A GEOMETRY THEOREM PROVER
FOR MACINTOSHES

Shang-Ching Chou
Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712-1188

TR-91-08 March 1991

A Geometry Theorem Prover for Macintoshes*

Shang-Ching Chou

Department of Computer Sciences
The University of Texas at Austin, Austin, Texas 78712 USA

Abstract. This report primarily serves as a manual for a geometry theorem prover im-
plemented for the Macintosh. The prover is based on the algebraic method introduced by
Wen-Tsiin Wu and on a prover developed on Symbolics Lisp Machines by the author. It ad-
dresses a subset of geometry statements which involve equalities only and can prove a subset
of theorems that the original prover proved. Within its scope, it is powerful enough to prove
many theorems hard for human to prove such as Pappus’ theorem, Simson’s theorem, Pascal’s
theorem, the nine-point theorem, Feuerbach’s theorem, etc. There is also a discussion of the
role of non-degenerate conditions in a geometry statement.

Keywords. Geometry theorem proving, mechanical method, algebraic method, Wu’s method,

non-degenerate condition, constructive geometry statement, Euclidean geometry, metric geom-
etry.

* The work reported here was supported in part by the NSF Grant CCR-9002362.

1

1. Introduction

This experimental geometry prover for Macintoshes was originally written as a demonstration
for the special session in automated theorem proving at the AMS annual meeting, San Francisco,
1991. The prover is based on a prover developed on Symbolics Lisp Machines and can prove
a subset of theorems that the original prover proved. It is powerful enough to prove many
hard theorems such as Pappus’ theorem, Simson’s theorem, Pascal’s theorem, the nine-point
theorem, Feuerbach’s theorem, Steiner’s theorem, etc. With a further extension, it is expected
to prove over 90% of the theorems that the original prover proved, including Morley’s trisector
theorem.

The prover is based on the algebraic method introduced by Wen-Tsiin Wu ([5] and [6]) and
further developed by the author. For an introductory exposition, see [2]. For a complete
exposition, see [3].

However, this prover is more like the one described in [4]. It is mainly for a class of geometry
statements of constructive type described in [4] (also see the Appendix). At present, it has
proved about 400 theorems.

The Mac plus or SE version can be obtained by writing to

Shang-Ching Chou

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712

with a self-addressed envelope, a sufficient postage on it, and an 800K disk (or $1.50 for the
cost of the disk). The request after July 1991 should be sent to

Shang-Ching Chou

Department of Computer Science
Wichita State University
Wichita, Kansas 67208.

This documentation can be obtained by writing to

Technical Report Center

Department of Computer Sciences (Tay 2.124)
University of Texas at Austin

Austin, Texas 78712-1188.

An additional cost may be charged from the technical report center.

In the disk, there are a system fold, the program, a file (named “sample.lisp”) containing 12
sample examples, and this documentation in the TEX form. The disk can run on the mac plus
and SE(SE/30) without using a hard disk.

This preliminary documentation is mainly to explain how to use the prover (Section 2-5). In
the Appendix, we shall explain how to produce the construction sequence from the input and
how to generate non-degenerate conditions in geometric form mechanically.

2. Input (or Specification of a Geometry Statement)

The first step to convert a geometry statement into its algebraic form is to assign coordinates
to the points in the statement. On our prover this can be done either manually or automatically.
Here we show how to specify the input (the geometry statement) for the program to assign
coordinates automatically. The statement must be specified in a constructive way.

Most theorems (involving only equalities) in elementary geometry can be stated in a construc-
tive way, i.e., given a set of arbitrarily chosen points, new points are added in a constructive way
by introducing one or two geometry conditions (constructions) for each point, such as taking
an arbitrary point on a line or on a circle (one condition), or taking intersections of two lines or
one line and one circle, or two circles (two conditions). The conclusion is a (equality) relation
among these points.

The user must have a clear idea about the order in which the points are introduced.

The input is in the Lisp list form (though the present program is written in Pascal and has
nothing to do with Lisp; we use this input format for consistency with the input of our original
prover in Lisp).

The first element in the input is a list beginning with the keyword “point-order” or “cons-
seq”, followed by the points in the constructive order (arbitrarily chosen points are first). The
following elements (but the last) of the input are the geometry conditions to construct the
points. They are the equality part of the hypotheses of the geometry statement. The order
of these geometry conditions is not important. They can be arranged in any order. But it is
recommended that they be written according to the point order, which is important. The last
element is the geometry condition representing the conclusion to be proved.

Following are the four examples in first Chapter of [3] (the actually coordinate selections
might be slightly different from those in [3]).

D C D _
A B AN/

Figure 1 Figure 2

Examples 1. Let ABCD be a parallelogram (i.e, AB || CD, BC || AD), E be the intersec-
tion of the diagonals AC and BD. Show AE = CE (Figure 1).

