TRADING CONTROL AUTONOMY
FOR RELIABILITY IN
MULTIDATABASE TRANSACTIONS

Nandit Soparkar, Henry F. Korth,
and Abraham Silberschatz

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712-1188

TR-91-05 February 1991



Trading Control Autonomy for Reliability in Multidatabase
Transactions *

Nandit Soparkar Henry F. Korth Abraham Silberschatz

Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712-1188 USA

Abstract

This paper deals with the problem of ensuring correct (i.e., atomic, serializable, and durable) transaction
executions in a distributed multidatabase system where few changes are permissible in the constituent
local database systems to accommodate the demands of the distributed environment. The degree of
control over the transactions by the sites (execution autonomy) and by the multidatabase software
(control autonomy) are examined to highlight the trade-offs necessary to obtain correct executions.

We propose techniques that infringe upon control autonomy in order to provide fault-tolerant transac-
tion management without restricting the types of transactions allowed, and which need minimal changes
to be made to the existing systems. These techniques allow a large number of concurrency control pro-
tocols to be handled, and local execution autonomy to be preserved. Our proposed protocols tolerate
failures at a level comparable to traditional distributed database management systems. Moreover, our
scheme exhibits the desirable properties of avoiding global deadlocks, and scalability.

1 Introduction

A multidatabase system (MDBS) is an integrated system consisting of several database management systems
(DBMSs) that allow user transactions to access data located in the constituent heterogeneous hardware and
software environments. An MDBS is expected to provide the integration of the heterogeneous environment
into a new, unified system with minimal changes made, if any, to the underlying systems. The pressing
practical importance of MDBSs has recently attracted the attention of the research community. There are
several important problems that need to be addressed in the design of an MDBS, such as data translation
for syntactic and semantic homogeneity, user interfaces, security, transaction management issues, ete. (e.g.,

see [7, 13, 14]). In this paper, we restrict our attention to transaction management issues.

1.1 Transaction Processing in an MDBS

The MDBS may be regarded as a distributed system — with one DBMS at each site, and any interaction
between the sites being effected via message-passing. There are two types of transactions that execute in

the system:

*Work partially supported by NSF grants TRI-8805215, TRI-9003341, and by grants from the IBM corporation.



s Local Transactions, those that access data at a local site only. The majority of these transactions

are expected to arise from application programs that existed prior to the integration.

e Global Transactions, those that access data at several different sites. Global transactions execute

by submitting subtransactions to some or all of the local DBMSs.

Tt is assumed that each local DBMS ensures serializability and handles local deadlocks (either by avoidance
or detection). Each local DBMS is responsible also for recovery from failure of local transactions and failure
of its own local site.

Desirable features that an MDBS should provide for transaction management include the following [14]:

1. Restrictions on data access by global transactions should be minimized. Likewise, the local transactions

at a site should be permitted to access any data residing in the local database.
2. The MDBS should be designed to provide serializable executions over both local and global transactions.

3. The MDBS should provide a means to execute global transactions atomically — that is, all the sub-
transactions of a global transaction should commit, or all should abort. The MDBS must manage

global concurrency control and deadlock detection or avoidance.
4. The MDBS should guard against the violation of local autonomy (e.g., see [7, 14] and below).

5. The MDBS must ensure that failures of sites, or failures in the distributed environment, do not affect

the correctness of the executions.
6. It should be possible to scale-up the system to accommodate the new additions.

It may not be possible to achieve all aspects of the above desirable features. The literature contains

numerous proposals for ensuring various subsets of these features or alternatives to them.

1.2 Autonomy

The local autonomy of a DBMS may be regarded loosely as the extent to which the execution of local
transactions can proceed unaffected adversely due to its integration into an MDBS. Local autonomy impacts
a number of concerns (e.g., see [7, 14]). However, we restrict our attention to those aspects that are crucial
to the correct transaction management, which are the degrees to which the DBMS and the MDBS have
control over the transaction executions as described below.

The ezecution autonomy of a DBMS refers to the degree of control that a local transaction manager has

over the transactions or subtransactions executing at that site. Execution autonomy is preserved if the local



transaction manager of a site can either delay (indefinitely, if necessary) the execution of a transaction {or
subtransaction) operation, or abort a local transaction at any time.

The control autonomy of a DBMS refers to the degree that the MDBS does not control the local trans-
actions executing at that site. Thus, control autonomy is preserved for a DBMS if the MDBS may neither
abort the execution of a local transaction, nor delay its operations in any manner (except in terms of normal
contention for resources — e.g., see [3, 4, 16]). Certain applications may permit the infringement of this

aspect of autonomy (e.g., as implicitly suggested in [11, 15]), and we exploit the possibilities in this paper.
1.3 Tradeoffs in an MDBS

It is not possible to meet all the desirable characteristics mentioned above for an MDBS if we insist on
preserving the correctness criteria of atomic, serializable, and durable executions in our design. First,
consider the question of ensuring atomic executions of the (global) transactions. To achieve this, a global
atomic commit (GAC) protocol is necessary, and such a protocol requires a prepared state (e.g., see [1]). There
are difficulties encountered in guaranteeing the durability of the changes made by a subtransaction without
actually committing it. These become clear when one considers the possibility of an internal abort which
allows a DBMS to abort a transaction or subtransaction at any time during its execution. In particular,
this may occur even after a commit operation has been submitted by the transaction or subtransaction in
question (but before the DBMS responds with an indication that the operation was successfully executed)
[6]. Even if all the changes to be effected by a subtransaction are maintained by the MDBS in stable storage
in order to allow reinstating the changes by repeated retrials (e.g., see [4, 16]), the problem persists. This
may be traced to the preservation of control autonomy requirement wherein a local DBMS decides the local
serialization order independent of the MDBS, and hence, may permit other local transactions that were to
have been serialized after the subtransaction in question to access states of the database not affected by that
subtransaction. This is exemplified next.

