THE IMPORTANCE OF
LAZY EVALUATION IN SEARCH

Nicholas Freitag McPhee
Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712-1188

TR-91-06 March 1991

The importance of lazy evaluation in search

Nicholas Freitag McPhee
Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712
mcphee@cs.utexas.edu

March 13, 1991

Abstract

Modularity is generally considered one of the most valuable tools avail-
able to aid programmers in coping with the complexity of large tasks, and
higher order functions and lazy evaluation are two very powerful tools for
modularizing functional programs. Unfortunately most presentations of
search algorithms in the artificial intelligence literature are not modular,
at least partly because they assume a strict implementation language.
In this paper I will discuss the importance of laziness in creating modu-
lar implementations of search algorithms, and show that lazy evaluation
allows the algorithms and their implementations to be highly modular.
In particular, laziness allows the many logically separate processes, such
as the acts of building and searching a tree, to remain separate at the
implementation level.

Here the search problem is treated generally, presenting numerous tools
useful in general tree manipulation. This treatment demonstrates that the
key difference between various search algorithms is the manner in which
trees are traversed, a fact that will be illustrated through the implemen-
tation of several common search methods in Miranda.

One of the search strategies implemented is A*, which is generally
described as a variant of heuristic search. With this highly modular ap-
proach, however, it becomes clear that the A* search strategy is no differ-
ent from heuristic search. What defines A* is in fact the heuristic used,
not the way in which which is it is applied.

1 Introduction

Modularity is generally considered one of the most valuable tools available to
aid programmers in coping with the complexity of large tasks, and as John
Hughes discussed so clearly in [4], higher order functions and lazy evaluation are

two very powerful tools for modularizing functional programs. Unfortunately
most presentations of search algorithms in the artificial intelligence literature

are not modular, at least partly because they assume a strict implementation
language. In this paper 1 will discuss the importance of laziness in creating
modular implementations of search algorithms, and show that lazy evaluation
allows the algorithms and their implementations to be highly modular.

The value of higher order functions and lazy evaluation when writing search routines
has been touched upon in both [4] and [2], but in both cases the emphasis was
on implementing specific search routines, such as alpha-beta heuristic search.
Here 1 will treat the problem more generally, presenting numerous tools useful
in general tree manipulation. This treatment will demonstrate that the key
difference between various search algorithms is the manner in which trees are
traversed, a fact that will be illustrated through the implementation of several
common search methods in Miranda.

2 Search algorithms

A wide range of problems can be seen as inducing a tree structure where each
node is a problem state and a node’s children are the states immediately reach-
able from the parent. For example, a game might induce a tree where each node
is a state of the game (e.g., the position of the pieces on the board), and that
node’s children are the states resulting from each of the legal moves at that
point.

Given such a tree and a description of what a goal node is, the search problem
is then to find some goal node. The trees involved are typically extremely
large, if not infinite, and the density of goal nodes is often low, making finding
one extremely difficult. Numerous search strategies have been developed in an
attempt to limit this combinatorial explosion, including heuristic search, where
some heuristic is used to guide the search of the tree. In domains where effective
heuristics can be developed such a search procedure can be very powerful.

As a typical example of s search algorithm (for others see any of [3, 5, 8]) consider
the following heuristic search algorithm presented in [1]. Here f* is the heuristic
function estimating the distance from a node to the nearest goal node.

1. Put the start node s on a list, called oPEN, of unexpanded nodes. Calculate
J/*(s) and assoclate its value with node s.

2. If OPEN is empty, exit with failure; no solution exists.

3. Select from OPEN a node i at which f* is minimum. If several nodes
qualify, choose a goal node if there is one, and otherwise choose among
them arbitrarily.

4. Remove node 7 from oPEN and place it on a list, called cLOSED, of ex-
panded nodes.

5. Expand node ¢, creating nodes for all its successors. For every successor
node j of 1

(a) Calculate f*(j).

