
[16] Korth, H., A. Silberschatz Database System Concepts, Second Edition, McGraw-Hill Book Co., 1991.

[17] Papadimitriou, C. \The Theory of Database Concurrency Control," Computer Science Press, 1986.

[18] Pu, C. \Superdatabases: Transactions Across Database Boundaries," IEEE Data Engineering, 1987.

[19] Rosenkrantz, D., R. Stearns, P. Lewis \System Level Concurrency Control for Distributed Database

Systems," ACM Transactions on Database Systems 3(2), 1978.

[20] Simonson, D., D. Benning�eld, \INGRES Gateways: Transparent Heterogeneous SQL Access," IEEE

Data Engineering Bulletin, 13, 2, 1990.

[21] Sugihara, K. \Concurrency Control based on Cycle Detection," Proceedings, International Conference

on Data Engineering, 1987.

[22] Sybase Open Server, Sybase Inc., Emerville, CA 1989.

[23] Thompson, G. R. \Multidatabase Concurrency Control," Ph.D. Dissertation, Department of Computing

and Information Sciences, Oklahoma State University, 1987.

26

ACKNOWLEDGMENTS

A number of people have helped with the content of the paper. Sharad Mehrotra and Rajeev Rastogi

have noted that the edges of a commit graph cannot be removed as soon as a transaction commits. Randy

Appleton and Atul Patankar implemented the prototype version of algorithms described in the paper. Steve

Lee has helped in prototyping the algorithms of the ADDS system at Amoco. Lastly, the anonymous referees

have made numerous comments and suggestions that have helped considerably in improving our presentation.

References

[1] Alonso, R., H. Garcia-Molina, K. Salem \Concurrency Control and Recovery for Global Procedures in

Federated Database Systems," IEEE Data Engineering, 1987.

[2] Appleton,R., Y. Breitbart \Deadlock Detection in a Multidatabase," Technical Report 192-91, Com-

puter Science Department, University of Kentucky, 1991.

[3] Bernstein, P., V. Hadzilacos, N. Goodman Concurrency Control and Recovery in Database Systems,

Addison-Wesley, 1987.

[4] Bever, M., M. Feldhofer, S. Pappe, \OSI Services for Transaction Processing," Proceedings, Second

International Workshop on High Performance Transaction Management Systems, 1989.

[5] Breitbart, Y., A. Silberschatz, G. Thompson \An Update Mechanism for Multidatabase Systems," IEEE

Data Engineering, 1987.

[6] Breitbart, Y., A. Silberschatz \Multidatabase Update Issues," Proceedings, ACM SIGMOD Conference,

1988.

[7] Breitbart, Y., A. Silberschatz, G. Thompson \Transaction Management in a Multidatabase Environ-

ment," in Integration of Information Systems: Bridging Heterogeneous Databases, ed. A. Gupta, IEEE

Press, 1989.

[8] Breitbart, Y., A. Silberschatz, G. Thompson \Reliable Transaction Management in a Multidatabase

System," Proceedings, ACM SIGMOD Conference, 1990.

[9] Du, W., A. K. Elmagarmid \Quasi Serializability: a Correctness Criterion for Global Concurrency

Control in InterBase," Proceedings, International Conference on Very Large Data Bases, 1989.

[10] Duquaine, W., \LU 6.2 as a Network Standard for Transaction Processing," Proceedings, Second Inter-

national Workshop on High Performance Transaction Management Systems, 1989.

[11] Duquaine, W., \Mainframe DBMS Connectivity via General Client/Server Approach," IEEE Data

Engineering Bulletin, 13, 2, 1990.

[12] Elmagarmid, A., Y. Leu \An Optimistic Concurrency Control Algorithm for Heterogeneous Distributed

Database Systems," IEEE Data Engineering, 1987.

[13] Eswaran, K., J. Gray, R. Lorie, I. Traiger \The Notion of Consistency and Predicate Locks in a Database

System," CACM, 19:11, 1976.

[14] Gligor, V. and R. Popescu-Zeletin \Transaction Management in Distributed Heterogeneous Database

Management Systems," Information Systems, 11, 4, 1986.

[15] Gray, J. N., \Notes on Database Operating Systems: Operating Systems: Advanced Course," Lecture

Notes in Computer Science, 60, Springer-Verlag, 1978.

25

Appendix B

Proof of Theorem 3: Let us assume to the contrary that the system is in a global deadlock and the

global deadlock was not detected by the GTM. Since each local DBMS detects and breaks any local deadlock,

without loss of generality we assume that each local wait-for-graph is acyclic. In our model a global deadlock

occurs if and only if every global transaction is either placed on the GWFG, or the WFCG, or is in a waiting

status at some local site. Let us consider several cases.

1. No global transaction is in a waiting status at any local site.

Every transaction in this case is either waiting on the WFCG, or the GWFG,or executing a commit

operation, or executing locally read (write) operations. If a transaction is executing a read (write)

operation at a local site, then it eventually completes the operation or the transaction gets aborted.

Either outcome contradicts the assumption that the system is in a global deadlock.

If a transaction is executing a commit operation and fails, then it either restarts and completes

successfully or it is in the waiting status at the failed site. The latter contradicts the conditions of case

1. Thus, every transaction in the system that was in the process of performing some operation will

eventually complete it. Assuming that a global deadlock exists, we derive (by Lemma 2) that a union

of PCG, GWFG, and WFCG contains a cycle. Since every transaction at local sites is active, the PCG

is empty. Consequently, there is a cycle in the union of WFCG and GWFG, which contradicts Lemma

2.

2. There are global transactions that are in a waiting status at some local sites.

Every transaction that is waiting for local locks either gets aborted, or continues to wait after the

completion of deadlock detection, or is restarted. If a transaction is aborted, then a deadlock is

broken. Let us assume that the transaction continues to wait and a global deadlock persists. Then

we obtain that a waiting transaction waits on some local wait-for-graph, or it waits on the WFCG,

or it waits on the GWFG. The deadlock detection algorithm allows the transaction to wait for local

locks only for two reasons: either it waits for a completion of the commit process, or it is the oldest

transaction that is allowed to wait for local locks at a local site. The latter means that any other global

transaction at the site that has received its local locks and appears in the cycle of the PCG is younger

than the transaction waiting for the local lock at the same site. Let us consider these two cases.

(a) A transaction waits for a completion of the commit operation.

According to the commit process, no transaction that has decided to commit can be aborted

by GTM (it can, however, be aborted by local DBMS as we discussed in Section 2). Thus, if

transaction T

i

cannot complete the commit and waits forever, then it was restarted as T

i

1

at some

site S

j

and the restarted transaction is waiting there for local locks. Two global transactions in

the waiting status at the same site may not be involved in a global deadlock, since, otherwise, we

violate the condition that each global transaction cannot wait at more than one site (see proof of

Lemma 3).

Hence, there is at least one active global transaction T

k

at S

j

that transaction T

i

1

may be waiting

for to obtain local locks. Transaction T

k

cannot be another restarted transaction (that has already

obtained its local locks), since otherwise T

i

1

eventually will obtain local locks released by T

k

. If

transaction T

k

is neither on GWFG nor on WFCG, then T

i

1

is not in the deadlock, since T

i

1

exists only at one site (recall, that T

i

1

is a restarted transaction). Let us assume that T

k

is either

in GWFG or WFCG. Consider a graph combined from PCG, GWFG, and WFCG. If there is no

cycle in the graph, then, by Lemma 3, there is no possibility of a global deadlock. If there is a

cycle, then it will be broken, because there exists at least one active transaction at the same site

as the restarted transaction and this transaction is not restarted.

(b) A transaction is not restarted and is in the waiting status at some site.

In this case, if there is no cycle in the combined graph then, by Lemma 3, there is no possibility

of a global deadlock. If there is a cycle in the combined graph, then the cycle will be broken by

the global deadlock detection algorithm. Therefore, the theorem is proven. 2

24

serializations graph can be constructed: T

1

L

1

T

i1

L

2

... T

i(k�1)

L

k

T

1

. This is a contradiction! Therefore,

the theorem is proven. 2

23

1. Neither T

i

< T

j

nor T

i

> T

j

exist in the committed projection of the local schedule SH. In this case

there is a local schedule SH

0

con
ict equivalent to a committed projection of the local schedule SH

where T

i

commits before T

j

in SH

0

.

2. Either T

i

< T

j

or T

i

> T

j

exist in the committed projection of the local schedule SH. (Observe, that

both T

i

< T

j

and T

j

< T

i

cannot exist in SH, since otherwise global database consistency would be

violated). Since a local DBMS uses the strict two phase locking protocol, by Lemma 4, we obtain that

transaction T

i

commits before T

j

in the committed projection of the schedule SH. The theorem is

proven. 2

Proof of Theorem 2: (if) Let us assume to the contrary, that the global database consistency is not

assured. Therefore, graph SG that is a union of local serialization graphs does contain a cycle, whereas, by

Lemma 5, each local serialization graph is acyclic. Let C = T

1

! T

2

! ... ! T

m

! T

1

be the smallest cycle

in G, where each T

i

is either a global or local transaction. Since graph SG is a union of local serialization

graphs, C is also a union of paths from local serialization graphs. Thus, C can be subdivided into path

segments P

1

, P

2

, ..., P

k

such that each P

i

is a path of the local serialization graph from site S

i

, where k > 1

(by Lemma 5). Any two adjacent paths have at least one global transaction in common. Without loss of

generality, we may assume that any two adjacent paths have exactly one global transaction in common and

this transaction is the end point of the path from site S

i

and the starting point of the path from site S

(i+1)

,

where (1 � i < k) and an addition is taken by modulo k.

Let us select from C only those global transactions T

1

, T

i1

, ..., T

i(k�1)

, that appear as starting points

of paths P

1

, P

2

, ..., P

k

, respectively. Since at each site a local DBMS uses the strict two-phase locking

protocol, by Lemma 4, for each site S

r

, (1 � r < k) the commit operation for T

ir

was completed before

the commit operation for T

i(r+1)

. Let us consider the commit operation for T

1

. T

1

was executing at at

least two sites|S

1

and S

k

. Thus, at S

k

, the commit for T

ik

was completed before the commit for T

1

.

Therefore, the commit for T

ik

, T

i(k�1)

, ..., T

i1

was not completed until the commit for T

1

was executing.