The input is

(setq paral
((cons-seq A B C D E)
(parallel A B C D)
(parallel B C A D)
(collinear A E C)
(collinear B E D)
(eqdistance A E C E)))

 Remark. The letter case is not important. Also “setq” and “defvar” are interchangeable.

Example 2. (Simson’s theorem) Let D be a point on the circumscribed circle (O) of triangle
ABC. From D three perpendiculars are drawn to the three sides BC', CA and AB of AABC.
Let E, F and G be the three feet respectively. Show that E, F and G are collinear (Figure 2).

The input is

(setq simson
((cons-seq A BC O D E FG)

(collinear A B G)
(collinear B C E)
(collinear A C' F)
(perpendicular E D B C)
(perpendicular ' D A C)
(perpendicular G D A B)
(eqdistance A O B O)
(eqdistance A O C O)
(eqdistance A O D O)
(collinear E F G)))

Here we deliberately write the hypothesis conditions not in the order in which the points are
introduced. Permuting those conditions will not affect the constructions (hence the selection
of coordinates in any way). Try it if you wish. But if you change the point order, then the
constructions will be changed. E.g., if you put point O first, then the program can figure out
you first have a circle, then have three points on the circle, etc. For the above input, the
constructions are (You can select the Item “Show Thm in Constructions” in the Info Menu to
show them on the screen):

Points A, B, C, are arbitrarily chosen
O is on B(A B) and B(A C)

D is on R(O, A O)

Eison L(B C) and T(D, B C)

Fis on L(A C) and T(D, A C)

G is on L(A B) and T(D, A B).

The most common lines which can be constructed from the preceding points are one of the
following four types:

L(A B): the line passing through points A and B.
P(A, B C): the line passing through A and parallel to line BC.
T(A, B C): the line passing through A and perpendicular to line BC.

B(A B): the perpendicular bisector of the segment AB.

The most common circles which can be constructed from the preceding points are one of the
following two types:

R(O, A B): the circle with the center O and radius AB.

C(A B C): the circle passing through the three points A, B, and C.
If you change the first line of input to

(cons-seq O ABC D EFG)

then the construction sequence is

Points O, A, are arbitrarily chosen
B is on R(O, A O)

Cis on R(O, A O)

D is on R(O, A O)

E is on L(B C) and T(D, B C)
Fis on L(A C) and T(D, A C)

G is on L(A B) and T(D, A B).

Also select the Item “Show Degenerate Conds” in the Info Menu to see the differences between
these two inputs (Also see Section 4).

Figure 3 Figure 4

Example 3. (Pascal’s Theorem). Let A, B, C, D, I and E be six points on a circle (0).
Let P= ABNDF,Q = BCNFE and § = CD N EA. Show that P, @ and 5 are collinear
(Figure 3).

The input is

(setq pascal
"((cons-seq AO BC D FEPQS)
(eqdistance A O B O)
(eqdistance A O C' O)

(eqdistance A O D O)
(eqdistance A O E O)
(eqdistance A O F O)
(collinear A B P)
(collinear D F' P)
(collinear B C' Q)
(collinear F' E Q)
(collinear C' D S)
(collinear £ A §)
(collinear P @ 5)))

Example 4. (The Butterfly Theorem). A, B, C' and D are four points on circle (O). E is
the intersection of AC and BD. Through F draw a line perpendicular to OF, meeting AD at
F and BC at G. Show that FE = GE (Figure 4).

The input is

(setq butterfly
((cons-seq EO ABC D F Q)

(eqdistance O A O B)
(eqdistance O A O C)
(eqdistance O A O D)
(perpendicular O E E F)
(collinear A E C)
(collinear B E D)
(collinear A D F))
(collinear F' E G)
(collinear B C G)
(midpoint F' E G)))

In the file “sample.lisp”, there are another 8 theorems. These 12 theorems are enough to test
a new geometry theorem prover based on similar algebraic methods.

3. A list of Geometry Conditions for the Input

Letlet A= (z1,91), B = (22,¥2), C = (23,¥3) and D = (24, ¥4).

1. (collinear A B C) (abbr. L, coll)
2. (parallel A B C D) (abbr. P, paral)
AB is parallel to CD.

3. (perpendicular A B C D) (abbr. T, perp)
AB is perpendicular to CD.

4. (eqdistance A B C D) (abbr. E, =)
AB =CD.

5. (perp-bisect A B C) (abbr. I)

A is on the perpendicular bisector of BC, or equivalently AB = AC.

6. (midpoint A B C) (abbr. M)
B is the midpoint of AC.

