was

later proved by Sarrafzadeh and Lee [38].

Historically, the main purpose of UVM is to minimize the number of
vias. Even though such methods produce results using very small numbers of
vias, nets are frequently forced to meander around vias [27], which results in

an increase in area (See Figure 3.3).

We propose a new channel routing algorithm [15] which minimizes

both the area and the number of vias by using a new layout model in which both

(8™
J

Nets meandey around a via if the number
of vias is minimized

A less meandering solution

Figure 3.3: Meandering of Nets

directions of wire segments are allowed to be placed on both layers. Our unique
layout model utilizes the channel area more efficiently than the traditional
layout model while avoiding the cross talk problem. Our algorithm attempts

to minimize the number of vias while avoiding the meandering of nets.

3.2 Layout Model

We assume that two layers are available for routing, and design rules
are the same for both layers. Both vertical and the horizontal wire segments
are allowed on both layers. However, the parallel overlapping of long wire
segments on different layers is undesirable because the high capacitive coupling
associated with the long wire segments cause a cross talk. The solution we

have adopted is an interleaving wire model as shown in Figure 3.4.

Overlapping Wire Model
View from top

3-D view

Cross sectaon
NS &{

Wire on the second Iayer
Wire on the first layer

interleaving Wire Model
View from top

/\/\/ 3-D view

N
Cross section
V4
NN N

Figure 3.4: Layout Models

We begin by calculating the capacitance between a wire on the first
layer and a wire on the second layer when the wire width is 2 pu, the wire
thickness is 1 u, the wire separation on the same layer is 2 , and the thickness

of the insulator (€ = 3.9) between the two layers is 1 x. See Figure 3.5 for the

29

calculation conditions. The capacitance C;, between a wire on the first layer

Cverlapping Wire Model Interleaving Wire Model

2 2 (Al numbers are in micron.)

Cio = 1.41pF/em Cip = 1.32 pF/em
Ci2 = 1.27pFicm Ci2 = 0.83 pFicm
Cgo = 0.34 pF /cm C20 = 0.46 pF/em
Cy1 = Cio + C12 = 268 pFrem Cyy = Cio +2Ci2 = 2.98 pFlem
Cop = Coo+ Ci2 = 1.61pFiem Cop = Cz0 +2Ciz = 2,54 pFicm

Figure 3.5: Capacitive Couplings Between Wires

and a wire on the second layer causes cross talk between them. The calculated
capacitance Cjg in the interleaving wire model is 0.83 pF'/cm, whereas C1z in
the overlapping wire model is 1.27 pF/cm. Thus the interleaving wire model

has a 35% smaller capacitive coupling.

The interleaving wire model is used for both the vertical and the
horizontal wire segments. By using solid lines to represent the allowed locations
of wire segments on the first layer and dotted lines to represent the allowed
locations of wire segments on the second layer, the channel can be represented
by a mesh called an interleaving mesh as shown in Figure 3.6. The only overlap
between the two wires on the interleaving wire model is at the 90 degree crossing
of two wires on different layers. Since vertical wire segments are allowed on

both layers, we assume that all terminals can be reached from both layers.

30

S L LSS LS

S L LSS

s L/

1] I
1 I '
1 ¥ 1
[I !
b LN
I) i
l § !
) H ¥
1 i ¥ /
R R TR SRS WP U W
| [i
1 i i
H 1 ¥
i [f
PR RN DU TR U . /
! I i
i § J
. " —t\
] 1 §
SRR TN DUDIY TR PUDE SR A N
' 1 i
t i '
m : N\
i i &
ilTi;ilTl:lari‘./
i] 1
! i t
H ¥ /
i i i
o de e]I\
[1]
' i I
¥ 1] ¥ /
! § t
[URURE TN PURDIN TP DR N
I t i
I ' N
i 1 *
[] '
o b |1r..xu:_|;e/
i i ¥
i i 1 //
T ¥ T
1 i i
ST DRSNS A TN AN
i] i
1 i ' /
] L
1 i 1
S ST T AN
i 1 '
! i f
1 T /
I 1 J
i 1 '

Figure 3.6: Interleaving Mesh

31
3.3 Topological Channel Routing Algorithm

We now present the basic ideas of our algorithm (See Figure 3.7). Our
five-stage algorithm consists of decomposition of multi-terminal nets, assign-
ment of nets to the two layers, construction of a topological graph, mapping ot

the topological graph onto the channel, and channel compaction.

First, the multi-terminal nets are decomposed into two-terminal nets.
Then, to have as many nets without vias as possible, the two-terminal nets are
classified into three types: nets without vias on the first layer, nets without vias
on the second layer, and nets with vias. In the third stage, it is determined how
each net runs through the others. This stage is accomplished by constructing
a graph called a topological graph whose vertices explicitly represent termi-
nals, vias, or crossings of the nets. The fourth stage determines the physical
locations of the nets by mapping the topological graph onto the interleaving
mesh. Finally, in the last stage, compaction of the channel takes place. In the

following subsection, details of each stage are described.

32

Input

i i !
3 2 1
_— Wire on both layers

Layer Assignment

=~ RN

Wire on the first layer - Wire on the second layer

@
Topological Graph Construction r_o_o .

Mapping of Topclogical Graph
onto Mesh

Compaction and Wire
Straightening

Resulting Layout

Figure 3.7: Overview of Topological Channel Routing Algorithm

33
3.4 Details of Algorithm

3.4.1 Decomposition of Multi-Terminal Nets

A net must be able to have a connection to any number of terminals.
The algorithm used in the next subsection requires all nets to be two-terminal
nets. Therefore, multi-terminal nets have to be decomposed into two-terminal
nets. If a net has ¢ terminals (¢ > 2), it is decomposed into (¢ — 1) two-terminal
nets. We use two methods for decomposition. One method of decomposition
is to form a net with two terminals whose horizontal separation is small. The
other method is to find a minimum spanning tree of (f — 1) edges. Manhattan
distances are used between pins on the top wall and pins on the bottom wall.
Since the height of a channel is not fixed at this stage, we must predict the
height before nets are routed. The estimated height H.s is obtained by the
following equation :

H.y = d(w + s) + s,

where d is the channel density, which is the maximum number of nets that
cross a vertical cut line at any position in a channel, w is the wire width, and s
is the wire spacing. Note that He, is actually the minimum height achievable

by a reserved layer channel router.

Both methods are incorporated in our current implementation. From
now on, without loss of generality, we will assume that all nets have only two

terminals.

3.4.2 Assignment of Nets to Layers

It is clear that a set of non-intersecting nets can be placed on one

layer without using any vias. No vias are needed for two such sets, because

34

one set can be placed on the first layer and the other set on the second layer.
Vias are needed only by those nets which are not in those two sets. Therefore,
it is desirable to assign as many nets without using any vias to the two layers
as possible. Our algorithm for assigning nets to the two layers is based on the

following algorithm which finds a maximum set of non-intersecting nets.

A graph is constructed from the intersection information of nets,
where each vertex 7 represents net ¢ and there is an edge between vertex @
and vertex j if and only if net ¢ and net j intersect. The constructed graph
is a circle graph. The problem of finding a maximum set of non-intersecting
nets is equivalent to the problem of finding a maximum independent set of a
circle graph, where an independent set of a graph is defined as a subset of its
vertices of which no two are joined by an edge, and a maximum independent
set of a graph is defined as an independent set of a graph whose cardinality is
maximum among different independent sets of a given graph. It is known that
the maximum independent set problem for an arbitrary graph is /N P-hard [23].
Fortunately an O(n?) time dynamic programming algorithm by Supowit [45]
is known for circle graphs where n is the number of vertices (= the number of

nets). The details of the algorithm will be described below.

The input contains a set W of T two-terminal nets. See Figure 3.8.
Let the pin numbers be 0,1,...,27 — 1 in clockwise order (T" = 8 in the case of

Figure 3.8). Let n,, denote a net which connects pin p and pin ¢ and p < q.

We construct a graph in which each vertex v,, corresponds to a net
npq, and there is an edge in £ for each pair of vertices whose corresponding
nets intersect. Thus, G = (V, E) is a circle graph. Let G;; denote the subgraph
of G, with vertices Vi; = {v,q:1 < p,q < j} and edges E;; = {(vi,v2) € £
vy,v9 € Vit

i5 14 13 12 1110 9 8 7

Two-Terminal Nets

Circle Graph

Figure 3.8: Construction of Circle Graph

Let MIS(i,) denote a maximum independent set of G; ;. MIS(z, 7)
can be calculated using a dynamic programming method as described below.
Let k be a pin number such that njx € W or ny; € W. There are two cases

to consider (See Figure 3.9).

If k& is not in the range [, — 1] (Case 1 in Figure 3.9), then G;; =

I

G -1, because anet nj (or ny ;) is not a member vertex of G ;. So, MIS(2,7)

MIS(i,j —1).

If k is in the range [z, 7 — 1] (Case 2 in Figure 3.9), then there are two
sub-cases to consider. One sub-case is that vy ; is a member of M1S5(z, 7). If so,

MIS(i,7) contains no vertices v, such that p € [z, k— landge [k+1,7—1].

36

Figure 3.9: Two Cases of the Positions of pin &
So in this sub-case,
MIS(i,j) = MIS(i,k = 1)U {ve;} UMIS(k+1,5 = 1).
The other sub-case is that vy ; is not a member of MIS(4,7). In this sub-case,
MIS(i,j)= MIS(,5 —1).
So, MIS(i,j) is the larger of MIS(i, k — 1) U {vg;} U MIS(k+1,7—1) and

MISG,j —1).

For both Case 1 and Case 2, the calculation of MIS(i,) needs only
the information of MIS(i,k—1), MIS(k+1,5—1), and MI1S(i,j—1), where
i < k< j—1. Thus MIS(0,2T —1) can be obtained by computing and storing

the results of

MIS(0,1),

37
MI5(0,2), MIS(1,2),
MI5(0,3), MIS(1,3), MIS(2,3),

MIS(0,4), MIS(1,4), MIS(2,4), MIS(3,4),

MIS(0,2T — 2), MIS(1,2T — 2), ..., MIS(2T — 3,2T — 2),

M1S(0,2T — 1) in this order.

A maximum independent set of G is M15(0,2T — 1), because G = Goar-1.

Our algorithm for assigning nets to the two layers is as follows. A
set Ny of non-intersecting nets is first selected by the maximum independent
set algorithm and placed on the first layer. The same algorithm of finding
non-intersecting nets is then applied to the remaining nets to find a set Ny of
non-intersecting nets to be placed on the second layer. The remaining nets Niz

have to use vias because each net in Ny, intersects both nets in NV; and nets in

Na.

3.4.3 Construction of Topological Graph

Since the layer assignment step only assigns the nets to the two layers,
it is not yet decided how each net runs through other nets. Precisely how each
net runs through the others is determined by constructing a graph called a
topological graph whose vertices explicitly represent pins, vias, or crossings of
nets, and where there is an edge between two vertices if and only if they are
connected by a net (See Figure 3.7). We call a vertex that represents a pin,
a via, and a crossing of two wires on different layers, “a pin vertex”, “a via

vertex”, and “a cross vertex” respectively. See Figure 3.10 for the three types

33
of vertices. The degree of a pin vertex, a via vertex, and a cross vertex is 1,

Pin Vertex Via Vertex Cross Vertex

Edge on the first layer

ChamnelWalt | \O—L-

Edge on the second layer

Degree=1 Degree=2 Degree=4

Figure 3.10: Three Vertex Types of a Topological Graph

2, and 4 respectively. There are two types of edges : an edge on the first layer
(solid line in the topological graph of Figure 3.10) and an edge on the second
layer (dotted line in the topological graph of Figure 3.10). After the graph is
mapped to a channel, the solid edge corresponds to a wire on the first layer,

and the dotted edge corresponds to a wire on the second layer.

In the topological graph construction, each net is topologically con-
nected (i.e., each net finds which nets to cross). In [27], N1, Ny, and N, are
topologically connected in this order. This order ensures that each net in Ny
uses only one via. However, by minimizing the number of vias, the approach in
[27] requires many nets to meander around a via as shown in Figure 3.3. Each

meandering net uses two or more tracks, which results in a larger channel area.

Instead of using only one via per net, our algorithm finds a less me-
andering solution in which each net in N, may use more than one via. The
less meandering solution for each net is obtained by topologically connecting
the net in such a way to minimize the total number of crossings with other
nets. In our method, nets of Ny, Ny, and Ny, are routed in this order. If a net
in Ny, has more than one solution with the same number of crossings, the one

with the minimum number of vias is chosen among them.