Thus, commit graph CG contains T

1

, T

i1

, ..., T

ik

along with edges incidental to them during the processing

of the commit for T

1

. Thus, we derive that CG contains the following cycle: T

1

, S

1

, T

i1

, S

2

, ..., S

(k�1)

,

T

i(k�1)

, S

k

, T

1

. This is a contradiction!

(only if) Let us assume that G retains a global database consistency. We will prove that the commit

graph CG does not contain cycles.

Let us assume to the contrary, that the commit graph does contain cycle L = T

1

, S

1

, T

i1

, S

2

, ...,

S

k�1

, T

i(k�1)

, S

k

, T

1

. Since transactions T

1

, T

i1

, ..., T

i(k�1)

are in the commit graph, then these all these

transactions are in the process of executing of their commit operation. To complete the proof we exhibit

a system of local transactions and a set of failures such that the union of local serialization graphs would

contain a cycle. The latter would contradict our assumption that G retains a global database consistency.

We generate the local transactions L

1

, L

2

, ..., L

k

, at sites S

1

, S

2

, ..., S

k

, respectively, such that the

following relationships hold:

L

1

is con
icting with T

1

, and T

i1

at site S

1

.

L

2

is con
icting with T

i1

, and T

i2

at site S

2

.

.

L

k

is con
icting with T

i(k�1)

, and T

1

at site S

k

Let us further assume that no errors occur during the commit process for transactions T

i1

, ..., T

i(k�1)

, but

after transaction T

1

reported that it was ready to commit, T

1

's server at site S

k

failed.

We assume that at sites S

1

, S

2

, ..., S

k�1

the following schedules are generated:

T

1

L

1

T

i1

T

i1

L

2

T

i2

.

T

i(k�2)

L

k�1

T

i(k�1)

However, due to the failure of T

1

at site S

k

, before T

1

is redone, transaction L

k

is executed, and thus the

schedule at site S

k

would be as follows: T

i

(k� 1) L

k

T

1

. Therefore, the following cycle in the union of local

22

transaction T

i1

(T

jk

) contains a write (either read or write) operation on the same data item that is

read (written) by T

0

i

(T

00

i

).

If T

i1

and T

jk

are local transactions, then T

i

reads a local data item and also updates a global data

item. Therefore, we obtained a global update transaction that reads a local data item. This violates

our condition on data access. If, on the other hand, either of T

i1

and T

i1

is a global transaction, then

the global scheduler allocated a global lock to either transaction T

i1

or T

jk

or both that is (are) in

con
ict with locks allocated to T

i

, before transaction T

i

released it. This contradicts the global strict

two-phase locking policy of the global scheduler. Thus, case 1 cannot occur.

2. T

00

i

< T

j

and T

j

< T

0

i

In this case, as in the �rst one, we conclude that there are sequences of global and local transactions

such that the local serialization graph contains paths T

j

, ..., T

jk

, T

0

i

and T

00

i

, T

i1

, ..., T

j

. Thus, T

0

i

and T

jk

as well as T

i1

and T

00

i

contain con
icting operations. Since T

0

i

(T

00

i

) contains only read (write)

operations, transaction T

jk

(T

i1

) contains a write (either read or write) operation on the same data

item that is read (written) by T

0

i

(T

00

i

).

Repeating the arguments of case 1, we derive that case 2 also cannot occur.

3. T

0

i

< T

j

and T

j

< T

0

i

In this case, it is possible that T

i

is not an updateable global transaction. Thus, it may read both global

and local data items. In this case we derive that there are sequences of local and global transactions in

LS

0

such that the local serialization graph contains paths T

0

i

, T

i1

, ..., T

j

and T

j

, ..., T

jk

, T

0

i

. Thus, T

0

i

and T

i1

as well as T

jk

and T

0

i

contain con
icting operations. Therefore, we obtain that at some point,

a local DBMS violated the strict 2PL rule. Thus, this case is also impossible and the lemma is proven.

2

From the lemma we conclude that in the presence of failures any local DBMS generates a local serializable

schedule from the MDBS viewpoint.

Proof of Theorem 1: For each committed projection of a local schedule LS

i

we build an acyclic local

serialization graph that exists by virtue of Lemma 5. Let us consider a graph SG that is a union of local

serialization graphs from each site. We will show that SG is acyclic if and only if a union of commit orders

of local schedules generate a total order on the set of global transactions G.

(if) Let us assume that there is a total order on G generated by the union of commit orders of local

schedules. Let us assume to the contrary that graph SG does contain a cycle. Let C = T

1

! T

2

! ... !

T

m

! T

1

be a cycle in graph SG, where each T

i

is either a local or a global transaction.

Since graph SG is a union of local serialization graphs, C is also a union of paths from local serialization

graphs. Thus, C can be subdivided into path segments P

1

, P

2

, ..., P

k

such that each P

i

is a path of the

local serialization graph from site S

i

. By Lemma 5, the number of paths is more than 1, since otherwise we

would have obtained a cycle in a local serialization graph.

Any two adjacent paths P

i

and P

i+1

have at least one global transaction in common, otherwise we would

have a local transaction that ran at two local sites, which contradicts the de�nition of a local transaction.

Since each local DBMS uses the strict two phase locking protocol, by Lemma 4, a commit order at each

local site generates a serializable order of global and local transactions. Thus, the total order on global

transactions existing on G generates a serializable order of global transactions at each local site. Hence, at

each local site there is a serial schedule equivalent to a committed projection of a local schedule such that

global transactions at that site are committed in that order. Then, in the cycle C, global transactions would

not be in that order. Therefore, by transitivity, a pair of global transactions can be found in some local

schedule that violates the total order of global transactions. This is a contradiction!

(only if) Let us assume that global database consistency is assured. This means that the graph SG

obtained as the union of local serialization graphs is acyclic. Let S = T

i1

, T

i2

, ..., T

in

be a sequence of global

transactions obtained by a topological sort of SG. We claim that T

i1

, T

i2

, ..., T

in

is a total order satisfying

the theorem's assertion. Let us assume that T

i

precedes T

j

in S. At any local site where both T

i

and T

j

are

executed two cases may occur:

21

in S transaction T

i

commits before transaction T

j

commits and consequently in S

00

transaction T

i

appears

before transaction T

j

and these transactions are con
icting in S

00

. The lemma is proven. 2

To prove theorems 1 and 2 we need to show that for any set of local transactions and any combinations

of failures the global schedule generated by the scheduler remains serializable. In other words, we need to

prove that in the presence of global transaction restarts, the global serialization graph obtained as a union

of local serialization graphs remains acyclic under the condition of our theorems.

Let us assume that during a transaction's commit process a failure occurs and the global transaction

committed at one site but aborted at another. Let us further assume that after the system recovers, the

transaction that failed to commit is restarted at the site where it failed, and the resulting local schedule is

such that the combination of schedules at all local sites violates global database consistency. Our �rst goal is

to show that each local schedule remains serializable in the presence of global transaction restart operations

at local sites.

Let LS be a local schedule that would be generated by the local DBMS, assuming that no failures

occurred. Let LS

0

be a local schedule that is generated by the local DBMS after failures occurred, the

system is restored, and all appropriate global transactions at the local site are redone. LS is serializable,

since each local DBMS uses the strict two phase locking protocol. The schedule LS

0

di�ers from the schedule

LS in that:

1. It has a di�erent order of execution of write operations for failed global transactions after they were

restarted by the MDBS.

2. It may include additional local transactions.

3. It contains read operations of global transactions that failed to commit and which local DBMS con-

sidered aborted.

The new order of write operations for the failed global transactions may create additional pairs of con
icting

operations between transactions at the local site and as a consequence, cycles may appear in the local

serialization graph.

If a global transaction fails at the local site and then is redone by the MDBS, the local DBMS considers

the redone transaction as a completely new transaction T

00

which consists of all write operations of the

original transaction T , but which is not related to the original transaction T . Therefore, schedule LS

0

contains, instead of transaction T , two di�erent transactions T

0

and T

00

, as far as the MDBS is concerned,

where T

0

consists of all read operations of T and T

00

consists of all write operations of T .

From its own viewpoint, the local DBMS generates a serializable local schedule considering T

00

as a new

transaction unrelated to T and assuming that T

0

is an aborted transaction. We will show that schedule LS

0

is also serializable from the MDBS viewpoint that considers T

0

and T

00

as the same transaction. We will

need the following lemma.

Lemma 5: If LS has an acyclic local serialization graph, then so does LS

0

, as far as the MDBS is

concerned (i. e. if T

0

and T

00

are considered in LS

0

as the same transaction).

Proof: Let S be a schedule that includes transactions T

i

and T

j

. We say that T

i

< T

j

, if there is a

path between T

i

and T

j

in a serialization graph of schedule S. Let us assume that T

i

< T

j

in a serialization

graph of LS and LS is a serializable schedule. Without a loss of generality, we may also assume that T

i

is a

global transaction that failed during the execution of a commit operation and had to be restarted resulting

in schedule LS

0

. To prove the lemma, it will su�ce to show that there is no cycle between T

i

and T

j

in LS

0

(considering T

0

i

and T

00

i

in LS

0

as the same transaction).

Let us assume to the contrary that T

i

< T

j

and T

j

< T

i

are both in LS

0

. Since the local DBMS generates

a local serializable schedule if T

0

i

is aborted and T

00

i

is a transaction that is unrelated to T

i

, the following

two cases may occur in the local schedule LS

0

.

1. T

0

i

< T

j

and T

j

< T

00

i

In this case we derive that there are sequences of local and global transactions in LS

0

such that the

local serialization graph contains paths T

0

i

, T

i1

, ..., T

j

and T

j

, ..., T

jk

, T

00

i

. Thus, T

0

i

and T

i1

as well

as T

jk

and T

00

i

contain con
icting operations. Since T

0

i

(T

00

i

) contains only read (write) operations,

20

Appendix A

In Appendices A and B we present the proofs of Theorems 1 through 3. To do so, we need �rst to de�ne

formally what is meant by global database consistency.

We de�ne the notions of a schedule S and a serial schedule in the usual manner [3]. Let op

i

and op

j

be two operations from S (with op

i

preceding op

j

in S) belonging to two di�erent transactions T

i

and T

j

,

respectively. We say that op

i

and op

j

are con
icting, if they operate on the same data item and at least

one of them is a write operation. Let S be an arbitrary schedule. We say that transactions T

i

and T

j

are

conflicting in S if and only if there is a pair of con
icting operations op

i

and op

j

in S (with op

i

preceding

op

j

in S) belonging to T

i

and T

j

, respectively. Two schedules S and S

0

are con
ict equivalent if and only

if they are de�ned on the same set of transactions and have the same set of con
icting transaction pairs.