Consider the situation depicted in Figure 1 for a DBMS where control autonomy is preserved. Assume
that all the operations of subtransaction T, except for the commit operation, have been executed, and that
the commit operation has been submitted to the underlying DBMS after a GAQC protocol decided to commit
the corresponding global transaction. Also, assume that the GAC executed with the expected serialization
order that had 7 preceding L,. However, an internal abort occurs for 7', and since the MDBS has no
control over the execution of Lo, the DBMS may execute and commit Ly. Hence, even if the changes to
be effected by T are retrieved from stable storage and resubmitted to the DBMS, the position of T in the

actual serialization order will be erroneous.



—=  getual

serialization order

2= intended

Figure 1: Example for Observation 1

To circumvent the above problem, the approaches used in [4, 16] are forced to place severe restrictions

on the transactions regarding the data items that may be accessed. We thus make the following observation:

Observation 1. Preserving ezecution and control autonomy, together with unresiricted types of trans-
actions permissible in the system imply that a prepared state cannot be guaranieed. O

Next, consider the question of ensuring the serializability of the transaction executions. The serialization
orders of the transactions executing at a DBMS cannot be obtained explicitly by the MDBS, except under
very specific conditions [12]. This leads to the potential for nonserializability among global transactions
despite the enforcement of local serializability. For example, consider two global transactions, (7, and Gy,
that access common data by means of subtransactions at two different sites, S,, and S,. Suppose that G,
has the subtransactions T, and Tpy that execute at sites S, and S,, respectively, and similarly, G4 has
the subtransactions Tym and Ty which execute at sites S,, and Sy, respectively. Since each site manages its
transactions independently, the serialization orders imposed on the subtransactions may be (Tpm, Tym) at
site S, and (Tyn, Tpn) at site Sy, In such a situation, there is no serialization order possible for the global
transactions G, and Gy.

The MDBS cannot restrict attention to the conflicting operations (e.g., see [1]) of the global transactions
alone if it is to maintain the serializability of the executions. Consider the situation depicted in Figure 2

for site S,, where we again assume that control autonomy is preserved. Let Tpm and Ty, be non-conflicting



Tym Tym

|

commit commit commit

O

S
e S

time

T2 serialization order

Figure 2: Example for Observation 2

subtransactions and assume Tp,, commits first. The figure shows that this commit order may differ from
the serialization order due to the presence of a local transaction L. As in the above example, a global
serialization order may be impossible if the serialization order at site S, differs with respect to that at
site S,,. This illustrates the anomaly of a situation where two non-conflicting global transactions may be
committed at different times, and yet they may be involved in non-serializable executions due to the presence
of local transactions that the MDBS is not in a position to control. As pointed-out in [2], this is an important
consideration because in such situations, ensuring the global atomic commitment of the transactions is useful
in providing serializable executions only when a restricted class of rigorous schedules (usually not provided
by typical centralized DBMSs) is generated by the DBMSs in question. In particular, it should be noted
that the commonly used strict two-phase locking protocol, as implemented in many centralized DBMSs, is
insufficient to guarantee serializability in these situations.

Therefore, we also make the following observation.

Observation 2. Unrestricted types of transactions permissible in the system, and preservation of control
autonomy, together imply that failure to enforce global serialization explicitly among the subtransactions may

result in non-serializable executions. [
1.4 Owur Approach

The approach used in this paper is to infringe on one of the common denominators in the above observations,
namely the control autonomy of the DBMSs.! This provides the MDBS designer some added control over the

transaction executions. This approach has been implicitly considered by some other researchers as well, but

1The other common denominator regarding unrestricted transaction types was infringed upon in [4].



their approach to transaction management is different (e.g., the schemes in [11, 8] relies on compensations
to achieve correct executions of transactions).

Our approach makes use of the existing means for concurrency control, recovery procedures, etc. that are
provided by each of the underlying DBMSs, and is able to piovide all the other desirable properties outlined
above. We propose a simple transaction management scheme for the MDBS that makes-minimal assumptions
about the constituent DBMSs, uses serializability as the correctness criterion, and exhibits failure-resilience

characteristics comparable to distributed DBMS technology. The salient features of our new scheme are:

1. All the desirable properties (with the exception of control autonomy) in an MDBS design as described

above are provided.

9. The local DBMSs can use any concurrency control scheme that ensures the atomic, cascadeless, and
serializable execution of the transactions submitted to it (including recovery in case of site failures
[1]). Note that several commonly used concurrency control schemes, such as strict two-phase locking,

provide these properties.

3. Our scheme is simple to implement since there is no need to access any control information from the
transaction managers of the constituent DBMSs. Furthermore, our approach does not require changes
to be made to the existing application programs. Thus, the costs associated with the development of

our scheme are small.

4. Our scheme is resilient to local failures (e.g., transaction failures, system failures, etc. [6]). This is
achieved by indirectly using the existing recovery mechanisms available at each site. Therefore, few
new recovery techniques need to be developed. Our approach exhibits failure-resilience that is provided

by a typical distributed DBMS.

5. Our scheme allows the integration of a new DBMS into an existing MDBS to be accomplished in
a simple manner. The key to achieving these important features is that our approach allows the

implementation of a distributed MDBS as opposed to a centralized one.

6. Our scheme permits the use of the original user interfaces for both the original DBMS as well as the
MDBS at each site. This is advantageous since the user interfaces need not be redesigned for the

integration.



2

System Structure

An MDBS consists of n sites, Si, Sa, ..., Sn, interconnected by a computer network as shown in Figure 3.