39

3.4.3.1 Algorithm for Finding a Path with a Minimum Number of

Crossings

We want to construct a topological graph, which will later be mapped
to a channel. When we search for a path of a net from one pin to the other
pin with the minimum number of crossings with other nets, we need a data
structure which is suitable for counting the number of crossings. For exam-
ple, when we want to find a path from Start_pin to End_pin as shown at the
top of Figure 3.11, it would be convenient if there were a graph in which each
vertex represents a region and there is an edge between two vertices if and
only if corresponding regions are adjacent as shown at the bottom of Fig-

ure 3.11. Then we can easily find a path of length 2 from Start.region-vertex

Topological Graph
Start_pin
H

@

Already-routed nets =

O

i i '

End_pin

Region Graph

Enclosing Line

End_region_vertex Found Path

Start_pin
i i i

A1 O
‘ WV T

End_pin Region Vertices Start_region_vertex

Figure 3.11: A Region Graph is Needed To Find a Path in a Topological Graph

40

to End_region_vertez, meaning that the path from Start_pin to End-pin crosses
two nets. More formally a region graph is defined as follows. A vertex (called
a region vertex) corresponds to a region surrounded by edges of a topological
graph, a part of a wall, and enclosing line(s). An enclosing line is a line that
connects the left end of the top wall to the left end of the bottom wall, and
a line that connects the right end of the top wall to the right end of the bot-
tom wall as shown in Figure 3.11. An edge between two region vertices of a
region graph exists if two corresponding regions touch each other (separated
by an edge of a topological graph). There are three types of region edges as

shown in Figure 3.12. If an edge of a topological graph is on the first layer, the

s 1st_Layer Free

....................... . 2nd_—Layer_~Free

: Peripheral

Figure 3.12: Three Types of Region Edges

corresponding region edge is called “2nd_Layer_Iree”, because a wire on the
second layer can cross a wire on the first layer. The “2nd_Layer_Free” region
edge is represented by a thick dotted line. Similarly, if a separating edge of
a topological graph is on the second layer, the corresponding region edge is
called “lst_Layer_Free”, and it is represented by a thick solid line. An edge
also exists between a region vertex and a wall and between a region vertex and
an enclosing line. We call this type of edge “Peripheral” and it is represented
by a wide band. Obviously, a topological graph and its region graph are both
planar graphs and dual to each other, except that there is no “infinite vertex”
in a region graph that corresponds to an infinite region, and there is no edge

of a topological graph that corresponds to a Peripheral region edge.

41

Before any nets are routed, the region graph consists of only one
region vertex and Peripheral region edges that connect the region vertex to a

wall, as shown in Figure 3.13. The wall is considered as a sequence of wall

"Peripheral” Region Edges

Region Vertex Wall Segments

Figure 3.13: An Initial Region Graph before any Nets are Routed

segments. There is a Peripheral region edge to each wall segment. There is
a pin between two adjacent wall segments. These Peripheral region edges are
not essential in finding a path with minimum crossings, but are only needed to

simplify the description of our algorithm.

The region graph is used for finding a path with a minimum number
of crossings. Actually when nets are being connected, a topological graph is
never constructed, but a region graph is constructed. After all the nets are
connected, a topological graph is constructed using the information in a region
graph. The topological graph must be constructed because that is the graph

to be mapped to a channel.

When we want to find a connection from Start_pin to End-pin in
Figure 3.11, we first search for Startregionvertez and End.region-vertex
which touch Start_pin and End_pin respectively. Note that a shortest path
from Start_region_vertez to End_region_vertex corresponds to a connection

from Start_pin to End-pin with minimum crossings. If there are many paths of

the same shortest length, we want to choose the one among them which uses
the minimum number of vias. We developed a modified shortest path algorithm

[10] to handle this problem, and the algorithm is described as follows.

Each region vertex has three parameters needed for a breadth first
search : d, vy, and vy. “d” is the distance from a Stari-regionwvertez. “v”
is the number of vias needed to reach the first layer of the region vertex from
a Start_region_vertex. “vy” similarly is the number of vias needed to reach
the second layer of the region vertex from a Start_region-vertez. Note that if
v, vias are needed to reach the first layer of a certain region vertex, reaching
the second layer of the same region vertex can be achieved by just jumping the

layer through a via. So, vy is either vy +1, vy, or v1 — L.

These parameters of all the region vertices are initially set to co except

the Start_region_vertex whose parameters are set to 0 (Figure 3.14). The

region_vertex_2

Start_region_vertex

region_vertex_3

1 ist_Layer_Free

............................ : 2nd_Layer_Free

Figure 3.14: Start of Algorithm for Finding a Path with a Minimum Number
of Crossings

breadth first search starts from the Start_region_vertex. For each region vertex

43

of the same distance, all the adjacent region vertices are checked. v; and v, are
determined as follows. If the adjacent region vertex is connected by a region
edge of 1st_Layer_Free, this means that a path on the first layer from the region
vertex to its adjacent vertex can go through the region edge freely without
using any via. So adjvertex.v; is set to min (region_vertezr.vy, adjvertez.vy).
Thus, adjvertez.v; stays the same if region_vertex.v; > adjvertez.vy, which
means that there is already a path to this adjacent vertex found with a smaller
number of vias. The second layer of this adjacent region vertex can be reached
just by jumping the layers as described above. So, adj-vertez.v; is set to mun
(region_vertez.v; + 1, adj verter.vy). A similar procedure 1s applied when the

adjacent region vertex is connected by a region edge of 2nd-Layer_Free.

Figure 3.15 shows the parameters of region vertices after region ver-

tices of distance d = 1 are visited. Figure 3.16 shows a snapshot when

region_vertex_2

............

,,,,,,,,

region_vertex_1

region_vertex_3

Figure 3.15: Snapshot after Region Vertices of d = 1 are Visited

region_vertez_4 is visited from region_vertez2, but not from region_vertex3
vet.

vy of region_vertez_4 is set to 1, which is the same as vy of region.verter2

44

region_veriex_2

A path with one via was
found first

d=2

SLLIIIIIS2E

s 4

region_vertex_4

......................

region_vertex_1

region_vertex_3

Figure 3.16: Snapshot when region_vertez 4 is Visited from region_verter_2

because region.vertez2 and region_vertez 4 are connected by a region edge
of 2nd_Layer_Free. v; of region_vertez4 is set to 1+1 = 2. Thus a path of dis-
tance d = 2 from regionwertez_l (= Start_region_vertez) to region_vertez 4
using one via is found at this time. Figure 3.17 shows a snapshot when

region_vertez4 is visited from region_vertez 3. A path from region_verter.3

region_vertex_2

region_vertex_4

.....................

region_vertex_1
Now a new path with no via
" was found

region_vertex_3

Figure 3.17: Snapshot when regionvertez 4 is Visited from region_verter3

can reach region_vertezr.-4 without any via through a region edge of

45

1st_Layer_Free. So, vy of region_vertex 4 is set to vy of region_vertez.3, which
is 0. Now a new path of the same distance d = 2 with no via through
region_vertez.3 replaces an old path with one via through region_vertez_2.

This breadth first search continues until it reaches an End_region_vertez.

After an End_region_vertex is reached, the region graph is traced
back from the End_region_vertez to the Start_region_vertex. The trace back
procedure checks the region vertices on the shortest path and determines on
which layer the path runs, based on the information of the parameters of
v, and v,. Each region vertex must keep pointers of which vertex and edge
were the previous vertex and edge on the shortest path. So parameters of
prev_vertex.on_lst_layer and prev.vertexon-2nd-layer are kept in each region
vertex. If there were no such parameters, it would be impossible to trace
back from region-vertez_4 in Figure 3.17, because, from region_vertez 4, only
region_verter2 and region.vertex.3 can be seen, and the trace back proce-
dure would not be able to see that a path through region_verter2 needs to
use a via. Parameters of prev_edge-on-lst_layer and prev_edge_on_2nd layer
are also kept at each region vertex, because there is sometimes more than one
region edge between two region vertices, and it cannot tell which edge is on the

shortest path without this information.

Pseudo-code to find a shortest path with minimum number of vias
is shown in Figure 3.18, and pseudo-code of a procedure to set parameters of

adjacent region vertices is shown in Figure 3.19.

procedure find_shortest_path_with_minimum _number_of_vias

(* reset region_verter parameters *)
for all region_vertez
begin
region-vertex.d = oo;
region-vertexr.v; = o0;
region-verter.v, = 00;
end
(* set Start.region_vertex parameters *)
Start.region-vertez.d = 0;
Start.region_vertez.v, = 0;
Start.region-verter.vy = U;
(* start breadth first search from Start_region_vertez *)
current_distance = U;
while End_region_vertex.d # current_distance
begin
for all region_vertez whose d is current_distance
begin
set_parameters_of_adjacent_vertices; (* see Figure 3.19 *)
end
current_distance = current_distance + 1;
end
trace_back-the_shortest_path;

46

Figure 3.18: Pseudo-code to Find a Shortest Path with Minimum Number of

Vias

procedure set_parameters_of_adjacent_vertices

for all the adjvertez which are adjacent to region_verter
begin
if adjvertez.d > current_distance +1
begin
adj vertez.d = current-distance +1;
if type of region_edge to adjvertex is Ist_-Layer-Free
begin
if adjwertez.v; > region.verter.vy
begin
adj wertex.v; = region-vertez.vy;
adj _vertez.v, = min(regionvertez.vi+1, adj-vertez.vy);
adj_verte:c.prev.vertexﬁn_lst_layer = region_vertez;
adj vertez.prev-edge-on_lst_layer = region-edge;
end
end
else if type of region-edge to adj vertex is 2nd-Layer_Free
begin
if adjvertex.vy > region.vertezr.vy
begin
adj-vertez.v, = region_vertez.vy;
adj_vertez.v; = min(regionverter.vy+1, adjvertez.vy);
adj vertex.prevverteron-2nd-layer = region-vertez;
adj wertex.prev_edge_on_2nd_layer = region_edge;
end
end
end
end

Figure 3.19: Pseudo-code of a Procedure to Set Parameters of Adjacent Region
Vertices

48

3.4.3.2 Algorithm for Updating the Region Graph after a Path is
Found

After the shortest path with minimum number of vias is found, the
path must be added. Since we are adding this path to a region graph, and
not a topological graph, the addition can be achieved by splitting each region

vertex along the path and connecting the split region vertices by region edges.

When an initial net is routed, we need to find a shortest path in the
region graph shown in Figure 3.13. However, since there is only one region
vertex in the graph, the Startregion_verter and the End-region_vertez are
the same. The shortest path has length 0 starting and ending at the same region
vertex. This region vertex is simply split into two, and they are connected by

one region edge as shown in Figure 3.20. In this case, the wire to connect

Regi F
Start_pin egion Edge of 2nd_Layer_Free

End_pin

Figure 3.20: Region Graph after the First Net is Routed

Startpin and End_pin is on the first layer, so that the type of the region edge

connecting the split region vertices is 2nd.Layer_Free.

When the shortest path has non-zero length, region vertices along
the shortest path must be split because the region is cut by a path. The split
regions are connected by a region edge of either type Ist_Layer-Free or type

ond_Layer_Free. If it is cut by a path on the first layer, the type of the region

49

edge must be 2nd_Layer_Free, and if it is cut by a path on the second layer, the
tvpe of the region edge must be 1st_Layer_Free. Figure 3.21 shows how region
vertices are split in a region graph and its corresponding topological graph.

This is the case when the shortest path is on the first layer and has no vias.

Before spiitting region vertices

Shortest Path in a Region Graph its correspoding Topolegical Graph

Start_pin Start_pin
|

o0
Stan_reglon_vertex Shortest Path found
e

o

.......... 0
On/
End_region_vernex
H

End_pin End_pin

After splitting region vertices

Start_pin
A

End_pin

Figure 3.21: Splitting of Region Vertices with No Vias

If the shortest path has vias, extra edges are needed to connect
split region vertices, as shown in Figure 3.22. When region vertices are be-
ing split along the shortest path, a via is needed when the type of region
edges changes from 1st_Layer_Free to 2nd.Layer-Free or from 2nd-Layer_Free
to 1st_Layer_Free. The split vertices are connected by two region edges, one of
which is type 1st.Layer_Free and the other is type 2nd.Layer_Free. A via vertex

in a topological graph corresponds to the area between these two region edges as

Before splitting region ventices

Shortest Path in a Region Graph its correspoding Topologicat Graph

Stant_pin Start_pin

Start_ragion_vertex Shortest Path found O
o
O/
O/O

End_region_vertex

H
End _pin E£nd_pin

After splitling region vertices
Start_pin Stan_pin
I

Q_’\ Pin vertex
3

\ Via veriex

Ry
Pin vertex \O
T H

End_pin End pin

Figure 3.22: Splitting of Region Vertices with Vias

shown in the bottom right part of Figure 3.22. Note that region edges incident
on the same region vertex are, if looked at clockwise from the region vertex,
of alternating types of Ist-Layer_Free and 2nd_Layer_Free. In other words, a
region edge of 1st_-Layer_Free is between two region edges of 2nd-Layer_Free.
No two region vertices of the same type are next to each other. This is because
two adjacent edges incident on the same cross vertex (or a via vertex) in a
topological graph are on different layers, thus the corresponding region edges
should be of different types. So, when new edges are connected to the split
region vertices, the edges must be connected so that the alternating types are

preserved.

After all the nets are routed, a topological graph is constructed from

51

the region graph. An edge on the first layer of the topological graph corresponds
to a region edge of type 2nd_Layer_Free. Similarly an edge on the second layer
of the topological graph corresponds to a region edge of type 1st_Layer_Free. A
vertex of the topological graph corresponds to a region (or a face) of the region

graph.

3.4.3.3 Time Complexity of Topological Graph Construction

The time complexity to construct a topological graph is O(n?) for the

following reason.

We first derive an upper bound of the number of vertices of a topolog-
ical graph when k nets (1 < k < n) are routed. Each net in a topological graph
has 2 pin vertices, O(k) via vertices, and O(k) cross vertices. So, the total
number of vertices of a topological graph, which is the sum of pin vertices, via
vertices, and cross vertices, is k(2 + O(k) + O(k)) = O(k?). Since each vertex
of a topological graph is shared by at most four regions, the number of region

vertices of a region graph is v = 40(k*) = O(k?).

