
transaction may not precede all other operations of the subtransaction) in the L

r

model. If there

are no integrity constraints between local and global data items, and global transactions have

�xed-structure, then S is strongly correct.

Proof We present the outline of the proof. In the L

r

model, since global transactions only

read and write global data items, only global transactions write global data items, by Corollary 3,

the global conjunct is preserved. Further, local transactions can be shown to read consistent

global data items using Lemma 15 (since S can easily be modi�ed to a schedule containing

a single local transaction). Local conjuncts can be shown to be preserved using Corollary 4.

Hence proved. 2

Corollary 7 Let S be a G2LPL schedule (in which the write on ticket

i

by a global sub-

transaction may not precede all other operations of the subtransaction) in the G

rw

L

r

model. If

there are no integrity constraints between local and global data items, and both local and global

transactions have �xed-structure, then S is strongly correct.

Proof By induction, it can be shown that for an arbitrary operation p 2 S,

1. for all lt 2 �

L

, if brelease(lt; p) and lt executes at a 2PL site, then read(lt

GD

) is consistent.

2. for all lt 2 �

L

, if lt executes at a non-2PL site, then read(before(lt

GD

; p; S)) is consistent.

3. for all gt 2 �

G

, read(before(gt; p; S)) is consistent.

Using Lemma 15, 1 and 2 can be shown to be true. The proof of 3 is similar to Lemma 19 (cases

1 and 2). read(before(gt; p; S)) can be trivially shown to be consistent using Lemma 13 in case

p 2 LD

i

, for some i, i = m+ 1;m+ 2; : : : ;m+ q (since both local and global transactions have

�xed-structure). 2

53

Proof: Let DS

1

be a consistent database state such that legal(DS

1

; S). Let fDS

1

gSfDS

2

g.

In order to show that S is strongly correct, we need to show DS

2

to be consistent. Since no

integrity constraints are present between local and global data items, the integrity constraints

can be viewed as IC = L

1

^ L

2

^ : : :^L

m

^ L

m+1

^ L

m+2

^L

m+q

^G, where L

i

is a conjunct

de�ned over data items in LD

i

and G is a conjunct de�ned over data items in GD. As a result

of the model LD

i

\ LD

j

= ; and LD

i

\GD = ;.

We now show that G is preserved by S. Since only global transactions write on global data

items, �

w

(GD;S) � �

G

. Since S

�

G

is serializable, (S

�

G

)

GD

is serializable. Choosing p to be

the last operation in S, by Lemma 20, read(gt) is consistent, for all global transactions gt. As

read(t) is consistent, read(t

D�GD

) is also consistent, for all t 2 �

w

(GD;S) By Lemma 3, since

DS

1

is consistent, DS

GD

1

is consistent. Hence, by Corollary 4, since no integrity constraints are

present between local and global data items, DS

GD

2

is consistent.

We now show that both global and local transaction executions preserve L

i

, for all i, i =

1; 2; : : : ;m+q. Since both local and global transactions write on local data items, �

w

(LD

i

; S) �

� . Since S

�

= S and S

D

i

is serializable, (S

�

)

LD

i

is serializable. Let t

1

; t

2

; : : : ; t

n

be a serializa-

tion order of transactions on (S

�

)

LD

i

. Choosing p to be the last operation in S, by Lemma 20,

read(lt

GD

i

) is consistent, for all local transactions lt. As a result, if t

j

2 �

G

, then since read(t

j

)

is consistent, read(t

D�LD

i

j

) is also consistent. If, on the other hand, t

j

2 �

L

, then since local

transactions executing at site s

i

access only data items at site s

i

and read(t

GD

i

j

) is consis-

tent, read(t

D�LD

i

j

) is also consistent. Thus, read(t

D�LD

i

j

), for all j = 1; 2; : : : ; n is consistent.

Since DS

1

is consistent, by Lemma 3, DS

LD

i

1

is consistent. Thus, by Corollary 4, since no

integrity constraints are present between local and global data items, DS

LD

i

2

is consistent and

state(t; LD

i

; S;DS

1

), t 2 �

L

is consistent. Further, since t

GD

i

is consistent, for all t 2 �

L

, no

integrity constraints are present between local and global data items, and local transactions

executing at site s

i

only access data items at site s

i

, read(t) is consistent, for all t 2 �

L

.

Thus DS

GD

2

and DS

LD

i

2

, for all i, i = 1; 2; : : : ;m + q, are consistent. Hence, by Lemma 3,

DS

2

is consistent. Thus, S is strongly correct. 2

Corollary 6 Let S be a G2LPL schedule (in which the write on ticket

i

by a global sub-

52

Case 2: t

k

is a local transaction executing at site s

i

. Since, read(t

k

) � state(t

k

; D

i

; S;DS

1

),

and by IH, state(t

k

; D

i

; S;DS) is consistent, by Lemma 4, state(t

k+1

; D

i

; S;DS) is consistent.

Case 3: t

k

is a global transaction. As mentioned earlier, t

k

cannot execute at site s

i

. Thus,

state(t

k+1

; D

i

; S;DS) = state(t

k

; D

i

; S;DS), which is consistent.

By a similar argument we can prove that state(gt;D

i

; S;DS) is consistent. Thus, since

read(before(gt

LD

i

; p; S)) � state(gt;D

i

; S;DS), and no integrity constraints are present be-

tween local and global data items, by IH, Lread(before(gt

D1

; p; S)) [read(before(gt

D2

; p; S))

is consistent. 2

Lemma 20 Let S be a G2LPL schedule in the G

rw

L

r

model, and p be an arbitrary oper-

ation in S. If there are no integrity constraints between local and global data items, and global

transaction programs have �xed-structure, then

� for all lt 2 �

L

, if brelease(lt; p) and lt executes at a 2PL site, then read(lt

GD

) is consistent.

� for all lt 2 �

L

, if lt executes at a non-2PL site, then read(before(lt

GD

; p; S)) is consistent.

� for all gt 2 �

G

, Lread(before(gt

D1

; p; S)) [read(before(gt

D2

; p; S)) is consistent.

Proof: Let DS be a consistent database state such that legal(DS; S). The proof is by

induction on depth(p).

Basis (depth(p) = 0): Trivial, Since DS

d

0

is consistent, for all d

0

2 D.

Induction: Assume true for depth(p) = k. We need to show the result holds for depth(p) = k+1.

Let p 2 lt. If lt executes at a 2PL site and brelease(lt; p) is not true, then by IH, the lemma

holds. If lt executes at a non-2PL site or if lt executes at a 2PL site and brelease(lt; p) is

true then by IH, and Lemma 17, the lemma is true. If p 2 gt , then by Lemma 19 and IH,

Lread(before(gt

D1

; p; S)) [read(before(gt

D2

; p; S)) is consistent. Hence proved. 2

Theorem 10 Let S be a G2LPL schedule in the G

rw

L

r

model. If there are no integrity

constraints between local and global data items, and global transactions have �xed-structure,

then S is strongly correct.

51

Lread(before(gt

LD

i

; p; S)) � state(gt; LD

i

�

S

r

k=1

WS(after(t

k

; p; S))�

S

t2C(gt;LD

i

;p;S)

WS(t); DS; S).

Since Lread(before(gt

D1

; p

0

; S)) [read(before(gt

D2

; p; S)) is consistent, and no integrity con-

straints are present between local and global data items, Lread(before(gt

D1

; p; S))[read(gt

D2

; p; S))

is consistent.

Case 3: entity(p) 2 LD

i

, for some i, i = m+ 1;m+ 2; : : : ;m+ q (s

i

is a non-2PL site).

Since no integrity constraints are present between local and global data items, the integrity

constraint can be viewed as IC = C

0

^ C

00

, where C

0

and C

00

are de�ned over data items in

D

0

= D2 [

S

m

i=1

GD

i

, and D

00

=

S

m

i=1

LD

i

respectively, and D

0

\D

00

= ;. Let �

0

= �

w

(D

0

; S)

(thus, �

0

does not contain any local transaction which executes a 2PL site). Since global transac-

tions are serialized in the same order at the non-2PL sites due to forced conicts and S

�

G

is seri-

alizable, S

�

0

, and thus, (S

�

0

)

D

0

is serializable. Let a serialization order of transactions in (S

�

0

)

D

0

be t

1

; t

2

; : : : ; t

r

; t

r+1

; t

r+2

; : : : ; t

r+s

; gt; t

r+s+1

; t

r+s+2

; : : : ; t

n

, such that t

r

is the last global trans-

action that executes at site s

i

and is serialized before gt in (S

�

0

)

D

0

. Since S is a G2LPL schedule,

t

r

must write on ticket

i

before gt writes on ticket

i

. Further, since gt's write operation on ticket

i

precedes p, t

r

releases a global lock before p. Since t

r

releases a global lock before p, every

t

0

2 (ft

1

; t

2

; : : : ; t

r

g \ �

G

) also releases a global lock before p. As a result, since S is a G2LPL

schedule, all the global transactions in ft

1

; t

2

; : : : ; t

r

g must have obtained their local locks at the

2PL sites before p. Thus, by the hypothesis of the lemma, read(t

D

00

j

) � Lread(before(t

D

1

j

; p; S)),

is consistent, for all j, j = 1; 2; : : : ; r, t

j

2 �

G

. For all t

j

2 �

L

, j = 1; 2; : : : ; r, read(t

D

00

j

) is triv-

ially consistent, since t

j

does not access data items at any of the 2PL sites. Hence, by Corollary 4,

since read(t

D

00

j

) is consistent, for all j, j = 1; 2; : : : ; r, and D

0

\D

00

= ;, state(t

r+1

; D

0

; S;DS)

is consistent. As D

i

� D

0

, state(t

r+1

; D

i

; S;DS) is consistent. Since t

r

is the last global trans-

action that executes at site s

i

, transactions t

r+1

; t

r+2

; : : : ; t

r+s

are either local transactions or

global transactions that do not execute at site s

i

. We claim that for all j, j = r + 1; : : : ; r + s,

state(t

j

; D

i

; S;DS) is consistent. The proof is by induction. The basis (j = r + 1), as shown

earlier is true. Assume the claim is true for j = k, for some k, k = r + 1; r + 2; : : : ; r + s � 1.

In order to show that state(t

k+1

; D

i

; S;DS) is consistent, we need to consider the following cases.

Case 1: t

k

is a local transaction that executes at a non-2PL site di�erent from s

i

. In this

case, t

k

does not access data items in D

i

and thus, state(t

k+1

; D

i

; S;DS) is consistent.

50

Lemma 19 Let S be a G2LPL schedule in the G

rw

L

r

model. Let no integrity constraints

be present between local and global data items, and global transactions have �xed-structure. Let

p be an arbitrary operation belonging to gt, where gt 2 �

G

. For every operation p

0

2 S, such

that p

0

�

S

p, if

� for all lt 2 �

L

, if brelease(lt; p

0

) and lt executes at a 2PL site, then read(lt

GD

) is consistent.

� for all lt 2 �

L

, if lt executes at a non-2PL site, then read(before(lt

GD

; p

0

; S)) is consistent.

� for all gt

0

2 �

G

, Lread(before(gt

0D1

; p

0

; S)) [read(before(gt

0D2

; p

0

; S)) is consistent.

then, Lread(before(gt

D1

; p; S)) [read(before(gt

D2

; p; S)) is consistent.

Proof: Let DS be a consistent database state such that legal(DS; S). Since global trans-

actions access both local and global data items, we need to consider the following cases.

Case 1: entity(p) 2 GD.

Since only global transactions write global data items, �

w

(d; S) � �

G

. Since S

�

G

is serializ-

able, (S

�

G

)

GD

is serializable. Let gt

1

; : : : ; gt

r

; gt; gt

r+1

; : : : ; gt

n

be a serialization order of global

transactions in (S

�

G

)

GD

. By Lemma 13, since global transactions have �xed-structure and

read(before(gt

0

; p

0

; S)) is consistent, for all gt

0

2 �

G

and p

0

�

S

p, state(gt;GD�

S

r

j=1

WS(after(gt

GD

; p; S)); S;DS),

is consistent. Using lemmas 8 and 9, it can be shown that, (LRS(before(gt

GD

; p; S))[RS(before(gt

GD

; p; S))) �

GD�

S

r

j=1

WS(after(gt

GD

; p; S)): Thus, Lread(before(gt

GD

; p; S))[read(before(gt

GD

; p; S))

is consistent. Since no integrity constraints are present between local and global data items, by

IH, Lread(before(gt

D1

; p; S)) [read(before(gt

D2

; p; S)) is consistent. Hence proved.

Case 2: entity(p) 2 LD

i

, for some i, i = 1; 2; : : : ;m (s

i

is a 2PL site).

Since s

i

is a 2PL site, S

D

i

is serializable. Let t

1

; t

2

; : : : ; t

r

; gt; t

r+1

; : : : ; t

n

be a serialization order

of transactions in S

LD

i

. Since p 2 gt, from the statement of the lemma we can conclude that for

all k, k = 1; 2; : : : ; r, such that t

k

2 �

G

, read(before(t

k

; p; S)) � (Lread(before(gt

D1

; p; S)) [

read(before(gt

D2

; p; S))) is consistent. Also, it is given that for all k, k = 1; 2; : : : ; r, such that

t

k

2 �

L

and brelease(t

k

; p), read(t

GD

i

k

) is consistent. Thus, by Lemma 18, state(gt; LD

i

�

S

r

k=1

WS(after(t

k

; p; S)) �

S

t2C(gt;LD

i

;p;S)

WS(t); DS; S) is consistent. By Lemma 10(b),

LRS(before(gt

LD

i

; p; S)) � LD

i

�

S

r

k=1

WS(after(t

k

; p; S))�

S

t2C(gt;LD

i

;p;S)

WS(t) and thus,

49

local data items, t

k

could either be a local transaction or a global transaction. We consider the

following cases:

Case 1: t

k

releases its �rst lock on a data item in LD

i

after p (t

k

could be either a lo-

cal or a global transaction). Trivially, since C(t

k+1

; LD

i

; p; S) = C(t

k

; LD

i

; p; S) [t

k

, and

by IH, state(t

k

; LD

i

�

S

k�1

l=1

WS(after(t

l

; p; S))�

S

t2C(t

k

;LD

i

;p;S)

WS(t); DS; S) is consistent,

state(t

k+1

; LD

i

�

S

k

l=1

WS(after(t

l

; p; S))�

S

t2C(t

k+1

;LD

i

;p;S)

WS(t); DS; S) is consistent.

Case 2: t

k

2 �

G

and t

k

releases its �rst lock on a data item in LD

i

before p. By IH,

state(t

k

; LD

i

�

S

k�1

l=1

WS(after(t

l

; p; S))�

S

t2C(t

k

;LD

i

;p;S)

WS(t); DS; S) and read(before(t

k

; p; S))

are consistent. Also, since transactions serialized before t

k

release their �rst lock on a data

item in LD

i

before p, C(t

k

; LD

i

; p; S) = ;. By Corollary 5(b), read(t

LD

i

k

) � state(t

k

; LD

i

�

S

k�1

l=1

WS(after(t

l

; p; S)); DS; S). Since no integrity constraints are present between local and

global data items, and C(t

k

; LD

i

; p; S) = ;, by IH,

state(t

k

; LD

i

�

S

k�1

l=1

WS(after(t

l

; p; S)); DS; S) [read(before(t

k

; p; S))

is consistent. Thus, since global transactions have �xed-structure, by Lemma 12, state(t

k+1

; LD

i

�

S

k

l=1

WS(after(t

l

; p; S)); DS; S) is consistent (note that C(t

k+1

; LD

i

; p; S) = ;, since brelease(t

k

; p; S)

is true).