(b) If j is neither in list OPEN nor in list CLOSED, then add it to OPEN,
with its f* value. Attach a pointer from j back to its predecessor ¢
(in order to trace back a solution path once a goal node is found).

(¢) If j was already on either OPEN or CLOSED, compare the f* value
just calculated for j with the value previously associated with the
node. If the new value 1s lower, then

1. Substitute it for the old value.
ii. Point j back to 7 instead of to its previously found predecessor.
ii. If node j was on the cLOSED list, move it back to the OPEN.

6. Go to (2).

3 Unstated assumptions

Assuming that a general purpose implementation is intended, there is reason
to suspect that the presentation of this algorithm presumes an implementation
language that is both higher order and strict. The assumption that higher
order functions are supported is suggested, for example, by the test whether
i is a goal node in Step 4, and the expansion of ¢ to obtain its children at
the beginning of Step 6. Both of these actions require the application of some
function (a goal test or an generator of children) to a node of the tree. A very
direct way of making these functions available to a general search algorithm is
by passing them in as arguments, which requires the language support higher
order functions. It is possible to implement this algorithm in a language that
does not support higher order functions by just leaving these functions undefined
and letting the user define them appropriately later on. This approach, however,
lacks the modularity of the higher order solution if for no other reason than the
implementor of these functions must know and use the names they were given
by the implementor of the search routine.

That the underlying language is assumed to be strict is a slightly more subtle point,
and arises from the expansion of a node to determine its successors in Step 6.
As mentioned above, logically one can think of building a tree and traversing it
in search of a goal node as two distinct and separate processes. In the algorithm
given, however, there is no such separation of concerns and the act of searching
the tree is mingled and muddled with the act of building it.

This is a feature common to most presentations of search algorithms and is al-
most certainly because the implicitly assumed implementation language (in most
cases LISP) is strict. In a strict language it would not be feasible to first build

the tree and then search it because even in very simple search problems the re-
sulting trees are either extremely large or infinite. Thus the act of building the

entire search tree would either take a long time and a large amount of memory
(very possibly more than is available) or would never terminate. Therefore the
programmer (and indirectly the algorithm designer) is forced to blend the two
processes and allow the search routine to explicitly control the building of the
tree.

4 Advantages of lazy evaluation

In a lazy language, however, it is possible to separate the building and the
searching of the tree entirely because laziness allows the search routine to im-
plicitly control the building of the tree. Since no part of the tree is built that
is not needed, no parts are built except those searched, and they are built only
when needed and discarded as soon as they no longer are relevant.

Lazy evaluation also allows another separation of concerns, namely the separation
of tree traversal and the search for a goal node. Every method of tree traversal
defines a method of flattening a tree, namely by generating a list of the nodes in
the order that they are visited in the traversal. Once the tree has been flattened
to a linear list, the act of searching for a goal node becomes a simple process of
finding the first node in the list satisfying the goal predicate.

Thus I will break the problem of search into three distinct phases:

1. Build the tree.
2. Traverse (and flatten) the tree.

3. Search the resulting linear list for a goal node.

FEach of these actions is logically independent and, at least in a lazy language it is
possible to implement each of these phases independently. This allows the code
to reflect the intuitive notion that the defining feature of a search algorithm is
its method of tree traversal, with everything else being subordinate. This clear
separation allows the designer of search methods to concentrate on the critical
issue, namely tree traversal, without being distracted by secondary matters such
as testing whether or not a given node is a goal.

5 Two simple examples

In this section I'll present two very simple examples, depth first and breadth
first search, as an introduction. Later more general tools will be developed and
used to implement more complex search algorithms.

All implementations will be in Miranda, and unfamiliar readers are encouraged to
see [6] or [2] for more information. In fact this entire document is a runnable

Miranda ‘literate’ script in which all text is considered comment except those
lines which begin with a ‘>’ in the first column.