A breadth first search algorithm [41] takes O(v + ¢) time to find a
path for each net, where e is the number of edges in the region graph with v
vertices. The region graph is a planar graph, so e = O(n). Thus O(v +¢e) =
O(v) = O(k?). So the time complexity of finding n paths to construct a region
graph is

Ov) = En: O(k*) = O(n®).

k=1 k=1

3.4.4 Mapping of Topological Graph onto Channel
3.4.4.1 Greedy Graph Mapping Algorithm

The constructed topological graph represents only the crossing rela-
tionship among the nets and does not specify the physical position of each net
on the channel. At this point, only the positions of terminals are fixed. To
determine the physical locations of the nets, the topological graph has to be

mapped onto the channel.

A greedy algorithm is used to map the topological graph onto the

33

mesh. The basic idea of the greedy mapping is as follows. A vertical scan
line starts from the leftmost pin. As the scan line sweeps across the mesh,
the topological graph is mapped onto the mesh from left to right. Appropriate
vertices in the topological graph are mapped onto the mesh as soon as possible.
If the mesh does not have enough space for more vertices to be placed, a new
track is inserted. After all vertices that can be mapped at the current scan line
have been processed, the scan line moves to the right column of the interleaving
mesh. The scan line continues sweeping across the mesh until the entire graph

is mapped onto the mesh.

The greedy algorithm dynamically assigns each vertex of the topo-
logical graph to one of four states: “Non-Active Floating”, “Active Floating”,
“Active Fixed”, and “Non-Active Fixed”, as shown in Figure 3.23. An “Ac-

O Non-Active Floating
-+

3% Active Fixed

® Non-Active Fixed

Active Floating

Figure 3.23: States of Vertices of Topological Graph

tive” vertex means that the vertex is ready to be processed. A “Non-Active”
vertex means that the vertex is not ready to be processed or finished after it
is processed. A “Floating” vertex means that the vertex has not been mapped
onto the mesh yet, and a “Fixed” vertex means that the vertex is fixed in the
mesh. Vertices with degrees 1, 2, and 4 are called a pin vertex, a via vertex,
and a cross vertex, respectively. A pin vertex corresponds to a terminal pin, a
via vertex corresponds to a via, and a cross vertex corresponds to the crossing
of two different nets. Note that pin vertices are already “Fixed” even before

the greedy algorithm starts, while via vertices and cross vertices are “Floating”

initially.
The state transition rules are different for three different vertex types.

State transition diagrams for different types of vertex are shown in Figures 3.24,

3.25, and 3.26.

The states of pin vertices change from “Non-Active Fixed”, to “Active

Fixed”, and to “Non-Active Fixed” (Figure 3.24). As the scan line sweeps

Non-Active Fixed Active Fixed Non-Active Fixed
; Vdh AN Wire is mapped to a channel
Pin vertex Poss ppe
/
7 I ~
Pin
Z 2L L LL

T

Scanline A scaniine hits the pin The adjacent vertex is fixed

Figure 3.24: State Transition of a Pin Vertex

across the channel, it hits pin positions, at which time the corresponding pin
vertices become “Active Fixed”. At the same time, a vertical wire is extended
from the pin to the nearest available horizontal wiring track on the same layer.
The state becomes “Non-Active Fixed” when its adjacent vertex is fixed. When
an edge on the first layer is still not mapped, it is represented by a thin solid
line, and when the edge is mapped, it becomes thick solid line as shown in
Figure 3.24. Similarly, when an edge on the second layer is still not mapped, it
is represented by a thin dotted line, and when the edge is mapped, it becomes

thick dotted line as shown in Figure 3.25.

The states of via vertices and cross vertices of the topological graph

55

change from “Non-Active Floating”, to “Active Floating”, to “Active Fixed”,

and finally to “Non-Active Fixed” (Figure 3.25 and Figure 3.26). A “Non-

Non-Active Floating Active Floating Active Fixed Non-Active Fixed
LN L L

O—Q— B @ ©—gmi

i

Via vertex $ Adjacent vertex $ Via %

Y
i i
. . U,
Scanline . A via position is The other adjacent
An adjacent vertex determined in vertex is fixed
is fixed an interieaving
mesh
Figure 3.25: State Transition of a Via Vertex
Non-Active Floating Active Floating Active Fixed Non-Active Fixed

iCrcss vertex

> Adjacent vertex

b

§EE-F
=
-
e

-
==
—
LR34

s e ; g
An adjacent veriex is fixed A cross position is All four adjacent vertices

determined in an are fixed
interieaving mesh

Figure 3.26: State Transition of a Cross Vertex

Active Floating” vertex becomes “Active Floating” when one of its adjacent
vertices becomes fixed. This means that the vertex is ready to be mapped onto

the mesh only after one of its adjacent vertices is mapped. A floating vertex is

56

mapped onto the mesh as soon as possible to become an “Active Fixed” vertex.
After a via is placed in the mesh at the end of one edge which was already laid
out on the mesh, the other edge incident on the same via vertex begins to be
laid out on the mesh. The wire corresponding to the other edge is extended to
the right if necessary as the scan line moves right until the adjacent vertex is
mapped onto the mesh. Similarly, after a cross vertex is placed in the mesh at
the end of one edge which was already laid out on the mesh, all the other three
edges incident on the same cross vertex begin to be laid out on the mesh. The
wires corresponding to these three edges are extended to the right if necessary
as the scan line moves right until the adjacent vertices are mapped onto the
mesh. After all adjacent vertices are “Fixed” on the mesh, the vertex becomes

“Non-Active Fixed”.

It is clear that a planar topological graph can be always mapped to a
mesh by this algorithm based on the following arguments. All the pin vertices
can become “Active Fixed” when they are hit by a scan line. The pin vertices
can return to “Non-Active Fixed” when their adjacent “Floating” vertices (let’s
call the set of vertices adjacent to the pin vertices “group 1 vertices”) are
fixed, which is guaranteed to happen because “group 1 vertices” can always be
mapped onto a mesh by creating a new track whenever needed. Because all
the “group 1 vertices” can become “Fixed”, all the vertices that are adjacent
to “group 1 vertices” and that are not pin vertices (henceforth called “group
2 vertices”) can become “Active Floating”. The “Active Floating” group 2
vertices in turn can always become “Active Fixed” (or mapped onto a mesh)
by creating a new track whenever needed. This argument (which is like peeling
off layers of an onion) continues for vertices of group 1, 2, 3, ..., n, until all

the vertices are fixed. Thus, all the vertices are guaranteed to be mapped onto

a mesh. A simple example in Figure 3.27 shows how the topological graph is

mapped onto the mesh.

The greedy mapping algorithm takes O(wn?) time, where w is the
width of a channel. For each column where a scan line is sweeping, all the
vertices of the topological graph are checked to see if they can be mapped to
a mesh. The number of vertices of a topological graph for n nets is O(n?)
as explained above. Since the scan line sweeps for O(w) columns, the time

complexity is O{wn?).

Topological Graph Mesh
1 2 3
€ “% 1 2 3

2 /3
s i€
2) 3
STy

2 3
3 7

2 3
57T

2 3
5 %

2 3
22 =

Figure 3.27: Example of Greedy Mapping Algorithm

3.4.4.2 Special Treatment for Multi-Terminal Nets

Multi-terminal nets are decomposed into two-terminal nets before a
topological graph is constructed. When a scan line hits a pin, a wire is extended

from a pin into a channel.

However, there is a case when several two-terminal nets share the
same pin. In this case, wires must be extended for all the two-terminal nets.

Figure 3.28 shows how this is done. When several nets share the same pin, the

Three two-terminal nels
start from the same pin

Net1 mNetS

Net2

Mapping the three nets 1o a mesh

(]
-4
T =

P s B prl
[
m...._..

[0}
o
[TN A I

Scanling ———
Figure 3.28: Mapping of Multi-Terminal Nets Sharing the Same Pin
longest wire is extended from the leftmost pin, and the shortest wire is extended

from the rightmost pin because the scan line is sweeping the channel from left

to right. As a result, the topological relationship of the nets is preserved.

60

3.4.4.3 Mesh Data Structure

The interleaving mesh can be represented by a two-dimensional array.
However, during the greedy mapping algorithm, new tracks are inserted any
time there is such a need. Consequently, we need a data structure for the mesh

which is suitable for quick insertion of tracks.

One dimensional array of Index[y] of pointers to the tracks of Mesh[z,y]
is maintained as shown in Figure 3.29. Each index contains a track number.
When rows of Mesh[z, y] are rearranged, Mesh|z, Index[y]] forms a valid layout

without design-rule violations.

Before the greedy mapping starts, Index[y] contains nothing, and the
height of the mesh is 0. As the mapping proceeds, the tracks are inserted to a
mesh. If a track is inserted at Ynew of Mesh[z, y], all the tracks from ynew + 1
through y need to be shifted up, which takes time. Instead, a new track is
added on top of Mesh[z, y], thus eliminating a step of shifting up many rows
of Mesh[z, y]. Only numbers in Index[y] need to be shiited up, and the new

item in Index[y] points to a newly added track on the top of the channel.

In Figure 3.29, two new tracks are needed between tracks 1 and 2.
Mesh[z, 7] and Mesh[z, 8] are used as new tracks, but Mesh[z, 0] through
Mesh[z, 6] are not changed at all. Items in Index[2] through Index[6] are
shifted up by 2, and a new Index[2] and Index([3] becomes 7 and 8, respectively.
After this track insertion, wires are vertically extended, and the scan line moves

one unit to the right as shown in Figure 3.30.

61

y Indexiy] I Meshix, v]
6] 5 &
ol 2 6 ‘Q-Hr
2| & @ i
3] 3 &
2] 1 & 3
11 0 & 2
ol 2 @ ;
!ndzx via Meshix,Index(y]}
8
5 PR
4
3
2 w
1
0

Scan line X

Figure 3.29: Mesh[x,y] and Mesh[x,Index[y]] Before New Tracks are Inserted

y indexly] v Mesh{x.y] .
3] 5 8-] ;1
71 2
5 5 8 7
5] 5 ed 6 ol
Y i ;
3| 8 @ []
2] 7 8 Z L
110
0] 4 & ;
Indexiy] Mesh[x,Index(y]]
‘ T o
§ — 81— -
7 - : &
5 ; ;
" T
3
2
1
0

Scan line x

Figure 3.30: Mesh[x,y] and Mesh[x,Index[y]] After New Tracks are Inserted

3.4.5 Compaction

During the greedy mapping of the topological graph, new tracks are
inserted into the interleaving mesh whenever they are needed. Since tracks are
very sparsely occupied by wires, such unused portions of the mesh need to be
removed by compaction. We have developed a sophisticated two-dimensional
compacter. First, we describe previous approaches to the compaction problem,

and then we present our new two-dimensional compacter.

3.4.5.1 Previous Approaches

Compaction is a process which minimizes area or wire length. It is
needed to remove wasted space between components and between wires. Ideally
compaction should be done in two dimensions. The simplest way to compact
a layout in two dimensions is to repeat applying a one-dimensional compacter
in one direction and applying the same algorithm in the other direction alter-
natively. This method is very efficient and needs only a one-dimensional com-
pacter. Compacting a layout in both directions simultaneously, however, would
result in better compaction results, because compacting in one direction with-
out considering the other direction may block further compaction in the other
direction. Since the problem of finding an optimum result of two-dimensional
compaction is N P-hard [39], heuristics have been proposed. We first describe
several one-dimensional compaction algorithms, followed by a two-dimensional

compaction algorithm.

The shear-line method [3] compacts area one-dimensionally by re-
moving excess space. A band of excess space with the same width is removed.
This is the first compaction method and it is intuitively easy to understand.

However, the computational cost of this method is very high, so that its use 18

63
limited to small size layouts.

Another method of one-dimensional compaction called the critical
path method uses a graph to find the most compact solution [8] [21]. Each
vertex of the graph represents an object in the layout, and each directed edge
represents the minimum geometric design rule spacing. After the graph is
constructed, a longest path, i.e., a critical path, 1s found for each object, which
determines its location. The computation time is faster than the shear-line

method and hence the critical path method can be used for large layouts.

A virtual grid one-dimensional compaction method [48] places objects
on a virtual grid. Compaction is done by determining the location of each
virtual grid line. Since only the adjacent grid line needs to be checked to
Jetermine the location of the current virtual grid, the computation is very fast.

The speed up is obtained at the cost of a slightly larger compaction area.

In 1986, a new two-dimensional compaction algorithm called zone
refining compaction [42] [43] [44] was developed which simulates a zone refining
process to purify crystal ingots. In the zone refining process, an ingot is slowly
pulled through a heater that locally heats the crystal to melting temperature.
The melted location is called a molten zone. After it has passed through the
heater, the crystal recrystalizes, resulting in a lower concentration of impurities.
This is because the impurities are formed into an atomic lattice at a lower rate
than crystal atoms. This phenomenon “shakes” impurities out of the crystal

lattice.