Each site S; has a database system, DBMS;, consisting of a local database, LDB;, and a local transaction

manager, LT'M;. We assume that [)—; LDB; = ¢ (i.e., no replicated data).

Each DBMS; supports the following common operations [1]:

7.

begin: To indicate to LTM; that a transaction has been initiated.
insert(): To insert a new data item in LDB;.

delete(): To delete an existing data item from LDB;.

read(): To read the value of an existing data item in LDB;.

write(): To update the value of an existing data item in LDB;.

. commit: To commit a transaction.

abort: To abort a transaction.

Two operations that access a common data item are said to conflict if one of them is an insert, a delete,

or a write.

We assume that the execution of the transactions submitted to LTAf; by the user programs is ensured

to be correct in the following sense:

1.

Atomic. Bither all or none of the operations of a transaction are executed by LDB;. In the LDB;, all
commitied transactions have their effects reflected permanently, whereas none of the effects of aborted

transactions appear.

Serializable. The history of any interleaved execution of operations of a set of committed transactions

at DBMS; implies an acyclic local conflict serialization graph (SG) at site S; (e.g., see 1.

Cascadeless. The abort of a transaction does not require the aborting of other transactions. What

this effectively means is that transactions do not read uncommitted values of data items [1].

Durable. For local failures [6], LTM; ensures that all the transactions that were reported to the user
programs as having been committed successfully have their effects permanently installed in LDB;,

whereas any active transactions are aborted.



5. Deadlock Management. Each LTM; handles local deadlocks by either avoiding them, or by using

some deadlock detection and recovery scheme.

The MDBS software is distributed among the n sites. The MDBS itself consists of n modules of software.

FEach module, MDBS;, is located at site S; running above DBMS;. The MDBS; are interconnected by a

communications network, but are otherwise independent of one another.

Once the MDBS is created, new data items may be added that are accessed by the global transactions.
These are stored in the same manner as the original data items. Note that the actual data items placed in
the various DBMSs may differ in their syntax and associated semantics. Since we are concerned more with
the correctness of transaction management, we assume that the data conversion mechanisms are already
available (e.g., see [7]), and hence, the MDBS may view all the data items to have homogeneous syntax
and semantics. However, to keep the degree of data conversion low, a global transaction is executed as a
set of subtransactions with at most one subtransaction per site — unlike the approach in [15} which uses
single-site transactions. Each subtransaction is submitted to the local DBMS as a local transaction. That
is, the DBMSs are not able to differentiate between the two types of transactions, which is a consequence of
preserving local autonomy. Henceforth, we use the term fransaction to refer to both the types, and we use
the terms local transaction or subiransaction when we need to make the distinction.

All local and global transactions executed at a site Sj, are processed through MDBS;. The MDBS;
module is transparent to the user programs. That is, it provides the same interface to the user programs as
LTM; did prior to the integration. Similarly, MDBS; is transparent to LTM;. Global transactions use the
same interface as the original local transactions did. That is, the application programs need not distinguish
between global and local transactions. The implementation issues regarding the transparency are further

discussed in Section 8.

3 Transaction Management

A transaction is an ordered sequence of operations opi, ops, . . ., 0pm, where op; is begin, op,, is commit or
abort, and op; for 1 < i < m is a read, write, insert, or delete operation on some data item. We assume
there are no blind write or delete operations. That is, each write or delete operation is preceded by a
read operation that is generated by LTM; on the corresponding data item.?2 The initiation of a transaction
is effected by a begin operation, the completion is effected by one of commit or abort operations, and the

active phase of the transaction constitutes the execution of the remaining operations. The execution of an

2This is a reasonable assumption since most systems first retrieve the data item which they subsequently update or delete.
If this is not provided by LT M;, the MDBS; can generate the necessary read operations instead.



Communications Network

! | ! !

MDBS, MDBS, MDBS; MDBS,

DBMS, DBMS, DBMS; DBMS,
’:: User Programs :~)
"""""" Transactions
""" " MDBS;
T T T LTM;
"T[ T 7 LDB;

Figure 3: The MDBS System Structure

operation is initiated by its submission to DBMS; (or, equivalently, LTM;), and the operation is said to be
fully executed after LT M; sends back a response for it. In particular, at each site S;, we distinguish between
an abort operation submitted by the user transactions (e.g., as a result of a logical error within the user
transaction), and an abort that is enforced by DBMS; (e.g., to break a deadlock situation within DBMS;).
We call the former an external abort to distinguish it from the latter which is an internal abort. In order to
ensure the correct execution of global transactions each MDBS; module maintains some control information
as described below.

A user at a site S; may submit any transaction, local or global, to MDBS;. For a global transaction that
is initiated at site S;, site S; is designated as the coordinator, and it initiates the requisite subtransactions

at the other sites. The information regarding the various sites at which a global transaction executes is

maintained in stable storage by the coordinator.



Under certain circumstances, an MDBS; may choose to abort an active transaction 7T} forcibly by dis-
regarding any operations of T} as yet not submitted to DBMS;, and by submitting an abort on the behalf
of Tj to DBMS;. The ensuing internal abort response by DBMS; is passed back to the user program which
views the abnormal termination of 7} as an instance of the exercise of execution autonomy by DBMS;. Al-
ternatively, if no responses concerning the transaction under-question have been passed back; the transaction
may be restarted by MDBS;. The circumstances under which MDBS; chooses to abort a transaction are

determined by a pair of sets, ch(T}) and pe(T;) that are created for each subtransaction T; executed at site

Si:

1. ch(Tj): This set represents all the changes effected by 7; in LDB;. Specifically, it contains all the
insert, delete, and write operations of T together with the affected data items and values produced
by the operations. This set is continually updated as the execution of Tj proceeds by including in
it the relevant operations prior to submitting them to DBMS;. This set is used to ensure that if
subtransaction Tj must commit (for the reason that the associated global transaction is decided to be

committed), it can do so as explained below.

