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Abstract

The most visible facet of the Computationally-Oriented Display Environment (CODE) is its
graphical interface. However, the most important fact about CODE is that it is a programming
system based on a formal unified computation graph model of parallel computation which was
intended for actual program development. Most previous programming systems based on formal
models of computation have been intended primarily to serve as specification systems. This paper
focuses on the interaction between the development of the formal model of parallel computation
and the development of a practical programming environment. Basing CODE on a formal model of
parallel computation was integral to attainment of the initial project goals of an increase in level of
abstraction of representation for parallel program structure and architectural independence. It also
led to other significant research directions, such as a calculus of composition for parallel programs,
and has suggested other directions of research in parallel programming that we have not yet had the
opportunity to pursue. We hope this experience with the interaction of the theoretical and the
practical may be of interest and benefit to other designers and developers of parallel programming
systems.

1. Introduction

1.1. Parallel program development: The CODE/ROPE design environment

The initial version of CODE (the Computationally-Oriented Display Environment) [BRO89] was
based upon a unified model of parallel computation defined by Browne [BRO85,BRO86] and
extended to have a proper formal basis by Sobek [SOB90]. The original motivations for basing
the CODE programming system on a formal model of computation were to be able to raise the
level of abstraction at which parallel programs are expressed and to provide a solid foundation for
the difficult problem of compiling to multiple parallel architectures. As is frequently the case in
research, unplanned results arose. CODE requires, because of the level of granularity of its typical
unit of computation, a component library. ROPE (the Reuseability-Oriented Parallel
Environment), which implements a library capability for CODE was a response to this
requirement. ROPE stores and retrieves subgraphs for insertion in CODE graphical
representations of parallel programs. Observation and analysis of the process of inserting
subgraphs into existing program graphs led to the observation that there was a well-defined
calculus of composition for composing subgraphs representing parallel computation structures
defined in the CODE representation into "larger" graphs also representing parallel computation
structures. Continuation of this line of reasoning revealed that there is a full calculus (or algebra
for that matter as well) of composition for parallel program structures based on the definition of
program elements in CODE and ROPE [BRO89]. Characterization of the family of program
graphs has also suggested some algorithms for identification of parallelism in existing programs.

It was actually the case that the first implementation of CODE preceded the formalization of the
model of parallel computation. The initial implementation has also undergone substantial revision
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as a result of deficiencies revealed by use. The implementation and the formal model were brought
back into closer harmony in the current version of CODE , Version 1.2.

This paper first defines and illustrates the formal model of parallel computation underlying Version
1.2 of CODE. There are few if any parallel programming languages intended for production use of
executable programs for which a precise formal model can be written down. The formally based
parallel programming systems such as CSP [Hoa78] and UNITY [CHAS88] have not typically not
been given full implementations although there are exceptions such as Linda [GELS5].
Consistency between CODE and its model of parallel computation is possible because CODE
expresses only the parallel structure of a program and because of the high level of declarative

abstraction at which CODE expresses parallel structure.

Use of the formal model of parallel structure as the basis for CODE has strongly influenced its
evolution. Extensions to provide greater convenience in expressing programs has been constrained
to constructs which can be straightforwardly incorporated in the model of parallel computation.
This has enabled us to avoid introducing inconsistent or incompletely thought-through constructs
on several occasions, notably in the representation of exclusion relations. There are possibilities
for analysis of safety, liveness and performance properties of executable parallel programs based
on this formal model which have not yet been exploited.

In the final section we discuss the calculus of composition in this model of parallel computation.
The calculus of composition has significant applications in the context of parallel programming
environments or at least for CODE/ROPE. Expressions in the calculus of composition provide a
compact representation for complex graph structures. The calculus of composition is the natural
text-based equivalent to the graphical syntax currently used by CODE. There may be many
occasions where a mixed-basis representation of a parallel program will be more readable and
compact than any single basis representation. The operators provide a powerful shorthand notation
for specification of the connections to instantiate a subgraph in a program graph. They are the
basis for in-depth type checking for manual subgraph insertions. They also are a basis for
automatic composition of parallel programs which will be correct provided the components are
correct. The operators can also be used to specify connectivity properties required of a subgraph.

