
[25] T. Watanabe, An e�cient way for edge-connectivity augmentation, Tech. Rep. ACT-76-UILU-ENG-87-2221, Coordinated Science lab., University of Illinois, Urbana, IL,1987.[26] T. Watanabe and A. Nakamura, On a smallest augmentation to triconnect agraph, Tech. Rep. C-18, Department of Applied Mathematics, faculty of Engineering,Hiroshima University, Higashi-Hiroshima, 724, Japan, 1983. revised 1987.[27] T. Watanabe and A. Nakamura, Edge-connectivity augmentation problems, J.Comp. System Sci., 35 (1987), pp. 96{144.[28] T. Watanabe and A. Nakamura, 3-connectivity augmentation problems, in Proc.of 1988 IEEE Int'l Symp. on Circuits and Systems, 1988, pp. 1847{1850.[29] T. Watanabe, T. Narita, and A. Nakamura, 3-edge-connectivity augmentationproblems, in Proc. of 1989 IEEE Int'l Symp. on Circuits and Systems, 1989, pp. 335{338.

38

[13] Y. Kajitani and S. Ueno, The minimum augmentation of a directed tree to a k-edge-connected directed graph, Networks, 16 (1986), pp. 181{197.[14] R. M. Karp and V. Ramachandran, Parallel algorithms for shared-memory ma-chines, in Handbook of Theoretical Computer Science, J. van Leeuwen, ed., NorthHolland, 1990, pp. 869{941.[15] D. Naor, D. Gusfield, and C. Martel, A fast algorithm for optimally increasingthe edge-connectivity, in Proc. 31th Annual IEEE Symp. on Foundations of Comp. Sci.,1990, pp. 698{707.[16] D. Nath and N. Maheshwari, Parallel algorithms for the connected components andminimal spanning tree problems, Information Processing Letters, 14 (1982), pp. 7{11.[17] V. Ramachandran, Parallel open ear decomposition with applications to graph bi-connectivity and triconnectivity, in Synthesis of Parallel Algorithms, J. H. Reif, ed.,Morgan-Kaufmann, 1992, to appear.[18] A. Rosenthal and A. Goldner, Smallest augmentations to biconnect a graph, SIAMJ. Comput., 6 (1977), pp. 55{66.[19] B. Schieber and U. Vishkin, On �nding lowest common ancestors: Simpli�cationand parallelization, in Proc. 3rd Aegean Workshop on Computing, vol. LNCS #319,Springer-Verlag, 1988, pp. 111{123.[20] D. Soroker, Fast parallel strong orientation of mixed graphs and related augmentationproblems, Journal of Algorithms, 9 (1988), pp. 205{223.[21] K. Steiglitz, P. Weiner, and D. J. Kleitman, The design of minimum-costsurvivable networks, IEEE Trans. on Circuit Theory, CT-16 (1969), pp. 455{460.[22] R. E. Tarjan, Data Structures and Network Algorithms, SIAM Press, Philadelphia,PA, 1983.[23] R. E. Tarjan and U. Vishkin, An e�cient parallel biconnectivity algorithm, SIAMJ. Comput., 14 (1985), pp. 862{874.[24] S. Ueno, Y. Kajitani, and H. Wada,Minimum augmentation of a tree to a k-edge-connected graph, Networks, 18 (1988), pp. 19{25.37

References[1] G.-R. Cai and Y.-G. Sun, The minimum augmentation of any graph to a k-edge-connected graph, Networks, 19 (1989), pp. 151{172.[2] R. Cole, Parallel merge sort, SIAM J. Comput., 17 (1988), pp. 770{785.[3] R. Cole and U. Vishkin, Approximate and exact parallel scheduling with applicationsto list, tree and graph problems, in Proc. 27th Annual IEEE Symp. on Foundations ofComp. Sci., 1986, pp. 478{491.[4] K. P. Eswaran and R. E. Tarjan, Augmentation problems, SIAM J. Comput., 5(1976), pp. 653{665.[5] A. Frank, Augmenting graphs to meet edge-connectivity requirements, in Proc. 31thAnnual IEEE Symp. on Foundations of Comp. Sci., 1990, pp. 708{718.[6] H. Frank and W. Chou, Connectivity considerations in the design of survivablenetworks, IEEE Trans. on Circuit Theory, CT-17 (1970), pp. 486{490.[7] G. N. Frederickson and J. Ja'Ja', Approximation algorithms for several graphaugmentation problems, SIAM J. Comput., 10 (1981), pp. 270{283.[8] D. Gusfield, Optimal mixed graph augmentation, SIAM J. Comput., 16 (1987),pp. 599{612.[9] T. Hagerup, Towards optimal parallel bucket sorting, Information and Computation,75 (1987), pp. 39{51.[10] D. Harel and R. E. Tarjan, Fast algorithms for �nding nearest common ancestors,SIAM J. Comput., 13 (1984), pp. 338{355.[11] T.-s. Hsu and V. Ramachandran, A linear time algorithm for triconnectivity aug-mentation, in Proc. 32th Annual IEEE Symp. on Foundations of Comp. Sci., 1991,pp. 548{559.[12] S. P. Jain and K. Gopal, On network augmentation, IEEE Trans. on Reliability,R-35 (1986), pp. 541{543. 36

algorithm to �nd a smallest augmentation to biconnect a graph. Our sequential algorithmcorrects an error in an earlier algorithm proposed for this problem in Rosenthal & Goldner[18]. Our parallel algorithm is new, and it runs in O(log2 n) time using a linear number ofprocessors on an EREW PRAM. Although the parallel algorithm follows the overall structureof our sequential algorithm, the parallelization of some of the steps required new insights intothe problem. Our parallel algorithm can be made to run within the same time bound usinga sublinear number of processors by using the algorithm for �nding connected componentsin [3] and the algorithm for integer sorting in [9].

35

The parallel versions of stage 1 and stage 2 are described in Section 4.1 and Section 4.2,respectively. In stage 3, the children-permutation procedure can be done in time O(log n)using a linear number of processors on an EREW PRAM by calling the parallel mergesort routine in Cole [2] and using the Euler tour technique in Tarjan & Vishkin [23] torestructure and normalize the tree. To perform functions case1, case2 and par update, weneed the following procedures.� A procedure that numbers leaves in the tree from left to right or from right to left.� For each vertex v in a tree, �nd the number and the set of leaves in the subtree rootedat v.� For a vertex v in a tree, �nd the leftmost leaf of each subtree rooted at a child of v.� For a tree T with a set of edges S added between leaves in T , compute:{ the number of cycles that pass through a vertex in T [S;{ the set of vertices in a cycle in T [S.All of these procedures can be done in O(log n) time using a linear number of processors onan EREW PRAM by using the Euler technique in Tarjan & Vishkin [23] and procedures inSchieber & Vishkin [19].From Corollary 6, Corollary 9 and Corollary 11, we know that algorithm par bcaremoves at least a quarter of the leaves in the current block graph during each executionof the do loop. Initially, the number of leaves is at most n. Hence the main do loop inalgorithm par bca is executed O(log n) times. Each iteration takes O(log n) time using alinear number of processors, since the parallel sorting routine used in permuting childrenneeds O(n) processors. This establishes the following claim.Claim 13 The biconnectivity augmentation problem on an undirected graph can be solvedin time O(log2 n) using a linear number of processors on an EREW PRAM, where n is thenumber vertices in the input graph.6 ConclusionIn this paper we have presented a linear time sequential algorithm and an e�cient parallel34

let Bi+k be the set of b-vertices in the fundamental cycle in T [feigrofp;k := k + jS4jj S is constructed from the pairs found in case 2 !B1 := B; k := 1�;pfor i = 1 .. k !collapse all b-vertices in Bi into a single b-vertexrofp;eliminate parallel edges created by collapsing b-vertices;let T 0 be this graph;pfor each c-vertex w in T 0 ! if degree(w) = 1 ! eliminate w � rofp;return T 0end par update;Claim 12 Function par update returns the updated block tree.Proof: From Claim 11 and parts (3) and (4) in Fact 1. 2Note that we can get the updated block tree by using an algorithm for �nding bicon-nected components. We will, however, show in Section 5.2 that the time needed on an EREWPRAM for updating the block tree using function par update is less than what is neededto compute connected components using a linear number of processors. Hence we do notwant to use the straightforward algorithm for �nding connected components to implementfunction par update.5.2 The Parallel ImplementationWe now describe an e�cient parallel implementation for algorithm par bca.Given an undirected graph, we can �nd its block graph in time O(log2 n) using a linearnumber of processors on an EREW PRAM by the parallel algorithm in Tarjan & Vishkin[23] for �nding biconnected components and using some procedures in Nath & Maheshwari[16]. 33