Case 3: t

k

2 �

L

and t

k

releases its �rst lock on a data item in LD

i

before p. By IH,

state(t

k

; LD

i

�

S

k�1

l=1

WS(after(t

l

; p; S)) �

S

t2C(t

k

;LD

i

;p;S)

WS(t); DS; S) and read(t

GD

k

) are

consistent. Also, since transactions serialized before t

k

release their �rst lock on a data item

in LD

i

before p, C(t

k

; LD

i

; p; S) = ;. By Corollary 5(b), read(t

LD

i

k

) � state(t

k

; LD

i

�

S

k�1

l=1

WS(after(t

l

; p; S)); DS; S). Since lt only accesses data items belonging to site s

i

, and

no integrity constraints are present between local and global data items, by IH, state(t

k

; LD

i

�

S

k�1

l=1

WS(after(t

l

; p; S)); DS; S)[read(t

k

) is consistent. Thus, by Lemma 4, state(t

k+1

; LD

i

�

S

k�1

l=1

WS(after(t

l

; p; S)); DS; S) and thus, state(t

k+1

; LD

i

�

S

k

l=1

WS(after(t

l

; p; S)); DS; S)

is consistent. (note that C(t

k+1

; LD

i

; p; S) = ;, since brelease(t

k

; p; S) is true).

Thus, state(t

j

; LD

i

�

S

j�1

l=1

WS(after(t

l

; p; S)) �

S

t2C(t

j

;LD

i

;p;S)

WS(t); DS; S) is consis-

tent, for all j, j = 1; 2; : : : ; n. 2

48

S and S

0

execute from DS and global transactions in �

0

G

and �

G

read the same local data items

before p (even though, as a result of the construction of the gtp

0

's, gt

0

j

does not explicitly read

local data items), read(before(gt

j

; p; S)) = read(before(gt

0

j

; p

0

; S

0

)), for all j, j = 1; 2; : : : ; r.

Thus, by Lemma 14,

state(lt; GD

i

�

S

r

k=1

WS(after(gt

k

; p; S)); S;DS) =

state(lt

0

; GD

i

�

S

r

k=1

WS(after(gt

0

k

; p

0

; S

0

)); S

0

; DS).

(Note that Lemma 14 requires t

i

; t

0

i

to be transactions that result from the same transaction

program tp

i

, while above, transactions gt

i

; gt

0

i

result from transaction programs gtp

i

; gtp

0

i

. This

does not create problems, since gtp

0

i

is a modi�cation of gtp

i

and the writes done by both pro-

grams are identical functions of the reads done by the programs).

By Lemma 15, since S

0

is a G2LPL schedule containing a single local transaction, state(lt

0

; D

i

�

S

r

k=1

WS(after(gt

0

k

; p

0

; S

0

)); S

0

; DS) is consistent. If s

i

is a 2PL site, then by Corollary 5(b),

read(lt

GD

i

) � state(lt; GD

i

�

S

r

k=1

WS(after(gt

k

; p; S)); S;DS). Hence, read(lt

GD

i

) is con-

sistent. If s

i

is a non-2PL site, then by Lemma 8, read(before(lt

GD

i

; p; S)) � state(lt; GD

i

�

S

r

k=1

WS(after(gt

k

; p; S)); S;DS) and thus, read(before(lt

GD

i

; p; S)) is consistent. 2

In the following lemmas, we show that global transaction reads are consistent.

Lemma 18 Let S be a G2LPL schedule in the G

rw

L

r

model. Let no integrity constraints be

present between local and global data items, and global transactions have �xed-structure. Let DS

be a consistent database state such that legal(DS; S) and p be an arbitrary operation in S. Let

site s

i

be a 2PL site and t

1

; t

2

; : : : ; t

n

be a serialization order of transactions in S

LD

i

such that

t

LD

i

r

releases its �rst lock before t

LD

i

r+1

, for all r, r = 1; 2; : : : ; n�1. If, for all l, l = 1; 2; : : : ; j�1,

� if t

l

2 �

L

and brelease(t

LD

i

l

; p; S), then read(t

GD

l

) is consistent, and

� if t

l

2 �

G

and brelease(t

LD

i

l

; p; S), then read(before(t

l

; p; S)) is consistent,

then state(t

j

; LD

i

�

S

j�1

l=1

WS(after(t

l

; p; S)) �

S

t2C(t

j

;LD

i

;p;S)

WS(t); DS; S), for all j, j =

1; 2; : : : ; n, is consistent.

Proof: The proof is by induction on j.

Basis (j = 1): state(t

1

; LD

i

; DS; S) = DS

LD

i

, which is consistent.

Induction: Assume that the lemma is true for j = k. We need to show that the lemma is true for

j = k + 1. Since in the G

rw

L

r

model both local and global transactions are permitted to write

47

is given that read(before(gt

LD

; p; S)) is consistent. Thus, there exists a consistent database

state DS

1

such that DS

RS(before(gt

LD

;p;S))

1

= read(before(gt

LD

; p; S)). Construct global trans-

action program gtp

0

from gtp as follows : gtp

0

= fgtpg

ds

, where ds = DS

LD

1

. By Lemma 16,

since there are no integrity constraints between local and global data items, and gtp preserves

database consistency, gtp

0

also preserves database consistency. Note that gtp

0

only reads and

writes global data items and has �xed-structure. Further, if gt

0

is the transaction that results

from the execution of transaction program gtp

0

, then struct(gt

GD

) = struct(gt

0

). We denote the

set of modi�ed global transaction programs by �p

0

G

, and the transactions resulting from their

execution in S

0

by �

0

G

.

Once global transactions are modi�ed as mentioned above, the values written by global

transactions no longer depend on writes done by other local transaction. Thus, deleting local

transactions have no a�ect on lt's reads of global data items. We now construct S

0

from S.

Let DS be a consistent database state such that legal(DS; S). Let ltp

0

be a local transaction

program with �xed-structure such that execution of ltp

0

always results in a transaction with

structure struct(lt). ltp

0

may not be a correct transaction program. Due to the construc-

tion of ltp

0

and the gtp

0

's, and since struct(gt

GD

) = struct(gt

0

), there exists a schedule S

0

which is the result of the execution of transaction programs in �p

0

G

[fltp

0

g from DS such that

struct(S

0GD

) = struct((S

�

G

[lt

)

GD

). Further, since S

0

contains only a subset of the transactions

that S contains, S

0

is a G2LPL schedule.

As each site follows some serialization protocol, S

D

i

is serializable. Let �

1

= �

G

[lt and

�

2

= �

0

G

[lt

0

. Note that �

w

(GD

i

; S) � �

1

(since only global transactions write global data

items) and �

w

(GD

i

; S

0

) � �

2

. Let gt

1

; : : : ; gt

r

; lt; gt

r+1

; : : : ; gt

n

be a serialization order of global

transactions in (S

�

1

)

GD

i

such that lt

�(S

�

1

)

GD

i

; gt

j

, for all j, j = r + 1; : : : ; n, and the or-

der gt

1

; gt

2

; : : : ; gt

r

is consistent with the serialization order of transactions in S

�

G

. In S

0

,

too, since struct(S

0GD

) = struct((S

�

G

[lt

)

GD

), gt

0

1

; : : : ; gt

0

r

; lt

0

; gt

0

r+1

; : : : ; gt

0

n

, is a serialization

order of transactions in (S

0�

2

)

GD

i

, where gt

i

; gt

0

i

are global transactions resulting from the ex-

ecution of gtp

i

and gtp

0

i

respectively (note that gt

0

1

; : : : ; gt

0

r

; lt

0

; gt

0

r+1

; : : : ; gt

0

n

, is a serialization

order of transactions in S

0GD

i

, since only lt accesses data items in D

i

� GD

i

). Let p

0

2 lt

0

such that p and p

0

are corresponding operations. Since struct(S

0GD

) = struct((S

�

G

[lt

)

GD

),

WS(after(gt

j

; p; S)) = WS(after(gt

0

j

; p

0

; S

0

)), for all j, j = 1; 2; : : : ; r. In addition, since both

46

data items in d

i

and DS

d

i

1

is consistent, DS

d

i

2

is consistent. By Lemma 3, DS

D�d

i

2

must be

inconsistent. Let DS

3

be a database state such that DS

D�d

i

3

= DS

D�d

i

1

and DS

d

i

3

= DS

d

i

. Let

fDS

3

gtp

0

fDS

4

g. Since tp

0

does not access data items in d

i

, DS

D�d

i

4

= DS

D�d

i

2

. Since DS

D�d

i

2

is inconsistent, DS

D�d

i

4

must be inconsistent. Since d

i

\ d

j

= ;, i 6= j, DS

d

i

3

is consistent,

DS

D�d

i

3

is consistent, by Lemma 3, DS

3

is consistent. If fDS

3

gtpfDS

5

g, due to de�nition of

ftpg

ds

,DS

D�d

i

5

= DS

D�d

i

4

. Since tp preserves database consistency, andDS

3

is consistent, DS

5

must be consistent. Thus DS

D�d

i

4

is consistent. Contradiction. Hence tp

0

preserves database

consistency. 2

Lemma 17 Let S be a G2LPL schedule consisting of correct transactions in the G

rw

L

r

model. Let lt be a local transaction executing at site s

i

, for some i, i = 1; 2; : : : ;m. If there are

no integrity constraints between local and global data items, global transaction programs have

�xed-structure, and read(before(gt

LD

; p; S)) is consistent, for all gt, gt 2 �

G

, then

� If s

i

is a 2PL site and p is the operation where lt releases its �rst lock, read(lt

GD

i

) is

consistent.

� If s

i

is a non-2PL site, then read(before(lt

GD

i

; p; S)) is consistent, where p is any arbitrary

operation in lt.

Proof: We �rst transform S to a schedule containing only lt in addition to global transac-

tions, and then use Lemma 15. In the G

rw

L

r

model, only global transactions are permitted to

write global data items, and thus lt's read operations on global data items depend on the writes

by the global transactions. However, since global transactions are permitted to read local data

items, the values written by global transactions may depend on the values written by local trans-

actions. However, if the global transactions are modi�ed by incorporating the values returned by

global transaction reads of local data items in S, into the global transaction programs itself, lt's

reads of global data items are not a�ected by the deletion of other local transactions from the

schedule S. We now explain the transformation of S to a G2LPL schedule S

0

such that lt's reads

of global data items remain the same in both schedules and S

0

contains a single local transaction.

Every global transaction program gtp 2 �p

G

is modi�ed as follows. Let gt 2 �

G

be the

global transaction that results from the execution of global transaction program gtp in S. It

45

cuting at a site, S

�

G

would be non-serializable. If s

i

is a 2PL site, then the above is true

by Lemma 7. Thus, since struct(S

0

) = struct(S

�

1

) and both S and S

0

execute from DS,

read(before(gt

0

j

; p

0

; S

0

)) = read(before(gt

j

; p; S)), for all j, j = 1; 2; : : : ; r.

S

D

i

and S

0D

i

are both serializable and a serialization order of transactions serialized before

lt, lt

0

in S

D

i

and S

0D

i

is gt

1

; gt

2

; : : : ; gt

r

and gt

0

1

; gt

0

2

; : : : ; gt

0

r

respectively, such that gt

i

and gt

0

i

result from the execution of transaction program gtp

i

. Further, since struct(S

0

) = struct(S

�

1

),

WS(after(gt

k

; p; S)) = WS(after(gt

0

k

; p

0

; S

0

)), for all k, k = 1; 2; : : : ; r. Thus by Lemma 14,

state(lt;D

i

�

S

r

k=1

WS(after(gt

k

; p; S

1

)); S;DS) = state(lt

0

; D

i

�

S

r

k=1

WS(after(gt

0

k

; p; S

0

)); S

0

; DS).

Since S

0

is serializable , gt

0

1

; gt

0

2

; : : : ; gt

0

r

are correct transactions , and DS is consistent,

state(lt

0

; D; S

0

; DS) is consistent. Hence, state(lt;D

i

�

S

r

k=1

WS(after(gt

k

; p; S)); S;DS) is

consistent. 2

The above lemma considered a G2LPL schedule containing only one local transaction. In

lemma 17, we show that a schedule containing more than one local transaction can be trans-

formed into a schedule containing only one local transaction and the state seen by the local

transaction in both schedules is the same. We �rst introduce certain transformations that can

be applied to transaction programs. Further, we show that under certain conditions, if the

original transaction program preserves database consistency, then so does the transformed pro-

gram. Let tp be a transaction program, and ds, a set of data-value pairs. ftpg

ds

denotes the

transaction program that results from

� deleting statements from tp in which d occurs on the left hand side of an assignment, for

all (d; v) 2 ds and

� substituting v for all other occurrences of d in the program, for all (d; v) 2 ds.

Lemma 16 Let IC = C

1

^ C

2

^ : : : ^ C

n

, where C

i

is de�ned over data items in d

i

such

that d

i

\ d

j

= ;, i 6= j. Let DS be a database state such that DS

d

i

is consistent, for some i,

i = 1; 2; : : : ; n. If tp preserves database consistency, then tp

0

= ftpg

ds

also preserves database

consistency, where ds = DS

d

i

.

Proof: Suppose tp

0

does not preserve database consistency. Thus, for some consistent

database state DS

1

such that fDS

1

gtp

0

fDS

2

g, DS

2

is inconsistent. Since tp

0

does not access

44

Lemma 15 Let S be a G2LPL schedule in an HDBMS consisting of global transactions and

a local transaction lt executing at site s

i

, for some i, i = 1; 2; : : : ;m. Let DS be a consistent

database state such that legal(DS; S). Let gt

1

; gt

2

; : : : ; gt

r

; lt; gt

r+1

; : : : ; gt

n

be a serialization

order of transactions in S

D

i

such that lt

�S

D

i

; gt

j

, for all j, j = r + 1; : : : ; n, and the order

gt

1

; gt

2

; : : : ; gt

r

is consistent with the serialization order of transactions in S

�

G

(gt

i

cannot be

serialized before gt

j

in the local schedule if gt

j

is serialized before gt

i

in S

�

G

, 1 � i < j � r,

since this would violate the assumption that S

�

G

is serializable). If global transaction programs

have �xed-structure, then state(lt;D

i

�

S

r

k=1

WS(after(gt

k

; p; S)); S;DS) is consistent, where

p is

� any arbitrary operation belonging to lt, if s

i

is a non-2PL site.

� the operation where lt releases its �rst lock, if s

i

is a 2PL site.

Proof: We construct a new schedule S

0

which is serializable and in which lt sees the same

state as the one it sees in S. We denote by gtp

i

, the transaction program which on execu-

tion results in transaction gt

i

. Let �

1

= � � fgt

r+1

; : : : ; gt

n

g and ltp

0

be a local transaction

program with �xed-structure such that execution of ltp

0

always results in a transaction with

structure struct(lt) (note that ltp

0

may be an incorrect transaction program). Let S

0

be a

schedule generated by the execution of transaction programs in �p

G

[ltp

0

� fgtp

r+1

; : : : ; gtp

n

g

from database state DS such that struct(S

0

) = struct(S

�

1

), where �p

G

is the set of global trans-

action programs. (Note that such an S

0

exists since global transaction programs and ltp

0

have

�xed-structure. S

0

can be generated by executing the operations belonging to transactions in the

same order as in S

�

1

). Since S

�

G

is serializable, and the order gt

1

; gt

2

; : : : ; gt

r

is consistent with

the serialization order of global transactions in S

�

G

, S

0

is serializable with serialization order

gt

0

1

; gt

0

2

; : : : ; gt

0

r

; lt

0

, where gt

0

1

; gt

0

2

; : : : ; gt

0

r

; lt

0

are transactions that result from the execution of

transaction programs gtp

1

; gtp

2

; : : : ; gtp

r

; ltp

0

(reads and writes of transactions resulting from

re-execution of the global transaction programs may change, thus generating di�erent transac-

tions).