In zone refining compaction, elements are taken off row by row (or
melted in physics terms) from a cluster at the top, moved across a zone, and
reassembled (or recrystalized) at the lowest possible location on another cluster

at the bottom. A simple zone refining compaction applied to bin packing is

64

shown in Figure 3.31. The impurities in the compaction are the unnecessary

Figure 3.31: Example of Zone Refining Compaction

empty spaces between elements. When the elements are deposited onto the
bottom, both coordinates of the elements can be changed. Thus, zone refining
compaction combines a one-dimensional compaction procedure with sophisti-
cated lateral movements of elements. The zone refining compaction can be
repeated by shaking elements up and down, or left and right, or both. When
compacting an integrated circuit layout, circuit elements are interconnected by

wires that limit the degree to which each element can move.

3.4.5.2 Our Compaction Method

Our compaction method is similar to the zone refining technique de-
scribed in the previous section, with a modification called horizontal make-
space. The channel is horizontally scanned from bottom to top, and when
vias and wires are hit, they are moved down. We now define solid elements
and flexible elements: a solid element is defined as an object that can move
in the channel without changing its shape, and a flexible element is defined as
an object that can move in the channel and that can change its shape. Vias

are treated as solid elements and wires are treated as flexible elements. In

65

our compaction step, a via is taken from one cluster at the top as shown in

Figure 3.32 a and Figure 3.32 b. The lowest position for a via is then found

Figure 3.32: A Via is Moved Down to the Lowest Position

by horizontally moving a via and searching for the lowest bottom. Note that a
via has elements on both layers, so design rule checking must be done on both
layers. The via then moves to the location, and wires connected to the via are
also pulled down as shown in Figure 3.32 c. Since vias are solid elements, they

never change their shapes.

Wires are simply pushed straight down as shown in Figure 3.33. It
the contour of the cluster at the bottom is not flat, the wire, which is a flexible

element, is bent to fit the contour as shown in Figure 3.34.

Figure 3.33: A Wire is Moved Down to the Lowest Position

Figure 3.34: A Wire is Bent to Fit a Contour

66

67

3.4.5.3 Making Space for Better Shaking Results

When a via is pushed down, it is moved horizontally in the zone to
find the lowest position to be pushed to. In the channel routing problem,
however, there are many vertical wires that limit the horizontal movement of

a via. This limits the search area for the lowest position.

We have developed a new method called horizontal make-space to
deal with this problem. The horizontal make-space procedure creates space by
horizontally moving wires and vias away from the via to be moved down. As
shown in the top of Figure 3.35, vertical wires on the first layer severely limit
the horizontal movement of the via to be pushed down. We call the via a target
via. For freer target via movement, wire and vias are pushed away from the
target via as shown in the second row of Figure 3.35. Three cases are tried :
the first case is that only wires on the first layer are pushed away, as shown
in the left drawing, the second case is that only wires on the second layer are
pushed away, as shown in the middle drawing, and the third case is that wires
on both layers and vias are pushed away, as shown in the right drawing. After
wires (and vias) are pushed away, the target via looks for the lowest position
in each case. The case in which the lowest position is obtained is chosen and
kept. The other two cases are discarded. In Figure 3.35, the case when wires on
the first layer are pushed away produced the lowest target via position. Note
that pushing wires on both layers and vias does not always make better results
than the other two cases. This is because the pushed horizontal wires on the
first layer or on the second layer needlessly prevent the target via from finding

a lower position.

When wires and vias are pushed away from the target via, we must

set a limit on how far they are pushed away, otherwise they are pushed away to

638

Horizontal via movement is limited

]

Target Via

Wires on the 1st layer are pushed Wires on the 2nd layer are pushed Wires on both layers and vias are
away from the via 1

away

i pushed away]

A via is pushed down |

A via is pushed down i

| This is chosen because the via
can move 10 the lowest position

Figure 3.35: Making Space for Better Shaking Results

infinity. The horizontal width limits to the left and to the right are W,,, each
as shown in the top of Figure 3.35. We might think that the larger W, is, the
better result we can obtain. It turns out, however, that if W, is too large,
many wires meander around the target via, resulting in an increase in height.
Obviously if Wi, is 0, the result is worse than when W,,, is a positive number.
So we did an experiment to find the best W, value. The result is shown in
Figure 3.36. Four examples from [50] are used. The experiment confirms that if

excessive space is made, the resulting height becomes larger. In example 3a, for

69

example, the best W, value, which yields the smallest height, ranges between
10 and 26. In this case, heights happen to be all 32 when Wy, is between 10
and 26. Since larger space requires more computation time, it is best to choose
W.., = 10, which is the minimum W,,, that yields the best height. Similarly,

the best W.,, is 10, 18, and 24 for examples 3b, 3c, and 4b, respectively.

After the make-space procedure, wires around the target via meander.

These are straightened before the next push down of vias and wires takes place.

Height

38
36 — Example 3a

34 —
32 —

1 rrr1r 01717 171 11
0 2 46 81012141618202224 2628 30

44

42 Example 3b

40

38
T rrrrr 0171717 1 1 1 1
0 2 46 8 1012141618202224 2628 30

44

42 Example 3¢

40

38
T 11 11100t T17 1P b b b
0 2 4 6 8 1012141618202224 2628 30

38 Example 4b

36

34

32

11T TrTrorr
0 2 46 810121416182022 242628 30

Figure 3.36: Channel Height v.s. Make-Space Width

ms

ms

ms

ms

Figure 3.38: Pruning an Unnecessary Wire

e Cutting Unnecessary Loops

Sometimes unnecessary loops appear after the shake as shown in Fig-

ure 3.39. These loops are removed by traversing each net from a pin to

Figure 3.39: Cutting an Unnecessary Loop

identify them, and then cutting them so that the net becomes a tree with
no loops. The loops must be carefully cut, because if carelessly cut, the

net becomes multiple trees.

Chapter 4

Improvements to Topological Channel Routing

Our method of topological channel routing described in the previous
chapter determines a topological relationship between the nets first, and then
maps the nets to an actual routing region. Although this method is very effec-
tive in producing compact routing solutions that use a small number of vias,
it can be improved to obtain more compact solutions by using geometric infor-
mation when we construct a topological solution. In Figure 4.1, for example.
even though both topological solutions A and B can be constructed by the
algorithm in the previous chapter, layout A, which is obtained by mapping
the topological solution A to a channel, has a height of only 6, whereas layout
B has a height of 8. The algorithm in the previous chapter cannot find any
distinction between the two topological solutions before they are mapped to a

channel.

In this chapter. we present an improved topological channel routing
algorithm which takes geometric information into consideration when a topo-

logical solution is obtained [16].

4.1 Topological Routing using Geometric Information

There have been many attempts to compact a channel to get a result
with a small area [12] [35] [7]. These techniques achieve compact results by
starting with a reserved layer router and then compacting the result. On the

other hand. topological routers which do not observe the reserved layer rules

;-93
i
g

74

Topological Solution A Topological Solution B

Layout B

Layout A

Height is 6 Heightis 8
Figure 4.1: Two Different Topological Solutions and Their Mappings to a Chan-
nel
can find solutions with small numbers of vias, but have to work harder to

produce compact results. -

We incorporate some of the geometric constraints of reserved layer
routing into a topological router in an attempt to take advantage of the best
features of both methods, i.e., producing results with a small area and a small

number of vias.

4.2 Assignment of Nets to Two Layers

In the reserved layer model, all horizontal wires are placed on the
first layer and all vertical wires are placed on the second layer. If a horizontally
short net (i.e. a net whose distance along a channel is short) connects a pin on

the top wall to a pin on the bottom wall, we call it a near-vertical net.

Nets are assigned to layers in a way similar to that used in the reserved

layer model. Near-vertical nets are assigned to the second layer using no vias

75

where possible, and long horizontal nets use two vias and contain a horizontal
run on the first layer and two vertical runs on the second layer. So, near-vertical
nets form the set N, (the set of nets on the second layer), long horizontal nets
form the set N, (the set of nets on both layers), and the set Ny (the set of

nets on the first layer) is ¢.

Now, we discuss the selection ordering of nets without vias to be
placed on the second layer. First, near-vertical nets which do not cross each
other are chosen and assigned to the second layer (See Figure 4.2). It is best
to assign as many near-vertical nets to the second layer as possible, i.e., to
maximize the cardinality of N, for near-vertical nets, because horizontal wires
on the first layer contribute to the increase of channel height, while near-vertical
wires on the second layer do not. Let dy be the horizontal distance between
two pins of a near-vertical net. The sequence of choosing near-vertical nets
is as follows. First, all the near-vertical nets with dg = 0 (i.e. truly vertical
nets) are chosen. It is obvious that no truly vertical nets cross each other.
Then near-vertical nets with dg = 1 are chosen if they do not cross already
chosen nets. We continue this process with dy = 2,3,4, and so on, until no
more near-vertical nets which do not cross other nets are found. Note that
this algorithm does not find a maximum set N, of non-intersecting nets on
the second layer (as we did in Section 3.4.2), because near-vertical nets are

preferred to horizontally-long nets.

Notice that there are still more nets that can be assigned to the second
layer, as shown in step 2 of Figure 4.2. These are nets which connect two pins

on one wall (top or bottom) of the channel.

All remaining nets can be routed using exactly two vias per net. Each

remaining net connects two pins first using the second layer, then switching to

Step 1:
Near-vertical nets are assigned
to the second layer

Step 2:
H More nets which do not cross other
H i H nets are assigned to the second
layer

Step 3 :

All the remaining nets use
two vias

N7/

Remaining nets

Figure 4.2: Layer Assignment

the first layer, and then switching back to the second layer. These nets with
two vias cross each other. They also cross nets assigned to the second layer,
but they can be routed without failure by jumping to the other layer using

vias.

4.3 Improved Topological Graph Construction

After the layer assignment, topological solutions are obtained by con-
structing topological graphs. The algorithm to construct a topological graph

is slightly different from that described in Section 3.4.3.

In the algorithm described in Section 3.4.3, if a region edge type is
1st_Layer_Free, the search path on the first layer can go along the edge, i.e., a
path on the first layer can cross a wire on the second layer, and similarly a path
on the second layer can cross a wire on the first layer. However, as shown below,
when geometric constraints are imposed, a search path cannot go along some
region edges. From now on, we explain the algorithm using the topological
graph instead of the region graph because it makes the algorithm description
casier to understand. When we say that an edge of a topological graph cannot
be crossed, it actually means that an edge of a region graph cannot be used for

a search path.

All the nets with two vias are topologically routed before nets without
vias are routed on the second layer. We first discuss how each net with two vias
‘s routed. When a net with two vias is routed, a path starts on the second layer,
uses a wire segment on the second layer, jumps to the first layer through a via,
uses a wire segment on the first layer, jumps back to the second layer through a
via, and reaches the other pin again using a wire segment on the second layer.
Fach wire segment consists of one or more edges of the topological graph.
Before discussing the rules to prohibit the crossing of edges of a topological
graph, we define some values associated with the edges and the wire segments.

(See an example in Figure 4.3).

e A “position z” of a wire segment on the second layer is defined as the

position of a pin to which the wire segment is connected.

Interval = {2,2]
Interval = [2,7]
/ !ntervai =[4,4]
Position = 2 f{an 2<>7)
lnterval (2,71

interval 4]
Interval = [1,1] Posmon_ j

14,
interval = [7,7]
0 —{]

Position =7

Position = 1 Span = (1 <->4)

. interval = [1,4]

T 1 T T = X
1 2 4 7

Figure 4.3: Example of Position, Span, and Interval

e A “span (Zmin <> Tmaes) of a wire segment on the first layer is defined as
the smaller and the larger position z of two wire segments on the second

layer to which this wire segment on the first layer 1s connected.

e Each edge of the topological graph comprising a portion of a wire segment

with the span (Zmin ¢ Tmac) on the first layer has an interval [Zmin, Tmaz|-

e Bach edge of the topological graph comprising a portion of a wire segment

with the position z on the second layer has an interval [z, =].

Note that even though the words “position”, “span”, and “interval”
are used, wire segments and edges are not fixed to any physical location (i.e.,

floating), because they are not mapped to a channel yet.

The following three rules are used when a breadth first search algo-

rithm expands search paths from Pin A toward Pin B for a net with two vias

(See Figures 4.4, 4.5, and 4.6).

Note that these rules are only for nets with two vias, and are ignored

for nets without vias on the second layer. Consider any path P expanded by

the breadth first search, and assume without loss of generality that z4 < z5.

A similar rule is applied when z4 > T3.

Rule 1

Rule 2

Rule 3

(Figure 4.4) : A search path P from Pin A at position x4 to Pin B at
position zg cannot cross any edge with interval [z, z] on the second layer

unless 24 <z < zp.

When a search path encounters an edge on the second layer with the
interval of [z,z], the program checks if z4 < z < 23, and if so, the
path on the first layer can cross this edge on the second layer. This
rule prevents unnecessary meandering of the net from Pin A to Pin B as
shown at the bottom of the figure. Via 1 adjacent to Pin A is not actually
needed when this connection from A to B is made. However, each net
must use two vias so that nets which are topologically routed later never

fail to find a path.

(Figure 4.5) : A search path P cannot cross any edge on the first layer
with interval [Zmin, Tmaz) If T4 < Trmin a0d Trmez < 2B, i.e., if the interval

of the edge is inside the range of Pin A and Pin B.

This prevents the unnecessary bending of a wire segment on the second
layer as shown at the bottom of the figure. The bending sometimes
consumes precious space in the channel, so it is better to have straight

vertical wires on the second layer.