We say that a schedule is serializable if and only if it is con
ict equivalent to a serial schedule. We use

serializability as a correctness criterion for the GTM and local DBMS concurrency control mechanisms.

In dealing with schedules that contain abort operations we can come across a schedule that is not

serializable but if one would consider only operations of committed transactions then the schedule becomes

serializable. Since aborted transactions do not make any impact on the database values, instead of schedules

as de�ned above we should deal with their committed projections. A committed projection of schedule S is

a schedule that is obtained from S by deleting all operations that do not belong to transactions committed

in S [3]. We now modify the de�nition of global and local serializable schedules by considering only their

committed projections.

A serialization graph of a committed projection of schedule S is a directed graph whose nodes are

transactions, and an arc T

i

! T

j

exists in the graph if (T

i

, T

j

) is a con
icting pair in S and both T

i

and T

j

are committed in S. A serialization graph of schedule S is acyclic, if and only if S is serializable [3].

In order to prove in our model that global database consistency is assured, it is necessary to give a

formal de�nition of global database consistency for a set of global transactions G [6]. Let G be a set of

global transactions. We say that G retains global database consistency if and only if for any set of local

transactions L and local schedules S

1

; :::; S

n

over set of transactions G[L at sites C

1

; :::;C

n

, there is a total

order of all global transactions in G such that for every two transactions T

i

and T

j

from G, T

i

precedes T

j

in

this ordering if and only if for any local site C

k

where they execute together, there is a serial local schedule

S

1

k

con
ict equivalent to S

k

and T

i

precedes T

j

in S

1

k

.

Let G and L be sets of global and local transactions, respectively. Let SG be a union of local serialization

graphs. In [6] we proved that a set of global and local transactions retains global database consistency if SG

does not contain a cycle [6].

In order to prove Theorems 1 and 2, we introduce a commit order de�ned by a schedule and prove two

lemmas used in proofs of both theorems.

Let S be a committed projection of schedule S

0

and G be a set of transactions committed in S

0

. We

de�ne a commit order on the set G as follows:

T

i

<

c

T

j

if and only if T

i

commits in S before T

j

commits in S. We will call <

c

a commit order of schedule

S.

Lemma 4: Let S be a committed projection of schedule S

0

, generated by the strict two-phase locking

protocol. There is a serial schedule S

00

that is con
ict equivalent to S such that the commit order of S is

the same as the transaction order in S

00

.

Proof: Let S

00

be a serial schedule de�ned by the commit order of schedule S. We prove that S

00

is

con
ict equivalent to S. Let (T

i

, T

j

) be a pair of con
icting transactions in S

00

with T

i

preceding T

j

in

S

00

. Then in S

00

there are con
icting operations op

i

(x) and op

j

(x) with op

i

(x) preceding op

j

(x) in S

00

. Let

us assume that in S op

i

(x) follows op

j

(x). Since S is generated by the strict two-phase locking protocol,

transaction T

j

cannot release its lock on x until it commits. Therefore, in schedule S transaction T

j

commits

before transaction T

i

commits, which contradicts that S

00

is de�ned by the commit order of S.

Conversely, if (T

i

, T

j

) is a pair of con
icting transactions in S with T

i

preceding T

j

in S, then in S there

are con
icting operations op

i

(x) and op

j

(x) with op

i

(x) preceding op

j

(x) in S. Since S is generated by the

strict two-phase locking protocol, transaction T

i

cannot release its lock on x until it commits. Therefore,

19

order to guarantee global database consistency some restrictions have to be imposed on the database system.

The restrictions discussed in this paper are formulated in terms of read and write sets of local and global

transactions. Namely, we separate all data items into two mutually exclusive classes: globally and locally

updateable data items, and impose some additional restrictions on reading access by the various transactions.

We believe that the separation of data items into globally updateable and locally updateable classes

is reasonable and is administratively easy to maintain. In fact, this separation is necessary in the case of

replicated data. Moreover, it is already imposed in some users' organizations. The payo� from imposed

restrictions is quite signi�cant. We guarantee consistent data update and data retrieval in the presence

of system failures and, in addition, we assure local DBMS autonomy. All this is accomplished without

requiring any modi�cations to local DBMS systems, thereby ensuring that user DBMS maintenance costs

will not increase and local DBMS execution autonomy will be retained.

The restriction placed on reading and writing access by the local and global transactions may preclude

the writing of some types of applications. This problem arises due to our desire to preserve the important

properties of local autonomy, global transaction atomicity, and global serializability. To remove some of the

proposed restrictions, some of the above properties must be sacri�ced. We are currently investigating ways

for achieving this. We note, however, that this may lead to other new restrictions that must be placed on

the system.

18

Example 4 (revisited): Transaction T

1

's server at site S

2

will not respond with a commit completed

message, since the server failed. The GTM restarts the server with a new timestamp, the status of T

1

at site

S

2

is changed to waiting.

At this point the union of the WFCG and the PCG contains a cycle C = T

1

, T

2

, T

1

. T

2

is the only

active transaction at site S

2

. Therefore, T

2

gets aborted and thus, transaction T

1

will successfully complete

its commit operation. 2

Example 5 (revisited): Let us assume that the GTM calls the global deadlock detection algorithm

while T

1

waits for a local lock at S

2

. In this case, the graph PCG contains a cycle C = T

1

, T

2

, T

1

. At site

S

2

, transaction T

1

is active, and since the timestamp of T

2

is larger then the timestamp of T

1

, transaction

T

2

is aborted. Transaction T

1

can then complete at both sites. 2

Example 6 (revisited): Since transaction T

1

waits for a global lock that is allocated to transaction T

2

and the PCG contains a path consisting of T

2

, T

1

, graph GG contains a cycle C = T

1

, T

2

, T

1

. At site S

2

,

transaction T

1

is active and transaction T

2

is waiting. Transaction T

2

gets aborted, since it has a larger

timestamp than transaction T

1

. Transaction T

1

will then obtain the global lock on c and consequently a

local lock on c, and �nally will complete its work and successfully commit. 2

Example 7 (revisited): Since transaction T

1

waits for a global lock that is allocated to transaction T

2

(that has failed to commit at site S

2

) and transaction T

2

implicitly waits for a local lock allocated to T

1

,

graph GG contains a cycle. Since transaction T

1

is active and T

2

is restarted at site S

2

, and therefore cannot

be aborted, the GTM aborts T

1

. After that, transaction T

2

successfully completes its commit at S

2

. 2

We prove now that the global deadlock detection algorithm detects and breaks any global deadlock that

occurs in the system. The algorithm in some cases assumes that there is a global deadlock, where in fact

no deadlock is present. Such a situation is unavoidable in the multidatabase environment, since the GTM

detects a potential global deadlock, and in the absence of any response from a local site will assume that

a global deadlock exists. Since the GTM has no way to receive a local wait-for-graph, it cannot construct

an union of local wait-for-graphs and GWFG, and WFCG. Thus, the recovery manager will have to make

pessimistic assumptions about global deadlocks, that do not always re
ect the reality of the situation.

Theorem 3: The deadlock detection algorithm detects and breaks any global deadlock.

Proof: See Appendix B. 2

Performance evaluation results [2] indicate that the deadlock detection method proposed here generates

signi�cantly less aborts of global transactions than a simple timeout mechanism.

7 CONCLUSIONS

The multidatabase transaction management scheme described in this paper ensures global database consis-

tency and freedom from global deadlocks in a failure-prone multidatabase environment. We assumed that

each local DBMS uses the strict two-phase locking protocol, which most commercial products use. As a

consequence of the execution autonomy requirement, we argued that the various local DBMSs integrated by

the MDBS system cannot participate in the execution of a global atomic commit protocol (even if each local

DBMS provides a prepare-to-commit state available to user transactions!). Our main goal was to provide a

scheme that preserves the execution autonomy of each of the constituent local DBMSs.

Our work was motivated by a major problem that exists in the modern industrial data processing

environment|the maintenance of consistent data which is distributed among many di�erent DBMSs. It

is not reasonable to expect that one will be able to o�er to the industrial user community a single DBMS

that will replace all currently existing DBMSs. It is also doubtful that users' organizations will agree to

modify existing DBMS software to ensure their cooperation in a multidatabase environment, since this in-

creases signi�cantly the users' maintenance costs and negates the bene�ts of the multidatabase environment.

Therefore, it is imperative to develop methods to support users' data in a consistent and reliable manner,

similar to methods developed in the single DBMS environment. We believe that this paper serves as a basis

for developing such methods. Indeed, the algorithms developed here are currently being implemented in the

prototype version of the multidatabase system developed at the Amoco Production Company.

We have shown that if no restrictions are imposed on a set of local and global transactions then global

database consistency cannot be guaranteed. (This follows implicitly from discussions in [3].) Therefore, in

17

a pessimistic assumption that a global deadlock has occurred. Since the GTM is only guessing that the

transaction is in a global deadlock, it may well abort a transaction that is not in a deadlock. Aborting

a transaction that is not in a deadlock implies a performance penalty that is similar and in some cases is

more severe than in a homogeneous distributed database environment. These complications are due to the

desire to preserve the execution autonomy of each of the local DBMSs. Since each local DBMS has di�erent

performance characteristics, the selection of a proper timeout period also presents some di�culties.

Therefore, it would be advantageous for us to seek a more
exible deadlock handling scheme. Unfortu-

nately, as Lemma 1 indicates, there is no way to avoid aborting global transactions that are not in a global

deadlock, since the GTM has no access to the various local wait-for-graphs. Thus, the best we can hope for

in a multidatabase environment is to reduce the number of unnecessary aborts as compared with the simple

timeout scheme outlined above. The algorithm given below is one such improvement.

Our global deadlock detection algorithm is a timestamp based scheme. We assume that when the GTM

receives the begin operation of transaction T

i

, it assigns a unique timestamp ts(T

i

) to the transaction

(No two di�erent transactions can have the same timestamp.) The global deadlock detection algorithm

maintains the graph GG which is the union of PCG, GWFG, and WFCG. The algorithm is invoked by the

GTM whenever some global transaction T

i

requests a global lock, or local lock at some site S

j

, or a commit

operation of some transaction is placed on the WFCG. The algorithm consists of the following four steps:

1. Update PCG, GWFG, and WFCG, accordingly.

2. If there is a cycle in GWFG, then abort T

i

and exit.

