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Real-time decision systems (RTDS’s) are computer-controlled systems that
must react to events in the external environment by performing decision-
intensive computation sufficiently fast to meet specified timing and safety con-
straints. This dissertation investigates a class of these systems where decisions
are computed by an equational rule-based program. Two fundamental prob-
lems are identified: (1) the analysis of rule-based RTDS’s in order to verify that
the specified timing and safety properties are satisfied prior to their execution,
and (2) the synthesis of rule-based RTDS’s that are guaranteed to meet the
specified timing constraints in addition to the safety constraints. Two comple-
mentary approaches have been developed to solve the first problem: (1) model
checking of the global state transition graph representing the program, and (2)
static analysis of the program. These approaches are combined to form the
cornerstone of the General Iterative Analysis Algorithm. The applicability of
this analysis technique is further enhanced by the development of a facility with
which the rule-based programmer can specify domain-specific knowledge in the
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language Estella in order to validate the performance of an even wider range of
programs. Two approaches also have been identified to tackle the second prob-
lem: (1) transforming the given equational rule-based program by adding, delet-
ing, and/or modifying rules, and (2) optimizing the scheduler to select the rules
to fire such that the variables in the program will always converge to stable
values within the response time constraint. The complexity and size of real-
time decision systems often necessitates the use of computer-aided design tools.
This dissertation describes a suite of analysis tools based on our theoretical
framework which have been implemented to ensure that equational rule-based
programs written in the language EQL can indeed meet their specified timing
constraints.
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Chapter 1

Introduction

Rule-Based Expert Systems are increasingly used to monitor and con-
trol the operations of complex real-time systems which require intensive
knowledge-decision processing and human expertise. These embedded Al sys-
tems include airplane avionics (e.g., the Pilot Associate-driven aircraft), smart
robots (e.g., the Autonomous Land Vehicle), space vehicles (e.g., the NASA
Space Shuttle and the planned NASA Space Station), and many safety-critical
industrial applications. In addition to functional correctness requirements, these
systems often must satisfy stringent performance requirements. These rule-
based systems must respond to events in the rapidly changing external environ-
ment so that the results of the expert system’s computation in each monitor-
respond cycle are valid in order to safely operate the real-time system. Based
on input sensor values, the computer must make decisions within bounded time
to respond to the external environment; the result of missing a deadline may be

loss of life and property.

The added complexity of timing requirements makes the design and
maintenance of these systems particularly difficult. There have been few
attempts to formalize the question of whether rule-based systems can deliver
adequate performance in bounded time. In this dissertation, we develop a for-
mal framework for answering this important question. Even less explored is the
problem of transforming a rule-based program that satisfies the integrity con-
straints but is not fast enough to meet the timing constraints into one which
meets both the integrity and timing constraints. It is our goal to address both the
theoretical foundation as well as the experimental aspects of the solutions to



these two problems. We shall therefore describe a suite of computer-aided
~software engineering tools, based on our theoretical framework, which have
been designed and implemented to ensure that programs for computing complex
decisions in real time can indeed meet their specified timing constraints.

The class of real-time programs that are investigated herein are called
rule-based EQL (Equational Logic) programs. An EQL program has a set of
rules for updating variables which denote the state of the physical system under
control. The firing of a rule computes a new value for one or more state vari-
ables to reflect changes in the external environment as detected by sensors. Sen-
sor readings are sampled periodically. Every time sensor readings are taken, the
state variables are recomputed iteratively by a number of rule firings until no
further change in the variables can result from the firing of a rule. The equa-
tional rule-based program is then said to have reached a fixed point. Intuitively,
rules in an EQL program are used to express the constraints on a system and
also the goals of the controller. If a fixed point is reached, then the state vari-
ables have settled down to a set of values that are consistent with the constraints
and goals as expressed by the rules.

EQL differs from the popular expert system languages such as OPS5 in
some important ways. These differences reflect the goal of our research, which
is not to invent yet another expert system shell but to investigate whether and
how performance objectives can be met when rule-based programs are used to
perform safety-critical functions in real time. Whereas the interpretation of a
language like OPSS5 is defined by the recognize-act cycle ([Forgy 81]), the basic
interpretation cycle of EQL is defined by fixed point convergencef. It is our
belief that the time it takes to converge to a fixed point is a more pertinent meas-
ure of the response time of a rule-based program than the length of the

% The fixed point semantics of EQL follows closely that of the language Unity ([Chandy &
Misra 88]). Both Unity and the work described herein are part of a coordinated research effort to
explore the foundation of programming concurrent systems at the University of Texas at Austin.



recognize-act cycle. More importantly, we do not require the firing of rules that

3 Frad in naral

lead to a fixed point to be implemented sequentially; rules can be fired in paral
lel if they do not interfere with one another. The definition of response time in
terms of fixed point convergence is architecture independent and is therefore

more robust.

Our work complements the Variable Precision Logic (VPL) approach
of Michalski and Winston ([Michalski & Winston 86]) and Haddawy ([Had-
dawy 86], [Haddawy 87]). VPL was introduced as a tool to vary the certainty of
an inference to conform to a timing constraint. An inference system for VPL
can be regarded as a flexible algorithm which can trade off the certainty of an
inference for the time required to achieve it. Our emphasis is, however, on
ensuring before run time that the desired quality of the decisions made by a
rule-based program can indeed be achieved within the time budget available to
it. We note that a fixed point in EQL may correspond to an acceptable approxi-
mation of the system state and not necessarily the exact state. Our problem for-
mulation is sufficiently general to allow for variable precision algorithms.

In view of the safety-critical functions that computers are beginning to
be relied upon to perform in real time, it is incumbent upon us to ensure that
some acceptable performance level can be provided by a rule-based program,
subject to reasonable assumptions about the quality of the input. Research in
real-time rule-based systems has started attracting attention in the last few years,
e.g., [Benda 87], [Helly 84], [Koch et al 86], [O’Reilly & Cromarty 85], [Laffey
et al 88]. However, there have been few attempts to formalize the question of
whether rule-based systems can deliver adequate performance in bounded time
and to develop formal methods for verifying performance guarantees.

1.1. Major Contributions

The major contributions of this dissertation include:



1. The formalization of real-time rule-based systems based on the following:

o The definition of a general model of embedded real-time decision sys-

tems.

o The development of a simple rule-based language called Equational
Logic (EQL).

 The notion of the space space of an EQL program.

2. The formalization of the analysis problem and the synthesis problem of

real-time rule-based systems by:
o The definition of their theoretical formulations.

o The analyses of their complexities.

. The development of an efficient and powerful algorithm called the General
Analysis Algorithm ([Browne, Cheng & Mok 88]) for solving a large class
of analysis problems. This new algorithm incorporates the following

features:

o The identification of special forms of rules based on a static analysis of
the EQL program.

« The ability to use different methods (state-based or non-state-based) for
analyzing different parts of the EQL program.

A main analysis strategy based on structural induction.

o The capability of accepting user application-specific knowledge in order
to speed up the analysis process.

. The development of the specification language Estella ([Cheng, Mok &
Browne 90]) for capturing behavioral constraint assertions of rule-based pro-
grams. The applicability of the analysis technique is further enhanced by
this facility, with which the rule-based programmer can specify application-
specific knowledge as input to the analysis algorithm in order to validate the



performance of an even wider range of programs.

5. The novel approach of applying the method of Lagrange Multipliers for
solving the time-budgeting problem.

6. The implementation of a suite of computer-aided design (CAD) tools for the
analysis and synthesis of real-time rule-based EQL systems in order to
guarantee bounded response time. To show that our suite of CAD tools are
practical enough to verify realistic real-time decision systems, we have used
them to analyze several rule-based systems for real-time monitoring and
control applications ([Cheng & Wang 90]). These rule-based systems
include:

« The Cryogenic Hydrogen Pressure Malfunction Procedure in the Pres-
sure Control System of the Space Shuttle Vehicle ([Helly g84D.

 The Integrated Status Assessment Expert System (ISA) ([Marsh 88]).
o The Fuel Cell Monitoring Expert System (FCE) ([Marsh 88]).

A real-time rule-based production system called MRL ([Wang, Mok &
Cheng 90]) also has been developed based on the framework proposed in this
dissertation.

1.2. Dissertation Qutline

The dissertation is organized as follows:

 Chapter 2 formulates the model of a real-time decision system, and states
the problem and the research goals.

o Chapter 3 describes two examples of our equational rule-based programs.

+ Chapter 4 introduces the notion of the state space of an equational rule-
based program.



Chapter 5 studies the theoretical formulation and the complexity of the

analysis problem, and presents the general analysis strategy and the tech-
nique of identifying special forms of rules with bounded execution time for
solving the analysis problem.

Chapter 6 characterizes classes of EQL programs that are analyzable by the
general analysis algorithm with recognition of special forms of rules.

Chapter 7 describes how we increase the applicability of our analysis tech-
nique by introducing a facility with which the rule-based programmer can
specify application-specific knowledge in the language Estella in order to
validate the performance of an even wider range of programs.

Chapter 8 presents the theoretical formulation and the complexity of the
synthesis problem, and reports on concrete solution strategies for solving the
synthesis problem. It shows how the analysis information derived from the
general analysis algorithm can be utilized to obtain an optimal schedule for
executing rules in EQL rule-based programs.

Chapter 9 demonstrates the use of a set of computer-aided design (CAD)
tools that have been implemented to perform timing analysis and synthesis
of real-time rule-based programs.

Chapter 10 explores possible avenues for future research.

Chapter 11 is the conclusion of the dissertation.



Chapter 2

The Problem and the Research Goals

The problem is best formulated by first formalizing a model of a real-
time decision system. A real-time decision system interacts with the external
environment by taking sensor readings and computing control decisions based
on sensor readings and stored state information. We can characterize a real-

time decision system by the following model with 7 components:

(1) a sensor vector x € X,

(2) a decision vectory € ¥,

(3) a system state vector § € S,

(4) a set of environmental constraints A,
(5) adecisionmap D ,D:S xX —§ XY,
(6) a set of timing constraints 7, and

(7) a set of integrity constraints /.

In this model, X is the space of sensor input values, Y is the space of
decision values, and S is the space of system state values. (We shall use x(t) o
denote the value of the sensor input X at time t, €tc.)

The environmental constraints A are relations over X, Y, § and are
assertions about the effect of a control decision on the external world which in
turn affect future sensor input values. Environmental constraints are usually
imposed by the physical environment in which the real-time decision system

functions.

The decision map D relates ¥ (¢+1), 5(¢+1) to x(2), 5 (¢) i.e., given the



current system state and sensor input, D determines the next decisions and sys-

tem state values. For our purpose, decision maps are implemented by equa-
tional rule-based programs.

The decisions specified by D must conform to a set of integrity con-
straints /. Integrity constraints are relations over X, §, Y and are assertions that
the decision map D must satisfy in order to ensure safe operation of the physical
system under control. The implementation of the decision map D is subject to a
set of timing constraints 7 which are assertions about how fast the map D has to
be performed. Figure 2.1 illustrates the model of a real-time decision system.
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« Environment Constraints:

A relates X (1+1) with y (¢)

 Decision System:

D relates y (¢+1), 5 (1+1) with X (z), s (¢)

¢ D is subject to:
o Integrity Constraints / : Assertions over s,y

¢ Timing Constraints T'

Figure 2.1. A Real-Time Decision System.

Let us consider a simple example of a real-time decision system. Sup-
pose we want to automate a toy race car so that it will drive itself around a track
as fast as possible. The sensor vector consists of variables denoting the position
of the car and the distance of the next obstacle ahead. The decision vector con-

sists of two variables: one variable to indicate whether to accelerate, decelerate



or maintain the same speed, another variable to indicate whether to turn left,

right or keep the same heading. The system-state vector consists of variables
denoting the current speed and heading of the car. The set of environmental con-
straints consists of assertions that express the physical laws governing where the
next position of the car will be, given its current position, velocity, and accelera-
tion. The integrity constraints are assertions restricting the acceleration and
heading of the car so that it will stay on the race track and not to run into an obs-
tacle. The decision map may be implemented by some equational rule-based
program. The input and decision variables of this program are respectively the
sensor vector and decision vectors. The timing constraint consists of a bound on
the length of the monitor-decide cycle of the program, i.e., the maximum
number of rule firings before a fixed point is reached.

There are two fundamental research problems of interest with respect to
this model:

(1) Analysis problem: Does a given equational rule-based program satisfy the
integrity and timing constraints of the real-time decision system?

(2) Synthesis problem: Given an equational rule-based program that satisfies the
integrity constraints but is not fast enough to meet the timing constraints, can
we transform the given program into one which meets both the integrity and
timing constraints?

In the next chapter, we give two examples of equational rule-based pro-
grams. In chapter 4, we investigate these problems by first formulating them in
terms of a state-space representation of equational rule-based programs.

10



Chapter 3

The Rule-Based EQL Language

An EQL program has a set of rules for updating variables which denote
the state of the physical system under control. The firing of a rule computes a
new value for one or more state variables to reflect changes in the external
environment as detected by sensors. Sensor readings are sampled periodically.
Every time sensor readings are taken, the state variables are recomputed itera-
tively by a number of rule firings until no further change in the variables can
result from the firing of a rule. The equational rule-based program is then said
to have reached a fixed point. Intuitively, rules in an EQL program are used to
express the constraints on a system and also the goals of the controller. If a
fixed point is reached, then the state variables have settled down to a set of
values that are consistent with the constraints and goals as expressed by the
rules. A rule-based program is said to always reach a fixed point in bounded
time iff the number of rule firings needed to take the program from an initial
state to a fixed point is always bounded by a fixed upper bound. This bound is
imposed by performance constraints.

An EQL program consists of a finite set of rules each of which is of the
form:

a,=bylay,=by!---la, =b,, IF test

where b; is the value to be assigned to variable g;, and m 2 1. A rule has three
parts:

(1) LHS: the left-hand-side of the multiple assignment statement,

11



(2) RHS: the right-hand-side of the multiple assignment statement, and

12

(3) EC: the enabling condition (also referred to as the test).

An enabling condition is a predicate on the variables in the program. (When-
ever there is no ambiguity, we shall use the terms enabling condition and test
interchangeably.) A rule is enabled if its test becomes true. A rule firing is the
execution of the multiple assignment statement of an enabled rule. A multiple
assignment statement assigns values to one or more variables in parallel. The
RHS expressions must be side-effect free. The execution of a multiple assign-
ment statement consists of the evaluation of all the RHS expressions, followed
by updating the LHS variables with the values of the corresponding expressions.

For ease of discussion, we define three sets of variables for an equa-
tional rule-based program:

L ={v |v is a variable appearing in LHS }
R = { v |v is a variable appearing in RHS }

T = { v | v is a variable appearing in EC }

An invocation of an equational rule-based program is a sequence of rule firings
(execution of multiple assignment statements whose tests are true). When two
or more rules are enabled, the selection of which rule to fire is nondeterministic
or up to the run-time scheduler, but any rule that stays enabled must eventually
be fired. An equational rule-based program is said to have reached a fixed point

when either:

(1) none of the rules is enabled, or

(2) the firing of any enabled rule will not change the value of any vari-
ableinL.



Intuitively, when a fixed point is reached, a rule-based program has arrived at a
~consistent evaluation of its-environment. It is-possible that a program-can reach
different fixed points starting from the same initial state, depending on which
and how rules are fired. This may suggest that the correctness of the program is
violated, whereas for some applications this is acceptable.

Some variables appearing in an equational rule-based program are input
variables, and their values are determined by sensor readings from the external
environment at the beginning of each invocation of the program. Input vari-
ables do not appear on the left hand side of any assignment statement. The
other variables in a program will be called program variables. Program vari-
ables are either decision variables or temporary variables. Decision variables
are used to control the physical system and to communicate with the outside
world after a fixed point is reached, e.g., signaling system status, giving helpful
advice to human operators, etc. Temporary variables are used for storing infor-
mation about the environment and for communication between rules within the
program.

EQL is an equational rule-based language which we have implemented
to run under BSD UNIX®. A complete manual for the EQL language appears
in Appendix A. An example of an equational rule-based program is shown
below. The assignment statements are separated by the delimiter character "[]".

Example 3.1.
init: sensor_a_status = sensor_b_status = good
input: read (sensor_a, sensor_b)

(*1.%) object_detected = true IF sensor_a =1 AND sensor_a_status = good
(* 2. %) []object_detected = true IF sensor_b =1 AND sensor_b_status = good

® UNIX is a registered trademark of AT&T Bell Laboratories.
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(*3. %) [l object_detected := false IF sensor_a =0 AND sensor_a_status = good

st A o

14

& 4. *) [] O'Djeu__deteued = fatse IF oeuaw__':) =0 AND .)t:lmur__f)____mus‘u'o = gGGd

In the above example, sensor a and sensor_b are the input variables;
object_detected , sensor_a_status , and system_b_status are the program variables.
For this program, the three sets of variables L, R, T are:

L = { object_detected },
R =, and

T = { sensor_a, sensor_b, sensor_a_status , sensor_b_status }.

The decision variable is object detected. In this example, if sensor_a and
sensor_b tead in values 1’ and ’0’, respectively, then the above program will
never reach a fixed point since the variable object_detected will be set to true
and false alternatively by rules 1 and 4. Similarly, if sensor_a and sensor_b read
in values ’0’ and ’1°, respectively, then the above program will never reach a
fixed point since the variable object_detected will be set to true and false alterna-
tively by rules 2 and 3. In a real-time system, the goal is to have the decision
program converge to a fixed point within a bounded number of rule firings. To
ensure that the above decision system will converge to a fixed point given any
set of sensor input values, some additional information may be needed to settle
the conflicting sensor readings. For example, the following rules may be added
to the above program:

(* 5. *) [] sensor_a_status = bad
IF sensor_a <> sensor_c AND sensor_b_status = good
(* 6. *) [] sensor_b_status :=bad

IF sensor b <> sensor_c¢ AND sensor_a_status = good



where sensor_c is an additional input variable. If one of the above two rules is
fired, then two of the tests (either tests 1 and 3, or tests 2 and 4) in rules 1-4 will
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be falsified, thus permanently disabling two of those two rules. The variable
object_detected will then have a stable value since rules 1 and 4, or rules 2 and 3,
can no longer fire alternatively. Since the default scheduler of EQL will even-
tually fire an enabled rule, all the variables in the above program will converge
to stable values after a finite (but unbounded) number of iterations. In chapter 8,
we shall show how this program can be made to converge to stable values in
bounded time.

The above example is sufficiently simple that with a little thought, one
can understand its behavior and in particular, whether a fixed point can be
reached or not. In general, it is non-trivial to determine the behavior of rule-
based programs because there is no obvious flow of control. Even small rule-
based programs can take quite a bit of work to understand, as the following
example illustrates.

The following is an example of a distributed equational rule-based pro-
gram for determining whether an object is detected at each monitor-decide
cycle. The system consists of two processes and an external alarm clock which
invokes the program by setting the variable wake_up to true periodically.

Example 3.2.
init: arbiter = a, sync_a =sync_b =1true
input: read(sensor_a, sensor_b)

(* process A ¥)
object_detected := true ! sync_a := false
IF (sensor_a = 1) AND (arbiter = a) AND (sync_a = true)
[1 object_detected := false ! sync_a := false
IF (sensor_a = 0) AND (arbiter = 2) AND (sync_a = true)



[] arbiter := b ! sync_a := true ! wake_up := false

IF (arbiter = a) AND (sync_a = falsc) AND (wake_up = true)

(* process B *)

[] object_detected := true ! sync_b = false
IF (sensor_b = 1) AND (arbiter = b) AND (sync_b = true)
AND (wake_up = true)
[1 object_detected := false ! sync_b := false
IF (sensor_b = 0) AND (arbiter = b) AND (sync_b = true)
AND (wake_up = true)
[] arbiter := a ! sync_b := true ! wake_up := false
IF (arbiter = b) AND (sync_b = false) AND (wake_up = true)

In this example, the input variables are sensor_a and sensor_b. The three sets of
variables L, R, T for process A are:

L = { object_detected, sync_a, arbiter , wake_up },
R =Q, and

T = { sensor_a, arbiter , sync_a, wake_up }.
The three sets of variables L, R, T for process B are:

L = { object_detected, sync_b, arbiter , wake_up },
R =@, and

T = { sensor_b, arbiter, sync_b, wake_up }.

Each process runs independently of the other. An alarm clock external to the
program is used to invoke the processes after some specified period of time. A
rule is fired in the same way as in the non-distributed case, namely, the assign-
ment statement is executed when the enabling condition becomes true. In this

example, the shared variable arbiter is used as a control/synchronization



variable which enforces mutually exclusive access to shared variables such as
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object detected by different processes. The variables sync_a and sync_b are
used as control/synchronization variables within process A and process B,
respectively. Note that for each process, at most two rules will be fired before
‘control’ is transferred to the other process. Initially, process A is given the

mutually exclusive access to variables object_detected and sync_a.

The reader who needs to take considerable effort in understanding the
above example need not be discouraged inasmuch as the point of the example is
to impress upon the reader the need for computer-aided tools to design this class
of programs. We shall discuss a set of computer-aided design tools that have
been implemented for this purpose in a later chapter. To investigate the analysis
and synthesis problems, we shall first formulate them in terms of a state space
representation of equational rule-based programs in the next chapter.



Chapter 4

State Space Representation

The state space graph of an equational rule-based program is a labeled
directed graph G = (V,E). V is a set of vertices each of which is labeled by a
tuple: (xy,..., X,, 81, --., S,) where x; is a value in the domain of the i
input sensor variable and s; is a value in the domain of the j* program vari-
able. We say that a rule is enabled at vertex { iff its test is satisfied by the tuple
of variable values at vertex i. E is a set of edges each of which denotes the
firing of a rule such that an edge (i, j) connects vertex i to vertex j iff thereis a
rule R which is enabled at vertex i, and firing R will modify the program vari-
ables to have the same values as the tuple at vertex j. Whenever there is no
confusion, we shall use the terms state and vertex interchangeably. Obviously,
if the domains of all the variables in a program are finite, then the corresponding
state space graph must be finite. We note that the state space graph of a program
need not be connected.

A path in the state space graph is a sequence of vertices
V 1pees Vi Vis1s © * * » SUch that an edge connects v; to v;, for each i. Paths can be
finite or infinite. The length of a finite path v (..., v; is k—1. A simple path isa
path in which no vertex appears more than once. A cycle in the state space
graph is a path v,..., v such that v, =v,. A path corresponds to the sequence
of states generated by a sequence of rule firings of the corresponding program.

A vertex in a state space graph is said to be a fixed point if it does not
have any out-edges or if all of its out-edges are self-loops (i.e., cycles of length
1). Obviously, if the execution of a program has reached a fixed point, then
every rule is either not enabled or its firing will not modify the contents of any
of the variables.

18



An invocation of an equational rule-based program can be thought of as
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tracing a path in the state space graph. A monitor-decide cycle starts with the
update of input sensor variables and this puts the program in a new state. A
number of rule firings will modify the program variables until the program
reaches a fixed point. Depending on the starting state, a monitor-decide cycle
may take an arbitrarily long time to converge to a fixed point if at all. We say
that a state in the state space graph is stable if all paths starting from it will lead
to a fixed point. A state is unstable if none of the paths from it will lead to a
fixed point. A state is potentially unstable if there is a path from it which does
not lead to a fixed point. By definition, a fixed point is a stable state. It is easy
to see that a state s is stable iff any path from s is simple until it ends in a fixed
point. A state is potentially unstable iff a cycle is reachable from it or if there is
an infinite simple path leading from it.
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Figure 4.1. State Space Graph of a Real-Time Decision Program.

Figure 4.1 illustrates these concepts. If the current state of the program
is A, then the program can reach the fixed point FP2 in 4 rule firings by taking
the path (A,D,F,H,FP2). If the path (A,D,E,...,FP1) is taken, then the fixed point
FP1 will be reached after a finite number of rule firings. The dotted arrow from
E to G in the graph represents a sequence of an unspecified number of uniquely
labeled states. State A is stable because all paths from A will lead to a fixed
point. If the current state of the program is B, then the program will iterate for-
ever without reaching a fixed point. All the states {B,LJ,K} in the cycle
(B,I,J,K,B) are unstable. Note that there is no out-edge from any of the states in



this cycle. Once the program enters one of these states, it will iterate forever. If

.
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~the current state of the program is C, then the program may enter and stay in a
cycle if the path (C,L,J,...) is followed. If the path (C,L,M,...) is taken, then the
cycle (M,P,N,M) may be encountered. The program may eventually reach the
fixed point FP3 if at some time the scheduler fires the rule corresponding to the
edge from P to FP3 when the program is in state P. To ensure this, however, the
scheduler must observe a strong fairness criterion: if a rule is enabled infinitely
often, then it must be fired eventually. In this case, paths from state C to FP3
are finite but their lengths are unbounded. C is a potentially unstable state.

In designing real-time decision systems, we should never allow an
equational rule-based program to be invoked from an unstable state. Potentially
unstable states can be allowed only if an appropriate scheduler is used to always
select a sufficiently short path to a fixed point whenever the program is invoked
from such a state. We say that a fixed point is an end-point of a state s if that
fixed point is reachable from s. It should be noted that not every tuple which is
some combination of sensor input and program variable values can be a state
from which a program may be invoked. After a program reaches a fixed point, it
will remain there until the sensor input variables are updated, and the program
will then be invoked again in this new state. The states in which a program is
invoked are called launch states. Formally, we define a launch statcwL as fol-
lows:

(1) The initial state of a program is a launch state.

(2) A tuple obtained from an end-point (which is a tuple of input and program
variables) of a launch state by replacing the input variable components with
any combination of input variable values is a launch state.

(3) A state is a launch state iff it can be derived from rule (1) and (2).

The above definition of a launch state is conservative in the sense that not all
combinations of input variables need to be considered in the construction of



launch states because future sensor readings are restricted by the environmental
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constraints. However, since environmental constraints are necessarily approxi-
mations of the external world, it seems prudent not to include them in the
definition of a launch state. We emphasize that it is possible to take advantage
of environmental constraints in cutting down the number of launch states for

analysis purposes.

In this dissertation, the timing constraint of interest is a deadline which
must be met by every monitor-decide cycle of an equational rule-based pro-
gram. In terms of the state space representation, the timing constraint imposes
an upper bound on the length of paths from a launch state to a fixed point.
Integrity constraints are assertions that must hold at the end-points of launch
states. Given a program which meets the integrity constraints but violates the
timing constraint, the synthesis problem is to transform this program into one
that also meets the timing constraint. This can be done by program transforma-
tion techniques and/or by customizing the scheduler to fire the rules selectively
so that an invocation always fires the rules corresponding to the shortest path
from the launch state to an end-point.



Chapter 5

The Analysis Problem

In this chapter, we study the analysis problem and discuss efficient tech-
niques for tackling the problem.

5.1. Introduction

The analysis problem is to decide whether a given real-time equational
rule-based program meets the specified timing constraints as well as integrity
constraints. Since the formulation of our problem is in terms of state-space
graphs, our approach is compatible with the semantics of temporal logic: in
spite of the many variations of temporal logic, their semantics are usually
defined in terms of Kripke (state space) structures. Hence, the issue of verifying
that an equational rule-based program meets a set of integrity constraints can be
treated by appealing to temporal logic techniques in a straightforward manner.
Since the application of temporal logic to program verification is quite well
understood, it suffices to note that we have integrated a model checker for the
temporal logic CTL [Clarke, Emerson & Sistla 86] into our suite of computer-
aided design tools. The focus of this research is on meeting timing constraints.

There are many types of timing constraints in real-time decision sys-
tems. The fundamental requirement is to be able to bound the response time of
the decision system. We capture the response time of an equational rule-based
program by the length of the monitor-decide cycle, i.e., the time it takes for all
the program variables to settle down to stable values. Technically, the analysis
problem of interest is to decide whether a fixed point can always be reached
from a launch state on any sufficiently long but finite path. In general, the
analysis problem is undecidable if the program variables can have infinite
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domains, i.e., there is no general procedure for answering all instances of the
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decision problem.

5.1.1. The Complexity of the Analysis Problem

The undecidability result follows from the observation that any two-
counter machine can be encoded by an equational rule-based program that uses

? é ’

only ‘+* and ‘— as operations on integer variables and “>’, as atomic predi-
cates such that a two-counter machine accepts an input if and only if the
corresponding equational rule-based program can reach a fixed point from an
initial condition determined by the input to the two-counter machine. Since
two-counter machines can simulate arbitrary Turing machines, our analysis
problem is equivalent to the Turing machine halting problem. We illustrate the
idea of the proof by exhibiting a two-counter machine (Figure 5.1) and the

corresponding equational rule-based program.

+ */_1 %k

+9*/"19*

03*/(),* 0’*/0’*

Figure 5.1. A Two-Counter Machine for Testing Odd Input.



This two-counter machine accepts the integer input in its first register iff it is
~odd. The same input integer is used to initialize the variable ¢ in the program
below. The variables s, and f are used to keep track of respectively the current
state of the two-counter machine and whether the two-counter machine has
entered an accepting state. Notice that the program below reaches a fixed point
iff only rule 5 is enabled.

Equational rule-based program for simulating the two-counter machine of
Figure 5.1.

initt s =1,¢; =INPUT, ¢, =0, f =0

(*1.%) s=21cy=c—11f=f+1 IF s=1ANDc¢;>0
(*2.%) [1s =3tc;=c ! f =f+1]TF s=1ANDc;=0
(*3.%) [1s =31cy=c ! f=f +1 IF s =3

(*4.%) [Is =4lcy=cy!f =f+1IF s=2ANDc;=0
(*5.%) [1s =4'lcy=c ! f =f IFs=4

F6.% [Is=1lc;=c,-11f=f+1 IF s=2ANDc¢;>0

5.1.2. Finite Domains

Even though the analysis problem is undecidable in general, it is trivi-
ally true that the analysis problem is decidable if all the variables of an equa-
tional rule-based program range over finite domains. In this case, the state space
graph of the program must be finite and can thus be analyzed by an algorithm
which performs an exhaustive check on the finite graph. In chapter 9, we will
describe a suite of tools for analyzing equational rule-based programs. The
default approach there is to generate the reachability graph from the initial
(launch) state and use the model checker to determine whether a fixed point is
always reachable on any path from the initial state. (Fixed points are expressed

25



by an atomic predicate on a state which is true if and only if out-edges from the
_state are self-loops.) This approach is viable if the state space graph is reason-
ably small, but in the worst case may require exponential computation time as a
function of the number of variables in the program. More precisely, it can be
shown that the computational complexity of the analysis problem restricted to
finite graphs is PSPACE-complete ([Mok 89]).