(Figure 4.6) : If z4 < zp and a search path P has crossed an edge on the

second layer with interval [T reo, Tpres], then P cannot cross any edge on

80
the second layer with interval [Znext, Tpezt) WheTe Znezt < Tprew-

If 4 < zp and the path on the first layer crosses edges on the second
layer with the interval of [z1,21], [z2, Z2], [z3, T3], [k, zx] in this order,
z; (1 <7 < k) must increase monotonically, i.e., 1 < z2 < ... <z So
the crossing of an edge that causes non-monotonic increase must not be

allowed.

When breadth first search is in progress, each region vertex remembers a
previous region edge which contains the shortest path from Pin A to this
region vertex. So it is easy to recall the value of Z,rey. This rule prevents
horizontal u-turns in the path, which obviously increase the area as shown

at the bottom of the figure.

After the path is found, it is added to the topological graph by split-
ting the edges along the path. If the interval of an edge is [z1,z2], both of
the split edges have the same interval [z1, z;]. The newly added edges on the
second layer along the found path are assigned an interval of [z, z], where x is
the position of a wire segment of the edges on the second layer, and the newly
added edges on the first layer along the found path are assigned an interval of

[Zmins Tmaz), Where a wire segment of the edges on the first layer has a span of
(Scmin — xmax)-

As described before, the topological channel routing algorithm actu-
ally uses a region graph instead of a topological graph when paths are being
added, and after the region graph is complete, the topological graph is con-
structed from it. Special care is needed when a path from Start-pin to End_pin
uses two vias even though the path does not need any vias as shown in Iig-

ure 4.7. These needless vias must be used in order to enable routing of nets

31

which will be later routed without vias. The path splits a region into two
new regions just like the original algorithm, but three region edges are needed
to connect the two region vertices. The two of the three region edges are
1st_Layer_Free, and the other one is 2nd.Layer_Free in this case. The three

edges are needed because three new edges of a topological graph are created.

After all the nets with two vias are routed, all the nets assigned to the
second layer are topologically routed without vias. When nets assigned to the
second layer are routed, the above rules are ignored, i.e., any edges are allowed
to cross except the obvious rule that the search path on the first layer should
not cross edges on the first layer and similarly the search path on the second

layer should not cross edges on the second layer.

82

O
Y 0% 0 X
X H : X Edge that cannot be crossed
% : ; by a search path
% :
0

This prevents the meandering as shown below

Pin A

O

=
%
Pin B

6 6 o0 O

Figure 4.4: Rule 1

interval = [5,8]

Interval = 5,8}
PinB

o QR P9 Y

This prevents an unnecessary bending of a wire segment on the second layer

as shown below

PinB

]
@) ;
A=

H H H

Figure 4.5: Rule 2

83

PinB

This prevents the U-turn of the path as shown below.

PinB
00 ;

. : :
i:" O 0
Pin A

Figure 4.6: Rule 3

84

Start_pin
1

Region vertices

) "‘!
L / End_pin

Three region edges

Figure 4.7: Region Graph after a Net with Two Vias is Routed

85

4.4 Via Reduction

After a topology of the nets is determined, we want to reduce the
number of vias. The main objective of the channel router is to obtain a result
with a small area, and the next objective is to do it with a minimum number
of vias. So even after the topology is determined, we must be careful not to

over-minimize the number of vias, which might result in an increase in area.

As described in Section 3.1, there are basically two approaches to

reduce the number of vias: Constrained Via Minimization (CVM) and Uncon-

strained Via Minimization (UVM).

Since the topology of the nets is determined when the topological
graph is constructed, we do not want to change the topology, i.e., we cannot
use UVM techniques at this stage. Instead, we could reduce the number of vias
by switching the layer assignment of edges of the topological graph without
changing the topology of nets. This idea 1s similar to CVM methods, except
that the traditional CVM is applied to a physical wire layout which is already
placed in a channel (See Figure 3.1 for an example of CVM). A method similar
to this idea which performs CVM to a topological graph without physical wire
and via location constraints was developed by Naclerio, Masuda, and Nakajima
(30]. Their method can obtain the minimum number of vias of a given topology

in O(n®) time, where n is the number of nets.

In the improved topological graph construction, however, we deter-
mine the topology of nets intelligently using geometric information. If we per-
form CVM on the topological graph, all the geometric information used to
construct it would be lost. So we will do local layer assignment modifications
of the topological graph. If the modifications are done locally, the loss of the

geometric information contained in the topological graph will be minimal.

87

We perform two types of local layer assignment modifications : one is
local laver assignment modification at pin vertices and the other is local layer

assignment modification at other vertices.

4.4.1 Local Layer Assignment Modification at Pin Vertices

After the topology of all the nets is determined, vias adjacent to a pin
can be easily removed by changing the layer of the pin connection as shown in

Figure 4.8. If p pins of the same signal must be connected, (p— 1) two-terminal

Figure 4.8: Via Reduction at Pins

nets are needed. In the worst case, 2(p— 1) vias are needed for this signal if all
the (p — 1) two-terminal nets use two vias. On the other hand, in a reserved
layer channel router, only p vias are needed. However, this worst case seldom
happens, because many nets among the (p — 1) nets are assigned to the second
layer without vias, vias adjacent to pin vertices are thus removed, and some

vias at other vertices are also removed as described next.

4.4.2 Local Layer Assignment Modification at Other Vertices

Vias can be reduced not only at pin vertices but also at other ver-
tices. Suppose a cluster of vess Cross vertices are connected in sequence. See
Figure 4.9 where vgross = 3. There are 2vgoss + 2 vertices connected to the

cluster. If there are more than vVe.ess + 1 vias among the 2v..,s5 + 2 vertices, we

88

5 vias 3vias

Figure 4.9: Via Reduction around Cross Vertices

can reduce the number of vias by changing the layer assignment of the edges
incident on vertices of the cluster as shown in the right part of Figure 4.9. In
other words, if there are vy, vias (Vyia > Veross + 1), and 20cross + 2 — VUyiq CrOSS
vertices that are adjacent to the cluster, the number of vias can be reduced to

QWeross + 2 — Vpia, which is smaller than vyis.

We start with v...ss = 1 and scan the topological graph to find such
a situation. If it is found, the switching of the layer assignment takes place.
We continue the operation with veross = 2, 3, 4, and so on. We usually cut off

al Veross = 6.

4.5 Time Complexity

The following steps are different from those in the original topological
channel routing algorithm described in Section 3.1 : the net assignment step,
the topological graph construction step, and the via reduction step. We show

the time complexity of these steps.

89

e Assignment of Nets to Layers :

Near-vertical nets are assigned to the second layer. The shorter the the
horizontal distance dy of a net is, the earlier it is assigned to the second
layer. So n nets need to be sorted by dgr, which takes O(nlog(n)) time.
Checking if a chosen net does not cross k already-assigned nets takes
time O(k). So, it takes Y O(k) = O(n?) time for checking n nets.
More nets can be assigned to the second layer as shown in the step 2 of
Figure 4.2, which can be done in O(n?) time also. The remaining nets
are assigned to the first layer. So, the total time complexity of the net

assignment step is O(nlog(n)) + O(n?) + O(n?) = O(n?).

e Construction of Topological Graph :

When a topological graph is constructed, a region graph is constructed.
The improved algorithm imposes some rules so that some region edges
of the region graph cannot be used when a shortest path algorithm is
performed. Since the rule checking is done using parameters stored in
the region edge, it can be done in O(1) time. So, the time complexity
to construct a topological graph is the same as the one in the original

algorithm, O(n?).

e Via Reduction :

Two types of local layer assignment modifications are done to reduce the
number of vias : one is local layer assignment modification at pin vertices,

and the other is local layer assignment modification at other vertices.

The local layer assignment modification at pin vertices can be done in
O(n) time, because there are 2n pin vertices and each pin vertex can be

processed in O(1) time. The local layer assignment modification at other

90

vertices is done by scanning clusters of ¢ vertices of a topological graph,
where ¢ is smaller than a given constant. The number of vertices of a
topological graph for n nets is O(n?), so this scanning takes O(n?) time.

So, the total time complexity of via reduction is O(n) + O(n?) = O(n?).

Chapter 5

Experimental Results on Topological Channel Routing

After a topological solution is obtained, it is mapped to an interleaving
mesh. We used the same design rules as those in [12] : path width = 1.0,
feature separation = 1.0, and size of contact = 2.0 x 2.0. The space between

two adjacent pins is 4.0.

5.1 Results on Channel Height

Experiments have been performed using examples 3a, 3b, 3c, 4b, and
5in Yoshimura and Kuh’s paper [50], and Deutsch’s Difficult Example [11]. Ta-
ble 5.1 shows the channel heights for those examples. Maximum densities and
minimum heights achievable by reserved layer routers are also shown. When
maximum density is d, d wires have to cross at certain column of a channel on
one layer if a reserved layer channel routing is performed. Since wire width is
1.0 and wire separation is 1.0, the minimum height by reserved layer routers
is 2d + 1. Note that for examples 4b and 5, our topological channel router
was able to obtain heights smaller than the minimum heights by reserved layer

routers, because it allows horizontal wires on both layers.

Compaction (or shaking) is very effective in obtaining above channel
heights. Figure 5.1 shows channel height results after 20 shakes for examples
3a, 3b, 3c, 4b, and 5, and after 32 shakes for Deutsch’s Difficult Example.

91

ﬂé‘?{;“&“é‘f‘ Height by
. Reserved _Cr) ur iogical

Maximum Layer opologi

Density Router Channel
Examples (=d) {=2d+1) Router
Example 3a 15 31 31
Example 3b 17 35 38
Example 3¢ 18 37 37
Example 4b 17 35 33
Example & 20 41 33
Deutsch's
Difficult 19 39 43
Example

Table 5.1: Channel Height by Topological Channel Router

The height when the number of shakes is 0 is the one obtained by a simple
one-dimensional compaction without any horizontal movement of vias. This
one-dimensional compaction result is used as input for the shaking procedure
that follows. The experiments show that the first shake reduces the height
drastically, because a two-dimensional compaction is performed after the one-
dimensional compaction. During the shaking, a result with the smallest height
‘s saved until an even smaller result is obtained. The smallest height is usually
obtained after 3 to 7 shakes. The exceptions are 15 shakes for example 3b
and 26 shakes for Deutsch’s Difficult Example. It is hard to predict how many
shakes are needed beforehand. But obviously only one shake is not enough. At
least several shakes are needed to obtain a height close to the best obtainable
heights. If enough computation time is available, it is best to perform as many

shakes as the time permits.

Height

42
40 Example 3a
38
36
34
32

30
| I T A
02 46 8

1T T
10121416 1820

of shakes
Height

50
48 Example 3b
46
44
42
40
38

T T
1012 14 1618 20
of shakes

P -
) oo
o
) e
o -

Example 3¢

1 17 17T T
101214161820
of shakes

T T
0 24686 8

Height
50
48
46
44
42
40
38
36
34

3z

Height
52 A
50 —t
48 —
46 -
44 s
42 -
40 —

38
236 —
34
32

Example 4b

17171 i1
1012 14 16 18 20
of shakes

T
02 46 8

Example 5

IR
10 12 14 16 18 20
of shakes

(]
N =
B e
[« 8
O

Deutsch's Difficult Example

1.1 1 [1 7T T & 11
1012 14 16 182022 242628 30 32
of shakes

11
02 486 8

Figure 5.1: Channel Height after n shakes (0 <n < 32)

93

94

5.2 Results on the Number of Vias

Table 5.2 shows a comparison of the numbers of vias used by four
different methods. Both the table and its graph are shown. The left-most
column shows the numbers of vias in results on Examples 3a, 3b, 3c, 4b, and
5 in the original paper by Yoshimura and Kuh [50], and three different results
on Deutsch’s Difficult Example by Burstein and Pelavin [5] and by Yoshimura
and Kuh [50]. The second column shows the numbers of vias by the optimum
CVM (Constrained Via Minimization) algorithm of Chen, Kajitani, and Chan
[6]. The CVM algorithm finds the minimum number of vias but does not change
the topology of the layout. The third column shows the numbers of vias by
an algorithm “Via Minimization by Layout Modification” by The, Wong, and
Cong [46]. It can obtain a result with smaller a number of vias than the CVM
algorithm because the topology of layouts is locally modified. The right-most
column shows the numbers of vias by our method. On the average, our results
have numbers of vias that are 39% smaller than those in [5] [50], 25% smaller
than those by the optimum CVM, and 17% smaller than those by The, Wong,
and Cong. The number of vias in the original papers are much larger than
the rest, obviously because they use a reserved layer model in which a via
is always needed when a wire makes a 90 degree turn. Both CVM and the
algorithm by The, Wong, and Cong tried to minimize the number of vias after
the layout is obtained. QOurs achieved a smaller number of vias than the above
two algorithms because it minimizes the number of vias in a topological graph

before it is mapped onto a channel.

Via
The Minimization
\I\Jlumber of b o‘c_j?cal
Examples jasinthe : ification
P Original 8 tgﬂmum by The, Wong
Papers and Cong Our Method
Example 3a 91 72 66 42
Example 3¢ 125 109 103 83
Example 4b 179 e e 86
Example 5 150 114 105 84
Tracks=19
by Burstein 354 283 233
and Pelavin
Deutsch’s Tracks=20
Difficuit | by Yoshimura 308 240 218 186
Example |and Kuh
Tracks=28
by Yoshimura 290 234 207
and Kuh

Via Count
Criginal Papers

.