Notice that fundamental cycles in the block tree created by adding edges between pairsof leaves found in phase 1 and phase 2 of case 1 and subcase 2.1 share a common b-vertex (theroot). Any pair of fundamental cycles created by adding edges between pairs of leaves foundin phase 3 of case 1 either share a child of v1 (a b-vertex) or do not share any b-vertex atall. Fundamental cycles created by adding edges between pairs of leaves found in phase 4 ofcase 1 do not share any b-vertex with any other fundamental cycle. Any pair of fundamentalcycles created by adding edges between pairs of leaves found in subcase 2.2 share either theroot (a b-vertex) or a b-vertex created by the merge operation (Claim 9).From the above discussion, we know that b-vertices in fundamental cycles formed byadding edges due to phase 1 and phase 2 of case 1 shrink into a single b-vertex in the newblock tree. The b-vertices in fundamental cycles formed by adding edges due to phase 3 ofcase 1 which share a common child of v1 shrink into a single b-vertex. The b-vertices ina fundamental cycle formed by adding edges due to phase 4 of case 1 shrink into a singleb-vertex. The b-vertices in all fundamental cycles formed by adding edges due to subcase 2.1or subcase 2.2 shrink into a single b-vertex. Thus we know how to compute the equivalenceclasses of R.We now describe the algorithm for updating the block tree given the original block treeT and the set of edges S added to it.tree function par update(tree T ,set of edges S);vertex w; integer k; set of edges S1,S2,S3,S4;let B be the set of b-vertices in a cycle in T [S;f� The partition fBij1 � i � kg of B is computed such that two b-vertices b1 and b2 arein the same set if and only if there exists a set of fundamental cycles fC0; � � � ; Cqg inT [S with b1 2 C0, b2 2 Cq and Ci and Ci+1 share a common b-vertex, 80 � i < q. �gif S is constructed from pairs found in case 1 !let Si, 8i, 1 � i � 4, be the edges in S corresponding to the pairs found in phase i;let B1 be the set of b-vertices in fundamental cycles in T [S1 [S2;pfor the ith child zi of v1 !let Bi+1 be the set of b-vertices in fundamental cycles in T [S3 that contain zirofp;k := 1 + the number of children of v1 in T ;pfor the ith edge ei in S4 ! 32

j l � 3 ! let u and v be two leaves in T ; L := f(u; v)g�;S := fg;pfor each (u; v) 2 L !�nd a non-cutpoint vertex � in the corresponding block of G represented by u;�nd a non-cutpoint vertex � in the corresponding block of G represented by v;add an edge between � and �; S := S [f(u; v)grofp;1. T := par update(T ,S) f� The procedure par update returns the updated block treeafter adding the set of edges in S. �god;return Gend par bca;The correctness of algorithm par bca follows from the correctness we established earlierof the various cases (Corollary 6, Corollary 9 and Corollary 11).In the previous sections, we have shown details of each step in algorithm par bca exceptstep 1. We now describe an algorithm for updating the block tree given the original blocktree T and the set of edges S added to it (step 1 in algorithm par bca).To describe the parallel algorithm for updating the block graph T after adding a setof edges S, we de�ne the following equivalence relation R on the set of b-vertices B, whereB=fvjv is a b-vertex in T and v is in a cycle created by adding the edges in Sg. A pair (x,y)is in R if and only if x 2 B, y 2 B and vertices in blocks represented by x and y are inthe same block after adding the edges in S. It is obvious that R is reexive, symmetric andtransitive. Since R is an equivalence relation, we can partition B into k disjoint subsets Bi,1 � i � k, such that for each i, x; y 2 Bi implies (x,y) 2 R and for any (x,y) 2 R, x and yboth belong to the same Bi.The following claim can easily be veri�ed by using Fact 1 and the above de�nition forthe equivalence relation on the set of b-vertices.Claim 11 Two b-vertices b1 and b2 are in the same equivalence class if and only if thereexists a set of fundamental cycles fC0; � � � ; Cqg such that b1 2 C0, b2 2 Cq and Ci and Ci+1share a common b-vertex, for 0 � i < q. 231

set of pairs of vertices function case2(tree T);f� l is the number of leaves in T ; a1 + 1 is the largest degree of all c-vertices in T . �gvertex u�;root T at an arbitrary vertex;�nd a vertex u� such that there are more than l2 leaves in the subtree rooted at u�,but none of the subtrees rooted at a child of u� have more than l2 leaves;root T at u�;permute children of u� (from left to right) in non-increasing order ofthe number of leaves in subtrees rooted at them;if u� is an b-vertex ! return case2 1(T) j u� is a c-vertex ! return case2 2(T) �end case2;The correctness of this algorithm is shown earlier in the two subcases (Corollary 9 andCorollary 11).5 The Complete Parallel Algorithm and Its ImplementationWe �rst describe the overall parallel algorithm and then an e�cient parallel implementationon an EREW PRAM.5.1 The Complete Parallel AlgorithmWe are ready to present the complete parallel algorithm for the biconnectivity augmentationproblem.graph function par bca(graph G);f� The input graph G has at least 3 vertices; l is the number of leaves in the block graph T .�g set of pairs of vertices L; tree T ; vertex u, v, �, �; set of edges S;T := blk(G);if T is a forest ! perform the procedure speci�ed in Section 4.1 �;if T is not balanced ! perform the procedure speci�ed in Section 4.2 �;do l � 2 !if l > 3 ! if a1 > l4 ! L := case1(T) j a1 � l4 ! L := case2(T) �30

Y2 := the set of leaves in the subtrees rooted at ui; i > p;L := fg; f� L is the set of matched pairs. �gpfor i = 1 .. p� 1 !let u be the leftmost leaf of Tui; let v be the rightmost leaf of Tui+1 ;L := L[f(u; v)g; remove u and v from Y1rofp;number the leaves in Y1 in arbitrary order from 1 to jY1j;number the leaves in Y2 in arbitrary order from 1 to jY2j;k := minfPpi=1 xi,d l2e � a1g � (p � 1);pfor i = 1 .. k !u; v := the ith vertex in Y1 and Y2, respectively;L := L [f(u; v)grofp;return Lend case2 2;Claim 10 Each pair of vertices matched in function case2 2 satis�es the leaf-connectingcondition (De�nition 3), if l > 3.Proof: By Claim 9 and similar arguments given in the proof of Claim 7. 2Corollary 11 Let k be the number of matched pairs found in function case2 2. Let G0 bethe resulting graph obtained from the current graph G by adding a new edge between eachmatched pair of leaves. The value of the lower bound given in Theorem 1 applied to G0 is kless than the value of the same lower bound applied to G and blk(G0) remains balanced. Letl be the number of leaves in blk(G). The number of leaves in blk(G0) is at most 3l4 , if l > 3.Proof: From Claim 10, the number of leaves in blk(G0) is 2k less than the number of leavesin blk(G). Since k � l8 if l > 3 (Corollary 10), the number of leaves in blk(G0) is at most3l4 . From Corollary 10, we add at most d l2e � a1 edges, thus no c-vertex in blk(G0) becomesmassive. By Lemma 3, we know that the value of the lower bound given in Theorem 1applied to G0 is k less than the value of the same lower bound applied to G and blk(G0)remains balanced. 2The complete procedure for case 2 is shown below.29