Let p

0

2 lt

0

be the operation corresponding to p 2 lt (lt and lt

0

have the same struc-

ture). Note that before p, gt

j

, for all j, j = 1; 2; : : : ; r, could not have read a value writ-

ten by any of gt

r+1

; : : : ; gt

n

. If s

i

is a non-2PL site, then the above is trivially true, since

if the above were not true, then due to forced conicts between global subtransactions exe-

43

b: By Lemma 8, RS(before(t

d

i

; p; S)) � d �

S

i�1

j=1

WS(after(t

j

; p; S)). By the proof of (a),

state(t

i

; d�

S

i�1

j=1

WS(after(t

d

j

; p; S); S;DS) is consistent. Thus, read(before(t

d

i

; p; S)) is con-

sistent. Hence proved. 2

Lemma 14 Let S

1

; S

2

be schedules, and d � D. Let legal(DS

1

; S

1

) and legal(DS

2

; S

2

)

such that DS

d

1

= DS

d

2

. Let t, t

0

be transactions in S

1

, S

2

and p; p

0

be operations belong-

ing to S

1

; S

2

respectively. Let (S

�

1

1

)

d

and (S

�

2

2

)

d

be serializable, where �

w

(d; S

1

) � �

1

and

�

w

(d; S

2

) � �

2

. Let a serialization order of transactions serialized before t, t

0

in (S

�

1

1

)

d

and (S

�

2

2

)

d

be t

1

; : : : ; t

r

and t

0

1

; : : : ; t

0

r

respectively, where both t

i

and t

0

i

are transactions that result from the

execution of transaction program tp

i

. If read(before(t

j

; p; S

1

)) = read(before(t

0

j

; p

0

; S

2

)), and

WS(after(t

j

; p; S

1

)) = WS(after(t

0

j

; p

0

; S

2

)), for all j, j = 1; : : : ; r, then

state(t; d�

S

r

j=1

WS(after(t

j

; p; S

1

)); S

1

; DS

1

) = state(t

0

; d�

S

r

j=1

WS(after(t

0

j

; p

0

; S

2

)); S

2

; DS

2

).

Proof: The proof is by induction on i, i = 1; 2; : : : ; r.

Basis (i = 1): state(t

1

; d; S

1

; DS

1

) = state(t

0

1

; d; S

2

; DS

2

) = DS

d

1

= DS

d

2

.

Induction: Assume for i = k, state(t

k

; d�

S

k�1

j=1

WS(after(t

j

; p; S

1

)); S

1

; DS

1

) = state(t

0

k

; d�

S

k�1

j=1

WS(after(t

0

j

; p

0

; S

2

)); S

2

; DS

2

). We need to show that the above is true for i = k + 1.

read(before(t

k

; p; S

1

)) = read(before(t

0

k

; p

0

; S

2

)) andWS(after(t

k

; p; S

1

)) = WS(after(t

0

k

; p

0

; S

2

)).

By IH,

state(t

k

; d�

S

k�1

j=1

WS(after(t

j

; p; S

1

)); S

1

; DS

1

) = state(t

0

k

; d�

S

k�1

j=1

WS(after(t

0

j

; p

0

; S

2

)); S

2

; DS

2

).

Since t

k

and t

0

k

result from the execution of transaction program tp

k

, by Lemma 11,

state(t

k+1

; d�

S

k

j=1

WS(after(t

j

; p; S

1

)); S

1

; DS

1

) = state(t

0

k+1

; d�

S

k

j=1

WS(after(t

0

j

; p

0

; S

2

)); S

2

; DS

2

).

Thus, the lemma is true for i = r. Using an argument similar to the above argument, it can

be shown that

state(t; d�

S

r

j=1

WS(after(t

j

; p; S

1

)); S

1

; DS

1

) = state(t

0

; d�

S

r

j=1

WS(after(t

0

j

; p

0

; S

2

)); S

2

; DS

2

).

2

As was illustrated in Example 7, G2LPL schedules may not be serializable if they contain

local transactions. In the following lemma, we prove a property of G2LPL schedules containing

a single local transaction (in addition to global transactions).

42

Let d = fa; bg, and DS

1

= f(a;�1); (b;�1); (c;�1)g. Execution of tp

1

from initial state DS

1

results in the following transaction:

t

1

: w

1

(a; 1) r

1

(c;�1)

Let p = w

1

(a; 1). The state resulting from the execution of t

1

from DS

1

is DS

2

=

f(a; 1); (b;�1)g. Thus, thoughDS

d

1

[read(before(t

1

; p; S)) is consistent, DS

d�WS(after(t

1

;p;S))

2

=

f(a; 1); (b;�1)g is inconsistent. This is due to the fact that tp

1

is does not have �xed-structure. 2

We now use Lemma 12 to develop assertions about the database state during the execution of

schedules generated by the execution of �xed-structure transaction programs.

Lemma 13 Let IC = C

1

^ C

2

^ � � �C

l

, where IC, C

i

are de�ned over data items in D, d

i

respectively such that d

i

\d

j

= ;, i 6= j. Let p be an operation in a schedule S resulting from the

execution of �xed-structure transaction programs. Let DS be a database state such that DS

d

is

consistent and legal(DS; S). Let d = d

k

for some k = 1; 2; : : : ; l, �

w

(d; S) � �

0

, and (S

�

0

)

d

be

serializable with serialization order t

1

; t

2

; : : : ; t

n

.

a: If read(before(t

j

; p; S)), j = 1; 2; : : : ; i�1, is consistent, then state(t

i

; d�

S

i�1

j=1

WS(after(t

d

j

; p; S)); S;DS)

is consistent, for all i, i = 1; 2; : : : ; n

b: If read(before(t

j

; p; S)), j = 1; 2; : : : ; i� 1, is consistent, then read(before(t

d

i

; p; S)) is con-

sistent, for all i, i = 1; 2; : : : ; n

Proof:

a: The proof is by induction on i.

Basis (i = 1): Trivial, as state(t

1

; d; S;DS) = DS

d

, which is consistent.

Induction: Assume true for i = k, that is, if read(before(t

j

; p; S)), j = 1; 2; : : : ; k� 1, is consis-

tent, then for d

0

= d�

S

k�1

j=1

WS(after(t

d

j

; p; S)), state(t

k

; d

0

; S;DS) is consistent. We need to

show the above to be true for i = k + 1.

By IH, we know that state(t

k

; d

0

; S;DS) is consistent. By Lemma 8, RS(before(t

d

k

; p; S)) �

d

0

. Since d

i

\ d

j

= ; and read(before(t

k

; p; S)) is given to be consistent, state(t

k

; d

0

; S;DS) [

read(before(t

k

; p; S)) is consistent. Since transaction programs have �xed-structure, by Lemma 12,

state(t

k+1

; d

0

�WS(after(t

d

k

; p; S); S;DS) is consistent. Thus, state(t

k+1

; d�

S

k

j=1

WS(after(t

d

j

; p; S); S;DS)

is consistent. Hence proved.

41

Lemma 11 Let t and t

0

be transactions resulting from the execution of a transaction pro-

gram tp (let S, S

0

denote the schedules containing t, t

0

respectively). Let p; p

0

be corresponding

operations belonging to t and t

0

respectively. Let DS

1

; DS

2

be database states and d � D such

that legal(DS

1

; t), legal(DS

2

; t

0

) and DS

d

1

= DS

d

2

. Let fDS

1

gtfDS

3

g and fDS

2

gt

0

fDS

4

g. If

read(before(t; p; S)) = read(before(t

0

; p

0

; S

0

)), then DS

d�WS(after(t;p;S))

3

= DS

d�WS(after(t

0

;p

0

;S

0

))

4

.

Proof: Since write operations are a function of read operations that precede them and t; t

0

result from the execution of the same program, if all the read operations of t; t

0

preceding p; p

0

are

the same , the write operations preceding p; p

0

stay the same. Also, since WS(after(t; p; S)) =

WS(after(t

0

; p

0

; S

0

)) and DS

d

1

= DS

d

2

, DS

d�WS(after(t;p;S))

3

= DS

d�WS(after(t

0

;p

0

;S

0

))

4

. 2

Lemma 12 Let t be a transaction in a schedule S resulting from the execution of a �xed-

structure transaction program tp (S = t). Let DS

1

be a database state such that fDS

1

gtfDS

2

g,

DS

d

1

is consistent and legal(DS

1

; t). For any operation p 2 S, if DS

d

1

[read(before(t; p; S)) is

consistent, then DS

d�WS(after(t;p;S))

2

is consistent.

Proof: Let DS

3

be a consistent database state such that DS

d[RS(before(t;p;S))

3

= DS

d

1

[

read(before(t; p; S)). Let fDS

3

gtpfDS

4

g. Let t

0

be the transaction and S

0

be the schedule

resulting from the execution of tp from DS

3

(note that S

0

= t

0

). Since tp has �xed-structure,

struct(t

0

) = struct(t). Thus, there exists an operation p

0

in S

0

such that p and p

0

are correspond-

ing operations. Since DS

RS(before(t;p;S))

3

= read(before(t; p; S)) and struct(t

0

) = struct(t),

read(before(t; p; S)) = read(before(t

0

; p

0

; S

0

)). Thus, from Lemma 11,DS

d�WS(after(t

0

;p

0

;S

0

))

4

=

DS

d�WS(after(t;p;S))

2

. Since tp preserves database consistency, DS

4

is consistent. Hence proved.

2

In Lemma 12, if transaction programs do not have �xed-structure, then struct(t

0

) may not be

equal to struct(t). As a result, WS(after(t

0

; p

0

; S

0

)) may not be equal toWS(after(t; p; S)) and

thus, DS

d�WS(after(t;p;S))

2

may not be consistent. This is illustrated by the following example.

Example 13 Consider a database containing data items D = fa; b; cg. Let IC = (a >

0! b > 0) ^ c > 0. Consider the following transaction program, tp

1

.

tp

1

: a := 1;

if (c > 0) then b := 1

40

Hence proved. 2

Corollary 5 Let S be a schedule such that S

d

is a 2PL schedule, where d � D. Let transac-

tion t 2 S

d

, operation p 2 S and t

1

; t

2

; : : : ; t

r

be a serialization order of transactions serialized

before t in S

d

. Then,

a: RS(before(t

d

; p; S)) � d�

S

r

k=1

WS(after(t

k

; p; S))�

S

t

0

2C(t;d;p;S)

WS(t

0

), and

b: If brelease(t

d

; p; S), then RS(t

d

) � d�

S

r

k=1

WS(after(t

k

; p; S)).

Proof:

Trivial as RS(before(t

d

; p; S)) � LRS(before(t

d

; p; S)) and RS(t

d

) � LRS(t

d

). 2

In Appendix A, we developed conditions under which executions of transactions and sched-

ules preserve consistency of a set of data items. One would wish to make similar assertions about

the consistency of database states during the execution of transactions and schedules. For an

arbitrary transaction making any assertion is di�cult since all we know about a transaction is

that as an atomic unit it is correct and nothing else. However, if we restrict transactions to those

resulting from �xed-structured transaction programs, we can then make assertions about the

states which exist during its execution. We �rst de�ne the notion of corresponding operations.

De�nition 9 Let t, t

0

be two transactions resulting from the execution of a transaction

program tp (the schedules containing t and t

0

are S and S

0

respectively). p 2 t and p

0

2

t

0

are said to be corresponding operations if RS(before(t; p; S)) = RS(before(t

0

; p

0

; S

0

)) and

WS(after(t; p; S)) = WS(after(t

0

; p

0

; S

0

)). 2

Note that corresponding operations may not exist for a pair of transactions resulting from

the execution of an arbitrary transaction program tp since the structure of the transaction may

change depending on the database state it executed from. However, for transactions resulting

from the execution of a �xed-structure transaction program, corresponding operations always

exist. G2LPL preserves strong correctness of schedules only if global transaction programs have

�xed-structure. In the proof we shall require certain properties of transaction programs with

�xed-structure which are developed in the following lemmas.

39

Lemma 9 Let S be a schedule and d � D such that S

d

is a 2PL schedule. Let t

1

; t

2

; : : : ; t

n

be a serialization order of transactions in S

d

and p be an operation in S.

LRS(before(t

d

i

; p; S)) � d�

S

i�1

j=1

WS(after(t

d

j

; p; S)), for all i, i = 1; 2; : : : ; n.

Proof: Suppose LRS(before(t

d

i

; p; S)) 6� d �

S

i�1

j=1

WS(after(t

d

j

; p; S)), for some i, i =

1; 2; : : : ; n. Thus, t

i

obtains a read lock on a data item in d before t

j

writes the data item,

for some j, j = 1; 2; : : : ; i � 1. Further, since S

d

is a 2PL schedule, t

i

must read the data item

before t

j

writes the data item and thus, must be serialized before t

j

in S

d

. Contradiction. Hence

proved. 2

Lemma 10 Let S be a schedule such that S

d

is a 2PL schedule, where d � D. Let transac-

tion t 2 S

d

, operation p 2 S and t

1

; t

2

; : : : ; t

r

be a serialization order of transactions serialized

before t in S

d

. Then,

a: LRS(before(t

d

; p; S)) � d�

S

r

k=1

WS(after(t

k

; p; S))�

S

t

0

2C(t;d;p;S)

WS(t

0

), and

b: If brelease(t

d

; p; S), then LRS(t

d

) � d�

S

r

k=1

WS(after(t

k

; p; S)).

Proof:

a: From Lemma 9, it follows that LRS(before(t

d

; p; S)) � d �

S

r

k=1

WS(after(t

k

; p; S)). Fur-

ther, we need to show that, before p, t

d

cannot obtain a lock for data items written by transac-

tions in C(t; d; p; S). Consider a transaction t

0

2 C(t; d; p; S), and a data item d

0

2WS(t

0

) \ d.

If t were to lock d

0

for reading before t

0

obtained the write lock on it, t

0

would be serialized after

t. If t obtained a read lock after the write lock was obtained on d

0

by t

0

, then since S

d

is a 2PL

schedule and t

0

releases its �rst lock after p, t would have obtained the lock after p. Thus,

LRS(before(t

d

; p; S)) � d�

S

r

k=1

WS(after(t

k

; p; S)) �

S

t

0

2C(r)

WS(t

0

).

b: Since S

d

is a 2PL schedule, S

d

is serializable. By Lemma 9, LRS(before(t

d

; p; S)) �

d�

S

r

k=1

WS(after(t

k

; p; S)). Let d

0

2 (

S

r

k=1

WS(after(t

k

; p; S

1

))) \ d. After p, t cannot lock

d

0

before any of t

1

; : : : ; t

r

write on d

0

(since t is serialized after t

1

; : : : ; t

r

). Also, after p, t cannot

read d

0

after any of t

1

; : : : ; t

r

write on d

0

since t releases its �rst lock before p and since S

d

is a

2PL schedule, t cannot obtain any more locks. Thus, LRS(t

d

) � d�

S

r

k=1

WS(after(t

k

; p; S)).

38

Lemmas 12 through 14 prove properties of serializable schedules consisting of transactions with

�xed-structure. In order to show a schedule is strongly correct, we need to show that both

local and global transactions read consistent data items. Local transactions are shown to read

consistent data in Lemma 17 using lemmas 15 and 16. In Lemma 18 and Lemma 19, global

transactions are shown to read consistent data items. Finally, Lemma 20 combines results from

Lemma 17 and Lemma 19, and is used in the proof of the theorem.