7. (o-ratio A B C n m) (abbr. O)

A, B, and C and collinear and the ratio of the oriented segments AB and BC are n /m. This
condition (or midpoint) usually generates two polynomials. For example, (o-ratio A B C —~1
2) generates:

(1 —23) = (=1/2)(z2 — 23) and (y1 — ¥2) = (=1/2)(y2 — ys)-
8. (eqangle ABC E F G) (abbr. A).

LABC = (EFG. The definition of angle congruence in unordered geometry is very subtle,
see [3] for details.

9. (cocircle A B C' D) (abbr. C)
A,B,C, and D are on the same circle.

10. (I-c-tangent A B C D O) (abbr. L-C)

Line AB is tangent to the circle (O,(CD)) (i.e., with the center O and radius C'D).

11. (c—c—tangent A B O C' D Oy) (abbr. C-C)
Two circles R(O, A B) and R(O1, C D) are tangent.

12. (eq-product A BCD E F G H) (abbr. Z)
AB.CD=FEF - -GH.

There are other less commonly used conditions. With further expansions, we can cover most
of 512 geometry statements proved in [3]. Based on our experience, we believe that we can
prove over 90% of those theorems with 1M byte memory.

4. On Non-Degenerate Conditions

The above geometric conditions (and their algebraic equivalents) usually include degenerate
cases. For example, the exact meaning of (parallel A B C D)is [(A=B)Vv(C = D)V (AB |
CD)]. Tt is not instructive to exclude the cases when A = B and C = D. By doing so, we still
cannot exclude all non-degenerate conditions necessary for a geometry statement to be valid.

E.g., for Example 1, the statement

VA---E [[(parallel A B C D) A (parallel B C A D)
A (collinear A E C) A (collinear B E D)]
= (eqdistance A E C E)]

is not a valid statement. We need other non-degenerate conditions.

8

In the current research, there are two Approaches or Formulations to prove geometry state-
ments.

Formulation F1 is to prove the above statement to be generally or generically true, at the
same time giving sufficiently many non-degenerate conditions. Those conditions usually are in
algebraic form. However, for a class of geometry statements of constructive type specified in
[1] and [4], we can generate sufficiently many non-degenerate conditions in geometric form. In
[1] and [4], we have proved a theorem stating that if a statement is still not valid under these
machine generated non-degenerate conditions, then the statement cannot be valid no matter
how many more reasonable non-degenerate conditions are added.

After selecting a theorem from the Menu “Theorems”, click the Item “Show degenerate
Conds” in the Info Menu, you will get those degenerate conditions.

In Formulation F2, users have to specify all non-degenerate conditions manually, and then
the prover only needs to answer “true” or “false”. Finding all non-degenerate conditions is very
subtle, especially because the methods we use (Wu’s method or the Grobner basis method) are
complete only for algebraically closed fields. We haven’t built methods for Formulation F2 on
this Mac version yet.

Try Simson’s theorem in the file “sample.lisp”. If you don’t understand isotropic lines, it
is fine, because such lines do not exist in Euclidean geometry. But they do exist in general
unordered geometries. Try the Butterfly theorem, and you will find (by clicking the item “Show
degenerate conds” in the Info Menu) an unexpected degenerate condition “OE is perpendicular
to AD?”, which is necessary even for Euclidean geometry.

5. How to Use the Prover

First open the prover icon. Then click the File Menu and choose the item “Open Thm File”.
Then select the file “sample.lisp”. Then there will appear a new Menu “theorems” containing
the theorem names in that file. Check any theorem name in that menu, then the program reads
the input of that theorem, figures out the constructions and degenerate conditions, and assigns
coordinates to the points. You can check the corresponding items in the Info Menu.

Here is a brief account of the items in all menus.
1. File Menu.
“Prove Thm?”: Prove the theorem which has been checked in the Theorems Menu.
“Draw Thm”: Draw the figure of the theorem which has been checked in the Theorems Menu.
“Prove All”: Prove all theorems in the Theorems Menu.
“Open Thm file”: Open a file containing theorems. The file name must be ended with “lisp”.

“Demo Prove”: Show the detailed steps of the proof of the theorem checked. You must try
it. It is a very nice feature.

2. Edit Menu.

Selecting these items does not cause any action. They are reserved for later implementation.

9

3. Drawings Menu.

“Join Line”: Join a line by selecting two points. To select a point, click the mouse on the
point. When a point is near enough and is selected, a double beep will sound.

“Draw R—-Circle”: Draw a circle by selecting its center and one point on the circle.
g
“Draw C-circle”: Draw a circle by selecting three points on the circle.

“Move Figure”: Move the figure by clicking the mouse. (The new origin is at the mouse
position).

“Save Figure”: Save the drawn figure to a file ending with “.fig”.

“Draw Saved Figure”: draw the figure saved in the file ending with “.fig” if there is one.
4. Options Menu.