3. If there is a cycle in GG, then

(a) Let fT

i1

, ..., T

im

g be the set of all global transactions that are active at S

j

and appear in at least

one cycle with T

i

.

(b) If ts(T

i

) < min(ts(T

i1

), ..., ts(T

im

)) then continue to wait, otherwise abort T

i

at all sites, provided

that T

i

is not a transaction that is executing the commit operation.

4. If there is no cycle in GG, then continue to wait.

At the �rst step of the algorithm, depending whether transaction T

i

requests either a global, or a local

lock at some site, or needs to wait for the execution of its commit operation, some edges are included either

in GWFG, or PCG, or WFCG, respectively. If new edges were included in the GWFG that created a cycle

in the graph, then the cycle is broken by aborting transaction T

i

at the second step of the algorithm. Thus,

at the third step of the algorithm, we know that the GWFG does not contain a cycle. On the other hand,

graph GG may or may not contain a cycle. If GG does not contain a cycle, then, by Lemma 2, a global

deadlock may not occur. However, if GG does contain a cycle, a global deadlock may have occurred. At

this time a decision needs to be made whether GTM should continue to wait for T

i

to obtain the required

lock, or T

i

should be aborted (since T

i

may well be in a global deadlock). We use the wait-die scheme [19] to

decide whether T

i

should be aborted. We assume that in a multidatabase environment, the older the global

transaction the more its operations were executed. Therefore, we let the older transaction wait for a local

lock in order to avoid costly aborts. If the system is in a global deadlock, the GTM will eventually detect it

when one of the younger transactions in the cycle requests a local lock and cannot obtain it. In that case,

the GTM will abort the transaction and then transaction T

i

will be able to obtain the requested local lock

after one of the younger transactions in the cycle is aborted.

The key point behind our algorithm is that it is not possible to have a cycle in GG consisting of only

transactions that are in the process of executing their commit operations. Indeed, none of these transactions

can be either in GWFG or in WFCG. On the other hand, each transaction T

i

that has failed in the ready-

to-commit state at, say, two sites S

j

and S

k

, is restarted at these sites with two di�erent new timestamps,

say T

i

1

and T

i

2

. Thus, T

i

1

and T

i

2

are executing at exactly one site each and therefore no cycle in PCG can

be generated from transactions that have failed in the ready-to-commit state.

To illustrate the global deadlock detection algorithm, let us revisit Examples 4, 5, 6, and 7.

16

site. Since no operation of a global transaction can be submitted for execution until the previous operation

of the same transaction has been completed, in nonreplicated databases each global transaction can be in

the waiting status only at one local site. In the sequel we assume that each global transaction can be in the

waiting status at most at one site also for replicated databases. If a global transaction should execute the

write operation on a replicated data item, local write lock requests should be submitted in sequence. The

next site's write lock request is not sent until the local write lock request from the previous site is satis�ed.

A potential con
ict graph (PCG) is a directed graph G = (V , E) whose set of vertices V consists of a set

of global transactions. An edge T

i

! T

j

is in E if and only if there is a site at which T

i

is waiting and T

j

is

active.

A PCG changes whenever a transaction at some site changes its status from active to waiting or vice

versa. If a transaction is waiting at site S

j

, then it waits for the local DBMS to allocate local locks required

to perform the transaction operation. After the transaction has received the requested local locks, the

transaction's status at the site is changed to active. Thus, when a transaction has completed all its operations

at all local sites at which it was executing, and it receives the prepare-to-commit message indicating the start

of the transaction's commit operation, its status at all such sites is active and remains active until the

transaction either commits or aborts, provided that no failures occurred during the commit operation.

After the transaction commits or aborts, the transaction and all edges incidental to it are removed from the

PCG. If a failure has occurred after the commit message was sent and before all sites received the message,

the transaction needs to be restarted at the failed site.

The restarted transaction should request some local write locks to redo the transaction at the failed site.

Thus, the transaction's status at the failed site is changed to waiting and remains such until the transaction

receives local locks to redo its operations after the site becomes operational. After this takes place, the

transaction status at the site becomes active again and remains such until the transaction is successfully

redone at the site.

Lemma 3: Let GG be a graph that is a union of PCG, GWFG, and WFCG. If GG is acyclic, then

there is no possibility of a global deadlock (provided that any local wait-for-graph is acyclic, which we have

assumed in our model).

Proof: Suppose there is an edge T

i

! T

j

in GG. Then either transaction T

i

is waiting for a local lock

and transaction T

j

is active at the same site, or T

i

is waiting for a global lock allocated to transaction T

j

, or

T

i

is waiting for transaction T

j

to execute a commit. Let us now consider graph GR that is a union of local

wait-for-graphs, GWFG, and WFCG. By Lemma 1, a global deadlock exists if and only if there is a cycle in

GR. Thus, to complete the proof of the lemma, we need to prove that GR does not contain any cycle.

Let us assume to the contrary that graph GR contains a cycle C = T

i1

! . . . ! T

il

! T

i1

, where each

T

ir

(1 � r � l) is either a global or a local transaction.

This cycle is made up of paths contributed from local wait-for-graphs, the global wait-for-graph and the

wait-for-commit graph (the latter contributes only separate edges).

Let P

1

, P

2

, ..., P

m

be paths contributed either from local wait-for-graphs or from a global wait-for-graph,

or from the wait-for-commit graph. Any two paths contributing to cycle C should have global transactions

as end points, since local transactions may run only at one local site, by de�nition of a local transaction.

Since every global transaction can wait for a local lock only at one local site, and no local deadlocks are

allowed, each local wait-for-graph path P

i1

starts with T

ir

which is currently waiting at the local site, and

ends with T

it

which is active at the site.

Any two paths from C may have only global transactions in common with those that appear as end

points of the path. Therefore, an assumption that there is a cycle, C, in GR allows construction of a cycle

in the graph that is a union of PCG, GWFG and WFCG that is built from the global transactions that are

end points of paths P

1

, ..., P

m

. This is a contradiction, and therefore the lemma is proven. 2

We conclude this section by describing a global deadlock detection algorithm and proving its correctness.

If the GTM requests a local lock and it does not receive a message from the local server that the lock has

been granted, then the GTM can conclude that either a global deadlock has occurred, or it takes the local

DBMS a long time to allocate a lock to the transaction server, or a failure has occurred. One strategy for

dealing with global deadlocks is to use a timeout mechanism. If after some prespeci�ed length of time, the

GTM is not noti�ed that the local lock request has been honored, it simply aborts the transaction making

15

Proof: Let us assume to the contrary that there is a cycle C = T

i1

, ..., T

ik

, T

i1

in a union of WFCG

and GWFG. Observe that any path in WFCG is of length 2. Indeed, if T

i

waits for T

j

to commit, then, by

de�nition, T

j

is included in the commit graph and thus, cannot wait for any other transaction to commit.

There are two cases to consider: C contains only edges contributed by GWFG and C contains edges from

both GWFG and WFCG. The �rst case cannot occur, since we guarantee that GWFG is acyclic.

Let us consider the second case. Let us assume that in C, transaction T

ij

is the last in C that is waiting for

T

i(j+1)

to commit. Therefore, transaction T

i(j+1)

is being committed and as such has obtained all its global

locks. But this contradicts the assumption that transaction T

i(j+1)

is waiting for a global lock allocated to

transaction T

i(j+2)

. The lemma is proven. 2

We present now an additional example that demonstrates that a global deadlock situation may result if a

failure occurs during the processing of the commit operation. In Example 4 we illustrated a global deadlock

situation when one global transaction was waiting to commit for another transaction that failed to commit.

In the example below, we illustrate a global deadlock between a restarted transaction waiting for a local lock

and another global transaction waiting for a global lock that is being held by the restarted transaction.

Example 7: Consider a global database consisting of data items a at site S

1

and b and c at site S

2

.

All data items are globally updateable. Assume that the following global transactions are submitted to the

MDBS:

T

1

: w

1

(c) w

1

(a)

T

2

: w

2

(b) w

2

(a)

In addition, the following local transaction is submitted at site S

2

L

3

: r

3

(b) r

3

(c)

Consider the following snapshot of the transaction processing at both sites.

1. T

2

is in the ready-to-commit state.

2. L

3

waits at S

2

for T

2

to release the local lock on b.

3. T

1

�nished w

1

(c) and is waiting for T

2

to release the global lock on a.

Assume that the commit message for T

2

is sent to both sites S

1

and S

2

. At site S

1

, the commit message for

T

2

is received and successfully executed. On the other hand, at site S

2

, T

2

's server fails before the commit

message for T

2

arrives. As a result, the local lock on a at S

1

is released, but since T

2

failed to commit at S

2

,

T

2

continues to hold a global lock on a.

At site S

2

, T

2

loses a local lock on b, due to the server failure, and the local DBMS allocates it to L

3

.

Following this, L

3

issues r

3

(c) and waits for T

1

to release the local lock on c. The system now is in a global

deadlock, since T

1

waits for T

2

at the GWFG while T

2

is waiting for a local lock on b that is held by L

3

,

which in turn waits for a local lock on c, that is being held by T

1

. 2

From Lemma 1, it follows that in order to detect that a global deadlock has occurred, it is necessary for

the MDBS to have access to the various local-wait-for-graphs. Since this information is not available to the

MDBS, it is necessary to devise a di�erent scheme for approximating the union of the local wait-for-graphs.

As we shall see, our scheme may result in the detection of false deadlocks, but ensures that no global deadlock

will be missed.

Our scheme is based on the ability to distinguish between an active and waiting state of a global

transaction at some local site. To do so, we assume that the server is responsible for requesting the various

local locks for the transaction it is responsible for. Given this, we say that that transaction T

i

is waiting at

site S

j

if it has a server at S

j

and has asked for a lock that has not been granted yet. A transaction that is

not waiting at site S

j

is said to be active at site S

j

, provided that it has a server at the site and the server

is either performing the operation of T

i

at the site or has completed the current operation of T

i

and is ready

to receive the next operation of transaction T

i

. A transaction that is either active or waiting at a local site

is called executing at the site.