Lemma 7 Let S be a G2LPL schedule and t 2 S

D

i

, where s

i

is a 2PL-site. Let t

1

; t

2

; : : : ; t

r

; t;

t

r+1

; : : : ; t

n

be a serialization order of transactions in S

D

i

such that t

�S

D

i

; t

j

, for all j,

j = r + 1; : : : ; n. Let p be the operation in S

D

i

where t releases its �rst lock and o 2 t

k

,

for some k, k = r + 1; : : : ; n. If o

�S

�

G

; o

0

, where o

0

2 t

0

, then o

0

62 before(t

0

; p; S).

Proof: Since o

�S

�

G

; o

0

and S is a G2LPL schedule, o

0

cannot be scheduled for execution

unless t

k

releases a global lock. Also, t

k

does not release a global lock unless it has obtained all

its global locks, and local locks at the 2PL sites. Since t

�S

D

i

; t

k

, and s

i

is a 2PL site, t

k

gains

all its local locks at site s

i

only after t releases its �rst lock at site s

i

. Thus, o

0

cannot execute

before p. Thus, o

0

62 before(t

0

; p; S). 2

The following lemma states a simple property of serializable schedules. Before an operation

p during the execution of a serializable schedule if a transaction t reads (or writes) a data item,

that data item cannot be written at a later time by a transaction that is serialized before t.

Lemma 8 Let S be a schedule and d � D such that S

d

is serializable. Let t

1

; t

2

; : : : ; t

n

be

a serialization order of transactions in S

d

and p be an operation in S.

RS(before(t

d

i

; p; S)) � d�

S

i�1

j=1

WS(after(t

d

j

; p; S)), for all i, i = 1; 2; : : : ; n.

Proof: Suppose RS(before(t

d

i

; p; S)) 6� d �

S

i�1

j=1

WS(after(t

d

j

; p; S)), for some i, i =

1; 2; : : : ; n. Thus, before(t

d

i

; p; S) reads a data item in d written by after(t

j

; p; S), for some j,

j = 1; 2; : : : ; i�1. In that case t

i

must be serialized before t

j

in S

d

since before(t

i

; p; S) precedes

after(t

j

; p; S) in S

d

. Contradiction. Hence proved. 2

A similar result for 2PL schedules is stated in the following lemma.

37

Consider a schedule S and d � D such that S

d

is a 2PL schedule. Let t be a transaction in

S

d

, p be an operation in S, and t

1

; t

2

; : : : ; t

n

be a serialization order of transactions serialized

before t in S

d

. C(t; d; p; S) is de�ned as follows.

C(t; d; p; S) = ft

0

: t

0

2 ft

1

; t

2

; : : : ; t

n

g ^ t

0d

releases its �rst lock in S after pg

We de�ne the following for seq, which is a subsequence of S. brelease(seq; p; S) is true i�

the �rst unlock operation in seq precedes p, where p is an operation in S. LRS(seq) denotes

the set of data items for which read locks have been obtained by seq.

LRS(seq) = fy : o 2 seq ^ y = entity(o) ^ action(o) = lrg

Thus, LRS(before(seq; p; S)) denotes the set of data items for which locks have been obtained

by seq before operation p in the schedule S. Lread(seq) denotes the database state seen by seq

as a result of reading data items for which it has obtained read locks.

Lread(seq) = f(y; z) : o 2 seq ^ y = entity(o) ^ z = value(o) ^ y 2 LRS(seq) ^ action(o) = rg

Note that LRS and Lread are only de�ned for sequences of operations that access data

items at a 2PL site. Thus, for a transaction t, LRS(t) 6= RS(t), since no locks need to be

obtained by transactions accessing data items at non-2PL sites. However, if for d � D, S

d

is a 2PL schedule, RS(t

d

) = LRS(t

d

) and, read(t

d

) = Lread(t

d

), since transaction t

d

must

obtain read lock on a data item before reading the data item. Let DS is a database state such

that legal(DS; S). Since read(t

d

) � state(t; d; S;DS), Lread(t

d

) � state(t; d; S;DS). Also,

RS(before(t; p; S)) � LRS(before(t; p; S)), where p is an operation belonging to schedule S. In

general, for a sequence of operations, seq, if RS(seq) = LRS(seq), then RS(seq

d

) = LRS(seq

d

),

and if RS(seq) � LRS(seq), then RS(before(seq; p; S)) � LRS(before(seq; p; S)). However, it

must be noted that RS(after(t; p; S)) 6� LRS(after(t; p; S)).

We need to di�erentiate between 2PL sites and non-2PL sites in the proof. We assume,

that the HDBMS consists of sites s

1

; s

2

; : : : ; s

m

; s

(m+1)

; s

(m+2)

; : : : ; s

m+q

, where s

1

; s

2

; : : : ; s

m

are 2PL-sites and s

(m+1)

; s

(m+2)

; : : : ; s

m+q

are non-2PL sites. The set of data items at the 2PL

sites, D1 =

S

m

i=1

D

i

, and the set of data items at the non-2PL sites, D2 =

S

q

i=1

D

m+i

.

Outline of ProofWe give a brief outline of the structure of the proof and the various lemmas

used in the proof. In lemmas 7 through 10, we state important properties of G2LPL schedules.

36

-Appendix B-

We prove Theorem 8 in this appendix. For the proof, we shall need to enhance our nota-

tion substantially. Since we now deal with schedules that are produced (at least in part) by

LTMs which follow a locking protocol, we generalize our de�nition of transactions and schedules.

Transactions and schedules, besides containing read and write operations, also contain lock and

unlock operations. The lock and unlock operations correspond to the local lock and unlock

operations at the 2PL sites and not the global lock and unlock operations. A lock operation is

a two-tuple (action(o

i

); entity(o

i

)), where action(o

i

) is either a read lock (lr), or a write lock

(lw), and entity(o

i

) is the data item being locked. The unlock operation is similarly de�ned. We

assume that transactions access every data item for which they obtain locks. We now develop

the notation needed to prove Theorem 8.

Let seq be a subsequence of schedule S and p be an operation in S. We denote by

before(seq; p; S), the subsequence of seq consisting of all the operations that precede p in S.

If p belongs to seq, then before(seq; p; S) includes p. The subsequence of seq consisting of all

the operations not in before(seq; p; S) is denoted by after(seq; p; S). The number of operations

preceding operation p in schedule S is denoted by depth(p; S). In Example 10, if p = w

2

(a; 10),

then

before(t

2

; p; S) = r

2

(d; 10) w

2

(a; 10)

after(t

1

; p; S) = r

1

(c; 5) w

1

(b; 5)

depth(p; S) = 2:

We now de�ne the notion of conict between operations and transactions.

De�nition 8 Let o

1

and o

2

be operations in schedule S. o

1

S

; o

2

if

� for some transaction t 2 S, o

1

; o

2

2 t and o

1

�

t

o

2

, or

� for some transactions t

1

; t

2

2 S, such that t

1

6= t

2

, o

1

2 t

1

and o

2

2 t

2

, entity(o

1

) =

entity(o

2

), (action(o

1

) = W or action(o

2

) = W) and o

1

�

S

o

2

.

The notion of conict can be extended to transactions as follows. If o

1

2 t

1

, o

2

2 t

2

, where t

1

and t

2

are transactions in schedule S, and o

1

S

; o

2

, then t

1

S

; t

2

.

�S

; is the transitive closure of

S

;. 2

35

items, the integrity constraints can be viewed as IC = L

1

^ : : :^L

m

^G, where L

i

is a conjunct

de�ned over data items in LD

i

and G is a conjunct de�ned over data items in GD.

We use the fact that transaction programs are LDP to prove that L

1

; L

2

; : : : ; L

n

are pre-

served by S and global transactions read consistent local data items. Since DS

1

is consistent, by

Lemma 3, DS

D

i

1

is consistent. Since S

D

i

is serializable (let t

1

; t

2

; : : : ; t

n

be a serialization order

of transactions in S

D

i

) and transaction programs are LDP, by Lemma 6, DS

D

i

2

is consistent

and state(t

j

; D

i

; S;DS

1

), for all j, j = 1; 2; : : : ; n, is consistent. Since LD

i

� D

i

and DS

D

i

2

is

consistent, DS

LD

i

2

is consistent. Since read(t

D

i

) � state(t;D

i

; S;DS

1

), read(t

D

i

) is consistent,

for all t, t 2 � . Since LD

i

� D

i

, read(t

LD

i

), for all t, t 2 �

G

, is consistent. Also, since local

transactions access data items at a single site, read(t), for all t, t 2 �

L

, is consistent.

We now show that G is preserved by S. Since only global transactions write on global data

items �

w

(GD;S) � �

G

. Since S

�

G

is serializable (S

�

G

)

GD

is serializable. As shown above,

read(t

LD

i

) is consistent, t 2 �

G

. Since, LD

i

\LD

j

= ;, i 6= j, by Lemma 2,

S

m

i=1

read(t

LD

i

) =

read(t

[

m

i=1

LD

i

) is consistent. Since DS

1

is consistent, by Lemma 3, DS

GD

1

is consistent. Thus,

by Corollary 4, DS

GD

2

is consistent and state(t; GD; S;DS

1

), for all t, t 2 �

G

is consistent.

Since read(t

GD

) � state(t; GD; S;DS

1

) and read(t

[

m

i=1

LD

i

), t 2 �

G

, is consistent, by Lemma 2,

read(t), for all t, t 2 �

G

, is consistent.

Thus, DS

GD

2

and DS

LD

i

2

, for all i, i = 1; 2; : : : ;m is consistent. Hence, by Lemma 3, DS

2

is consistent. Thus, S is strongly correct. 2

34

Thus, DS

GD

2

and DS

D

i

2

for all i, i = 1; 2; : : : ;m is consistent. Hence, by Lemma 3, DS

2

is

consistent. Thus, S is strongly correct. 2

In order to prove Theorem 4, we use a property of predicate wise serializable (PWSR) sched-

ules developed in [10]. Before proceeding, we �rst de�ne PWSR, and then state the property of

PWSR schedules.

De�nition 7 Let IC = C

1

^ C

2

^ � � � ^C

l

, where IC, C

i

are de�ned over data items in D,

d

i

respectively. A schedule S is PWSR if S

d

i

is serializable, for all i, i = 1; 2; : : : ; l [8]. 2

Any serializable schedule is PWSR, but not vice-versa.

Theorem 9 Let IC = C

1

^C

2

^ : : :^C

l

, where IC, C

i

are de�ned over data items in D, d

i

respectively such that d

i

\ d

j

= ;, i 6= j. Let S be a schedule consisting of transactions resulting

from the execution of �xed-structure transaction programs. If S is a PWSR schedule, then it is

strongly correct [10]. 2

We now prove Theorem 4.

Proof of Theorem 4 (G

rw

Model): As no integrity constraints are present between local

and global data items, the integrity constraints can be viewed as IC = L

1

^ : : :^L

m

^G, where

L

i

is a conjunct de�ned over data items in LD

i

and G is a conjunct de�ned over data items in

GD. As a result of the model, LD

i

\ LD

j

= ; and LD

i

\GD = ;.

Since only global transactions access global data items and S

�

G

is serializable, S

GD

is se-

rializable. Since S

D

i

is serializable , S

LD

i

is serializable for all i, i = 1; 2; : : : ;m. Thus S is a

PWSR schedule. By Theorem 9, S is strongly correct. 2

Proof of Theorem 5 (G

rw

L

r

Model): Let DS

1

be a consistent database state such that

legal(DS

1

; S). Let fDS

1

gSfDS

2

g. In order to prove that S is strongly correct, we need to show

that DS

2

is consistent. Since no integrity constraints are present between local and global data

33

Basis (j = 1): state(t

1

; D

i

; S;DS

1

) = DS

D

i

1

, which is given to be consistent.

Induction: Assume state(t

k

; D

i

; S;DS

1

) is consistent. Let DS

3

be a database state such that

DS

D

i

3

= state(t

k

; D

i

; S;DS

1

) and legal(DS

3

; t

k

). By IH,DS

D

i

3

is consistent. Let fDS

3

gt

k

fDS

4

g.

Since, transaction programs are LDP, DS

D

i

4

is consistent. As DS

D

i

4

= state(t

k+1

; D

i

; S;DS

1

),

state(t

k+1

; D

i

; S;DS

1

) is consistent.

As shown above, state(t

n

; D

i

; S;DS

1

) is consistent. Thus, (using a similar argument as

above) DS

D

i

2

is consistent. 2

It must be noted that consistency of all the local database states does not imply the con-

sistency of the global database state. Thus, a schedule S resulting from the execution of LDP

programs such that S

D

i

is serializable, i = 1; 2; : : : ;m, would leave all the local databases in a

consistent state if they were initially consistent. However, S may not preserve global database

consistency.

Proof of Theorem 3 (L

r

Model): Let DS

1

be a consistent database state such that

legal(DS

1

; S). Let fDS

1

gSfDS

2

g. In order to show that S is strongly correct, we need to show

that DS

2

is consistent. The integrity constraints can be viewed as IC = C

1

^ � � � ^ C

m

^ G,

where C

i

is a conjunct de�ned over data items in D

i

and G is a conjunct de�ned over data

items in GD. We show that C

1

; C

2

; : : : ; C

m

are preserved by S if transaction programs are

LDP. Since DS

1

is consistent, by Lemma 3, DS

D

i

1

is consistent. Since S

D

i

is serializable and

transaction programs are LDP, by Lemma 6, DS

D

i

2

is consistent and state(t;D

i

; S;DS

1

), for all

t, t 2 � , is consistent. Furthermore, since local transactions access data items at a single site,

read(t) � state(t;D

i

; S;DS

1

), t 2 �

L

. Thus, read(t), for all t, t 2 �

L

is consistent.

G can now be shown to be preserved by S using Corollary 3 as follows. Since only global

transactions write global data items, �

w

(GD;S) � �

G

. Since S

�

G

is serializable, (S

�

G

)

GD

is serializable. Since global transactions read only data items in GD, RS(t) � GD, where

t 2 �

w

(GD;S). By Lemma 3, since DS

1

is consistent, DS

GD

1

is consistent. Hence, by Corol-

lary 3, DS

GD

2

is consistent and state(t; GD; S;DS

1

), for all t, t 2 �

G

, is consistent. Since global

transactions only read data items in GD, read(t) � state(t; GD; S;DS

1

), t 2 �

G

. Thus, read(t),

for all t, t 2 �

G

, is consistent.

32

Lemma 3, since DS

1

is consistent, DS

LD

i

1

is consistent. Hence by Corollary 3, DS

LD

i

2

is con-

sistent and state(t

j

; LD

i

; S;DS

1

), for all j, j = 1; 2; : : : ; n is consistent. Since read(t

LD

i

) �

state(t; LD

i

; S;DS

1

), read(t

LD

i

) is consistent, for all t, t 2 � . Since local transactions access

data items at a single site read(t), for all t, t 2 �

L

, is consistent.

G can now be shown to be preserved by S using Corollary 4 as follows. Since only global

transactions write on global data items �

w

(GD;S) � �

G

. Since S

�

G

is serializable, (S

�

G

)

GD

is

serializable. As shown above, read(t

LD

i

) is consistent, t 2 �

G

. Since, LD

i

\ LD

j

= ;, i 6= j,

by Lemma 2,

S

m

i=1

read(t

LD

i

) = read(t

[

m

i=1

LD

i

), t 2 �

G

, is consistent. Since DS

1

is consis-

tent, by Lemma 3, DS

GD

1

is consistent. Also, GD \ LD

i

= ;, for all i, i = 1; 2; : : : ;m. Thus,

by Corollary 4, DS

GD

2

is consistent and state(t; GD; S;DS

1

), for all t, t 2 �

G

is consistent.