300

CVM Data of CVM and The's
The et. al methods not available

14

200 //Ours - j L
7

3a 3b 3c 4b 5 Deutsch’s Example

Table 5.2: Comparison of the Number of Vias by Different Algorithms

96

5.3 Comparison of Topological Channel Router with
and without Geometric Information

Table 5.3 shows the comparison of the topological channel router with-
out geometric information described in chapter 3 and the topological channel
router with geometric information described in chapter 4 using examples 3a.
3b, 3¢, 4b, 5 in Yoshimura and Kuh’s paper [50] and Deutsch’s Difficult Exam-
ple [11]. All the results except Example 5 obtained by the topological channel
router with geometric information have smaller (or equal) heights than those by
the topological channel router without geometric information. In most cases,
the topological channel router with geometric information produced results
with smaller numbers of vias. In Example 4b, the topological channel router
with geometric information obtained the solution of height 33 and via count
101 as shown in Table 5.3. However the same algorithm also obtained the so-
lution of height 36 and via count 86. The smaller height of 33 was obtained at

the cost of the larger number of vias.

We obtained the height of 43 ! for Deutsch’s Difficult Example [11]
without any parallel overlaps of wires, which is one of the best results ever
reported. The number of vias for Deutsch’s Difficult Example in our result is
186, which is much smaller than all the other channel routers. Comparison
of Deutsch’s Difficult Example by different algorithms is shown in Section 5.5.
Note that all the compacted results on this example previously reported in-

cluding [12] [35] [7] have vertical and/or horizontal overlaps of wires.

1The algorithm produced a solution with height 43, which was easily modified by hand
to produce the solution of height 41 shown in Section 5.6

Height
4

45

40

35

Cur Experimental Resuits
Topoiogical Topological
Router without Router with
Geometric Geometric
Examples information Information
Height 31 31
Example 3a
Via count 46 42
Height 38 38
Example 3b
Via count 87 69
Height 38 37
Example 3¢
Via count 94 83
Height 36 33
Example 4b
Via count 86 101
Height 33 35
Example 5
Via count 94 84
Deutsch's Height 45 43
Difficult
Exampie Via count 222 186
Via count
" . 200
Without Geometric info.
\ With Geometric Info.
/ 150
Without Geometric Info.
l With Geometric Info.
100 ¥ j

5 Deutsch

Table 5.3: Comparison of Topological Router without Geometric Information
and Topological Router with Geometric Information

98

5.4 Effect of Pin Pitch Expansion on Channel Height

In our channel model, both vertical and horizontal wires are allowed
to be placed on both layers. If horizontal wires are placed on both layers, the
height of a channel will be lower. However, vias in a channel often prevent
the horizontal wires on different layers from being placed in interleaving way.
The horizontal wire interleaving by two layers will work better if there is more
horizontal space available, because vias can be pushed to a lower position. If we
increase the pin pitch, i.e. spacing between two adjacent pins, we can have more
horizontal space. So we did an experiment on the effect of pin pitch expansion
on channel height. The pin pitch expansion ratio (PE) is a scale up ratio of pin
spacing. For example, if PE is 2, the spacing between two adjacent pins 1s twice
as large as when PE is 1 as shown in Figure 5.2. Six inputs 1, 2, 3, 4, 3, 6 are
used for testing. Pin signal numbers are randomly generated. The maximum
densities (d) of inputs 1, 2, 3, 4, 5, 6 are 10, 10, 10, 19, 20, 20, respectively. If
the wire width is 1 and the wire spacing is 1, the minimum height of a reserved
layer router is 2d + 1, which is 21, 21, 21, 39, 41, 41 for inputs 1, 2, 3, 4, 5, 6,
respectively. The number of pins on each side of the wall of inputs 1, 2, 3, 4, 5,
6 are 20, 26, 31, 39, 49, 53, respectively. Our topological channel router allows
horizontal wires on both layers, so theoretically it can achieve height which is
smaller than the minimum height of a reserved layer router. Figure 5.3 shows
that when PE is 1, it is hard to reach this minimum height. However, the
experiment shows that, as PE increases, the height decreases and approaches

the minimum, and in many cases the height is smaller than the minimum.

We also compared the height by the channel router without geometric
information with the height by the channel router with geometric information.

The height by a channel router without geometric information is drawn in

99

Pins
—
S DU S S B A

PE=1 Channel

PE=2 Channei

PE=3 Channel

PE=4 Channel
i i i | i

PE : Pin Pitch Expansion Ratic

Figure 5.2: Expansion of Pin Pitch

solid lines, and the height by a channel router with geometric information is
drawn in dotted lines in Figure 5.3. When PE is 1, vias must be crammed
into a horizontally short channel. If geometric information is used, the wires
are arranged in a more controlled manner. As a result, the height of a channel
by the channel router with geometric information is smaller than the height of
a channel by the channel router without geometric information in most cases
except the case of input 4. However, as PE increases, there is enough space in
the channel so that vias do not collide with each other. So, when the pin pitch is
large, a channel router without geometric information is able to produce results

with about the same height as a channel router with geometric information.

Height
\
Input 5

30—

25—

PE

NG e
(R
By
°
m
et
P\Yed
[

Height 1
35—
Height Input 6
30—
55

25—
45

I I |]]]

1 2 3 4 PE 1 2 3 PE
: Channel Router without Geometric Information

--------------- - Channel Router with Geometric Information

PE : Pin Pitch Expansion Ratio

Figure 5.3: Effect of Pin Pitch Expansion on Channel Height

100

101

5.5 History of Deutsch’s Difficult Example

Figure 5.4 shows the history of the channel height and the number
of vias by different algorithms on Deutsch’s Difficult Example. Each point is
the height and the number of vias obtained by an algorithm whose inventors
are listed on the right side. For details of these algorithms, refer to following
papers. A : Deutsch [11], B : Yoshimura and Kuh [50], B : Rivest and Fiduccia
(33], C : Burstein and Pelavin [5], D : Sangiovanni-Vincentelli, Santomauro,
and Reed [37], E : Deutsch [12], F : Royle, Palczewski, VerHeyen, Naccache,
and Soukup [35], G : Cheng and Deutsch (7], and H : Ours [15] [16]. The
channel height has been decreasing steadily because that is the main objective
of a channel router. However, the numbers of vias by some older channel
routers are smaller than those by some newer channel routers. This is because
they usually obtained results with small height as a main objective, and then
some tried to minimize the number of vias as a secondary objective, while
others did not try to reduce the number of vias at all because they stuck with
the reserved layer model. Our algorithm produced the result with both the
smallest height (= 41) and the smallest number of vias (= 186) partly due to
the new topological channel routing with geometric information that minimizes
the number of vias even before wires are laid out on a channel, and partly due

to a sophisticated compaction algorithm.

102

Channel Height

4
1975 1980 1885 1990
] | H i AD
A
60 —
55 —
50 —| : Deutsch
: Yoshimura and Kuh
45 - : Rivest and Fiduccia
: Burstein and Pelavin
40 —i
0 : Sangiovanni-Vincentelli,
Santomauro, and Reed
Via Count E : Deutsch
4
360 F : Rovle, Palczewski,
340 — VerHeyen, Naccachs,
and Soukup
320
300 G : Cheng and Deutsch
2807} H 1 Ours
260
240
220
200 —
180 —

i I ‘ l A.D.
1978 1980 1985 1980

Figure 5.4: History of Channel Height and the Number of Vias by Different
Channel Routers on Deutsch’s Difficult Example since 1976

103

5.6 Layout Results

The best results obtained by our topological channel router are shown

here. Deutsch’s Difficult Example and Five examples from Yoshimura and

Kuh’s paper [50] are used as inputs.

104

5.6.1 Deutsch’s Difficult Example

The result of Deutsch’s Difficult Example has height of 41 and via

count of 186.

T o

&
&L% n

<
. o~ ~
= N ™ o~
IS
&

o ,6

19

8
22
16

15 18 14
12 17

29
9

1.
11

7 13 8 6
7 5 14 1

11 2423 25 20

26 11 26 11 27 28

i2 14
26

7
g

15
25

14
11

5 12
16_18 16
16

6
18

23 24

21

Figure 5.5: Layout Result of Deutsch’s Difficult Example

105

L 0¢ sy £¢

£ 0z 26 05

5

L

e g€

1£ €€

L7 2 4 4

61

i LE 0

(RN

s€ 6¢

9¢ s¢ PE

2 SR YA AN

)

5.5 (continued

igure

F

106

€9 &9 9r

vz 69

0z 2§ T SS

26 02 ¥9 ¥

55

0s

0¢

ot

0s 19

68 Op

6

65 6y 61

9

9

64

66 25

95

05 06 8 €2

25 0z 25 02

Ls

ve

6 LIb

e

)

Figure 5.5 (continued

107

v 29 LS

£9

gL €9

(74 i ¥9

89 €9 19

55 49 04

[V

£9

vs 9 09 0L

s 0 S9

v

Figure 5.5 (continued)

108

5.6.2 Yoshimura and Kuh’s Example 3a

The result of Yoshimura and Kuh’s Example 3a has height of 31 and

via count of 42.

21

LA

1415
44

13
24

12
25

11

10 8 23

10

9

18
18 20

4
14 22
19

28
13

14

19 17 21
19

16 17
15

Figure 5.6: Layout Result of Yoshimura and Kuh’s Example 3a

109

Le

ve €€

0L v¢ 6¢ 8

v &b

£ 2z Sl

34

oy 6¢

g€ Lz 8l

91

0z

e 8¢

s¢

AN

£ z€ 62

9¢ €£¢

se Sl

0¢

Le ce

o¢ ww cl

0s 82 62

)

Figure 5.6 (continued

110

5.6.3 Yoshimura and Kuh’s Example 3b

The result of Yoshimura and Kuh’s Example 3b has height of 38 and

via count of 69.

@ -
©o
5 ~
v 5 8
o -
N ° 1
i L+
M~
=7
wi &
0l = o
Yo I b
T
o o
I’ 2
=
b o]
L) 2%
© Ay
ol -
T P ~
. N
=
=
¢ N S
~ <
4
N =P
N
R S A
@
1= ~
~
™
b3] Al
- 4
N
Nk o
182
N 1=
Al o
Qi
-
—
<
S &
~ -
S 10
— N
. N
o~ 2N ™
<t1.
N &
A 3 SL-)
& 2o a
o ~
~
o A & =
T g
b2 N
A =
o™ A
<
) N
. i wg

Figure 5.7: Layout Result of Yoshimura and Kuh’s Example 3b

111

£y Sy S vp

PE OF 98 Ef

8¢

pe L& 9€ 9r

L

6C

ge L€

Zb IF 26 8¢

34 V4 2 74

ey 6¢

it 0F S 9F

oy

e S

Figure 5.7 (continued)

5.6.4 Yoshimura and Kuh’s Example 3c

The result of Yoshimura and Kuh’s Example 3¢ has height of 37 and

via count of 83.

19
15

20
33 20

19

31
32 34 28 37

17

11
16
30

6 14 8 18
25 23 9 20 17
29

10
22
27 33 23 28

1
3

10
16

8
25
17 4 26

24

7
13 21

2
23 18

27 23 20

21

Figure 5.8: Layout Result of Yoshimura and Kuh’s Example 3¢

113

s¢

by 2l

9% €€ 9¢ &

8y 5 €5 05 15

c§ €5 6r t§ £s

{4

44

9 E€F oy £E 6F

A

8L ¢er 8L 9r

L8 0¢ ae

wm&m%m

L% 4

6¢

134

44

ve 6¢

€

vZ £ 6 9 Ip

or

pe £¢ 9¢€ S¢€ ¢E

Figure 5.8 (continued)

5.6.5 Yoshimura and Kuh’s Example 4b

The result of Yoshimura

via count of 101.

10

11

13

10

!

11

Figure 5.9: Layout Result

114

and Kuh’s Example 4b has height of 33 and

29

28

27

17 20 13 20 7 23 24 25

16 5 18 17 5

5

of Yoshimura and Kuh’s Example 4b

15

19

17

115

9 6 66 Sb § &b cl 9¢ § SE& 9¢ 66 Le S€ e vE 68 6¢

o zb 82 ¥b 62 6 Ov b I 9 o Z6 26 8z

68 6c ¥e S gL _S€ vE V44 €e 0 2L 0§ LI 6 9¢ 61

ac 8¢ 26 8l 9€ g6 z6 62 z£ Ie SC 62 EL €l 82 €

5.9 (continued)

Figure

116

6V £S5 ¥S &b 05 ¥s

14

0s

05 I§s

6v 05 £5 6y

6y 05 Ly E§ ¢S

£S5 €5 €5 ¢l

g vl

b £S5

cs cl cl

6 8y 9y S¥

9C Ly Ol

zs

62 25 62

LS

iv Is b

9

4 4

8y €

4) 4

Le

Figure 5.9 (continued)

117

5.6.6 Yoshimura and Kuh’s Example 5

The result of Yoshimura and Kuh’s Example 5 has height of 33 and

via count of 94.