For nonreplicated databases, each global operation refers to a data item that is located at exactly one

local site. This means that if a global transaction is waiting for a local lock, it is waiting only at one local

14

2. A union of a local-wait-for-graph and the GWFG.

3. A union of a local-wait-for-graph and the WFCG.

4. A union of the GWFG and the WFCG.

Examples 4, 5, and 6 below indicate that global deadlocks may indeed occur in the �rst three cases. Lemma

2 below indicates that in the fourth case a global deadlock situation is not possible.

Example 4: Consider again Examples 2 and 3. In Example 3, we have placed transaction T

2

onto the

WFCG in order to assure global database consistency. While T

2

is on WFCG, it cannot release the local

locks it is holding on data items b and d. Transaction T

2

can release these locks only after it commits at both

sites. However, T

2

waits on WFCG for T

1

to commit. Transaction T

1

, on the other hand, cannot restart

at site S

2

(after it failed to commit there) before it obtains a local lock on c. Transaction L

4

holds a local

lock on c and waits for a local lock on d that is being held by transaction T

2

. The system now is in a global

deadlock, since T

2

is waiting for T

1

on the WFCG and T

1

is waiting for L

4

to release a local lock on c, and

L

4

in turn waits for T

2

to release a local lock on d. 2

Example 5: Consider a multidatabase that consists of globally updateable data items a and b at site

S

1

and c and d at site S

2

. Let us further assume that the following global transactions are submitted to the

MDBS:

T

1

: w

1

(a) w

1

(d)

T

2

: w

2

(c) w

2

(b)

In addition to the global transactions, the following local transactions are submitted at the local sites:

L

3

: r

3

(b) r

3

(a)

L

4

: r

4

(d) r

4

(c)

Consider a snapshot of the system where:

1. At site S

1

, T

1

is holding a lock on a, and L

3

is holding a lock on b and waiting for T

1

to release the

lock on a.

2. At site S

2

, T

2

is holding a lock on c, and L

4

is holding a lock on d and waiting for T

2

to release the

lock on c.

Since the scheduler is not aware of L

3

and L

4

, and since T

1

and T

2

do not access common variables, operations

w

1

(d) and w

2

(b) are submitted to the local sites. We are in a global deadlock since at site S

1

, T

2

is waiting

for L

3

which in turn waits for T

1

, while at site S

2

, T

1

is waiting for L

4

which in turn waits for T

2

. 2

Example 6: Consider a global database consisting of two sites S

1

and S

2

, and having globally updateable

data items a and b at site S

1

, and a data item c at site S

2

. Let us further assume that the following global

transactions are submitted to the MDBS:

T

1

: w

1

(a) w

1

(c)

T

2

: w

1

(c) w

1

(b)

In addition to T

1

and T

2

, at site S

1

the following local transaction is submitted:

L

3

: r

3

(b) r

3

(a)

Let us assume that at site S

2

, global transaction T

2

has a local write-lock on data item c and at site

S

1

, transaction T

1

has a local write-lock on a. Let us further assume that at site S

1

, local transaction L

3

has a local read-lock on b. Transactions T

1

and T

2

also have global write locks on a and c, respectively.

Transaction T

2

requests a global write-lock on b and obtains it, but it waits for a local write-lock on b at site

S

1

. L

3

requests a local read-lock on a and it waits for T

1

. T

1

requests a global write lock on c and it waits

for T

2

on the global wait for graph. We are again in a global deadlock situation. 2

Lemma 2: A union of WFCG and GWFG cannot contain a cycle.

13

6 MULTIDATABASE DEADLOCKS

In de�ning the MDBS model (see Section 2), we have assumed that each local DBMS is responsible for

ensuring that no local deadlocks will occur (or if they do occur, they are detected and recovered from).

Unfortunately, this does not ensure that global deadlocks will not occur in the system.

Consider a set of global and local transactions that contains at least two or more global transactions.

If each transaction in this set either waits for a local or global lock allocated to another transaction in the

set, or waits for the completion of a commit operation of some transaction in the set to start its commit

operation, then each transaction in the set is waiting. Therefore, no transaction from the set can release its

global and local locks that are needed by other transactions in the set. We will call such situation a global

deadlock. The MDBS must be able to detect and break global deadlocks. Since the set of local transactions

is not known to the MDBS, the detection of a global deadlock situation is not a simple task as will become

evident shortly.

Our deadlock handling scheme is based upon the commonly used wait-for-graph concept [16]. A wait-

for-graph is a directed graph G = (V , E), whose set of vertices V is a set of transactions and an edge T

i

!

T

j

belongs to E if and only if transaction T

i

waits for a lock allocated to transaction T

j

. In order to reason

about global deadlocks we assume (for argument sake only) that each site maintains a local wait-for-graph

(LWFG), and that graph is available to the system.

The GTM maintains a global wait for graph (GWFG). The set V consists of the names of the global

transactions. An edge T

i

! T

j

belongs to E if and only if global transaction T

i

waits for a global lock

allocated to global transaction T

j

. If a global transaction waits for a global lock, then the transaction state

becomes blocked and the transaction is included in the GWFG. The transaction becomes active again only

after it can obtain the global locks that it was waiting for. The GWFG is always acyclic. This can be ensured

as follows. Whenever a new edge T

i

! T

j

is to be added to the graph, a cycle detection algorithm is invoked.

If the inserted edge causes a cycle to occur, then some global transaction from the cycle is aborted.

The GTM does not release the global locks of a global transaction until the transaction either aborts

or successfully commits. This allows the GTM to handle a failure that occurred during the transaction

commit operation, when a global transaction successfully commits at one site and fails to commit at the

other one. The local locks that the transaction keeps at both sites are released by local DBMSs at both sites.

On the other hand, the GTM does not release global locks allocated the transaction until the transaction

successfully commits at the failed site, preventing other global transactions from using data items that have

not yet been committed.

After transaction T

i

commits or aborts and its global locks are released, the GTM examines the GWFG.

If transaction T

j

in the GWFG was waiting only for global locks allocated to T

i

, then T

j

is unblocked and

the next operation of T

j

is submitted for execution.

Lemma 1: Let GL be a set of global and local transactions that contain at least two global transactions.

Let GR be the union of all LWFGs, the GWFG, and the WFCG. A global deadlock exists if and only if GR

contains a cycle.

Proof: Let us assume that GR contains a cycle C = T

i1

! T

i2

, ..., T

ik

! T

i1

. Each edge in the cycle

is contributed either from a local wait-for-graph, or from the GWFG, or from the WFCG. Consider a set of

global and local transactions that belong to C. We claim that C satis�es the de�nition of a set of global

and local transactions in a global deadlock. Indeed, each global transaction in C is either waiting for a local

or global lock or is waiting for a global transaction to complete its commit operation.

Let us assume now that there is a set GL of local and global transactions that is in a global deadlock.

Then, selecting global transaction T

i

and using a de�nition of the global deadlock, we construct a sequence

of global and local transactions C such that each transaction in the sequence is either waiting for a local

or a global lock allocated to the next transaction in the sequence, or is waiting for the next transaction in

sequence to commit. Since set GL is �nite, the constructed sequence should contain at least one transaction

twice. Thus, graph GR contains a cycle. 2

According to Lemma 1, the minimal number of graphs that can contribute to the cycle formation in

graph GG is:

1. A union of two local-wait-for-graphs.

12

Theorem 1 formulates necessary and su�cient conditions under which global database consistency is

retained. However, it does not provide a clue on how to design a GTM that assures this. To do so, we need

to introduce the concept of a commit graph.

A commit graph CG = < TS, E > is an undirected bipartite graph whose set of nodes TS consists of a

set of global transactions (transaction nodes) and a set of local sites (site nodes). Edges from E may connect

only transaction nodes with site nodes. An edge (T

i

,S

j

) is in E if and only if transaction T

i

was executing

at site S

j

, and the commit operation for T

i

is being processed by the transaction server at site S

j

.

The commit graph scheme ensures that two global transactions may not process their commit operations

concurrently at more than one local site. This is the key concept behind the commit graph scheme.

The idea behind the commit graph scheme is identical to the idea behind the site graph scheme intro-

duced in [23] and [6]. There, we used the site graph to ensure that two global transactions are not processed

concurrently at more than one site. It allowed us to retain global database consistency in the multidatabase

environment with no restrictions on local concurrency control mechanisms.

Theorem 2: Let G be a set consisting of global transactions that have been committed by the MDBS.

Global database consistency is retained if and only if the commit graph does not contain loops.

Proof: See Appendix A. 2

In order to decide when it is safe to process a global commit operation, the GTM uses the commit graph

de�ned above, and a wait-for-commit graph. A wait-for-commit graph (WFCG) is a directed graph G = (V ,

E) whose set of vertices V consists of a set of global transactions. An edge T

i

! T

j

is in E if and only if T

i

has �nished its execution, but its commit operation is still pending and T

j

is a transaction whose commit

operation should be completed or aborted before the commit operation of T

i

can start.

The GTM uses the following algorithm for scheduling the commit operation of transaction T

i

:

1. For each site S

k

in which T

i

is executing, temporarily add the edge T

i

! S

k

to the commit graph.

2. If the augmented commit graph does not contain a cycle, then the global commit operation is sub-

mitted for processing, and the temporary edges become permanent.

3. If the augmented commit graph contains a cycle then:

(a) Let fT

i1

; T

i2

; :::; T

im

g be the set of all the transactions which appear in any cycle which was

created as a result of adding the new edges to the commit graph. For each T

ij

in that set, the

edge T

i

! T

ij

is inserted into the WFCG.

(b) The temporary edges are removed from the commit graph.

The algorithm described above ensures that the commit graph will always contain no loops. Thus, from

Theorem 2 it follows that our scheme ensures global database consistency.

Next, we need to examine the conditions under which vertices can be removed from the commit graph.

It turns out that vertex T

i

with all edges incidental to it cannot be removed from the commit graph as soon

as the commit operation for T

i

has been successfully executed at all relevant sites, since otherwise we can

obtain an inconsistent global database. This situation is similar to one described in [7] in connection to the

site graph scheme. However, if a set of transactions that have completed their commit operation constitutes

a connected component in the commit graph, then all the vertices in this component can be safely removed

from the commit graph without the violation of global database consistency.

After transaction T

i

either commits or aborts, the GTM examines the WFCG to determine whether there

is some other transaction from the WFCG whose commit operation can be submitted for execution. We

note that transaction T

i

, however, need not necessarily wait for the completion of every transaction T

ik

such

that T

i

! T

ik

. The GTM may submit T

i

's commit operation after some transactions T

il

such that T

i

! T

il

(0 < l < m) successfully commit (and in some cases, a successful commit of only one such transaction would

be su�cient to start the transaction's commit!). From the WFCG de�nition, it follows that it does not

contain any cycles.