x
1

xp+1 xr

Y2

Y 1

x
2 p-1

xpx

*u

...u1 u
p u

p+1 ur...
u
p-1u2

... ...
... ...Figure 11: The notations used in case 2.2. The number of leaves in the subtree rooted at ui is xi.We �nd the largest p such that the total number of leaves in the �rst p subtrees rooted at childrenof the root is greater than l8 + (p � 1), but at most l2 . We �rst merge subtrees rooted at ui, 8i,1 � i � p, by connecting the rightmost leaf in the subtree rooted at ui and the leftmost leaf in thesubtree rooted at ui+1, 8i, 1 � i < p. Leaves in the �rst p subtrees rooted at children of u� are inY1. Y2 consists of the rest of leaves in the tree. We then match minf(Ppi=1 xi) � 1, d l2e � a1g �(p� 1) leaves in Y1 with leaves in Y2.b-vertex ui. From part (2) in Fact 1, we know that all b-vertices in cycles Ci, 8i, 1 � i < p,shrink into a single b-vertex in the new block tree. Let this new b-vertex be b�. Thus part(1) of the claim is true. Part (2) of the claim follows from part (4) in Fact 1. 2Note that if we root the updated block tree T � given in Claim 9 at the b-vertex b�, thesituation is similar to that in case 2.1. Thus we can match an additional minf(Ppi=1 xi) �1,d l2e � a1g � (p � 1) pairs of vertices by pairing up unmatched leaves in subtrees Tui, 8i,1 � i � p, and leaves in subtrees in subtrees Tui, 8i, p < i � r. This procedure is givenbelow in case2 2. The notations used are shown in Figure 11.Corollary 10 The number of matched pairs k in case 2.2 satis�es d l2e � a1 � k � l8 , ifl > 3.set of pairs of vertices function case2 2(tree T);vertex u,v; integer p; set of vertices Y1; Y2; set of pairs of vertices L;let ui, 8i, 1 � i � r, be the children of the root u�;let Tui be the subtree rooted at ui; let xi be the number of leaves in Tui ;�nd the largest integer p such that l2 � Ppi=1 xi > l8 + (p � 1);Y1 := the set of leaves in the subtrees rooted at ui, 8i, 1 � i � p;28

Proof: From Claim 7, the number of leaves in blk(G0) is 2k less than the number of leaves inblk(G). Since k � l4 if l > 3 (Corollary 8), the number of leaves in blk(G0) is at most l2 . FromCorollary 8, we add at most d l2e�a1 edges, thus no c-vertex in blk(G0) becomes massive. ByLemma 3, we know that the value of the lower bound given in Theorem 1 applied to G0 is kless than the value of the same lower bound applied to G and blk(G0) remains balanced. 2Subcase 2.2: u� is a c-vertexRecall that the ui, 8i, 1 � i � r, are the children (from left to right) of u� (the root). Letxi be the number of leaves in the subtree rooted at ui. We know that l2 � xi, 8i, 1 � i � r,and xi � xi+1, 8i, 1 � i < r.We partition the set of subtrees rooted at children of the root into two sets such thatwe can match leaves between two sets. We �rst give a claim to show how to partition theset of subtrees.Claim 8 Let q be the largest integer with xq � 2. There exists an integer p such that1 � p � q and l2 �Ppi=1 xi > l8 + (p� 1).Proof: If x1 > l8 , then p = 1. If x1 � l8, we can �nd an integer p such that l2 � Ppi=1 xi > 3l8using an argument similar to the one given in the proof of Claim 6. By de�nition, weknow that xp � 2 because otherwise the root (a c-vertex) is massive. Thus p � l4 . Hence(Ppi=1 xi)� (p� 1) > l8 . 2Let Tui be the subtree rooted at ui. We de�ne the merge operation for the collectionof subtrees Tui, 8i, 1 � i � p, as follows. We �rst connect the rightmost leaf of Tui andthe leftmost leaf of Tui+1 , 8i, 1 � i < p. This can be done by the fact that each Tui, 8i,1 � i � p, has at least 2 leaves.Claim 9 Let T � be the block tree obtained from T by collapsing b-vertices that are in the samefundamental cycle created by the addition of new edges introduced by the merge operation.(1) The merge operation creates only one b-vertex b�.(2) Vertex b� is a child of the root and b� is the root of the subtree that contains the updatedportion of the block tree.Proof: Let Ci, 8i, 1 � i < p, be the fundamental cycle created by connecting the rightmostleaf of Tui and the leftmost leaf of Tui+1. The cycles Ci and Ci+1, 8i, 1 � i < p�1, share the27

L := fg;f� L is the set of matched pairs. �gZ1 := the set of leaves in the subtrees rooted at ui, 8i, 1 � i � p;Z2 := the set of leaves in the subtrees rooted at ui; i > p;number leaves in Z1 in arbitrary order from 1 to jZ1j;number leaves in Z2 in arbitrary order from 1 to jZ2j;k := minf(Ppi=1 xi)� 1,d l2e � a1g;pfor i = 1 .. k !u; v := the ith vertex in Z1 and Z2, respectively;L := L [f(u; v)grofp;return Lend case2 1;Claim 7 Any matched pair found in function case2 1 satis�es the leaf-connecting condition(De�nition 3), if l > 3.Proof: Consider the path P between a pair of matched leaves u and v. Let u be a leaf in asubtree rooted at a ux, 1 � x � p, and let v be a leaf in a subtree rooted at a uy, p < y � r.Since we match minfjZ1j � 1,d l2e � a1g leaves in Z1 with an equal number of leaves in Z2and jZ1j � jZ2j (Corollary 7), there is at least one leaf in a subtree rooted at a ui, 1 � i � p,that is not matched and there is also another leaf in a subtree rooted at a uj, p < j � r,that is not matched if l > 3. The path P contains the root. If the degree of the root isat least 4, u and v satisfy the leaf-connecting condition (De�nition 3). If the degree of theroot is 3, P contains either ui or uj, whose degree is at least 3. Otherwise, P contains bothui and uj whose degrees are at least 3. Thus u and v satisfy the leaf-connecting condition(De�nition 3). 2Corollary 9 Let k be the number of matched pairs found in function case2 1. Let G0 bethe resulting graph obtained from the current graph G by adding a new edge between eachmatched pair of leaves. The value of the lower bound given in Theorem 1 applied to G0 is kless than the value of the same lower bound applied to G and blk(G0) remains balanced. Letl be the number of leaves in blk(G). The number of leaves in blk(G0) is at most l2, if l > 3.26

*u

...

Z

u1
u
p u

p+1 ur

x x x
1 p p+1

xr

Z2

1

...Figure 10: The notations used in case 2.1. The number of leaves in the subtree rooted at ui is xi.We �nd the largest p such that the total number of leaves in the �rst p subtrees rooted at childrenof the root is greater than l4 , but less than or equal to l2 . Leaves in the �rst p subtrees rooted atchildren of b� are in Z1. Z2 consists of the rest of the leaves in the tree.pXi=1 xi � l2 and p+1Xi=1 xi > l2 :Because xi � xi+1, 8i, 1 � i < r, we know that Ppi=1 xi > 12(l2). 2The notations used for this subcase are illustrated in Figure 10.Corollary 7 Ppi=1 xi � l �Ppi=1 xi.We matchminf(Ppi=1 xi)�1,d l2e�a1g leaves in subtrees Tui, 8i, 1 � i � p, with leavesoutside them. From Claim 6 and Corollary 7, we know that the matching can be done.Corollary 8 The number of matched pairs k in case 2.1 satis�es d l2e�a1 � k > l4 , if l > 3.set of pairs of vertices function case2 1(tree T);f� l is the number of leaves in T . �ginteger p; set of pairs of vertices L; set of vertices Z1; Z2; vertex u,v;let ui be the ith (from left to right) child of the root;let xi be the number of leaves in the subtree rooted at ui;�nd the largest integer p such that Ppi=1 xi � l2 , but Pp+1i=1 xi > l2 ;25

4.3.2 Case 2: a1 � l4In this case, we take advantage of the fact that no c-vertex has a large degree. Becausethere is no critical c-vertex, the algorithm can add at least d l2e � a1 edges between leavesthat satisfy the leaf-connecting condition (De�nition 3) without worrying about whether thepath between them passes through a critical c-vertex. This gives a certain degree of freedomfor us to choose the matched pairs. We �rst root the block tree such that no subtree otherthan the one rooted at the root has more than half of the total number of leaves.Given any rooted tree T , we use lv to denote the number of leaves in the subtree rootedat a vertex v. The following lemma shows that we can reroot T at a vertex u� such that nosubtree rooted at a child of u� has more than half of the total number of leaves.Lemma 4 Given a rooted tree T , there exists a vertex u� in T such that lu� > l2, but noneof the subtrees rooted at children of u� has more than l2 leaves.Proof: We permute children of each non-leaf vertex v from left to right in non-increasingorder of the number of leaves in the subtrees rooted at them. Let us consider the leftmostpath P of the tree T . It is obvious that there exists such a vertex u� in P . 2We root the block tree at u� and permute children of u� from left to right in non-increasing order of the number of leaves in subtrees rooted at them. Let the rooted tree beT . Let ui, 8i, 1 � i � r, be the children (from left to right) of u� and xi be the numberof leaves in the subtree rooted at ui. Note that xi � l2 , for each i. There are two subcasesdepending on whether u� is a b-vertex or a c-vertex. We describe the two subcases in detailin the following paragraphs.Subcase 2.1: u� is a b-vertexWe show that we can partition subtrees rooted at children of the root into two sets \evenly"such that we can match leaves between the two partitions. We �rst give a claim to showhow to perform the partition.Claim 6 There exists p, such that 1 � p < r and l2 � Ppi=1 xi > l4.Proof:We know that xi � xi+1, 8i, 1 � i < r, and xi � l2 , 8i, 1 � i � r. Thus 9p; 1 � p < r,such that 24