2. pe(T;): This is a set of transactions executing at site S; that potentially conflict with 7; and must be
serialized after Tj. That is, taking ch(T}) into account, pe(7}) consists of transactions T}, executing at
site S; whose computation may be affected as a result of accessing the data items mentioned in ch(7}).
As described below, the set pe(T}) is created toward the final stages of executing T}, and until all the
necessary steps have been taken to deal with T}, pe(T}) is kept up to date. This set is used to choose
the transactions to abort forcibly so as to ensure the requirements of GAC for global transactions. All

these actions are made precise below.

The above sets are introduced to facilitate the description of how the transactions executing at a site S;
are affected by MDBS; to ensure that the overall execution of all the transactions remains correct. The key
idea is to give the MDBS; control over when and if the various transactions executing at site S; are allowed
to commit. In all cases, the commit operation for a transaction is submitted by MDBS; to DBMS; only

after the last but one operation of that transaction is fully executed.

3.1 Local Transaction Management

The begin operation of a local transaction T}, that is submitted to MDBS; at a site S; initiates the execution
of that transaction. Before the begin operation is submitted to DBMS;, Ty is assigned a unique id, and the

completion of any other book-keeping activities (as described in Section 8) for the purposes of maintaining

10



the sets ch(T}) and pe(Tk). Each subsequent operation is, likewise, submitted to DBMS; after completing
any required book-keeping. The responses provided by DBMS; to the operations is passed back by MDBS;
to the user program that submits Tj.

The final commit or abort, however, is handled differently. In case of an external abort, an abort

operation is submitted to DBMS;, and the response is returned back to the user program. Likewise, when
MDBS; makes a decision to commit Tk, it submits the commit operation on behalf of T} to DBMS;, and
passes back to the user program the response generated as for the other operations. To ensure the correctness
of global transactions, MDBS; may delay the submission of the commmit operation for T, or even abort T}

foreibly.
3.2 Global Transaction Management

A subtransaction 7 is executed at a site S; by MDBS; in a manner similar to the local transactions up
to the last but one operation. In addition, the ch(Tj) set is created and updated during the execution of
T;. At the point where all the operations of Tj up to and including the last but one operation are fully
executed, a prepare-to-commit message is expected by MDBS; from the coordinating site for the associated
global transaction for T} as part of a GAC protocol. On receipt of this message, MDBS; obeys the sequence
of steps of the MDBS protocol specified below.

The MDBS protocol is run locally for only one active subtransaction Tj at a time,® and consists of the

following five steps:

1. The set pe(T}) is created consisting of all transactions that have operations outstanding (i.e., operations
that have been submitted to DBMS;, but the response to which have not yet been received by MDBS;)
that conflict with ch(Tj). Any subsequent operations conflicting with ch(T}) that are submitted to

DBMS; on behalf of a transaction T} result in the inclusion of T} in pe(T5).

2. A unique data element ser; that is maintained in LDB; is accessed by a write operation submitted by
MDBS; on behalf of Tj. This operation is not included in ch(7}), and the value written is immaterial.
After obtaining a successful response to this operation, the MDBS protocol proceeds. Otherwise, if
the response is an internal abort (or an unsuccessful write), then T; is aborted, and the sets ch(Ty)

and pe(T}) are discarded.

3. The set ch(7}) is saved on stable storage, and a ready-to-commit message is sent to the coordinator

for T;. The saving of ch(T}) is the point when T; (or equivalently, MDBS;) is said to have entered

3 Although this requirement can be relaxed, to keep the presentation simple, the MDBS protocol handles the subtransactions
one at a time.

11



the prepared state. That is, MDBS; guarantees that if the coordinator should choose to commit the
global transaction corresponding to Tj, then the effects of Tj on LDB; will be permanently installed

regardless of any failures.

4. Upon receipt of a final commit or abort decision from the coordinator for Tj, the corresponding

operation for T} is submitted to DBMS; by MDBS;. In case the commit operation submitted to
DBMS; results in an internal abort, all the transactions in pe(T5), at least, are forcibly aborted as
described above. After this, a transaction that consists of the operations contained in ch(7}) is created

by MDBS;, and this transaction is repeatedly resubmitted to DBMS; until it is successfully committed.

5. Finally, ch(T}) is either removed from the stable storage, or an indication that it is no longer needed

is also stored. Also, the sets ch(T}) and pe(T;) are discarded from the memory.

Note that in the MDBS protocol, the data item ser; provides a conflict between each pair of subtransac-
tions executing at site S; in a manner similar to the approach in [5]. However, we do not use an optimistic
approach to the concurrency control, and hence, we disregard the particular value written by the operation
submitted to access ser;. Also note that resorting to the repeated retrials of a transaction so as to ensure

that its effects are installed in LDB; is very similar to a set of idempotent redos for recovery purposes [9].

4 Global Atomic Commitment

The transaction management scheme described in Section 3 employs a GAC protocol to ensure the atomic
commitment of the global transactions. A GAC protocol depends upon the availability of a prepared state [1].
By infringing upon the control autonomy of the sites as detailed in the MDBS protocol, we now demonstrate
that a prepared state may be achieved. Once this is achieved, it is possible to use the traditional two-phase
commit, or three-phase commit protocols (e.g., see [1]) as a GAC protocol.*

While the use of stable storage to save ch(T}) for a subtransaction T executing at a site S; may appear
to be sufficient to ensure a prepared state, this proves to be incorrect. As discussed in Section I, the
problems arise because T; may be internally aborted at any time (which is associated with the preservation
of execution autonomy as well), and that may lead to a situation where 7; may lose its intended position in
the serialization order at site S;. This is due to the fact that the commit decision for a global transaction
reflects not only the atomicity of the global transaction, but also its commitment at a particular point in
the serialization order at each site (see below). Thus, failures notwithstanding, it must be ensured that T}

can be committed if required at a particular position in the serialization order at site S; by DBMS;.