IL2. The Calculus of Composition - Software Engineering Concepts and Related
Research

The calculus of composition for parallel programs for CODE integrates the concepts of hierarchy
and interconnection or interface specification. The concepts of hierarchy [PAR72] and
interconnection/interface specification [GOG86, PRI82] are foundations of modern software
engineering. Top-down design and reuse of software components for sequential language based
programming systems are founded on these two concepts. There have been proposals for
composition operators for parallel computation structures [PRA82] and parallel programs
[CHAR9]. Brock and Ackerman have given composition operators for dataflow parallel structures
[BRO81]. Chandy and Taylor [CHA89] have applied the UNITY composition operators in a
form for directly expressing executable programs in PCN. Adler [ADL88] recently defined an
algebra for data flow diagram decomposition targeting support for top down design of programs.

The calculus of composition and decomposition given herein support both top-down design of
parallel programs and reuse of software components (bottom-up design). An arbitrarily complex
parallel program structure can be derived top down by expressing a single node as an equivalent
graph defined in terms of the composition operators, expressing the nodes of that graph in terms of
an equivalent graph defined in terms of the composition operators, etc. Software component reuse
is supported by constraining the top down process to terminate on existing components, by
allowing components to be composed into new components which meet the specifications for a
particular instantiation and by providing a basis for automatic selection and instantiation of
components in parallel computation structures.
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II.  An Informal Introduction to CODE/ROPE

CODE is a program development system for parallel programs. In CODE, programs are
organized as graphs with three possible types of nodes and two possible types of arcs. The nodes
are associated with computations, and the arcs are associated with data.

1. Directed arcs (denoted by arrows, also called data dependencies) indicate data
being generated by the source node, and then flowing to the sink node.
2. Hyperarcs (undirected arcs potentially joining more than two nodes, denoted by

dotted lines and also called exclusion dependencies) indicate data which is shared by-the
computations represented by the nodes joined by the hyperarc. The hyperarcs have associated
constraints that control access to the data; this is the basic mechanism for preventing race
conditions. :

3. Schedulable Units of Computation (SUC) nodes (denoted by circles) are
associated with some computation. They are distinguished by only being able to execute when
data is present on all incoming directed arcs. They place data on all of their outgoing directed arcs
at the end of their execution.

4. Switch nodes (denoted by diamonds) perform specialized computations
associated with making choices as well as merging and distributing data. They are enabled for
execution if data is present on any input arc. These nodes may also place data on any subset of
their outgoing directed arcs after execution.

5. Subgraph nodes (denoted by boxes) encapsulate computations performed by
entire graphs.

Program development with CODE requires first specifying the graph (which represents the overall
organization of the computation) and then providing details about each graph element:

For SUC nodes, the user supplies a computation in the form of a subprogram which may
come from a library or be written from scratch.

For switch nodes, the user supplies a condition on each input arc which describes the
conditions under which data on that arc are to be passed through the node and on to the destination
node(s) to which it is routed.

For directed arcs, the user supplies a data name and data type.

For hyperarcs, the user supplies a data name, a data type and a data sharing constraint to be
preserved by the system among the nodes sharing the data . (We will seelater that this condition is
actually specified by annotating the nodes)

Once program development is complete, the user is able to request translation of the program to
any of several executable forms. Each executable form is targeted to the specific hardware and
software environment in which the program will be executed. By analogy with the compilation
process, the system specific portion of CODE which creates these executables is called a backend.
The current version of the software supports backends for Ada and Fortran on a variety of
architectures.

ROPE is a software reuse system integrated with CODE [LEE90]. The user model is essentially
one of selecting a subgraph from a library and then connecting that subgraph to the CODE graph
under construction by using data dependencies and exclusion dependencies. The user may also
create new modules and insert them in the library.

The implementation of CODE/ROPE is distinguished by the software engineering features which
have been incorporated to facilitate its practical use. These features encompass the user interface,
provisions for reuse of program fragments, and facilities for structuring programs. The system

has been through several versions and has had substantial use by graduate and undergraduate
students in classes. A list of CODE related documents appears in the bibliography.
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II. A Formal Definition of the Unified Computation Graph Model

The purpose of this section is to give a formal notation for the model of computation used in the
definition of Versions 1.0 and 1.2 of the CODE/ROPE systems developed at the University of
Texas at Austin. Though these definitions differ to some degree from those of [Sobek90], closely
related material may be found there. The approach taken here is fairly general and in some cases
contains ideas not actually implemented in CODE 1.2. Notes are supplied to indicate limitations of
the existing CODE/ROPE system. A new version, CODE/ROPE 2.0, is currently under
development; it is based on a further enriched model of parallel computation with complete
realization of the model of computation [Newton91].