First T must define the data type for trees:

> tree * ::= Empty_tree | Node * [tree *]

In Miranda this defines an algebraic data type with two cases. The first is that
the tree is empty, in which case there is no other interesting information to be
had. The second is where the tree in fact consists of at least one node with
some label or data element of type *, where * is an arbitrary type variable, and
a list of immediate subtrees generated by the node’s children. These properties
are captured in the following definitions:

label :: tree * —> *
label (Node x ts) = x
label Empty_tree
= error "Attempt to retrieve label from an empty tree.”

children :: tree * -> [tree *]
children (Node x ts) = ts
children Empty_tree
= error "Attempt to retrieve children from an empty tree.”

VvV V V V V V VYV

Of the three phases mentioned in Section 4, building the tree is entirely problem

specific, so for the moment I will leave it aside and assume the tree has already
been built. It is important to remember, however, that because of laziness, only
those parts of the tree that will be needed will actually be constructed.

Skipping for the moment the flattening phase, the searching phase takes a list and

a goal test and returns. .. what? There seem to be two choices: return only the
first. goal node found, returning some sort of error perhaps when no goal node
was found, or return a list of all goal nodes. The second option seems wasteful
since one usually cares only about the first goal node. There are, however,
circumnstances where having several goal states, or options, available is desirable.
Once again laziness makes this multiple goal solution feasible, because no more
goal states will actually be found than are called for. Therefore if we only need
one solution, we can take the head of the solution list, and lazy evaluation
ensures that no others will be computed. Thus we have the flexibility of access
to all goal nodes while only paying for the ones we use. This decision is reflected
in the following data types and definition of the function search:

> search_method * == tree * -> goal_test * -> [¥]
> goal_test * == * -> bool

>

> search :: [*] -> goal_test * -> [x]

> gsearch = converse filter

Finally we come to the flattening phase, where the type flattener is defined, and
simple depth first and breadth first flattening are implemented directly:

flattener * == tree * -> [*]

simple_depth_flatten :: flattener *
simple_depth_flatten (Node x ts)

= x:(concat (map simple_depth_flatten ts))
simple_depth_flatten Empty_tree = []

simple_breadth_flatten :: flattener *
simple_breadth_flatten tree
= do_sbf [tree]
where
do_sbf ((Hode x children):ts)
= x:{do_sbf (ts ++ children))
do_sbf (Empty_tree:ts) = do_sbf ts
do_sbf [1 = (1

YV VVVV VYV VYV VYV YVYVYVY

These definitions are very similar to those one might see in other functional
languages, although once again in strict languages these definitions would have
to be altered to be of use on large or infinite trees.

Now defining simple depth first and breadth first search routines is straightforward:

simple_depth_first_search :: search_method *
simple_depth_first_search = search . simple_depth_flatten

simple_breadth_first_search :: search _method *
simple_breadth_first_search = search . simple_breadth flatten

vV V.V V V

6 Generalized flatteners

Having decided that the method of flattening the tree is the critical element in
a search problem, and having shown how lazy evaluation allows us to isolate the

flattening process, can we generalize these two simple flatteners? Both flatteners
keep a list of nodes still to be expanded (often called the open list). This list

is kept implicitly in the depth first case via the call stack, and explicitly in the
breadth first case as the argument to do_sbf. In both cases the flatten process
starts with just the root node on the open list, and it ends when the open list
is empty. Also, the next node to explore is always the head of the open list in
both methods. The only difference between the two is that in the depth first
case a current node’s children are added the beginning of the open list and in
the breadth first case they are added to the end.