Most items involve technical details of the proof method. See e.g., page 89 of [3].

5. Info Menu. Show various information pertaining to a checked theorem.

If you want to prepare your own theorems to prove, use a text editor, and write the theorems
in the form shown in Examples 1-4 in a file such as “thms.lisp”. Then the corresponding figure
information will be placed in the file “thms.fig”. If you want to delete a saved figure, you have
to open that file with a text editor and delete that figure information (it is self-evident, once
you look at that file).

If you really want to prove a hard theorem, check “Simplify hyp-polys” and uncheck “Suc-
cessive Division” in the Options Menu. As a convention, the first point in “cons-seq” is the
origin of the coordinate system, and the second point is on the z—axis. Selection of the origin
and the z—axis affects the sizes of polynomials produced in a proof.

Acknowledgment. The author wishes to thank R. S. Boyer and J S. Moore for their
advice and encouragement to write a Mac version of my geometry theorem prover and thank
N. McPhee for his help and suggestions in writing this Mac program. For over 8 years, Boyer
and Moore have been constantly encouraging the author in studying geometry theorem proving.
Without such encouragements, the pace of recent development in this area would have been
much slower.

10

References

[1] S.C. Chou, “Proving and Discovering Theorems in Elementary Geometries Using Wu’s
Method”, PhD Thesis, Department of Mathematics, University of Texas, Austin (1985).

[2] S.C. Chou, “An Introduction to Wu’s Method for Mechanical Theorem Proving in Geom-
etry”, Journal of Automated Reasoning, 4 (1988), 237-267.

[3] S.C. Chou, Mechanical Geometry Theorem Proving, D. Reidel Publishing Company, Dor-
drecht, Netherlands, 1988.

[4] S.C. Chou and X.S. Gao, “A Class of Geometry Statements of Constructive Type and Ge-
ometry Theorem Proving”, TR-89-37, Computer Sciences Department, The University
of Texas at Austin, November, 1989.

[5] Wu Wen-tsiin, “On the Decision Problem and the Mechanization of Theorem Proving in
Elementary Geometry”, Scientia Sinica 21 (1978), 157-179.

[6] Wu Wen-tsiin, “Basic Principles of Mechanical Theorem Proving in Geometries”, J. of Sys.
Sci. and Math. Sci. 4(8), 1984, 207-235, republished in Journal of Automated Reasoning
2(4) (1986), 221-252.

6. Appendix

In this Appendix, we shall explain how to produce the construction sequence for a geometry
statement from the input and how to generate non-degenerate conditions in geometric form.
We define a class of geometric statements of constructive type, called Class C, as follows.

6.1. Definition of Class C

Most theorems in elementary geometry can be described in a constructive way: given a certain
arbitrary points, lines, circles and points on these circles and lines, new points, lines and circles
are constructed step by step using geometric constructions such as taking the intersection of two
lines, an intersection of a line and a circle, or an intersection of two circles. In this subsection,
we use the natural language to give a definition of such a statement. In Section 6.3, we will
give the precise formula of such a statement using geometric predicates.

First, let us give “circle” a definition. A circle h is a pair of a point O and a segment (AB): h =
(0,(AB)). Two circles (0,(AB)) and (P,(CD)) are equal if O = P and congruent(4, B,C, D).
O is called the center of the circle and (AB) the radius. A point P is on circle (O,(AB)) if
congruent(O, P, A, B) (for the precise meaning of the predicate “congruent”, see 6.2).

Let II be a finite set of points. We say line [is constructed directly from II if
(i) The line { joins two points A and B in II. We denote it by [= L(AB); or

(ii) The line [passes through one point C in II and parallel to a line joining two points A and
B in II. We denote it by | = P(C, AB); or

(iii) The line ! passes through one point C in II and perpendicular to a line joining two points

11

A and B in II. We denote it | = T(C,AB); or

(iv) The line is the perpendicular-bisector of AB with A and B in II. We denote it by
| = B(AB).

A line [constructed directly from II is well defined if the two points A and B mentioned above
are distinct.

Likewise, we say a circle ¢ = (O,(AB)) is constructed directly from II if points O, A and B
are in II. The lines and circles constructed directly from II are said to be in II, for brevity.

Definition. A geometry statement is of constructive type or in Class C if the points, lines, and
circles in the statement can be constructed in a definite prescribed manner using the following
ten constructions, assuming II to be the set of points already constructed so far:

Construction 1. Taking an arbitrary point.
Construction 2. Drawing an arbitrary line. This can be reduced to taking two arbitrary points.

Construction 3. Drawing an arbitrary circle. This can be also reduced to taking two or three
arbitrary points.

Construction 4. Drawing an arbitrary line passing through a point in II. This can be reduced
to taking an arbitrary point.