The formal definition is organized as follows.

1. The elements of the unified model of parallel computation are defined in set notation in
terms of a graph model, the Unified Computation Graph (UCG) model (Section II). :

7 The semantics of each element of the model are specified as they are realized in CODE 1.2
(Section III).

3. The graph model is shown to lead naturally to a formal definition of a reuseable component
as any full closed subgraph of a UCG (Section V).

Section II is necessarily quite formal. While the formality is essential to completeness, the
concepts are simple and what is essential for extracting the content of the rest of the paper can be
obtained by reading the definitions and the explanatory notes, the italicized intuitive notes and
Section IIL

Definition II.1. Type System
Given a countably infinite set of values U, a type system is a family of subsets of U called types.
There are n distinguished finite subsets B1, .., Bn of U called basic types. A type, t, is either
1. A basic type
2. U
3. (Arrays) IfI1, ..., Im are finite totally ordered sets and t is a type then the set of

functions f: I1x I2x..xIm ->t is a type.

Definition II.2. A Unified Computation Graph (UCG), G, is a tuple (§,D, E, T)
S is the set of nodes, s, of G.
D is the set of data dependencies, d, of G.
E is the set of exclusion dependencies, e, of G.
T is some type system

We use an operator style notation; for example, if Gis a UCG then S(G) is the set of nodes, D(G)
is the set of data dependencies of G. We write n:t if identifier n has type t.

Definition IL3. »
‘A Data dependency d has an associated pair of nodes, s1 = Source(d),
52 = Sink(d), a type t = T(d), and a name N(d).
An Input data dependency d is one with source(d) = sI; that is. d= ( (s, s), n:t)
An Output data dependency d is one with sink(d) = sO; that is. d= ( (s, sO), n:t)

Intuitively a data dependency is a buffer which carries a sequence of typed values from source to
sink.
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Notation IL1.

a. If dis a data dependency then
S(d) = {Source(d), Sink(d)}, the node set of the dependency

b. If sisanode then
In(s) = {d | Sink(d) = s)}, Out(s) = {d | Source(d) = s)}
D(s) = In(s) union Out(s) , E(s) = {e | s € S(e) }

c. IfGisaUCG then
ID(G) is the set of input dependencies contained in D(G)
OD(G) is the set of output dependencies contained in D(G)

IOD(G) = ID(G) U OD(G) is called the /O dependencies of G
IND(G) = D(G) - IOD(G) is called the internal dependencies of G

There are unique start (sI) and end (sO) nodes in S(G) and G has the property that for every node s
there is a directed path from sI to sO passing through s. There is a unique data dependency du of
type U from sI to sO. The trivial UCG for type system T is ({sL,sO}, {du}, {},T). We assume
there are no dependencies with sink sO and source sI except du.

el
du

d5 9

i

Figure 1 Figure 2
A typical UCG The Trivial UCG

A
N

©

I

Figure 1 might be a program which generates a vector of integers in A, while B and C sort the list
into sublists of even and odd integers and D prints the two lists. d2, d3, d4 and d5 are data
dependencies each of which carries a vector of integers. sl, sO, dI, d6 and du, while they are not
essential to the specification of a computation are necessary to the definition of reuseable
components for the UCG model.

CODE 1.2 Implementation Notes.
1. The basic types which may appear are integer, character, boolean, real. There are also
arrays of these of dimension less than or equal 2.
2. Nodes sl and sO are not explicitly mentioned for main graphs; in subgraphs they are called
To-Node (sO) and From-Node (s).
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Definition I1.4. Exclusion Constraint
An exclusion constraint, ec, on a set S, is a function on the power set P of S to {true, false} such
that

i. ec({}) = true, ii. ec({s}) = true forevery s € S and
iii. if U is a subset of P, ec(T) = true, and R is a subset of U, then ec(R) = true.