Factoring out these common features would yield a generalization that includes a
significant number of traversal methods, but there would also be methods of
interest not within this paradigm. An example is the algorithm presented in
Section 2 which makes use of a list of nodes already explored (often called a
closed list). So instead let us generalize further and assume that a flattener has
internal state of some arbitrary type, and that a method of flattening trees is
defined by this state and four operations:

1. Initializing the state of the flattener.

2. Determining from the current state when the flattening process is com-
pleted.

3. Retrieving the next node to explore from the current state.

4. Incorporating a list of nodes (the children of the current node) into the
current state to yield a new state.

Each of these operations can be implemented as a function that will be passed
as an argument to a general function that generates a flattening method from
these parameters. If the type of the tree being flattened is tree *, and the type
of the flattener’s internal state is #*, then the types of these operations are:

1. gen.start_state :: tree * -> *%*

2. is_empty.state :: *% —> bool

3. next.node :: *% -> tree *

4. insertionmethod :: insertionmethod * **

where an insertion method has type:

> insertion_method * #% == ** -> [tree *] -> *x

Now one can define a general function to generate flatteners by:

> generate_flattener
> :: (tree * -> *%x) -> (*% -> bool) -> (** -> tree *) ->
> insertion_method * ** -> flattener *
> generate_flattener gen_start_state is_empty_state
next_node insertion_method
= map (label . next_node)
takewhile ((”) . is_empty_state)
iterate (next_state insertion_method next_node)
gen_start_state

next_state insertion_method next_node state
= insertion_method state (children (mext_node state))

vV V VYV YV V.YV

As defined here flattening a tree consists of four separate processes. First the
tree to be flattened is converted into an initial state for the flattener. Then
iterate is used to create the (possibly infinite) list of states the flattener passes
through while traversing the tree. Then the longest prefix of this list consisting
entirely of non-empty states is obtained using takewhile. Each state in the
resulting list then corresponds to a specific node, namely the next node to be
explored at that point, so extracting from each state first the node, and then the
label, yields the desired flat list of labels. The fact that these four processes are
logically separate is captured nicely through the composition of four independent
functions generated from the higher order arguments.

Having presented generate.flattener as a general function for creating flatteners,
can it be used, for example, to generate depth and breadth first flatteners? It
can, but before we do so let us remember that these methods of flattening shared
a common internal state, namely that of an open list, and in fact they differed
only in their insertion methods. So first let us use generate flattener to
define an intermediate class of flatteners, namely those whose state is just an
open list, which we can further specify class to obtain depth and breadth first
flatten.

> gen_open_list_flattener

> :: insertion_method * [tree *] -> flattener *

> gen_open_list_flattener

> = (generate_flattener (:[]) (=[1) hd) . (. t1)
>

> depth_flatten = gen_open_list_flattener (converse (++))
> breadth_flatten = gen_open_list_flattener (++)

>

> depth_first_search = search . depth_flatten

Department of Computer Sciences
The University of Texas at Austin
Taylor Hall 2.124

Austin, TX 78712-1188
512) 471-7316
AX (512) 471-8885

FAX COVER SHEET

From:

Number of Pages to follow : /tz

INotes:

If you have trouble receiving this FAX, please call (512) 471-

”

> breadth_first_search = search . breadth_flatten

These definitions make the relationship between these two methods of tree
traversal remarkably clear, especially when compared to the earlier “traditional”
definitions of simple_depth_flatten and simple.breadth-flatten.

7 Heuristic search

While it is nice that generate_flattener can be used to generate both depth
first and breadth first flattening routines, neither strict depth first or breadth
first search is very useful in general. The former has the advantage of requiring
little memory, but has a tendency to get lost searching unproductive paths.
Breadth first search, on the other hand, is guaranteed to find a solution if one
exists, but can require an enormous amount of memory to maintain its open
list. This is the approach taken in the heuristic search algorithm presented in
Section 2.

A much more fruitful approach in domains where a reasonable heuristic can be
found is heuristic search. In this approach a heuristic is used to estimate the
distance from the current node to the nearest goal node, and at each point
the search process explores the node on the open list with the lowest heuristic
value. This can be done using just an open list as was done for the previous
two methods, but it is common to also maintain a closed list containing those
nodes already visited to avoid repeatedly visiting nodes with the same label.