in each phase. We show that we can �nd at least two vertices with degrees more than 2 ineach path.Phase 1: The path between each pair of matched vertices passes through v1 and v2 whosedegrees are at least 3.Phase 2: The path between each pair of matched vertices passes through v1 and the root b�whose degrees are at least 3.Phase 3 and phase 4: The path P between each pair of matched vertices passes through v1whose degree is at least 3. P also passes through a child u of v1 where the subtree rooted atu has more than one leaf. Thus the degree of u is more than 2.Thus the leaf-connecting condition (De�nition 3) holds for each pair of matched vertices.Because we only add minfa1�1,d l2e�a3g edges during case 1, v3 and thus vi, 8i, suchthat i � 4, does not become critical. From the previous discussion, the path between eachpair of matched vertices passes through v1 and v2, the only two possible critical vertices,during phase 1. We reduce degrees of possible critical vertices by one by adding one newedge between each pair of matched vertices. If we match any pair of vertices after phase 1,the degree of v2 is at most 2 and the degree of v1 is at least 3. Thus v1 is the only possiblecritical vertex. The path between each pair of matched vertices passes through v1 after phase1. We reduce the degree of the possible critical vertex, v1, by one by adding one new edgebetween any pair of matched vertices. Thus the claim is true. 2Corollary 6 Let k be the number of matched pairs found in function case1. Let G0 be theresulting graph obtained from the current graph G by adding a new edge between each matchedpair of leaves. The value of the lower bound given in Theorem 1 applied to G0 is k less thanthe value of the same lower bound applied to G and blk(G0) remains balanced. Let l be thenumber of leaves in blk(G). The number of leaves in blk(G0) is at most 3l4 , if l > 3.Proof: From part (1) in Claim 5, the number of leaves in blk(G0) is 2k less than the numberof leaves in blk(G). Since k � l8 if l > 3 (Claim 4), the number of leaves in blk(G0) is atmost 3l4 if l > 3. From part (2) in Claim 5, the block graph of each intermediate graphremains balanced even if we place a new edge between each matched pair of leaves found infunction case1 sequentially. By Lemma 3, we know that the value of the lower bound givenin Theorem 1 applied to G0 is k less than the value of the same lower bound applied to Gand blk(G0) remains balanced. 223

permute the children of v1 in non-increasing order (from left to right)of the number of leaves in subtrees rooted at them;W1 := the �rst (from left to right) minfa1 � 1,d l2e � a3g leaves of U1;L := phase1(W1; U2); f� L is the set of matched pairs. �gif W1 6= fg ! L := L[phase2(W1; T 0) �;T 01 := the subtree of T1 with the �rst jW1j subtrees rooted at children of v1;Q1 := the set of v1-chain leaves in Tv1;Q2 := fuju is a non-leftmost leaf of Ty, where Ty has more than 1 leafand y is a child of v1 in T 01g;if W1 6= fg ! L := L[phase3(Q1; Q2) �; W1 := W1 \ Q2;if W1 6= fg ! L := L[phase4(W1,T) �;return Lend case1;Claim 4 The number of matched pairs k in case 1 satis�es d l2e � a3 � k � l8, if l > 3.Proof: Let z = minfa1 � 1,d l2e � a3g. If the procedure does not execute phase 3 and 4, wematch z pairs. Because a1 � 1 � l4 and bd l2e � a3c � b l8c for l > 3 (Corollary 1), we knowthat z � l8 , if l > 3. Otherwise in the worst case, we match only a2� 1 pairs during phase 1and phase 2. A pair of vertices matched during phase 3 or 4 might be both members of W1.Thus k � a2 � 1 + dz � a2 + 12 e � z + a2 + 12 :If z = d l2e � a3, then k � d l2 e�12 , which is greater than or equal to l8 if l > 3 and k is aninteger. If z = a1 � 1, then k � da1�12 e. Because a1 > l4 , k � l8 . 2Claim 5(1) Each pair of matched vertices found in function case1 satis�es the leaf-connecting con-dition (De�nition 3).(2) Let us place an edge between each matched pair found in function case1 sequentially andupdate the block graph each time we add an edge. Critical vertices, if any, of the block graphare on the path between the endpoints of each edge placed.Proof: From part (4) in Fact 1, degrees of v1 and v2 decrease only by 1 by adding an edgebetween a pair of vertices matched. Let us consider paths between pairs of vertices matched22

*

1

b

v

...1 2 h-1 h
zz zz

...Figure 9: Illustrating phase 4 of case 1. The remaining leaves in W1 are matched within themselves.set of pairs of vertices function phase4(modi�es set of vertices W1,tree T);set of pairs of vertices L; vertex u; v;L := fg;f� L is the set of matched pairs. �gnumber leaves in W1 in arbitrary order from 1 to jW1j;k := d jW1 j2 e;pfor i = 1 .. k !u := the (2 � i� 1)th leaf in W1; remove u from W1;if 2 � i � jW1j ! v := the (2 � i)th leaf in W1; remove v from W1j 2 � i > jW1j ! v := the rightmost leaf in the subtree rooted at v1�;L := L [f(u; v)grofp;return Lend phase4;We now describe our algorithm for case 1.set of pairs of vertices function case1(tree T);set of pairs of vertices L; set of vertices W1; Q1; Q2;vertex b�; tree T 0;root T at the b-vertex b� which is adjacent to v1 and is on the path from v1 to v2;let v1 be the leftmost child of b� in T ; 21

The total number of leaves in T � is equal to jQ1j + jQ2j + r + y + 1 if jQ1j > 0. Thedegree of v1 in T � is equal to jQ1j+ r+ y+1. Since T � is balanced (for a proof, see Claim 5at the end of this section), v1 is not massive and hencejQ1j+ r + y � djQ1j+ jQ2j+ r + y + 12 e:Thus 2jQ1j+ 2r + 2y � jQ1j+ jQ2j+ r + y + 2) jQ1j+ r + y � 2 � jQ2jWe know that r � 1, otherwise v1 is massive if l > 3. It is also true that y � 1 if jQ1j > 0.Thus jQ1j � jQ2j. 2The procedure for phase 3 is described below.set of pairs of vertices function phase3(modi�es set of vertices Q1; Q2);set of pairs of vertices L; vertex u; v;L := fg;f� L is the set of matched pairs. �gnumber leaves in Q2 from right to left starting from 1;number leaves in Q1 from 1 to jQ1j in arbitrary order;k := jQ1j;pfor i = 1 .. k !u := the ith leaf in Q2; remove u from Q2;v := the ith leaf in Q1; remove v from Q1;L := L [f(u; v)grofp;return Lend phase3;Phase 4: The remaining leaves of W1 that are not matched during phase 3 are matchedwithin themselves. If the number of remaining leaves in W1 is odd, we match one of themwith the rightmost leaf in the subtree rooted at v1. An example of the pairs of leaves matchedin phase 4 is given in Figure 9. 20

2Q

*

1

b

v

...1z z
r-1 z

r
z
h

1Q

W1

...

.....................

y

sFigure 8: Notations used in the proof of a claim used in phase 3 of case 1. The tree shown is T �,the updated block tree obtained by adding edges between pairs of matched leaves found in phase1 and phase 2. Q2 consists of all but the rightmost leaf in each subtree rooted at a child of v1. Q1consists of v1-chain leaves in W1 after phase 2. The number of subtrees rooted at a child of v1 withmore than one leaf is r. the number of v1-chain leaves not in Q1 is y.left to right) of U1. Let the set of v1-chain leaves in W1 be Q1. We denote by Q2 the setof leaves other than the rightmost one of each subtree rooted at a child of v1. (Note thatQ1\Q2 = ;.) In this phase, we match all leaves in Q1 (i.e., all v1-chain leaves inW1) with anequal number of leaves in Q2. Leaves in W1 that are matched in phase 3 (Q1 and W1 \Q2)are removed from W1.Claim 3 shows that we can always �nd enough leaves in Q2 to match all leaves in Q1.Claim 3 jQ2j � jQ1j, if l > 3.Proof: If jQ1j = 0, the claim is true. Let jQ1j > 0. Recall that there is only one unmatchedleaf s left in T 0 after phase 2. Let T � be the block tree obtained from T by adding edgesbetween matched pairs of leaves found in phase 1 and phase 2. We root T � at the b-vertexb� which is adjacent to v1 and is on the path from v1 to s. Let r be the number of subtreesrooted at a child of v1 in T � with more than one leaf. Let y be the number of v1-chain leavesnot in Q1. The notations used in this proof are shown in Figure 8.19

*

1

b

v

...