Since read(t

GD

) � state(t; GD; S;DS

1

) and read(t

[

m

i=1

LD

i

), t 2 �

G

, is consistent, by Lemma 2,

read(t), for all t, t 2 �

G

, is consistent.

Thus, DS

GD

2

and DS

LD

i

2

, for all i, i = 1; 2; : : : ;m is consistent. Hence, by Lemma 3, DS

2

is consistent. Thus, S is strongly correct. 2

In the L

r

model transaction programs were restricted to be LDP. LDP programs, if executed

from a consistent local database state leave the local database in a consistent state. Before

proving Theorem 3 we develop Lemma 6, and show by a simple induction argument that a

serializable local schedule resulting from the execution of LDP programs leaves the local database

in a consistent state if the local database was initially consistent.

Lemma 6 Let S be a schedule and DS

1

be a database state such that legal(DS

1

; S) and

fDS

1

gSfDS

2

g. If, for some i, i = 1; 2; : : : ;m,

� S

D

i

is serializable (let t

1

; : : : ; t

n

be a serialization order of transactions in S

D

i

),

� transactions programs are LDP, and

� DS

D

i

1

is consistent,

then DS

D

i

2

is consistent and state(t

j

; D

i

; S;DS

1

) is consistent, for all j, j = 1; 2; : : :n.

Proof: We begin by showing that state(t

j

; D

i

; S;DS

1

), for all j, j = 1; 2; : : : ; n is consistent.

The proof is by induction on j.

31

then DS

d

2

is consistent and state(t

i

; d; S;DS

1

) is consistent for all i, i = 1; 2; : : : ; n.

Proof: Follows directly from Lemma 5 as for every transaction t 2 �

w

(d; S), since

RS(t) � d, read(t) � state(t; d; S;DS

1

). Thus, whenever state(t; d; S;DS

1

) is consistent,

state(t; d; S;DS

1

) [read(t) is consistent. 2

Corollary 4 Let IC = C

1

^C

2

^ � � �^C

l

^C, where C

1

; C

2

; : : : ; C

l

; C are de�ned over data

items in d

1

; d

2

; : : : ; d

l

; d such that d

i

\ d = ;, i = 1; 2; : : : ; l. Let S be a schedule and DS

1

be

a database state such that legal(DS

1

; S) and fDS

1

gSfDS

2

g. Let �

0

be any set of transactions

such that �

w

(d; S) � �

0

. If

� (S

�

0

)

d

is serializable (let t

1

; t

2

; : : : ; t

n

be a serialization order of transactions in (S

�

0

)

d

),

� read(t

d

0

) is consistent, for all t, t 2 �

w

(d; S) and d

0

=

S

l

i=1

d

i

, and

� DS

d

1

is consistent,

then DS

d

2

is consistent and state(t

i

; d; S;DS

1

) is consistent for all i, i = 1; 2; : : : ; n.

Proof: For every t 2 �

w

(d; S), read(t

d

0

) is given to be consistent. Thus, whenever

state(t; d; S;DS

1

) is consistent, since d

0

\d = ; and read(t

d

) � state(t; d; S;DS

1

), state(t; d; S;DS

1

)[

read(t) is consistent. Hence, the result trivially follows from Lemma 5. 2

Proof of Theorem 2 (G

r

Model): Let DS

1

be a consistent database state such that

legal(DS

1

; S). Let fDS

1

gSfDS

2

g. In order to show that S is a strongly correct, we need to

show that DS

2

is consistent. As no integrity constraints are present between local and global

data items, the integrity constraints can be viewed as IC = L

1

^ � � � ^ L

m

^ G, where L

i

is a

conjunct de�ned over data items in LD

i

and G is a conjunct de�ned over data items in GD.

As a result of the model, LD

i

\LD

j

= ;, i 6= j, and LD

i

\GD = ;.

We now use Corollary 3 to show that L

1

; L

2

; : : : ; L

m

are preserved by S and global trans-

actions read consistent local data items. Since only local transactions at site s

i

write local

data items at site s

i

, �

w

(LD

i

; S) � �

L

� � . Since S

�

= S and S

D

i

is serializable, (S

�

)

LD

i

is serializable. Let t

1

; t

2

; : : : ; t

n

be a serialization order of transactions on (S

�

)

LD

i

. Since

local transactions at site i read only from LD

i

, RS(t) � LD

i

, where t 2 �

w

(LD

i

; S). By

30

Lemma 5 Let S be a schedule DS

1

be a database state such that legal(DS

1

; S) and fDS

1

gSfDS

2

g.

Let d � D and �

0

be any set of transactions such that �

w

(d; S) � �

0

. If

� (S

�

0

)

d

is serializable (let t

1

; t

2

; : : : ; t

n

be a serialization order of transactions in (S

�

0

)

d

),

� if state(t; d; S;DS

1

) is consistent, then state(t; d; S;DS

1

)[read(t) is consistent, for all t,

t 2 �

w

(d; S), and

� DS

d

1

is consistent,

then DS

d

2

is consistent and state(t

i

; d; S;DS

1

) is consistent for all i, i = 1; 2; : : : ; n.

Proof: The proof is by induction on i.

Basis (i = 1): state(t

1

; d; S;DS

1

) = DS

d

1

, which is given to be consistent.

Induction: Assume state(t

k

; d; S;DS

1

) is consistent. We need to show to show state(t

k+1

; d; S;DS

1

)

is consistent. Consider two cases:

Case 1 (t

k

62 �

w

(d; S)): Since t

k

62 �

w

(d; S), it follows from the de�nition of �

w

thatWS(t

k

)\d =

;. Thus, state(t

k+1

; d; S;DS

1

) = state(t

k

; d; S;DS

1

). By IH, state(t

k

; d; S;DS

1

) is consistent.

Thus state(t

k+1

; d; S;DS

1

) is consistent as well.

Case 2 (t

k

2 �

w

(d; S)): By IH, state(t

k

; d; S;DS

1

) is consistent. Thus, state(t

k

; d; S;DS

1

) [

read(t

k

) is consistent. Hence, there exists a consistent database state, DS

3

, such that DS

d

3

=

state(t

k

; d; S;DS

1

) and DS

RS(t

k

)

3

= read(t

k

). Thus, legal(DS

3

; t

k

). Let fDS

3

gt

k

fDS

4

g. As

DS

d

3

[read(t

k

) = is consistent, by Lemma 4,DS

d

4

is consistent. SinceDS

d

4

= state(t

k+1

; d; S;DS

1

),

state(t

k+1

; d; S;DS

1

) is consistent.

As shown above, state(t

n

; d; S;DS

1

) is consistent. Thus, by Lemma 4, (using a similar ar-

gument as above) DS

d

2

is consistent. 2

For the proofs of our theorems we shall require the following corollaries which follow from

Lemma 5.

Corollary 3 Let S be a schedule, and DS

1

be a database state such that legal(DS

1

; S) and

fDS

1

gSfDS

2

g. Let d � D and �

0

be any set of transactions such that �

w

(d; S) � �

0

. If

� (S

�

0

)

d

is serializable (let t

1

; t

2

; : : : ; t

n

be a serialization order of transactions in (S

�

0

)

d

),

� RS(t) � d, for all t, t 2 �

w

(d; S), and

� DS

d

1

is consistent,

29

i = 1; 2; : : : ; n. Thus, DS j= C

1

^ C

2

^ � � � ^ C

n

. Hence DS is consistent. 2

The following lemma states the conditions under which a transaction, on execution, leaves

the database in a consistent state.

Lemma 4 Let t be a transaction and d � D. Let DS

1

be a database state such that

legal(DS

1

; t) and fDS

1

gtfDS

2

g. If DS

d

1

[read(t) is consistent, then DS

d

2

is consistent.

Proof: By the de�nition of consistency, there exists a consistent state DS

3

such that

DS

d[RS(t)

3

= DS

d

1

[read(t). Thus, legal(DS

3

; t). Let fDS

3

gtfDS

4

g. Since t preserves database

consistency, DS

4

is consistent. Also, since DS

d

1

= DS

d

3

, DS

d

2

= DS

d

4

. Thus, DS

d

2

is consistent.

2

Note that Lemma 4 requires DS

d

1

[read(t) to be consistent if DS

d

2

is to be consistent.

Consistency of DS

d

1

and read(t) does not ensure consistency of DS

d

2

since DS

d

1

[read(t) may

not be consistent. As a result, even if DS

d

1

and read(t) are consistent, a consistent state DS

3

such that DS

d[RS(t)

3

= DS

d

1

[read(t) may not exist.

Example 12 Consider a database with data items D = fa; b; cg. Let IC = (a = b^ b = c).

Consider the following transaction program tp

1

.

tp

1

: a := c

Let d = fa; bg and DS

1

= f(a;�1); (b;�1); (c; 1)g. Consider the execution of transaction

program tp

1

from DS

1

that results in the following transaction:

t

1

: r

1

(c; 1) w

1

(a; 1)

The database stateDS

2

resulting from the execution of tp

1

fromDS

1

is f(a; 1); (b;�1); (c;1)g.

Thus, even though DS

d

1

and read(t

1

) are consistent, their union f(a;�1); (b;�1); (c;1)g is in-

consistent and as a result, DS

d

2

= f(a; 1); (b;�1)g is inconsistent. 2

Earlier, in Lemma 4 we speci�ed conditions required to ensure that execution of a transac-

tion preserves consistency of a set of data items. We now use Lemma 4 to develop conditions

under which schedules preserve consistency of a set of data items.

28

Proof: (:

If

S

n

i=1

DS

d

0

i

is consistent, then DS

d

0

i

, i = 1; 2; : : : ; n is consistent . This follows directly from

the de�nition of database consistency.

):

We now prove that if DS

d

0

i

, i = 1; 2; : : : ; n is consistent, then

S

n

i=1

DS

d

0

i

is consistent. Since

DS

d

0

i

are consistent, there exist consistent database states, DS

i

such that DS

d

0

i

i

= DS

d

0

i

,

i = 1; 2; : : : ; n. Let DS

0

be a database state such that DS

d

i

0

= DS

d

i

i

, for all i, i = 1; 2; : : : ; n

(such a DS

0

exists since d

i

\ d

j

= ;; i 6= j). DS

0

j= C

i

, for all i, i = 1; 2; : : : ; n, since

DS

i

j= C

i

(DS

i

is consistent), DS

d

i

0

= DS

d

i

i

and C

i

is de�ned only over data items in d

i

. Thus,

DS

0

j= C

1

^ C

2

^ � � � ^ C

n

. Also,

S

n

i=1

DS

d

0

i

� DS

0

. Thus, there exists a consistent database

state DS

0

such that

S

n

i=1

DS

d

0

i

� DS

0

. Hence, by de�nition of database consistency,

S

n

i=1

DS

d

0

i

is consistent. 2

Note that it is essential for the data items, over which conjuncts are de�ned, to be disjoint

if Lemma 2 is to hold. For example, let IC = ((a = 5 ! b = 5) ^ (c = 5 ! b = 6)). Let

d

0

1

= fag, d

0

2

= fcg, DS

d

0

1

= f(a; 5)g and DS

d

0

2

= f(c; 5)g. Thus, even though DS

d

0

1

and DS

d

0

2

are consistent, DS

d

0

1

[DS

d

0

2

is inconsistent. Since d

i

\ d

j

6= ;, database state DS

0

in the proof

of Lemma 2 may not exist.

We now show that if a database state restricted to the data items in every conjunct is

consistent, then the database state itself must be consistent. In contrast to Lemma 2, the sets

of data items over which the C

i

's are de�ned are not required to be disjoint.

Lemma 3 Let IC = C

1

^ C

2

^ � � � ^ C

n

, where C

1

; C

2

; : : : ; C

n

are de�ned over data items

in d

1

; d

2

; : : : ; d

n

. Let DS be a database state. DS

d

i

, for all i, i = 1; 2; : : : ; n is consistent i� DS

is consistent.

Proof:

(:

Follows directly from the de�nition of consistency.

):

Since DS

d

i

is consistent and C

i

is de�ned only over data items in d

i

, DS j= C

i

, for all i,

27

from database state DS

1

= f(a; 0); (b;10); (c; 5); (d; 10)g. For transaction t

1

, RS(t

1

) = fa; cg,

WS(t

1

) = fbg, and write(t

1

) = f(b; 5)g. Since only t

2

has a write operation on data item a and

no transaction writes data item c, �

w

(a; c) = ft

2

g. 2

We next introduce the notion of \state" which is a possible state the transaction might have

seen. The state of a transaction is an abstract notion and may never have been physically

realized in a schedule.

De�nition 6 Let S be a schedule, t be a transaction in S, d � D and DS

1

be a database state

such that legal(DS

1

; S). The state seen by t with respect to d exists if (S

�

0

)

d

is serializable, where

�

w

(d; S) � �

0

. Without loss of generality let t

1

; t

2

; : : : ; t

n

be a serialization order of transactions

in (S

�

0

)

d

. The state of an arbitrary transaction t

i

, i = 1; 2; : : : ; n is de�ned recursively as

follows.

state(t

i

; d; S;DS

1

) =

�

DS

d

1

if i = 1

state(t

i�1

; d�WS(t

i�1

); S;DS

1

) [write(t

d

i�1

); if i > 1

state(t

i

; d; S;DS

1

) is the state of the database with respect to data items in d as seen by t

i

.

The state of a transaction depends on the initial state and the serialization order chosen and

thus, may not be unique. Note that, read(t

d

i

) � state(t

i

; d; S;DS

1

).

Example 11 Consider the following schedule resulting from the execution of transaction

programs tp

1

and tp

2

from database state DS = f(a; 10); (b; 5); (c; 15)g.

S : r

1

(a; 10) r

2

(a; 10) w

1

(b; 20) w

2

(c; 25)

S is serializable with serialization order t

1

; t

2

or t

2

; t

1

. With serialization order t

1

; t

2

,

state(t

2

; fa; b; cg; S;DS) = f(a; 10); (b;20); (c; 15)g.

However, with serialization order t

2

; t

1

,

state(t

2

; fa; b; cg; S;DS) = f(a; 10); (b; 5); (c; 15)g. 2

The following lemmas relate the consistency of database states to the consistency of its

subsets. In the proofs of the lemmas, DS j= IC shall denote I j=

DS

IC.

Lemma 2 Let IC = C

1

^ C

2

^ � � � ^ C

n

, where C

1

; C

2

; : : : ; C

n

are de�ned over data items

in d

1

; d

2

; : : : ; d

n

, where d

i

\d

j

= ; for all i 6= j. Let d

0

i

� d

i

and DS be a database state. DS

d

0

i

,

for all i, i = 1; 2; : : : ; n is consistent i�

S

n

i=1

DS

d

0

i

is consistent

5

.

5

The [operator is similar to the one traditionally de�ned for sets, except that A[B is unde�ned if (d

0

; v

0

1

) 2 A,

(d

0

; v

0

2

) 2 B and v

0

1

6= v

0

2

.

26

-Appendix A-

We shall, in this appendix, prove Theorems 1 to 5 developed in the paper. The proof of Theorem

1 is quite trivial and is developed next.

Proof of Theorem 1 (Trivial Model): As a result of the model, there is no edge in the

serialization graph of S between nodes corresponding to transactions t

1

; t

2

such that t

1

2 �

G

and

t

2

2 �

L

. Since S

�

G

is serializable, serialization graph of S

�

G

is acyclic. Also, S

D

i

is serializable

and local transactions at LDB

i

do not conict with local transactions at LDB

j

, i 6= j. As a

result, serialization graph of S

�

L

is acyclic. Thus, the serialization graph of S is acyclic and S

is serializable. Hence proved. 2

In order to prove the remainder of the theorems we need to develop the following notation.