5.1.2.1. Analysis Example

We now describe how our state-based tools can be applied to the distri-
buted EQL program of example 3.2. A complete description of these analysis
tools will be presented in chapter 9. With the EQL-to-C translator eqtc, we can
translate the equational rule-based program in example 3.2 into a C program by
invoking the command:

eqtc < example3.2 > example3.2.c.

This program can be compiled using a C compiler (the ¢¢ command in Unix)
and then executed to obtain the stable output values if a fixed point is reachable
in a finite number of iterations. The current version of eqtc simulates the read-
ing of external sensors by initializing the input variables before any rule is fired.
The C program generated by the eqtc translator is shown below.

#include <stdio.h>
#include "scheduler.c®

#define maxseqg 24

#define false 0

#define true 1

#define a 0

$define b 1

int znext,
randseq[maxseq],
counter;

main{) {
extern int znext,
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randseq[maxseq],
counter;

int 1;

int sync_a, sync_b, wake_up, object detected;
int arbiter;
int sensor_a, sensor_b;

sync_a = true;
sync_b = true;
wake up = true;
arbiter = a;
sensor_a = 1;
sensor_b = 07

initgrandcm_seq(randseq, sznext, z0, &counter);
while (ifixed point(})

{ i = schedule(randseq, &znext, 6);
switch(i) {
case 1:
if ((sensor_a == 1) && (arbiter == a) && (sync_a == true)
&& {wake up == true)) ({

objectedetected = true;
sync_a = false;

}

break;
case 2:
if ((sensor_a == 0) && {arbiter == a) && (sync_a == true)
&& (wake up == true)) {
object_detected = false;
sync_a = false;
}
break;
case 3:
if ((arbiter == a) && (sync_a == false) && {wake_up == true)) {

arbiter = b;
syn¢_a = true;
wake up = false;
}
break;
case 4:
if {(sensor b == 1) && (arbiter == b) && (sync_b == true)
&& (wake_up == true)) {
object_detected = true;
sync_b = false;

}

break;
case 5:
if ({sensor b == 0) && {arbiter == b) && {(sync_b == true)
&& (wake_up == true)) {
object detected = false;
sync b = false;
}
break;
case 6:
if ((arbiter == b) && (sync b == false) && (wake_up == true}) ({

arbiter = a;
sync b = true;
wake up = false;
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}

break;

}
printf (" object_detected = $d\n", object detected);

}
printf (" object_detected = %d\n%, object_detected):;

The EQL program with the initial input values can be translated into a finite
state-space graph by using the ptf translator with the command:

ptf < example3.2.

ptf generates the following output for user reference:

Finite State Space Graph Corresponding to Input Program:

rule #1 2 3 4 5 6

0: 100000
1: 112111
2: 222222

State Labels:

state (sync_a, sync_b, wake_up, object detected, arbiter, sensor_a, sensor_ b)

0 1110010
1 0111010
2 1101110

ptf also generates a CTL temporal logic formula for checking whether this pro-
gram will reach a fixed point in finite time from the launch state corresponding



to the initial input and program variable values. This formula is stored in the file

mc.in contains the adjacency matrix representation of the labeled state space
graph.

O b b
O

nl ;
nl ;
£1 ;
au nl f1)

O N OO0 W

The temporal logic model checker mef can then be used to determine whether a
fixed point is always reachable in a finite number of iterations by analyzing this
finite state-space graph with the given launch state:

mef < me.in.

To verify that the program will reach a fixed point from any launch state, the
(finite) reachability graph of every launch state must be analyzed by the model
checker. The complete state-space graph of the example EQL program which
consists of eight separate finite reachability graphs, one for each distinct launch
state, is shown in Figure 5.2. The graph with launch state (t,tt,-,3,0,1),
corresponding to the combination of input values and initial program values
specified in the C program, is one of 2° =8 possible graphs that must be
checked by the model checker.

me.in which is generated as input to the model checker and the timing analyzer.
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state = (sync_a, sync_b, wake_up , object_detected , arbiter , sensor_a, sensor_b)

;

t = TRUE, f = FALSE, a = name of process A, b = name of process B, - = don’t care

Figure 5.2. Complete State-Space Graph of Program example3.2.

In general, for a finite-domain EQL program with » input variables and m pro-

gram variables, the total number of reachability graphs that have to be checked

in the worst case (i.e., all combinations of the values of the input and program
i=n j=m

variables are possible) is ([]I1X;!. TT!S;1) where IX;1, 15;1 are respec-
i=1 j=1

tively the size of the domains of the i input and j™ program variable. If all

variables are binary, then this number is 2"*”. In practice, the number of

reachability graphs that must be checked is substantially less because many



combinations of input and program variable values do not constitute launch
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states. Other techniques are also available that do not require €xamination o1
the entire state-space graph. They will be discussed in the next section.

Finally, the timing analyzer fptime can be invoked to determine the
longest sequence of rule firings leading to a fixed point, if at least one exists, by
the command:

fptime < mc.in.

The following is the partial output of the fptime module corresponding to the
reachability graph with launch state (t,t,t,-,a,0,1):

> initial state: 0

> fixed-point(s):

> 2

> initial state: 0 fixed~-point: 2
> maximum number of iterations: 2

> path: 0 1 2

The module ptaf performs the above translation and analysis on the complete
state-space graph of the example EQL program automatically. The command:

ptaf < example3.2

produces the following messages:

> The program always reaches a fixed point in finite time.
> The maximum number of iterations to reach a fixed point is 2.
> 8 FSMs checked.




5.1.3. Special Forms of Rules with Bounded Execution Time
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It should be emphasized that in practice, it is often not necessary to
check the complete state space in order to solve the analysis problem. Under
appropriate conditions, efficient procedures exist which can be applied to reduce
the size of the state space by a simple textual analysis of the program. In partic-
ular, rules of certain forms are always guaranteed to reach a fixed point in a
finite number of iterations. Four of these special forms which are especially
useful are presented in this chapter. We shall show later that it is unnecessary
for all the rules of a program to be in a special form in order to be able to reduce
the state space. Techniques exist that can be applied recursively to fragments of
a program and the result used to transform the whole program into a simpler
one. First, some definitions are in order.

We have defined in chapter 3 three sets of variables for an equational
rule-based program. They are repeated below for convenience.

L = { v | v is a variable appearing in LHS }
R = {v | v is a variable appearing in RHS }

T = { v | v is a variable appearing in EC }

LetT ={ vy Vg ...V, } and let ¥V be the vector <vy,vo,....v,> With this
definition, each test (enabling condition) in a program can be viewed as a func-
tion f (v ) from the space of ¥ to the set { true, false }. Let f, be the function
corresponding to the test a and let V, be the subset of the space of v for which
the function f, maps to true. Let V,; be the subset of the values of v; for
which the function f, may map to true; that is, if the value of the variable v; is
in the subset V, ;, then there exist an assignment of values to the variables in the
set T — {v;} such that the function f, maps to true. Note that if the variable v,
does not appear in the test a, then V,  is the entire domain of v;. We say that

two tests @ and b are mutually exclusive iff the subsets V, and V, of the
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corresponding functions f,, f, are disjoint. Obviously, if two tests are mutually

~gxclusive; then only one of the corresponding rules-can be enabled at a time

For some rules, it is straightforward to determine if two tests are mutu-
ally exclusive. For example, consider tests of the form:

C{NCy A - AC,,
where each C; is a predicate of the form:

<variable > <relational operator > <constant >

For a test a of this form, it is easy to see that the subset V,, of the space
of v for which f,, maps to true can be expressed as the cross product:

V

21X Va2 X oo XV,

a.n

such that f,( Vv ) maps to true iff the i  component of v is in V,, ;, fori=1,...,n.
Note that if the variable v, does not appear in the test @, then V, ; is the entire
domain of v;. To verify that two tests @ and b are mutually exclusive, it
suffices to find at least one variable v; for which V, ; NV, ; =@. If no such v;

is found, then the two tests are not mutually exclusive.

Let L, denote the set of variables appearing in LHS of rule x. Two
rules @ and b are said to be compatible iff at least one of the following condi-
tions holds:

(CR1) Test a and test b are mutually exclusive.
(CR2) L, L, =02.
(CR3) Suppose L, N L, #@. Then for every variable v in L, N L, the same

expression must be assigned to v in bothrule ¢ and b.

Let T, denote the set of variables appearing in the test (enabling condition) of

rule x. We are now ready to present several special forms of rules with



bounded execution time for which the analysis problem can be solved

34

efficiently.

5.2. Special Form A: Compatible Assignment to Constants, L and T Dis-
joint

A set of rules are said to be in special form A if all of the following
three conditions hold.

(A1) Constant terms are assigned to all the variablesin L, i.e., R = Q.
(A2) All of the rules are compatible pairwise.
(A3)L NT =0.

Theorem 5.2.1.

An EQL rule-based program whose rules are in special form A will
always reach a fixed point in at most n iterations, where n is the number of
rules in the program.

Proof:

The fact that L and T are disjoint means that the logical value of every
test will remain constant throughout an invocation once all sensor readings have
been taken and assigned to the input variables. Thus condition A3 implies that a
rule is either enabled or disabled throughout an invocation of the program. So
we only need to focus on the set of rules which are enabled. If condition CR1
holds for every pair of rules, then at most one of the rules is enabled at any invo-
cation, and since assignments are always to constants, the program will reach a
fixed point in one iteration. If condition CR2 holds, then every variable appears
at most once in LHS of the enabled rules. Hence, there is at most one constant
that can be assigned to any particular variable, and the program must reach a
fixed point after all the enabled rules have been fired. If two or more enabled



rules can be fired which assign to the same variable, condition CR3 guarantees

that they will assign the same value to the variable, and again the program must
reach a fixed point after all the rules have been fired. Obviously, the number of
iterations before reaching a fixed point is bounded by the number of rules in the
program. (This assumes that the scheduler must not execute a rule more than
once if no variable will be changed by executing the rule.) Tighter bounds are
possible by taking into account rules whose tests are mutually exclusive.

O

5.2.1. Recognition Procedure for Special Form A

Given a set S of rules and a set A (used to hold rules in special form A)
initialized to the empty set, the current implementation of the recognition pro-
cedure incrementally adds a rule i to A if the set A U {i } is in special form A.
To check the satisfiability of the condition Al, the recognition algorithm checks
the expressions assigned to each variable in the set L; of the rule i against the
table of internal and declared constants. To check the satisfiability of the condi-
tion A2, the recognition algorithm checks rule i with every rule already in the
set S for compatibility (by conditions CR1, CR2 or CR3). Finally, to check the
satisfiability of the condition A3, the recognition algorithm checks whether L;
and T, are disjoint and whether L, and 7T; are disjoint, where L4 and T4 are
respectively the sets of variables in the LHS and the test parts of those rules
already in A.

In order for a rule i to be added to the set A, all three conditions A1-A3
must be satisfied. The recognition algorithm terminates when all rules in the set
S are checked. The output from the algorithm is the set A .

5.2.2. Complexity of the Recognition Procedure for Special Form A
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It is easy to see that the complexities of the recognition algorithms for
checking a set of rules for the satisfiability of the conditions Al, A2:CR2 and
A2:CR3, and A3 are respectively O(n), O(n 2), and O(k?), where n is the
number of rules in the set, and k is the number of variables appearing in set L.
Note that in the worst case, the checking of condition A2:CR1 (mutual exclu-
sion) may require exponential time. However, programmers do not write
unstructured tests in practice and many pairs of rules are compatible by condi-
tions CR2 or CR3 (which are checked first by the recognition procedure), the
checking of condition CR1 is usually not a problem.

5.2.3. Application of Special Form A

To illustrate the application of the special form A, consider the pro-
grams in examples 5.2.3.1-5.2.3.4 below. In example 5.2.3.1, the two rules in
the program are compatible by CR1 and thus the program is always guaranteed
to reach a fixed point in bounded time.

In example 5.2.3.2, even though the two tests in this program are not
mutually exclusive because (b = ¢ =true) is true in both test 1 and test 2, the
fact that all LHS variables are distinct makes the rules compatible (condition
CR2 is satisfied) and thus is sufficient to guarantee that this program will reach a
fixed point in a bounded number of iterations.

In example 5.2.3.3, test 1 and test 3 are not mutually exclusive. How-
ever, rule 1 and rule 3 are compatible by condition CR2. Rule 2 and rule 3 are
compatible because their tests are mutually exclusive, and so are rule 1 and rule
2. Thus, this program will reach a fixed point in bounded time.

Finally, consider example 5.2.3.4. Note that the same value (the con-
stant frue) is assigned to the variable a 1 which appears in both the LHS of rules
1 and 2. Hence, condition CR3 is satisfied and thus the rules are compatible;
hence, this program is guaranteed to reach a fixed point in bounded time.
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Example 5.2.3.1. (The two rules in this program satisfy condition CR1.)

input: read(b, ¢)

1. al:=true IFb =true AND ¢ = false
2. [1a2:=false IF b =true AND ¢ = true

Example 5.2.3.2. (The two rules in this program satisfy condition CR2.)
input: read(b, ¢)

1. al:=true IFb =true
2. [la?2 :=false IF ¢ =true

Example 5.2.3.3. (Rule 1 and rule 3 are compatible by condition CR2.)
input: read(b, c¢)

1. al:=true IFb =true AND ¢ = true
2. [1al:=true IFb = true AND ¢ = false
3. [1a2 =false IF ¢ =true

Example 5.2.3.4. (The two rules in this program satisfy condition CR3.)
input: read(b, ¢)

1. al:=true IFb =true
2. [1al:=true IF ¢ =true

5.2.4. Deriving Tight Response Time Bound

We define the response time of an EQL rule-based program to be the
maximum number of rule firings to take the program from a launch state to a
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fixed point. Some additional definitions are needed for describing the derivation
of the response time bound for executing special form A rules

Definition 5.2.4.1.

The mutual exclusion (ME) graph of a set of rules is a labeled
undirected graph G =(V,E). V is a set of vertices each of which represents a
rule. E is a set of edges such that an edge (a,b) connects vertex a to vertex b
iff rule @ and rule b are compatible by mutual exclusivity (condition CR1).

We are now ready to derive a formula for a tighter response time bound
for programs in special form A. For a program in special form A, rules that are
enabled (disabled) before the firing of any rule remain enabled (disabled) during
the course of rule firings. Theorem 5.2.1 states that an EQL program consisting
of n rules all of which are in special form A will always reach a fixed point in at
most n rule firings. To obtain a more accurate response time bound, we subtract
from n the number of rules that are (and remain) disabled during the course of
rule firings. Observe that at most one of the rules in a complete ME subgraph is
enabled at any invocation since condition CR1 holds for every pair of rules in
the subgraph. Two complete subgraphs G, and G, are said to be independent
iff V(G,) NV (G,)=. Let m; be the number of nodes in the independent
complete subgraph i in the ME graph.

Note that an ME subgraph may contain only one node since, by
definition, a rule is CR1-compatible with itself. Also note that two rules, each
from a different, independent complete ME subgraph, may be enabled at the
same time since these two rules may not be mutually exclusive. For the purpose
of deriving the response time bound on the firing of a set of rules, we are
interested in finding the minimal number of independent complete ME sub-
graphs with at least two vertices. Let &k be this number. The reason for minim-
izing the number of independent complete ME subgraphs for consideration is to
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obtain a tighter response time bound. Following the above reasoning, we derive

the following formula:

k
Ty=n- 3% (m-1)
i=1

Next, observe that if two or more rules have the same LHS and all these
rules assign the same expressions to these same variables, then only one of these
rules will fire since firing a second rule in this rule set will not change the con-
tent of any variable in LHS of the rule. Let S; be the set of rules with iso-
morphic assignments of the form j such that no pair of rules in S; are compati-
ble by mutual exclusivity (condition CR1) and none of these rules are CR1-
compatible with rules not in S; (e.g. each rule vertex in S; has no incident ME
edges). Let p; be the number of rules in ;. Note that set §; may be a single-
ton. Let I be the number of sets ;. From this observation, we can refine the

above formula to obtain:
k I
Ty=n—-(Y (m-1D+ 3 (pj—l))
i=1 j=1

Since

k I
Zm+ Y pi=n,

i=1 j=

therefore,

k k ) {
Ty=n—(EXm- Y D+(Tpj— X 1)

i=1 i=1 i=1 j=1
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Ty=n—(m—-k-1)=k+I
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Theorem 5.2.4.1.

The response time bound T, of an n-rule program in special form A is
given by the following formula:

TAzk +l

where k is the minimal number of independent complete ME subgraphs each of
which contains at least two vertices, and [ is the number of sets § f of rules with

isomorphic assignments.

Example 5.2.4.1.

If condition CR1 holds for every pair of rules, then at most one of the
rules is enabled at any invocation, and since assignment expressions consist of
constants only, the program will reach a fixed point in one rule firing. We
obtain the same response time bound by using the above formula,

T,=k+I=1+0=1

since the minimal number of independent complete ME subgraphs is one -- the
entire ME graph.

Example 5.2.4.2.

*1%* a=10IFx=1
*2 * [Ja=20x=2

(*3 *) [Ja =301Fx =3
(*4 *) [la =40IFx =4



(*5 %) [1b:=10IFy =1
(*6 *) [1b =20IFy =2
(*7 *) [lc =10IFz =1
(*8 *) [lc =20IFz =2
(*9 *) [lc =30IFz =3
(*10%) []d :=0IFa =10
(*11%) []d :=0IFb =20

Figure 5.3. ME Graph Corresponding to the Program of Example 5.2.4.2.

In this program, rules 1, 2, 3, and 4 form a complete ME subgraph m, so do
rules 5 and 6 (subgraph m,) and rules 7, 8, and 9 (subgraph m3). Rule 10 and
rule 11 assign the same value to the same variable. Using the response time for-

mula for special form A,

Ty=k+1=3+1=4.
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5.3. Special Form B: Compatible Assignment to Constants, L and T Not
Disjoint

Before we can describe special form B, we need some additional
definitions.

Definition 5.3.1.

Rule a is said to potentially enable rule b if there exist at least one
reachable state where (1) rule b is disabled, and (2) firing rule a enables rule b.

Definition 5.3.2.

Rule ¢ is said to disable rule b if for all reachable program states
where rule ¢ and rule b are both enabled, firing rule a disables rule b.

Definition 5.3.3.

Given two distinct rules @ and b. Letx;,i =1,..., n, be variables in
the set L, N T,,. Rule a is said to approximately potentially enable rule b if:
rule a assigns the value m; to variable x; such thatm; € V, ;,i =1, ..., n,and

n=1.

Note that definition 5.3.1 implies definition 5.3.3. The approximately poten-
tially enable relation can be easily checked in polynomial time whereas the
checking of the potentially enable relation may require exhaustive state space

search.

Definition 5.3.4.

The enable-rule (ER) graph of a set of rules is a labeled directed graph
G =(V,E). V is a set of vertices such that there is one vertex for each rule. E
is a set of edges such that an edge connects vertex a to vertex b iff rule a

42



potentially enables rule b.

Definition 5.3.5.

A cycle in the ER graph is path v, ..., v; such that v =v;. A simple
cycle is a cycle v, V4, V3, ..., v such that v;=v; and for i, j =1, ..,k and
i #j:v; #vj (ie., every vertex in the cycle is distinct).

A set of rules are said to be in special form B if all of the following four
conditions hold.

(B1) Constant terms are assigned to all the variablesin L, i.e.,R =@.
(B2) All of the rules are compatible pairwise.

(B3)L T #Q.

(B4) For each cycle in the ER graph corresponding to this set of rules,
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no two rules in the cycle assign different expressions to the same variable.

(A cycle is said to be bad if at least two rules in it assign different
expressions to the same variable.)

(B5) Rules in disjoint simple cycles (with at least two vertices) in the ER
graph do not assign different expressions to a common variable
appearing in their LHS.

Theorem 5.3.1.

An EQL program whose rules are in special form B will always reach a
fixed point in a bounded number of iterations.

Let SSG denote a state-space graph and let ERG denote an enable-rule
graph. In the ERG, we shall use the terms rule and vertex interchangeably.



Lemma 1.

If a set of rules satisfy conditions B1, B2 and B3, then each rule in a
SSG cycle, if any, must be disabled in some state in the SSG cycle.

Proof.

Assume that there exist a rule r; in a SSG cycle S that is not disabled in
any state in S. There are two cases to consider. (1) After firing r;, r; will not

fire again unless there is a variable v, v € L,‘,, such that v has changed its con-

tent since the last firing of r;. Let e be the expression assigned to v in rule r;.
Let r; be the rule which assigns an expression ¢’ to v such that e #¢’, and r;
fires sometime after the firing of r;. Since all rule pairs must be compatible but
r; and r; do not satisfy compatibility conditions CR2 or CR3, r; and r; must be
compatible by mutual exclusion (condition CR1). This implies that when 7; is
enabled for firing, r; must be disabled. (2) If 7; does not fire again after firing
once, then it cannot be in a SSG cycle. This follows from the fact that when
there is an edge (corresponding to a rule r;) from a state s to another state s in
a cycle or path in the SSG, at least one variable changes its content by firing 7.
Thus it can be concluded that each rule in a SSG cycle must be disabled in some

state in the cycle.
O

Let C4,C,, ..., C,, be the strongly connected components of G(V,E).
Define G (§7, E ) as follows:

V={(C,Cp...Cp}
Ez{ (€, Cpli #j,(x,y)e E,x € C;andy € C; }

Lemma 2. G is a directed acyclic graph.
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Proof.

Assume that G is not an acyclic graph. Then G has a directed circuit.
However, all strongly connected components on it should have been one
strongly connected component. Thus G must be a directed acyclic graph.

O

Theorem.

If the conditions B1, B2 and B3 of special form B are satisfied by a set
of rules, if there are no bad cycles in the ER graph (condition B4 is satisfied),
and if rules in disjoint simple ER cycles do not assign different expressions to a
common variable appearing in their LHS (condition BS5 is satisfied), then there
is no cycle in the corresponding state-space graph.

Proof.

To prove this theorem, we shall prove its contrapositive. Given any set
of rules, we shall show that if conditions B1, B2, and B3 are satisfied, and there
is a SSG cycle, then condition B4 or condition BS must be violated. Consider a
SSG cycle. Label the rules represented by the edges in the SSG cycle
71y T 9, ey 'y If aTule is represented by more than one edge in the SSG cycle, it
is assigned the same label so that each r;,i =1, .., m, corresponds to one dis-

tinct rule. Consider the ERG subgraph G” defined as follows:

V' ={r,ro .yl

E ={@;,rj)lrieV Ar;e V' A(r;,r)e E}

i

E is the set of all ER edges. We shall show that there is at least one strongly
connected component in G’. First, we show that vertices with out-edge(s) only
cannot exist in G’. Let r,,, be a vertex with only out-edge(s). There are two

cases to consider. (1) If r,,, is disabled at the start of rule firings, it remains
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disabled permanently. This follows from the fact that there is no in-edge

incident to r,,, and thus no other rules can enable it. However, each rule in the
SSG cycle must become enabled infinitely often so that it can fire infinitely
often. Therefore, there is no edge corresponding to r,,, in the SSG cycle and
thus r,,, cannot be in V. (2) If r,,, is enabled at the start of rule firings, then

there are two subcases to consider.

(2.1) Suppose r,,, is compatible with another rule by condition CR1
(mutual exclusion). Letv;,i =1,2, .., p, be the variables in L, , and exp; be
the expression assigned to v;. Then there may be a variable v,, v, € L, ,, such
that v, is assigned exp, by another rule r;, exp, # €xpy, and r,,, and r; are
mutually exclusive. Suppose r,,, fires first. Then r; becomes enabled. At this
point, r,,, is disabled and stays disabled permanently since it does not have
incident in-edge and thus cannot be re-enabled by another rule. Hence, r,,, can
fire at most once and thus cannot appear in the SSG cycle. Thus r,,, and its

incident out-edge(s) cannot exist in G”.

(2.2) If r,,, is not mutually exclusive with another rule, then it must be
compatible with every other rule by condition CR2 or by condition CR3. Then
there is no variable v,, v, € L, , such that v, is assigned exp, by another rule
and exp, # exp,. Since r,,, is enabled at the start, it stays enabled until it is
disabled by another rule, from this point it stays disabled permanently since
there is no in-edge incident to r,,,. Hence, r,,, can fire at most once and thus
cannot appear in the SSG cycle. Thus r,,, and its incident out-edge(s) cannot
existin G’.

Using the above argument, we can easily show that vertices with no
incident edges cannot exist in G’.

Next, we show that vertices with in-edge(s) only can be removed from
G’ and the corresponding edge(s) in the SSG cycle can be bypassed (defined
later) for the purpose of the proof. Let r;, be a vertex with only in-edge(s).
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Then r;,, cannot enable any other rule. Thus the only scenario in which the
non-firing of r;, might break the SSG cycle is: there is a rule r, there is a vari-
able v, v,eL,,vy€L, and r;, and r assign different expressions to v ;.
This is so because a rule will fire again if at least one variable in LHS of that
rule has changed its value since the last firing of that rule. We shall show that in
this scenario, r;, must also have at least one out-edge.

Since r;, and r do not satisfy condition CR2 or CR3, they must be
mutually exclusive (condition CR1 is satisfied). From lemma 1, r;,, must be dis-
abled in some state in the SSG cycle. Thus it must be re-enabled by another rule
before it can fire again. There must be at least one variable v, which appears in
the enabling conditions of these rules and the value of v, changes infinitely
often among a finite number of values, enabling these CR1-compatible rules
alternatively. Note that now the variable v, is in the same situation as the vari-
able v, is in above. We repeat this argument to include more variables
V1, V9, V3, Vg, -+ Since there is a finite number of variables, we will eventu-
ally reuse a variable v, which is the same variable v;, 1 <i <k-1, that has been

included already. Thus a ‘path’ or braid is traced from v ; to v;.

Suppose v, =v,. Since r;, does not have out-edges, it cannot enable
any other rule and thus cannot, together with r, alternatively enable the rules
whose tests contain variable v;. Rules other than r;, must modify v ; or another
variable in the braid in order to change the value of v; (and the other variables
in the braid) infinitely. Thus not firing r;, does not break the SSG cycle. Sup-
pose v # v, and v; is modified by r;, or by r. Again, since r;, does not have
out-edges, it cannot enable any other rule and thus cannot, together with r, alter-
natively enable the rules whose tests contain variable v;. Rules other than r;,
must modify v, or another variable in the braid in order to change the value of
v, (and the other variables in the braid) infinitely. Thus not firing r;, does not
break the SSG cycle. If v, # v, and v; is not modified by r;, or by 7, then it is
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obvious that a SSG cycle still exists even if 7, is not fired.

The above reasoning implies that the SSG cycle still exists if r;, is not
fired. We bypass the edge corresponding to r;, in the SSG cycle as follows. Let
(s,s",s”) be a subpath of the SSG cycle. Let edge (s, s”) corresponds to r;,
and let edge (s*, s”) corresponds to r,. r;, needs not fire and thus state 5" can
be bypassed by firing r, at state s, putting the program in state s””. State s is
the same as state s” except possibly for those variables whose contents are
changed by r;, if fired at state s. However, since the changing of the contents
of these variables by r;, will not enable any rule and because of the argument
above, state s° can be bypassed. We remove all vertices with in-edge(s) only
from G’ and bypass the corresponding rule edges in the SSG cycle in the
manner described above. We now have a ERG subgraph G” defined as follows:

V" =V —{r,,|r; hasin-edges only}.

E” =E’ — {(r;, rj)Ir; has in-edges only}.

Every vertex in G” has at least one incident in-edge and at least one incident
out-edge. Thus there is at least one strongly connected component in G” as
well as in G’. Let C4,Co, ..., C,, be the strongly connected components of
G” (V" ,E”). There are three cases to consider.

(1) There is only one strongly connected component. In this case, there
must be a cycle (possibly non-simple) which contains all vertices in G”. Since
the expressions in R consist of constants only and the number of rules in the
program is finite, none of the variables in the program would change in value
infinitely among an infinite number of values. Consequently, a set of rules will
fire forever (creating a SSG cycle) and will not reach a fixed point only if there
is at least one variable v in L whose value is changed infinitely often among a
finite number of values. Then there exist at least two rules in the SSG cycle
which assign different expressions to v ;. Since each rule in the SSG cycle (after
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bypassing those states as described above) is also represented by a vertex in

ERG subgraph G”, there must be at least two rules which assign conflicting
expressions in G”. Since these conflicting rules are in the cycle described
above, it can be concluded that there is a bad ERG cycle. Next, we show that
there must be a simple cycle with at least two rules which assign different
expressions to the same variable, or rules in disjoint simple cycles assign dif-
ferent expressions to the same variable. There are two basic cases to consider.

(1.1) 8-circle: two or more simple cycles connected by a single common
vertex r. If r and a rule r in one of these simple cycles assign different expres-
sions to the same variable, then there is simple cycle which contains two
conflicting rules. Now suppose that for every rule r; (r; #7) in these simple
cycles, r and r; do not assign different expressions to the same variable. If the
content of a variable v, in LHS of r is changed after firing r, then there is
another rule 7, not in this 8-circle which assigns a conflicting expression to v,
and the argument for case (1.2) applies. Rule 5 cannot be in another SCC since
there is only one SCC. If the contents of the variables in LHS of r do not
change after firing , then r can fire at most once. Then successors of 7 can be
re-enabled at most once. If the successors are mutually exclusive, then only one
can be enabled at the same time. This means that all simple cycles with vertex
r in common are broken. These cycles effectively become acyclic paths
without repeated firings of rule r. Even if there are two conflicting rules, 7, and
ry, I, is in simple cycle S 1, r, is in simple cycle S 5, and both cycles are in the
8-circle, no infinite rule firings can occur. Thus there must be two conflicting
rules in one simple cycle or in disjoint simple cycles.