Just as we were able to define a subclass of flatteners whose state was an open list,
we are also able to define a subclass of flatteners whose state consists of both
an open and a closed list:

op_cl_state * == ([tree *1, [tree *])

>

>

> op_cl_flatten

> insertion_method * (op_cl_state *) -> flattener *
> op_cl_flatten

> = (generate_flattener gen_start is_empty next)

> (. move_to_closed)

> where

> gen_start tree = ([treel, [1)

> is_empty (open_list, closed_list) = (open_list = [])
> next (open_list, closed_list) = hd open_list

> move_to_closed (open, closed)

> = (tl open, hd open:closed)

All that remains to define heuristic flatten, and thus heuristic search, is to define

a_heuristic insertion procedure. What properties must this insertion procedure
have? Since op.cl.flatten assumes the next node to be explored is the head of
the open list, this new insertion procedure must maintain an open list ordered
in increasing heuristic value. For simplicity it also seems reasonable to require
that there not be two nodes with the same label in the union of the open and
closed lists. Lastly, if a new node is found with the same label as one already
on the open or closed list, but with a lower heuristic value, then the old node
should be removed from the appropriate list and the new one added to the open
list.

It is clear that computing heuristic values of tree nodes has nothing intrinsic to do

with the act of searching a tree, and we would like to be able to separate these
logically distinct processes in our implementation. Presentations of heuristic
search algorithms, such as the one in Section 2, mix these actions, calling for
the heuristic values to be computed as part of the search process. In a strict
language this is necessary because strict evaluation makes it impossible to com-
pute in advance the heuristic values of only those nodes that will be explored.
Lazy evaluation again gives us an advantage and allows us to keep these issues
separate because laziness guarantees to only compute the heuristic values of
those nodes that are actually explored.

let us assume that the heuristic values of the tree’s nodes have already been
computed and adjoined to the labels. Thus, in heuristic flatten, node labels
are going to contain at least two pieces of information: the original label and
that node’s heuristic value. We could just assume that these labels will have
some fixed type, but it is more general to pass our heuristic insertion function
two functions that allow it to access the the necessary components of the label.
This allows us to use heuristic search on trees with more complex label structure
without any modification.

In light of these decisions, it is now possible to define heuristic_search using the

following definitions of heuristic_insert and heuristic_flatten.

heuristic_search label_key heur_key
= search . (heuristic_flatten label_key heur_key)

heuristic_flatten label_key heur_key
= op_cl_flatten (heuristic_insert label_key heur_key)

= foldr insert_node
where
ek = label_key . label
hk = heur_key . label

>

>

>

>

>

>

> heuristic_insert label_key heur_key
>

>

>

>

> insert_node node (open, closed)

10

= (add_node hk node new_open, closed),

if on_open & node_val < open_val
= (open, add_node hk node new_closed),
if on_closed & node_val < closed_val
= (open, closed), if on_open \/ on_closed
= (add_node hk node open, closed), otherwise
where
node_val = hk node
(on_open, open_val, new_open)
= find_occurrence ek hk node open
(on_closed, closed_val, new_closed)
= find_occurrence ek hk node closed

add_node heur_key node list
= takewhile ({ <= heur_key node) . heur_key) list
++ [node] ++
dropwhile ((<= heur_key node) . heur_key) list

find_occurrence label_key heur_key node list
= (in_list, val, new_list)

VVVVVVV VYV VYV VYVVYVYVYVYVYYVYVYVYVVYY

where

matches = filter ((= label_key node) . label_key) list
in_list = (matches ~= [])

val = heur_key (hd matches)

new_list = list -- matches

8 A*

A* is specific kind of heuristic search in which two different heuristic functions
are employed: one to estimate the cost of getting from the start state to the
current state, and the other to estimate the cost of getting from the current
state to the nearest goal state. If these heuristics satisfy certain monotonicity
properties, then A* is guaranteed to find an optimal goal state (if one exists) in
the sense that no other goal state can be reached more cheaply from the start
state.