The developed notation is used in Appendix B as well.

Let seq be a sequence of operations. RS(seq) denotes the set of data items read by operations

in seq.

RS(seq) = fy : o 2 seq ^ y = entity(o) ^ action(o) = rg

WS(seq) denotes the set of data items written by operations in seq.

WS(seq) = fy : o 2 seq ^ y = entity(o) ^ action(o) = wg

write(seq) denotes the e�ect on the database as a result of the write operations in seq.

write(seq) = f(y; z) : o 2 seq ^ y = entity(o) ^ z = value(o) ^ action(o) = wg

We denote by �

w

(d; S) the set of transactions in a schedule S that have at least one write

operation on some data item in d � D. Formally,

�

w

(d; S) = ft 2 S : (WS(t) \ d) 6= ;g

Example 10 Consider the schedule,

S : r

2

(d; 10) r

1

(a; 0) w

2

(a; 10) r

1

(c; 5) w

1

(b; 5)

resulting from the execution of transaction programs

tp

1

: if(a � 0) then b := c tp

2

: a := d

else c := d

25

[5] Y. Breitbart, A. Silberschatz and G. Thompson, \Reliable Transaction Management in a

Multidatabase System," Proceedings of ACM SIGMOD Conference, 1990.

[6] W. Du and A. Elmagarmid, \Quasi Serializability: A Correctness Criterion for Global

Database Consistency in Interbase," Proceedings of the International Conference on Very

Large Databases (VLDB), 1989.

[7] A. Elmagarmid and W. Du, \A Paradigm for Concurrency Control in Heterogeneous Dis-

tributed Database Systems," IEEE International Conference of Data Engineering, February,

1990.

[8] H. F. Korth, W. Kim and F. Bancilhon, \On Long-Duration CAD Transactions," Informa-

tion Sciences 46, 1988.

[9] H. F. Korth and G. D. Speegle, \Formal Model of Correctness without Serializability,"

Proceedings of ACM SIGMOD Conference, 1988.

[10] S. Mehrotra, R. Rastogi, H. F. Korth and Avi Silberschatz, \On Correctness of Non-

Serializable Executions," Submitted for Publication.

[11] C. Papadimitriou, \The Theory of Database Concurrency Control," Computer Science

Press, 1986.

[12] D. Georgakopoulos and M. Rusinkiewicz, \ On Serializability of Multidatabase Transaction

through Forced Local Conicts," Technical Report, University of Houston.

[13] K. Salem and H. Garcia-Molina, \Altruistic Locking," University of Maryland, Technical

Report, UMIACS-TR-90-104, CS-TR-2515, 1990.

24

cases, that non-serializable executions preserve database consistency. We identi�ed models for

several of these cases, each of which involves di�erent restrictions on a transaction's read and

write operations. The models provide a range of options to the designer of an HDBMS. We have

characterized the relative power of our models, both in terms of concurrency and restrictions

imposed on transactions.

Most of the previous work for showing that non-serializable executions preserve database

consistency resort to informal reasoning. This is mainly due to the limitation of the transaction

models being currently used. For the purpose of dealing with non-serializable executions, we

develop a transaction model which di�ers from other standard transaction models. Operations,

in our transaction model, have values associated with them in addition to action and entity

attributes. In addition, we formally de�ne database consistency in terms of integrity constraints

which are quanti�er-free formulae over a �rst-order language.

Our approach is only the �rst step in relaxing the serializability requirement in an HDBMS

environment. Some of the restrictions imposed by us on the model in order to preserve database

consistency may be too severe for certain HDBMS applications. These restrictions could be

relaxed by exploiting the exact nature of integrity constraints (e.g., replicated data). Further,

fault tolerant algorithms for transaction management in HDBMS applications with these new

correctness criteria still need to be developed.

References

[1] K. R. Apt, \Introduction to Logic Programming," Handbook of Theoretical Computer

Science, (J. van Leeuwen, Managing Editor), North Holland.

[2] P. Bernstein, V. Hadzilacos and N. Goodman, \Concurrency Control and Recovery in

Database Systems," Addison- Wesley Publishing Co., 1987.

[3] Y. Breitbart, \Multidatabase Interoperability," SIGMOD Record, 1990.

[4] Y. Breitbart and A. Silberschatz, \Multidatabase Update Issues," Proceedings of ACM

SIGMOD Conference, 1988.

23

tp

1

: b

2

:= 1;

if(a 6= 1) then b

1

:= 1

tp

2

: b

2

:= 0;

if(c = 1) then begin

a := 0;

c := 0;

b

1

:= 0

end;

else b

1

:= 0

Let L be a local transaction program executing at site s

1

.

L : c := 0;

a := 0

Transaction programs tp

1

and tp

2

have no value dependencies. Consider the following sched-

ule resulting from the execution of tp

1

; tp

2

and L from the database state f(a; 1);(b

1

; 1);(c; 1);(b

2

; 1)g.

S

1

: r

1

(a; 1) w

L

(c; 0) w

L

(a; 0) r

2

(c; 0) w

2

(b

1

; 0)

S

2

: w

2

(b

2

; 0) w

1

(b

2

; 1)

The �nal global database state resulting from the above schedule is f(a; 0); (b

1

; 0); (c; 0); (b

2

; 1)g,

which is inconsistent. 2

8 Conclusion

In this paper, we adopt a weaker correctness criterion than serializability for HDBMS appli-

cations, which we refer to as two-level serializability (2LSR). The motivation for abandoning

serializability as the correctness criterion is the low degree of concurrency that results from

protocols for ensuring serializability in HDBMSs. two-level serializability only requires the pro-

jection of the global schedule on the set of global transactions to be serializable and each of the

local schedules to be serializable. As a result, protocols for ensuring that schedules are 2LSR

have the advantages of being simple, allowing a high degree of concurrency, and not violating

the local autonomy of sites.

However, 2LSR schedules preserve database consistency only in certain restricted HDBMS

applications. In many HDBMS applications, the data items for which intersite integrity con-

straints are introduced due to the integration of DBMSs are known (e.g., replicated data). We

capture this knowledge in our HDBMS model by partitioning data items into two disjoint sets-

global and local data items. A data item is a global data item if there is an integrity constraint

between it and a data item at a di�erent site. This knowledge allows us to prove, in certain

22

In [6], the authors claim that QSR as a correctness criterion in an HDBMS environment,

requires that:

1. there can be no integrity constraints between data items at di�erent sites (except equality

constraints which model replicated data).

2. transaction programs must not have value dependencies.

3. local transactions must not be permitted to write replicated data.

QSR schedules can be shown to preserve database consistency within the framework that we

have developed for studying transaction management in HDBMSs. To illustrate this, suppose

that we further restrict the G

rw

L

r

model as follows:

1. global data consists only of replicated data across sites.

2. no integrity constraints are present between local and global data (presence of such in-

tegrity constraints would result in inter-site integrity constraints).

3. transaction programs do not have value dependencies.

Using Theorem 5, the result that QSR schedules preserve database consistency under restric-

tions mentioned in [6] directly follows.

Theorem 5, however, states a more general result, in that restriction 1 mentioned above is

not required, and schedules are required to be 2LSR, not QSR. Further, if the GTM follows

the 2LPL protocol, then the requirement that no value dependencies be present between global

subtransactions can be relaxed as shown in Theorem 6.

QSR schedules may not preserve database consistency if transaction programs have value

dependencies as is demonstrated by Example 8. The following example illustrates that the pres-

ence of integrity constraints between replicated data and non-replicated data (this would result

in inter-site integrity constraints besides replication) could result in the database consistency

constraint being violated.

Example 9 Consider an HDBMS consisting of two sites s

1

and s

2

. Let D

1

= fa; c; b

1

g,

D

2

= fb

2

g, LD = fa; cg, and GD = fb

1

; b

2

g. Let IC = (a = 1! b

1

= 1)^ b

1

= b

2

^a = c: Note

that there is an implicit inter-site integrity constraint (a = 1! b

2

= 1). Consider the following

two global transaction programs.

21

L

1

: a := 1;

if(e > 0) then b := 1

L

2

: f := c

Consider the local schedules at sites s

1

and s

2

resulting from the execution of tp

1

; tp

2

, L

1

and L

2

from the database state f(a;�1); (b;�1); (c; 1); (e; 1); (f; 1)g.

S

1

: w

L

1

(a; 1) r

1

(a; 1) r

1

(b;�1) w

2

(e;�1) r

L

1

(e;�1) w

2

(ticket

1

) w

1

(ticket

1

)

S

2

: w

1

(c;�1) r

L

2

(c;�1) w

L

2

(f;�1) r

2

(f;�1)

The �nal state resulting from the execution of the above schedule is f(a; 1); (b;�1); (c;�1); (e;�1); (f;�1)g,

which is inconsistent. 2

Even if the GTM protocol were to be modi�ed as follows: global transactions do not release

a global lock unless all its operations at the local sites have completed, the above schedule could

still be generated and database consistency could be violated unless the global subtransactions

do a write on ticket

i

as their �rst operation. However, if local transaction programs have �xed-

structure, the write on ticket

i

need not precede all other operations of the subtransaction, if

database consistency is to be preserved (the proof can be found in Appendix B).

7 Related Work

Most of the work on transaction management in HDBMSs has been concentrated on ensuring

global serializability and has not addressed the issue of non-serializable executions that preserve

database consistency. An exception is the work by Du and Elmagarmid in which the notion

of quasi serializability (QSR) was introduced [6]. In this section we discuss the relation of our

work to QSR.

De�nition 5 A schedule S is quasi serial if and only if local schedules are serializable and

there is a total order of global transactions such that for any two global transactions t

i

and t

j

if

t

i

precedes t

j

in the total order, then all t

i

operations precede all t

j

operations at each and every

local site. A schedule S is QSR if it is conict equivalent to a quasi serial schedule. 2

Since in every QSR schedule, S

�

G

is serializable, QSR schedules are a subset of 2LSR sched-

ules. Further, the schedule in Example 2 is a 2LSR schedule which is not QSR. Thus, QSR

schedules are a proper subset of 2LSR schedules.

20

schedule, t

1

releases a global lock before t

2

releases a global lock, t

2

releases a global lock before

t

3

releases a global lock, : : :, t

n

releases a global lock before t

1

releases a global lock. Thus, it

follows that t

1

releases a global lock before t

n

releases a global lock, which in turn releases a

global lock before t

1

releases a global lock. Contradiction. Thus, S is serializable. 2

In the presence of 2PL sites G2LPL schedules may not be serializable as is demonstrated

by Example 7. However, the resulting schedules are strongly correct if there are no integrity

constraints between local and global data items, and global transactions have �xed-structure.

Theorem 8 Let S be a G2LPL schedule in the G

rw

L

r

model. If there are no integrity

constraints between the local and global data items, and the global transaction programs have

�xed-structure, then S is strongly correct. 2

The importance of Theorem 6, and Theorem 8 is the implication that no restrictions need

to be imposed on local transaction programs. Thus, the local autonomy of sites is not violated.

However, it is necessary for the global transaction programs to have �xed-structure, since other-

wise the hypothesis of Corollary 2, Theorem 6 and Theorem 8 do not hold. This is illustrated by

Example 3 where the schedule is a 2LPL schedule, but since transaction program tp

1

does not

have �xed-structure, database consistency is not preserved. Note that Theorem 6 is an instance

of Theorem 8 when every LTM follows 2PL. Hence in the appendix we only prove Theorem 8.

Since local transactions programs do not have �xed-structure, it is essential the the write op-

eration on ticket

i

by a global subtransaction precede all other operations of the subtransaction;

else, database consistency may be violated as is illustrated by the following example.

Example 8 Consider an HDBMS consisting of a non-2PL site s

1

and and a 2PL site s

2

.

Let D

1

= fa; b; e; ticket

1

g, D

2

= fc; fg, LD = fa; b; c; e; fg, and GD = fg. Let IC = (a > 0!

b > 0) ^ c > 0 ^ e > 0 ^ f > 0. Thus, no integrity constraints are present between local and

global data items. Consider the following two global transaction programs.

tp

1

: if(a > 0) then c := b

else c := 1

tp

2

: e := f

Let L

1

be a local transaction program executing at site s

1

and L

2

be a local transaction program

executing at site s

2

.

19

� Every global transaction obtains the global lock corresponding to a data item before ac-

cessing the data item.

� A global transaction, once it releases a global lock, does not obtain any more global locks.

� A global transaction does not obtain a global lock that is held by any other global trans-

action.

� A global transaction does not release a global lock unless all local locks corresponding

to global locks held by the global transaction for data items at the 2PL sites have been

obtained. In addition, a global lock corresponding to a data item accessed by the global

transaction at a non-2PL site is released by a global transaction only after the operation

on the data item is completed (at the local sites).

� Every global transaction with operations at a non-2PL site s

i

, does a write(ticket

i

) before

executing any of its operations at s

i

.

Thus, if every LTM follows the 2PL protocol, then every G2LPL schedule is 2LPL. However, if

some of the LTMs do not follow the 2PL locking protocol, then G2LPL schedules may not be

2LPL, as is illustrated by the following example.

Example 7 Consider an HDBMS consisting of a non-2PL site s

1

and a 2PL site s

2

. Let

the local schedules at the sites be

S

1

: w

2

(ticket

1

) w

1

(ticket

1

) r

L

1

(a) w

2

(a)

S

2

: w

1

(b) r

L

2

(b) w

L

2

(c) r

2

(c)

The schedule in the above example is a G2LPL schedule which is not 2LPL since S

1

is not

a 2PL schedule. 2

As with 2LPL schedules, G2LPL schedules are 2LSR. Furthermore, if no LTM follows 2PL

(or we do not know about the protocol followed by the LTMs) G2LPL schedules are serializable.

Theorem 7 Every G2LPL schedule consisting of only non-2PL sites is serializable.

Proof: Suppose a G2LPL schedule S consisting of only non-2PL sites is non-serializable.

Thus, there is a cycle in the serialization graph of schedule S. Since every local schedule is

serializable, the cycle must contain at least two global transactions. We consider the cycle con-

sisting of just global transactions (as any two global transaction have a conict at every site they

execute in common). Let t

1

; t

2

; : : : ; t

n

; t

1

be a cycle in S consisting of only global transactions

such that t

1

conicts with t

2

, t

2

conicts with t

3

, : : :, t

n

conicts with t

1

. Since S is a G2LPL

18

� A global transaction does not release a global lock until all local locks corresponding to

global locks held by the global transaction have been obtained

4

.

We refer to the schedules obtained as a result of following the above scheme as two-level two-

phase locking (2LPL) schedules. Every 2LPL schedule is a 2LSR schedule, but not vice-versa, as

is illustrated by the schedule in Example 8 which is 2LSR but not 2LPL (since S

1

is not a 2PL

schedule). In the L

r

and G

rw

L

r

models, for 2LSR schedules to preserve database consistency,

transaction programs are required to be LDP. However, if schedules are 2LPL, this restriction

can be relaxed, and database consistency is preserved in these models even if transaction pro-

grams have value dependencies.

Theorem 6 Let S be a 2LPL schedule in the G

rw

L

r

model. If there are no integrity con-

straints between the local and global data items, and the global transaction programs have �xed-

structure, then S is strongly correct. 2

As the G

rw

L

r

model is a generalization of the L

r

model, the following corollary trivially

follows.

Corollary 2 Let S be a 2LPL schedule in the L

r

model. If there are no integrity constraints

between the local and global data items, and the global transaction programs have �xed-structure,

then S is strongly correct. 2

It is an open problem, whether a 2LPL schedule in the L

r

model is strongly correct if in-

tegrity constraints between local and global data items are permitted, and global transactions

have �xed-structure. In order for schedules to be 2LPL, every LTM is required to follow the

2PL locking protocol. We now de�ne generalized two-level two-phase (G2LPL) schedules, which

do not require that each LTM follow the 2PL locking protocol. We refer to sites which follow

the 2PL locking protocol as the 2PL sites and the sites which do not follow 2PL (or we have no

information about the concurrency control protocol at the site) as the non-2PL sites.