(1.2) Overlapping simple cycles: two or more simple cycles with at
least one edge (and at least two vertices) in common. This is in fact a generali-
zation of the 8-circle where there are two or more simple cycles with one vertex
(and no edges) in common. Let r be a vertex common in these simple cycles.
If  and a rule r; in one of these simple cycles assign different expressions to
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the same variable, then there is simple cycle which contains two conflicting

rules. Now suppose that for every rule r; (r; # r) in these simple cycles, r and
r; do not assign different expressions to the same variable. If the content of a
variable v, in LHS of r is changed after firing r, then there is another rule r,
not in these overlapping cycles which assigns a conflicting expression to v .
(Rule r, cannot be in another SCC since there is only one SCC.) Then, one of
the following scenarios may occur: (a) 7, is in another simple cycle disjoint
from the overlapping simple cycles we are considering, or (b) r 5 is in one of the
simple cycles in a 8-circle, and the common vertex in this 8-circle is a vertex
that is common in the simple cycles of the overlapping cycles we are consider-
ing (otherwise, there are disjoint simple cycles). In scenario (a), condition B35 is
violated. In scenario (b), r and r, cannot fire forever because of argument 1.1.
Thus rules in the path common in the simple cycles in this overlapping-cycles
figure cannot fire forever. Then successors of r cannot be re-enabled infinitely
often. If the successors are mutually exclusive, then only one can be enabled at
the same time. This means that all simple cycles with vertex r in common are
broken. Even if there are two conflicting rules, r, and r;,, r,, is in simple cycle
§1, rp is in simple cycle S,, and both cycles are in this overlapping-cycles
figure, no infinite rule firings can occur. Thus there must be two conflicting
rules in one simple cycle or in disjoint simple cycles.

(2) G” is connected and there are more than one strongly connected
component (SCC) in G”. Consider two of the SCCs C, and C,,, each of which
has at least two vertices, connected by at least one one-way directed path con-
sisting of one or more edges. This implies that the vertices and edges in C, and
those in C,, are disjoint. If the path has zero edges, then a vertex must be com-
mon in both C, and C;, and thus C, and C, must be in the same SCC. Let
rie V(C,)andletr,e V(Cp). Suppose there is a directed path from r to 7,
and no SCC (besides C, and C,) with more than one vertex lies in the path

from r ; to r5. There is no path from a vertex in C}, to a vertex in C,; otherwise,
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C, and C;, would be in the same SCC. From the argument in case 1, we know

that there are at least two rules in G” which assign conflicting expressions to the
same variable. Let r, and r, be these conflicting rules. Suppose 7, € V(C,)
and r, € V(Cp). Since C, and C}, each contain at least two vertices, both con-
tain simple cycles. One simple cycle in C, must contain r,, and similarly, one
simple cycle in C, must contain 7,. These two simple cycles are disjoint

because C, and C,, are disjoint. Thus condition B5 is violated.

If both r, and r, are in C, or both are in Cp, then condition B4 is
violated (see case (1)). Therefore, we only need to show that the following
scenario cannot occur: 7, is in a one-vertex SCC in the path from C; to Cy, 13
is in either C, or in C}, and there are no conflicting rules in either C, or in Cp.

As shown earlier, r, and r, must be mutually exclusive.

(Argument 2.1) Suppose 73, is in Cp,. Suppose 7, fires first. Then fol-
lowing a sequence of zero or more rule firings, r, becomes enabled and fires.
At this point, r, must be disabled because of the mutual exclusion condition.
Suppose there are no conflicting rules in C,; otherwise, the argument for case
(1) applies. Also suppose there does not exist a rule r,, in another SCC C, with
at least two vertices, the LHS of 7, contains a variable v ;, and this variable also
appears in LHS of a rule r; in C, such that the expressions assigned to v are
different. (If rule r, exists, then the argument given earlier for the violation of
condition B5 applies.) Then each rule in C, fires at most once. We shall treat
the subcase (*) in which rule r, appears in a one-vertex SCC shortly. For now,
assume that no such rule r, exists. Then rules in C, can fire at most once and
will reach a fixed point. Thus 7, can be re-enabled at most once. After firing r,,
a second time, 7, cannot fire again since r, must become disabled before the
second firing of r,. Therefore, no infinite rule firings is possible in this scenario.
Suppose r;, fires first. Then following a sequence of zero or more rule firings,
r, becomes enabled and fires. At this point, r;, must be disabled because of the
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mutual exclusion condition. The above argument for the case in which r, fires

first applies.
Suppose 7, is in C, instead of in Cj,. A similar argument as the one

above applies here.

Now we consider subcase (*) where rule r. appears in a one-vertex
SCC C,. (Argument 2.2) Since G” is connected, there must be either a one-
way directed path from C, to C, or a one-way directed path from C, to c.. It
both paths exist at the same time, then C,, and C, are in the same SCC with two
conflicting rules and the argument for case (1) applies. If the path is from C, to
C.., then the firing of 7, cannot enable rules in C,. We consider the case where
the path is from C, to C,. Now we treat . as 7, treat 74 as r'p, and then apply
argument 2.1. If there is a rule in the role of r, within argument 2.1, then we
apply argument 2.2 again. If we ‘trace’ a reverse path back to C; (this path
consists of disjoint SCCs connected to one another by one-way directed paths),
then there is one big cycle containing at least two rules which assign different
expressions to the same variable and thus condition B4 is violated. If no such
paths can be traced, applying argument 2.2 repeatedly will eventually lead to a
situation where rule 7. does not exist in argument 2.1. Then each rule in C,

fires at most once in argument 2.1 and the rest of the argument follows.

(3) G” is disconnected and thus there are more than one strongly con-
nected component in G”. Since vertices with no incident edges cannot exist in
G’ (shown earlier), every SCC which is not connected to another SCC has at
least two vertices. The case in which there is a one-vertex SCC but connected
to another SCC is treated in case (2) above. From the argument in case (1), if
there is a SSG cycle, then there must be at least two rules which assign
conflicting expressions to the same variable. If condition B4 is satisfied, then
there are no conflicting rules in any SCC. Therefore, rules in different SCCs and
thus rules in disjoint simple cycles assign conflicting expressions to the same
LHS variable, thereby violating condition BS. Suppose there are two
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disconnected components (not necessarily SCCs) C 1 and C, there are two rules

r, and ry which assign different expressions o the same variable, r, is in a
one-vertex SCC in C 1, 7, is in a SCC with at least two vertices in C'5. Since r,
and r, must be mutually exclusive, when r, is enabled to fire, r, must be dis-
abled, and vice versa. In order for these two rules to fire alternatively, there
must be two other rules r, and ry, r, enables r, andisin Cy, 74 enables r, and
is in C,. r, and r, are mutually exclusive since they also assign different
expressions to a common variable in order to enable r, and r;, alternatively. If
r, is in a SCC with at least two vertices and if 7, is in a SCC with at least two
vertices, then condition BS5 is violated. If not, we can trace those rules which
alternatively enable r, and r,;. Rulesina disconnected acyclic path cannot fire
forever. In a finite number of steps, we will find two rules, one in a SCC with at
least two vertices in C ; and one in a SCC with at least two vertices in C 4, which
assign conflicting expressions to a common variable. This is due to the fact that
G” is finite and not all SCCs in a disconnected component contain a single ver-
tex. Otherwise, there is a vertex with no in-edge or a vertex with no out-edge.
However, this contradicts the fact that every vertex in G” has in-edge(s) and
out-edge(s). Therefore, condition B5 is violated. The case in which r, is in a
one-vertex SCC in C; and 7, is in a one-vertex SCC in C', can be treated simi-
larly. If condition B5 is satisfied, then there must be at least two rules which
assign conflicting expressions in one of the SCCsin G”. Since these conflicting
rules are in the cycle described in case (1), it can be concluded that there is a
bad ERG cycle, thereby violating condition B4.
0

5.3.1. A Greedy Recognition Procedure for Special Form B

The ER graph G corresponding to the set of rules is constructed. Given
a set S of rules and a set B initialized to the empty set, a simple implementation
of the recognition procedure incrementally adds a rule i to B such that the set
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B U (i} is in special form B. The algorithms for checking the satisfiability of
the conditions B1 and B2 are exactly the same as those for checking the

satisfiability of the conditions A1 and A2. For checking the satisfiability of the
condition B3, the algorithm is the negation of the output from the algorithm for
checking the satisfiability of the condition A3.

To check the satisfiability of condition B4, the greedy algorithm per-
forms a depth-first search, starting from the vertex corresponding to the rule i
being checked for inclusion in set B, on the ER subgraph G’ consisting of the
vertices corresponding to those rules already in B and the rule i, and the edges
connecting these vertices. If a cycle with the vertex i in it is found (the search
visits the initial vertex i corresponding to the rule i again), the algorithm
invokes a procedure to check whether the cycle is good. If the cycle is good,
then the algorithm proceeds to check for other cycles involving vertex i until a
bad cycle is found or all cycles in G* have been checked. If a bad cycle involv-
ing the vertex i is found, rule i is not included in B.

In order for a rule i to be added to set B, all five conditions B1-B5 must
be satisfied. The recognition algorithm terminates when all rules in S are
checked. The output from the algorithm is the set B.

5.3.1.1. Complexity of the Greedy Recognition Procedure

As in the case of special form A, it is easy to see that the complexities
of the recognition algorithms for checking a set of rules for the satisfiability of
the conditions B1, B2 (CR2 and CR3), and B3 are respectively O(n), O(n 2), and
O(kz), where n is the number of rules in the set, and k is the number of vari-
ables in the set. Note that in the worst case, the checking of condition B2:CR1
(mutual exclusion) may require exponential time. However, as noted earlier,
programmers do not write unstructured tests in practice and thus the checking of
condition CR1 (which is needed only when the other two compatibility criteria
are not satisfied) is usually not a problem. The complexity for checking
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conditions B4 and B35, however, is exponential in the worst-case. It is well
known that an algorithm for determining all directed circuits (cycles) in a
directed graph has an exponential run-time complexity ([Garey & Johnson 79]),
owing to the combinatorial number of distinct directed circuits that may exist in
the directed graph in the worst case. A simple extension to this recognition
algorithm is actually a solution to the directed Hamiltonian circuit problem,
which is known to be NP-complete.

In practice, the number of cycles in the ER graph corresponding to an
EQL program that have to be checked is small. The algorithm used for identi-
fying the set of rules in special form B does not need to analyze all distinct
cycles in the graph unless none of cycles are bad. Thus it is still practical to use
such a recognition algorithm for checking realistic EQL programs. In the fol-
lowing section, we present an efficient, polynomially-bounded algorithm for
checking condition B4.

5.3.2. An Efficient Algorithm for Checking Condition B4

The greedy algorithm given in section 5.3.1 may require exponential
computation time to determine the satisfiability of the condition B4 when given
a worst-case ER graph. Although it is observed that the number of distinct
cycles in the ER graphs corresponding to actual programs is small, the number
of such cycles in the ER graphs corresponding to large programs is still large.
Thus it is necessary to develop a more efficient algorithm that has polynomial
time complexity. This new algorithm does not need to check all cycles and is
not based on the fundamental cycles of the ER graph with respect to one of its
spanning trees. (The addition of a chord to a spanning tree of a graph creates
precisely one cycle. The collection of these cycles with respect to a particular
spanning tree is called a set of fundamental cycles and these cycles form a basis
for the cycle space.) The algorithms for checking the satisfiability of conditions
B1-B3 remain the same.
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The algorithm outlined below operates as follows. First, it determines
all distinct pairs of rules that have conflicting assignments to at least one vari-
able common in both rules. Then it checks each pair of these rules to determine
whether they are both in a cycle. Letp and g be a pair of rules with conflicting
assignments to the same variable. To determine whether they are in the same
cycle, the algorithm attempts to find two vertex-disjoint (except the initial and
final vertices) and edge-disjoint paths, one from p to ¢, and the other from q to
p. This is equivalent to finding whether the two vertices are biconnected. If a
pair of rules are in the same cycle is detected, then a cyclic sequence of rule
firings may occur.

Efficient Algorithm for Checking Condition B4:

C =0;
for j :==1ton do
fork :=2ton do
if j # k and conflicting_assign(j, k)
thenC =C U {{j.k}]}
for each rule pair {p, ¢} inC do
if vertex p and vertex g are biconnected
then there is a bad cycle

Given a set S of rules, in order to incrementally add a rule i to the set B
(which contains rules that are in special form B) such that the set B U {i} is
also in special form B, the recognition procedure checks the new rule i against
every rule already in B. Then, if there exist conflicting assignments to the same
variable(s) in rule i and in rule j € B, the procedure checks whether these two
rules lie on the same cycle. If they are not in the same cycle, the procedure adds
rule i to B. Otherwise, rule i is not included in B.
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5.3.2.1. Complexity of the Efficient Recognition Procedure

The efficient algorithm described -in- the preceding -section-has. time
complexity O(MAX (n 2 mxMAX (n.e))), where m is the number of rule pairs
with conflicting assignments to a common variable, n and e are respectively the
number of vertices (rules) and the number of edges in the ER graph correspond-
ing to the set of rules. Note thatm <n (n —1D)/2.

Given a program with 7 rules, all pairs of rules with conflicting assign-
ments to at least one common variable can be found in O(n 2)—time since there
are at most n(n — 1)/2 distinct pairs of rules. For each pairs of rules with
conflicting assignments, the algorithm checks whether the vertices correspond-
ing to these two rules are biconnected (both lie on the same cycle). This can be
achieved in O(MAX (n ¢ ))-time using the depth-first search strongly connected
components algorithm of Tarjan ([Tarjan 72]). Since there are m pairs of such
rules, the second loop has time complexity O(m xMAX (n,e)). Thus the algo-
rithm has overall time complexity O(MAX (n 2 mxMAX (n,e))), and in the
worst case where every pair of rules have conflicting assignments,
O(n >xMAX (n ,e))-time.

5.3.3. Application of Special Form B

To illustrate the application of special form B, consider the programs in
the two examples below. Note that all rules in the programs of example 5.3.3.1
and example 5.3.3.2 satisfy conditions B1, B2 and B3. The ER graph
corresponding to the program of example 5.3.3.1 is shown in Figure 5.4.
Observe that there is a bad cycle in this graph -- there are three pairs of rules in
it that assign different values to the variables a, b and ¢, respectively. There-
fore, condition B4 is violated and thus this program is not in special form B.

Example 5.3.3.1. (This program is not in special form B.)
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(*1% =0IF a=1

(*2% [1b:=11F a=0
*3* c=01IF b=0
F4® [lc=1IFb=1
*5*%) [la=01F c=0
*6* [la=11F c=1

R
O 0—G0 66— O

Figure 5.4. ER Graph Corresponding to the Program of Example 5.3.3.1.

Now consider the program of example 5.3.3.2, whose ER graph is shown in Fig-
ure 5.5. Observe that there is one cycle in this graph but rules in this cycle do
not assign different expressions to the same variable. Conditions B4 and B5 are
satisfied. Therefore, this program is in special form B and thus it is always
guaranteed to reach a fixed point in bounded time.

Example 5.3.3.2. (This program is in special form B.)

*1% b=0IF a=1
2" [b=11F a=0
(*3%) [1c=0IF b=0
4" [Jc=11F b=1
*5% Ja=11IF ¢=0
6% [Ja=21F c=1



===

Figure 5.5. ER Graph Corresponding to the Program of Example 5.3.3.2.

5.3.4. Deriving Tight Numeric Response Time Bound for Special Form B

The response time formula for special form A cannot be used to com-
pute the response time bound for programs in special form B since the formula
is based on the assumption that rules which are enabled (disabled) before the
firing of any rule remain enabled (disabled) during the course of rule firings, but
this is not the case for rules in special form B. To compute the response time
bound for special form B rules, we present an algorithm that performs the
analysis on the data dependency graph called the access-modify (AM) graph
([Wang, Mok & Cheng 90]) and the ER graph corresponding to these rules.
This response time analysis algorithm is an extension of the one proposed in
[Wang, Mok and Cheng 90] and it computes a more precise bound.

Definition 5.3.4.1.

An access-modify graph (AM graph) is a simplified representation of a
set of rules. It consists of two kinds of vertices. Each variable vertex represents
one variable and each rule vertex represents one rule. A directed edge from a
rule vertex to a variable vertex means that this variable appears in the LHS of
the rule. A directed edge from a variable vertex to a rule vertex means that this

variable appears in the enabling condition of the rule.

Before we present the algorithm, observe that there is a close relationship
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between the AM graph and the ER graph. If there exist an edge (i.j) in the ER
graph, then there exist a variable x such thatx € L; A x € T;, i.e., there exist

an edge (i ,x) and an edge (x,j) in the AM graph.

Algorithm for Computing Response Time Bound for Special Form B

We define two values, NC and NF, used by the following algorithm.
Let i be a variable, and NC; an upper bound on the number of changes that may
happen to the content of variable i before the program reaches a fixed point.
Let C be a set of rules in special form B, and NF an upper bound on the
number of firings of rules in the set C.

The following response time analysis algorithm consists of two sub-
processes. The first subprocess determines the NC value for each variable. The
basic idea of this subprocess is to set up NC values of some special variable ver-
tices initially, then diffuse NC values to other variable vertices based on the AM
graph. The second process uses these NC values to determine, again based on
the AM graph, the NF value of each set of rules in special form B.

(1) If the set of rules is in special form B, then proceed. Otherwise ter-
minate this algorithm with the upper bound on the number of firings set to
infinity.

(2) Subprocess 1:

(a) Initially assign values to the NCs of some variable vertices
according to the following rules:

(i) V variable i: variable i is not modified by any rule, then
NCi =0.

(ii) V variable i: variable i is modified by only one rule, or
variable i is modified by more than one rule and all the
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assignments are the same, then NC; == 1.

(b) Then compute NC's of other variable vertices according to the

following function:

NCi =1 +ZNC]
J

where (i) variable j is accessed by at least two rules that disagree on
variable i, and (ii) it is not the case that there exist a disable in-edge
incident to each of the vertices representing these conflicting rules.
(c) If the value of NC; cannot be computed because at least one
NC f is undefined, then

Nci=1+ZNCk+Ci
k

where each NC, is defined as above but with a known value (com-
puted in step (a)), and C; is the number of simple ER cycles which,

when superimposed on the AM graph, contain variable vertex i.

We call this process the diffusion of NC values because NC;s can be
computed only after all the NC;s have been computed.

(3) Subprocess 2:

The NF value of a set C of special form B rules is computed by the

following function:

i:iGLC

with the following exception: V variables xy, ..., X, k > 1, which
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appear in the LHS of every rule in a subset § of rules in C, but do
not appear in the LHS of any rule not in §, only
max(NC, , ..., NC,,) should be included in the sum of the above for-

mula.

In the subprocess 2, we compute NF values with regard to a set of rules
instead of individual rules for two reasons. First of all, sometimes it is impossi-
ble to determine the exact NF value for each rule at compile time. The exact
NF values depends on the contents of variables. Second, it is usually good
enough to know the NF values of sets of rules instead of the NF value for each
rule because the basic units selected at each step of the general analysis algo-
rithm are independent sets of rules, and these sets of rules are treated as unit
modules when scheduling the rules to fire.

Proof of the Correctness of the Algorithm:

The correctness of the basic algorithm is proved in [Wang, Mok &
Cheng 90]. We shall prove the correctness of the new algorithmic steps not
found in the basic algorithm.

Step 2(b)(ii): If variable j is accessed by at least two rules that disagree
on variable i, but there is a disable in-edge incident to each of the vertices
corresponding to these rules, then these conflicting rules would not fire more
than once. This single firing may still modify the content of variable i, but this
modification is counted by variable C; as explained in step 2(c) below. Thus the
value of NC; should not be included when computing the value of NC;.

Step 2(c): If the value of NC; cannot be computed because at least one
NC; is undefined, then there must be a good ER cycle. When this ER cycle is

superimposed on the AM graph, one can trace an AM cycle which contains
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variable vertex i. This cycle cannot be bad since a program with bad ER
cycle(s) is not in special form B and thus step 1 would have terminated the algo-
rithm by setting the upper bound on the number of firings to infinity. A
disagreeable braid ([Wang, Mok & Cheng 90]) exists but this braid must be
harmless since the special form B recognition algorithm is able to distinguish a
good ER cycle from a bad one, both of which may indicate the existence of a
braid. Variable C; counts the number of changes to the content of variable i by
the rules appearing in each simple and good ER cycles each of which contains
variable i.

Step 3(exception part): If the condition appearing in this exception
holds, then whenever a rule modifies the content of one of the variables xs, it
modifies the contents of all variables xs. Therefore, only one rule firing (instead
of k) should be counted.

O

5.4. More General Conditions for Fixed Point Reachability

This section extends the notion of the enable-rule relationship
developed in the previous section and provides a set of more general conditions
for guaranteeing bounded-time fixed-point reachability. Specifically, we state a
theorem which gives more general sufficient conditions, relative to those given
by the special form B, for bounded-time fixed-point reachability. This theorem
thus generalizes the potentially-enable relation used in special form B. We first
introduce some definitions that will be used in the remainder of this section. We
use the terms rule and vertex (used to represent a rule in the ER graph) when
there is no ambiguity.

As we shall describe in chapter 7, the rule-based programmer can sup-

ply application-specific knowledge about a rule-based program in the form of
enable-rule and disable-tule tables. These tables specify the enable sets and dis-
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able sets for each rule in the program. Since the contents of some variables can-
not be determined before runtime, the analysis algorithm may not be able to
detect all enable-rule and disable-rule relationships among rules. With the
programmer-supplied information and the general theorem described below
about these enable-rule and disable-rule relationships, the analysis algorithm can
recognize a larger class of rule-based programs with bounded response time.

Definition 5.4.1.

The precedent set of a rule vertex v is defined as the set of rule vertices
v; that are connected to v by edge (v, v).

Definition 5.4.2.

An enable set of a rule r is defined as a set of rules whose firing in
some order will enable rule  if rule 7 is not already enabled. A non-enable set
of a rule 7 is a set of rules whose firing in any order will not enable rule r if rule
7 is not already enabled. Note that a rule may have more than one distinct
enable set.

Definition 5.4.3.

An enable set M of a rule 7 is said to be minimal iff the removal of any
rule from M would make M a non-enable set. Note that a rule may have more
than one distinct minimal enable set.

Definition 5.4.4.

A disable edge (r,s) connects vertex r to vertex s iff the firing of rule
r always disables the enabling condition of rule s.

Definition 5.4.5.
The disable graph of a set of rules is a labeled directed graph



G =(V,E). V is a set of vertices each of which is labeled by a rule number i
corresponding to a distinct rule i. E is a set of disable edges.

Consider the rules in the following example.

Example

* 1.
* 2.
(* 3.
* 4.
(* 5.
(* 6.
*17.

54.1.

¥ g=1!'n=0IFm=1
N [Nb=0p=0IF n=1
N [lc =21qg=11F p=1
N [1d=-2'r=11F ¢g=0
¥ [le=11's=1IF r=0
N[Nf=1lqg=11Fs=0
*) [1g =01n:=01IF @=1ANDb =0ANDc >0ANDd <0)
OR(d <0ANDe =1ANDf >0)

Rules 1-5 constitute an enable set for rule 7, so is the set of rules 3-6. The
minimal enable sets for rule 7 are S7 (rules 1-4) and Sy, (rules 4-6). The

ER/disable graph corresponding to this program appears in Figure 5.6. In the

graph, solid arrows denote ER edges and dotted arrows denote disable edges.

Theorem 5.4.1.

For a set W of rules satisfying the conditions B1, B2, B3 and BS of spe-
cial form B, there exist at least one infinite firing sequence (in which the set of

rules does not reach a fixed point in bounded time) only if all of the following
conditions hold:

(1) There exist a strongly connected component C with at least 2 vertices in the
ER graph corresponding to W.
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(2) There exist at least one cycle of length m (m 2 2) in C in which each rule r;,
i =1,..., m (represented by vertex v;) is enabled by the precedent set P
(that is, there exist an enable set N for rule r; such that N c P);

(3)(a) There exist at least one minimal enable set S;,j for each rule vertex r; in
the above cycle whose disable subgraph G, (Vp, Ep) is acyclic, where
Vp, is a minimal enable precedent set of rule vertex r; and Ep is the set
of disable edges connecting vertices in Vp, fori=1,..,m;or

(3)(b) there exist at least one vertex 7y in a disable-cycle such that r, has a
minimal enable set which satisfies condition (3)(a) or condition (3)(b).

(4) There are at least two rules which assign conflicting values to the same vari-
able.

The intuition behind the derivation of these general conditions can be illustrated
by the following examples. A proof of a variant of this theorem targeted for
showing the bounded-time fixed-point reachability of rule-based EQL programs
will then follow.

Condition (1): Since the number of rules in a program is finite, at least
one rule must be fired infinitely often for the program not to reach a fixed point
in bounded time. However, since the expressions in R consist of constants only,
a rule ¢ does not fire again once it has already fired once unless at least one
variable in L, has changed its value as a result of the firing of another rule.
Thus at least two rules must be involved in a cyclic firing sequence. Since a
cycle with at least two vertices is a connected component, a strongly connected
component must exist. The reason for using the term strongly connected com-

ponent to make the condition statement more general will become clear later.

Condition (2): The key observation here is that in order for a rule to fire
more than once, it either must stay enabled or if disabled, must be enabled by a
set of rules constituting an enable set. A more precise argument will appear in
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the proof steps of theorem 5.4.1” below.

Condition (3): Consider the partial ER/disable graph in Figure 5.6. Let
solid arrows denote potentially enable edges and let dotted arrows denote dis-
able edges. The rule vertices in each rectangle represent a minimal enable set
for rule 7. This ER/disable graph corresponds to the program segment of exam-
ple 5.4.1.

MES S,

MES S7;

Pl i -

& PP

Figure 5.6. Situation 1 for Condition 3 of Theorem 54.1.

The disable subgraph of the minimal enable set 7, contains a cycle. However,
the disable subgraph of the minimal enable set S ; is acyclic and thus the rules
in it can be fired in the following order: 4, 3, 2, 1. In fact, for any acyclic graph,
there is a corresponding topological ordering of its vertices. Thus all rules in a
minimal enable set for a rule » whose disable graph is acyclic can be fired in
some order, thus enabling rule 7. Now consider the partial ER/disable graph in

Figure 5.7.



MES S 4,

Figure 5.7. Situation 2 for Condition 3 of Theorem 5.4.1.

The disable subgraphs of both enable sets of rule 7 contain cycles. However,
rule 2 in the disable cycle in the subgraph of the minimal enable set S7; has a
minimal enable set consisting of rule 3 whose disable subgraph is obviously
acyclic. Thus the rules in S, can be fired in the following order: 1, 4,3, 2.
The existence of the minimal enable set S, ; effectively breaks the cycle in the
disable subgraph corresponding to the minimal enable set S5 ,, thus allowing
rule 7 to be enabled. Next we consider the partial ER/disable graph in Figure
5.8.
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Figure 5.8. Situation 3 for Condition 3 of Theorem 54.1.

The disable subgraphs of both enable sets of rule 7 contain cycles. However,
rule 3 in the disable cycle in the subgraph of the minimal enable set §; has a
minimal enable set § 5 ; consisting of rule 8 and rule 9 whose disable subgraph is
acyclic. Thus the rules in§;;can be fired in the following order: 2, 1, 4, 3, and
the rules 8 and 9 are fired in the order 9, 8 anytime after the firing of rule 2 and
before the firing of rule 3. Since all rules in the enable set S 7.1 can be fired, rule

7 can be enabled.

Condition (4): Since the expressions in R consist of constants only and
the number of rules in the program is finite, none of the variables in the program

would change in value infinitely among an infinite number of values and thus a
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cycle in the enable-rule graph of the program corresponds to a cycle in the state
space graph of the program. Consequently, a set of rules will not reach a fixed

70

point only if there is at least one variable v; in L whose value is changed
infinitely often among a finite number of values. Then there exist at least two
rules which assign different values to the variable v ;.

Theorem 5.4.1 can be rephrased as follows to reflect our goal which is
to show that a set of rules satisfying a set of conditions is guaranteed to reach a
fixed point in bounded time. The proof of theorem 5.4.1° thus can be easily
modified as a proof for theorem 5.4.1 above.

Theorem 5.4.1°.

For a set § of rules satisfying the conditions B1, B2, B3 and B5 of spe-
cial form B, a fixed point is reachable in bounded time (there does not exist an
infinite firing sequence) if at least one of the four conditions of theorem 5.4.1 is
false.

Proof of theorem 5.4.1°.

(1) Proof of [B1, B2, B3, B5 and condition (1) is false — a fixed point is always
reachable in bounded time].

Assume that the first condition is false; that is, there does not exist a
strongly connected component with at least two vertices in the ER graph.
Assume that a fixed point is not always reachable in bounded time. Then by the
definitions given in chapter 4, in the state space graph corresponding to the pro-
gram, there must be (1) at least one cycle with at least two vertices, or (2) at
least one simple path of unbounded length. Since a rule does not fire again after
firing once unless the subsequent firing changes the value of at least one variable
on its left-side and the expressions in R consist of constants only, cycles with



one vertex (self-loops) pose no problems for bounded-time termination. Since
the expressions in R consist of constants only and the number of rules in the
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program is finite, none of the variables in the program would change in value
infinitely among an infinite number of values. A cycle corresponding to situa-
tion (1), but not situation (2), in the state space graph of the program must exist
in the ER graph of the program. A cycle is a connected component of the
graph; it may be itself a strongly connected component or it may be part of a
strongly connected component. Since the cycle has at least two vertices, there
exist a strongly connected component with at least 2 vertices in the ER graph, a
fact that violates the first assumption. Therefore, if condition (1) is false, the set
of rules is guaranteed to reach a fixed point in bounded time.

(2) Proof of [B1, B2, B3, B5 and condition (2) is false — a fixed point is always
reachable in bounded time].

Assume that the second condition is false; that is, there does not exist
one cycle of length m (m 22) in C in which each rule r;, i=1,..,m
(represented by vertex v;) is enabled by the set P of preceding adjacent rules
(represented by vertices preceding and adjacent to v; in the ER graph). That is,
in every cycle in C, there exist one rule @ such that the set P of rule vertex a
does not constitute an enable set N for rule a (N & P). Assume that a fixed
point is not always reachable in bounded time.

Assume that rule a stays enabled and hence does not need an enable
set. Rule a will fire again after firing once if and only if at least one variable in
L, has changed its value as a result of the firing of another rule since the last
firing of rule @a. Thus at least two rules must be involved in a cyclic firing
sequence. For rule @ to stay enabled, it must be compatible with every other
rule inside and outside the strongly connected component C by condition CR2
or by condition CR3. Since rule a stays enabled, it may fire anytime provided
the firing will change the value of at least one variable in L. From previous



reasoning, this occurs if and only if at least one variable in L, has been modified
by another rule b. Rule b cannot be compatible with rule a by neither condi-
tion CR2 or condition CR3 and hence they must be compatible by condition
CR1. This leads to a contradiction since rule @ cannot stay enabled, at least not
enabled when rule b is enabled. Furthermore, rule @ must be re-enabled by an
enable set of rules, a fact that contradicts our assumption.