4Note that these protocols may entail blocking behavior which is discussed in Section 7.

12



By aborting all transactions that read from Tj (e.g., see [1]), it can be ensured that the position of 7} in
the serialization order is not compromised. Aborting those transactions also ensures that there will be no
contention for the data items in ch(T}) so that the repeated retrials of 7; will eventually succeed. Note that
it is unnecessary to abort all the transactions in the transitive closure of the read from relation due to the
restriction that the schedules are conflict serializable and cascadeless. Similarly, a transaction that accesses
a data item that is only read by 7; need not be aborted. The question is whether pe(T}) indeed includes all
the transactions that may read from 7. To see that this is the case, consider all the transactions ezcluded
from pe(Tj). We claim that none of these transactions reads from T;. Indeed, these transactions fall into

the following three categories:

1. Committed transactions — since by the cascadelessness property of DBMS;, they could not have read

from the uncommitted 7.
9. Transactions without conflicting operations — these could not have read from 7 for obvious reasons.

3. Transactions with no outstanding operations — since if it had a conflicting operation that had been
fully executed already, it could not have read from the uncommitted Tj due to the cascadeless execu-
tions. Note that if a conflicting operation is submitted to DBMS; after pc(T;) is generated, then the

corresponding transaction s included in pc(T5).

As the MDBS protocol progresses, notice that pc(7;) does not lose any elements. Furthermore, even if
the transactions in pe(T;) fully execute all but their final operations (access to ser;), they are not permitted
to commit. This requirement may appear unusual, but a problem that is described below makes it easier to
see why this is essential.

Consider the following subtle problem that may arise if a prepared state were declared for T; prior to the
full execution of the access on ser;. In that case, it may happen that DBMS; decided to abort T internally
after fully executing all the operations of T that preceded the access of ser;. The notification of the abort
may reach MDBS; after a short delay, and that could result in the execution of some conflicting operations
of transactions that were intended to be serialized after 7; by DBMS;. As far as the coordinator for T;
is concerned, it makes a GAC decision based on those trénsactions not having been executed before 7.
Such transactions may get committed, or may exhibit no outstanding conflicting operations at the time that
pe(Ty) is being generated. The full, and normal, execution of the access of ser; serves as an indicator that T;
was not aborted internally prior to the complete generation of pe(7;). The same reasoning holds to justify

the delay in completion of any transaction placed in pe(Tj).

13



We are now in a position to state the following result that is closely related to Observation 1 of Section

1 concerning the feasibility of a prepared state (and hence, a GAC protocol).

Theorem 1. The MDBS protocol provides a prepared state for a transaction, but it does not ensure full

conirol autonomy.

Proof Sketch: Only the situation that needs to be considered is when a GAC protocol concludes with
a commit decision for the subtransaction Tj. It can be shown that the history generated using the MDBS
protocol corresponds to one of the following two correct histories.

Firstly, in the case that there is no internal abort upon submission of the commit operation for T},
the corresponding correct history is simply the one that includes both the committed Tj as well as the
transactions that read from Tj. The second case for consideration is when an internal abort occurs upon
submission of the commit operation for 7j. The corresponding correct history in that situation includes the
committed subtransaction T}, while the transactions in pe(T}) occur with an aborted termination (which
could be ascribed to internal aborts as well). O

By using the prepared state provided by the MDBS protocol, a GAC protocol may be designed using
any standard protocol used for distributed DBMSs (e.g., see [1]). Note that the MDBS protocol is described

in terminology used for the standard two-phase commit protocol [1].

5 Serializability

Our transaction management scheme produces serializable executions over both global and local transactions.
We restrict attention to transactions that are committed since serializability is a property dealing with
committed transaction histories [1].

Consider synchronization intervals for a local history — a notion similar to synchronization events (e.g.,
see [12]) for a local history. An interval is a contiguous portion of a local history that may be associated
with a transaction executing at the local site. Such an interval should not overlap with any other similar
interval if the corresponding transactions have a path between them in the local SG. Also, the intervals
should have the property that their order of occurrence in the schedule should be the same as the local
serialization order of the transactions with which they are associated. Consider the synchronization intervals
of subtransactions executing at each site. If a protocol such as 2PC is used, the intervals can be synchronized
to yield serializable executions.

As an example, consider the use of 2PL and 2PC as depicted in Figure 4. The locked interval for a

subtransaction that obeys 2PL (i.e., the duration for which all the locks are held) serves as the necessary

14



coordinator coordinator
N:;p for Gq/
Tpi ‘ 8 4 ‘ qu
2 6
3
Ty Tpj
local history at local history at
site S; site \S;

H locked interval

Figure 4: Correct Synchronization using 2PL and 2PC

synchronization interval. If the locks are not released priof to the completion of the 2PC protocol, a non-
serializable execution cannot occur. This is because a cycle of events such as (1 2 ...8 1) is impossible since
the distributed history of events in a system must follow a partial order [10]. The same reasoning can be

extended to more than two global transactions and several sites.

Theorem 2. The MDBS protocol ensures serializability over all transactions, both global and local.