Definition IL5. Let ec be an exclusion constraint on S and let M be asubsetof S. Misa
max-run set if ec(M) = true and ec(N) = false for any superset N.of M. ‘

Intuitively an exclusion constraint is a predicate which evaluates to true or false when acting on
subsets of nodes of a UCG.

Lemma IL1. Let ec be an exclusion constraint for S, then clearly
a. If Tis any set for which ec(U) = true then there exists a max-run set containing U.

b. If {Mi} is the set of all max-run sets for the constraint ec, then U Mi = S.
¢. The set of max-run sets uniquely determines ec

Definition IL.6. Let {Mi} be the set of all max-run sets for the constraint ec.

a. Share(ec)=NMi

b. If the Mi are pairwise disjoint then ec is said to be mutex. If they are singleton sets ec is
said to be strong mutex

c. An exclusion constraint ec' for S' is weaker than exclusion constraint ec for S (or ec

is stronger than ec'), if S o S' and for every subset U of S', ec(U) = true implies ec'(U) =
true. We write ec' < ec.

Intuitively, the sets of nodes for which the exclusion constraint evaluates to true can execute in
parallel with conformance to the specifications of the computation.

Definition IL7. An Exclusion Dependency, e, has an associated set of nodes S(e), a type t
= T(e), a name n = N(e), and an exclusion constraint ec = EC(e) on S(e). EC(G) is the set of
exclusion constraints, ec, of the UCG, G

Two UCGs are equivalent if they differ at most in the names associated with their data and
exclusion dependencies

Intuitively, an exclusion dependency synchronizes the execution of a set of nodes to conform to the
semantics of the computation as expressed in an exclusion constraint.

CODE 1 Implementation Notes
1. A node may take part in at most one exclusion dependency.
7. CODE 1.2 allows only two types of exclusion dependencies, those in which
S(e)=Share(EC(e)) and those in which EC(e) is strong mutex.

I1I. Semantics.

Roughly, one can picture the CODE 1.2 execution model as a dataflow graph which allows more
flexible execution rules for some node types and which allows data sharing among the nodes.
However, there are many other features which are further discussed below. The nodes are "black
boxes" with their properties reflected only by their behavior at their interfaces. The semantics is in
a sense only partly specified here. The internal state of SUCs and actual values appearing on arcs
are not considered. Instead we restrict attention to defining the effect of firing a node on the
enabling of other nodes and on termination.
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A. Data Dependencies
Data dependencies are like pipes, with a buffering capacity, that connect nodes. If there are items
in the buffer then the dependency is said to be bound, otherwise it is unbound. The capacity of the
buffers is an implementation issue that effects the semantics of the model. In CODE 1.2 the
capacity is nominally infinite.

B. Nodes
During execution, a node n of a UCG, G, may be in one of the states: idle, ready, or running.
Legal transitions are from idle to ready to running to idle. .

There are two types of node:
1. A SUC, s, is a unit of computation with the properties that
a. When the computation changes state from running to not-running then data is placed
on every output data dependency.
b. When the computation changes state from ready to running one data item is removed
from each member of In(s).

2. A Switch s a unit of computation with the properties that
2. Data is consumed from one non-deterministically selected element of In(s) (which
must be bound) when the state changes from ready-to-run to running.
b. Data are placed in a subset of Out(s) when state changes from running to not-running

In CODE 1, switches are limited in the computations they may perform. They may test data on a
single input arc only, and based on that data alone, they may distribute the data, unchanged to a
subset of the output data dependencies. They may not participate in exclusion dependencies.

A node, n, is eligible to be promoted from idle to ready if sufficient data is available on its
input dependency arcs. For SUCs this means that data is available on all input dependencies; that
is, the state of d is bound for all d in In(s) {see below]}. For switches it means that at least one
element of In(d) is bound.

A node is eligible to be promoted from ready to running if doing so leaves the exclusion
constraints in which it participates satisfied {see below}. On such a transition, one item is
removed form each of the elements of In(n) for SUCs and from a single non-deterministically
chosen element of In(n) for switches.

A node is always eligible to be promoted from running to idle. On such a transition, one item is
placed in each element of Out(n) for SUCs and in some data-dependent subset of Cut(n) in the case
of switches.