(3) Proof of [B1, B2, B3, B5 and and condition (3) is false — a fixed point is
always reachable in bounded time].

Assume that the third condition is false; that is, the disable subgraphs
Gp(Vp, Ep) of all minimal enable sets S; ; of rule r;, where Vp is a minimal
enable set of parallel vertices preceding and adjacent to rule vertex v; and Ep, is
the set of disable edges connecting vertices in Vp, are not acyclic, and there
does not exist one vertex r; in a disable-cycle having at least one minimal
enable set satisfying condition (3)(a) or condition (3)(b). Assume that a fixed
point is not always reachable in bounded time.

From above, at least two rules must be involved in a cyclic firing
sequence. Since the subgraph of each minimal enable set is not acyclic, the
firing of any one rule in it will disable at least one other rule b (equivalent to
removing the rule b from the minimal enable set), thus effectively making it a
non-enable set. Furthermore, since there does not exist one vertex in a disable-
cycle having at least one minimal enable set satisfying condition (3)(a) or condi-
tion (3)(b), rule b cannot become re-enabled again. Thus no rule in each of the
cycles in the strongly connected component C can fire more than once, a fact
that contradicts our assumption. The case in which a rule stays enabled is
treated in the proof step 2.

(4) Proof of [B1, B2, B3, BS and condition (4) is false — a fixed point is always
reachable in bounded time].
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Assume that the fourth condition is false; that is, there are no two rules
in C which assign conflicting values to the same variable. Assume that a fixed

point is not always reachable in bounded time. From the proof of special form
B theorem, a set of rules satisfying conditions B1, B2 and B3 will not reach a
fixed point only if there is at least one variable v in L whose value is changed
infinitely often among a finite number of values. Then there exist at least two
rules which assign different values to the variable v 1, a fact that contradicts our

assumption.
O

5.5. Special Form C

Before we can describe special form C, we need to define the notion of
a subrule and the concept of a variable-modification graph. A subrule of rule
y with m LHS variables is of the form:

ci=dylcy=dyl--te, =d, IF test

where each ¢; € Ly, d; is the expression to be assigned to variable ¢; in the ori-
ginal rule, and p <m. A single-assignment subrule of rule y is then of the

form:
¢ :=d IF test

where ¢ € Ly, and d is the expression to be assigned to variable ¢ in the origi-
nal rule. Let y 1 be a subrule of rule y. Then L, denote the set of variables in
LHS of subrule y 1, and T, denote the set of variables in the test of subrule y 1.
Note that T,,; =T,. Let exp,, denote the expression to be assigned to variable

w.
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Definition 5.5.1.

The variable-modification (VM) graph of a set of rules is a labeled
directed graph G = (V,E). V is a set of vertices each of which is labeled by a
tuple (i,j) corresponding to a distinct single-assignment subrule, where i is the
rule number and j is the single-assignment subrule number within rule i (count-
ing from left to right). E is a set of edges each of which denotes the interaction
between a pair of single-assignment subrules such that an edge (m,n) connects
vertex m to vertex n iff L, "R, # @, i.e., the variable appearing in LHS of
single-assignment subrule m also appears in RHS of single-assignment subrule
n.

The VM graph corresponding to the program segment of example 5.5.1
is shown in Figure 5.9. Note that there are 11 vertices each of which
corresponds to a distinct single-assignment subrule found in the program seg-
ment. For example, the vertex labeled (2,2) corresponds to single-assignment
subrule » :=d — 1 and the vertex labeled (6,1) corresponds to single-assignment
subrule f := g +d. There is an edge from the vertex labeled (2,2) to the vertex
labeled (1,1) since the variable b appears in L 59 and in R (g ). Similarly, there
is an edge from the vertex labeled (5,2) back to itself (a self-loop) since the vari-
able e appears in L (s 5y and in R (s 5.

Example 5.5.1.

var
a,b,c,d,e,f,g,h :integer;

rules
(*1.%) a=b+c+1 IF rest,
(*2.%) [la=c+11b=d-1 IF test,
(*3.%) [Jb=d+1lc =0 IF test;
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*4.%) Qc=b+d+1 IF tesiy
5. %) [}d =a—1te=e+1.  IF.  tests
(*6. %) [1f =g+d!g=g+h'lh=f |IF lestg

@

mecmrem s
@ @

Figure 5.9. VM Graph Corresponding to Program of Example 5.5.1.
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5.5.1. Special Form C: Compatible Assignment to Variables, L and T Dis-
joint

A set of rules are said to be in special form C if all of the following four
conditions hold.

(C1) Expressions with variables are assigned to the variables in L, i.e.,

R #O.
(C2) All of the rules are pairwise compatible.
(CHLNT=0D.

(C4) For each simple cycle in the variable-modification graph
corresponding to this set of rules, there is at least a pair of rules
(subrules) in the cycle that are compatible by condition CR1 (mutual

exclusivity).

Theorem 5.5.1.

An EQL program whose rules are in special form C will always reach a

fixed point in a bounded number of iterations.

Note that all rules in a set automatically satisfy the condition C4 iff all
rules in this set are compatible pairwise by condition CR1 (mutual exclusivity).

Moreover, the domains of the variables may be finite or infinite.

Observe that if the cycle is a self-loop, then there does not exist a pair
of rules (subrules) that are compatible by condition CR1 (mutual exclusivity).
This occurs if L, MR, # D for subrule x, i.e., the variable appearing in LHS
also appears in RHS of subrule x. This follows from the fact that the cycle con-
sists of a single vertex corresponding to one single-assignment subrule. In the
variable-modification graph of Figure 5.9 corresponding to the program segment
of example 5.5.1, there are self-loops around vertices labeled (5,2) and (6,2)
corresponding to the single-assignment subrules (5,2) and (6,2). Thus the
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program of example 5.5.1 is not in special form C. In fact, it can be shown that
a nontrivial program satisfying conditions C1, C2 and C3 whose variable-

modification graph contains self-loop(s) (condition C4 is violated) may never
reach a fixed point. A nontrivial program is one which does not contain rules
suchas:x :==x IFtest,x =x +0IF test,orx =x —x IF test.

Furthermore, for a cycle whose component vertices all correspond to
the subrules of the same rule, there does not exist a pair of rules (subrules) that
are compatible by condition CR1 (mutual exclusivity). This follows from the
fact that different subrules of the same rule cannot have mutually exclusive tests
since they all have the same test. Referring to the variable-modification graph
of Figure 5.9 (corresponding to the program segment of example 5.5.1), there is
a cycle ((6,1), (6,3), (6,2), (6,1)) whose component vertices all correspond to
subrules of the same rule, namely rule 6. Thus the program of example 5.5.1 is
not in special form C. It can be shown that a nontrivial program satisfying con-
ditions C1, C2 and C3 whose variable-modification graph contains cycle(s) of
this type (condition C4 is violated) may never reach a fixed point.

We now exhibit a program that falls into special form C.

Example 5.5.1.1.

var
a,b,c,d,e,m,n,p :integer;

rules
(*1.% a=b+c+1 IF m>0AND#n=0
(*2.%) [la=c+1 IF m<=0ANDn=0
(*3.%) [Ib=d+1!'e:=0 IF n<>0ANDp =35
(*4.%) [lc=b+d+1le:=1 IF n=0ANDp=5
(*5.%) Jd=a-1 IF p<>5
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Figure 5.10. VM Graph Corresponding to Program of Example 5.5.1.1.

It is obvious that this set of rules satisfies the conditions C1 and C3 of special
form C. It is easy to see that there are five distinct cycles in the VM graph

corresponding to the program segment in this example:

cycle 1: ((1,1), (5,1), 3,1), (1,1))

cycle 2: ((2,1), (5,1), (4.1), (2,1))

cycle 3: ((1,1), (5,1), (4,1), (1,1))
cycle 4: ((1,1), (5,1), 3,1), 4,1), (1,1))
cycle 5: ((2,1), (5,1), 3,1), (4,1), (2,1))

Note that every cycle except cycle 1 contains the single-assignment subrules



(4,1) and (5,1), and that rules 4 and 5 are compatible by condition CR1 (mutual
exclusivity). Cycle 1 contains the single-assignment subrules 3 and 5, which are

also compatible by condition CR1. Since there is at least one pair of rules
(subrules) that are compatible by condition CR1 in each cycle, condition C4 of
special form C is satisfied. Rule 1 and rule 2 do not satisfy condition CR2 since
the same variable a appears in both rules. However, these pair of rules are com-
patible by condition CR1. Rule 3 and rule 4 do not satisfy condition CR2 or
CR3 since the same variable e appears in both rules and is assigned conflicting
values. However, these pair of rules are compatible by condition CR1. All
other rule pairs are compatible by condition CR2 and thus the condition C2 is
satisfied. Hence, we can conclude that the set of rules in this program segment
is in special form C and thus is always guaranteed to reach a fixed point in
bounded time.

Proof of Theorem 5.5.1.

Given a set of rules in special form C, assume that a fixed point is not
always reachable in bounded time. Then by the definitions given in chapter 4,
in the state space graph corresponding to the program, there must be (1) at least
one cycle, or (2) at least one simple path of unbounded length. Since the
expressions in the set R consist of both constant and variable terms, the vari-
ables in the program may change in value infinitely among an infinite number of
values (for variables with infinite domains) and thus a cycle in the variable-
modification graph of the program may correspond to either situation (1) or
situation (2) in the state space graph of the program.

Since L NT =@ (condition C3), the firing of any rule will not affect
the value of any test, i.e., will not enable or disable any rule. Hence, the values
of all tests are fixed once the values of all input variables have been read in and
remain constant throughout the execution of the program. It can be concluded
from this fact that cycles of rule firings cannot be created nor destroyed during
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the course of rule firings and thus all cycles in the VM graph corresponding to
the program, if any, are persistent during the course of rule firings. There are
two cases of cyclic firing sequence to consider. A cyclic sequence of rule firings
(r1,79, 73, «.es Ts, T 1) OCCULS if

(Case 1) the firing of rule »; modifies at least one variable in the RHS of rule
T mod syr1> fOri =1,.., 5, and changes the value of the expression contain-
ing the modified variable(s), and all rules in this cycle are enabled; or

(Case 2) the length of the cycle is at least two, i.e., s =2, and there are at least

two rules in it which assign different values to the same variable(s).

Let us first consider case 1. The first condition of case 1 is necessary for a cycle
to occur since an enabled rule cannot fire again once it has already fired once
unless at least one expression on the right side of the assignment has changed its
value since the last firing of that rule. The second condition of case 1, that all
rules in the cycle are enabled, is also necessary for a cycle to occur since the
firing of any rule cannot enable any rule that is not already enabled. This
implies that no pair of rules in it are compatible by condition CR1 (mutual
exclusivity). Since the firing of any rule cannot possibly enable rules that have
not been enabled at the start of the execution of the program, all rules in the
cycle must be enabled at the start. However, this requirement violates our
assumption (condition C4) that there is at least one pair of rules that are compa-
tible by condition CR1 in each distinct simple cycle. Therefore, a cyclic
sequence of rule firings satisfying the conditions of case 1 cannot exist for rules
in special form C. It should be noted that rule(s) in this non-cycle may fire more
than once, but the number of such firings for any given rule in it is bounded by a
finite number that is a function of the length of the non-cycle.

We now consider the second case. For this cycle to occur, at least two
of the rules having at least one variable in common in L are not compatible by
condition CR1 and this variable is assigned conflicting values in these rules.
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However, this violates our compatibility assumption (condition C2) that all rules
are pairwise compatible. Hence, it can be concluded that a set of rules in special
form C is always guaranteed to reach a fixed point in bounded time.

O

5.5.2. Simplifying the Analysis When L and R Disjoint

Given a set S of rules in special form C, if L "R = &, then all vari-
ables in the set R can be treated as constants since these variables do not appear
in the set L and thus are never modified during the course of rule firings. Asa
result, the special form A can be applied instead of the special from C, reducing
the complexity of the recognition procedure as well as allowing the analysis
procedure to obtain a more precise bound on the number of rule firings for the
set of rules to reach a fixed point. The recognition procedure should therefore
first determines whether L M R =@ so that it can decide whether to apply the
special form C or the special form A.

5.6. Special Form D

In section 5.5, we have introduced the concept of a variable-
modification (VM) graph. To define special form D, we extend this graph to
include a new type of edges: the disable edge. To distinguish the original type
of edge from the new disable edge, we call the original edge an LR (set L — set
R) edge to reflect the fact that an LR edge (m ,n) connects vertex m 10 vertex z
iff L,, "R, # @, i.e., the variable appearing in the set L of single-assignment
subrule m also appears in the set R of single-assignment subrule n. A disable
edge (r,s) connects vertex 7 to VErex § iff the firing of rule r always disables
the enabling condition of rule s. Special form D also makes use of the ER
graph defined in section 5.3 for the recognition procedure of special form B.
Let L., R,, and T, denote respectively the sets of variables appearing in LHS,
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RHS, and the test (enabling condition) of rule x.

The extended VM graph corresponding to the program segment of
example 5.6.1 is shown in Figure 5.11. LR edges are represented by solid
arrows whereas disable edges are represented by dashed arrows in the graph.
Note that there are 11 vertices each of which corresponds to a distinct single-
assignment subrule found in the program segment. For example, the vertex
labeled (2,2) corresponds to single-assignment subrule b :=d — 1 and the vertex
labeled (6,1) corresponds to single-assignment subrule f =g +d. There is an
LR edge from the vertex labeled (2,2) to the vertex labeled (1,1) since the vari-
able b appears in L ;) and in R 1 ). Similarly, there is an LR edge from the
vertex labeled (5,2) back to itself (a self-loop) since the variable e appears in
L5y and in R 55 There is a disable edge from the vertices labeled (3,i),
i = 1,2, to the vertices labeled (6,/), j = 1,2,3, since the firing of rule 3 disables

the enabling condition of rule 6.

Example 5.6.1.

var
a,b,c,d,e,f,g,h,m,n,p,q :integer;

rules
(*1.%) a=b+c+1 IF m>5
(*2.%) Na=c+1!b=d-1 IF k<0
(*3.%) 1b=d+1lc=1 IF a>10
*4.%*) [Jce=b+d+1 IF n<10
(*5.%) [ld =a—-1le=e+1 IF p>0ANDg >0
(*6.% [1f =g+dlg=g+hlh=f IF ¢=0
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Figure 5.11. VM Graph Corresponding to Program of Example 5.6.1.



5.6.1. Special Form D: Compatible Assignment to Variables, L and T Not

Disjoint
A set of rules are said to be in special form D if all of the following five

conditions hold.

(D1) Expressions with variables are assigned to the variables in L, i.e.,
R #O.

(D2) All of the rules are compatible pairwise.

D3L NT #D.

(D4) For each distinct cycle consisting of LR edges only in the
variable-modification graph corresponding to this set of rules, there is at
least a pair of rules (subrules) in the cycle that are compatible by condi-
tion CR1 (mutual exclusivity), or there is at least one disable edge in the
cycle. (If a disable edge connects one rule vertex a 1o another rule ver-
tex b, then there is one disable edge connecting every subrule vertex of
rule a to every subrule vertex of rule b .)

(D5) For each cycle in the ER graph corresponding to this set of rules,
no two rules in the cycle assign different expressions to the same vari-
able.

(D6) Rules in disjoint simple cycles (with at least two vertices) in the
ER graph do not assign different expressions to a common variable

appearing in their LHS.

Theorem 5.6.1.

An EQL program whose rules are in special form D will always reach a

fixed point in a bounded number of iterations.

Note that all rules in a set satisfy condition D4 iff all rules in this set are
compatible pairwise by condition CRI (mutual exclusivity). Moreover, the



domains of the variables may be finite or infinite.

Observe that if the cycle is a self-loop, then there does not exist a pair
of rules (subrules) that are compatible by condition CR1 (mutual exclusivity).
This occurs if L, "R, # @ for subrule x, i.e., the variable appearing in LHS
also appears in RHS of subrule x. This follows from the fact that the cycle con-
sists of a single vertex corresponding to one single-assignment subrule. In the
variable-modification graph of Figure 5.11 (corresponding to the program seg-
ment of example 5.6.1), there are self-loops around vertices labeled (5,2) and
(6,2) corresponding to single-assignment subrules (5,2) and (6,2). Thus the pro-
gram of example 5.6.1 is not in special form D.

Furthermore, for a cycle whose component vertices all correspond to
subrules of the same rule, there does not exist a pair of rules (subrules) that are
compatible by condition CR1 (mutual exclusivity). This follows from the fact
that different subrules of the same rule cannot have mutually exclusive tests
since they all have the same test. Referring to the variable-modification graph
of Figure 5.11 corresponding to the program segment of example 5.6.1, there is
a cycle ((6,1), (6,3), (6,2), (6,1)) whose component vertices all correspond to
subrules of the same rule, namely rule 6. Thus the program of example 5.6.1 is
not in special form D.

We now exhibit a program that falls into special form D.

Example 5.6.1.1.

var
a,b,c,d,e,m,n,p,q :integer;

rules
(*1.%) a=b+c+1 IF m>0ANDn=0
*2.%) [a=c+1 TIF m<=0ANDn =0ANDc =10
(*3.%) [b=d+1le=0 IF n<>0ANDp =5
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(*4.%) [lc=b+d+1le:=1 IF p=5ANDd <0
(*5.%) [ld =a-1 TF p<>5ANDg <0
*#6.%) [lg=2 IF a>10

@ @

Figure 5.12. VM Graph Corresponding to Program of Example 5.6.1.1.
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Figure 5.13. ER Graph Corresponding to Program of Example 5.6.1.1.

It is obvious that this set of rules satisfies conditions D1 and D3 of special form
D. It is easy to see that there are five simple cycles each of which consists of
LR edges only in the variable-modification graph corresponding to the program
segment in this example:

cycle 1: ((1,1), (5,1), (3,1), (1,1))

cycle 2: ((2,1), (5,1), (4,1), 2,1))

cycle 3: ((1,1), (5,1), (4,1), (1,1))
cycle 4: ((1,1), (5,1), 3,1), (4,1), (1,1))
cycle 5: ((2,1), (5,1), 3,1), (4,1), (2,1))

Note that every cycle except cycle 1 contains the single-assignment subrules
(4,1) and (5,1), and that rules 4 and 5 are compatible by condition CR1 (mutual
exclusivity). Cycle 1 contains the single-assignment subrules 3 and 5, which are
also compatible by condition CR1. Since there is at least one pair of rules
(subrules) that are compatible by condition CR1 in each cycle, condition D4 of
special form D is satisfied. The rule pair 1 and 2, and the rule pair 3 and 4 do
not satisfy condition CR2 or CR3 since the same variable e appears in both
rules and is assigned conflicting values. However, these pairs of rules are
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compatible by condition CR1. All other rule pairs are compatible by condition

CR2 and thus the condition D2 is satisfied. In the ER graph (Figure 5.13)
corresponding to this program, there is one cycle (2,6,5,4,2) but there are no two
rules in it that assign conflicting values to the same variable and thus condition
D5 is also satisfied. Condition D6 is also satisfied since there is only one cycle.
Hence, we can conclude that the set of rules in this program segment is in spe-
cial form D and thus is always guaranteed to reach a fixed point in bounded

time.

Proof of Theorem 5.6.1.

Given a set of rules in special form D, assume that a fixed point is not
always reachable in bounded time. Then by the definitions given in chapter 4,
in the state space graph corresponding to the program, there must be (1) at least
one cycle, or (2) at least one simple path of unbounded length. Since the
expressions in the set R consist of both constant and variable terms, the vari-
ables in the program may change in value infinitely among an infinite number of
values (for variables with infinite domains), or among a finite number of values
(for variables with finite domains). Hence, the state space graph may have an
infinite number of states and thus the lengths of some paths may be infinite.
Therefore, a cycle in the VM graph or a cycle in the ER graph of the program
may correspond to either situation (1) or situation (2) in the state space graph of
the program.

We refer to a cycle consisting of LR edges only as an LR-cycle, and a
cycle consisting of ER edges only as an ER-cycle. A cycle in the ER graph is
said to be good if and only if no two rules in it assign different values to the
same variable. A cycle in the ER graph is said to be bad if and only if at least
two rules in it assign different values to the same variable. An assignment
conflict is said to have occurred if two rules in a cycle assign different values to
the same variable.
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The part of the proof that deals with the cycles of firing sequences
which consist of LR edges only is more complicated than that for special form
C, owing to the fact that L T # (condition D3) and hence not all of the
rules in a cycle need to be enabled at a given time for this type of cyclic firing
sequences to occur.

Since L N T # &, the firing of a rule may affect the logical value of the
enabling condition associated with this rule or other rule(s), i.e., may enable or
disable this rule and/or other rule(s). Hence, the logical values of some enabling
conditions are not fixed even after the values of all input variables have been
read in. It can be concluded from this fact that cycles of rule firings can be
created or destroyed dynamically during the course of rule firings. Different
patterns of cyclic rule firings may be exhibited given different initial input
values and given different orders in which the enabled rules are fired. This
greatly complicates the analysis of the rules. At first glance, this may seem to
give rise to an extremely large number of cases of cycles and rule interactions.
But after a careful case analysis, it is found that there are three general cases of
cyclic firing sequences to consider. A cyclic sequence of rule firings
(1,79, 73, ..., T's, I'1) may occur if one of the following conditions becomes true.

Case 1: LR-cycle. (1) The firing of rule r; modifies at least one variable in the
RHS of rule 7 (; og 5)+1, fori =1, ..., s, and changes the value of the expres-
sion containing the modified variable(s), and [(2a) all rules in this cycle are
permanently enabled, or (2b) not all rules are enabled at one time but they
become enabled and disabled in such a way that makes this cycle possible].

Case 2: ER-cycle. The firing of rule r; potentially enables rule 7 (; ;04 5y+1, fOr
i =1,..,5s,and there are at least two rules in it which assign different values
to the same variable.

Case 3: LR/ER-cycle. A combination cycle consisting of LR and ER edges.

We next show that these ‘cycles’ do not lead to infinite rule firings provided that
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all of the rules in the set satisfy all conditions of the special form D.

Case 1: LR-cycle.

The first condition of case 1 is necessary for this type of cycles to occur
since an enabled rule cannot fire again once it has already fired once unless
another firing of that rule will change the value of at least one variable on the
left side of the assignment. This may occur if:

Situation 1: at least one expression on the right side of the assignment
has changed its value since the last firing of that rule, and/or

Situation 2: at least one variable on the left side of the assignment has
changed its value since the last firing of that rule.

We first consider situation 1. (Situation 2 is treated in the proof steps
for case 2 below.) For this type of cycles to occur, one of the following condi-
tions also must be true. We consider each condition ([1.1]-[1.5]) separately.

[1.1] Condition 2a of case 1: All rules in the cycle are permanently
enabled. This implies that no pair of rules in it are compatible by condition CR1
(mutual exclusivity) or there is no disable edge in the cycle. However, this
requirement violates our assumptions (1) (condition D4) that there is at least one
pair of rules that are compatible by condition CR1 in each simple cycle, or (2)
there is at least one disable edge in each distinct simple cycle. The first
assumption implies that there is at least one disabled rule in the cycle. The
second assumption implies: suppose there is a disable edge (i, j), then firing
rule r; will disable rule r; and thus not all rules can be enabled permanently.
Therefore, a cyclic sequence of rule firings satisfying these conditions cannot
exist. The situation in which rule 7; is enabled again by another rule is treated
in [1.4] and [1.5] below.
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Condition 2b of case 1: Since the firing of any rule can potentially
énable (and disable) rules that have not been enabled (disabled) at the start of
the execution of the program, it is possible that not all rules are enabled at one
time but they become enabled and disabled in such a way that make this LR-
cycle possible. We shall show that this kind of cycles is not possible for rules in
special form D in the following proof steps.

[1.2] With at least one pair of rules compatible by condition CR1, it is
still possible that they become alternatively enabled so that they can alterna-
tively fire since L N T # &. However, there must be a bad cycle of ER edges in
the ER graph with at least two rules in it that assign conflicting values to the
same variable(s), as will be shown in the proof steps for case 2 below. This
violates condition D5 and thus a cyclic sequence of rule firings satisfying these
conditions cannot exist. If there does not exist a bad cycle in the ER graph and
all rules are compatible pairwise, then only one of the rules compatible pairwise
by condition CR1 only can be enabled and it stays enabled during the course of
rule firings.

[1.3] Suppose that there is at least one pair of rules compatible by con-
dition CR1 in the LR-cycle, but there is no bad ER-cycle. If there are at least
two rules in the LR-cycle with conflicting assignments to the same variable,
these rules must be compatible by condition CR1. Since there is no bad ER-
cycle, these rules cannot become alternatively enabled. In fact, only one of
these CR1-compatible rules (r,,) stays enabled permanently while the other
rules which are compatible with this rule r,, by condition CR1 only are dis-
abled, assuming no other rule interferences. Therefore, no cyclic rule firings can
occur under these conditions.

Suppose that there is at least one disable edge (j, k) in the LR-cycle,
but there is no bad ER-cycle. Assume that there does not exist a pair of rules in
the LR-cycle that are compatible by condition CR1. Suppose rule r; is in this
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LR-cycle and is disabled by rule r;. Suppose rule r; enables rule 7, sometime

later. There are two cases of possible cyclic rule firings to consider.

[1.4] (1) Rule 7 is in the LR-cycle. Then there must be a variable v in
both set L1 and set L;, and rule r4 assigns the value m to v such thatm € V; ,,
and rule r; assigns a value n to v such that n € V. This implies thatm #n
and thus rule r; and rule r; must be compatible by condition CR1. Since there
is now at least one pair of rules compatible by condition CR1 in the cycle, the
proof arguments [1.1]-[1.3] above apply.

[1.5] (2) Rule 7, is not in the LR-cycle. If rule r; is enabled repeatedly
by rule r , rule r, is also disabled repeatedly by rule 7;. Rule r; can be enabled
infinitely often by rule r if rule 7 can fire infinitely often -- possible if rule r
is itself in an LR-cycle or an ER-cycle. Rules satisfying all conditions of the
special form D which are in an ER-cycle cannot fire infinitely often, as will be
shown in the proof steps for case 2 below. If rule ry is in an LR-cycle, then it
cannot fire infinitely often provided that one of the above conditions [1.1]-[1.4]
is true. If rule r is enabled infinitely often by another rule 75, then rule r is in
the same situation as rule 7, above and thus the proof steps above apply. Now
suppose rule 7, is also in another LR-cycle. We repeat this argument for rules
71,77 F'3,.... Since the number of rules in the set is finite, we will eventually
reuse a rule 7; that has already been considered. Since all rules are compatible
pairwise and all rules in every cycle satisfy conditions D4 and DS, rules cannot
be enabled infinitely often under this condition.

Case 2: ER-cycle.

In this case, a set of rules will not reach a fixed point only if there is at
least one variable v in L whose value is changed infinitely often among a finite
number of values (for variables with finite domains), or among an infinite
number of values (for variables with infinite domains). Then one of the
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following conditions is true.

(1) There must be an LR cycle (of length one or more) in the VM
graph.
(2) There exist at least two rules which assign different values to the

variable v ;.

The first condition is treated in case 1 above, and the second condition is treated
in the proof of theorem 5.3.1 relevant to special form B.

Case 3: Cycles with ER and LR edges.

There are three situations to consider.

[3.1] Joint ER- and LR- cycles. Both ER-cycles and LR-cycles have
been separately shown not to cause infinite rule firings in case 1 and case 2
above, provided that the set of rules satisfies all conditions of the special form
D. For each case, all possible interactions among rules in and out of the cycles
have been shown not to affect the validity of the proof argument.

[3.2] Partially joint ER-cycle and LR-cycle. Both ER-cycles and LR-
cycles have been separately shown not to cause infinite rule firings in case 1 and
case 2 above, provided that the set of rules satisfies all conditions of the special
form D. For each case, all possible interactions among rules in and out of the
cycles have been shown not to affect the validity of the proof argument.

[3.3] The ER edge(s) and the LR edge(s) form a cycle with no overlap-
ping ER and LR edges. Since the LR edges do not form an LR-cycle, the
value(s) of the expression(s) in the set R of at least one rule ,, is(are) fixed and
can be treated as constant(s) during the course of rule firings. Consequently, no
cyclic rule firings of the type in case 1 can occur. Since all rules are compatible
pairwise, even if there are conflicting assignments to the same variable(s) by

two or more rules, these rules must be compatible pairwise by condition CR1.
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Since the ER edges do not form an ER-cycle, there cannot be alternative ena-
bling of these CR1-compatible rules, as shown in the proof steps for case 2
above. Thus no cyclic rule firings can occur in this case.

Hence, it can be concluded that a set of rules in special form D is
always guaranteed to reach a fixed point in bounded time.
]

5.6.2. Simplifying the Analysis When L and R Disjoint

Given a set S of rules in special form D, if L "R =, then all vari-
ables in the set R can be treated as constants since these variables do not appear
in the set L and thus are never modified during the course of rule firings. Asa
result, special form B can be applied instead of special from D, reducing the
complexity of the recognition procedure as well as making it possible to derive
a more precise bound on the number of rule firings to reach a fixed point. The
recognition procedure should therefore first determines whether L NR = & in
order to decide whether to apply the special form D or the special form B.

5.7. The General Analysis Strategy

The utility of the special forms described in preceding sections might
seem quite limited since all conditions of a special form must be satisfied by the
complete set of rules in a program. However, the main use of the special forms
in our analysis tools is not to identify special-case programs. The leverage of a
special form comes about when we can apply it to a subset of rules and conclude
that at least some of the variables must attain stable values in bounded time. It
is unnecessary for all the rules of a program to be in a special form in order to
be able to reduce the state space. The exploitation of the special forms in a gen-
eral strategy is explained in this section. Our general strategy for tackling the
analysis problem is best understood by an example. Suppose only special form
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A (see section 5.2) is available in our general analysis tool.