Construction 5. Drawing an arbitrary circle knowing its center in II. This can be also reduced
to taking one or two arbitrary points.

Construction 6. Taking an arbitrary point on a line in IL.
Construction 7. Taking an arbitrary point on a circle in II.
Construction 8. Taking the intersection of two lines in II.
Construction 9. Taking an intersection of a line and a circle in II.
Construction 10. Taking an intersection of two circles in II.
The conclusion is a certain (equality) relation among the points thus constructed.

In the actual prover [1] and this simple version for Macintoshes, we have included more con-
structions such as taking midpoints and constructions involving angle congruence, the radical
axis of two circles, taking a point on a circle knowing three points on the circle, etc.

Example (6.1). Simson’s theorem can be specified as a statement in Class C by the following
construction sequence:

Points A, B, and C are arbitrarily chosen; construction 1
O = B(AB)Nn B(AC); construction 8
D is on circle (0,(0A4)); construction 7
E=T(D,BC)n L(BC); construction 8
F=T(D,AC)n L(AC); construction 8
G =T(D,AB)n L(AB). construction 8

The Butterfly theorem can be specified as a statement in Class C by the following construction

12

sequence:
O and A are arbitrarily chosen; construction 1
Bison (0,(0A4)); construction 7
C is on (0,(0A)); construction 7
D is on (0,(0A)); construction 7
E = L(AC)N L(BD); construction 8
F=LAD)NT(E,OF); construction 8
G = L(EF)N L(BC). construction 8

In the above examples, we use a construction sequence to express a statement in Class C. The
construction sequence still does not specify what exact non-degenerate conditions are needed
for a geometric statement in Class C. We will soon present an algorithm for generating non-
degenerate conditions for a statement in Class C knowing its construction sequence. Before
presenting the algorithm, we first specify what exact geometric predicates we use.

6.2. The Basic Predicates

In order to describe the logical formula of a statement in Class C, we only need four basic (non-
logical) predicates: “collinear(A, B,C)”, “parallel(A, B,C, D)”, “perpendicular(A4, B,C, D),
“congruent(A, B,C,D)”.* The first thing we should emphasize is that these predicates do
include degenerate cases. To be more precise, let A = (z1,41) B = (22,92), C = (23,y3) and

D = (3747 y4)

(1) Predicate “collinear(A, B, C')” means that points A, B and C are on the same line; they
are not necessarily distinct. Its corresponding algebraic equation is

(1 —22)(y2 — ys) — (22 — 23)(y1 — y2) = 0.

(2) Predicate “parallel(A, B,C, D)” means that

[(A= B)V(C = D)V (4,B,C,D are on the same line) vV (AB || CD)]. Its algebraic equation
is
(21 — 22)(ys — ya) — (23 — z4)(y1 — ¥2) = 0.

(3) Predicate “perpendicular(A4,B,C,D)” means that [(4 = B)V (C = D)V (AB 1 CD)]. Its
algebraic equation is
(1 — z2) (25 — 24) + (y1 — ¥2)(¥z — ya) = 0.

(4) Predicate “congruent(A, B,C, D)” includes the cases when A = Band € = D. Its algebraic
equation is
(z1 — 562)2 + (y1 — y2)2 — (x5 — 334)2 —(ys — %)2 = 0.

There are many advantages of using the above predicates. Each of the above predicates cor-
responds to only one equation, thus its negation corresponds to only one inequation. E.g.

! In our actual prover [1], [3], there are many other predicates, such as the midpoint, angle
congruence, the radical axis of two circles, etc. For the complete list of all those predicates and
their algebraic equations see pp.97-99 of [3].

13

~parallel(A, B,C, D) is “(A# B)A(C # D)A (A, B,C, D are not on the same line) A ~(AB ||
CD)”. Its corresponding inequation is

(1 = 22)(ys — ya) — (¥3 — @2) (1 — ¥2) # 0,

which is the ezact non-degenerate condition we want for intersecting two lines AB and CD:
they have only one common point. Note that this condition implies the condition (A #
B AC # D). We can use the negations of the four predicate in a convenient way. E.g.,
—perpendicular(A, B, A, B) means A # B and AB is non-isotropic, i.e., ~isotropic(A4, B),
or (1 — z2)* + (y1 — 32)° # 0. Here we define a new predicate “isotropic(A, B)” to be
perpendicular(4, B, A, B).

Now we are in a position to present our algorithm for generating non-degenerate conditions for
statements in Class C.