Proof Sketch: Consider the history at a local site S;. A synchronization interval consists of the portion
of the history from the point immediately after the last operation of a subtransaction up to the commit
operation. Due to the assumed cascadeless property of the local history, and the accesses to ser;, this
interval has the properties for a synchronization interval when the subtransactions are considered. Firstly,
the accesses to ser; ensure that there will exist a path in the local history between any two locally executing
subtransactions. And since the executions are cascadeless, the complete execution of all the operations
preceding the commit operation for any subtransaction Ty; must occur only after the commit operation of
any subtransaction Tp; that precedes Ty; in the local serialization order. Hence, the intervals suggested do
not overlap, and also, they occur in the same order as the serialization order for the local history.

Having identified the synchronization intervals, the MDBS protocol provides the means to engage in the

15



necessary synchronization by means of a GAC protocol. Thus, from the preceding discussion and the results

in the literature (e.g., see [5, 12]), serializability is ensured over all the transactions. O

Note the close correlation between the statement of Observation 2 of Section 2, and Theorem 2 which

achieves serializability by the enforcement of local conflicts by accesses to the unique data items maintained

at each site.®

6 Deadlocks

We now discuss the issues of global and local deadlocks. First, let us consider deadlocks within a site S;. By
our earlier assumption, any possible deadlocks within DBMS; are handled by LTM;. The only other case of
potential local deadlock is during a prepared state since the transactions in pe(Ty) for a subtransaction Tj
wait for the completion of 7. However, since T; does not directly or indirectly wait for the transactions in
pe(Ty) through a local sequence of waits, there can be no such deadlocks.

The situation changes when the potential for deadlocks that span more than one site is considered. These
can occur when the transaction executions at the different sites give rise to non-compatible serialization
orders for the global subtransactions. As an example, in the proof of Lemma 1, consider the situation where
Tom X gm at site Spm, and Tyn A Tpn at site Sy. In this case, the coordinator for Gp may execute all the
operations pertaining to the subtransaction Tpm, and similarly, the coordinator for G, for subtransaction
Tyn. These subtransactions will await the initiation of the GAC protocol by their respective coordinators
before actually committing. However, the coordinators will also be awaiting the completion of the operations
by Tpn and Tym, respectively, so as to be able to proceed with the GAC. But, the subtransactions T, and
Tym have to await the commitment of Ty, and Ty, respectively, before proceeding. This is a classic deadlock
situation involving the four subtransactions and their coordinators.

To deal with the above problem, timeouts are employed to ensure that a coordinator suffers only a finite
or bounded amount of waiting periods. In effect, deadlock resolution is achieved by aborting the global
transactions that are involved in possible distributed deadlocks. Our approach has the drawback of possible

starvation which we do not address here.

5The statement of Observation 2 suggests that infringing upon control autonomy alone may suffice to provide serializability
(i.e., without taking recourse to enforced conflicts between the subtransactions [5]). While that is possible, it may require
an MDBS; module to carefully examine the local transactions, and effectively, manage the bulk of concurrency control — an
inefficient alternative since the transactions would encounter delays at the LTM; as well.

16



7 Failure Resilience

The MDBS needs to deal with a number of different possible failures in the system. These can be separated
into two categories. The first category deals with failures that only affect a single site locally. These

correspond to the failures that arise in a centralized DBMS. The second category deals with failures which

arise as a result of the distributed nature of the MDBS, and these directly affect the global transactions,

and indirectly, the local transactions.

7.1 Local Failures

Consider the various failures that may occur at site S;, and the associated recovery activities provided by
MDBS; [6]. Since subtransactions of global transactions execute only at the site at which they are initiated,

our discussion applies to both the local and the global transactions executing at site .S;.

e Action failure. This is a failure that is anticipated by the user programs (e.g., missing data, resource
limitations, etc.), and corresponds to an operation of a transaction that is not successfully completed.
In such cases, no recovery activity need be done by MDBS;, and the response provided by LTM; is

passed-on to the user program.

o Transaction failure. This failure occurs if a transaction must be aborted for some reason not
anticipated by the user program. As discussed in Section 3, the abort may be submitted by the user
program, or it may be an internal abort. There is no specific recovery activity that MDBS; is required
to do — except in the case that the internal abort occurs after a prepared state for a subtransaction 1is

reached. In such a situation, the MDBS protocol resubmits the transaction (see item 4 of the protocol).

o System failure. A failure of this type is characterized by the loss of all information stored in volatile
memory. However, the information stored in non-volatile memory remains intact. The MDBS protocol
ensures that at most one subtransaction 7; had reached the prepared state without having been dealt
with completely. If such a 7} exists, the system, upon recovery, obtains ¢h{T;) from the stable storage.
Since all transactions in pc(t;) must have been active at the time of the failure, they are aborted by
the recovery mechanism of DBMS;. Thus, pe(T}) is initialized to the empty set. Then MDBS; sends
the ready-to-commit message again for T}, and normal processing is resumed. These actions suffice to

place the site in a prepared state for 7}, and the GAC proceeds from this point.

In the context of volatile memory failures, there is the more subtle problem of what happens if such

a failure occurs afier DBMS; commits a transaction but before MDBS; records the response in stable

17



storage. A similar problem is the occurrence of such a failure after MDBS; has recorded the completion
of a transaction by DBMS; in stable storage but before it informs the user program of the completion.
These problems are related to the implementation details of MDBS; as regards its failure-resilient
transparency to the user programs and DBMS; by the use of requisite handshaking protocols etc., and
these issues are discussed in Section 8. Suffice to note here that the problems are an extension of what
happens in the case that such a failure occurs during the interaction of user programs and DBMDS;

before the integration of the system into an MDBS.

+ Non-volatile storage failures. These failures result in the loss of non-volatile memory, and we
do not address them further beyond noting that standard methods to deal with these (e.g., archives,

checkpoints, etc.) need to be used.

Note that MDBS; has very few recovery activities to perform directly, and most of the recovery manage-

ment is relegated to DBMS;.