C. Exclusion Dependencies
If e is an exclusion dependency then there is assumed to be some object of type t which is shared
by the elements of S(e) according to the discipline described by ec = EC(e). Consequently if Vis a
subset of S(e), ec(V) = true is the statement that it is permissible to have every node in V running,
and every node of S - V not-running. This expresses a constraint on the ability of the
computations associated with nodes in S(e) to access the shared data item whose type is t.
Recalling the definition of exclusion constraint Definition IL3:

Condition i. means that the constraint is automatically satisfied if no node is running,

Condition ii means that the constraint is automatically satisfied if a single node is running,

Condition iii. means that if the constraint is satisfied then if a running node changes state to
idle then the constraint is still satisfied.
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An interesting issue is whether i, ii and iii. are reasonable. For example, iii. does not allow the
case that a set of nodes may only run if some other node is running {asina monitor construct}.

Exclusion dependency el is weaker than €2, if EC(el) is weaker than EC(e2). This means that any
set of nodes which e2 will allow to run together may run together under el. We might say el is at
least as permissive as €2.

D. Subgraphs
Subgraphs are strictly a program-creation-time structuring device and have no other semantics. .

E. State of a UCG

A state, s, of a CODE graph is defined by two functions
f: S(G) -> {idle, ready, running}
g D(G) -> {bound, unbound} X N

The initial state is
F(n) =idle forallnin S(G) - sl
F(sI) =ready
G(d) = (unbound, 0) for all d in D(G)

The terminated state has F(n) = idle for all n.

F. Firing rules {UCG state transitions}
In execution it is the responsibility of the runtime system to maintain the truth of all exclusion
constraints. The way this has been done in CODE 1.2 is to use the following technique for starting
computations:

From the nodes that are ready, a single node is chosen and started. This node must
have the property that if it is started, then no exclusion dependency will be invalidated.
This is then repeated until no ready nodes exist.

IV. Composition and Decomposition of Dependencies

To reach our goal of describing the composition of UCGs we must first describe how to compose
and decompose dependencies. Ultimately these dependencies couple the interfaces of the
components into parallel computation structures. We picture the components as being removed
from larger configurations by cutting wires (decomposing dependencies) and as being recombined
by splicing these wires together

Definition IV.1. Compose two data dependencies

If G is a graph with data dependencies d1 and d2 with d1 = ((s1, sO), nl:tl) and d2 = ((s],
s2), n2:2), s1 <> sl and s2 <> sO, and if t = t1 =2 then the graph G' obtained by composing
d1 and d2 is created by deleting d1 and d2 from G and adding the dependency d = ((s1, s2), n":t).

Definition IV.2. Decompose a data dependency

If G is a graph with data dependency d and d = ((s1,s2), n:t) where s1 <> sI and s2 <> sO,
then the graph G' obtained by decomposing d is created by removing the dependency d from G
and adding the pair of dependencies d1 = ((s1, sO), n:t) and d2 = ((sL, s2), n:t).

The intuition is that if an output data dependency of one node and an input dependency of another

node match in type then the two dependencies can be joined to establish a data dependency between
the node pair.
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Definition IV.3. Projection of an exclusion dependency.
Let ¢ be an exclusion dependency. Let S'be any subset of S(e). The projection of e on S/,
written e proj S', is an exclusion dependency ' defined as follows:
1. S¢e)=¥§
2. ec' = EC(e") is defined as follows:
If U is a subset of S(e') then ec'(U) = true iff ec(U) = true.
ec' is also referred to as a projection of EC(e).
3. Te)=T)
N(e") = N(e)

B

A projection of an exclusion dependency maintains for subsets of nodes from the exclusion
dependency the synchronization conditions for those subsets in the original exclusion constraint.

O—0O

S

©O—C
(&—O

Figure 3
d is the composition of d1 and d2. d1 and d2 are the decomposition of d.

Definition IV.4. Consistent exclusion dependencies
Ifel and e2 are exclusion dependencies then they are consistent if

el proj (S(el) N S(e2)) = €2 proj (S(el) M S(e2))
Note that if S(e1) N S(e2) = {}, then el and €2 are consistent.