23

22
18 19 20

16

17
13 8 13 18 7

16

4

1

Figure 5.10: Layout Result of Yoshimura and Kuh’s Example 5

118

Ly 9 1 4 144 ey Iy bl 66 SE€ vl 8¢ ve

9 0S5 6F 8t vy EF SE 0v 66 9 D€ vE €6 22 S£ 9

¢ €L 9¢ e &C PE 9¢ EE€ E¢ 6 € PC IE 0c__oe 61 6c _4¢ 9¢ 9L

2£ SE [gl 8z 1z S 1L

)

Figure 5.10 (continued

119

69

85 LS LS 6V ¢9 €9 65 4§ ¢v 09 44 85 0S vs S5 €9

)

z9 09 18 9¢ £9 ey v9 6¢ 19 N T

Figure 5.10 (continued

95 Or z6 0b 9v €5 €9 2t Z6 Ip 86 66 Ib 9€ ¥S €S 28

1s veE 8€

Chapter 6

Area-Efficient Power Routing

6.1 Introduction

We have developed a new graph algorithm to route non-crossing VDD
and GND trees on one layer VLSI designs [14]. The algorithm attempts to
minimize the metal area of the trees under metal migration and voltage drop
constraints. Experimental results show that the power wire area is considerably

smaller than a previously developed method for single-layer routing.

Routing VDD and GND nets on one metal layer for arbitrarily-shaped
macrocells needs special consideration because the nets are not allowed to cross

each other and the width of the wire is dependent on the current flow.

In routing signal nets, minimizing the wire length is an appropriate
goal. because shorter wires have shorter signal delays. In case of VDD and
COND nets. however. it is not important to minimize the total wire length.
since no signals run through them. Instead. wire area should be minimized. so
that either the total chip area can be reduced, or the iree area can be used for

other purposes such as signal wire routing, depending on placement model.

This paper describes a method for routing non-crossing VDD and
GND trees on one laver which tries to minimize the chip area devoted to power
routing under metal migration and voltage drop constraints. The metal mi-
gration has to be prevented by having wide enough metal wires. Besides, the
voltage drop has to be kept small. because a large voltage drop between a pad

and a macrocell decreases switching speed and noise margin. The algorithm

120

121

also takes the width of channels into consideration, so that if a channel is too
congested to allow a wire to go through, the wire avoids the congested channel

and chooses other channels.

6.2 Model

We deal with VLSI designs in which macrocells are rectangles with no
restriction on their size. We assume that all macrocells are already placed, and
the maximum power consumption and allowed voltage drop of each macrocell
are given. VDD and GND pins can be placed anywhere on the periphery of a
macrocell. Positions of VDD and GND pads from which power is supplied are
defined on the periphery of the chip. Chips are allowed to have any number of
VDD pads and GND pads.

6.3 Algorithm Overview

The objective is to route VDD and GND nets on one layer with-
out crossing with minimum area under metal migration and voltage drop con-
straints. We assume that these nets are trees whose roots are pads and whose
leaves are macrocell pins. We will give an overview of the algorithm here and

describe the details of routing without crossing in the next section.

From input as described in the previous section (top of Figure 6.1),
we first construct a channel intersection graph (middle of Figure 6.1). Vertices
are placed at the corners of every macrocell, and vertical and horizontal edges
connect these vertices. In cases where a vertex has degree 4, it is split into two
separate vertices of degree 3 connected by an edge of 0 length. This simplifies
the process of creating an auxiliary graph described in the next section. Next,

pins and pads are connected to the nearest edges by adding new edges and new

122

Input
[|Macroceis | | Macrocel2
sOmW 100mW
@ I =]
]
[D] Macrocelld] Macrocal =
7] 40mW 130mW
o il

Channel Intersection Graph

[0 > O
O n
5l \ 51 J)@
I
= :
= &l
O
& U

o}
o

o2 1]

Figure 6.1: Creation of a Routing Graph

vertices (bottom of Figure 6.1). We call the result a routing graph. There are
6 types of vertex as shown in Figure 6.2. All vertices for pins and pads have

degree 1, while other vertices have degree either 2 or 3.

Each edge is assigned two weights representing its length and its ca-
pacity. The length is used for calculating path lengths, and the capacity 1s
used for deciding whether an edge has enough room for a wire to go through.
We assume that any number of VDD and GND wires can go through an edge.

For this purpose, a linked list is adopted as the data structure representing an

123

1 GND pin
- VDD pin
: GND pad
1 VDD pad

: vertex with degree 2

: vertex with degree 3

S RELIL

Figure 6.2: 6 Vertex Types

edge. A horizontal edge list is ordered from the bottom wire to the top wire,

and a vertical edge list from the left wire to the right wire.

After the construction of the graph, we start growing VDD and GND
trees by connecting macrocells one by one to trees under construction. Macro-
cells are sorted by their power consumption. First, the pins of the most power-
consuming macrocell are connected to the pads. Subsequent macrocells are
routed in decreasing order of power consumption. This is a greedy approach
based on the notion that it is better for more power-consuming macrocells to
have shorter paths, since more power-consuming macrocells need wider wires
in order to be supplied with more current. At earlier stages in the routing,
paths can generally be shorter, since they are blocked by fewer wires that are
already routed. This results in a smaller area occupied by a wire. Pins of the
second macrocell (and later macrocells considered) are connected to non-root
vertices of the net (or possibly to an unconnected pad when there is more than
one VDD or GND pad), making the constructed net a tree whose leaves are
pins of macrocells and whose root is a pad. When there is more than one VDD
or GND pad, the algorithm may create a forest of multiple trees. The wire area

becomes even smaller than when there is only one VDD pad and one GND pad

124

because the search can find a shorter path to a power source. This multiple

pad method eases the current load of each pad.

When macrocell M is routed, it makes a difference whether a VDD
pin of M is routed first or a GND pin of M is routed first, because if the GND
wire is routed first, VDD search may be blocked by the GND wire, or vice

versa. So both are tried and the routing with shorter wire length is adopted.

6.4 Routing without Crossing

When each macrocell pin is connected to a tree, we have to find a non-
crossing shortest path from the pin to a vertex in the existing tree. A modified
version of a standard shortest path algorithm [10] is used for this purpose.
For each macrocell, a VDD pin and a GND pin are connected separately to
their respective trees. We will describe the routing of the VDD wire of each

macrocell. Routing of the GND wire is similar.

The shortest path algorithm finds a shortest path from one vertex to
another of a given graph. However, in the power routing problem, VDD and
GND nets have to be routed, and there should be no crossings of nets. To deal
with this, an auxiliary graph is constructed each time a new macrocell pin is
to be routed. The auxiliary graph shows the paths in the routing graph which
are not blocked by already-routed wires. The auxiliary graph is created based
on rules shown in Figure 6.3. If there are no wires on the edge of a routing

Vertex with degree 1 Vertex with degree 3

Routing Graph Auxiliary Graph

Routing Graph , Auxiliary Graph

E— o—
E bo S
Vertex with degree 2

Routing Graph Auxiliary Graph

=
-

-1

T

pumms | Already-routed wire

Figure 6.3: Creation of Auxiliary Graph from Routing Graph

126

graph, only one corresponding edge of an auxiliary graph is created. However,
if there are already routed wires on the edge of a routing graph, two edges of
an auxiliary graph are created: one edge running along one side of the wires,
and the other running along the other side. An example of an auxiliary graph

is shown in Figure 6.4.

Routing Graph with Macroceil1 routed

:
g
—~

Auxiliary Graph

o)

Figure 6.4: Example of an Auxiliary Graph

If this auxiliary graph is used, it is guaranteed that a VDD path
never crosses GND trees, because no edges of the auxiliary graph cross the

already-routed wires.

The shortest path algorithm is performed on this auxiliary graph.
The VDD search starts at a VDD pin of a macrocell and terminates when it

encounters a VDD pad or a vertex which is part of a VDD tree.

Each time a path visits a vertex, it has to go through an edge with
a specified capacity and length. The capacity is the width of the free area
inside a channel available for routing. When a path goes through an edge, the
capacity of the edge is decremented by the width of the path. Initially the
width of the path is calculated based on a metal migration constraint. Since
the search starts from a macrocell whose maximum power consumption is Pz,

the maximum current [, 18

Proz
]maz = mA ’
Viodd (mA)

where V44 is a power supply voltage. If an allowed current density to prevent

metal migration is D (L”f), the width Wiigration 18

Ima.’t___ Pma$ ()
D DV)

Wmigratz'on =

If (the edge capacity - Wnigration) becomes negative, the edge capacity is in-
sufficient for routing the path, so the path through this edge is abandoned and

the search continues through other edges.

When a VDD path reaches a vertex X of a VDD tree, a path length
L from a VDD pin of the macrocell to a VDD pad is obtained. A voltage drop

Virop from the pad to the pin can be calculated as follows.

v I Puw L
drop = fmaz " P Wdrap B %dd P W/Yalmp7

where p and Wy,,, are sheet resista,nce(-g) and wire width which causes Vy,op
voltage drop, respectively. Vo, must be smaller than an allowed voltage drop
Vattowea for the macrocell (Virop < Vallowed)- S0

p- Pmaa: : L

Wdro >
D b
Vedd * Vailowed

128

and the minimum Wy, 1s

MinWypop = _f__f_’,”_‘if_!;_

Vadd * Vallowed

If Winigration 18 smaller than M inWarep, the width of wires between the VDD
pin and the vertex X has to be increased to MinWyrop. If this thickening fails
due to a too narrow channel, the search starts again from the VDD pin with
width MinWy,,,. The width of wires between the vertex X and the VDD pad
also has to be increased by maz(Wiigration, M inWiyrop). There are cases when
this thickening fails, or the search never reaches a VDD pad or a tree owing
to a too narrow channel. This is because macrocells are not properly placed.
The only solution, then, is to try again with a different macrocell placement

with wider channels. The overall routing algorithm is shown in pseudocode in

Figure 6.5, and an algorithm to find a shortest path is shown in Figure 6.6.

procedure power.route

begin
sort modules by their maximum power consumption
number modules such that Power(module.1) >
Power(module2) >...> Power(module-n)
fori=1ton
begin
find shortest_path(VDD pin of moduled, Wonigration)
to VDD tree (or to VDD pad)
(* pathypp is the found path *)
find_shortest-path(GND pin of moduled, Wonigration)
to GND tree (or to GND pad)
(* pathenp is the found path *)
clear pathgnp and pathvpp
find_shortest-path(GND pin of moduled, Wonigration)
to GND tree (or to GND pad)
(* pathgyp is the found path *)
find_shortest_path(VDD pin of moduled, Wiigration)
to VDD tree (or to VDD pad)
(* pathypp is the found path *)
if pathgyp and pathypp have shorter wire length
than pathgyp and pathypp
then
adopt PathVDD and pathGND
else
adopt pathy pp and pathonp
end
end

Figure 6.5: Overall Power Routing Algorithm

130

procedure find_shortest_path(V,W)

begin
create Auxiliary Graph from Routing Graph based
on rules in Figure 6.3
(* each vertex of Auxiliary Graph has a label which is either
“permanent” or “temporary” and a weight called “distance
set the label of a vertex (of Auxiliary Graph that corresponds to
V of Routing Graph) to “permanent” and “distance” to 0
set labels of all other vertices of Auxiliary Graph to “temporary”
and “distance” to co
repeat
find a “temporary” vertex; whose “distance” is smallest
change the label of verter; to “permanent”
for all adjacent vertexz; of vertez; begin
if connection from vertez; to vertex; has
enough room for the path of width W to go through then
“distance” of verter; = min(“distance” of vertez;,
(“distance” of vertez; + length between vertez; and vertez;))

) *)

end
until (it finds a pad or the vertex of a tree)
or (a vertex whose label is “temporary” cannot be found)
if it found a pad or the vertex X of a tree begin
if MinWy,., > W begin
thicken wires from V to X by (MinWyrop — W)
if the thickening fails then find_shortest_path(V,MinWy:o,)
end else begin
thicken wires from X to a pad by W
if the thickening succeeds then the path is recorded
else try with wider channel placement
end
end else try with wider channel placement
end

Figure 6.6: Algorithm to Find a Shortest Path from a Macrocell to a Power
Tree

131

6.5 Time Complexity and Experimental Results

Since the shortest path algorithm is performed on an auxiliary graph
which is a planar graph [2], the time complexity for finding a path from each
pin is O(m), where m is the number of vertices of the auxiliary graph. Each
macrocell has two pins, each of which has at most two vertices of auxiliary
graph. Each macrocell also has four corners and two vertices connecting pins
to edges, each of which has at most three vertices of auxiliary graph. So one
macrocell has at most 2 * 2 + (4 + 2) * 3 = 22 vertices. So m < 22n, where
n is the number of macrocells, and the time complexity for each macrocell is
O(n). Since there are n macrocells to be connected, the total time complexity
is O(n?). Experimental results of routing time for 10 to 100 macrocells are

shown in Figure 6.7. The run time was measured about n?9% which is close to

O(n?).

It would be best to implement all the existing algorithms to compare
their performance in terms of wire area. However, it is impossible to do it
because the model is different in each algorithm. So only one different method
was compared with ours. This is a method tried in [36], which sorts pins
so that a pin which is farthest from a pad is connected first. This “farthest
pin first” approach is based on a guess that the farthest pin is the hardest to
connect, so that it is better to route it before many wires block it. Experimental
results (Figure 6.8), however, show that the area obtained by “the farthest pin
first” approach is about 20% larger than that of “the most power-consuming
macrocell first” approach, showing that our method is clearly superior in terms

of wire area. An example of 15 macrocells is shown in Figure 6.9.