7 9  Failures in the Distributed Environment

As is the case for any protocol for GAC in distributed environments with arbitrary non-malicious failures
possible, our approach also exhibits bdlocking behavior wherein some data items in a local DBMS become
inaccessible for the duration of a failure [1]. This is manifested in our scheme during the prepared state for a
subtransaction T} that blocks the data items in ch(T}) by the delay in the submission of commit operations
for the transactions in pe(75).

The problem of choosing alternative coordinator sites in case of site failures is present in our approach
just as in the case of typical distributed DBMSs. It is not difficult to see that the same techniques that
are applicable in the traditional schemes also apply to our scheme. In essence, by the availability of a
prepared state, an MDBS designed according to our specifications permits the use of techniques developed

for distributed DBMSs in the environment of an MDBS.

8 Implementation and Performance Issues

The two major issues in this section are the implementation of the MDBS; modules, and the techniques used
to handle the sets in the MDBS; associated with the creation of prepared states. We also briefly discuss the

issues of scalability of our scheme.

18



8.1 The MDBS; Module

We require that each MDBS; be transparent to both the user program as well as LT'M;. This has several
implications. It assumes that the interfacing details between the user programs and LTM; are known, so

that MDBS; can emulate this interface. The assumption is not unreasonable since the LT M; itself need not

be modified — only an interface module need be developed.

Note that failures may adversely affect the MDBS; functions. Consider the passing of a message from
LTM; to the user program through MDBS;. The message must be recorded in stable storage by MDBS;
before being passed-on to the user program, lest the message be lost in the event of a failure. The potential
exists for a failure between the time LT M; sends a message and MDBS; records it stably. This is analogous
to the situation in which a failure occurs between the time LTM; sends a message and the time the user
program records or displays the message. It is important that the MDBS; module duplicate whatever “hand-
shaking” protocol is used by user programs with LT'M; to ensure that no additional failure vulnerabilities
are introduced.

In many systems, handshaking is accomplished by means of messages sent with sequence numbers, and
corresponding acknowledgements for these messages [6]. If it is ensured that the messages are recorded in
stable storage during their passage through the MDBS;, it is not difficult to see that reliable handshaking

can be duplicated easily in such environments.

To enforce failure-resilience, we have noted the need to be able to store information in stable storage. One
way to do this is to have a module that performs the necessary information storage on a device that is accessed
independent of the DBMS; stable storage mechanisms. A different option is to use the database itself as the
information storage device [15]. The information is saved using a transaction running in DBMS; that inserts
the requisite record into the relation. Retrieving the information involves reading the same relation. The
method works correctly because committed transactions have their effects stored in the database permanently
— just as in the case of records saved in stable storage. The advantage of this method is that it is simple,
existing resources are made use of, and hence, it makes for the inexpensive development of an MDBS. The
obvious disadvantage is in the inefficiency that may result since every time such information needs to be

accessed, it is done using a separate transaction.
8.2 Managing the Sets chi(T;) and pc(T})

In examining the alternatives to managing a prepared state for a subtransaction 7; executing at a site Sj, a

distinct trade-off becomes apparent. On one hand, it is clearly desirable to delay operations submitted by

19



the user programs the least amount of time within MDBS; prior to their submission to DBMS;. This can be
achieved if the operations are not subjected to close scrutiny and analysis in the MDBS; module. However,
doing so may incur heavier penalties in the number of transactions that may have to be forcibly aborted

to ensure the atomicity of global transactions as explained below. The trade-off arises from the results in

Section 4 that indicate that instead of considering pc(7}), we may use for the same purposes a set pc'(7})
as long as pe(Tj) C pc/(Tj). An extreme example of this is to maintain no pe(T;) sets at all, and instead,
only to keep track of the active transactions. That is, the active transactions are regarded as constituting
the set pc/(T;)|J 7. Thus, in the situation where the forcible aborts of the transactions in pe(T;) becomes
necessary, all the active transactions except T} are aborted. This is similar to emulating a system failure.

On the other hand, a careful interpretation of the operations (and perhaps, the values of the data items
involved as well) would certainly minimize the size of pc/(7j) — and thus, the number of forcible aborts.
However, that would clearly increase the delays in the passage of the operations and the associated responses
between the user programs and the DBMS; at each site.

Notice that a nice feature of our design is that each site is permitted to have its own policy as regards
maintaining the size of the pc’(7Tj) sets. And similarly, different policies may be used at different times at
the same site. Thus depending on the circumstances, the policy used can change to suit the performance
needs.

Below, we describe a few policies for the management of the pe’(T;) sets which demonstrate some of the
possible alternatives in the trade-off. The description is enumerated in the order of increasing complexity of
interpretation of the operations, and the consequent decrease in size of pc’ (T3). In each case, the previous
schemes are part of the scheme under consideration. Assume that the set ch(T}) is stored as a sequence of
operation(data item, value) elements, and each such element is included in ¢h(7};) prior to submitting the

corresponding operation to DBMS;.

1. Maintain only the set of active transactions. The set pc/(7}) is taken to be this set without the entry for
T;. Thus, every begin operation creates an element for the corresponding transaction in the set, and
the full execution of the final operation for a transaction results in the deletion of the corresponding

element for the transaction. For this scheme, ch(7T};) need not be accessed to determine pc'(7;).

This approach provides a particularly simple scheme to integrate DBMSs that use the commonly used
strict two-phase locking protocol. In contrast to the schemes designed in [3, 4, 16], no restrictions
need be placed on the types or the access patterns of the transactions. Each MDBS; module needs

to maintain the list of active local transactions that may need to be aborted, and the changes of only

20



those uncommitted subtransactions in stable storage that are in the prepared state.