6.3 Mechanical Generation of Non-Degenerate Conditions for Class C

For a statement in Class C, we can generate non-degenerate conditions following the construc-
tion sequence step by step. Suppose we have already generated a set of non-degenerate condi-
tions DS under the previous constructions. Let H S be the set of the equation hypotheses under
the previous constructions, and II be the set of points constructed so far. The next construction
is one of the ten constructions in Section 6.1. First we add the point(s) to be constructed to
the set II. Since the first five constructions are reduced to taking arbitrary points, nothing is
added to HS or DS. Thus we assume the next construction is one of constructions 6-10. We
use abbreviations coll(), perp(), para() and cong() for predicates collinear(), perpendicular(),
parallel() and congruent(), respectively.

Construction 6. Taking an arbitrary point D on a line [in II. There are four kinds of lines in
II.

(i) l = L(AB).

HS :={coll(A,B,D)} UHS; DS :={A# B}UDS.

(i) I = P(C, AB).

HS := {para(A,B,C,D)}UHS; DS :={A# B}UDS.
(iii) I = T(C, AB).

HS := {perp(A,B,C,D)} UHS; DS := {A # B}uU DS.
(iv) I = B(AB).

HS := {cong(A,D,B,D)}UHS; DS :={A# B}uDS.
Construction 7. Taking an arbitrary point A on a circle (B,(CD)) in II.
HS := {cong(A,B,C,D)}UHS.

Construction 8. Taking the intersection I of two lines in II.

Since there are four types of lines in II, there are 10 types of intersections: types LL, LP, LT,
LB, PP, PT, PB,TT,TB, and BB.

14

Let the two lines be given by the following equations:
L:iaz+biy+c =0,
lg :ag$+b2y+62 = 0.
The elegance of our approach is that for all 10 types of intersections, the only non-degenerate
condition in algebraic form is A = a;1b; — asb, # 0.
Case 8.1. Type LL: I = L(AB)Nn L(CD,).
HS := {coll(A, B,I),coll(C,D,I)} UHS; DS := {-para(4, B,C,D)} U DS.

In the algebraic form, this is equivalent to A = a;b; — asb; # 0. Note that this condition
implies A # B and C # D.

Case 8.2. Type LP: = L(AB)N P(E,CD,).

HS := {coll(A, B, I),para(C, D, E,I)}UHS; DS := {-para(4, B,C, D)} UDS. In the special
case,

Case 8.2.1. If B = D, then instead, DS should be DS := {-coll(4,B,C)}uU DS.
Case 8.3. Type LT: I = L(AB)NT(E,CD).

HS = {coll(A,B,I),perp(C,D,E,I)} U HS; DS := {~perp(A,B,C,D)} U DS. (See the
Butterfly theorem). In the special cases,

Case 8.3.1. If AB is parallel to CD, —perp(A,B,C,D) is reduced to A # B, C # D, line AB
is not perpendicular to AB itself. Thus instead, DS should be DS := {-isotropic(4, B)}U DS.

Case 8.3.2. Lines AB and CD are identical. DS := {~isotropic(4, B)} U DS.

Case 8.3.3. A= C and B = D. DS := {~isotropic(4,B)} U DS. (See Condition (2.1.1) for
Simson’s theorem.)

Case 8.4. Type LB: I = L(AB)n B(CD).
HS := {coll(A, B, I),cong(I,C,I,D)}U HS; DS := {-perp(4,B,C,D)} UDS. In the special

cases,
Case 8.4.1. AB is parallel to CD. DS := {~isotropic(A4,B)} UDS.
Case 8.4.2. Lines AB and CD are identical. DS := {A # B,C # D}U DS.
Case 8.5. Type PP: I = P(E,AB)n P(F,CD).
HS := {para(A, B, E,I),para(C,D,E,I)} UHS; DS := {-para(4,B,C,D)} U DS. In the

special case,
Case 8.5.1. B= D. DS := {~coll(A,B,C)} U DS.
Case 8.6. Type PT: I = P(E,AB)NT(F,CD).

HS := {para(4A,B,E,I),perp(C,D,F, 1)} UHS; DS := {-perp(4,B,C,D)} U DS5. In the
special case,

15

Case 8.6.1. lines AB is parallel or identical to C.D. DS := {~isotropic(4,B)} U DS.
Case 8.7. Type PB: I = P(E,AB)n B(CD).

HS := {para(A,B,E,I),cong(I,C,I,D)} U HS; DS := {-perp(A, B,C,D)} U DS. In the
special case,

Case 8.7.1. lines AB is parallel to CD. DS := {~isotropic(4,B)} U DS.
Case 8.8. Type TT: I = T(E,AB)NT(F,CD).

HS = {perp(A,B,E,I),perp(C,D,F,I)} U HS; DS := {-para(4,B,C,D)} U DS. In the
special case,

Case 8.8.1. B=D. DS := {-coll(4,B,C)}u DS.
Case 8.9. Type TB: I = T(E,AB)n B(CD).