132

Time (sec)

J
Each point is an average of three different macrocell placements
900

800
700 |
800 .
500 _
400
300
200

100,

1 T T T 1T 1
0 10 20 30 40 5 60 70 8 9 100

of macrocelis

Figure 6.7: Run Time

F : Area by ‘the farthest pin first method

133

F/P P : Area by "the most power-consuming macrocell first’ method
Y-
!)
1.6
1.5) o
O
1.4] O
13 © o
o o]
o
1.2 ©
2 o o
O o}
11— o o}
o
1.0 s 5
o] O
08
0.8 ; o
oY
I i l ! l i ! i |
0 10 200 30 40 50 60 70 °¢ 100

of macrocelis

Figure 6.8: Area by “the Farthest Pin First” Method is about 20 Percent Larger
than Area by “the Most Power-consuming Macrocell First” Method

134

i i | i
T —————
[]
= g l
r E |
-
il
s
=1
B
r
=}
O et -
B H
M
C-
= a
1 {‘E
— .
H| H -
5] | f.’lll
xi-lj
I
i

Figure 6.9: Example of Power Routing for 15 Macrocells

Chapter 7

Conclusion

We have discussed new methods of channel routing and power routing

for VLSI layout.

Our topological channel router finds solutions with small height and
small number of vias. The channel router first determines the topological re-
lationship among nets before they are mapped onto a channel. A topological
graph which contains the information of the topological relationship among
nets is then mapped to a channel. The channel is compacted by a compaction
method called shaking with horizontal make-space. Wires in the channel are
placed using an interleaving model. in which there is no parallel overlap of

wires. thus reducing the cross talk between signals.

The analysis of the topological relationship among nets has the ad-
vantage that a solution with a small number of vias can be found. However.
the topology is determined without using geometric information. We modified
the topological channel router to take the geometric information into consider-
ation. As a result, we were able to obtain results with even further reduction

of height and via count.

As new fabrication technologies enable the use of more than two layers
for metal wires. topological analysis will be ever more important to achieve high
chip performance. The analysis of topological relationships among nets before
mapping them is a promising approach not only for channel routing as discussed

‘0 this dissertation. but also for switchbox routing [31].

135

136

The second router is concerned with power router for VLSI. It finds
non-crossing VDD and GND trees on one layer using small metal area under
the constraints of metal migration and voltage drop. Experimental results show
that the power wire area is considerably smaller than a previously developed
method for single-layer routing. This algorithm has several advantages over
previous approaches. There is no restriction on pin and pad positions, so
that macrocells with arbitrary pin positions can be handled with arbitrarily
positioned pads. More than one VDD pad and more than one GND pad are
allowed, resulting in a forest of multiple trees, which eases the current load of

each pad and also results in even smaller wire area than just one VDD pad and

one GND pad.

Finding a small area power wire routing solution by hand will be
virtually impossible as the number of macrocells becomes large. As modular
design approaches become more common in the future, there will be a greater
demand to automatically route power wires for hundreds of macrocells. This
area-efficient routing will be useful in such a case, and it will become especially
important to minimize the area when wide wires need to be used to support

large current requirements.

BIBLIOGRAPHY

[1] A. Aho, M. R. Garey, and F. K. Hwang, “Rectilinear Steiner Trees : Effi-

(6]

cient Special Case Algorithms”, Networks, Vol. 7, pp. 37-58, 1977.

Ravindra K. Ahuja, Kurt Mehlhorn, James B. Orlin, and Robert E. Tar-
jan, “Faster Algorithms for the Shortest Path Problem”, Journal of the

Association for Computing Machinery, Vol. 37, No. 2, pp. 213-223, April
1990. pp. 213-223, .

Sheldon B. Akers. James M. Geyer, and Donald L. Roberts, “IC Mask
Layout with a Single Conductor Layer”, Proceedings of 7th Design Au-

tomation Workshop, pp. 7-16. 1970.

M. Breuer. “Min-Cut Placement”, Journal of Design Automation and

Fault Tolerant Computing, pp. 343-362, 1977.

Michael Burstein. Richard Pelavin. “Hierarchical Channel Router”, Pro-

ceedings of 20th Design Automation Conference, pp. 591-597. 1933.

Ruen-Wu Chen. Yoji Kajitani. and Shu-Park Chan. *A Graph-Theoretic
Via Minimization Algorithm for Two-Layer Printed Circuit Boards”, [EEE
Transactions on Circuits and Systems. Vol. CAS-30. No. 5, pp. 284-299.
1983.

Chung-Kuan Cheng and David N. Deutsch, “Improved Channel Routing
by Via Minimization and Shiiting”, Proceedings of 25th Design Automa-

tion Conference. pp. 677-680. 1988.

137

(8]

[14]

[16]

138

Y. E. Cho, A. J. Korenjak, and D. E. Stockton, “FLOSS : An Approach to
Automated Layout for High Volume Designs”, Proceedings of 14th Design
Automation Conference, pp. 138-141, 1977.

S. Chowdhury, “An Automated Design
of Minimum-Area IC Power/Ground Nets”, Proceedings of 24th Design
Automation Conference, pp. 223-229, 1987.

Narsingh Deo, A Graph Theory with Applications to Engineering and
Computer Science, Prentice-Hall, Inc., pp. 290-297, 1974.

David N. Deutsch, “A ‘Dogleg’ Channel Router”, Proceedings of 13th
Design Automation Conference, pp. 425-433, 1976.

David N. Deutsch, “Compacted Channel Routing”, Proceedings of IEEE
International Conference on Computer Aided Design, pp. 223-225, 1985.

Maurice Hanan, Peter K. Wolff, Sr., and Barbara J. Agule, “Some Exper-
imental Results on Placement Techniques”, Proceedings of 13th Design

Automation Conference, pp. 214-224, 1976.

Shinichiro Haruyama and Don Fussell, “A New Area-efficient Power Rout-
ing Algorithm for VLSI Layout”, Proceedings of IEEE International Con-
ference on Computer Aided Design, pp. 38-41, 1987.

Shinichiro Haruyama, D. F. Wong, and Don Fussell, “Topological Channel
Routing”, Proceedings of IEEE International Conference on Computer

Aided Design, pp. 406-409, 1938.

Shinichiro Haruyama, D. F. Wong, and Don Fussell, “Topological Rout-
ing Using Geometric Information”, To Appear in Proceedings of IEEE

International Conference on Computer Aided Design, 1990.

139

[17] Akihiro Hashimoto, James Stevens, “Wire Routing by Optimizing Channel
Assignment within Large Apertures”, Proceedings of 8th Design Automa-
tion Workshop, pp. 155-169, 1971.

[18] Chi-Ping Hsu, “Minimum Via Topological Routing”, IEEE Transactions
on Computer-Aided Design, Vol. CAD-2, pp. 235-246, 1983.

[19] Chi-Ping Hsu, “Minimum Via Two-layer Two-dimensional Routing”, Pro-
ceedings of IEEE International Conference on Computer Aided Design,
pp. 119-120, 1983.

[20] Chi-Ping Hsu, Signal Routing in Integrated Circuit Layout, UMI Research
Press, 1986.

[21] Min-Yu Hsueh, “Symbolic Layout and Compaction of Integrated Circuits”,

Ph.D. Dissertation, University of California, Berkeley, California, 1980.

[22] David Lawrence Johannsen, “Silicon Compilation”, Ph.D. Dissertation,
Technical Report #4530, California Institute of Technology, Pasadena,
California, 1981.

(23] R. M. Karp, “Reducibility among combinatorial problems”, Complexity of
Computer Computations, R. E. Miller and J. W. Thatcher, Eds., Plenum
Press, New York, pp. 85-103, 1972.

[24] B. Kernighan and S. Lin, “An Efficient Procedure for Partitioning
Graphs”, Bell System Technical Journal, pp. 291-307, 1970.

[25] S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization by Simulated
Annealing”, Science, Vol. 220, No. 4598, pp. 671-680, May 13, 1983.

[26]

33]

[34]

140

Margaret Lie and Chi-Song Horng, “A Bus Router for IC Layout”, Pro-
ceedings of 19th Design Automation Conference, pp. 129-132, 1982.

Malgorzata Marek-Sadowska, “An Unconstrained Topological Via Min-
imization Problem for Two-Layer Routing”, IEEE Transactions on

Computer-Aided Design, Vol. CAD-3, No. 3, pp. 184-190, July 1984.

C. A. Mead and L. A. Conway , Introduction to VLSI Systems, Addison
Wesley, 1980.

Andrew S. Moulton, “Laying the Power and Ground Wires on a VLSI
Chip”, Proceedings of 20th Design Automation Conference, pp. 754-755,
1983.

N. J. Naclerio, S. Masuda, and K. Nakajima, “Via Minimization for Grid-
less Layouts”, Proceedings of 24th Design Automation Conference, pp.

159-164, 1987.

R. Pyke, “A Gridless Switchbox Router”, Proceedings of Custom Inte-
grated Circuits Conference, pp. 629-632, 1987.

Neil R. Quinn, Jr. and Melvin A. Breuer , “A Forced Directed Component

Placement Procedure for Printed Circuit Boards”, IEEE Transactions on

Circuits and Systems, Vol. CAS-26, No. 6, pp. 377-388, 1979.

Ronald L. Rivest, Charles M. Fiduccia, “A ‘Greedy’ Channel Router”,
Proceedings of 19th Design Automation Conference, pp. 418-424, 1982.

H-J. Rothermel and D. A. Mlynski, “Computation of Power Supply Nets
in VLSI Layout”, Proceedings of 18th Design Automation Conference, pp-
37-42, 1981.

[35]

[38]

[41]

[42]

141

J. Royle, M. Palczewski, H. VerHeyen, N. Naccache, and J. Soukup, “Ge-
ometrical Compaction in One Dimension for Channel Routing”, Proceed-

ings of 24th Design Automation Conference, pp. 140-145, 1987.

David W. Russell, “Hierarchical Routing of Single Layer Metal Trees in
Compiled VLSI”, IEEE International Conference on Computer-Aided De-
sign, pp. 270-272, 1985.

A. Sangiovanni-Vincentelli, M. Santomauro, and J. Reed, “A New Gridless
Channel Router : Yet Another Channel Router the Second (YACR-II)”,
Proceedings of IEEE International Conference on Computer Aided Design,
pp. 72-75, 1984.

Majid Sarrafzadeh and D. T. Lee , “A New Approach to Topological Via
Minimization”, IEEE Transactions on Computer-Aided Design, Vol. CAD-
8, No. 8, pp. 890-900, August 1989.

Sarma Sastry and Alice Parker, “The Complexity of Two-dimensional
Compaction of VLSI Layouts”, Proceedings of IEEE International Con-
ference on Circuits and Computers, pp. 402-406, 1982.

Carl Sechen and Algerto Sangiovanni-Vincentelli, “The TimberWolf Place-
ment and Routing Package”, Proceedings of Custom Integrated Circuits

Conference, pp. 522-527, 1984.
Robert Sedgewick, Algorithms, Addison Wesley, 1983.

Hyunchul Shin, Alberto L. Sangiovanni-Vincentelli, and Carlo H. Séquin,
“Two-Dimensional Compaction by Zone Refining”, Proceedings of 23rd

Design Automation Conference, pp. 115-122, 1986.

[43]

[44]

[45]

[47]

142

Hyunchul Shin, Alberto L. Sangiovanni-Vincentelli, and Carlo H. Séquin,
«Two-Dimensional Module Compactor Based on ‘Zone-Refining’ ”, Pro-
ceedings of International Conference on Computer Design, pp. 201-208,

1987.

Hyunchul Shin, Alberto L. Sangiovanni-Vincentelli, and Carlo H. Séquin,
« «Zone-Refining’ Techniques for IC Layout Compaction”, IEEE Transac-
tions on Computer-Aided Design, Vol. CAD-9, No. 2, pp. 167-179, Febru-
ary 1990.

Kenneth J. Supowit, “Finding a Maximum Planar Subset of a Set of Nets
in a Channel”, IEEE Transactions on Computer-Aided Design, Vol. CAD-
6, No. 1, pp. 93-94, January 1987.

Khe-Sing The, D. F. Wong, and Jinsheng Cong, “Via Minimization by
Layout Modification”, Proceedings of 26th Design Automation Confer-
ence, pp- 799-802, 1989.

Makoto Watanabe, Kunihiro Asada, Kenji Kaji, and Tatsuo Ohtsuki,
VLSI Design I : Circuits and Layout, Iwanami Koza Micro Electronics,

Iwanami Shoten, 1985.

N. Weste, “Virtual Grid Symbolic Layout”, Proceedings of 18th Design

Automation Conference, pp. 225-233, 1981.

D. F. Wong, H. W. Leong, and C. L. Liu, Simulated Annealing for VLSI
Design, Kluwer Academic Publishers, 1988.

Takeshi Yoshimura, Ernest S. Kuh, “Efficient Algorithms for Channel
Routing”, IEEE Transactions on Computer-Aided Design, Vol. CAD-1,
pp- 25-35, January 1982.

143

[51] Xiao-Ming Xiong and Ernest S. Kuh, “The Scan Line Approach to Power
and Ground Routing”, IEEE International Conference on Computer-Aided
Design, pp. 6-9, 1986.