W1

T’

... ...

... ...Figure 7: Pairs of matched leaves found in phase 2 of case 1 are connected by dotted lines. Recallthat T1 is the subtree of T rooted at v1. T 0 is the subtree of T obtained by deleting T1. W1 consistsof the leftmost leaves in the �rst minfa1 � 1,d l2e � a3g�a2 + 1 subtrees rooted at children of v1.Leaves in W1 are matched with all but the rightmost leaf in T 0.is given in Figure 7.set of pairs of vertices function phase2(modi�es set of vertices W1,tree T 0);set of pairs of vertices L; vertex u,v;L := fg;f� L is the set of matched pairs. �gnumber leaves in W1 from right to left starting from 1;number leaves in T 0 from left to right starting from 1;k := minfthe number of leaves in T 0 minus 1, jW1jg;pfor i = 1 .. k !u := the ith leaf in W1; remove u from W1; v := the ith leaf in T 0;L := L [f(u; v)grofp;return Lend phase2;Phase 3: Recall that T is the original block tree before phase 1, l is the number ofleaves in T , v1 is a c-vertex with the largest degree in T , T1 is the subtree of T rooted at v1,l1 is the number of leaves in T1, T 0 is the tree obtained from T by removing T1 and U1 = fujuis the leftmost leaf of Ty, where y is a child of v1g. Note that there are minfa1� 1,d l2e� a3g�(l� l1� 1) leaves remaining in W1. Leaves in W1 come from the �rst jW1j members (from18

*

1

2

b

v

v

2

l
3a-

...

U

W

a -12

1

2

.........

min a -11
{ },Figure 6: Pairs of matched leaves found in phase 1 of case 1 are connected by dotted lines. W1consists of the leftmost leaves from the �rst minfa1� 1,d l2e�a3g subtrees rooted at children of v1.All of the leftmost leaves in subtrees rooted at children of v2 are in the set U2, and all except therightmost leaf in U2 are matched (if possible).set of pairs of vertices function phase1(modi�es set of vertices W1; U2);set of pairs of vertices L; vertex u; v;L := fg;f� L is the set of matched pairs. �gnumber leaves in W1 from right to left starting from 1;number leaves in U2 from left to right starting from 1;k := minfjU2j � 1,jW1jg;pfor i = 1 .. k !u := the ith leaf in W1; remove u from W1;v := the ith leaf in U2; remove v from U2;L := L [f(u; v)grofp;return Lend phase1;Phase 2: We match all remaining leaves but one in T 0 with the rightmost leaves of W1and remove matched leaves from W1. An example of the pairs of leaves matched in phase 217

b*

v2

1v

...

...Figure 5: A normalized tree. Vertex v1 is a c-vertex with the largest degree. Vertex v2 is a c-vertexwith a degree larger than or equal to any other c-vertices in T � v1. We permute the children of v1in non-increasing order (from left to right) of the number of leaves in subtrees rooted at them.4.3.1 Case 1: a1 > l4We root the block tree at the b-vertex b� which is adjacent to v1 and is on the path from v1to v2. Let v1 be the leftmost child of b�. We permute the children of v1 in non-increasingorder (from left to right) of the number of leaves in subtrees rooted at them. We will callthis procedure tree-normalization and the resulting tree T . Figure 5 illustrates a normalizedtree. Recall that U1 is the set of leftmost leaves in subtrees rooted at children of v1. Weselect the �rst (from left to right) minfa1� 1,d l2e � a3g leaves from U1 and call the set W1.The order of the leaves as speci�ed in the original tree is preserved. There are four phasesfor this case. In phases 1 and 2, leaves in W1 are matched with leaves not in T1. In phase 3,leaves in W1 are matched with leaves in T1 excluding those in W1. In phase 4, the remainingleaves in W1 are matched between themselves. The algorithm executes each phase in turnonce until there is no leaf in W1 left to be matched.We now describe the four phases in detail. After the description, we give the overallparallel algorithm for case 1 and prove that it eliminates a constant fraction of the leaveswhile maintaining the lower bound described in Theorem 1.Phase 1: All leaves but the rightmost one in U2 are matched with the rightmost a2� 1leaves of W1. The matched leaves are removed from W1. An example of the pairs of leavesmatched in phase 1 is given in Figure 6. 16

v
1

U1

b*

the leftmost leaf

...

...Figure 4: Each shadowed rectangle represents the leftmost leaf in a subtree rooted a child of v1.Leaves in U1 consist of leftmost leaves in every subtree rooted a child of v1.subtree obtained from T by deleting the subtree rooted at v1. Let Ui = fuju is the leftmostleaf of Ty, where y is a child of vig. For example, the leaves in U1 are illustrated as shadowedrectangles in Figure 4.Depending on the degree distribution of vertices in the block tree, the parallel algorithmfor stage 3 is divided into 2 cases. In case one, a1 > l4. We have a c-vertex with a highdegree. We pick the �rst minfa1�1, d l2e�a3g leaves in U1 and call themW1. Leaves in W1are matched with the �rst minfjW1j,jU2j � 1g leaves in U2. Unmatched leaves in W1, if any,are matched with all remaining leaves but one in T 0 and �nally properly matched withinthemselves, if necessary. In case two, a1 � l4. There is no c-vertex with a large degree. Weshow that we can �nd a vertex u� with approximately the same number of leaves in eachsubtree rooted at a child of u�. If u� is a b-vertex, a suitable number of leaves betweensubtrees rooted at children of u� are matched. Otherwise, u� is a c-vertex and a suitablenumber of subtrees rooted at children of u� are �rst merged into a single subtree rooted atu�. Then leaves in the merged subtree are matched with leaves outside.The algorithm �rst �nds the matched pairs of leaves in each case. Then we add edgesbetween matched pairs of leaves and update the block tree at the end of each case. Theblock tree and the sequence of cutpoints v1; � � � ; vnc will not be changed during the executionof each case.We now describe the two cases in detail.15

with n vertices is O(n), the claim is true. 2In the rest of this section we describe an e�cient parallel algorithm for stage 3. Recallthat the sequential algorithm adds one edge at a time and keeps adding edges until theblock tree becomes a single vertex. In our parallel algorithm, however, we will �nd severalpairs of leaves such that the path between any such pair of leaves passes through all criticalc-vertices, if any. Thus the degrees of critical vertices in the new block tree decrease by thenumber of edges added to the original block tree. These pairs also satisfy the leaf-connectingcondition (De�nition 3), which guarantees that the number of leaves in the new block treedecreases by twice the number of edges added. The following Lemma 3 tells us that theaddition of several edges in parallel as outlined above is a valid strategy.Lemma 3 Let G be a graph whose block graph is balanced and let G0 be the graph obtainedfrom G by adding a set of k edges A = f(s1; t1), (s2; t2),� � �,(sk; tk)g. For each i, 0 � i � k,let Gi be the graph obtained from G by adding the set of edges f(s1; t1),� � �,(si; ti)g. Let s0iand t0i, 0 � i � k, be the b-vertices in blk(Gi) whose corresponding blocks contain si and ti,respectively. If the path between s0i+1 and t0i+1, 8i, 1 � i < k, in blk(Gi) passes through allcritical vertices in blk(Gi) and s0i+1 and t0i+1 satisfy the leaf-connecting condition in Gi, thenblk(G0) remains balanced and the value of the lower bound given in Theorem 1 applied to G0is k less than the same lower bound applied to G.Proof:We always obtain the same block graph for Gk no matter in what sequence we chooseto add these k edges, since there is an unique block graph for each graph G. Thus blk(G0)= blk(Gk). Since blk(Gi), 8i, 1 � i � k, is balanced, blk(G0) is balanced. We know that thevalue of lower bound given in Theorem 1 applied to Gi is 1 less than the value of the samelower bound applied to Gi�1, 8i, 1 � i � k, where G0 = G. Hence the value of the lowerbound given in Theorem 1 applied to G0 is k less than the value of the same lower boundapplied to G. 2From Theorem 1 and Claim 1, we know that exactly d l2e edges must be added to bicon-nect G if blk(G) is balanced. That is, we have to eliminate l leaves during the computation.Our parallel algorithm runs in stages with at least 14 of the current leaves eliminated inparallel time O(log n) using a linear number of processors during each stage. We call thissubroutine O(log n) times to complete the augmentation.Recall that ai + 1 is equal to the degree of the ith c-vertex vi and ai � ai+1. T 0 is the14