HS := {perp(A,B,E,I),cong(I,C,I,D)} UHS; DS := {-para(4,B,C,D)} U DS. In the
special case,

Case 8.9.1. B = C. DS := {-coll(A, B,C)} U DS.
Case 8.10. Type BB: I = B(AB)n B(CD).
HS = {perp(I,A,I,B),cong(I,C,I,D)} U HS; DS := {-para(4,B,C,D)} U DS. In the

special case,
Case 8.10.1. B=D. DS := {~coll(4,B,C)} U DS.

Construction 9. Taking an intersection @ of a line and a circle in IL. Let the line be L(AB), or
P(C,AB), or T(C, AB), or B(AB), the circle be (O,(DE)). DS := {~isotropic(A4,B)} U DS.

If Q = L(AB)N (0, (DE)), then HS := {coll(4, B, Q),cong(0,Q,D, E)} U HS.

It Q = P(C,AB)N (O,(DE)), then HS := {para(A, B,C,Q),cong(0,Q,D, E)} U HS.
If @ = T(C, AB)n (0,(DE)), then HS := {perp(4, B,C,Q),cong(0,Q, D, E)} UHS.
It Q = B(AB) N (0,(DE)), then HS := {cong(Q, A,Q, B), cong(0,Q, D, E)} U HS.

Case 9.1. In the special case when one of the intersections, say S, of the circle and the line is
already in II. DS := {~isotropic(4,B),S # Q}U DS.

Construction 10. Taking an intersection @ of two circles in II. Let the two circles be (O,(AB))
and (P, (CD)).

HS = {cong(0,Q, A, B),cong(P,Q,C,D)} U HS; DS = {~isotropic(O,P)} U DS. In the

special case,

Case 10.1. One of the intersections is already in II, say, S. DS := {-isotropic(O,P),S #
QruDSs.

Repeating the above steps until every construction is processed, finally we have two parts for
the hypotheses: one is HS = {Hi,...,H,}, called the equation part of the hypotheses; the

16

other is DS = {=Dy,...,mD,}, called the inequation part of the hypotheses and representing
non-degenerate conditions of the statement. Let C' be the conclusion of the statement, which
is not necessarily one of the four predicates defined in Section 6.2, but whose algebraic form is
a polynomial equation in the coordinates of the points in II. Then the exact statement is?

(6.2) VPell(HSADS = C).
Thus according to our translation, we can denote a statement S in Class C by (HS,DS,C).

6.4. Examples

Now we use Simson’s theorem and the Butterfly theorem to show how to produce the necessary
non-degenerate conditions mentioned in Section 2.

Example (6.4). (Simson’s Theorem and the Butterfly theorem). According to the con-
struction sequence of Simson’s theorem in Example (6.1), the non-degenerate conditions (the
inequation part of the hypotheses) are

~collinear(A4, B, C),

—isotropic(AB), DS,
~isotropic(AC),

~isotropic(BC).

The equation part of the hypotheses is

perpendicular(A, B, D,G),

perpendicular(A4,C, D, F),

perpendicular(B,C, D, E),

collinear(A4, B, G),

collinear(A,C, F), HS,
collinear(B,C, E),

congruent(0, 4,0, B),

congruent(0, A,0,C),

congruent(0, 4,0, D).

Nondegenerate conditions D, are exactly what we discussed in Section 2. Then the exact
statement of Simson’s theorem according to the constructions in (6.1) is:

(6.5) VA--.-VG[HS, A DS, = collinear(E, F, G)].

Note that for the same theorem, the construction sequence is usually not unique. Different con-
struction sequences lead to different non-degenerate conditions and slightly different “the exact
statements” of the theorem. For example, we have at least 8 essentially different construction
sequences for Simson’s theorem. However, for all different construction sequences, the equation
part of the hypotheses is always the same; in this example, it is always HS,.

The non-degenerate conditions for the Butterfly theorem according to the construction sequence
in (6.1) are

Depending on the context, HS can also denote the conjunction of its elements, i.e., HS =
H, A---A H,.. The same convention is for DS and other sets of geometric conditions.

17

-parallel(4,C, B, D),
~perpendicular(4, D,0, E), DS,
—parallel(E, F, B,C).

The equation part of the hypotheses is

congruent(0, 4,0, B),

congruent(0, A,0,C),

congruent(O, 4,0, D),

collinear(A, E,C),

collinear(B, F, D), HS,
perpendicular(O, E, E, F),

collinear(E, F,G),

collinear(F, A, D),

collinear(G, B, C).

The exact statement of the Butterfly theorem according to the constructions in (6.1) is:

(6.6) VA---YG[HSy A DS, = midpoint(F, E,G)].

The results in Sections 4 and 5 of [4] show that either (6.5) (or (6.6)) is valid in Euclidean
geometry, or it cannot be valid in Euclidean geometry no matter how many additional non-
degenerate conditions are added as long as the hypotheses keep consistent.