Example 5.7.1.
input: read(b, ¢)

(*1.%) al:=true IFb =true AND ¢ =true
(*2.%) [1al :=true IFb =true AND ¢ =false
(*3.%) [1a2 =false IF ¢ =true

(*4.%) []a3 :=true IFal =true AND a2 = false
(*5.%) [1a4 =true IFal =false AND a2 = false
(*6.%) [1a4 =false [Fal =false AND a2 = true

For this program, L N T # & and thus the rules are not in special form A. How-
ever, observe that rules 1, 2 and 3 by themselves are of the special form and that
all the variables in these rules do not appear in LHS of the rest of the rules of the
program and thus will not be modified by them. We can readily conclude that
the variables a1 and a2 must attain stable values in bounded time, and these
two variables can be considered as constants for rules 4, 5 and 6 of the program.
We can take advantage of this observation and rewrite the program into a

simpler one, as shown below.
input: read(a 1, a2)

(*4.%) [1a3=true IFal=true AND a2 = false
(*5.%) [1a4:=true [Fal="false AND a2 = false
(*6.%) [lad =false IFal ={false AND a2 =true

Note that a1 and a2 are now treated as input variables. This reduced program
is of the special form since all assignments are to constants, L and T are dis-
joint, and all tests are mutually exclusive. Hence this program is always
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guaranteed to reach a fixed point in bounded time. This guarantees that the ori-
ginal program must reach a fixed point in bounded time.

The other special forms presented in preceding sections can be
exploited in the above fashion. Our general strategy for tackling the analysis
problem is as follows.

(1) Identify some subset of the rules which are of a special form (determined by
looking up a catalog of special forms) and which can be treated indepen-
dently. We call a subset of rules independent iff its fixed-point convergence
can be determined without considering the behavior of the rest of the rules in
the program. In other words, the fixed-point convergence of an independent
subset of rules does not depend on the behavior of the rest of the rules in the
program. Rewrite the program to take advantage of the fact that some vari-
ables can be treated as constants because of the special form.

(2) If none of the special forms applies, identify an independent subset of the
rules and check the state space for that subset to determine if a fixed point
can always be reached. Rewrite the program as in (1) to yield simpler ones if
possible.

(3) Perform an analysis on each of the programs resulting from (1) or (2).
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EQL Rule-Based Program

Simpler EQL Programs

Textual Analyzer

Check program against
special forms stored
in the knowledge base

No independent Independent subset(s)

subset of rules of rules are in
is in special special form(s)
form

State-Space Analyzer
Rule Rewriter

Analyze the state
space representing an

independent subset of
rules

Figure 5.14, The General Analysis Strategy.

There are several ways by which the subsets of rules are selected in
each iteration of the analysis algorithm. We shall outline the simplest selection
strategy here. Suppose R is the set of rules at a particular iteration step of the
analysis algorithm. Let S be the set of rules in special form F, where F is one of
the special forms catalogued. We first initialize S to be the empty set. A simple
rule set selection strategy is to incrementally add arule i ({ € R) to § if the rule
set Su{i} is in special form F. Note that special forms which are
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computationally faster to check are applied first. Starting with the first rule in

the program, each rule is checked for inclusion in § 1n the order it appears in the
program. If no rule is in a special form after this first pass, the second rule is
checked first, and the above procedure is repeated. In order for a rule i to be
added to S, all conditions of special form F must be satisfied by the rules in the
set § U {i}. The selection algorithm terminates when all rules in the set R are
checked in the way described above. The output from the selection algorithm is
the set S.

Intuitively, this general analysis strategy allows us to use a special form
in the induction step of a proof, by structural induction, that an EQL program
always takes a bounded number of rule firings to reach a fixed point. Thus rela-
tively restricted special forms may be exploited to analyze a much larger class
of programs. We next show how information extracted by this analysis algo-
rithm can be used to compute the numeric response time bound for an EQL pro-
gram.

5.7.1. Derivation of the Program Response Time Bound

A numeric bound on the number of rule firings for a program to reach a
fixed point can be easily derived as follows. Note that the analysis algorithm
breaks the EQL program into smaller rule sets, and the rules in the rule sets
selected in iteration i are independent from those in the rule sets selected in
iteration j, for i <j. This in fact suggests an optimal schedule for firing the
rules in the program. Rules in the rule sets selected during the first iteration
should be fired first until a fixed point is reached, followed by the firing of those
rules in the rule sets selected during the second iteration and later iterations.
With this scheduling policy and a uniprocessor system, the bound on the number
of rule firings is the sum of all the bounds (associated with the special forms
identified or computed by the state space analyzer for non-special-form rule
sets) on the number of rule firings of each rule set. A different upper bound can
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also be easily derived if a different scheduling policy and an alternative run-time

architecture are assumed.

Our analysis strategy is general enough to accomodate different
scheduling policies and execution architecture, yet it can be easily tailored to
specific run-time environment. In addition to the numeric bound computation
method described above, there is also a timing analyzer in our analysis system
which provides an exact upper bound on the number of rule firings by determin-
ing the longest path from an initial state to a fixed point in the state space graph
corresponding to the EQL program.

In [Browne, Cheng & Mok 88], we reported on the application of a
preliminary version of our suite of computer-aided design tools based on this
general analysis strategy to an analysis of the Cryogenic Hydrogen Pressure
Malfunction Procedure of the Space Shuttle Vehicle (SSV) Pressure Control
System. The analysis tools employing this general analysis strategy shows a
drastic improvement in terms of time and space over tools that primarily rely on
exhaustive state-space checking, as evidenced by the two-second time it took for
our tools to complete the analysis of the aforementioned rule-based program as
compared to a two-week time it took for a state-space-based version of our tools
to complete the analysis of only a subset (20 out of 36 rules) of the same pro-

gram.

5.8. A Note on the Special Forms of Rules

We now take a closer look at the identification of special forms of rules
as a technique for speeding up the analysis process. In sequential, control-driven
programs, the analysis problem can be solved by the use of bound functions and
the recognition of well-founded ordering (e.g., [Dershowitz & Manna 791,
[Gries 811). These techniques can be applied to Prolog and Prolog-style pro-
grams owing to the fact that such programs are still control-driven. Rule-based

programs, however, are in general nondeterministic in the sense that there is no
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explicit control flow. The control flow of rule-based programs is embedded in
the data and cannot be easily derived. It can also be implementation-dependent.
One way to prove bounded-time termination of rule-based programs is to apply
model-checking on the state transition graph corresponding to the program.
This approach is not viable for large rule-based programs since the analysis pro-
cedure has at least exponential time complexity. In section 5.1.1, we have
shown that the general analysis problem is undecidable by exhibiting a simple
rule-based program that simulates a two-counter machine. Thus any test to
guarantee bounded-time termination is a sufficient condition only. This analysis
problem has been shown to be PSPACE-complete for rule-based programs with
finite domains ([Mok 89]). To overcome this computational complexity prob-
lem and still be able to determine whether a fixed point is reachable in bounded
time for a large class of rule-based programs, we have developed the technique
of identifying special forms of rules for which bounded-time fixed-point reacha-
bility is guaranteed. In this section, we examine the techniques employed by
bound functions for control-driven programs in relation to our technique of spe-
cial form identification for rule-based programs. Our aim is to provide a formal
framework behind the technique of special form identification.

5.8.1. Bound Functions

In traditional proof of program correctness, a bound function serves the
following two purposes: (1) to show that a program (usually with at least one
loop) terminates, and (2) to give an upper bound on the number of useful state-
ment executions (or state changes) before the program terminates. Suppose that
we are given {p } program {q } and we want to show that ¢ will hold within at
most n state changes. A bound function f is a metric that maps program states
to natural numbers smaller than » such that, any state change results in g, or
preserves p and decreases the value of /. Since a lower bound is associated
with the bound function, program is guaranteed to terminate within a bounded
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number of n state changes.

Several strategies (heuristics) have been suggested for finding bound

functions:

(1) Use the form of the invariant of a loop as a suggestion for a bound

function.

(2) Try to derive the bound function from the notation of the problem

and its soluation.

(3) Use the lexicographic ordering of certain variables in the program as
the bound function.

5.8.2. Special Forms of Rules

Instead of attempting to derive and establish an invariant and a bound
function for a program (with loops), the method of identifying special forms of
rules tackles the problem of proving progress toward termination by checking
the sets of rules in the program to see if they fall into special classes that satisfy
the conditions of some special forms. A set of rules found to be in one of the
special forms are always guaranteed to reach a fixed point in bounded time.

It is not necessary to use a heuristic or an ad-hoc method to derive an
invariant and a bound function appropriate for proving the progress toward ter-
mination of a program; only a mechanical application of the recognition algo-
rithm of special forms is needed. The burden of deriving the invariant and the
bound function has been transferred to a one-time development of the special
forms of rules encompassing a large class of programs and the derivation of the
corresponding proofs of correctness.
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5.8.2.1. Why Do We Need Special Forms of Rules Instead of Bound Func-
tions?

Although several theorems concerning ordered tuples have been derived
to allow the construction of standard bound functions for program loops satisfy-
ing certain specifications as specified by the theorems, the bound functions still
must be constructed in order to show that an arbitrary program will terminate
execution in bounded time. The recognition of lexicographic ordering has been
used to mechanize the problem of proving termination of a restricted class of
programs. It also has been shown to be useful in certain classes of Prolog or
Prolog-style programs in which there is still a basic control flow, namely, top-
down left-to-right evaluation of the set of clauses or logical rules ((Ullman &
van Gelder 88]). In their method, for rules satisfying certain properties, a set of
inequalities whose satisfaction is sufficient for termination of the rules is gen-
erated in polynomial time. Then a polynomial test for satisfaction of these ine-
quality constraints is constructed. Their basic technique is to find a well-
founded ordering on the procedure calls, that is, a nonnegative integer function
of the procedure arguments that is guaranteed to decrease at each recursive call.
Note that this integer function is basically a bound function. The question of
termination of recursions also has been thoroughly investigated in the context of
proving correctness of control-driven programs (e.g., [Dershowitz & Manna
79D).

A sequential, control-driven finite program will not terminate if and
only if there is an infinite loop (the testing loop condition for (re)entering the
loop is always true). This implies that a program without a loop (in the form of
iteration or recursion) will always terminate execution in bounded time. This
property also applies to Prolog and Prolog-style programs, with the infinite loop
replaced by infinite recursive calling caused by an unbounded argument size
([Ullman 85], [Ullman & van Gelder 88]). This is not the case in rule-based pro-
grams, where the absence of infinite looping in the traditional sense does not
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imply bounded-time termination. A rule-based program may not reach a fixed
point in bounded time if in the state space graph corresponding to the program,
there is (1) at least one cycle, or (2) at Jeast one simple path of unbounded
length. Since the expressions in the set R consist of both constant and variable
terms, the variables in the program may change in value infinitely among an
infinite number of values (for variables with infinite domains), or among a finite

number of values (for variables with finite domains).

Since there is no readily discernible structure or flow of control in rule-
based programs, it is extremely difficult, if not impossible, to construct an
appropriate bound function for an arbitrary program. It is often the case in
rule-based programs that no such bound function can be found since there does
not exist a variable whose value is bounded from above (below) and is mono-
tonically increasing (decreasing). The technique of using lexicographic ordered
tuples may not be applied since it is often the case that no such ordered tuples
can be found. Bound functions are thus not appropriate for proving termination
of rule-based programs since there are no control-driven loops or recursive pro-
cedure calls in such programs.

One may argue that the method of bound functions still can be applied

to prove bounded-time termination for rule-based programs by considering a
bound function as defined by either of the following metrics.

(1) f 1: The number of variables which have not reached stable values.

() f »: The number of rules which are enabled (the enabled rules whose
firing do not change the value(s) of the variable(s) in LHS are con-
sidered disabled for this purpose).

Consider the first bound function f ;. The bound function is bounded by 0,
which is the number of variables that have not reached stable values at fixed
point, assuming there is one. For programs that will reach a fixed point in a

bounded number of rule firings, the value of f; is nonincreasing, but may not be
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monotone nonincreasing. The problem is how to prove or disprove that the
value of f, decreases for an arbitrary program, which may or may not ter-

minate.

Now consider the second bound function f,. The bound function is
also bounded by 0, which is the number of enabled rules at fixed point, assum-
ing there is one. The value of f ; may not be monotone nonincreasing, even for
programs that will reach a fixed point in a bounded number of rule firings,
owing to the fact that rules may become enabled and disabled alternatively dur-
ing the course of execution of the program. Again the problem is how to prove
or disprove that the value of f , decreases for an arbitrary program, which may

or may not terminate.

Thus these two candidate ‘bound functions’ are not suitable for showing
bounded-time termination of rule-based programs unless the stated problems
can be solved systematically. Even though appropriate bound functions can be
derived for some very simple rule-based programs with more regular structures
(such rule-based programs often can be easily translated into control-driven pro-
grams), these bound functions can only be used for these particular programs
and must be derived in an often heuristic way. The method of identifying rules
in special forms, however, is more amenable to mechanization and thus it is

more general.

It is our belief that the application of bound functions which only deal
with the value(s) of certain variable(s) and/or argument sizes are not powerful
enough to answer the question of whether a rule-based program can be
guaranteed to terminate in bounded time. Thus it is necessary to examine the
syntactic form as well as the semantic form of the rules in the program. This is
accomplished by the identification of rules in special forms, which analyze the
relation among all rules in the program. For example, one of the conditions of
both special form A and special form B requires that every pair of rules be com-
patible (see section 5.2 and section 5.3). The recognition procedures for both
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special forms thus check the relation among every pair of rules in the program.
As another example, the fourth condition (B4) of special form B requires that
there are no conflicting assignments in any distinct cycles in the ER graph
corresponding to the program. The recognition procedure for special form B
thus needs to check the relation among not only pairs of rules, but also

sequences and sets of rules.

As indicated earlier, bound functions are also used to show a bound on
the number of useful statement executions (or state changes) before the program
terminates. For each special form, a bound on the number of rule firings can
also derived and thus a program that falls in one of these special forms is
guaranteed to reach a fixed point within the time bound specified for that partic-
ular special form of rules.

In conclusion, the identification of an arbitrary program (or a set of
rules) as in one of the special forms of rules is equivalent to the use of the
appropriate bound function to show that the program will terminate execution in
bounded time, but the identification of special forms of rules is more appropriate

for rule-based programs and is more amenable to mechanization.

5.9. Analysis of Two Expert System Modules

The analysis is in two steps. First, rules in the Space Station Expert
System are translated into equivalent rules written in EQL. Second, the
equivalent set of rules in EQL is analyzed using the general analysis strategy
discussed in section 5.7. In the following subsections, we report on the transla-
tion into EQL programs and the analyses of two rule-based modules (originally
written in OPS5, CLIPS and Lisp) of the Space Station Expert System:

(1) the Integrated Status Assessment Expert System (ISA), and
(2) the Fuel Cell Monitoring Expert System (FCE).
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The EQL versions of both programs appear in appendix D and appendix E.

5.9.1. Translating the Integrated Status Assessment Expert System into an
EQL Program

The purpose of the Integrated Status Assessment Expert System (ISA)
program is to determine the faulty components in a network. A component can
be either an entity (node) or a relationship (link). A relationship is a directed
edge connecting two entities. Components are in one of three states: nominal,
suspect, or failed. A failed entity can be replaced by an available backup entity.
This expert system makes use of simple strategies to trace failed components in
a network. The ISA Expert System consists of:

e« 35EQL rules,
« 46 variables (29 of which are input variables), and

e 12 constants.

Consider the first rule in the ISA program.

(P FIND-BAD-RELATIONSHIPS
(ENTITY “NAME <NAME> "STATE << SUSPECT FAILED >>}
(RELATIONSHIP "FROM <NAME> ~STATE { <> SUSPECT }
~TYPE DIRECT "MODE ON)
-

(MODIFY 2 “STATE SUSPECT))

This rule says that if entity A is in the suspect or failed state and the relationship
[ connects A to some other entity, then change the state of L to suspect.

The original ISA program is written in the OPSS rule-based language.
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It contains 15 production rules and some Lisp function definitions. Two prob-
lems arise during the translation step. The first problem is that actions of several
rules call Lisp input/output functions because the original ISA program is an
interactive system. For output functions, we simulate them in EQL by writing
results to extra variables defined for this purpose. Upon reaching fixed point,
the prINT command of EQL is used to report these results. Input functions
which modify some variables during the execution are ignored and values of
these variables are fixed initially by defining them as input variables.

The second problem is that the current version of EQL has only
unstructured variables. However, OPSS uses pattern variables to access struc-
tured data. This complicates the task of faithfully simulating the original ISA
program by an EQL program. In order to translate the program, we impose two
restrictions on the ISA system so that the use of pattern variables can be
avoided. The first restriction concerns the topology of the network. The con-
nectivity of entities and relationships have to be decided at compile time and it
cannot be changed during the execution. The other restriction is related to the
backup entities. The original ISA program can assign any available backup
entity to replace a faulty entity and reconstructs that part of the network. In the
translated program, the backup entities are assigned at compile time and cannot
be reassigned to replace any other entities. The current EQL version of the ISA
program is based on the following topology. There are four entities (entityl t0
entity4) and three relationships (rell to rel3). rell is from entityl tO
entity3, rel2 is from entity2 t0 entity3, and rel3 is from entity3 1O
entity4. Each entity may have zero or one backup. Whether entities have
backups are specified by input variables backupl to backup4 respectively.

All the attributes of class entities and relationships of OPSS are now
represented by variables in EQL. For example, the working memory class

(ENTITY "NAME ~STATE “"MODE)
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is decomposed into variables statel t0 state4 and model t0 mode4 with the
attribute  NAME being "1" to "4". Actually, there are no variables corresponding

to NaME explicitly. By using state2, for example, we actually refer to the state
of the entity of the name "2". Again, we use the first rule from original ISA pro-
gram as an example to illustrate how it is translated into EQL rules.

rell state := suspect IF (statel = suspect OR statel = failed)

AND rell state <> suspect AND rell mode = on AND rell type

= direct
[] rel2 state := suspect IF (state2 = suspect OR state2 =
failed) AND rel2 state <> suspect AND rel2 mode = on AND

rel2 type = direct
[1 rel3 state := suspect IF (state3 = suspect OR state3 =

failed) AND rel3 state <> suspect AND rel3 mode = on AND

rel3_type = direct

Note that it is translated into three EQL rules. Each rule checks the status of one
relationship. This can be done only when the topology of the network is fixed.

In order to handle pattern variables and structured data, a new language
called MRL which is an extension to EQL has been developed in [Wang, Mok
& Cheng 90] and it has the expressive power of OPS5. However, the analysis
of an MRL program is nearly as easy as the analysis of an EQL program.

5.9.2. Translating the Fuel Cell Expert System Program into an EQL Pro-
gram

The purpose of the Fuel Cell Expert System (FCE) program is to deter-
mine the status of the different components of the fuel cell system based on
current sensor readings and previous system state values. Then it displays the
corresponding diagnostics according to the evaluation of the status of the dif-
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ferent components of the system.

The FCE program is organized into three main sections: (1) the meta
rule section (testFCEl.eql), (2) 12 ordinary rule classes (testFCE2.*.eql), and
(3) the output section (testFCE3.eql). This expert system contains:

o 101 EQL rules,
e 56 program variables,
e 130 input variables, and

78 constants.

The description of the rule template on page 1 of the program listing
and the way the program is organized into different rule classes suggest that the
execution of the program proceeds by first firing the set of meta rules until a
fixed point is reached and thus a rule class is selected for firing, and then firing
those rules in the selected rule class until a fixed point is reached there. The

template for the meta rules is:

( [ premise(s) ]
[ consequence 1 - load a rule file ]
[ consequence 2 - add to text string ]
[ consequence 3 - set new rule base ] )

The corresponding EQL program thus reflects the organization and the firing
sequences of the original FCE program.

5.9.2.1. Statements Translated

We translate into EQL rules only those statements that are relevant to
the question of whether the program is always guaranteed to reach a fixed point
in a bounded number of rule firings. For example, we translate assignment

statements such as



(setg STATUS1 ‘COOL.LP.PROB)

and enabling conditions such as

{(and (= STK.T.STATUS3 ‘HIGH.START)

(= STK.T.DISCONN3 ‘OK))

However, we ignore most output statements such as
(princ (sys:time))

and

(princ "FC3 COOLANT LOOP PROBLEM. FC3 CAN NOT BE USED WITH")

The rationale behind this selective translation policy is that the assignment state-
ments and the enabling conditions in those rules in which at least one assign-
ment statement appears may affect the outcome of the execution of the program
and thus may determine whether a fixed point is reachable or not in bounded
time. However, output and formatting statements such as those exhibited above

do not affect the fixed-point reachability of the program.

5.9.2.2. Translating Quoted Values and Variables

Each distinct quoted value in the original FCE program is declared as a
distinct constant in the CONST section of the corresponding EQL program so
that is can be referred to in the remainder of the EQL program. Constants in the
EQL program are further classified into two types: rule class constants and reg-
ular constants. A constant of the former type is used to name one of the many
rule classes appearing in the FCE program whereas a constant of the latter type
is used to identify an ordinary quoted value. All non-quoted values, which do
not appear to be declared in the original FCE program listing, are treated as
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variables in the corresponding EQL program. To allow the EQL program to
execute, we consider as input variables those variables which do not appear on

the left side of any assignment statements in the original program.

5.9.2.3. Translating Premises and Consequences

The translation from the rule-based language used in the Fuel Cell
Expert System into EQL is described by the following example. Rule #117 in
the Fuel Cell Expert System

; #1147
; premises
{and (= STATUS ‘DISCONN.V.LOW)

(= SU.HTR ’INH)

{or (= VOLTAGE ’OK)

(= VOLTAGE ‘LOW1}))
; consequences
{princ "FC%)
{princ FC.ID)
{princ "VOLTS LOW WITH STARTUP HTR INHIBITED.
POSSIBLE FCY)

{terpri}
{keep_line_count)
{(princ "INTERNAIL SHORT. ADVISE CRE TO CLOSE FC™)
(princ FC.ID)

(princ "REAC VLVS UNTIL™))
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{(terpri)

tkeep line count)
(princ "COOL P <15, THEN SHUTDN FCY)
{princ FC.ID)
(terpri)
(keep_line_count)
(princ ">>>>>>")
(princ (sys:time))
(terpri)
(page_pause)
{terpri)

(page_pause)

{setg LOAD.STATUS  INTERNAL. LD)

is translated into the corresponding EQL rule

!

load_status := internal ld

IF status = disconn_v_low AND

|

su_htr = inh AND
(voltage = ok OR voltage = lowl)

AND work_rule base = fc_stack_t7_1b

The translation of the enabling condition of the FCE rule into the corresponding
EQL enabling condition is a straightforward exercise in translating syntax.
INTERNAL.LD is a quoted value in the original rule and thus it is replaced by a
constant in the corresponding EQL rule. The ‘set g’ statement in the original
rule is translated into the assignment statement in EQL.
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5.9.3. The Analysis

The analysis makes use of the special form A and the special form B

defined earlier.

5.9.3.1. The Analysis of the Integrated Status Assessment Expert System

During the first iteration of the general analysis procedure, two bad

cycles have been identified: (10—18—34—10) and (10—18—35—10). This
indicates that the program may not reach a fixed point given a particular initial

state. The rules involved in these two cycles are reproduced below.

(*

{1

(*

{1

(*

[1

(*

[

10 *)

state3 := failed IF find bad things = true AND state3 =
suspect AND NOT (rell state = suspect AND rell mode = on
AND rell type = direct) AND NOT (rel2 state = suspect AND
rel2 mode = on AND rel2 type = direct)

18 *)

state3 := nominal ! reconfig3 := true IF state3 = failed AND
mode3 <> off AND config3 = bad

34 *)

sensor3 := bad ! state3 := suspect IF statel = suspect AND
rell mode = on AND rell type = direct AND state3 = nominal
AND rel3 mode = on AND rel3 type = direct AND stateé4 =
suspect AND find bad_things = true

35 *)

sensor3 := bad ! state3 := suspect IF state2 = suspect AND
rel2 mode = on AND relZ type = direct AND state3 = nominal
AND rel3 mode = on AND rel3 type = direct AND stated =

suspect AND find bad things = true
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5.9.3.2. The Analysis of the Fuel Cell Expert System

The Fuel Cell Expert System (FCE) consists of three main sections: (1)
meta rule section (testFCEl.eql), (2) 12 ordinary rule classes (testFCE2.*.eql),
and (3) output section (testFCE3.eql). The analysis results are as follows:

testFCE1.eql: rules are not compatible.

testFCE2.1.eql: 1 rule is in special form B.
testFCE2.2.eql: 3 rules are in special form B.
testFCE2.3.eql: rules 22-25 are in special form A.
rules 19-21 are in special form B.
rules 18 and 26 not compatible.
testFCE2.4.eql: 3 rules are in special form B.
testFCE2.5.eql: rules 44 and 45 not compatible.
testFCE2.6.eql: 5 rules are in special form B.
testFCE2.7.eql: 6 rules are in special form A.
testFCE2.8.eql: rules 57-60 are not compatible.
testFCE2.9.eql: rules 66 and 67 are in special form A.
rules 64, 65, 68, 69 are in special form B.
rules 61, 62, 63 are not compatible.
testFCE2.10.eql: 1 rule is in special form A.
testFCE2.11.eql: rules 78-89 are not compatible.
testFCE2.12.eql: 4 rules are in special form B.

testFCE3.eql: 30 rules are in special form A.

It should be noted that in the meta rule section (testFCEl.eql), each meta Tule
fires at most once and thus a fixed point will be reached in bounded time even
though the rules are not compatible. In module testFCE2.3.eql, rules 18 and 26
may alternately fire infinitely often without reaching a fixed point. In module
testFCE2.5.eql, rules 44 and 45 may alternately fire infinitely often without
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reaching a fixed point. In module testFCE2.8.eql, rules 57-60 may fire infinitely
often without reaching a fixed point. In module testFCE2.11.eql, rules 78-89

may fire infinitely often without reaching a fixed point.



Chapter 6

Characterizing Classes of EQL Programs Analyzable
by the General Analysis Algorithm

In this chapter, our goal is to characterize the classes of EQL programs,
in terms of the type(s) of their corresponding dependency graphs, for which the
general analysis algorithm with the recognition of special forms of rules can
determine with certainty whether or not a program in these particular classes is
always guaranteed to reach a fixed point in bounded time. In chapter 5, we have
derived several sets of special form conditions which, if satisfied by a program
p, guarantee that p will always reach a fixed point in a bounded number of rule
firings. However, a program ¢ which fails to satisfy all conditions specified by
a special form does not imply that ¢ will not always reach a fixed point in a
bounded number of rule firings. It may be the case that ¢ will always reach a
fixed point in a bounded number of rule firings but does not satisfy all condi-

tions of any one of the known special forms.

The power of the recognition procedure of special forms of rules is
further augmented by the use of the General Analysis Algorithm, which does not
require the entire program p to satisfy all conditions of a special form in a sin-
gle step of the analysis algorithm and thus increases considerably the set of pro-
grams with bounded response time that can be analyzed and recognized. Again,
a program r that cannot be recognized as a program with bounded response time
by the general analysis algorithm does not mean that 7 definitely does not
always have bounded response time. For a review of the notations and
definitions used in this chapter, the reader is referred to chapter 5.

116



6.1. Representing an EQL Program as a Dependency Graph

We characterize an EQL program in terms of the type of its
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corresponding dependency graph.

Definition 6.1.1.

The dependency graph of a program p is a directed graph G(V,E)
where each node in V represents a distinct variable of p, and an edge in E con-
nects node x; to node x; iff x; appears in the right side of an assignment in p
whose left side contains x;. An edge is said to be of type TL iff x; appears in
the test. An edge is said to be of type RL iff x; appears in the RHS.

In the remainder of this chapter, we use the terms variable and node when there
is no ambiguity. All edges appearing in the dependency graphs corresponding
to the programs in both class 1 and class 2 described below are of type TL and
thus the type qualification is omitted.

6.2. Class 1: EQL Programs Whose Graphs Are Bipartite With Unidirec-
tional Edges

EQL programs which assign constant expressions to left-side variables
and whose set L and set T are disjoint always can be analyzed using the Gen-
eral Analysis Algorithm with only the recognition procedure for special form A.
First, some definitions are in order.

Definition 6.2.1.

A graph G(V, E) is said to be bipartite if its nodes can be partitioned
into two sets M and N such that no two nodes in M orin N are adjacent, i.e., all
edges extend between M and N. A bipartite graph G(V,E) is commonly
denoted as G=(M ,N,E) where V =M UN.



Definition 6.2.2.

A directed bipartite graph G= (M, N, E) is said to have only unidirec-
tional edges iff either all of its edges are directed from M to N or all of its
edges are directed from N to M .

Theorem 6.2.1.

Any EQL program which assigns only constant expressions to LHS
variables and whose dependency graph is bipartite with unidirectional edges
only can be analyzed by the General Analysis Algorithm with only the recogni-
tion procedure for special form A. A program having this property is said to be

in class 1.

Proof:

To prove that any class-1 program p can be analyzed by the general
analysis algorithm with the recognition procedure of special form A only, we
need to show that either

(1) p is in special form A or p can be recognized as a program which
will always reach a fixed point in bounded time by the general analysis
algorithm with the recognition procedure for special form A only, or

(2) p does not always reach a fixed point in bounded time and thus can-
not be recognized by the general analysis algorithm with the recognition
procedure for special form A.

That is, we need to prove that any class-1 program p is recognizable by
the general analysis algorithm with only the recognition procedure for
special form A if and only if p will always reach a fixed point in
bounded time. The only if part is proved in chapter 5; the if part will be

proved next.
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Assume that there exist a class-1 program ¢ which always reaches a
fixed point in bounded time but cannot be recognized as such by the general
analysis algorithm with the recognition procedure for special form A. Since ¢
only assigns constant expressions to left-side variables, condition Al of special
form A is satisfied. Since the dependency graph G= (M ,N,E)of g is bipartite
with unidirectional edges only, without loss of generality, let M be the set of
variables appearing in the set L and let N be the set of variables appearing in
the set T. This implies that L N T = and thus condition A3 of special form A
is also satisfied. Hence, there exist at least two rules in g that are not compati-
ble (condition A2 of special form A is violated) for ¢ to be non-recognizable.
These two rules are of the form

x=E,{IF Cy
x=E, IF C,

where E | and E, are constant expressions and C; and C, are logical expres-
sions, such that E # E ,, and C ; and C, are not mutually exclusive. Obviously,
these two rules will fire alternately without ever reaching a fixed point. Even if
the rest of the rules in ¢ are independent from these two rules and are in special
form A, g is not always guaranteed to reach a fixed point in bounded time. This
is a contradiction to our assumption and thus a class-1 program which cannot be
recognized by the general analysis algorithm with special form A is not always
guaranteed to reach a fixed point in bounded time. This completes the proof of
the if part of the theorem.
O

The general analysis algorithm with the recognition procedure for spe-
cial form A only is capable of analyzing a larger class of programs, as we shall

see in the following section.
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6.3. Class 2: EQL Programs Whose Graphs Are Acyclic and Layered With
Unidirectional Edges

In this section, we show that a large class of EQL programs which
assign constant expressions to left-side variables and whose set L and set T are
not disjoint can be analyzed using the General Analysis Algorithm with the
recognition procedure for special form A only. First, some definitions are in

order.