Two exclusion dependencies can be composed into a single exclusion dependency if the
projections of each with their intersection are equal.
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Definition IV.5. Composing two consistent exclusion dependencies

If Gis a UCG and el and e2 are two consistent exclusion dependencies in G where t = T(e1)
= T(e2) and if ec is an exclusion constraint such that EC(el) = ec proj S(el), and EC(e2) = ec proj
S(e2) then the graph G’ is obtained by composing el and e2 as follows: el and 2 are removed

from G and the exclusion dependency e is added where T(e) =t, N(e) = n', S(e)=S(el) U S(e2),

and EC(e) = ec. If the max-run sets of e are exactly the max-run sets of el together with those of
e2 then we say e is the strongest composition of el and 2, denoted e, If the max-run sets of €

are all possible pairwise unions of a max-run set of el together with a max-run set of €2 then e 1s
the weakest composition of el and 2, denoted ey, We say e is the composition of el and e2.

The following lemma assures us that the projections of a composition of two consistent exclusion
dependencies are the original dependencies. Also, if e is any composition of el and e2 then e will
be weaker than the strongest composition and stronger than the weakest composition of e1 and e2.

Lemma IV.1 If e is a composition of el and e2 then
i. el =eprojS(el)
ii. e2=e proj S(e2)
ili. egi <€ < €g

The exclusion constraint ec associated with an exclusion dependency e obtained by composition of
two exclusion constraints el and 2 is is the range of constraints defined by the relations EC(el) =
ec proj S(el ) and EC(e2) = ec proj S(e2)

CODE 1.2 Implementation Note
In the case of share constraints Code 1.2 assigns ec t0 be e. In the case of strong mutex

constraints Code 1.2 assigns ec to be eg;.

V. Subgraphs
Definition V.1. A subgraph, G', of a UCG, G,isa UCG such that

1. Nodes. S(G) 2 S(G")
2. Data Dependencies
a. de IND(G) => S(G) 2 S(d) Ande IND(G)

{An internal data dependency of G' is an internal data dependency
of G with both its nodes in G'}

b. d' e IOD(G) =>
i. d e IOD(G)or
ii. thereisade IND(G) and some d" such thatd = d' [ d"
{Input and output dependencies come from those of G or they are

created by decomposing dependencies of G}
3. Exclusion Dependencies

¢' € E' => there exists e € E suchthate' = e proj §'
{Every exclusion dependency of G’ is derived from one of G}

Definition V.2. A full subgraph, G', of a UCG, G, is a subgraph such that each of the
'=>'s in 2 and 3 is replaced by '<=>"

The intuition is that a subgraph is a subset of nodes and a set of data dependencies which are either
from the original graph or arise from decomposing data dependencies whose sinks and sources are
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not both in the subset.. The subgraph is full if all possible dependencies are included. Exclusion
dependencies of the subgraph must be projections of those in the original graph. Note that we
allow single node exclusion dependencies. This is so they may be rejoined on a composition.

Code 1.2 Implementation Notes
1. The CODE/ROPE system allows any full subgraph of a UCG to be identified and stored in

the library of reusable modules.
2. The CODE/ROPE system allows any full subgraph of a UCG to be identified and replaced

with a single symbol. This allows hierarchical structuring of the graph under development.

g sl

/ >V

du

E F G H
I ! /
Figure 4. Full components of a UCG

. {sl, A, B, C, F, G, H, sO}

{sI, A, B, C, sO}
{sI, C,F, G, H, sO}
Any single element with sI and sO
{s1, M, N, E, sO}

Any union of these with the property that they
pairwise have no dependencies in common

O L0 O

Definition V.3. IfGisaucgand G is a full subgraph then let the complement, H, of G'in G be
defined as follows:

1. S(H) = (S(G)-S(G") v {s0, sI}

2. DH) = {d!d e D(G) and S(d) is disjoint from S(G)-{sO, sIjlu
{d"Ithereis ad e D(G) and d'e D(G) such thatd =d'| d"} v {du}

3. E(H) = {¢' | e' = e proj S(H) for some ¢ in E(G)}.

{The complement is what is left if you remove the subgraph from the ucg; decomposing the
dependencies which cross the boundary between S(G') and S(H).}
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Lemma V.1, If Gisaucg and G'is a full subgraph then the complement, H, of G'in Gisa full
subgraph.
Proof.

1. Hisaucg
If s is a node then there was a path from sl to s in D(G), say (sO, d1,d2, ..., dk, s). Letdj be the
highest numbered dependency that is not in D(H). Then dj was decomposed naturally into d' and 4" with
Source(d")=sI and Sink(d")=Sink(dj). Hence, (d",....,dk.s) is a path from sl to s.
Other parts of the proof are similar.