steps 1 and 2 or 3 and 4, respectively.Case 2: If blk(G) has only one critical vertex v, algorithm seq bca �nds it in step 1 or step 3.Because blk(G) is balanced and l > 3, there must exist another vertex w with degree morethan 2. Otherwise v is massive. Algorithm seq bca �nd w in one of the steps 1, 2, 4 or 5.Case 3: The block tree blk(G) has no critical vertex. Then either there is only one vertex(which must be a b-vertex) with degree more than 3 or there are two vertices with degreesmore than 2. If there is only one vertex v with degree more than 3, algorithm seq bca �nds vin step 1. Suppose there are two vertices v and w with degrees more than 2 in the block tree.If v and w are both c-vertices, algorithm seq bca �nds them in steps 3 and 4, respectively.If v and w are both b-vertices, algorithm seq bca �nds them in steps 1 and 2, respectively.If one of v and w is a c-vertex and the other one is a b-vertex, algorithm seq bca �nds thec-vertex in step 3 and the b-vertex in step 5.In all three cases, we can �nd two vertices of degree more than 2 or a b-vertex of degreemore than 3. Thus by Lemma 2, the number of leaves in the new block tree reduces by two.Because v and w are the possible critical vertices, we reduce the value of d by 1. Thus theblock tree remains balanced. Hence we can achieve the lower bound in Eswaran & Tarjan[4] by the algorithm.For the case of l = 3, we can reduce blk(G) into a new block tree with two leaves bypicking any pair of leaves in blk(G) and connecting them. We know that we can reduce ablock tree of 2 leaves into a single vertex by connecting the two leaves. Thus the claim istrue. 2Claim 2 Algorithm seq bca runs in O(n +m) time.Proof: The block tree can be built in O(n +m) time. The total number of vertices in theblock tree is O(n). A linear time bucket sort routine is used to sort degrees of c-verticesand b-vertices. The data structure in Rosenthal & Goldner [18] can be used to keep trackof current degrees of vertices in blk(G). Vertices in blk(G) with the same degree are kept ina linked list. An array is used to store the �rst element of each linked list. A vertex of thelargest degree can be found in constant time and the position, in the array of linked list, of avertex in the path found in step 6 can also be updated in constant time. To implement step6, algorithms in Harel & Tarjan [10] and Schieber & Vishkin [19] are used to �nd the pathP between two vertices v and w in O(jP j) time. By Fact 1, the number of times a vertex isvisited is no more than its degree. Since the summation of degrees of all vertices in a tree13

if a1 = 1 ! if l = 2 ! let v be any c-vertex in T ; w := vj l > 2 !1. let v be a b-vertex with degree greater than 2;f�Such a vertexmust exist if l > 2 and a1 = 1. �gw := v;f� This is the default value for w. �gif 9 a b-vertex in T � v with degree greater than 2 !2. let w be a b-vertex in T � v with degree greater than 2��j a1 > 1 !3. let v be a c-vertex with the largest degree in T ;if the largest degree for c-vertices in T � v is greater than 2 !4. let w be a c-vertex in T � v with the largest degreej the largest degree for c-vertices in T � v is less than 3or there is no c-vertex in T � v !w := v;f� This is the default value for w. �gif 9 a b-vertex in T with degree greater than 2 !5. let w be a b-vertex in T with degree greater than 2���;6. �nd two leaves y and z such that the path between them passes through v and w;�nd a non-cutpoint vertex � in the corresponding block of G represented by y;�nd a non-cutpoint vertex � in the corresponding block of G represented by z;add an edge between � and �; update the block graph Tod;return Gend seq bca;Claim 1 If blk(G) is balanced, we can biconnect G by adding d l2e edges using algorithmseq bca.Proof: We �rst discuss the case when blk(G) has more than 3 leaves. In this case, a criticalvertex must have degree more than 2.Case 1: If blk(G) has two critical vertices v and w, then algorithm seq bca �nds them in12

A

B

C

D

E

F

G

H

I J

K

L

M

N

O

A

E

F

G

H

I J

K

L

M

X

J

K

L

M

A

D

N

O

X

Figure 3: A counter example for the linear time sequential algorithm given by Rosenthal & Goldner.The left tree is blk(G) rooted at B. Vertex A is the c-vertex with the largest degree. The middletree is the new block tree after connecting two non-cutpoint vertices of G in the correspondingblocks represented by C and D. The number of leaves decreases by 1. The right tree is the newblock tree after connecting two non-cutpoint vertices of G in the corresponding blocks representedby C and E. The number of leaves decreases by 2. The pair C and D could be chosen by thealgorithm given by Rosenthal & Goldner while the pair C and E can be chosen to reduce thenumber of leaves by 2.contains both of them. If blk(G) contains less than 2 critical vertices, P contains b� and ac-vertex with degree d (recall that d is the maximum degree of any c-vertex). It is possiblethat in the case that blk(G) is balanced with more than three leaves and less than two criticalvertices, P contains only one vertex of degree more than 2. If we add an edge between thetwo end points of P , it is possible that the new block tree has only one less leaf. An exampleof this is shown in Figure 3. Thus the lower bound cannot be achieved by this method.We now give a corrected version of stage 3 which runs in linear time. Our methodis based on the proof of the tight bound given in Eswaran & Tarjan [4], but we add anadditional step to handle the case d = 2 (that is, a1 = 1); the analysis of this case is omittedin [4]. We present our revised version of stage 3 below.graph function seq bca(graph G);f� G has at least 3 vertices and blk(G) is balanced; l is the number of degree-1 vertices inblk(G); a1 + 1 is the largest degree of all c-vertices in blk(G). �gtree T ; vertex v;w; y; z; �; �;let T be blk(G) rooted at an arbitrary b-vertex;do l � 2 ! 11

each new edge (v,w). We create edges from b to cv and b to cw. Let bv and bw be the twob-vertices in the block graph whose corresponding blocks contain v and w, respectively. Wecreate edges from cv to bv and from cw to bw.4.2 Stage 2Theorem 3 Rosenthal & Goldner [18]Let G be connected and let v� be a massive vertex in G. Let � = d � 1 � d l2e. Then we can�nd at least 2� + 2 v�-chains. Let Q be the set of v-chain leaves. By adding 2k; k � � edgesto connect 2k + 1 vertices of Q, we can reduce both the degree of the massive vertex and thenumber of leaves in the block tree by k.Corollary 5 Rosenthal & Goldner [18]Let G be connected and let v� be a massive vertex in G. Let � = d � 1 � d l2e and let Q bethe set of v�-chain leaves. By adding 2� edges to connect 2�+1 vertices of Q, we can obtaina balanced block tree.In stage 2, v�-chain leaves can be found by �rst �nding the number of leaves in eachsubtree rooted at a child of v�. A leaf is in a v�-chain if and only if it is in a one-leaf subtreerooted at a child of v�. Let Q be the set of vertices (excluding v�) on cycles created byadding edges. The new block graph can be updated by merging vertices in Q into a singleb-vertex b. Vertices b and v� are connected by a new edge. These procedures can be doneoptimally in time O(log n) on an EREW PRAM.4.3 Stage 3In this stage, we have to deal with a graph G where blk(G) is balanced. The idea is to addan edge between two leaves y and z under the conditions that the path P between y andz passes through all critical vertices and the new block tree has two less leaves if blk(G)has more than 3 leaves. Thus the degree of any critical vertex decreases by 1 and the treeremains balanced.In Rosenthal & Goldner [18], blk(G) is rooted at a b-vertex b�. A path P is found thatcontains two leaves y and z such that if blk(G) contains two critical vertices v and w, P10