G2LPL schedules result from a scheme similar to the one resulting in 2LPL schedules. In

addition, every non-2PL site s

i

is assumed to contain a data item ticket

i

. The following GTM

protocol results in G2LPL schedules.

4

If the LTM interface does not provide for the submission of explicit lock operations, then the GTM can utilize

the acknowledgements for operations to determine if local locks have been obtained.

17

violated if transaction programs are not LDP. The following theorem states conditions under

which schedules preserve database consistency in the G

rw

L

r

model.

Theorem 5 Let S be a 2LSR schedule in the G

rw

L

r

model. If all transaction programs

are LDP, and no integrity constraints are present between local and global data items, then S is

strongly correct. 2

6 Concurrency Control Protocols

In order to ensure that a schedule S is two-level serializable, the GTM protocol only needs

to ensure that S

�

G

is serializable, since the LTM at each site s

i

ensures the serializability of

S

D

i

. Thus, in an HDBMS, two-level serializability can easily be ensured, since the global

transactions execute under the control of the GTM. For example, the GTM could follow a

protocol very similar to 2PL, in which the GTM maintains locks for every data item accessed

by global transactions (we refer to them as global locks). In addition, in order to ensure that

S

�

G

is serializable,

� Every global transaction obtains the global lock for a data item before accessing the data

item.

� A global transaction, once it releases a global lock, does not obtain any more global locks.

� A global transaction does not obtain a global lock that is held by any other global trans-

action.

� A global lock is held by the global transaction at least until the completion of the operation

(at the local site) on the data item for which the lock was obtained.

Let us consider a variant of the above simple scheme in which each LTM follows the 2PL

protocol. We refer to locks maintained by the LTMs for the data items at the local sites as local

locks. Thus, corresponding to a data item accessed by global transactions, both the GTM and

LTM maintain locks. The GTM protocol is as follows.

� Every global transaction obtains the global lock for a data item before accessing the data

item.

� A global transaction, once it releases a global lock, does not obtain any more global locks.

� A global transaction does not obtain a global lock that is held by any other global trans-

action.

16

De�nition 4 Transaction program tp has �xed-structure if for all pairs (DS

1

; DS

2

) of

database states, struct(t

1

) = struct(t

2

), where t

1

and t

2

are the transactions resulting from

the execution of tp from DS

1

and DS

2

respectively. 2

Example 6 Consider the following transaction programs tp

1

and tp

2

. While tp

1

is a �xed-

structure transaction program, tp

2

is not:

tp

1

: if(x > 5) then y := 3 tp

2

: if(x > 5) then y := 3

else y := 5 else z := 5

2

If we restrict all transaction programs to have �xed-structure, then 2LSR schedules preserve

database consistency.

Theorem 4 Let S be a 2LSR schedule in the G

rw

model resulting from the execution of

�xed-structure transaction programs. If no integrity constraints are present between local and

global data items, then S is strongly correct. 2

Note that even local transaction programs must have �xed-structure, if database consistency

is to be preserved. In Example 8, only the local transaction program did not have �xed-structure

and that resulted in the database inconsistency. This may not be a very practical assumption

since local transaction programs are pre-existing and may not satisfy the above restriction.

Another way of ensuring that 2LSR schedules are strongly correct is to restrict transaction

programs to be LDP. In the next subsection, it is shown that, under this restriction, 2LSR

schedules are strongly correct for the G

rw

L

r

model, which is more general than the G

rw

model.

5.5 The Global Read-Write and Local Read (G

rw

L

r

) Model

Consider a model of HDBMS application with the following restriction on transactions.

� local transactions read and write local data items and also read global data items, and

� global transactions read and write global and local data items.

The G

rw

L

r

model is more general than all the models considered so far. Since the G

rw

L

r

model is more general than the G

r

model, presence of integrity constraints between local and

global data items may result in the violation of database consistency as was illustrated in

Example 2. Similarly, as shown in Example 3, in the L

r

model, database consistency may be

15

5.4 The Global Read-Write (G

rw

) Model

Consider a model of HDBMS applications with the following restrictions on transactions:

� local transactions only read and write local data items, and

� global transactions, in addition to reading and writing global data items, also read and

write local data items.

The G

rw

model is more general than the G

r

model. Thus, as shown in Example 2, in the

G

rw

model, 2LSR schedules may not preserve database consistency if integrity constraints are

present between local and global data items. However, in contrast to the G

r

model, absence of

integrity constraints between local and global data items does not ensure database consistency

as is demonstrated by the following example.

Example 5 Consider an HDBMS consisting of two sites s

1

and s

2

. Let D

1

= fa; b; eg,

D

2

= fcg, LD = fa; b; c; eg, and GD = fg. Let IC = (a > 0 ! b > 0) ^ c > 0 ^ e > 0. Thus,

no integrity constraints are present between local and global data items. Consider the following

two global transaction programs.

tp

1

: if(a > 0) then c := b

else c := 1

tp

2

: e := c

Let L be a local transaction program executing at site s

1

.

L : a := 1;

if (e > 0) then b := 1

Consider the local schedules at sites s

1

and s

2

resulting from the execution of tp

1

; tp

2

and L

from the database state f(a;�1); (b;�1); (c;1); (e; 1)g.

S

1

: w

L

(a; 1) r

1

(a; 1) r

1

(b;�1) w

2

(e;�1) r

L

(e;�1)

S

2

: w

1

(c;�1) r

2

(c;�1)

The �nal state resulting from the execution of the above schedule is f(a; 1);(b;�1);(c;�1);(e;�1)g,

which is inconsistent. 2

In Example 8, database inconsistency results from the fact that the structure of transaction

program L changes based on the value returned by the read operation on data item e. To

avoid such inconsistencies, we need to restrict the transaction programs to be �xed-structured.

A transaction program is �xed-structured if its execution from every database state result in

transactions with the same structure.

14

Consider the transaction program tp, which has a single assignment statement a := b, where

a and b are data items. If a and b are at di�erent sites, then tp has a value dependency since

the write on a depends on the read operation which returns the value of b. However, if a and b

were at the same site, tp would have no value dependency.

The following Lemma relates the notions of value dependencies and LDP.

Lemma 1 If a transaction program tp has no value dependencies, then tp is LDP. 2

Proof: Let DS

1

be an arbitrary database state such that DS

D

i

1

is consistent, for an arbitrary

i, i = 1; 2; : : : ;m. Let fDS

1

gtpfDS

2

g. In order to show that tp is LDP, we need to show that

DS

D

i

2

is consistent. Since DS

D

i

1

is consistent, by the de�nition of a consistent state, there exists

a consistent database state DS

3

such that DS

D

i

3

= DS

D

i

1

: Let fDS

3

gtpfDS

4

g. Let t

1

; t

2

be

transactions resulting from the execution of tp from DS

1

; DS

3

respectively. Since it is given

that tp has no value dependencies, t

D

i

1

= t

D

i

2

. Thus, DS

D

i

4

= DS

D

i

2

. Since tp preserves database

consistency, DS

4

is consistent. As DS

D

i

4

is consistent, DS

D

i

2

is consistent. Hence proved. 2

Since local transaction programs execute at a single site, they have no value dependencies.

The following corollary trivially follows.

Corollary 1 Every local transaction program is LDP. 2

In the L

r

model, 2LSR schedules may not preserve database consistency as was shown in

Example 3. However, if we restrict the transaction programs to be LDP, then 2LSR schedules

can be shown to be strongly correct.

Theorem 3 Let S be a 2LSR schedule in the L

r

model. If all transaction programs are

LDP, then S is strongly correct. 2

As a transaction program with no value dependencies is LDP, Theorem 3 holds if transaction

programs have no value dependencies. However, if transaction programs have value dependen-

cies, then schedules may not preserve database consistency as illustrated in Example 4. It must

be noted that Theorem 3 holds even if integrity constraints are present between local and global

data items.

13

Another example of 2LSR schedules not preserving database consistency in the L

r

model is

given below.

Example 4 Consider an HDBMS consisting of two sites s

1

and s

2

. Let D

1

= fa; e; bg,

D

2

= fcg, LD = fbg and GD = fa; c; eg. Let IC = (c > 0! a > 0) ^ (e > 0! c > 0) ^ (e >

0 ! a > 0) ^ b > 0. Note that no integrity constraints are present between local and global

data items. Consider the following two global transaction programs.

tp

1

: a := 1;

c := 1

tp

2

: if (c > 0) then e := 1

else e := �1

Let L be a local transaction program executing at site s

1

.

L : temp := a;

if(e � 0) then temp := 1;

b := temp

Consider the local schedules at sites s

1

and s

2

resulting from the execution of tp

1

, tp

2

and

L from the database state f(a;�1); (e;�1); (c;�1); (b; 1)g.

s

1

: r

L

(a;�1) w

1

(a; 1) w

2

(e; 1) r

L

(e; 1) w

L

(b;�1)

s

2

: w

1

(c; 1) r

2

(c; 1)

The �nal state resulting from the execution of the above schedule is f(a; 1); (e; 1); (c;1); (b;�1)g,

which is inconsistent. 2

In Example 4, the local transaction program L reads inconsistent data values. The reason

for the reads being inconsistent is that the value written by the global transaction program tp

2

for the data item e depended on the value of data item c, which is located at another site. As

the global transaction programs can access data at multiple sites, the \behavior" of a global

transaction at a site may depend on the database state \seen" by it at a di�erent site. One way

to remove such inconsistent reads is by restricting the global transaction programs.

A restriction similar to LDP, absence of value dependency, was imposed on transaction pro-

grams in [7]. Informally, a global transaction program has value dependencies if the operations

performed by it at one site depend on the operations it has performed at another site.

De�nition 3 Transaction program tp has no value dependency if for all pairs (DS

1

, DS

2

)

of database states and for all i, i = 1; 2; : : : ;m, if DS

D

i

1

= DS

D

i

2

, then t

D

i

1

= t

D

i

2

, where t

1

and

t

2

are transactions resulting from the execution of tp from DS

1

and DS

2

respectively. 2

12

5.3 The Local Read (L

r

) Model

Consider a model of HDBMS applications with the following restrictions on transactions:

� local transactions read and write local data items and also read global data items, and

� global transactions only read and write global data items.

As in the G

r

model 2LSR schedules may not always preserve database consistency in the L

r

model as the following example illustrates.

Example 3 Consider an HDBMS consisting of two sites s

1

and s

2

. Let D

1

= fb; c; eg,

D

2

= fag, LD = feg and GD = fa; b; cg. Let IC = (a > 0! c > 0) ^ (b > 0! c > 0) ^ e > 0.

Thus, no integrity constraints are present between local and global data. Consider the following

two global transaction programs.

tp

1

: b := 1;

if(a � 0) then c := 1

tp

2

: c := 1;

a := 1

Let L be a local transaction program executing at site s

1

.

L : if (b > 0) then e := c

else e := 1

Consider the local schedules at sites s

1

and s

2

resulting from the execution of tp

1

; tp

2

and L

from the database state f(a;�1); (b;�1); (c;�1); (e; 1)g.

S

1

: w

1

(b; 1) r

L

(b; 1) r

L

(c;�1) w

2

(c; 1) w

L

(e;�1)

S

2

: w

2

(a; 1) r

1

(a; 1)

The �nal state resulting from the execution of the above schedule is f(a; 1); (b;1); (c;1); (e;�1)g,

which is inconsistent. 2

In Example 3, the local transaction program L reads inconsistent data values. The reason

for the reads being inconsistent is that tp

1

leaves the database at site s

1

in an inconsistent state,

which is then \seen" by L. This can be overcome by requiring the execution of global transaction

programs from a consistent local database state to leave the local database in a consistent state

(other local database states might be inconsistent). This is stated more formally below.

De�nition 2 Transaction program tp is Local Database Preserving (LDP) if for all database

states DS

1

and for all i, i = 1; 2; : : : ;m, if DS

D

i

1

is consistent, and fDS

1

gtpfDS

2

g, then DS

D

i

2

is consistent. 2

11

� local transactions only read and write local data items, and

� global transactions in addition to reading and writing global data items, also read local

data items.

In the G

r

model 2LSR schedules may not preserve database consistency as is illustrated by the

following example.

Example 2 Consider an HDBMS consisting of two sites s

1

and s

2

. Let D

1

= fa; b; eg,

D

2

= fcg, LD = fag and GD = fb; c; eg. Let IC = (a > 0! b > 0)^ (c > 0! (b > 0_e > 0)).

Note that (a > 0! b > 0) is an integrity constraint between local data item a and global data

item b. Consider the following global transaction programs.

tp

1

: if(a � 0) then e := 1

else e := �1;

c := 1

tp

2

: if(a � 0) then b := �1

else b := 1;

c := �1

Let L be a local transaction program executing at site s

1

.

L : a := �1

Consider the local schedules at sites s

1

and s

2

resulting from the execution of tp

1

, tp

2

and

L from the database state f(a; 1); (c; 1); (b; 1); (e; 1)g.

S

1

: r

1

(a; 1) w

1

(e;�1) w

L

(a;�1) r

2

(a;�1) w

2

(b;�1)

S

2

: w

2

(c;�1) w

1

(c; 1)

The �nal global database state resulting from the above schedule is f(a;�1);(c; 1);(b;�1);(e;�1)g,

which is inconsistent. 2

In Example 2 above, note that there is an integrity constraint between a which is a local

data item and b which is a global data item. If we further restrict the model and disallow such

integrity constraints between local and global data items, 2LSR schedules can be proved to be

strongly correct.

Theorem 2 Let S be a 2LSR schedule in the G

r

model. If no integrity constraints are

present between local and global data items, then S is strongly correct. 2

10

In an HDBMS, pre-existing local applications can be assumed to preserve local database

consistency constraints which were present prior to integration. However, they are unaware

of the newly introduced integrity constraints. As a result, if local transactions were to write

global data items, database consistency may not be preserved. For example, the resulting

database state may be inconsistent if local transactions wrote replicated data items. Local

transactions, thus, do not write global data items. In the remainder of the paper, we assume

that all transaction programs, when executed in isolation, preserve global database consistency.

We also assume that each LTM follows a concurrency control protocol that ensures serializability

at local sites.

5 Two-Level Serializability

A schedule S is two-level serializable (2LSR) if its projection on the set of global transactions

is serializable and its projection on data items at each site is serializable. That is, a schedule

S = (�;�

S

) is 2LSR if S

�

G

is serializable and S

D

i

, i = 1; 2; : : : ;m is serializable.

Every serializable schedule is 2LSR, but not vice versa. Unlike serializable schedules, 2LSR

schedules may not preserve database consistency. In this section, we identify restrictions under

which 2LSR schedules preserve database consistency in various models of HDBMS applications.

These models are based on restricting the transactions' read and write operations of the various

data items.

5.1 The Trivial Model

Consider a model of HDBMS applications with the following restrictions on the transactions:

� local transactions only read and write local data items, and

� global transactions only read and write global data items.

For this model we can establish the following theorem.

Theorem 1 Let S be a 2LSR schedule in the trivial model. S is serializable and thus is

strongly correct. 2

5.2 The Global Read (G

r

) Model

Consider a model of HDBMS applications with the following restrictions on transactions:

9

� Global transactions. The set of transactions, denoted by �

G

, that may execute at more

than one site. Global transactions are normally applications developed after the integration

has been performed.