2. His a subgraph
This is long but mostly direct from the definitions.

.. -
sl sl
d1 di
. \\d
ds

3
du du
d ds

4 da”
\i \

Figure 3
The Typical UCG of Figure 1 divided into complementary components

Note. The unique full subgraph of G based on (S8(G)-S(G)) v {s[, sO} is the complement of G' as
defined above.

Definition V.4. G'is a closed subgraph of G if the following hold:

1. Ifde IND(G) U ((OD(G) N OD(G") , then D(G") 2 Outg(Source(d))
{if one child of Sourceg (d), is in G' then all are}

2. Ifd e IND(G) U (ID(G) N ID(G"), then D(G") 2 Ing (Sink(d))
(if one parent of Sinkc (d), is in G' then all are}

3. If se S(G"), then E(G") 2 Eg (s)

Thinking of a ucg as a graph, a subgraph is closed if,

1. Given a node (other than sI) which is in the subgraph, if one of its children (in G) is in the
subgraph G’ then all children (in G) are included in the subgraph (closed under children)

2. Given a node (other than sO) which is in the subgraph, if one of its parents (in G) is in the
subgraph G’ then all parents (in G) are included in the subgraph (closed under parents)

3. Any exclusion dependency of G is completely contained in or completely outside the closed
subgraph G'.
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In particular, note that ({sI, m, sO}, {d2, d4, du}, {}, T) is not closed in either Figure 4.1 {the closed
under children property is not satisfied} or Figure 4.i is a subucg{the closed under parents

property is not satisfied}. Node m in Figure 4.i is said to do intermediate output. In Figure 4.ii, m
does intermediate input.

Proposition V.1.
If G' is a subgraph of G then G' is closed if Vs € S(G)

1. D(G) 2 Ing'(s) or ID(G) 2 Ing'(s)

2. D(G) 2 Outg(s) or OD(G") 2 Outg(s)

3. D(G) 2 Exg'(s)
Discussion. The full, closed subgraphs are natural objects for reuse. At a node s, either every internal
input dependency of s is included in the subgraph or all have been replaced by connections to sI (similarly
for output dependencies from s). That is, there are no data dependencies which cross the boundary of the

subgraph except those coming from sI or sO. In addition, no data is shared across this boundary using
exclusion dependencies.

Restriction of reuseable components to be only full, closed subgraphs would be very restrictive in practice.
The composition operators defined and described following allow instantiation of components with
exclusion dependencies composed across subgraph boundaries.

O
di
d2

du o du

d1 d3 Q
<d4 d4
d3 4____! <_-—-!
)

@ (i)

Figure 4

Definition V.5. A subucg G' of G is a ucg such that
1. S(G) = S(G)
2. D(G) 2 DG)
3. E(G) 2 EG)
Discussion. A subucg is literally a "subset” of G. It might or might not be a subgraph. That is to say,

unlike a subgraph, there is no requirement that dependencies of G with one node not in the subucg be
acknowledged by inserting new I/O dependencies in the subucg.
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Definition V.5. A normal subucg G' of G is a subucg which is also a full, closed subgraph.

Proposition V.2.
Let G be a ucg and let G' and G" be normal subucgs, then

1. G' n G"is a normal subucg

2. G'w G"is a normal subucg
3. The complement of G' is a normal subucg

Definition V.6. A normal subucg is minimal if it contains no proper non-trivial normal Subucg.

Lemma V.2.
Two minimal normal subucgs are equal or have trivial intersection.

Proposition V.3.

The union of all minimal normal subucgs of G equals G

Proof.

For any node, dependency, or exclusion dependency, x, there is some normal subucg containing it,
namely G itself. Take the intersection, G', of all such subucgs. If G'is minimal, we are through.
Suppose that G" is minimal normal subucg properly contained in G' and not containing x. Let H be the

complement of G'. Thenx e H,and HNG'is a normal subucg; contradicting the definition of G'.

Figure 6
A UCG written as the union of its minimal normal subucgs
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Definition V.7. The degree of independent parallelism of a UCG, G, denoted ip(G), is the
cardinality of the set of minimal normal subucgs of G.