Definition 6.3.1.

A directed graph G(V, E) is said to be layered if its nodes can be parti-
tioned into disjoint sets such that no edge connects two nodes in the same set,
i.e., no two nodes in a set are adjacent, and if these sets can be drawn as a linear
list of sets so that each edge connects only those nodes in adjacent sets. Each
set is called a layer. A layered graph is a restricted type of n-partite graphs. A
graph whose (disconnected) components are all layered graphs is a layered

graph.

An example of an EQL program whose graph has the above property is
the Space Shuttle Vehicle Cryogenic Hydrogen Pressure Monitoring Expert
System (Appendix C).

Theorem 6.3.1.

Any EQL program which assigns only constant expressions to LHS
variables and whose dependency graph is acyclic and layered with unidirec-
tional edges only can be analyzed by the General Analysis Algorithm with the
recognition procedure for special form A only. A program having this property
is said to be in class 2.
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Proof:

To prove that any class-2 program p can be analyzed by the general
analysis algorithm with the recognition procedure of special form A only, we
need to show that any class-2 program p is recognizable by the general analysis
algorithm with only the recognition procedure for special form A if and only if
p will always reach a fixed point in bounded time. The only if part is proved in
chapter 5; the if part will be proved next.

Assume that there exist a class-2 program g which always reaches a
fixed point in bounded time but cannot be recognized as such by the general
analysis algorithm with the recognition procedure for special form A. Since ¢
only assigns constant expressions to left-side variables, condition A1l of special
form A is satisfied. If the dependency graph of ¢ has more than two layers, then
at least one variable appears in the set L and in the set T of ¢ and thus the entire
g cannot be in special form A. However, we shall prove that ¢ can be analyzed
by the general analysis algorithm with the recognition procedure for special
from A only. If the dependency graph of g has only two layers, then g is in
class 1 and was previously shown to be analyzable by the general analysis algo-
rithm with the recognition procedure for special from A only. The case in
which the dependency graph of g has more than two layers is considered next.

Each edge in the dependency graph actually corresponds to a rule in the
program ¢. Note that more than one edge may correspond to the same rule
since multiple variables may appear in the left side and/or in the right side test
of an assignment. In the drawing of the graph corresponding to ¢ as a linear list
of layers, we label the layers by calling the layer with no in-edges as layer 1, the
layer with in-edges directed from the nodes in layer 1 as layer 2, the layer with
no out-edges as layer n if the number of layers is n, and in general, the layer
with in-edges directed from the nodes in layer i — 1 as layeri,i =2, ..,n.

With this representation, the rules corresponding to the edges connect-
ing the nodes in layer i and in layer i +1 (claim 1) must be recognized by the
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general analysis algorithm as either in special form A (if those rules are always
guaranteed to-reach-a fixed point in bounded time) or not in special form A (f
those rules are not always guaranteed to reach a fixed point in bounded time),
and (claim 2) must be independent from all rules corresponding to those edges
between layer i + 1 and layer n in iteration i of the analysis algorithm, for
i=1,..,n-1

The first claim follows from the proof of theorem 6.2.1. The rules
corresponding to the edges connecting the nodes in layer i and in layer i +1
must be in special form A by our assumption that g will always reach a fixed
point in bounded time. If not, then at least two of these rules are not compatible
-- the only way for these rules to be not in special form A, but this would imply
that the entire program may not always reach a fixed point in bounded time.

We prove the second claim by contradiction. Assume that the rules
corresponding to the edges connecting the nodes in layer j and those in layer
j + 1 are not independent from at least one of the rules corresponding to an edge
between layer j + 1 and layer n, for some j=1,..,n—2. For rules which
assign only constant expressions to LHS variables, two conditions for establish-
ing independence of a set of rules from another are used by the general analyzer.
We shall show that the violation of each of these conditions will lead to a con-
tradiction in the proof, thus establishing claim 2.

(1) Suppose that the firing of a rule b corresponding to an edge between
layer j +1 and layer n changes the content of a variable in L,, and a
corresponds to an edge between layer j and layer j + 1. Then rule b assigns the
value m , to variable x appearing in the left side of rule a, and rule a assigns the
value m to x such that m # m,. This implies that variable x appears in layer
j +1 and in a layer between j +2 and n, inclusive. This is possible only if
more than one node may represent the same variable. However, from the
definition of the dependency graph of a program, each node corresponds to a
distinct variable in the program.
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(2) Suppose that the firing of a rule ¢ corresponding to an edge between
layer j + 1 and layer n_enables a rule @ which corresponds to an edge between
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layer j and layer j + 1. This is possible only if there is an edge from layer k to
layer j such that k > j. However, this violates the property that the acyclic lay-
ered graph of ¢ has unidirectional edges only.

This completes the proof of the if part of the theorem.
O

As part of our ongoing research effort, we are identifying more classes
of EQL programs analyzable by the general analysis algorithm when special
forms B, C, and D are also included in the analyzer’s knowledge base.



Chapter 7

Estella: A Facility for Specifying Behavioral Constraint

Assertions in Real-Time Rule-Based Systems

In chapter 5, we have developed a powerful and efficient analysis
methodology for a large class of rule-based EQL programs to determine
whether a program in this class has bounded response time. In particular, we
have identified several sets of general behavioral constraint assertions: an EQL
program which satisfies all constraints in one of these sets of assertions is
guaranteed to have bounded response time. We now enhance the applicability
of our analysis technique by introducing a facility with which the rule-based
programmer can specify application-specific knowledge in the language Estella
in order to validate the performance of an even wider range of programs. This
facility can be viewed as a computer-aided software engineering (CASE) tool
for aiding in the rapid prototyping and development of expert systems with
guaranteed response time. In this chapter, we shall also describe efficient algo-
rithms for implementing the General Analysis Tool.

7.1. Background and Motivation

Since the verification of the constraint assertions in the special forms of
rules is based on static analysis of the EQL rules and does not require checking
the state space graph corresponding to these rules, our analysis methodology
makes the analysis of programs with a large number of rules and variables feasi-
ble. A suite of computer-aided software engineering tools based on this analysis
approach have been implemented and have been used successfully to analyze
several real-time expert systems developed by Mitre and NASA for the Space
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Shuttle and the planned Space Station.

We now enhance the applicability of our analysis technique by intro-
ducing a facility with which the rule-based programmer can specify
application-specific knowledge in order to validate the performance of an even
wider range of programs. The idea is to provide the rule-based programmer a
language called Estella that has been designed for specifying behavioral con-
straint assertions about rule-based EQL programs. These application-specific
assertions capture the requirements for achieving certain performance levels for
a rule-based program in a particular application, and are used by the general
analyzer to determine whether an EQL program has bounded response time.
This facility can be viewed as a computer-aided software engineering (CASE)
tool for aiding in the rapid prototyping and development of expert systems with
guaranteed response time.

In the remainder of this section, we explain the motivation for using
Estella to specify behavioral constraint assertions that guarantee any program
satisfying these constraints will have bounded response time. In section 7.2, we
show how Estella can be used in conjunction with the General Analysis Tool
GAT developed in chapter 5 to analyze EQL programs and to facilitate the
development of EQL systems with guaranteed response time. In section 7.3, we
demonstrate the practicality of the GAT-Estella facility as a computer-aided
software engineering tool by analyzing two real rule-based systems developed
by Mitre and NASA for the planned Space Station. In section 7.4, we discuss
efficient algorithms for implementing the GAT-Estella facility. Section 7.5 is
the conclusion.

7.1.1. Specifying Behavioral Constraint Assertions in Estella

Estella is a language for specifying behavioral constraint assertions
(BCAs) about EQL programs. Both general BCAs and application-specific
BCAs can be specified in Estella. General BCAs are stored in a permanent
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knowledge base whereas user-defined BCAs are placed in a temporary
knowledge base. The rule-based programmer can specify different application-
specific BCAs as input to the Estella front-end for the purpose of analyzing
EQL programs in different application domains.

Once these application-specific BCAs are entered as input to the Estella
front-end, and an EQL program is read into the GAT analyzer, the analyzer will
make use of the general analysis algorithm, the general BCAs, and the
programmer-defined application-specific BCAs to determine whether the rules
in the EQL program will always reach a fixed point in bounded time. The
details of GAT are discussed in chapter 5. Specific algorithms used in the
GAT-Estella System will be discussed in a later section. For ease of discus-
sion, we sketch the main steps of the general analysis algorithm here:

(1) Identify some subset of the rules which are of a special form of BCAs (deter-
mined by looking up a catalog of special forms of BCAs) and which can be
treated independently. We call a subset of rules independent iff its fixed-
point convergence can be determined without considering the behavior of
the rest of the rules in the program. Rewrite the program to take advantage
of the fact that some variables can be treated as constants because of the spe-
cial form.

(2) If none of the special forms of BCAs applies, identify an independent subset
of the rules and check the state space for that subset to determine if a fixed
point can always be reached. Rewrite the program as in (1) to yield simpler
ones if possible.

(3) Perform an analysis on each of the programs resulting from (1) or (2).

If the analyzer detects that the EQL program may not always have
bounded response time, it will report a list of rules which may cause a cycle in
the state-space graph corresponding to the program. If after examining the rules
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in question the programmer concludes that those rules which are involved in the
apparent timing violations are actually acceptable (for instance, the scheduler
knows about these cycles), he/she can interactively specify additional BCAs as
input to the analyzer and then re-analyze the EQL program. The EQL general
analyzer can be thought of as a compiler module for EQL programs since it
checks whether a program is correct with respect to the timing requirement con-
straints. Figure 7.1 shows the GAT-Estella facility for analyzing EQL pro-
grams. We shall describe in detail the components of the Estella facility in sec-
tion 7.2.

Estella
Specifications
EQL Program
General [——— satisfies
Analyzer pecification

EQL
Program

programmer

revises

EQL program

Figure 7.1. Checking Behavioral Constraint Assertions Specified in Estella.

The following example demonstrates the utility of the Estella facility
for specifying behavioral constraint assertions on rule-based systems.

Example 7.1.1.1. Specifying Compatibility Criteria for Rules in the Simple
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Object-Detection Program.

The program in example 3.1 is not in any of the special forms of BCAs
described in chapter 5. As explained earlier, two pairs of rules are not compati-
ble: rule 1 and rule 4, rule 2 and rule 3. The variables sensor_a and sensor_b
contain respectively the values as detected by radar sensor a and by radar sensor
b, both of which are directed to the same region of the sky.

Now suppose the rule-based programmer knows that the device for
checking the statuses of both sensors is fail-safe; that is, it returns the value
‘good’ for sensor_x_status if and only if sensor_x is good, where x = a or b, and
returns ‘bad’ if and only if sensor_x is bad or the checking device has malfunc-
tioned. This fact implies that for rule 1 and rule 4 (as well as for rule 2 and rule
3), if the sensor values disagree, then one of the sensor statuses must be bad.
Thus only one rule can be enabled at one time and no infinite firings can occur.
Hence, these two pairs of rules need not be compatible in the sense defined in
chapter 5 for this program to reach a fixed point in a bounded number of firings.
The Estella statement for specifying this condition is:

COMPATIBLE_SET = ({1,4}, {2,3})

This statement states that the pair of rules 1 and 4, and the pair of rules 2 and 3
are specified to be compatible even though they do not satisfy the predefined
conditions of compatibility. This Estella compatibility condition can be used in
conjunction with special form A to identify this program as one that is
guaranteed to reach a fixed point in bounded time. Next, we describe an exam-
ple involving a real-time expert system developed by Mitre for the planned
NASA Space Station.
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Example 7.1.1.2. Specifying Cycles and Break Conditions for the ISA

Expert System

Two of the cycles with rules which assign conflicting expressions to a

LHS variable in the enable-rule (ER) graph corresponding to the ISA Expert
System identified by the general analyzer are: (10—18—34—10) and
(10»18—35—10). An ER graph shows the potentially enable relationships
among rules in a program. These ER cycles indicate that the program may not

reach a fixed point given a particular initial state. The rules involved in these

two cycles are reproduced below.

(*

[l

(*
(1

(*
[]

(*

{1

10 *)
state3 := failed IF find bad things = true AND state3 =
suspect AND NOT (rell state = suspect AND rell mode = on

AND rell type = direct) AND NOT (rel2 state = suspect AND
rel2 mode = on AND rel2z type = direct)

18 *)

state3 := nominal ! reconfig3 := true IF state3 = failed AND
mode3 <> off AND config3 = bad

34 *)

sensor3 := bad | state3 := suspect IF statel = suspect AND
rell mode = on AND rell type = direct AND state3 = nominal
AND rel3 mode = on AND rel3 type = direct AND stated =
suspect AND find bad things = true

35 *)

sensor3 := bad ! state3 := suspect IF state2 = suspect AND
rel2 mode = on AND rel2 type = direct AND state3 = nominal
AND rel3 mode = on AND rel3_type = direct AND stated =

suspect AND find bad things = true
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Now suppose the programmer knows that these rules will never fire infinitely
because of certain application-specific scheduling policy. The following Estella

statement, which specifies the general break condition for cycles in the ER
graph in special form B needs to be modified for the four rules above.

BREAK CYCLE (ENABLE_RULE) =
(NOT (EXIST i, 3
{ ( NOT(EQUAL(i,J)) AND
( IN_CYCLE (EDGE (ENABLE_RULE,1i,3)) AND
EXIST i.p, J.9
( (EQUAL(LEXP[i.p]l,LEXP[j.ql) AND

NOT (EQUAL (REXP[i.p] ,REXP[j.qgl))) ) )

A thorough treatment of the syntax of Estella shall be given in section 7.2. For
this example, it suffices to know that the variables LEXP[i.p] and REXP[i.p]
contain respectively the LHS variable appearing in subrule p of rule i and the
expression appearing in RHS of subrule p of rule i. Similar definitions apply to
LEXP[j.q] and REXP[[j.q]. To indicate that the above four rules will not fire
infinitely often, the following Estella statement is used to specify that the break
condition for the cycles (10,18,34) and (10,18,35) in the ER graph of the pro-
gram is TRUE, and thus these two ER cycles will not cause infinite rule firings.
The general analyzer would then ignore these two cycles when checking to see
whether the set of rules containing these four rules satisfy the behavioral con-

straint assertions of a special form.



BREAK_CYCLE (ENABLE_RULE, {(10,18,34),(10,18,35)}) = TRUE

We shall show later in more detail how this specification is actually used by the
analysis tool to produce the desired results. A complete treatment of the syntax
of Estella appears in the following section.

7.2. Facility for Specifying Behavioral Constraint Assertions

The facility for specifying behavioral constraint assertions on EQL
rules and analyzing EQL programs consists of the following major components:

(1) the BCA recognition procedure generator,
(2) the EQL program information extractor, and
(3) the general analyzer.

These three components are depicted in Figure 7.2. The BCA recognition pro-
cedure generator serves as an interpreter to the BCA specification written in
Estella and generates the corresponding procedure for recognizing the specified
BCAs of rules with bounded response times.

The EQL program information extractor is a collection of procedures
that extract relevant information from the EQL program to be analyzed. These
procedures provide information in the form of objects that can be used in the
Estella specification. For example, the ER graph constructor builds the ER
graph from the EQL program and provides objects such as ER cycles or ER
edges which can be named by Estella primitives. The information extractor is
designed to be expandable so that it can easily accommodate new procedures for
extracting new information as the need arises and for providing new objects pre-
viously not available.

The general analyzer takes as input the information provided by the
information extractor, and the recognition procedures generated by the BCA
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recognition procedure generator and stores the procedures in its knowledge
bases. The general analysis algorithm can then be extended to accommodate
this extra level of user-directed analysis assistance.

Estella is primarily designed for specifying behavioral constraint asser-
tions about rules written in the EQL language. It is expressive enough to allow
for the specification of a wide range of BCAs about EQL rules; and it does not
require the rule-based programmer t0 possess knowledge of the implementation
details of the Estella interpreter or the recognition procedures.
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Figure 7.2. The General Analysis Tool - Estella Specification Facility.
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7.2.1. Syntax and Semantics of Estella

Estella allows the specification of constraints on the syntactic -and
semantic structure of EQL programs. It provides a set of constructs that are
designed to simplify the specification of conditions relevant to rule-based pro-
grams. A set of rules satisfying all BCAs of a special form specified by the pro-
grammer is guaranteed to have bounded response time. It is the responsibility
of the programmer to ensure that the specified special form is correct since the
analysis facility does not verify the correctness of user-defined special forms.
The programmer may specify different special forms of rules with bounded

response times as input to the analyzer.

There are two types of BCAs, predefined general BCAs and user-
defined BCAs, both of which are specified in essentially the same way with
Estella. The programmer has the option of interactively entering a BCA into
the general analyzer or loading a previously specified special form stored in a
library file into the general analyzer. The programmer can also specify the order
in which the special forms should be checked against during each step of the
analysis so that the analysis process can be optimized.

An important Estella statement deserves special mention:

The definition of the break condition break_cycle for breaking cycles
consisting of specific edges in a specific graph.

This statement constitutes a major special form condition since each of the gen-
eral special forms of rules developed so far has at least one condition that stipu-
lates

(1) the absence of certain type(s) of cycles in some kind of graph

representing information about the rules, or

(2) if there exist cycles in a specific graph representing information
about the rules, then there must be break_cycle condition which is
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guaranteed to break this kind of cycles so that no cycles can appear in
the state-space graph corresponding to the rules. Cycles in the state-
space graph corresponding to a program indicate that the program may
not have bounded response time because there may be an unbounded
number of rule firings.

Note that the break condition for a particular type of cycles or for a specific
cycle may specify TRUE (break condition is not needed) if the cycle(s) in ques-
tion do not cause a cycle in the state-space graph corresponding to the program.

We first provide an informal description of Estella in order to highlight
its features. A formal specification of Estella in the YACC grammar shall be
given in the Appendix B.

Estella provides the following predefined constants:

{ } = empty set.

Estella provides the following predefined set variables:

L ={ v |v is a variable appearing in LHS }

R = { v | v is a variable appearing in RHS }

T={v |v is a variable appearing in EC }

L[i] = { v | v is a variable appearing in LHS of rule i }

L[ijl = { v | v is a variable appearing in LHS of rule 1, subrule j }
R[i] = { v | v is a variable appearing in RHS of rule i}

R[ijl = { v | v is a variable appearing in RHS of rule i, subrule j }

T[i] = { v | v is a variable appearing in EC of rule i}
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Estella provides the following predefined expression variables which are used to
refer to the actual expression or the EQL variable in the location indicated by

the indices of the variables:

LEXP[i.j] = LHS variable of rule i, subrule j.
REXP[i.j] = RHS expression of rule i, subrule j.
TEXP[i] = EC of rule i.

Estella provides the following predefined functions:
INTERSECT(A,B): intersection of set A and set B, where A and B are
set variables or elements enclosed by ‘{* and }’.
UNION(A,B): union of set A and set B, where A and B are set variables

or elements enclosed by ‘{* and ‘}’.

RELATIVE_COMPLEMENT(A,B): relative complement = set A — set
B, where A and B are set variables or elements enclosed by ‘{’ and ‘}’.

Estella provides the following predefined predicates:
MEMBER(a,B): a is a member of set B, where a is an EQL variable,
and B is a set variable or elements enclosed by ‘{” and ‘}’.
IN_CYCLE(EDGE(edge_type, a, b)): edge (a,b) of type edge_type isin
the cycle found.
EQUAL(a,b): a is equal to b, where a and b can be set variables, expres-
sion variables, or values.
COMPATIBLE(a,b): rule a and rule b are compatible (defined in sec-
tion 2.2).

MUTEZX(a,b): test of rule a and test of rule b are mutually exclusive.
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COMPATIBLE_SET = (compatible_sets)

This predicate specifies set of compatible sets of rules. All pairs of

rules in each of these compatible sets are considered compatible by the
rule-based programmer even though they do not satisfy the predefined
requirements of compatibility. This predicate allows the programmer to
relax the compatibility condition for some pairs of rules when he/she
knows that this would not cause the rules to fire infinitely often without
reaching a fixed point.

BREAK_CYCLE(graph_type, cycles_list) = break_condition,

where graph_type is the type of graph, cycles_list is an optional argu-
ment listing specific cycles in the graph of graph_type, and
break_condition is a condition for breaking a cycle in the graph of
graph_type. This predicate specifies a condition for breaking all cycles
or specific cycles (when the second argument cycles_list is specified).
Thus programs with cycles (as specified in conditions of the general
special forms of rules) which satisfy the break_condition so specified
will not cause unbounded rule firings.

Estella provides the following primitive objects:
VERTEX: vertex in a graph(ER, VM or disable).

EDGE(ENABLE_RULE, a, b): edge from vertex a to vertex b in the
enable rule graph.

EDGE(DISABLE, a, b): edge (a,b) in the disable graph.
EDGE(VARIABLE_MODIFICATION, a, b): edge (a,b) in the variable
modification graph.

CYCLE(ENABLE_RULE): a cycle in the enable rule graph.
CYCLE(VARIABLE_MODIFICATION): a cycle in the variable



modification graph.

Estella provides the following primitive constructs:

specification:

a well-formed formula as defined below.

Definition 7.1.

Terms are defined recursively as follows.

(1) A constant is a term.

(2) A variable is a term.

(3) If f is a function symbol with n parameters, and x4, . . ., #, are terms, then
fG&y ..., x,)isaterm.

(4) All terms are generated by applying rules (1), (2), and (3).

Definition 7.2.

If p is a predicate symbol with n parameters, and xy, . . ., 1, are terms,

thenp (x4, ..., X,) is an atomic formula.

Definition 7.3.

A well-formed specification is defined recursively as follows.

(1) An atomic formula is a specification.

(2) If F and G are specifications, then not(¥), (F OR G), (F AND G),
(F = G), and (F ¢ G) are specifications.

(3) If F is a specification and x_list is a list of free variables in F, then
FORALL x_list (F) and EXIST x_list (F ) are specifications.

(4) Specifications are generated only by a finite number of applications of rule
(1), rule (2), and rule (3).
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Assertion: P and O are predicates on the variables of an EQL program,
and R is a sequence of one or more rules. This construct states that if
the program is at a state in which the predicate P is true, then following
the execution of the rules in R , the program reaches a state in which the
predicate Q is true. Note that an assertion in Estella, like other con-
structs, is a constraint specified by the programmer, and this condition
must be satisfied by a program in order to guarantee that the program
has bounded response time. The analyzer does not attempt to prove the
correctness of the specified assertion. It simply performs the following:
given the initial state in which the predicate P is satisfied, execute the
rules in R (note that it is possible that none of the rules are enabled and
thus no rule is fired), determine whether the program reaches a state in
which the predicate O is satisfied. Since the current version of the
analyzer does not make use of the assertion construct, this construct will
be implemented in a future version of the Estella specification facility.

7.2.2. Specifying Special Forms of Rules with Estella

In this section, we show how Estella is used to define general BCAs
(called special forms of rules) for ensuring that EQL programs satisfying these
BCAs will always have bounded response time.

Definition of the predicate compatible in English and mathematical nota-
tions:

Let L, denote the set of variables appearing in LHS of rule x. Two
rules a and b are said to be compatible iff at least one of the following condi-
tions holds:
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(CR1) Testa and test b are mutually exclusive,
(CR2) L,NL,=@.
(CR3) Suppose L, N L, # . Then for every variable v in L, N Ly, the same

expression must be assigned to v in both rule a and b.

Estella Specification of COMPATIBLE (a,b):

MUTEX (a, b)
or EQUAL(INTERSECT(L[al,L(bl), { })
or FORALL v (FORALL a.p, b.g { { { (MEMBER (v, intersect (L[a],L[bl))
AND EQUAL(v,LEXP[a.pl))
AND EQUAL({(v,LEXP[b.gl))
-> EQUAL (REXP[a.p],REXP[b.ql)))

compatible is a predefined predicate in Estella. It should be noted that com-
patibility condition can be considered as a break condition since it is used to
break a possibly cyclic sequence of rule firings.

Definition of special form A in English and mathematical notations:
(A1) Constant terms are assigned to all the variables in L.
(A2) All of the rules are compatible pairwise.

(A3)L NnT =0.

Estella Special Form Specification of Special Form A:

SPECIAL FORM a:

EQUALI(R,{ 1);
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FORALL i,7j (COMPATIBLE({i,J)):
EQUAL (INTERSECT (L, T), { }}

END.

Definition of special form B in English and mathematical notations:

A set of rules are said to be in special form B if all of the following con-
ditions hold.

(B1) Constant terms are assigned to all the variablesinL,i.e.,R =O.
(B2) All of the rules are compatible pairwise.
B3)HLNT 2.
(B4) For each cycle in the ER graph corresponding to this set of rules,
no two rules in the cycle assign different expressions to the same variable.
(B5) Rules in disjoint simple cycles (with at least two vertices) in the ER
graph do not assign different expressions to a common variable
appearing in their LHS.

Estella Special Form Specification of Conditions B1-B4:

SPECIAL FORM b:
EQUAL(R, { }):
FORALL i,3 (COMPATIBLE({i,73)};
NOT (EQUAL {INTERSECT (L, T), { })):
BREAK_CYCLE (ENABLE_RULE) =
(NOT (EXIST i,3
{ ( NOT{EQUAL(i,]j)) AND
( IN_CYCLE (EDGE (ENABLE_RULE, i,3)) AND

EXIST i.p, Jj.g
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( (EQUAL(LEXP[i.p],LEXP[j.gl) AND

NOT {EQUAL(REXP[i.pl1,REXP[3.gl)}) ) )

END.

Definition of special form C in English and mathematical notations:

A set of rules are said to be in special form C if all of the following four
conditions hold.

(C1) Variable terms are assigned to the variablesin L, ie., R = Q.

(C2) All of the rules are pairwise compatible.

(CHLNT =2.

(C4) For each cycle in the variable-modification graph corresponding to
this set of rules, there is at least a pair of rules (subrules) in the cycle that
are compatible by condition CR1 (mutual exclusivity).

Estella Special Form Specification of Special Form C:

SPECIAL FORM c:
NOT (EQUAL(R, { }))7
FORALL i,3 (COMPATIBLE(i,3));
EQUAL (INTERSECT (L, T), { }):
BREAK_CYCLE (VARIABLE_MODIFICATION) =
(EXIST i, 3 (EXIST i.k, 3.1
((IN_CYCLE (EDGE (VARIABLE_MODIFICATION,i.k,J.1)) AND



END.

MUTEX(i,3))))

Definition of special form D in English and mathematical notations:

A set of rules are said to be in special form D if all of the following con-

ditions hold.

(D1) Variable terms are assigned to the variables in L, ie,R #O.

(D2) All of the rules are compatible pairwise.

MD3)L NT #.

(D4) For each cycle consisting of LR edges only in the variable-
modification graph corresponding to this set of rules, there is at least a
pair of rules (subrules) in the cycle that are compatible by condition CR1
(mutual exclusivity), or there is at least one disable edge in the cycle.
(If a disable edge connects one rule vertex a to another rule vertex b,
then there is one disable edge connecting every subrule vertex of rule a
to every subrule vertex of rule b.)

(D5) For each cycle in the ER graph corresponding to this set of rules,
no two rules in the cycle assign different expressions to the same vari-
able.

(D6) Rules in disjoint simple cycles (with at least two vertices) in the
ER graph do not assign different expressions to a common variable
appearing in their LHS.

Estella Special Form Specification of Conditions D1-D5:

SPECIAL_FORM d:
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NOT (EQUAL(R, { }));
FORALL 1,3 {COMPATIBLE{i,3)):
NOT (EQUAL (INTERSECT (L, T), { })):
BREAK CYCLE (VARIABLE_MODIFICATION) =
(EXIST i, 3 (EXIST i.k, 3.1
((IN_CYCLE (EDGE (VARIABLE MODIFICATION,i.k,Jj.1)) AND
MUTEX (1,3))))
OR
EXIST a,b
(IN_CYCLE (EDGE (DISABLE, a,b)))
)i
BREAK CYCLE (ENABLE_RULE) =
(NOT (EXIST i,3
{ ( NOT{(EQUAL({i,3j)) AND
( IN_CYCLE (EDGE (ENABLE_RULE, 1, J)) AND
EXIST i.p, 3.9
{ (EQUAL(LEXP[i.p],LEXP[J.qg]) AND

NOT (EQUAL(REXP[1i.p],REXP[3.gl))} ) )

END.

7.3. Applications of the General Analyzer-Estella Facility

To demonstrate the applicability of the Estella facility, we use it in con-
junction with the General Analysis Tool to analyze two expert systems from
Mitre and NASA.



7.3.1. Specifying Cycles and Break Conditions for Analyzing the ISA
Expert System

The purpose of the Integrated Status Assessment Expert System (ISA)
program is to determine the faulty components in a network. A component can
be either an entity (node) or a relationship (link). A relationship is a directed
edge connecting two entities. Components are in one of three states: nominal,
suspect, or failed. A failed entity can be replaced by an available backup entity.
This expert system makes use of simple strategies to trace failed components in
a network. The ISA Expert System consists of: 35 EQL rules, 46 variables (29
of which are input variables), and 12 constants.

After reading in the ISA program, the analyzer checks the rules to deter-
mine if every rule pair satisfy the compatibility condition. Two pairs of rules
have been identified as being not compatible: rule 8 and rule 32, rule 9 and rule
33. At this point, the rule-based programmer can take one of the following

actions:
1 revise the ISA program to make the above rule pairs compatible,
2) employ a special form which does not require the above rules to be

compatible to perform further analysis,

3) specify the above rules as compatible by using the
COMPATIBLE_SET predicate if he/she considers these rules to be
compatible in his/her application domain.

Suppose the programmer selects the third action, then the command ‘cs’ (com-
patible set) can be used to specify compatible sets of rules.

command > Cs

compatible set specification >

COMPATIBLE_ SET = ({8,32}, {9,331
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compatible sets entered

Now we load two predefined special forms (special form A and special form B
stored in files sfA and sfB respectively) into the analyzer using the ‘Is’ (load
special form) command:

command > 1ls

special form file name > sfA

special form file sfA entered
command > 1

special form file name > sfB

special form file sfB entered

Special forms of rules can also be specified interactively using the ‘sf” (new spe-
cial form) command. During the first iteration of the general analysis, a bad
cycle in the ER graph corresponding to the ISA Expert System has been
identified: (10—18—34—10).