hence cannot be a leaf. Since leaves u1 and u2 are eliminated in blk(G0) and no new leaf iscreated, l0 = l � 2.Case 2: Suppose that part (2) of the leaf-connecting condition (De�nition 3) holds. Let wbe a b-vertex of degree more than 3. We can �nd at least two c-vertices, y0 and z0, connectedto w, but not in P . The same reasoning used in case 1 can be followed to prove this case. 24 The AlgorithmThe original linear time sequential algorithm in Rosenthal & Goldner [18] consists of threestages. However, we have discovered an error in stage 3 of the algorithm in [18]. Wepresent a corrected version of that stage of the algorithm in [18]. Our parallel algorithmfollows the structure of the corrected sequential algorithm. The �rst two stages are easyto parallelize and we describe them in Section 4.1 and Section 4.2. However, stage 3 ishighly sequential. Most of our discussion is on a corrected algorithm for stage 3 and itsparallelization (Section 4.3).We �rst state a lower bound on the number of edges needed to augment a graph toreach biconnectivity.Theorem 1 Eswaran & Tarjan [4]: [Lower bound on the augmentation number]Let G be an undirected graph with h connected components and let q be the number of isolatedvertices in blk(G). Then at least maxfd+ h � 2,d l2e + qg edges are needed to biconnect G,if q + l > 1.4.1 Stage 1Theorem 2 Rosenthal & Goldner [18]Let G be an undirected graph with h connected components. We can connect G by adding h�1edges, which we may choose to be incident on non-cutpoint vertices in blocks correspondingto leaves or isolated vertices in blk(G).Given blk(G), stage 1 is easy to parallelize in time O(log n) optimally on an EREWPRAM by using the Euler tour technique described in Tarjan & Vishkin [23]. The blockgraph can be updated by creating a new b-vertex b and two new c-vertices cv and cw for9

1

2

3

4 5

6

7 8

9

10

12

11

13

14 1

2

3

4 5

6

7 8

9

10

12

11

13

14

3 6

5

9

12

A

B

C D

E

F

A

B

C
D

FE

F

A

3

12

A
F

X

X

The graph G.

G’The graph obtained from

by adding an edge between vertices 8 and 10.

G

blk(G) blk(G’)

15

H

15
H

H

6

HFigure 2: An example of obtaining blk(G0) from blk(G). Vertices of G and G0 circled with a dottedline are in the same block. For example, vertices 1, 2 and 3 of G are in block A. A vertex thatappears in more than one block is a cutpoint. For example, vertex 3 appears in block A and B,thus it is a cutpoint. Vertices B, C, D and E in blk(G) are in a cycle if we add an edge between Cand D. The cycle contracts into a new b-vertex X in blk(G0). The degree of a c-vertex in the cycledecreases by 1 in blk(G0), if the original degree is more than two. A degree-2 c-vertex in the cycleis eliminated in blk(G0).
8

Before introducing the next lemma, we have to study properties for updating the blocktree. The following fact for obtaining blk(G0) from blk(G) is given in Rosenthal & Goldner[18].Fact 1 Given a graph G and its block tree blk(G), adding an edge between two leaves u andv of blk(G) creates a cycle C. Let G0 be the graph obtained by adding an edge between u0and v0 in G where u0 and v0 are non-cutpoint vertices in the blocks represented by u and vrespectively. The following relations hold between blk(G) and blk(G0).(1) Vertices and edges of blk(G) that are not in the cycle C remain the same in blk(G0).(2) All b-vertices in blk(G) that are in the cycle C contract to a single b-vertex b0 in blk(G0).(3) Any c-vertex in C with degree equal to 2 is eliminated.(4) A c-vertex x in C with degree greater than 2 remains in blk(G0) with edges incident onvertices not in the cycle. The vertex x also attaches to the b-vertex b0 in blk(G0).An example of forming blk(G0) from blk(G) is illustrated in Figure 2.Lemma 2 Let u1 and u2 be two leaves of blk(G) satisfying the leaf-connecting condition(De�nition 3). Let � and � be non-cutpoint vertices in blocks of G represented by u1 and u2respectively. Let G0 be the graph obtained from G by adding an edge between � and � and letP represent the path between u1 and u2 in blk(G). The following three conditions are true.(1) l0 = l � 2.(2) If v is a cutpoint in P with degree greater than 2 in blk(G), then the degree of v decreasesby 1 in blk(G0).(3) If v is a cutpoint in P with degree equal to 2, then v is eliminated in blk(G0).Proof: Parts (2) and (3) of the lemma follow from parts (3) and (4) of Fact 1. We now provepart (1) of the lemma.From part (2) in Fact 1, we know that every vertex of G that is in a componentrepresented by a b-vertex in P is in a biconnected component Q of G0. Let Q be representedby a b-vertex b in blk(G0).Case 1: Suppose that part (1) of the leaf-connecting condition (De�nition 3) holds. Letw and y be two vertices of blk(G) having degree more than 2 in blk(G) and let blk(G0) berooted at b. In blk(G), let w0 be a vertex adjacent to w and y0 be a vertex adjacent to y,with neither w0 nor y0 in P . The vertex b has at least two children, w0 and y0, in blk(G0) and7

Ti. T 0 is the subtree obtained from T by removing T1. Let lx be the number of leaves in T 0.Case 1: If v3 is in T1, then l1 � a1�1+a3 and lx � a2. This implies l = l1+lx � a1+a2+a3�1.Case 2: If v3 is in T 0, but not in T2, then l1 � a1 and lx � a2+a3. Thus l = l1+lx � a1+a2+a3.Case 3: If v3 is in T2, then l1 � a1 and lx � l2 � a2 � 1 + a3. This implies l = l1 + lx �a1 + a2 + a3 � 1.Suppose that blk(G) is a forest and v1, v2 and v3 are in di�erent trees T1, T2 and T3,respectively. If vi is the only c-vertex in Ti, then ai = li � 1. Otherwise, ai � li. Thusa1 + a2 + a3 � l1 + l2 + l3 � l. It is easy to prove the lemma for the case that blk(G) is aforest and any two of v1, v2 and v3 are in the same tree. 2Corollary 1 If blk(G) has more than two c-vertices, then a3 � l+13 .Proof: From the de�nition, we know that a1 � a2 � a3. If a3 > l+13 , then a1 � a2 � a3 > l+13which implies a1 + a2 + a3 > l+13 � 3 = l + 1. This is a contradiction to Lemma 1. 2Corollary 2 There can be at most one massive vertex in blk(G).Proof: The corollary is obviously true if there are less than two c-vertices in blk(G). If blk(G)has only two c-vertices v1 and v2, there is a b-vertex b� in blk(G) that connects to both v1and v2. We root blk(G) at b�. Since there are only two c-vertices, the children of v1 andv2 are all leaves. We know that a1 and a2 are equal to the number of children of v1 and v2respectively, thus a1 + a2 = l. Suppose v1 is massive, then a1 > l2 . Thus a2 < l2. If blk(G)has more than two c-vertices and v1 and v2 are massive, then a1 + a2 > l. Since a3 � 1, wehave derived a contradiction to Lemma 1. 2Corollary 3 If there is a massive vertex in blk(G), then there is no critical vertex in blk(G).Proof: The proof of Corollary 2 also applies here. 2Corollary 4 There can be at most two critical vertices in blk(G), if l > 2.Proof: The corollary is obviously true if blk(G) has only one or two c-vertices. Assumethat blk(G) has more than two c-vertices. From corollary 1, we know that a3 � l+13 . Sinced l2e � l2 > l+13 ; if l > 2, we know that v3 cannot be critical if l > 2. 26

an edge
a path

and a leaf

a -vertexb

a -vertexc

collections of subtrees

and the root of the tree

a -vertexb Figure 1: Notations for �gures.De�nition 3 [The leaf-connecting condition]Two leaves u1 and u2 of blk(G) satisfy the leaf-connecting condition if and only if u1 and u2are in the same tree of blk(G) and the path P from u1 to u2 in blk(G) contains either(1) two vertices of degree more than 2,or (2) one b-vertex of degree more than 3.De�nition 4 Let v be a c-vertex of blk(G). We call those components of blk(G)� v whichcontain only one vertex of degree 1 in blk(G) v-chains [18]. A degree-1 vertex of blk(G) in av-chain is called a v-chain leaf.3 Main LemmasIn this section, we present results that will be crucial in the development of our e�cientparallel algorithm.Lemma 1 If blk(G) has more than two c-vertices, then a1 + a2 + a3 � 1 � l.Proof: Note that v1 is a c-vertex with the largest degree. Vertex v2 is a c-vertex with thelargest degree among all c-vertices other than v1. Vertex v3 is a c-vertex with the largestdegree among all c-vertices other than v1 and v2. Recall that if blk(G) is a tree, we rootblk(G) at the b-vertex b which connects to v1 and is on the path from v1 to v2. Let the rootedtree be T . Recall that Ti is the subtree of T rooted at vi and li is the number of leaves in5