The degree of independent parallelism corresponds to the intuitive idea of decomposing the ucg into the
largest possible collection of independent subgraphs (presumably so they could be run on different
machines)

V1.  Composition of UCGs
Composition is an attempt to capture formally the idea of taking two ucgs and connecting some of
their I/O dependencies and exclusion dependencies and thereby creating a new ucg. This process
is the essential step in building software from components. The connection of data dependencies is
specified by a pair of functions. The connection of exclusion constraints is specified by giving the
two exclusion dependencies to be combined and a description of how to combine their constraints.
An informal description of the calculus of composition for CODE/ROPE has been given previously
[BRO89].

Definition VILI. Let A and B be sets. We say that g is a partial 1-1 function from A to

B (denoted g : A -> B) if A o dom(g), B 2 ran(g), and g is 1-1 from dom(g) to ran(g). If dom(g)
= {} (and hence ran(g)={}), then g is the null function.

Definition VIL.2. Let G and H be two UCGs such that
i. S(G) N SH) = (sI,s0O}
ii. D(G) N"D®H) = {du}
iii. E(G) N EMH) = {}
and let Gio, Goi, Ge be partial 1-1 functions (called connecting functions) such that
Gio : ID(G) -> OD(H) and such that T(d) = T(Gio(d))
:Gio describes which inputs of G to connect to which outputs of H
Goi: OD(G) -> IG(H) and such that T(d) = T(Gio(d)) '
:Goi describes which inputs of H to connect to which inputs of G
Ge: E(G) -> E(H) and such that T(e) = T(Gio(e))
-Ge describes which exclusion dependencies of G and H should be joined.
In addition, let E be a set of exclusion constraints, one such constraint ec for each pair (el, e2)

with e2 = Ge(e1l). This exclusion constraint ec is defined on S(el) U S(e2) such that EC(el) =ec
proj S(e1) and EC(e2) = ec proj S(e2).

Then the composition of G and H with respect to (Gio, Goi, Ge, E), G A(Gio,Goi,Ge, E) H, 1s
a UCG K defined as follows:

1. SK)=S(G) v SH)

2. INDK) = {du} v IND(G) v IND(H) U
{d1 dis the composition of d' and Gio(d"), vd' e dom(Gio)} U
{d! d is the composition of d' and Goi(d"), Vd' e dom(Goi)}

3. ID(K) = (ID(G) U ID(H)) - (dom(Gio) U ran(Goi))

4. OD(K) = (OD(G) U OD(H)) - (dom(Goi) U ran(Gio))

5. E(K) = ((E(G) v E(H)) - (dom(Ge) L ran(Ge)) v

{e | & is the composition of ¢' and Ge(e') with respect to ec, Ve' € dom(Ge),
where ec is the associated exclusion constraint in E}
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Definition VI.3. The composition is called

i. sequential (Fig. 5.1),if Gio is total and onto, and Goi is null

ii. parallel (Fig 5. iii) if Gio and Goi are null

iii. independent if Ge is null.

iv. We say that K is constructed by embedding G in H (Fig. 7) if Gio and Goi are total
(every input of G is connected to an output of H and every output of G is connected to an input of

H)

sl si

[T LT
T T T

sO sO sO
i. sequential ii. general with Goi null iii. parallel

Figure 5

Figure 5.ii illustrates a general composition with Goi = null and Figure 6 is a general composition
with Gio and Goi both non-null.

Lemma:VI.1 Let K be the composition of G and H with respect to (Gio, Goi, Ge, E). Then
i. G and H are full subgraphs of K.
ii. G and H are normal if and only if the composition is independent and parallel

CODE 1.2 Implementation Note
Code 1.2 does not incorporate either the ability to intermix graphs specified in the calculus of
composition and the graphical representation or an automation of composition operators when
subgraphs are instantiated. Both capabilities will be incorporated in CODE/ROPE 2.

VII. Conclusion

The development of CODE and ROPE has been focused and directed by interaction with the formal
model of parallel computation upon which they are founded. The role of CODE and ROPE has
been to identify the requirements for a practical parallel programming environment while the formal
model has first enabled a consistent evolution of the programming environment and then supplied
directions for extending the programming environment to include significant capabilities not in
view when the system was first being developed.
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Figure 6. A general case of composition of G and H
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Figure 7. G embedded in H
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