6.5. A Method for Generation of Constructive Sequences

First we point out that the equation part of the hypothesis of a geometry statement of equality
type is always easy to identify and clear cut. If the user misses one and the prover answers “not a
theorem”, it is user’s own fault. However, if the user misses one of the necessary non-degenerate
conditions and the prover answers “not a theorem”, then the user is probably innocent. Even
experts feel hard to deal with non-degenerate conditions (see [4] for details). In this sense,
Formulation F1 is better because we don’t have to concern with some very subtle degenerate
cases. Besides, if the prover answers “the statement is generally false”, then we know the nature
of the statement: it would be useless to search for missing degenerate cases. For Class C, we
even have a method for generating the inequation part DS. For a given geometry statement in
Class C, the sequence of constructions is not unique. Different construction sequences generally
lead to different inequation parts, thus giving slightly different exact versions of the original
statement.

The equation parts of Simson’s theorem and the Butterfly theorem are clear which are specified
in the inputs in Section 2.

For Simson’s theorem, H S, is:

perpendicular(4, B, D,G),
perpendicular(4,C, D, F),
perpendicular(B,C, D, E)
collinear(A, B,G),
collinear(A, C, F), HS,
collinear(B,C, F),

congruent(0, 4,0, B),

3 ? H

18

congruent(0, A4,0,C),
congruent(O0, A, O, D).

and for the Butterfly Theorem, H S, is

congruent(0, 4,0, B),

congruent(0, 4,0,C),

congruent(O, A, 0, D),

collinear(A, E,C),

collinear(B, E, D), HS,
perpendicular(O, E, E, F),

collinear(E, F,G),

collinear(F, A, D),

collinear(G, B, C).

If we know the construction sequence for Simson’s theorem, then generating the inequation
part DS is straightforward by the method in the previous subsection. Generally, we cannot
generate construction sequence merely by the equation part HS;. However, to ease the user
for specifying the construction sequence, our prover has a method so that the user only needs
to specify an order in which the points are constructed. For example for Simson’s theorem,
we can arrange the points in the order A, B,C,0,D, E, F,G (the first line of the input). Our
heuristic to figure out the construction sequence works as follows:

Check last point (here G) to see which predicates in H S, involve this point. If there are more
than two such predicates, we simply return the answer “the order is not chosen in a proper way
or the statement is not of constructive type.” Otherwise, there are only one or two predicates
involved. Our prover can figure out whether it is one of constructions 6-10.> In this case, we
have two conditions, perpendicular(A, B, D, G) and collinear(A, B,G). Thus, the prover figures
out that it is construction 8.3: G = T(D,AB) N L(AB). Then we delete these two conditions
from the set HS, and go to the next point, i.e., . Similarly, the prover finds two conditions in
the new H S, involving F' and figures out the construction F' = T(D, AC)N L(AC). Next, £ =
T(D,BC)Yn L(BC); D is on (O,(0A)). Last, for point O, congruent(O, 4,0, B) is recognized
by our prover as “O is on B(AB)”. Thus the last construction is O = B(AB) N B(AC). After
that, HS, is empty, thus the remaining points A, B, and C can be arbitrarily chosen. By
the method in previous subsection, our prover then produces the set DS, of non-degenerate
conditions from the above construction sequence:

—collinear(4, B, C),
—isotropic(AB),
—isotropic(AC),
=isotropic(BC).

Then the exact statement of Simson’s theorem is:
(3.3) VA..-VG[HS, A DS, = collinear(E, F, G)].

Now let us look at the Butterfly Theorem. If we arrange the points in the order O, A, B,C, D,
E.F, G, then we have the construction sequence:

As we mentioned before, the prover can figure out more than those constructions. But for the
purpose of discussion of basic techniques and principles, constructions 6-10 are enough.

19

O and A are arbitrarily chosen; construction 1
Bison (0,(0A)); construction 7
Cis on (0,(0A)); construction 7
D ison (O,(0A)); construction 7
E = L(AC)N L(BD); construction 8.1
F=LAD)NT(E,OF); construction 8.3
G = L(EF)n L(BC). construction 8.1

Then the program generates a set D.S, of non-degenerate conditions from the above construction
sequence:

—parallel(F, F, B,C),
—perpendicular(4, D,0, E),
—parallel(A,C, B, D).

The exact statement of the Butterfly Theorem is:

(3.4) VA--.-VG[HS, A DSy = midpoint(F, E,G)].

Note that for the same theorem, the construction sequence is usually not unique. Different con-
struction sequences lead to different non-degenerate conditions and slightly different “the exact
statements” of the theorem. For example, we have at least 8 essentially different construction
sequences for Simson’s theorem (see Appendix 2 of [4]).