Example 3: Consider again the scenario depicted in Example 2. This scenario cannot occur with the

use of the algorithm described above since T

2

is placed on the WFCG to wait until transaction T

1

completes

its commit operation. This follows from the fact that the attempt to start the commit for transaction T

2

creates a cycle in the commit graph. 2

11

Example 2: Consider a multidatabase that consists of data items a and b at site S

1

and c and d at site

S

2

. Let these data items be globally updateable. Consider the following global transactions submitted to

the MDBS:

T

1

: w

1

(a) w

1

(c)

T

2

: w

2

(b) w

2

(d)

In addition to the global transactions, the following local transactions are submitted to the local sites:

L

3

: r

3

(b) r

3

(a)

L

4

: r

4

(d) r

4

(c)

Consider now the following scenario. Operation w

1

(a) is sent to site S

1

and after it is executed, operation

w

1

(c) is sent to S

2

and is also successfully executed. Following this, transaction L

3

at site S

1

successfully

completes the execution of r

3

(b) and then must wait for T

1

to release the local write-lock on a. The commit

operation for T

1

is now submitted for execution. T

1

successfully commits at S

1

and releases its local locks,

but T

1

's server at site S

2

fails before it receives a commit message and thus at site S

2

, transaction T

1

is

considered aborted by the local DBMS.

In the meantime, at site S

1

, transaction L

3

completes its execution and successfully commits. Site S

2

now recovers and undoes T

1

. The operations of transaction T

2

are now submitted and successfully completed

at both sites, and the commit operation is submitted for execution and eventually is executed successfully.

Finally, L

4

is successfully executed and committed at site S

2

. Following this, transaction T

1

is resubmitted

again for execution at site S

2

and successfully commits.

Thus, at site S

1

the local schedule is < T

1

; L

3

; T

2

>, while at site S

2

, the local schedule is < T

2

; L

4

;

T

1

>. Therefore, the scheduler generated a nonserializable global schedule. 2

In the above example, we arrived at an inconsistent global database state because the commit operation

of transaction T

2

was processed before the commit operation of T

1

was successfully completed. Since

both transactions have no con
icting operations, the scheduler does not have any reason to prevent the

transactions from running concurrently. However, local transactions at both sites have con
icting operations

with the global transactions, and in this case global inconsistency resulted without the scheduler being aware

of it.

Let us assume for a moment that each local DBMS does have a prepare-to-commit operation available

to user transactions. Then upon the server failure for transaction T

1

at site S

2

in Example 2, the local

DBMS would not release local locks held by T

1

at site S

2

. Thus, local transaction L

4

would have to wait

to execute r

4

(c) until after the T

1

's server is restarted and transaction T

1

completes its commit operation

at S

2

. However, since execution autonomy of each local DBMS is ensured in our system, the local DBMS

at site S

2

may abort T

1

at any time and thereby T

1

will loose local locks. Thus, even if local DBMSs have

prepare-to-commit statements, the situation described in Example 2 may still occur if a condition of

execution autonomy is preserved.

It is interesting to observe that in the case of a homogeneous distributed database the situation of

Example 2 cannot occur for the following reason. T

1

's failure to commit at site S

2

is considered in such

environment a site failure (in an MDBS environment, however, the server is managed by the local operating

system and may fail independently of the site). After the site recovers from the failure, the local DBMS at

site S

2

would consult either coordinator or site S

1

as to what decision was made concerning transaction T

1

.

It would be possible for site S

2

to do so, since it is aware that T

1

was also active at site S

1

.

Example 2 demonstrates that the GTM should use some protocol in scheduling various commit opera-

tions in order to ensure global database consistency in the presence of failures. We �rst formulate criteria

under which global database consistency is assured in our model.

Theorem 1: Let G be a set consisting of global transactions that have been committed by the MDBS.

Global database consistency is retained if and only if there exists a total ordering of transactions from G

such that T

i

precedes T

j

in this ordering if and only if for any local site C

k

at which both transactions were

executing, there is a schedule S

0

that is con
ict equivalent to a local schedule S

k

such that T

i

commits before

T

j

in S

0

.

Proof: See Appendix A. 2

10

failures during the commit phase of the transaction unless we place some restrictions on the way global and

local transactions can interact.

Notice that the cause of our di�culties is the fact that between the time a global subtransaction was

undone by the local DBMS and the time it is reexecuted as a new transaction, a number of local and global

transactions can execute, potentially resulting in the system becoming inconsistent. Fortunately, we need to

worry about only local transactions since the global lock scheme prevents two con
icting global transactions

from committing in parallel at the same site.

Let us analyze the source of this di�culty. Let read (T

i

) and write (T

i

) denote the set of data items read

and written respectively by transaction T

i

at a local site. Let T

i

be a transaction that needs to be reexecuted

as a new transaction, and let L

i

= fL

i1

, L

i2

, ..., L

ih

g be the set of local transactions that executed between

the time a global subtransaction of T

i

was undone by the local DBMS and the time it is reexecuted as a new

transaction. To guarantee that the situation described in Example 1 would not occur, it su�ces to ensure

that either one of the following two conditions hold:

1. Condition 1

� write (T

i

) \ read (L

ij

) = ; for all L

ij

in L

i

� write (T

i

) \ write (L

ij

) = ; for all L

ij

in L

i

2. Condition 2

� read (T

i

) \ write (L

ij

) = ; for all L

ij

in L

i

Either of these two conditions guarantees that T

i

and some L

ij

in L

i

cannot interact in an adverse way.

The next question to be addressed is how to ensure that either of these two conditions is met in our

system. To do so, we �rst need to di�erentiate among the various types of data items used in an MDBS

environment. Let a be a data item in a multidatabase. If a is replicated (i.e., a is located at several sites),

then it is obvious that a local transaction cannot update a. Thus, in a multidatabase environment there

are data items that can be updated only by global transactions. These data items are referred to as globally

updateable data items. All other data items are referred to as locally updateable data items. We note that a

locally updateable data item can be written by both global and local transactions.

The restriction on access to globally updateable data items, however, is not su�cient to guarantee that

either one of the above two conditions is met in the system. To do so, we need to impose some additional

restrictions on reading and writing access by the various transactions.

For Condition 1 to hold, we require that a local transaction be prohibited from reading and writing

globally updateable data items, and that a global transaction be restricted to writing only globally updateable

data items.

For Condition 2 to hold, we require that a global update transaction be restricted to reading only globally

updateable data items.

If either of these conditions holds, then the MDBS system can maintain integrity constraints that involves

both global and local data items. For example, suppose that data item a is globally updateable and data

item b is locally updateable. Then integrity constraint a > b can be maintained by the system. Indeed a can

be modi�ed by a global transaction, since it can read b (Condition 1). It also can be maintained by a local

transaction, since it can read both a and b and modify b (Condition 2). It cannot modify a, however. Thus,

to modify a of the constraint, the global transaction should be used and to modify b the local transaction

can be used.

5 SCHEDULING OF THE GLOBAL COMMIT OPERATION

In this section we address the question of when a global commit operation can be scheduled for execution.

At �rst glance, one might think that a global commit operation can be submitted to the various servers for

execution as soon as the global transaction completes its execution at all sites. Unfortunately, if a failure can

occur during the processing of global commit operation it cannot be unconditionally passed to the servers

without the possible loss of global database consistency, as the next example demonstrates.

9

4 GLOBAL TRANSACTION RECOVERY

If a global transaction fails before it commits, then any of its local subtransactions must be undone by

the appropriate local DBMSs. As a consequence, global database consistency is also preserved, since the

transaction did not make changes in any of its local databases. Thus, the MDBS does not need to use the

undo operation to restore a multidatabase to a consistent database state.

The situation becomes more complicated if a failure occurs during the processing of a commit operation

of a global transaction. Consider the case where the MDBS decides to commit transaction T

i

. Suppose that

a local site, S

k

, in which T

i

was active fails without having the appropriate local DBMS log records in stable

storage and before the server for T

i

at site S

k

has received the commit message from the MDBS but after the

server has noti�ed the MDBS that it is ready to commit. If such a failure occurs, then upon recovery of S

k

,

T

i

must be undone at S

k

. However, the MDBS considers T

i

to be committed and thus upon recovery of S

k

,

the MDBS must redo T

i

at S

k

. As far as the local DBMS is concerned, redoing the transaction constitutes a

new transaction at that site, without any connection to the failed one. Thus, it is possible that between the

time that the local DBMS at S

k

recovers from the failure and the time that the restarted transaction T

i

at

site S

k

is redone, the local DBMS may execute some other local transactions that, in turn, may lead to the

loss of global database consistency. This situation creates serious recovery problems in the multidatabase

environment, as illustrated below.

Example 1: Consider a global database consisting of two sites S

1

with data item a, and S

2

with data

item b. Consider the following global transaction T

1

which has been submitted to the MDBS:

T

1

: r

1

(a) w

1

(a) w

1

(b)

Suppose that T

1

has completed its execution at both sites and is in the ready-to-commit state. The MDBS

now submits the commit operation to the servers at both sites. Further suppose that site S

2

has received the

commit and has successfully executed it, while site S

1

fails before the commit operation arrives. Therefore,

at site S

1

the local DBMS considers T

1

aborted and, as a consequence, releases its local locks. Upon recovery

of S

1

, a new local transaction L

2

is submitted at the site S

1

:

L

2

: r

2

(a) w

2

(a)

Transaction L

2

can now obtain the lock on a and execute to completion. Following this, the lock on a

is released, and the server obtains a lock on a and redoes the transaction's T

1

write operation as a new

transaction|T

3

, whose sole purpose is to set the value of data item a to the state it was in just after T

1

originally wrote them.