Step 1:
9 strongly connected components in dependency graph.

Bad cycle: 34->10->18

Independent special form subset is empty.

Analysis stops.

This indicates that the program may not reach a fixed point given a particular



initial state. The rules involved in this ER cycle are presented in example

7.1
[ % 4
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Now suppose the programmer knows that these rules will never fire
infinitely because of the use of a scheduler which prevents these rules to fire for-
ever. The general break condition for cycles in the enable rule graph in special
form B needs to be relaxed for these rules. We do not actually modify this gen-
eral break condition, we make use of the exception command ‘bc’ (break cycle
condition) to define an application-specific assertion. To indicate that the above
three rules will not fire infinitely often, the following Estella statement is used
to specify that the break condition for the cycle (10,18,34) in the enable rule
graph of the program is TRUE, and thus this ER cycle will not cause
unbounded rule firings. The general analyzer would then ignore this cycle when
checking to see whether the set of rules containing these three rules are in a spe-
cial form. We specify this break condition in the Estella facility as follows:

command > bc

with respect to special form > b

break condition specification >

BREAK CYCLE (ENABLE RULE, {(10,18,34)}) = TRUE

7.3.2. Specifying Assertions for Analyzing the FCE Expert System

The purpose of the Fuel Cell Expert System (FCE) program is to deter-
mine the statuses of the different components of the fuel cell system based on
current sensor readings and previous system state values. Then it displays the
corresponding diagnostics according to the evaluation of the statuses of the dif-
ferent components of the system. This expert system contains: 101 EQL rules,



56 program variables, 130 input variables, and 78 constants.

The FCE program is organized into three main sections: (1) the meta
rule section (testFCEl.eqgl), (2) 12 ordinary rule classes (testFCE2.*.eql), and
(3) the output section (testFCE3.eql). After reading in the FCE program, the
analyzer checks the rules to determine if every rule pair satisfy the compatibility
condition. The following pairs of rules have been identified as being not com-
patible:

Incompatible rule pairs: (R1,R2) (R1,R3) (R1,R4} (R1,R5) (R1,R6) (R1,R7} {R1,RB}
(R1,R9) (R1,R10) (R1,R11} (R1,R12) (R1,R13) (R2,R3) (R2,R4) (R2,R5) (R2,R6)
(R2,R7) {(R2,R8) (R2,R9) (R2Z,R10) (R2,R11) (R2,R12) (RZ,R13) (R3,R4) (R3,R5)
(R3,R6) (R3,R7) (R3,R8) (R3,R9)} (R3,R10) (R3,R11} (R3,R12} (R3,R13) (R4, RS}
(R4,R6) (R4,R7) (R4,R8) (R4,R9) (R4,R10) (R4,R11) (R4,R12) (R4,R13)} {R5, R6)
(R5,R7) (R5,R8) (R5,R9) (R5,R10) (R5,R11) (R5,R12) (R5,R13) (R6,R7) {R6, R8)
(R6,R9) (R6,R10)} (R6,R11) (R6,R12) (R6,R13} (R7,R8) (R7,R%) (R7,R10} (R7,R11}
(R7,R12} (R7,R13) (R8,R9) (R8,R10) (RB,R11) (R8,R12) (R8,R13) (R9,R10) {R9,R11}
(R9,R12) (R9,R13) (R10,R11l) ({(R1G,R12) (R10,R13) (R11,R12) (R11,R13}) ({(R12,R13)
(R18,R26) (R18,R47) (R18,R48) {R18,R49) (R18,R50) (R18,R51) {R30,R31) (R43,R44)
(R43,R45) (R43,R46) (R44,R45) (R44,R46) (R45,R46) (R47,R49) {R48,R49} (R57,R63)

(R63,R66) (R63,R67}

The meta rule section contains high-level control rules used to determine which
ordinary rule classes should be enabled. The meta rules are shown in Appendix
E. From the documentation accompanying the FCE Expert System, it is evident
that in the meta rule section (testFCEl.eql), each meta rule fires at most once
and thus a fixed point will be reached in bounded time even though the rules are
not compatible. The following Estella statement captures this application-

specific assertion:
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COMPATIBLE_SET = ({1,2,3,4,5,6,7,8,9,10,11,12,13})

This statement states that all 13 rules in the meta rule section are compatible
pairwise even though they do not satisfy the predefined requirements of compa-
tibility. We specify this compatibility condition in the Estella facility as fol-
lows:

command > CS

compatible set specification >
COMPATIBLE SET = ({1,2,3,4,5,6,7,8,9,10,11,12,13})

compatible sets entered

Now we load two predefined special forms (special form A and special form B)
into the analyzer using the ‘Is’ (load special form) command as explained ear-
lier. We then analyze the rules in the meta rule section:

command > an

Select the rules to be analyzed:
1. the whole program
2. a continuous segment of program
3. separated rules

Enter your choice: 2

Enter the first rule number:1

Enter the last rule number:13

Step 1:



$.C.C.: R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 RZ R1

I strongly connected components in-dependency graph.
independent subset: 1 2 3 4 5 6 7 8 9 10 11 12 13

13 rules in special form a.

0 rules remaining to be analyzed:

Textual analysis is completed.

The program always reaches a fixed point in bounded time.

After revising the FCE program to make the incompatible rules compatible, the
analyzer reports that the entire program is always guaranteed to reach a fixed
point in bounded time.

7.4. Implementation of the General Analysis Tool and Estella

In this section, we describe efficient algorithms for implementing the
general analyzer and the Estella system.

7.4.1. General Analysis Algorithm

The general analysis tool allows the rule-based programmer to select a
subset of the rules in a program for analysis. The subset may contain either a
contiguous list of rules or separated rules. This provision reduces analysis time
by directing the analyzer to focus the checking on ‘trouble spots’ which the
rule-based programmer considers as possible sources of timing violations. In
the following section, we shall show how the analyzer uses decomposition tech-
niques to break the program into independent sets so that it does not have to
analyze the entire program at once.
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Algorithm 7.4.1. General Analyzer.

Input:

A complete EQL program or a set of EQL rules; a list of special forms
and exceptions, if any, specified in Estella.

Output: If the program will always reach a fixed point in bounded time, output

ey

@)

3)

(4a)

‘yes’. If the program may not always reach a fixed point in bounded
time according to the analysis, output ‘no’ and the rules involved in the
possible timing violations.

Parse the special form specifications and exceptions; then generate the
corresponding BCA recognition procedures.

Construct the high-level dependency graph corresponding to the program
by using algorithm 7.4.2.1 (section 7.4.2.1).

If there are more rules for analysis, identify forward-independent sets of
rules which are in special forms using algorithm 7.4.2.2 (section 7 4.2.2).
If at least one rule set in special form is found and there are more rules to
be analyzed, go to step 5. If there are no more rules for analysis, output
‘yes’ (the EQL rules have bounded response time). /

If no independent set of rules is in a special form catalogued but the vari-
ables in some rule set have finite domains, check whether this rule set can
always reach a fixed point in bounded time by using a state-based model
checking algorithm ([Clarke, Emerson & Sistla 86]). If the rule set is
determined to be able to always reach a fixed point in bounded time, go to
step 5. If the rule set is determined to be unable to always reach a fixed
point in bounded time, report the rules involved in the timing violations;
go to step (4b).

151



(4b) Prompt the user for new special forms or exceptions. If new special forms
or exceptions are entered, go to step 3. If no new special forms or excep-
tions are entered, stop; output ‘no’ (the EQL rules do not have bounded

response time).

(5) Mark those forward-independent sets identified to be in special forms as
checked (which effectively removes those rules from further analysis).
Rewrite remaining rules to take advantage of the fact that some variables
can be treated as constants because of the special form; go to step 3).

7.4.2. Selecting Independent Special Form Set

To determine whether a set of rules is independent from another set of

rules, the selection algorithm makes use of the following theorem.

Theorem. (Sufficient conditions for independence)

Let S and Q be two disjoint sets of rules. S is independent from Q if
the following conditions hold:

(I1) Lg nLg = <.
(I2) the rules in @ do not potentially enable rules inS.

Proof.

(1) Condition 11 guarantees that the firing of any rule in the set Q will not
change the content of any variable in Lg which has already settled down to
stable value. This is so because the set of variables Lg and the set of vari-
ables Ly are disjoint.

(2) Condition 12 guarantees that the firing of any rule in the set QO will not
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enable any rule in the set S.

o~
V]
e

Condition I3 guarantees that the firing of any rule in the set O will not
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change the value of any expression containing variable(s) that are assigned
to variables in the set Lg. Condition 1 guarantees that once the rules in §
have reached a fixed point, the contents of the variables in Lg will not
change. At this point, a rule in § would not fire again unless at least one
expression in R of that rule has changed its value since the last firing of that
rule. However, Rg N Ly =3, so the values of the expression in Rg will not

change despite the presence of 0.
O

To determine whether rule a potentially enables rule b, the implemen-
tation makes use of the approximately enable checking function. This function
returns true if rule @ potentially enables rule b or if there is insufficient informa-
tion (some expressions in the test part cannot be evaluated unless the whole state
space of the program is checked). It returns false otherwise.

7.4.2.1. Constructing and Checking the Dependency Graph

Before checking to determine if a subset of the rules is in a special
form, the analysis algorithm first constructs a high-level dependency graph
based on the above conditions for establishing independence of one set of rules
from another set.

Algorithm 7.4.2.1. High-level dependency graph construction.
Input: An EQL program.

Output: A high-level dependency graph corresponding to the input EQL pro-

gram.



(1) For each rule i in the EQL program, create a vertex labeled i.

(2) LetS contain rule i and let 0 contain rule j. If one of the conditions I1,
I2 or I3 is not satisfied, create a directed edge from vertex i to vertex j.

(3) Find every strongly connected component in the dependency graph
G (V, E) constructed by step 1 and step 2.

(4) Let C1,Cy,...,C, be the strongly connected components of this graph
G(V,E). Define G (\7, E ) as follows:

V={Cy,Cq . Crn}
E={(C,Cpli#j,(x,y)eE,xeC andy e C;}

We call G the high-level dependency graph of the input EQL program.
Each of the vertices C; in this high-level dependency graph is called a

forward-independent set.

Theorem. The high-level dependency graph of any EQL program is a directed
acyclic graph.

Proof.

Assume that G is not an acyclic graph. Then G has a directed circuit.
However, all strongly connected components on it should have been one
strongly connected component.

O

Timing and Space Requirements.

All graphs used in the algorithms presented in this paper are represented
as adjacency lists. Let n be the number of vertices (or rules) and let e be the
number of edges in G as constructed by step 1 and step 2. Step 1 can be per-
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formed in O(n )-time. Step 2 can be done in O 2)—time since every pair of rules
must be checked. The checking of each of the three conditions can be done
efficiently. Step 3 can be achieved in O(MAX (n ,e))-time using the depth-first
search strongly connected components algorithm of Tarjan ([Tarjan 72}). The

creation of edges for G in step 4 can be done in O(e)-time since in the worst
case, all edges in G may have to be examined. In the next section, we shall
describe an algorithm for identifying special form sets in the high-level depen-
dency graph.

Figure 7.3. A High-level Dependency Graph and its Strongly Connected



Components.

7.4.2.2. Identifying Special Form Sets

The brute-force approach to identify sets of rules in a special form
would be to generate all combinations of the rules in a program and then check
the rules in each combination to see if they are in one of the special form catalo-
gued. However, this approach does not take into account the syntactic and
semantic structure of an EQL program and it has exponential time complexity.
We shall present an algorithm for identifying special form sets by checking the
high-level dependency graph constructed by algorithm 7.4.2.1.

Algorithm 7.4.2.2. Identification of Special Form Set.
Input: A high-level dependency graph G corresponding to an EQL program.

Output: Sets of rules, if any, identified to be in some predefined special forms or

in some user-defined special forms.

(1)  Sort the vertices in the high-level dependency graph G to obtain a reverse
topological ordering of the vertices. Starting with the first vertex with no
out-edge, label the vertices I;,i = 1,2, ..., m, where m is the total number
of vertices in G. This can be achieved by using a recursive depth-first
search algorithm which labels the vertex just visited as describe above just
before exiting from each call.

(2) For the set of rules contained in each vertex /; such that I; does not have
any outgoing edge, determine if the rule set is in one of the special forms
catalogued by using the algorithms which will be presented in section
7.4.3 and section 7.4.4. Report rules which are involved in the violation
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of specific special form conditions.

Timing Requirements.

Step 1 can clearly be achieved in O(MAX (e ))-time using a standard
recursive depth-first search algorithm ([Aho, Hopcroft & Ullman 74]). The tim-
ing and space requirements for step 2 depends on the order in which the special
forms are checked as well as on the complexity of the recognition algorithms
used for each individual special forms.

Theorem.

The rules in a forward-independent set, I;, are always guaranteed to

reach a fixed point in bounded time if

(@) the rules in I; by themselves can always reach a fixed point in bounded
time and

(b) for every forward-independent set I; such that there is an edge (I;, ;) in
G, the rules in I; are always guaranteed to reach a fixed point in bounded

time.

Proof.
There are two cases to consider:

¢)) If I; does not have any out-edge, then I; is independent of any I;,i # j.
I; is certainly guaranteed to always reach a fixed point in bounded time
if the rules in it are always guaranteed to reach a fixed point in bounded
time.

@) If I; has outgoing edges, then I; is not independent from other vertices.
Letl;,j=1, 2, ..., p be these vertices such that for each /;, there is an

edge (I;,1;) in G . Assume that rules in /; may not reach a fixed point
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in bounded time. Then there must be at least one variable v in L of I;
whose value is changed infinitely often. However, rules in I; are
assumed to be able to always reach a fixed point in bounded time. Thus
there must be another vertex I, such that I; is not independent from /;
and rules in I, cannot reach a fixed point in bounded time. However,
this violates our assumption that every ; is always guaranteed to reach
a fixed point in bounded time. Hence, rules in I; are always guaranteed

to reach a fixed point if both conditions (a) and (b) are satisfied.
O

Theorem.

let ] i j=1,2,..,p, be a list of mutually independent sets of rules.
Suppose I; is not independent from /;, j = 1, 2, ...,p. IfI; is always guaranteed
to reach a fixed point in bounded time, and each of the /;s is always guaranteed
to reach a fixed point in bounded time, then the rules in
Lulyulyu -+ Ul, are always guaranteed to reach a fixed point in

bounded time.

Proof.

Consider two different rule sets, I, and I, taken from the list of I;s.
Since I, and I, are mutually independent, the firing of rules in /, does not
enable rules in /. Thus the rules in I, will reach a fixed point in bounded time
despite the presence of I,. The same argument applies to I,. Extending this
reasoning to more than two sets in the list of /;s, we can conclude that rules in

Iy -Vl are guaranteed to reach a fixed point in bounded time.
Let K=I,uU -+ VI, SinceI; is not independent from each set in
the list of [ S it is not independent of rules in K. However, rules in K are

independent from rules in ;. Therefore, the firing of rules in /; does not enable
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rules in K. Consequently, rules in K will reach a fixed point in bounded time
despite the presence of I;. After the rules in K have reach a fixed point, the
variables in K will no longer change their contents and thus these variables will
not enable or disable rules in I;. At this point, only rules in /; may fire. Since I;
is guaranteed to reach a fixed point in bounded time, it can be concluded that the
rulesinf; U1, U -+ U, are also always guaranteed to reach a fixed point in
bounded time.
O

7.4.3. Checking Compatibility Conditions

Checking whether the second condition or the third condition for com-
patibility are satisfied by a pair of rules is a straightforward exercise in compar-
ing sets and expressions. We shall therefore discuss the checking of the first

condition: mutual exclusion.

The boolean function mutex (e, €,) checks whether two boolean
expressions, e ; and e ,, are mutually exclusive. The goal of mutex is not to con-
quer the general mutual exclusion problem. Instead, it tries to efficiently detect
as much mutual exclusion as possible. When it returns true, it means that the
two expressions are mutually exclusive. However, when it returns false, either
it means that they are not mutually exclusive, or it means that there is
insufficient information to determine the mutual exclusion. Therefore, the two
expressions may still be mutual exclusive even when mutex returns false.

mutex makes use of a divide-and-conquer strategy inspired by the fol-
lowing observations. Let €1, €5, €3 be arbitrary boolean expressions. For (e
AND ¢,) and e3 to be mutually exclusive, either e, or e, (or both) must be
mutually exclusive with e3. For (¢ OR €) and e to be mutually exclusive,
both e and e, must be mutually exclusive with e3. Therefore we can continu-

ously divide the problem into subproblems until both boolean expressions are
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simple expressions.

A subtle problem arises when NOT operators appear in expressions.

For example, to decide whether (NOT e) and e, are mutually exclusive, we
cannot simply invert the answer returned from muzex (e, € ), otherwise errors
may occur when mutex (e 1, € ) Teturns false, meaning e ; and e, may or may
not be mutually exclusive. This problem can be solved by applying
DeMorgan’s laws to the expressions to reduce the occurrence of NOT operators
to the lowest level. In the implementation, we do not explicitly rewrite the
expressions before calling mutex. Instead, one flag is kept for each expression
in mutex to keep track of the net effect of NOT operators down to this level. If
a NOT operator is encountered at this level, the flag is inverted. This flag is

then passed down to the subroutines in charge of the subexpressions.

The detection of mutual exclusion between two simple expressions is
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handled by function smutex (). A simple expression can be

(1) aboolean variable, e.g., sensor_a_good;
(2) aconstant, e.g., FALSE; or

(3) a relational test, whose operator can be one of =, <>, >, <, >=, <=; and
whose operands can be either variables or arithmetic expressions.

Although tedious, smutex handles the examination case by case. It also invokes
function eval () which, given an expression, determines whether it can be
evaluated or not. If it can be evaluated, eval () also returns the result of evalua-

tion.

It should be noted that compatibility is independent of any special form.
When the analyzer determines that rule a and rule b are compatible or when the
user specifies this fact, then these two rules are considered compatible under any
context (when checked by any special form or BCA recognition procedures).



Timing Requirements.

The complexity of eval () is linearly proportional to the length, in terms
of the number of operators, of the expression to be evaluated. Although the
general problem of mutual exclusion detection is of exponential complexity,
mutex has been implemented to give answers in quadratic time.

7.4.4. Checking Cycle-Breaking Conditions

Cycle-breaking conditions are kept in a list, with the latest specified
break condition placed at the head and the earliest specified break condition,
which is the one in the special form part, placed at the tail. Later specified break
conditions are checked first, and therefore are treated as exceptions. Since con-
ditions in a special form may specify different types of graphs, there is one list
for each type of graphs. We define any cycle found in a graph representing
some information about a program to be acceptable if it does not cause a cycle
in the state-space graph of the program. A cycle is not acceptable if it may
cause a cycle in the state-space graph of the program. An arbitrary cycle-
breaking condition is evaluated as follows:

Algorithm 7.4.4. Evaluating General Cycle-Breaking Conditions.

When a cycle is found in the graph of type graph_type:
initially, assume the cycle is acceptable;
if ( cycles_list is not specified or
the cycle is found in the specified cycles_list )
then if ( break_condition is evaluated to FALSE )
then the cycle is not acceptable
else the cycle is acceptable
else if ( cycles_list is specified but the cycle is not found in it)
then check the next break_condition in the list of break conditions for this

161



graph_type, if any

To allow for the checking of arbitrary break conditions for each cycle in
an arbitrary graph representing syntactic and/or semantic structure of a program,
the checking algorithm may be required to perform an exhaustive search on the
arbitrary graph. The brute-force approach would have to determine every cycle
in the graph and then check whether the break condition is satisfied for each
cycle found. If 1E1 < VI 2 where |E| and |V are respectively the number of
edges and the number of vertices in a graph (e.g., ER graph, VM graph)
corresponding to a program, then this approach is still practical. The selection
algorithm 7.4.2.1 described earlier decomposes the program into forward-
independent modules which can be analyzed independently. This-effectively
breaks a large graph (corresponding to the entire program) into a set of smaller
graphs (corresponding to independent modules of rules) each of which is more
amenable to efficient analysis. It should be noted that an arbitrary graph
corresponding to the rules in a forward-independent set may be different from
the dependency graph (a strongly connected component) corresponding to these
rules. Thus the arbitrary graph may be further decomposed into smaller com-
ponents for analysis.

Furthermore, it should be noted that the types of graphs used for static
analysis are much smaller in size than the state-space graph corresponding to a
program. For instance, each vertex in an ER graph corresponds to a distinct
rule in a program. If a program has n rules, then there are n vertices and at
most 1 (n — 1)/2 edges in the corresponding ER graph. In contrast, each of the
vertices in a state-space graph represents a distinct vector of all variables in a
program. For instance, for a finite-domain program with m variables, the total

number of states in the corresponding state space graph in the worst case (.e.,
i=m

all combinations of the values of the variables are possible) is ('] 1X;1 where
i=1
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|X;! is the size of the domain of the i** variable. If all variables are binary,
then this number is 2™. Hence, our static analysis technique is a significant
improvement over those based primarily on conventional finite-state-based
checking.

To further improve the efficiency of checking cycle-breaking condi-
tions, we have developed the following strategies that are applicable to some
classes of break conditions and cycles. As in most strategies for attacking NP-
complete graph problems, our strategies take advantage of special characteris-
tics of a graph type and of the particular form of break conditions. Any attempt
to find checking algorithms which are efficient for arbitrary graphs and arbitrary
break conditions would not seem promising.

1) For a class of break conditions which express relationships between two
rules in a cycle, we can first determine those pairs of rules which violate
the break condition being checked. Then for each pair of these rules,
we check to see whether the pair of vertices corresponding to this pair
of rules lie in a cycle. If the answer is yes, we can immediately con-
clude that the cycle detected is not broken by the break condition.

2) For certain class of graphs and a class of break conditions, it is possible
to first prune the acceptable cycles in the graph without actually finding
all vertices in a cycle, and then apply a general cycle-checking algo-
rithm. This would greatly reduce the number of cycles that have to be
checked.

7.5. Concluding Remarks

We have described a specification facility called Estella for specifying
behavioral constraint assertions about real-time EQL programs. This facility
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allows customization of the analysis tools so that they can be applied to the
analysis of application-specific rule-based systems. In particular, the Estella
facility allows the programmer 10 specify information about the rule-based pro-
gram that is too hard to be detected by the general analyzer. The development
of this facility as a computer-aided software engineering (CASE) tool is a
significant step for aiding in the rapid prototyping and development of expert

systems with guaranteed response time.
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Chapter 8

The Synthesis Problem

The following definition is needed to formalize the synthesis problem.
We say that an equational rule-based program P, is an extension of a program
P, iff the following conditions hold. (1) The variables of P, are a subset of
those of P,. (2) Py has the same launch states as the projection of the state
space of P , onto that of Py, i.e., if P, has more variables than P {, then we con-
sider only those variables in P, that are also in P ;. (3) The launch states of P 4
and the corresponding ones in P, have the same end-points. Notice that we do
not require the state space graph of P to be the same as the corresponding
graph of P ,, e.g., the paths from launch states to their end-points may be shorter
in P,. The synthesis problem is: Given an equational rule-based program P
which always reaches a safe fixed point in finite time but is not fast enough to
meet the timing constraints under a fair scheduler, determine whether there
exists an extension of P that meets both the timing and integrity constraints

under some scheduler.

For programs where all variables have finite domains, we can in princi-
ple compute all the end-points for each launch state, since the state space graph
is finite. We can create a new program from the given program as follows. The
new program has the same variables as the given program. Suppose § is a
launch state and §° is an end-point of s. We create a rule r which is enabled iff
the program is in s and firing r will result in the program being in §’, i.e., the
enabling condition of r is to match the the values of the variables in s and the

multiple assignment statement of 7 assigns to the variables the corresponding
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values of those in s”. By this construction, the new program will always reach a
fixed point in one iteration. Thus in theory, a solution always exists for the syn-
thesis problem in the case of finite variables. This solution is very expensive in
terms of memory since there are at least as many rules as there are launch states,
even though some optimization can be performed to minimize the number of
rules by exploiting techniques similar to those used in programmable logic array
optimization. However, we still have to compute the end-points for each launch

state and this can be computationally expensive.

We would like to find solutions to the synthesis problem without having
to check the entire state space of a program. Two general approaches have been
identified.

(1) Transforming the given equational rule-based program by adding, deleting,
and/or modifying rules.

(2) Optimizing the scheduler to select the rules to fire such that a fixed point is
always reached within the response time constraint. This assumes that there
is at least one sufficiently short path from a launch state to every one of its
end-points.

We shall illustrate both approaches with the program in example 3.1
which is reproduced below.

Example:
init: object_detected = false, sensor_a_status, sensor_b_status = good
input: read(sensor_a , sensor_b , sensor_¢)

(* 1.*) object_detected = true IF sensor_a =1 AND sensor_a_stauus = good
(* 2. %) [] object_detected :=rue IF sensor_b =1 AND sensor_b_status = good
(* 3.%) [] object_detected := false IF sensor_a =0 AND sensor_a_staius = good
(* 4. %) [] object_detected = false IF sensor_b =0 AND sensor_b_status = good
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(* 5.*) [] sensor_a_status =bad IF sensor_a <> sensor_¢ AND sensor_b_status = good

(* 6.%) [} sensor_b_status :=bad IF sensor_b <> sensor_c AND sensor_a_status = good

In this program, the variables sensor_a_status and sensor_b_status are
initially set to good, and the variable object detected is initially set to false.
At the beginning of each invocation, the sensor values are read into the variables
sensor_a, sensor_b, sensor_c. Note that if sensor_a and sensor_b read in
values 1’ and ‘0’ respectively, then rule 1 and rule 4 may fire alternatively for
an unbounded number of times before either rule 5 or rule 6 is fired. Similarly,
if sensor_a and sensor_b read in values ‘0’ and ‘1, respectively, then rule 2
and rule 3 may fire alternatively for an unbounded number of times before either
rule 5 or rule 6 is fired. In this case, sensor_c can be used to arbitrate between
the rules 1 and 4, or 2 and 3 by firing rule 5 or 6. (However, notice that only one
of rule 5 or 6 may fire in each invocation; we do not want sensor_c to override
both sensor_a and sensor_b.) This program will reach a fixed point in finite
time since fairness guarantees that rule 5 or 6 will eventually be fired.

In approach (1), we ensure that this program will reach a fixed point in a
bounded number of iterations starting from any launch state by performing the
appropriate program transformation. First, we detect those rules that may con-
stitute a cyclic firing sequence. In this program, the alternate firings of rule 1
and rule 4, or rule 2 and rule 3, may constitute a cyclic firing sequence. Noting
that the firing of either rule 5 or rule 6 may disable two of rules 1-4, we add a
rule (rule 7) and some additional conditions to enforce the firing of either rule 5
or rule 6 first if there is a conflict between the values read into sensor_a and
sensor_b, thus breaking the cycle. The transformed program which is always
guaranteed to reach a fixed point in a bounded number of iterations is shown
below.

init: object_detected = false, sensor_a_stalus, sensor_b_status = good
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invoke: conflict := true

input: read(sensor_a , sensor_b , sensor_c)

(* 1.*¥) object_detected = true

IF sensor_a =1 AND sensor_a_status = good AND conflict = false
(* 2. %) [] object_detected = true

IF sensor b =1 AND sensor_b_status = good AND conflict = false
(* 3.%) [] object_detected := false

IF sensor_a =0 AND sensor_a_status = good AND conflict = false
(* 4. %) [] object_detected = false

IF sensor_b =0 AND sensor_b_status = good AND conflict = false
(* 5. %) [] sensor_a_status :=bad

IF sensor_a <> sensor_c AND sensor_b_status = good
(* 6. %) [] sensor_b_status :=bad

IF sensor_b <> sensor_c AND sensor_a_status = good
*7.%) [1 conflict = false

IF sensor_a = sensor_b OR sensor_a_status = bad OR sensor_b_status =bad

In this program, the variable conflict is always set to true by the invoke
command of EQL which is executed at the beginning of each invocation.

In approach (2), we customize an optimal scheduler which always
selects the shortest path to any end-point from a launch state. For the program
of example 3.1, this can be achieved by a fixed priority scheduler which assigns
a higher priority to rules 5 and 6, i.e., if rule 5 or rule 6 is enabled, it is always
fired before rules 1-4.

It should be emphasized that the two approaches for solving the syn-
thesis problem are not in general polynomial time. Determining whether a
scheduler exists which meets a response time constraint is NP-hard, as we shall

show in the next section.
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8.1. Time Complexity of Scheduling Rule-Based Programs

Consider the following equational rule-based program:

initt R =0,t,=1,= -+ =¢,=0
input: read (C)

(*1.%) R =R +q,(®)!1,=1;+1IFR <C
(*2.%) [IR =R +q,®) 1, =1,+ 1IFR <C

(*n.*) [IR =R +q,() 1, =1, +1IFR <C

In the above program, # is the vector <y, £, ..., [, > We can think of
the variable R which is initially 0, as the accumulated reward for firing the
rules, and f; as the number of times rule i has been fired, which is initially O for
all n rules. The function ¢; () gives the additional reward that can be obtained
by firing rule i one more time. All the g;()s are monotonically non-decreasing
functions of 7, and so the program may reach a fixed point in finite time assum-

ing that some g;s return positive values.

The time-budgeting problem is to decide whether the above program
can increase R from O to 2C in T iterations, for some given T. The time-
budgeting problem arises when an output must be computed within a response
time constraint of T by a real-time decision system which is composed of n
subsystems. To compute the output, the decision system must invoke a number
of subsystems S;,i =1,..., n, each of which computes a partial output. The
quality g; of each partial output is dependent on the time ¢; allocated to the sub-
system S;, and the overall quality of the output depends on some function of the
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quality of the partial outputs. Given a fixed time period T, the objective of the
time-budgeting problem is to maximize the overall quality R =g+ - +¢,

by determining an optimal partition of T into n time slices, where each time
slice ;,i =1, - -, n corresponds to the time allocated to subsystem §;.