2. For each active transaction, maintain a count of the total number of operations that are outstanding.
For example, this may be stored in a location accessed by a hash function on the transaction id. In

such cases, pc’(7}) consists of the set of transactions ‘with non-zero counts. As in the above scheme,

ch(T;) is not needed to generate pc'(75).

3. For each active transaction that has non-zero outstanding operations, check if the outstanding opera-
tions conflict with ch(7T}). This can be done by maintaining for each active transaction with outstanding
operations a set of data items being accessed by those operations. Thus, to generate and maintain
pc'(T;), the newly introduced sets are compared with ¢h(T}) to determine whether the corresponding

transaction needs to be included in pe'(7}).

4. Schemes that involve an in-depth examination of the values pertaining to the data items accessed by
the operations together with the semantics of the operations may be considered to minimize the size
of pe’(T;). However, this may clearly slow down the processing of the operations within the MDBS;

modules by unacceptable amounts. Note that in such a scheme, it is possible that pc'(T;) C pe(Ty).

Note that if we may assume that only a few transactions execute concurrently, and given that quick retrieval
of the information stored is desirable from the viewpoint of the expedient dispatch of the operations, the use

of hashing techniques suggests itself in the above schemes.

8.3 Scalability

The question of scalability in our scheme is answered in a simple manner. To add a new DBMS to an
existing MDBS created by our scheme, an MDBS; module must be created for the newly added DBMS;.
By providing access to the networking facilities for data communications, the new DBMS can be linked to
the existing MDBS in a straightforward manner. Obviously, the ease of scaling-up relies on the facility in

developing the MDBS; interface itself.

9 Conclusions

The multidatabase transaction management scheme outlined in this paper has the desired properties of
simplicity, economy, failure-resilience, and generality. We provide a simple means to integrate different
database management systems each of which possibly uses a different concurrency control protocol. Qur

scheme resorts to the aborting of certain transactions to guarantee global atomic commitment. Two major

21



advantages of our approach is that no restrictions are placed on the types of local and global transactions
that can be run, and that no major changes need be made to the DBMSs being integrated. Only an interface
module needs to be written.

Our scheme enforces the standard correctness criterion of serializability for the interleaved execution of
the transactions. The transaction management exhibits resilience to failures that may be encountered in
practical environments and is comparable to the resilience of homogeneous distributed database management
systems. The failures that affect local activities are handled indirectly using the local recovery mechanisms
that are already an integral part of each local database system. Failures in the distributed environment are
handled as is done in distributed databases.

The performance of our system can only be gauged with further analysis and evaluation. However,
we have identified the potential sources for performance bottlenecks, exhibited performance trade-offs, and

described several possible intermediate approaches for enhancing efficiency.

References

[1] Bernstein, P.A., Hadzilacos, V., and Goodman, N. 1987. Concurrency Control and Recovery in Database
Systems. Addison-Wes. Series in Comp. Sci.

[2] Breitbart, Y., Georgakopolous, D., Rusinkiewicz, M. and Silberschatz, A. 1990. Rigorous Scheduling in
Multidatabase Transactions. Position paper at the Workshop on Multidatabases and Semantic Interop-
erability. Tulsa, Oklahoma.

[3] Breitbart, Y. and Silberschatz, A. 1988. Multidatabase Update Issues. Proc. 1988 ACM-SIGMOD In-
ternational Conference on Management of Data (Jun).

[4] Breitbart, Y., Silberschatz, A. and Thompson, G.R. 1990. Reliable Transaction Management in a Multi-
database System. Proc. 1990 ACM-SIGMOD Iniernational Conference on Management of Data (May).

[5] Georgakopolous, D. and Rusinkiewicz, M. 1990. On Serializability of Multidatabase Transactions
through Forced Local Conflicts. Technical Report. Dept of Computer Science, University of Houston.

[6] Gray, J. 1978. Notes on Database Operating Systems. Operating Systems — An Advanced Course.
Springer-Verlag Lecture Notes in Computer Science. V.60.

[7] Gupta, A. Ed. 1989. Integration of Information Systems: Bridging Heterogeneous Databases. IEEE
Press.

[8] Korth, H.F., Levy, E., and Silberschatz, A. 1990. Optimistic Commit in Multidatabase Systems. Position
paper at the Workshop on Multidatabases and Semantic Interoperability. Tulsa, Oklahoma.

[9] Korth, H.F. and Silberschatz, A. 1991. Database System Concepts, second edition. McGraw Hill.

[10] Lamport, L. 1978. Time, Clocks, and the Ordering of Events in a Distributed System. CACM. Vol.21,
No.7 (July), 558-565.

[11] Muth, P., Klas, W. and Neuhold, E. 1990. How to Handle Global Transactions in Heterogeneous
Database Systems. Position paper in the Workshop on Multidatabases and Semantic Interoperability.
Tulsa, Oklahoma.

22



[12] Pu, C. 1987. Superdatabases: Transactions across Database Boundaries. IEEE Data Engineering.

[13] Report on the Workshop on Heterogeneous Database Systems. 1989. Northwestern University, Evanston
(Dec).

[14] Report on the Workshop on Multidatabases and Semantic Interoperability. Tulsa, Oklahoma.

[15] Soparkar, N.R. and Silberschatz, A. 1990. Transactions in Distributed Multidatabases. Position paper
at the Workshop on Multidatabases and Semantic Interoperability. Tulsa, Oklahoma.

[16] Wolski, A. and Veijalainen, J. 1990. 2PC Agent Method: Achieving Serializability in Presence of F ailures
in a Heterogeneous Multidatabase. Proc. International Conference on Databases, Parallel Architectures,
and their Applications. Miami Beach, Florida.

23