Transaction T

3

consists of all (and only) the write operations of the original transaction T

1

pertaining

to the data item residing at site S

1

. (We can always generate this transaction since we have all the relevant

information in the server log.) Thus, in the case of transaction T

1

, the new transaction is:

T

3

: w

3

(a)

This new transaction is then submitted for execution. Thus, from the local DBMS's viewpoint, the committed

projection of the local schedule generated at site S

1

is:

r

2

(a) w

2

(a) w

3

(a)

However, T

3

's write operation is the same as w

1

(a) as far as the MDBS is concerned. Thus, this execution

results in the following nonserializable schedule from the MDBS viewpoint, where both T

1

and T

2

are

committed in the schedule.

r

1

(a) r

2

(a) w

2

(a) w

1

(a) 2

The above example demonstrates one of the major di�culties in dealing with recovery in the multi-

database environment. A global transaction that fails for whatever reason at some local site is undone by

the local DBMS, while it should be redone as far as the MDBS is concerned. Barring the elimination of

local DBMS execution autonomy, it appears that it would be impossible to recover from global transaction

8

execution. Thus, to ensure the atomicity of each of the global transactions, we must employ some form of

commit protocol at the server level. To do so, each server must keep a log consisting of the changes made

by the global transaction that it is responsible for. Each time that the server updates a local database, it

also updates its own log. The server log is kept in stable storage. However, it does not mean that each time

a record needs to be put into a server transaction log that a local input/output operation is required. The

server may employ various bu�ering techniques to minimize a number of external input/output operations.

The server log, in contrast to the traditional write-ahead log [15], contains only the \redo" records (as will

be seen in Section 4).

In this paper, we assume that the two-phase commit protocol [15] is used at the server level. When the

MDBS encounters the commit operation of transaction T

i

, it sends to each server involved in this execution of

T

i

a prepare-to-commit message. Each server receiving the message determines if it can commit transaction

T

i

. If it can commit, it forces all the log records for T

i

to stable storage, including a record <ready T

i

>.

It then noti�es the MDBS whether it is ready to commit, or T

i

must be aborted. We assume here that a

server at this point is not able to notify the local DBMS that it started the execution of the �rst phase of

the commit operation. We believe that it is quite a realistic assumption, since we are not aware of any

major commercially available DBMS (with the notable exception of Sybase!) that provides users with a

prepare-to-commit operation that would enable a local DBMS to force transaction log records into the

stable storage and to abort or commit the transaction only after the MDBS makes that decision. Even

if in the future such a command should become available to users from a majority of DBMS vendors, it

would be enough to have only one DBMS that does not provide the prepare-to-commit operation in

order to generate the transaction management problems discussed here. In any event, our assumption does

not restrict a generality of our results. As we discussed in the Introduction, the preservation of execution

autonomy by a local DBMS implies that a local DBMS may abort a server even after the server has noti�ed

the DBMS that it has started a commit process.

The MDBS collects all responses from the servers. If all responses are \ready T

i

", then the MDBS decides

to commit T

i

. If at least one server responds with \abort T

i

", or at least one server fails to respond within

a speci�ed time out period, the MDBS decides to abort T

i

. In either case, the decision is sent to all servers.

Each server, upon receiving the decision, in turn, informs the local DBMS as to whether to abort or commit

T

i

at that local site.

Note that even though T

i

is considered globally committed after the MDBS has sent a commit message

to each transaction server, from the local DBMS's point of view the transaction is not committed yet. The

transaction may still at this point in time abort locally (if the site or the server at the site fails prior to

processing of the local commit of T

i

). Since the local DBMS log is not available to the server, a separate

log is kept by each server. The appropriate local DBMS log records appear in local DBMS stable storage

only after a server submits a commit operation to a local DBMS for execution and a transaction is locally

committed.

During a global transaction processing by the MDBS system, the transaction can be in one of the following

states:

� active, if the begin operation has been processed by the MDBS, but neither a commit nor an abort

has been processed thus far.

� abort, if an abort operation has been processed on behalf of the transaction.

� ready-to-commit, if the transaction completes all its read or write operations, and each server at the

local site at which the transaction was active reports that all server log records associated with the

transaction are in the stable storage.

� commit, if a commit message is sent to each local site at which the transaction was executing.

� blocked, if the transaction is waiting to obtain a global lock (see discussion in Section 6).

7

1. If either a query, update, or insert is issued with primary key search predicates, then lock the primary

keys of those tuples that are either being searched or updated.

2. If either a query, update, or delete is issued without primary key search predicates, then lock the entire

relation.

2.1.2 Set of Servers

A server is a process generated by the GTM at some local site to act as an agent for the global transaction

at that site. The local DBMS treats each server as a local transaction. Each time a global transaction

operation is scheduled and is submitted for execution, it is eventually received by the server. Results of the

operation execution by a local DBMS are reported to the GTM. In addition, a server also needs to interact

with the GTM after a failure has occurred (more on this in Section 4).

2.2 Types of Failures

The MDBS system must be able to cope with a variety of types of failures, including transaction failures,

system failures, server failures, site failures, and communication failures. A transaction failure is indicated

by a transaction's abort. When a global transaction is aborted by a local DBMS, the abort should be

propagated to each site at which the transaction was active. A system failure is generally manifested by the

corruption of the MDBS internal data structures and can be caused by a number of di�erent things (for

example, an operating system failure at the site where the MDBS system is located causes a multidatabase

system failure). A system failure causes failure of all global transactions that are active at the time of failure.

A server failure is indicated by the abort of the server process at the local site. A server failure may occur

when a server process is aborted either by the operating system of the local site or by the DBMS of that

site. The latter abort may occur at any time as was discussed in Introduction. A system failure causes the

failure of all servers for all transactions at all local sites. However, the converse is not correct; the failure of

a transaction server does not cause a system failure. A site failure in a multidatabase environment is similar

to a site failure in a homogeneous distributed database environment. A local site failure manifests itself with

a local site ceasing to operate. It may happen, for example, when a local database system fails. In such a

case, any global transaction that was active at the site is aborted. After the site becomes operational again,

the local DBMS ensures that all committed local transactions are redone, and that transactions that were

aborted are undone. A communication failure means that a communication line between the MDBS software

and some local site has failed. Site, communication, and server failures are manifested by the inability of

global transactions to communicate with the MDBS system. We assume that the MDBS always detects

communication, site, or server failures. It is achieved by requiring a server to acknowledge every message

that is sent to it by the GTM. If an acknowledgment message was not received, the GTM assumes that a

failure occurred and the transaction is aborted.

3 GLOBAL TRANSACTION PROCESSING

A global transaction is a sequence of operations op

1

, op

2

, ..., op

k

, where op

1

is begin, op

k

is either commit

or abort, and each op

j

(1 < j < k), is either read or write. We assume that each data item can be read

only once by the transaction and if a data item is read and written by the transaction, then a read occurs

before a write.

Each global transaction is executed as a collection of subtransactions, each of which is executed as regular

local transactions at some local DBMS. A local transaction has a structure similar to a global transaction

in terms of the begin, read, write, abort, and commit operations.

A transaction is initiated when the operation begin is encountered by the GTM. After the global trans-

action has successfully completed the execution of its read and write operations at each local site, the

GTM must submit the commit operation to all the sites in which that global transaction has executed.

Since the various DBMSs cannot participate in the execution of a commit protocol, a situation may arise

where a global transaction commits at one site and aborts at another site resulting in non-atomic transaction

6

database k

DBMS k

T

1

T

2

T

1

T

3

...

...

DBMS 1

. . .

Local

LocalLocal

loglog

. . .

. . .

log

Server

Server

Server

Server

log

Server

Server

Server

Server

database 1

Local

Manager

Transaction

Global

Figure 1: MDBS Architecture

one of the transactions from proceeding because it knows that the two transactions will cause a con
ict at

the local site. The scheduler uses the strict two-phase locking protocol for allocating global locks to global

transactions. It should be noted that if a global transaction has been granted a local lock on a data item at

a local site, then it also has been granted a global lock on the same data item. The converse is not correct;

that is, if a global transaction has been granted a global lock on a data item, this does not necessarily imply

that it has been granted a local lock for this data item. It may still have to wait to obtain a local lock at

some local site.

By introducing two types of locks|global and local, we implicitly assume that the granularity of a

data item at both global and local levels is the same. This implies that a local lock con
ict between two

global transactions causes a global lock con
ict between them. Thus, two global transactions cannot directly

compete for a local lock at some local site. This assumption should not a�ect the generality of our transaction

management scheme, since in a multidatabase environment a global transaction may only refer to a data

item that is accessible by a user transaction (relation or a tuple, for example). In commercial DBMSs like

SQL/DS, DB2, and INGRES, locking at the level of relations and tuples is available to users. On the other

hand, almost no commercial DBMSs provide user transactions with the capability of locking at the page or

a record level, since neither page numbers, nor records identi�cations are visible to user transactions. As a

result, user transactions (global or local) can lock only at the relation or tuple level.

If a global transaction issues a tuple lock request, then the GTM passes the request to the appropriate

local DBMS. The DBMS, in turn, acquires a tuple lock along with other locks (such as index lock, or TID

lock, etc.) required by the transaction. Therefore, even if two global transactions request two di�erent tuple

locks they may in fact con
ict on an index lock required to process the tuple. Thus, the GTM should be made

aware about such possible con
icts by obtaining information not only on what relations are being accessed,

but also on the primary and secondary indexes used for these relations. There are several di�erent ways

to implement such a locking scheme. One possible implementation is to employ a simple form of predicate

locking in the following way:

5

2. A local DBMS at one site is not able to communicate directly with local DBMSs at other sites to

synchronize the execution of a global transaction active at several sites. This assumption is a direct

consequence of our basic assumption: local DBMSs are not aware of each other and act under the

illusion that each transaction is executed only at the site of the local DBMS.

3. Each local DBMS is responsible for ensuring the atomicity of the local transaction. This can be

accomplished in a variety of ways, most commonly through the use of the write-ahead log scheme [15].

Such a log, however, is not available to the MDBS system and as a result it is not available to any of

the global transactions.

4. Each local DBMS uses the strict two-phase locking protocol [3] (i.e., local locks are released only after

a transaction aborts or commits). In addition, a mechanism is available for ensuring deadlock freedom.

Thus, each local schedule is serializable, and any local deadlocks are detected and recovered from.

5. A local DBMS is not able to distinguish between local and global transactions which are active at

a local site. This assumption ensures local user autonomy. Local and global transactions receive the

same treatment at local sites. Therefore, global users cannot claim any advantage over local ones. This

ensures greater acceptance of the MDBS system at local sites.

6. A local DBMS cannot participate in the execution of an atomic commit protocol (e.g., the two phase

commit protocol). As discussed in the introduction, this assumption is made to ensure execution

autonomy.