Since A* is a kind of heuristic search, it is usually suggested that it can be defined
through some slight modification of heuristic search, namely by changing the
way in which the heuristic values of the nodes are computed as they are en-
countered. As mentioned above, though, lazy evaluation allows us to separate
the processes of computing heuristic values and searching the tree, so using our
definitions we are able to use heuristic.search without modificaiion to imple-
ment A*. All that is necessary is for us to define functions that compute the

11

A* heuristic values of the nodes of a tree, and then pass this new tree and the
necessary. kevs.to. heuristic_search

8.1 Some general tree processing tools

Before 1 define these functions to compute the A* heuristic values, however,
it will be useful to define a number of tree processing tools similar to the list
processing tools provided in Miranda.

tree_map :: (% => **¥) -> tree * -> tree **
tree_map f (Node x ts) = Node (f x) (map (tree_map f) ts)
tree_map f Empty_tree = Empty_tree

tree_scanl :: (¥ => *x% -> *%k) ~> k% -> tree * -> tree *%
tree_scanl op k (Node x ts)

= Node k (map (tree_scanl op (op x k)) ts)
tree_scanl op k Empty_tree = Node k []

tree_zip2 (Node x ts) (Node y us)
= Node (x,y) [tree_zip2 t u | (t, u) <- zip2 ts us]

prune :: (* => bool) -> tree * -> tree *

prune test (Node x ts)

Node x (filter ("= Empty_tree) (map (prumne test) ts)),
if test x

Empty_tree, otherwise

prune test Empty_tree = Empty_tree

i

[

V V.V VV VYV YV YV VYV VYV YVYVYVYVY

Each of these functions does roughly the same thing to trees that their list
counterparts do to lists (with the counterpart of prune being takewhile), and
in fact nice laws exist relating these functions to their list counterparts:

1. map £ (flatten tree) = flatten (treemap f tree), where flatten
is some arbitrary tree flattener.

2. scanl f k (path tree) = path (tree.scanl f k tree), where path
is any function that returns a connected path from the root of the tree,
and scanl is defined as in [7], namely scanl = scan . converse.

3. zip2 (path treel) (path tree2) = path (treezip2 treel tree2),
where again path is a function that returns a connected path from the root.

4. takewhile test (path tree) = path (prune test tree), where path
is as above.

12

As an aside, some might notice that no counterpart to the fold functions is given.
Several authors have defined tree folding functions (e.g., [2]), but these defini-
tions often differ and there’s no clear notion of which is the “right” definition
and why. I believe the problem arises because folding depends crucially upon
the order in which the arguments are folded, and in the case of lists there are
only two natural orders: left to right (corresponding to foldr), and right to left
(corresponding to foldl). In the case of trees, however, there is no such simple
space of choices. In fact each different way of flattening the tree represents a
different possible folding of the tree. This suggests that one way to fold a tree is
to first flatten it in some way and then apply one of the list folding functions to
the result, and upon inspection many definitions of tree folding correspond to
folding either depth first or breadth first flattening the tree. This combination
of flattening and list folding doesn’t capture all the possibilities, though. For
example, the definition of fold over binary trees given in [2] is not equivalent to
any combination of a flattener and a list folding function without the additional
assumption that the function being folded in is associative.

Given the tree utility functions defined above, several other useful utilities can be
defined as well:

add_value :: (* —> %%) -> tree * ~> tree (%, *%)
add_value f
= tree_map op
where

op x = (x, £ x)

tree_of_ancestors :: tree * —> tree [*]
tree_of_ancestors = tree_scanl (:) [

add_ancestors :: tree * —-> tree (¥, [*])
add_ancestors tree = tree_zip2 tree (tree_of_ancestors tree)

V V.V V V.V V V V VYV

These last two allow one to incorporate into a node’s label a list of its ancestors,
which is useful if you need to know not only that there is a goal node, but
what path leads to it as well. Note that once again laziness allows us to keep
this process separate from the search process, whereas they would have to be
mingled in a strict implementation (see the algorithm in Section 2).