Each local database system has a local transaction manager (LTM) which is responsible for

ensuring local database consistency. The global transaction manager (GTM), built on top of the

existing databases, is responsible for ensuring global database consistency. The GTM controls

the execution of global transactions. We assume that the interface between the GTM and the

LTMs provides for operations to be submitted by the GTM to the LTMs and the LTMs to

acknowledge the completion of operations to the GTM.

A distinguishing feature of an HDBMS is the requirement that each local DBMS retains its

local autonomy. In this paper, local autonomy is de�ned to mean:

� The local sites are free to follow any concurrency control protocol to ensure local database

consistency.

� The LTMs do not communicate any information (e.g., conict graph) relevant for concur-

rency control to the GTM.

� The local transactions execute outside the control of the GTM.

� Pre-existing local applications are able to execute without any changes being made to

them.

Each DBMS de�nes certain local consistency constraints among the various local data items.

The integration of the various DBMSs into an HDBMS results in the introduction of certain

global inter-site constraints, which were not present prior to integration. We can thus partition

the set of data items at a site, D

i

, into local data items, LD

i

, and global data items, GD

i

,

such that LD

i

\ GD

i

= ;, D

i

= LD

i

[GD

i

, and if there is an integrity constraint between

d

0

1

2 D

i

and d

0

2

2 D

j

, i 6= j, then d

0

1

2 GD

i

and d

0

2

2 GD

j

. The set of all the global data

items, GD =

S

m

i=1

GD

i

. Data items at di�erent sites between which integrity constraints are

introduced as a result of the integration are thus in GD. For example all replicated data items

are global (We model replicated data items as distinct data items at di�erent sites with an

equality constraint between them).

8

3.3 Strong Correctness

In a database system, transaction programs, when executed in isolation, are assumed to preserve

the integrity constraints of the database. The task of the concurrency control scheme is to en-

sure that schedules resulting from the concurrent execution of the transaction programs preserve

database consistency. However, a concurrency control scheme which ensures that schedules pre-

serve the database integrity constraints does not prevent transactions from \seeing" inconsistent

database states. To overcome this, we de�ne the notion of strong correctness, which requires

that transactions in a schedule read consistent data values, in addition to the requirement that

schedules preserve database integrity constraints.

De�nition 1 A schedule S = (�;�

S

) is strongly correct i�

� for all consistent database states DS

1

, if fDS

1

gSfDS

2

g, then DS

2

is consistent, and

� for all transactions t 2 � , read(t) is consistent. 2

Every serializable

2

schedule is strongly correct, but there are strongly correct schedules

that are not serializable. The correctness criterion that we develop in this paper, two-level

serializability, ensures schedules in certain HDBMS applications are strongly correct without

requiring serializability.

4 The HDBMS Model

A heterogeneous distributed database consists of a set of autonomous pre-existing local databases

LDB

1

; LDB

2

; : : : ; LDB

m

located at sites s

1

; s

2

; : : : ; s

m

respectively. Each LDB

i

consists of a

set of data items D

i

. We denote the set of all the data items in the heterogeneous distributed

database by D; thus D =

S

m

i=1

D

i

. We assume that the local databases are disjoint; that is,

D

i

\D

j

= ;, i 6= j.

Integrity constraints are as de�ned in Section 2, and transactions and schedules

3

are as

de�ned in Section 3. In our model, transactions are of two types:

� Local transactions. The set of transactions, denoted by �

L

, that execute at a single site.

All pre-existing applications running at a local site before integration are local transactions.

2

By serializability, in this paper, we refer to conict serializability (CSR) [11].

3

In distributed systems, schedules are generally de�ned to be a set of operations with a partial order de�ned on

them. We consider schedules to be a set of operations with a total order de�ned on them. This total order can be

assumed to be an arbitrary total order which is consistent with the original partial order.

7

Equality over the structure of sequences is de�ned similarly, except that values associated with

operations are ignored. If two sequences are equal, then their structures are equal, but not vice

versa.

For the remainder of the paper, we shall use t

i

to denote the transaction resulting from

the execution of the transaction program tp

i

. Operations belonging to transaction t

i

will be

subscripted by i. Thus, a read operation on data item a belonging to transaction t

1

will be

denoted by r

1

(a; v), where v is the value returned by the read.

Example 1 Consider the following transaction program:

tp

1

: if(a = 0) then b := 0

else c := 0

Execution of tp

1

from database state DS

1

= f(a; 0); (b; 5); (c; 3)g results in the following trans-

action:

t

1

: r

1

(a; 0) w

1

(b; 0)

where,

struct(t

1

) : r

1

(a) w

1

(b)

t

fbg

1

: w

1

(b; 0)

read(t

1

) = f(a; 0)g

However, execution of tp

1

from database state DS

3

= f(a; 10); (b;12); (c; 15)g results in:

t

0

1

: r

0

1

(a; 10) w

0

1

(c; 0)

Also, execution of tp

1

fromDS

1

results in a database stateDS

2

, whereDS

2

= f(a; 0); (b; 0); (c; 3)g.

Thus, fDS

1

gtp

1

fDS

2

g. 2

3.2 Schedules

A schedule consists of a sequence of operations resulting from the concurrent execution of a

set of transaction programs. A schedule S = (�;�

S

) is a �nite set � of transactions, together

with a total order, �

S

, on all operations of the transactions. Also, if for two operations o

1

; o

2

in S and some transaction t 2 � we have o

1

�

t

o

2

, then o

1

�

S

o

2

. In order to develop

properties of schedules we shall need to consider projections of schedules on sets of data items

and transactions. Let d � D, and �

0

� � . We denote by S

d

the projection of S on data items

in d, and by S

�

0

the projection of S on transactions in �

0

.

6

addition to action and entity attributes. Since we relax the requirement of serializability as

the correctness criterion, we need to deal with certain non-serializable executions. The value

attribute helps us in proving that such non-serializable executions preserve database consistency.

We use the notation fDS

1

g tp fDS

2

g to denote the fact that when transaction program

tp executes from a database state DS

1

, it results in a database state DS

2

. Similar notation

is used to denote execution of operations, transactions and schedules (the intended meaning

will be clear from the context). Since operations have values associated with them, execution

of operations is possible only from certain database states. A database state DS is legal with

respect to operation o

i

, denoted by legal(DS; o

i

), if it is possible to execute o

i

from DS. Thus,

legal(DS; o

i

) if

� either action(o

i

) = w or

� if action(o

i

) = r, then (entity(o

i

); value(o

i

)) 2 DS.

A database state DS is legal with respect to a sequence of operations o

1

o

2

: : : o

p

if it is possible

to execute o

1

o

2

: : : o

p

from DS; that is, legal(DS; o

1

o

2

: : : o

p

) if:

� legal(DS; o

1

), and

� if p > 1, then legal(DS

0

; o

2

: : : o

p

), where fDSg o

1

fDS

0

g.

Execution of a sequence of operations o

1

o

2

: : : o

p

from a database state which is not legal with

respect to o

1

o

2

: : : o

p

is unde�ned.

In order to discuss properties of transaction executions we introduce the following notation.

Let seq = o

1

o

2

: : : o

p

be a sequence of operations. The sequence seq has a structure associated

with it denoted by struct(seq), which is derived from seq by ignoring the values associated with

the operations in seq. Thus every operation o

i

in struct(seq) is a 2-tuple (action(o

i

); entity(o

i

)).

Let d � D. seq

d

denotes the subsequence of seq consisting of all operations o 2 seq such that

entity(o) 2 d. read(seq) denotes the database state \seen" as a result the read operations in

seq. Formally,

read(seq) = f(y; z) : o 2 seq ^ y = entity(o) ^ z = value(o) ^ action(o) = rg

Two sequences of operations seq

1

and seq

2

are equal, denoted by seq

1

= seq

2

, if the operations

in the sequences are the same and the order of operations in both seq

1

and seq

2

is also the same.

5

to data items in the set d, where d � D. Thus, DS

d

= f(d

0

; v

0

) : d

0

2 d and (d

0

; v

0

) 2 DSg.

DS

d

is consistent i� there exists a consistent database state DS

1

such that DS

d

1

= DS

d

. For

example, consider a database consisting of data items a and b and IC = (a = b). A database

state DS = f(a; 5); (b;6)g is not consistent. However, DS

fag

= f(a; 5)g is consistent and

DS

fbg

= f(b; 6)g is consistent.

3 Transaction Model

In this section, we develop the transaction model, which deviates from the standard development

to facilitate reasoning about non-serializable executions. We also develop strong correctness as

a requirement on schedules. Strong correctness requires more than just preservation of database

consistency, as we shall see in what follows.

3.1 Transactions

A transaction is a sequence of operations resulting from the execution of a transaction program.

A transaction program is usually written in a high level programming language with assign-

ments, loops, conditional statements and other complex control structures. Thus, execution of

a transaction program starting at di�erent database states may result in di�erent transactions.

This observation has serious implications when dealing with non-serializable executions as will

become evident later in the paper.

Formally, a transaction t = (O;�

t

), where O = fo

1

; o

2

; : : : ; o

n

g is a set of operations and �

t

is a total order on O. An operation o

i

is a 3-tuple (action(o

i

); entity(o

i

); value(o

i

)). action(o

i

)

denotes an operation type, which is either a read (r) or write (w) operation. entity(o

i

) is the

data item on which the operation is performed. If the operation is a read operation, value(o

i

)

is the value returned by the read operation for the data item read. For a write operation,

value(o

i

) is the value assigned to the data item by the write operation. We assume, that for

each transaction, a database item is read at most once and written at most once, and that no

database item is read after it is written.

Our transaction de�nition di�ers from the way they are traditionally de�ned in the litera-

ture (see for example [2], [11]). We include, along with every operation, a value attribute, in

4

partitioning of data at each site is introduced in Section 4. In Section 5, we identify restrictions

on transactions and integrity constraints in HDBMSs under which 2LSR schedules preserve

global database consistency. In Section 6, we present a protocol which ensures that schedules

are 2LSR. Concluding remarks are o�ered in Section 7.

2 Database Consistency

In the standard transaction model [11], a consistent database state is implicitly de�ned by as-

suming that each transaction, when executed in isolation, maps a consistent database state to

another consistent database state. Correctness in case of concurrent execution is de�ned in

terms of serializability. In order to develop a theory of non-serializable executions, we must ex-

plicitly de�ne what a consistent database state is. We do this in terms of integrity constraints,

which are discussed below.

A database consists of a countable set, D, of data items. For each data item d

0

2 D,

Dom(d

0

) denotes the domain of d

0

. A database state maps every data item d

0

to a value v

0

,

where v

0

2 Dom(d

0

). Thus, a database state can be expressed as a set of ordered pairs of data

items in D and their values, DS = f(d

0

; v

0

) : d

0

2 D and v

0

2 Dom(d

0

)g

1

.

Integrity constraints (denoted by IC) in a database distinguish inconsistent database states

from consistent ones. Traditionally, integrity constraints are de�ned as a subset of all the possible

database states, and a database state is consistent if it belongs to that subset [11]. In our model,

integrity constraints are quanti�er-free formulae over a �rst order language consisting of:

� Numerical and string constants (e.g., 5, 100, `Jim'),

� Functions over numeric and string constants (e.g., +, max),

� Comparison operators (e.g., >, =), and

� Set of variables (data items in D).

The terms and well-formed formulae are de�ned as in [1]. Let I be the standard interpretation for

numerical and string constants, function symbols, and comparison operators. Since a database

state maps data items (variables) to values it can be viewed as a variable assignment [1]. A

database state DS is consistent i� I j=

DS

IC. DS

d

denotes the state of the database restricted

1

DS has the property that if (d

0

; v

0

1

) 2 DS and (d

0

; v

0

2

) 2 DS, then v

0

1

= v

0

2

.

3

which they execute. Since the global transaction manager (GTM) has no knowledge about the

local transactions and the indirect conicts caused by them among the global transactions, the

GTM cannot, without taking additional steps, determine the serialization order of transactions

at a site. The steps taken by the GTM to ensure the above conditions are pessimistic; that

is, it prevents non-serializable schedules from being generated by either suitably restricting the

concurrent execution of global transactions (as in [4],[7]), or by aborting global transactions

that could potentially result in non-serializable executions (as in [12]). Thus, it seems that any

protocol for ensuring global serializability in an HDBMS will provide low concurrency.

One way of increasing concurrency is to relax the serializability requirement [3]. For ex-

ample, the quasi-serializability (QSR) correctness criterion introduced in [6] preserves database

consistency under the restrictions that no inter-site integrity constraints besides replication are

present, and global transactions do not have value dependencies (that is, operations of a global

transaction at a site are independent of its operations at other sites). The altruistic locking

scheme presented in [13] is a simple protocol that ensures quasi-serializability.

In this paper, we follow on the idea of relaxing the correctness criterion for HDBMS ap-

plications to allow the inclusion of non-serializable executions. We develop a new correctness

criterion, two-level serializability (2LSR), which is more general than both serializability and

quasi-serializability. We identify restrictions on transaction programs and integrity constraints

in HDBMSs under which 2LSR schedules preserve database consistency. A simple protocol for

ensuring two-level serializability in HDBMSs that does not violate the local autonomy of sites is

also presented. It is shown that the restrictions imposed on global transactions in [6] (absence

of value dependencies between global subtransactions) in order to preserve database consistency

can be relaxed if the GTM follows a variant of the protocol.

The paper contains a number of theorems and lemmas, whose proofs are of considerable

length and can be found in the appendix.

The remainder of the paper is organized as follows. In Section 2, we de�ne database con-

sistency in terms of integrity constraints. A transaction model suited to dealing with non-

serializable schedules is developed in Section 3. A model for HDBMS applications based on the

2

Maintaining Database Consistency in Heterogeneous

Distributed Database Systems

�

Sharad Mehrotra

Rajeev Rastogi

Henry F. Korth

Abraham Silberschatz

Department of Computer Sciences

University of Texas at Austin

Austin, TX 78712-1188 USA

Abstract

The concept of serializability has been the traditionally accepted notion of correctness in

database systems. However, in a heterogeneous distributed database system (HDBMS) environ-

ment, ensuring serializability is a di�cult task mainly due to the desire of preserving the local

autonomy of the various participating local database systems. In this paper, we introduce a

new correctness criterion for HDBMSs, two-level serializability (2LSR). We identify restrictions

under which 2LSR schedules preserve database consistency. Further, we present a simple proto-

col for ensuring schedules are 2LSR. This protocol is easily implementable and does not violate

the local autonomy of sites.

1 Introduction

The problem of transaction management in a heterogeneous distributed database management

system (HDBMS) has received considerable attention from the database community in recent

years. The basic problem is to integrate a number of pre-existing local database management

systems (DBMSs) located at di�erent sites in a manner that allows transactions to access data

residing at multiple sites and at the same time preserve the local autonomy of the various sites [6].

Database consistency is traditionally ensured by requiring that the concurrent execution of

transactions be serializable [11]. The problem of ensuring global serializability in an HDBMS

has been studied extensively in recent years. A necessary condition for maintaining global se-

rializability is that all global transactions are serialized in the same order at all the sites at

�

Work partially supported by NSF grants IRI-8805215, IRI-9003341, and by grants from the IBM corporation.

1

MAINTAINING DATABASE CONSISTENCY IN HETEROGENEOUS

DISTRIBUTED DATABASE SYSTEMS

Sharad Mehrotra

Rajeev Rastogi

Henry F. Korth

Avi Silberschatz

Department of Computer Sciences

University of Texas at Austin

Austin, Texas 78712-1188

TR-91-04 February 1991

�

DEPARTMENT OF COMPUTER SCIENCES

THE UNIVERSITY OF TEXAS AT AUSTIN

austin, texas 78712