component of G if Vi contains more than two vertices. Note that Ei = ;, 8i, k < i � k + q,since Vi contains an isolated vertex. The subgraph Gi = (Vi; Ei), 8i, 1 � i � k + q, iscalled a block of G. Given an undirected graph G, we can de�ne its block graph blk(G) asfollows. Each block and each cutpoint of G is represented by a vertex of blk(G). The verticesof blk(G) which represent blocks are called b-vertices and those representing cutpoints arecalled c-vertices. Two vertices u and v of blk(G) are adjacent if and only if u is a c-vertex,v is a b-vertex and the corresponding cutpoint of u is contained in the corresponding blockof v or vice versa. It is well known that blk(G) is a forest and if G is connected, blk(G) is atree. If blk(G) is a tree, it is also called a block tree.Let nc be the number of c-vertices in blk(G). A vertex vi represents a c-vertex ofblk(G) and di is the degree of vi. We assume that di � di+1, 8i, 1 � i < nc throughout thediscussion. For convenience, we de�ne ai = di � 1. If blk(G) is a tree, let T be the rootedtree obtained from blk(G) by rooting blk(G) at the b-vertex which connects to v1 and is onthe path from v1 to v2. We use Ti to represent the subtree of T rooted at vi for each i,1 � i � nc, and we use T 0 to represent the subtree of T after deleting T1. Let li be thenumber of leaves of Ti, 8i, 1 � i � nc. We also use Tv to represent the subtree rooted at avertex v of blk(G). The subgraph of T induced by deleting the vertex v is denoted by T � v.In a forest, a vertex with degree 1 is a leaf. Let l be the number of leaves in blk(G). Fora graph G0, we use l0 to denote the number of degree-1 vertices in blk(G0). Let d(v) be thedegree of the vertex v in blk(G) and let d be the largest degree of all c-vertices in blk(G).In �gures, we use a rectangle to represent a b-vertex and a circle to represent a c-vertex.A line denotes an edge. A path in the block graph is represented by a thick dashed line whilea polygon represents a collection of subtrees. These notations are shown in Figure 1.We also need the following de�nitions. Part of De�nition 4 is from [18].De�nition 1 A vertex v of blk(G) is called massive if and only if v is a c-vertex withd(v)�1 > d l2e. A vertex v of blk(G) is critical if and only if v is a c-vertex with d(v)�1 = d l2e.The graph blk(G) is critical if and only if there exists a critical c-vertex in blk(G).De�nition 2 A block graph blk(G) is balanced if and only if G is connected and without anymassive c-vertex. (Note that blk(G) could have a critical c-vertex.) A graph G is balanced ifand only if blk(G) is balanced. 4

sequential algorithm of Rosenthal & Goldner [18]. We �rst give a corrected linear time se-quential algorithm for the problem. Our e�cient parallel algorithm is based on this correctedsequential algorithm. However we have to utilize several insights into the problem in orderto derive the parallel algorithm. The algorithm runs in O(log2 n) time using a linear numberof processors on an EREW PRAM, where n is the number of vertices in the input graph.(For more on PRAM models and PRAM algorithms see Karp & Ramachandran [14].)The algorithmic notation used is from Tarjan [22] and Ramachandran [17]. We enclosecomments between `f�' and `�g'. We use the following pfor statement for executing a loopin parallel. pfor iterator ! statement list rofpThe e�ect of this statement is to perform the statement list in parallel for each value of theiterator. We use the following form for an if statement.if condition1 ! statement list1j condition2 ! statement list2...j conditionn ! statement listn�The e�ect of this statement is to perform the �rst statement list whose corresponding con-dition is true. If there is no condition is true, none of the statement lists is evaluated.Parameters are called by value unless they are declared with the keywordmodi�es in whichcase they are called by value and result.2 De�nitionsLet G = (V;E) be an undirected graph with vertex set V and edge set E. Let fEij1 � i � kgbe a partition of E into a set of k disjoint subsets such that two edges e1 and e2 are in thesame partition if and only if there is a simple cycle in G containing e1 and e2 or e1 is equalto e2. A vertex is called an isolated vertex if it is not adjacent to any other vertex. Let qbe the number of isolated vertices in G. Let fVij1 � i � k + qg be a collection of sets ofvertices, where Vi is the set of vertices in Ei for each i, 1 � i � k, and Vi+k contains only theith isolated vertex for each i, 1 � i � q. A vertex v is a cutpoint of a graph G if v appearsin more than one vertex set Vi. G is biconnected if it has at least 3 vertices and containsno cutpoint or isolated vertex. The subgraph Gi = (Vi; Ei), 8i, 1 � i � k, is a biconnected3

1 IntroductionThe problem of augmenting a graph to reach a certain connectivity requirement by addingedges has important applications in network reliability [6, 12, 21] and fault-tolerant com-puting. One version of the augmentation problem is to augment the input graph to reach agiven connectivity requirement by adding a smallest set of edges. We refer to this problemas the smallest augmentation problem.The following results are known for solving the smallest augmentation problem on anundirected graph to satisfy a vertex connectivity requirement. Eswaran & Tarjan [4] gavea lower bound on the smallest number of edges for biconnectivity augmentation and provedthat the lower bound can be achieved. Rosenthal & Goldner [18] developed a linear timesequential algorithm for �nding a smallest augmentation to biconnect a graph. Watanabe& Nakamura [26, 28] gave an O(n(n+m)2) time sequential algorithm for �nding a smallestaugmentation to triconnect a graph with n vertices and m edges. Hsu & Ramachandran [11]developed a linear time algorithm for this problem. There is no polynomial time algorithmknown for �nding a smallest augmentation to k-vertex-connect a general graph, for k > 3.There is also no e�cient parallel algorithm known to �nd a smallest augmentation to k-vertex-connect a graph for k � 2.For the problem of �nding a smallest augmentation for a graph to reach a given edgeconnectivity property, several polynomial time algorithms on undirected graphs, directedgraphs and mixed graphs are known. These results can be found in Cai & Sun [1], Eswaran &Tarjan [4], Frank [5], Gus�eld [8], Kajitani & Ueno [13], Naor, Gus�eld & Martel [15], Ueno,Kajitani & Wada [24], Watanabe [25] and Watanabe & Nakamura [27]. E�cient parallelalgorithms for �nding smallest augmentations for 2-edge connectivity, strong connectivityand making a mixed graph strongly orientable can be found in Soroker [20].Another version of the problem is to augment a graph, with a weight assigned to eachedge, to meet a connectivity requirement using a set of edges with a minimum total cost.Several related problems have been proved to be NP-complete. These results can be foundin Eswaran & Tarjan [4], Frank [5], Frederickson & Ja'Ja' [7], Watanabe & Nakamura [26]and Watanabe, Narita & Nakamura [29].In this paper, we present an e�cient parallel algorithm for �nding a smallest augmen-tation to biconnect an undirected graph. In addition, we have discovered an error in the2

On Finding a Smallest Augmentation to Biconnect a Graph�Tsan-sheng Hsu and Vijaya RamachandranDepartment of Computer SciencesUniversity of Texas at AustinAustin, Texas 78712March 31, 1992Abstract. We consider the problem of �nding a minimum number of edges whoseaddition biconnects an undirected graph. This problem has been studied by several otherresearchers, two of whom presented a linear time algorithm for this problem in an earliervolume of this journal. However that algorithm contains an error which we expose in thispaper. We present a corrected linear time algorithm for this problem as well as a new e�cientparallel algorithm. The parallel algorithm runs in O(log2 n) time using a linear number ofprocessors on an EREW PRAM, where n is the number of vertices in the input graph.
Key words. algorithm, linear time, graph augmentation, biconnected graph, parallelcomputation, poly-log time, EREW PRAMAMS(MOS) subject classi�cations. 68Q20, 68R10, 94C15, 05C40�This work was supported in part by NSF Grant CCR-89-10707. A preliminary version of this paper appears inthe Proceedings of the Second Annual International Symposium on Algorithms, Springer-Verlag LNCS #557, 1991,pp. 326{335. 1