Thus, the MDBS is the only mechanism that is capable of coordinating executions of global transactions at

di�erent local sites. However, any such coordination must be conducted in the absence of any local DBMS

control information. Hence, the MDBS must make the most pessimistic assumptions about the behavior of

the local DBMSs in order to ensure global database consistency and freedom from global deadlocks.

2.1 System Structure

The MDBS system is responsible for the processing of the global transactions and for ensuring global seri-

alizability and freedom from global deadlocks. The system consists of two major components|the global

transaction manager and set of servers. The general structure of the system is depicted in Figure 1.

2.1.1 Global Transaction Manager

The global transaction manager (GTM) is responsible for the users' interactions with the MDBS system.

The GTM uses the MDBS directory to generate (statically or dynamically) a global transaction, which is

a sequence of read, write, commit or abort operations. For each global operation to be executed, the

GTM selects a local site (or a set of sites) where the operation should be executed. In each such site, the

GTM allocates a server, (one per transaction per site) which acts as a global transaction agent at that site.

Once the GTM allocates a server to the transaction, it is not released until the transaction either aborts or

commits. All transaction operations that are to be executed at the site are eventually sent to the server. In

submitting transaction operations for execution, the GTM uses the following restriction:

No operation of the transaction (except the very �rst one) is submitted for execution until the

GTM receives a response that the previous operation of the same transaction has completed.

For the remainder of this paper, we assume that this restriction is adhered to.

The GTM is also responsible for managing the order of execution of the various operations of di�erent

global transactions. An operation can be submitted to the appropriate server for execution as soon as it

is generated, or it can be rejected (in that case the transaction issuing the operation should be aborted),

or it can be delayed. This determination is carried out through the use of a global lock scheme that keeps

track of global transactions' requests for local locks (recall that local locks are maintained and allocated

by local DBMSs). Each global data item has a global lock associated with it which can be either a shared

or an exclusive lock. If two global transactions request con
icting global locks the scheduler will prevent

4

committed nor aborted until the failure has been repaired. In this paper we investigate ways to ensure both

global transaction atomicity as well as global serializability in an environment where blocked transactions

can be aborted. Of course, this cannot be achieved without some compromises (as was very eloquently

argued in [3]).

Transaction management problems in a multidatabase environment were �rst discussed in [14]. The

authors pointed out that its inherent di�culties stem from the requirement that each local DBMS operate

autonomously and that local transactions are permitted to execute outside of the MDBS system control.

Since then, the problem was extensively studied in two basic directions: restricted autonomy of the local

DBMSs ([12, 18, 21]) and a complete preservation of local DBMS autonomy ([1, 5, 6, 9]).

Restricted autonomy ([12, 18]) implies that the local DBMSs can share with the MDBS their local control

information (for example, local schedules). This assumption, however, requires design changes in local

DBMSs and as a result reduces the multidatabase transaction management problem to the same problem

as in the homogeneous distributed database environment with hierarchical organization of local sites. This

problem has been extensively studied and is by now well understood. On the other hand, the study of

restricted autonomy is important in that it can determine the minimal information the local DBMSs need

to share to ensure a correct execution of local and global transactions.

Research on complete preservation of a local DBMS autonomy has two important threads:

� No assumptions are made concerning the nature of the various local DBMS concurrency control mech-

anisms (i.e., whether a 2PL scheme or a timestamp scheme is being used). This generality, however,

has its downside-ensuring multidatabase consistency may result in a large number of global transac-

tion aborts [6]. That may become prohibitively expensive, especially in a geographically distributed

multidatabase system.

� It was assumed that no failures can occur in the MDBS system during the global transaction pro-

cessing. We are not aware of any systematic treatment of fault-tolerant transaction management in

a multidatabase environment that allows failures to occur during any stage of the global transaction

processing.

In this paper, we focus our attention on the problem of global transaction management in a failure prone

environment, where each local DBMS uses the strict two-phase locking protocol ([13, 3]). We discuss the

consequences of our requirement of execution autonomy of each local DBMS and restrictions on local and/or

global transactions that still allow us to ensure global database consistency and freedom from global dead-

locks.

The remainder of the paper is organized as follows. In Section 2 we de�ne the multidatabase transaction

management model used in this paper. In Section 3 we describe how global transaction processing is per-

formed. In Section 4 we discuss some of the di�culties associated with multidatabase recovery management

and the di�erences between distributed homogeneous and multidatabase recovery problems. In Section 5

we address the question of when a global commit operation can be scheduled for execution, and provide an

e�ective algorithm to do so. This algorithm is shown to ensure global database consistency. In Section 6 we

discuss global deadlock problems that may occur in our model. Section 7 concludes the paper.

2 THE MDBS MODEL

A global database is a collection of local databases distributed among di�erent local sites interconnected by

a communication network. We assume that the MDBS software is centrally located. It provides access to

di�erent DBMSs that are distributed among these nodes. The model discussed in this paper is based on the

following assumptions:

1. No changes can be made to the local DBMS software. This assumption is adopted for purely practical

reasons as discussed in the introduction. Consequently, while the MDBS is aware of the fact that local

transactions may run at local sites, it is not aware of any speci�cs of the transactions and what data

items they may access.

3

1 INTRODUCTION

A multidatabase system (MDBS) is a software package that allows user transactions to invoke retrieval and

update commands against data located in heterogeneous hardware and software environments. A multi-

database system is built on top of a number of existing database management systems (DBMSs) that are

being integrated into a single MDBS. A multidatabase environment supports two types of transactions:

� local transactions, those that are executed by a local DBMS outside of the MDBS control. Local

transactions, by de�nition, can access data located at only one single site.

� global transactions, those that are executed under the MDBS control. Global transactions may

access data located at several sites.

The MDBS is aware that local transactions are being executed by local DBMSs, but has no control over

them.

Most commercially available DBMSs (IMS, IDMS, ADABAS, SQL/DS, DB2, etc.) were created as stand

alone systems. As such, they do not provide mechanisms to allow for the smooth integration into an MDBS

environment. Recently, however, a number of commercial products were introduced to support distributed

transaction execution across a number of di�erent DBMSs ([10, 11, 20, 22, 4]). While interoperability is being

addressed by quite a few DBMS vendors, their approach seems to be either customized to speci�c systems or

to impose various restrictions. Moreover, such approaches are not easily applicable to existing transaction

programs without major rewriting. For purely economic reasons, however, it can hardly be expected that

users will undertake a massive rewrite of their old applications in order to take advantage of new DBMS

capabilities as they become available.

We assume in this paper that a global transaction executing at a local site is considered a regular user

transaction as far as the DBMS is concerned, and as such it cannot access DBMS control information (such

as a wait-for-graph, a schedule, a DBMS log, etc.). As a consequence, each DBMS integrated by the MDBS

operates autonomously, without the knowledge of either other DBMSs, or the MDBS system. Thus, the

various local DBMSs cannot exchange any control information that would allow them to coordinate the

execution of a global transaction accessing data at di�erent local sites. This implies that any local DBMS

has complete control over all transactions (global and local) executing at its site. This form of autonomy,

referred to as execution autonomy, means that a DBMS can abort a transaction at any point in time during

its execution.

The execution autonomy property, in e�ect, precludes the participation of the various local DBMSs in

the execution of an atomic commit protocol (e.g., the two phase commit protocol). Indeed, any atomic

commit protocol requires that after a transaction executing at a local site has reached a decision to commit,

the decision cannot be changed either by the transaction or by the local DBMS [3]. On the other hand, the

execution autonomy property states that a DBMS can abort a transaction at any time prior to the execution

of the transaction's commit operation (this may happen even after a local transaction has submitted the

commit operation to the local DBMS but before the DBMS has executed it).

The preservation of execution autonomy is crucial as this allows a local DBMS to have complete control

over the execution of various transactions. Execution autonomy is a highly desirable property in an MDBS

environment, since it allows local DBMSs to remain in control of all operations executing at a local site.

Thus, integration of local DBMSs into a MDBS system does not infringe on a local system's right to manage

sites without consideration of an MDBS system.

Let us illustrate this with an example. Suppose that we tie together a bank DBMS and the stock market

DBMS. We can now have a global transaction that can access information at both local DBMSs (for example,

buy some stocks and move money from the bank to cover expenses). Execution autonomy in this environment

implies that at any point, and for whatever reason (e.g., local locks held for too long), either one of these

DBMSs can abort the execution of the global transaction. This ability, in our opinion, is a must in such an

environment and is the reason for our advocating the preservation of execution autonomy in an MDBS.

Our insistence on preserving execution autonomy leads to a cardinal technical issue that we address in

this paper. It is well known that any atomic commit protocol is subject to blocking in the case of some

types of failure. This results in a situation where some transactions are blocked, where they can neither be

2

Transaction Management Issues in a Failure-prone

Multidatabase System Environment

1

Yuri Breitbart

2

Department of Computer Science

University of Kentucky

Avi Silberschatz

3

Department of Computer Science

University of Texas

Austin, TX 78712

Glenn R. Thompson

Amoco Production Company

P. O. Box 3385

Tulsa, OK 74102

Abstract

This paper is concerned with the problem of integrating a number of existing, o�-the-shelf local database

systems into a multidatabase system that maintains consistency in the face of concurrency and failures.

The major di�culties in designing such systems stem from the requirements that local transactions be

allowed to execute outside the multidatabase system control, and that the various local database systems

cannot participate in the execution of a global commit protocol. A scheme based on the assumption that

the component local database systems use the strict two-phase locking protocol is developed. Two major

problems are addressed. How to ensure global transaction atomicity without the provision of a commit

protocol, and how to ensure freedom from global deadlocks.

1

This paper is based in part on [8].

2

This material is based in part upon work supported by the Center for Manufacturing and Robotics of the University of

Kentucky and by NSF Grant IRI-8904932.

3

This material is based in part upon work supported by NSF Grants IRI-8805215, IRI-9003341, and IRI-9106450.

1

TRANSACTION MANAGEMENT ISSUES IN

A FAILURE-PRONE MULTIDATABASE

SYSTEM ENVIRONMENT

Yuri Breitbart, Avi Silberschatz, Glenn R. Thompson

Department of Computer Science

University of Texas at Austin

Austin, TX 78712-1188

TR-91-07 March 1991

Revised January 1992

�

DEPARTMENT OF COMPUTER SCIENCES

THE UNIVERSITY OF TEXAS AT AUSTIN

AUSTIN, TEXAS 78712