8.2 Implementation of A*

Now it is time to define A* search. As mentioned before, all that’s necessary is
to compute the value of the A* heuristic for each node and adjoin that value to
the node. Once this is accomplished the tree can be searched merely by calling

13

heuristic_search with the appropriate keys. For the sake of illustration let

us also assume that both the goal node and the path leading to it are desired,
as is often the case. In these definitions the function £ heur is the heuristic
that estimates a node’s distance from the neartest goal. The function g-heur
computes the cost of a given segment of the path.

add_pair (x, y) = x + 7
a_star_state * == ((*, [*]), num)

label_key :: a_star_state * -> *
label_key ((label, parents), h_val) = label

parents_key :: a_star_state * -> [*]
parents_key ((label, parents), h_val) = parents

heur_key :: a_star_state * -> num
heur_key ((label, parents), h_val) = h_val

add_a_star_heuristic
(% => #%) => (%% -> pum) -> (** -> num) ->
tree * -> tree (*, num)
add_a_star_heuristic key f_heur g heur tree
= tree_zip2 tree
(tree_map add_pair
(tree_zip2 (tree_map (f_heur . key) tree)
(tree_scanl ((+) . g_heur . key)

0 tree)))

prep_tree_for_a_star
(* -> num) -> (* -> num) -> tree * ->
tree (a_star_state *)
prep_tree_for_a_star f_heur g_heur
= (add_a_star_heuristic key f_heur g_heur)
add_ancestors
where
key (x, parents) = x

a_star_search f_heur g_heur
= (heuristic_search label_key heur_key)
(prep_tree_for_a_star f_heur g_heur)

VOV VYV VYV V VYV YV YV VVYVYVYVYVYYVYVYYVYVYVYVYVYYVYVYVYYVYYVYVYYVYYVYVYV

14

9 Conclusions

Throughout the implementations of the various search routines there have been
nummerous instances where laziness has allowed us to keep logically independent
processes separate in the implementation as well. In doing so lazy evaluation has
allowed modularization far beyond that generally found in the search literature,
and far beyond what is even possible with a strict language.

A common way around such language limitations is the design of software gener-
ation tools, and it would no doubt be possible to build such a tool that would
take the specification of a search problem and generate code in some strict func-
tional, or even imperative, language to handle that specific problem. There’s no
question, however, that being able to solve the problem directly using the kind
of highly modular code demonstrated here is a far better solution. We have
far too many tools at hand that allow us to gush forth code until we become
buried in its complexity, and tools that help us reduce the amount of code are
most certainly to be prized. In lazy evaluation we have a tool that allows us
to write genuinely modular code so that we may reuse functions over and over
again in a wide variety of contexts, and in doing so, laziness helps keep a lid on
code proliferation. And the less code there is, the easier it is to understand and
verify, modify and maintain.

References

[1] Avron Barr and Edward A. Feigenbaum, editors. The Handbook of Artificial
Intelligence, volume 1. William Kaufmann, Inc., 1981.

[2] Richard Bird and Philip Wadler. Introduction to functional programming.
Prentice Hall, 1988.

[3] Eugene Charniak and Drew McDermott. Introduction to Artificial Intelli-
gence. Addison-Wesley Publishing Company, 1985.

[4] John Hughes. Why functional programming matters. In D. A. Turner, edi-
tor, Rescarch topics in functional programming. Addison-Wesley Publishing
Company, 1990.

[5] Elaine Rich. Artificial Intelligence. McGraw-Hill Book Company, 1983.

[6] D. A. Turner. Miranda: a non-strict functional language with polymorphic
types. In Proceedings IFIP Conference on functional languages and computer
archilecture. Springer-Verlag, 1985.

[7] D. A. Turner. Duality and de morgan principles for lists. In W. H. J.
Feijen, A. J. M. van Gasteren, D. Gries, and J. Misra, editors, Beauty s our
business: A birthday saluie to Edsger W. Dijkstra. Springer-Verlag, 1990.

15

[8] Patrick Henry Winston. Artificial Inlelligence. Addison-Wesley Publishing
Company, second edition, 1984

16