Referring to the EQL program above, it is obvious that the time-
budgeting problem is in NP since a nondeterministic algorithm can guess the
number of times each of the n rules should be fired, and check in polynomial
time whether t,+1,+ -+ +t, <T andR 2 C. This time-budgeting problem
can be shown to be NP-complete by an easy reduction from the NP-complete
knapsack problem. The knapsack problem consists of a finite set U, a size
s(u), and a value v(u) foreachu € U, a size constraint T, and a value objec-
tive C. All values s(u), v(u), T, and C are positive integers. The question is
to determine whether there is a subset U, € U such that the sum of the sizes
s(u)e U, <T and the sum of the values v(u)e U,=C. To transform the
knapsack problem into the time-budgeting problem, let each item u; € U

correspond to a unique rule i such that

0 if 1; <s ;)
a®O= yw) ity = 5)
Obviously, the knapsack problem has a solution iff it is possible to schedule a
subset of the rules to fire a total of T times so that R 2 C.

The time-budgeting problem captures the property of an important class
of real-time applications where the precision and/or certainty of a computational
result can be traded for computation time. Solution methods to this problem are
therefore of practical interest. For the case where the total reward is the sum of
the value functions of the subsystems, the problem can be solved by a well-
known pseudo-polynomial time algorithm based on the dynamic programming
solution to the knapsack problem. Since this computation is done off-line,
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computation time is usually not critical here. However, if the total reward is a
more complex function than the sum, then the dynamic programming approach
may not apply. We shall propose another approach which is suboptimal but can
handle complex total reward functions. The idea is to use a continuous function
to interpolate and bound each reward function and then apply the method of
Lagrange multipliers to maximize the total reward, subject to the given timing
constraint. This approach is explored in the next section.

8.2. The Method of Lagrange Multipliers for Solving the Time-Budgeting
Problem

Given that the reward for firing the i rule #; times is ¢;(3;), and T is
the maximum number of iterations allowed, the time-budgeting problem can be
formulated as a combinatorial optimization problem whose objective is to max-
imize R subject to the constraint: £+ -+, =T = 0. For the above program,
RO =q @)+ - +q,(,). Other than the requirement that the #;s must be
integral, this problem is in a form that can be solved by the method of Lagrange
multipliers. To maximize (or minimize) a reward function f () subject to the
side condition: g (t) =0 (i.e., response time constraint in our case), we solve for
Tin VH (7, A) = 0 where X is the Lagrange multiplier and

HEMN=f@O-L* g

Example 8.2.1.

Consider the following EQL program which is an instance of the time-
budgeting problem with two rules.

ini: R =0,1,=1,=0

input: read(C)
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(*1.*) R=R+q@!'ty=1;+1IFR <C
*2.5[R =R +CI2®!122=12+1ER <C

Let T = 10. The reward functions for these two rules are given below.

Reward functions ¢ ; and ¢ ,:

Discrete reward function g §

rp 1] 2)13(4 151617 9 |1 10
g, |415]7[8]9]9]10]11] 12 12
Discrete reward function ¢
t, | 1234|5167 8 1 9|10
g, | 6]819]9]10}]10]10]10] 10 10

The Lagrange multipliers method can be applied as follows. First, we

interpolate and bound the two sets of data points with two continuous and dif-
ferentiable functions f ; and f ,, obtaining f ;(¢,) = 4¢ M2, f ot =101 - e,
The graph below shows the plots of the two discrete reward functions and their

respective approximate continuous functions. The discrete reward function g 4

and its corresponding approximate function f ; are plotted in dotted lines. The

discrete reward function ¢, and its corresponding approximate function f 5 are

plotted in solid lines.
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The side constraint of this problem is: ¢, +#, =7 = 10. Both 7, and 7, must be

non-negative because a rule cannot fire a negative number of times. We have:

H(p,t,M)=f @ -L* g@)
=f )+ ) =A* (1 +1,-T)
=41, Y2+ 10(1 —e ") =Mz + 12— 10).

Differentiating H (¢, £5, A) with respect to 7,75, and A and then setting each

derivative to 0, we obtain the following three equations:

oH _ , 12 _ 4 _

OH _ 10722 =0, (eq.2)
812

oH

_éx=—(zl+t2)+10=0. (eq. 3)

Combining the first two equations, we obtain two equations with two unknowns.

Solving for ¢, and £ ,:

21,72~ 10e72=0
t1+1,=10.

The values for ¢, and t, are 7.391 and 2.609 respectively. Because these
optimal values are not integral, we first truncate 7, and ¢, to obtain ¢ =7 and
t,="2. We are then left with one extra time unit which can be used to fire a rule
once. We allocate this extra time unit to the rule that will add the largest margi-
nal reward to R. Ties are broken arbitrarily. In our example, the marginal
reward for firing rule 1 or rule 2 is 1 in either case. We select rule 2 to fire for



another time to obtain a total reward = 19, with ;=7 and £, = 3. For programs
with more rules, an integral solution is obtained by truncating the Lagrange
multiplier solution and using a greedy algorithm to select rules to fire to maxim-
ize the marginal reward. In this example, this also turns out to be the optimal

solution to the integer optimization problem.

Tt should be noted that it is unclear whether the quality of the solutions
obtained by the Lagrange multiplier approach is in general better than that of a
greedy algorithm for solving the knapsack problem. However, this approach
can handle more general reward functions, and more importantly, it lends itself
to parameterizing the solution with respect to the response time constraint T and
the reward objective C. For example, we may use a quadratic B-spline interpo-
lation algorithm to interpolate and bound each set of discrete reward values to
obtain n quadratic functions. After taking the partial derivatives as required by
the Lagrange multiplier method, we have n + 1 linear equations. Given the
values of T and C at run time, these equations can be efficiently solved, e.g., by
the Gaussian elimination algorithm. The use of a continuous function to bound
the rewards also gives us a better handle on guaranteeing that an equational
rule-based program can meet some minimum performance index in bounded
time than ad hoc greedy algorithms which must be analyzed for individual
reward functions. Such guarantees are of great importance for safety-critical
applications.

8.3. The Scheduling Approach

In this approach, we optimize the scheduler to select the rules to fire
such that a fixed point is always reached within the response time constraint.
This assumes, of course, that there is at least one sufficiently short path from a
launch state to every one of its end-points. To implement this approach, the
scheduler must have prior knowledge about the interaction among rules in the
program. In particular, it must know the general order of firing the enabled
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rules such that the number of rule firing to reach a fixed point is minimized.
One way to acquire this scheduling knowledge is to decompose the original pro-
gram into independent modules of rules and determine an optimum order to fire
these module of rules.

To decompose the original program into independent modules, we
make use of the analysis results derived from the general analysis algorithm.
Recall that the general analyzer iteratively selects forward-independent sub-
sets of rules that are guaranteed to reach a fixed point in bounded time. A set of
rules is said to be forward-independent in the context of the analysis process
iff its fixed-point convergence depends only on the rules contained in this set or
in those sets of rules that have been selected (these sets of rules always reach a
fixed point in bounded time) during the previous iterations of the analysis pro-
cess, but not on the fixed-point convergence of the remaining rules in the
simpler rewritten program(s).

Each set of rules selected by the general analysis procedure is called a
module. Let A, and A, be two modules selected in the same first iteration by
the analysis procedure. Let B be the module selected in the second iteration by
the analysis procedure. Then modules A, and A, are said to be forward-

independent relative to module B. Modules A ; and A, are said to be parallel.

We are now ready to show how the knowledge about these modules and
the order in which they are selected by the analysis procedure can be used by the
scheduler to optimally select rules for execution at run time. Let A and B be
respectively the first and the second forward-independent modules selected by
the analysis procedure. Let 7, and 5 be respectively the maximum number of
rule firings required for module A and module B to converge t0 a fixed point.
Letz, ., p be the time it takes for the rules contained in both modules to reach a
fixed point.

A key observation is the following. Since module A is forward-
independent relative to module B, once the rules contained in module A have
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reached a fixed point, firing any rules contained in module B will not affect the
fixed point convergence of module A. Rules contained in module B may not

reach a fixed point before rules contained in module A have reached a fixed
point. Thus firing rules contained in module B before those rules contained in
module A have converged to a fixed point will not decrease 4 > but may
increase 1, - Consequently, firing the rules contained in module A until a
fixed point is reached in module A and then firing those rules contained in
module B until a fixed point is reached in module B will minimize the total
number of rule firings. Thus the optimum worst-case time needed for the rules
contained in both modules to reach a fixed point using this schedule is 4 + 3.
With the rules decomposed in this fashion, this computation time is the best one
can guarantee without further knowledge about the interaction of the rules
within each module. This result can be extended to optimally schedule all
modules of rules selected by the general analysis procedures. We now state a
theorem about the relation forward-independence (FI) defined on the set of
modules selected by the general analysis procedure.

Theorem 8.3.1.

The relation forward-independence (FI) induces a partial ordering on
the set of modules selected by the general analysis procedure.

Proof:

A relation is a partial order iff it is transitive, irreflexive, and antisym-
metric ([Horowitz and Sahni 82]). Irreflexivity implies that there are no
directed cycles. Let A be the module selected at iteration i, and let B be the set
of tules which are not selected and remain to be analyzed at iteration i. The
analysis algorithm guarantees that A is forward-independent from B, thus
(A,B)e FL. Let B=B[UB, Let By and B, be the modules selected at
iteration i + 1 and at iteration i + 2 respectively. Again, the analysis algorithm
guarantees that B | is forward-independent from B ,, thus (B, B,) € FI. Note
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that A must be forward-independent from B ; and B, since By € B and B, C B.
Since (A,B )< FI and (B, B » e FI imply (A, By e FI, FI is transitive.

178

Since a module cannot be forward-independent from itself, FI is irreflexive.
From the discussion of the scheduling approach, it is obvious that FI is antisym-
metric. If FI has a nontrivial directed cycle (A4, ..., A,), where n 2 2, then
(A,,A ) € FI and also, by transitivity, (4 1, 4,) € FL. Since A #A,, antisym-
metry is violated and thus FI cannot be a partial order. There cannot be any
directed cycles. Since FIis transitive, irreflexive, and antisymmetric, it is a par-
tial order.
O

We can graphically represent this set of modules by applying the fol-

lowing two rules:

(1) Each vertex in the graph represents each module selected.
(2) There is an edge from vertex A to vertex B iff module A is forward-
independent relative to module B .

Note that the graph constructed using rules (1) and (2) is acyclic and
layered. The set of modules selected at each iteration is called a layer. If a mul-
tiprocessor is available for executing a rule-based program with a graph as con-
structed using the above rules, then the number of processors needed to achieve
maximum parallelism corresponds to the number of modules contained in the
largest layer.

To further investigate the scheduling approach for minimizing the
response time of a rule-based program, we have identified two important
research problems:

(1) How to determine the size of each module such that the number of rule

firings needed to reach a fixed point is always minimized?



(2) Given a fixed number of processors, determine the optimum way to allocate
the parallel modules into these n processors such that the time needed to
compute the respective fixed points of all parallel modules is minimized.

We have just described one simple but very effective way to solve the
synthesis problem by using the analysis procedure to compute the optimum
schedule for firing the rules in a program prior to its execution. It is our view
that there are other methods for scheduling rules that can be exploited in this
fashion. We expect that our ongoing research will discover alternative novel
methods for scheduling rules or specifying the scheduler that are conducive to
guarantee a given program satisfying certain properties will meet all timing con-
straints.
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Chapter 9

Computer-Aided Design Tools

To put theory into practice, we have implemented a suite of computer-
aided design tools for the analysis and synthesis of real-time rule-based decision
systems. As in the design of most complex software systems, we envision the
development of real-time rule-based systems to be an iterative process. Our goal
is to speed up this iterative process by automating it as much as possible. Figure
9.1 shows the interaction of a designer with these software engineering tools. In
each design cycle, the equational rule-based program is analyzed by the analysis
tools for compliance with the timing and integrity constraints. Violations are
passed to the designer who can then modify the program with the help of the
synthesis tools until the program meets all the constraints. It should be
emphasized, however, that the purpose of the design tools is not to encourage
people to write sloppy programs and rely on the tools to fix them. Design tools
are particularly necessary for rule-based programs because the addition and/or
deletion of just one rule may change the behavior of a program drastically, and
it is essential to guard against unintended interference between the work of indi-
vidual members of a design team.
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Figure 9.1. Development of Real-Time Decision Systems.

In previous chapters, we have described the General Analysis Tool and
the Estella BCA specification facility. In this chapter, we shall describe the
other modules of our computer-aided software engineering tools which have
been implemented for the equational rule-based language EQL. For efficient
execution, there is a translator of EQL programs into C code. We selected C as
the target language since it is widely available and has efficient compilers.
Since EQL has nondeterministic constructs, our translator generates the
appropriate C code to simulate nondeterminism and parallelism on a sequential

machine.

181



8

)

3

Microsystems 3® work station running under BSD UNIX

Our CAD tools include:

A translator for transforming an EQL program into its corresponding state
space graph as described in chapter 4. The state space graph serves as an
intermediate form of the program under development and is used for
mechanical analysis and synthesis.

A temporal logic verifier for checking integrity assertions about EQL. pro-
grams. (In the current implementation, these assertions can be expressed
in a temporal logic called Computation Tree Logic (CTL) [Clarke, Emer-
son & Sistla 86].) Specifically, the verifier determines, given any launch
state, whether some fixed points are always reachable in a finite number
of iterations and whether the reachable fixed points are safe, i.e., satisfy
the specified integrity constraints. If the given EQL program may not
reach a fixed point from a particular launch state, then the temporal logic
verifier will warn the designer of the existence of a cycle which does not
have any path exiting from it.

A timing analyzer for determining the maximum number of iterations to
reach a safe fixed point, and the sequence of states traversed (along with
the sequence of of rules fired) from the launch state to the fixed point.
This helps the designer pinpoint the sets of rules that may constitute a per-
formance bottleneck so that optimization efforts can be concentrated on
them. The timing analyzer can also be used to investigate the performance
of customized schedulers which are used to deterministically select a rule

to fire when two or more rules are enabled.

A suite of practical prototyping tools has been implemented on a Sun

® to perform timing

and safety analysis of real-time equational rule-based programs. These tools are

182

® UNIX is a registered trademark of AT&T Bell Laboratories. SUN is a registered trademark of
SUN Microsystems Inc.



183

sufficiently practical for analyzing realistic real-time decision systems. To
demonstrate their usefulness, we have used these tools to analyze:

(1) the Cryogenic Hydrogen Pressure Malfunction Procedure of the
Space Shuttle Vehicle (SSV) Pressure Control System ([Helly 84]),

(2) the Integrated Status Assessment Expert System (ISA) ([Marsh 88]),
and

(3) the Fuel Cell Monitoring Expert System (FCE) ([Marsh 88]).

Figure 9.2 illustrates the dependency among the modules in our tool
system. The names of the modules and descriptions of their functions follow.

(1) eqtc - EQL to C translator

(2) ptf - EQL to finite state-space graph translator for a launch state

(3) ptaf - EQL to finite state-space graphs translator for all launch states
(4) mef - CTL model checker (extended to cover fairness)

(5) fptime - Timing analyzer on state space graphs
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equational customized
rule-based program scheduler specification

eqtc ptf
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finite state-space graph
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program CTL temporal logic formula
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C Compiler mcf fptime
executable indicates whether maximum number of
C object code a fixed point is iterations to reach
always reached a fixed point and
the sequence of rules
fired

Figure 9.2. Computer-Aided Design Tools for Real-Time Decision Systems.

The module eqtc translates a program written in the language EQL into
a C program suitable for compilation using the cc compiler under UNIX. As
described earlier, EQL is a Unity-based language with nondeterministically-



scheduled rules and parallel assignment statements.

The module ptf translates an EQL program with finite domains (all
variables have finite ranges) into a finite state-space graph which contains all the
states reachable from the launch state corresponding to the initial values of the
variables given in the program. It also generates the appropriate temporal logic
formula for checking whether the program will reach a fixed point. ptf pro-
duces a file named mc.in which will be read by the fairness-extended model
checker mef and the timing analyzer module fptime. The file mc.in contains the
internal representation of the state space graph of the corresponding EQL pro-
gram.

The module ptaf is similar to ptf, but it automatically generates the
complete state space graph (i.e., it generates all the states reachable from every
launch state). ptaf invokes the model checker and the timing analyzer to deter-
mine whether the program will reach a fixed point in a finite number of itera-
tions, starting from any launch state. If the EQL program indeed reaches a
fixed point in a finite number of iterations starting from any launch state, ptaf
informs the designer accordingly. Otherwise, ptaf stops at the first launch state
for which the program may not reach a fixed point in a finite number of itera-
tions and informs the designer about the unstable launch state.

The module mcf is a temporal logic model checker based on the
Clarke-Emerson-Sistla algorithm for checking the satisfiability of temporal logic
formulas written in CTL ([Clarke, Emerson & Sistla 86]). Our model checker
assumes that strong fairness is observed by the scheduler, i.e., rules that are
enabled infinitely often will eventually fire. Under this assumption, a cycle in
the state space graph which has at least one edge exiting from it is not sufficient
to cause the program not to reach a fixed point in a finite number iterations.
(The program will leave the states in the cycle because the rule associated with
the exit edge must eventually fire.) However, the model checker will warn the
designer that the program may require a finite but unbounded number of itera-
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tions to reach a fixed point. The default scheduler used to schedule the next
enabled rule to fire is fair and is based on a linear-congruential pseudo-random

number generator.

The module fptime is a timing analyzer that computes the maximum
number of iterations for a given program to reach a fixed point if at least one
reachable fixed point exists. In addition, it provides the sequence of rule firings
leading from the launch state to this fixed point. It can also compute the number
of iterations to any other fixed point and the corresponding sequence of rule
firings if the designer so desires. fptime has been designed so that a designer
will be able to specify restrictions on the scheduler if it is desired to determine
how the specified scheduling restrictions may affect the number of rule firings.
This is useful for investigating the performance of customized schedulers. Fora
complete analysis of the distributed program of example 3.2 using the CAD
tools, the reader is referred to chapter 5.

One of the principal goals of our computer-aided design tools is to pro-
vide maximum flexibility in the user-toolset interface so as to allow, for
instance, the analyzer to be tailored to particular application domains so that the
analysis can be performed with upmost efficiency. While we would like to
mechanize the analysis and synthesis procedures as much as possible, it is our
belief that allowing user interaction which would speed up and refine the
analysis and synthesis processes does not defeat our goal. This is reflected in
one of our research directions which is the development of a standard language
Estella for specifying behavioral constraint assertions and special forms of rules
for which the analysis problem can be solved efficiently.

Another goal is to make this suite of tools as general as possible so that
it is capable to analyze a wide range of realistic real-time rule-based programs.
A third goal is to allow for future extensions to these tools as the need arises
with minimal efforts. Both of these goals are accomplished by modularizing the
different phases and components of the tools and by utilizing standardized data
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structures shared by the different modules. To put theory into practice, this suite
of tools is constantly updated to incorporate new analysis and synthesis tech-

niques as they are being discovered.

The current version of our programming tools consists of over 21,000
lines of C, YACC, and LEX codes. We have given demonstration of this prel-
iminary version of our programming tools for real-time rule-based decision sys-
tems to visitors from International Business Machines (IBM), National Science
Foundation (NSF), National Aeronautics and Space Agency (NASA), Office of
Naval Research (ONR), Mitre, Texas Instrument (TD), Software Research
Department of Hitachi (Japan), and a visitor from UK. We have recently distri-
buted the version 1.0 of the programming tools to Texas Instrument Inc, Dallas.
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Chapter 10

Future Research Directions

Having formalized two fundamental problems, namely, the analysis
problem and the synthesis problem, with respect to our real-time decision sys-
tem model and having developed concrete techniques for tackling both of them,
we are now in a position to explore possible avenues for further research in this
increasingly important area. In the following sections, we identify several
research directions within our model and worthwhile problems associated with
each direction, and provide feasible approaches for attacking some of these
problems.

10.1. Structured Design of Real-Time Rule-Based Systems

The analysis of rule-based programs often involves exhaustive state-
space graph checks and thus is computationally-intensive. In the worst case the
analysis may require exponential computation time as a function of the number
of variables in the program and is in general undecidable for non-finite-domain
programs. Although polynomial-time static analysis techniques which take
advantage of special forms of rules have been developed for a sizable class of
real-time rule-based programs implemented in EQL for which exhaustive
state-space graph analysis is unnecessary, the verification of large and complex
programs remains computationally intensive. To reduce the computational
complexity of the analysis procedure, a discipline of programming real-time
rule-based systems must be developed and imposed to expedite the analysis pro-
cedure. We would like to develop a structured design approach aimed at facili-
tating the verification of fixed-point convergence and managing the complexity
of the expert system by ensuring modularity and providing structure to the
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specification and design of these time-critical decision systems.

The objective of structuring EQL programs is thus twofold. First, it
facilitates verification (by a combination of static analysis and exhaustive state
graph analysis) of fixed point convergence. Second, it enforces modularity and
guides the specification and design of real-time rule-based programs. The
decomposition of the program into suitable modules may even help identify sets
of rules which can fire in parallel without conflicts. Different criteria may be
used to decompose a program into modules with desirable inter-module and
intra-module properties.

10.2. Analysis of Self-Stabilizing EQL Programs

A technique for transforming any non-self-stabilizing acyclic EQL pro-
gram into one that is self-stabilizing has been proposed recently by Gouda and
Rosier ([Gouda & Rosier 88]). We show that any self-stabilizing program
obtained from a non-self-stabilizing acyclic program using the Gouda-Rosier
method described in [Gouda & Rosier 88] can be analyzed using the techniques
described in chapter 5. In particular, we show that a self-stabilizing program is
in special form A if its non-self-stabilizing counterpart is in special form A. We
conjecture that other classes of self-stabilizing programs obtained from their
non-self-stabilizing counterparts which are in other special forms using a more
general Gouda-Rosier transformation method are also in special forms. If this
conjecture is verified, then this result is significant because it allows us to
analyze self-stabilizing programs whose non-self-stabilizing counterparts are in
special form with the facility provided by static analysis techniques.

Any non-self-stabilizing program p in special form A can be
transformed into a self-stabilizing program g as follows. For every set of rules
(each of which is called a non-self-stabilizing rule set) in program p with
exactly the same variable on the left side:

189



(*1.%) v, =B;(v) IF C;(v)

(*m. *) [1v; =D;(v) IF E;(v)
We add the following rule:
Gm’.*) [Qv; =v; IF ~C;(w)A---N~E;(v)

where ¥; is the initial value of v;. We call this rule m’ a new rule for the non-
self-stabilizing rule set consisting of rules 1-m. The resulting program g is
guaranteed to be self-stabilizing ((Gouda & Rosier 88]).

10.2.1. The Preservation of Special Form A

In this section, we show that the self-stabilizing program obtained using
the method described in the preceding section is also in special form A. For
ease of discussion, we re-state the conditions for special form A.

A set of rules are said to be in special form A if all of the following three condi-
tions hold.

(A1) Constant terms are assigned to all the variablesin L, i.e,R =©.
(A2) All of the rules are compatible pairwise.
(AL NT =2.

Theorem 10.2.1.

If a non-self-stabilizing program p is in special form A, then the self-
stabilizing version ¢ obtained by the Gouda-Rosier method is also in special
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form A.

Proof:
We need to show that program g satisfy all three conditions of special

form A. Let L*,R® and T® denote the sets of variables appearing in the LHS,
RHS and tests of the new rules.

Satisfaction of condition Al: The only new values assigned are the ini-
tial values ¥; of the program variables. Since for all i, v; is the initial value of
v;, every v; can be treated as a constant throughout the execution of the pro-
gram. Since R =, hence R* U R = and thus condition (A1) is satisfied.

Satisfaction of condition A2: Test m” and test i, i = 1,...,m, are mutu-
ally exclusive (condition CR1 is satisfied) because a conjunct and its negation
cannot be true at the same time and thus the new rule is compatible with every
rule in the corresponding non-self-stabilizing rule set consisting of rules 1-m.
Next, we need to show that this new rule is compatible with every other new not
in this non-self-stabilizing rule set since the variables on the left sides are also
different and thus condition CR2 is also satisfied. The above reasoning applies
to every new rule added to program p. Hence, we can conclude that all rules in
program g are compatible pairwise and thus condition A2 is satisfied.

Satisfaction of condition A3: The variables appearing in the test part of
each new rule are exactly those appearing in the test parts of its corresponding
non-self-stabilizing rule set. The variable appearing in the left side of each new
rule is also the same as those appearing in the left parts of its corresponding
non-self-stabilizing rule set. Therefore, L°=L and T°=T. Hence
(LS UL)YN (T* U T)=D and thus condition (A3) is satisfied.

Since the self-stabilizing program ¢ satisfies conditions Al, A2, and
A3, we can conclude that it is in special form A.

191



O

192

One of our goals is to extend the applicability of our general analysis
strategy and our programming tools to the analysis of self-stabilizing rule-based
programs derived using the Gouda-Rosier method. The result described above
is a step in this direction.

10.3. Synthesis of Real-Time Rule-Based Systems with Bounded Response
Time

In chapter 8, we have formalized the general synthesis problem and
have identified two general approaches for solving the synthesis problem. In
particular, we have shown how information derived from the general analysis
algorithm can be used to provide an optimal schedule for firing the rules in a
rule-based program. We have barely scratched the surface of possible solutions
to the synthesis problem. We now explore in more details the transformation
approach.

The scheduling approach is sufficient to guarantee that the specified
timing constraints are satisfied provided that there is at least one sufficiently
short path from a launch state to every one of its end-points. For programs that
do not meet this criterion, the transformation approach must be taken to obtain
extendedT programs that meet both the timing and integrity constraints. What is
needed is a systematic procedure for transforming the given equational rule-
based program by adding, deleting, and/or modifying rules. We give a sketch of
the proposed synthesis algorithm.

Qutline of the Synthesis Algorithm:

% The reader might want to consult chapter 8 for definitions of terms.



[1] Given an EQL program that does not meet the specified timing con-
straints, construct the corresponding rule transition program graph.

[2] Perform computations on the rule transition program graph to obtain
required values for synthesis such as shortest paths.

[3] Modify the rule transition program graph using a synthesis procedure
and the above values to obtain a new rule transition program graph.

[4] Generate a new EQL program from the modified rule transition pro-
gram graph; this EQL program is guaranteed to always reach a fixed point
in bounded time.

Each of the first three steps of this proposed synthesis algorithm consti-
tutes a nontrivial research problem which must be resolved before we can apply
this algorithm to synthesize programs that meet both the timing constraints as
well as the integrity constraints. We first explore techniques for implementing
the first step of the algorithm.

Performing an exhaustive analysis on the global state-space graph
representing a program in order to generate an optimized version is not practi-
cal. This motivates us to develop a more succinct graph upon which the
analysis and optimization procedures can be applied. One space-inefficiency
problem with the conventional global state transition graph representation of
rule-based programs is that each possible state may have to be represented by
this graph. Furthermore, the firing of the same rule is represented by more than
one edge in the graph to signify that that same rule may be fired from different
states. Although temporal logic model-checking algorithms exist which have
time complexity quadratic and even linear in the size of the global state transi-
tion graph (number of nodes and edges), the size of this graph is in the worst-
case exponential in the number of variables in the program, or more precisely,

i=n j=m
(rlllX 1 II1 1S; I) where 1X;1, 1§ jl are respectively the size of the domains
= j=
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of the i ™ input and j* program variable (please refer to chapter 5). Therefore,
the analysis problem in the case of finite-domain programs is still PSPACE-

complete in the worst case.

To alleviate this problem, we propose a new and potentially more com-
pact representation of rule-based programs. We call this representation a rule
transition graph because each of its nodes represents a distinct instantiation of
a rule and transitions correspond to the order in which rules may fire. For
instance, an edge from node A to node B signifies that rule B may fire follow-
ing the firing of rule A.

We have just begun to study the feasibility of this representation and
thus have not fully accessed its expressive power and its storage requirements as
compared to the state transition graph representation. Hence, the space savings
stated herein remains a conjecture that has to be rigorously checked. If this con-
jecture is true, we may develop faster state-space based or rule-space based
analysis procedures, or use existing model-checking algorithms to perform more
efficient analysis on this smaller graphical representation of the program. It is
our belief that this development will also allow more tractable efficient syn-
thesis procedures which operate on graphs.

10.4. Extending the EQL Language

EQL does not have provisions for declaring and using pattern (struc-
tured) variables as those found in popular rule-based languages such as OPS5.
A new language called MRL has been built on the core language EQL ([Wang,
Mok & Cheng 90]). As in OPS5-like languages, the working memory for an
MRL production system may vary in size and content. However, MRL is dif-
ferent from traditional rule-based languages in that the semantics of MRL is a
simple extension of that of EQL. By maintaining the same semantics of fixed
point convergence as a termination condition for both EQL and MRL pro-
grams, it is possible for any given working memory, an MRL program can be
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instantiated into an equivalent EQL program by macro expansion of its rules.

By parameterizing the response time of the corresponding EQL pro-
grams by the size of the working memory of the MRL program, we can use the
techniques developed in this dissertation to analyze the response time of the
MRL program. To analyze an MRL program with a variable-size working
memory, new techniques may need to be developed. However, owing to the
EQL-like semantics of MRL, we believe that it is possible to extend techniques
presented in this dissertation to analyze MRL programs directly. This is cer-
tainly one research direction worth pursuing.

195




Chapter 11

Concluding Remarks

This dissertation has been roughly divided into five parts. The first part
(chapter 1 through chapter 4) formalizes the research problems associated with
real-time rule-based decision systems and provides examples illustrating these
problems. The rule-based language EQL is developed for programming real-
time decision systems. The second part (chapter 5 through chapter 7) formalizes
the analysis problem and describes a powerful and efficient analysis methodol-
ogy for solving this problem. The applicability of this analysis technique is
further enhanced by the introduction of a facility with which the rule-based pro-
grammer can specify domain-specific knowledge in the language Estella in
order to validate the performance of an even wider range of programs. The third
part (chapter 8) formalizes the synthesis problem and describes concrete
methods for solving this problem. The fourth part (chapter 9) describes a suite
of computer-aided software engineering (CASE) tools based on the solution
strategies presented in chapter 5 through chapter 8 and demonstrates how they
can be used to perform analysis on realistic real-time rule-based systems
developed by industry. The fifth part (chapter 10) explores avenues for future

research.

Our research opens up a number of interesting problems in the analysis
and synthesis of real-time decision systems and has provided concrete
approaches for tackling them so that we can rely on computers to perform intel-
ligent tasks in bounded time. It is expected that further research along the direc-
tions outlined in chapter 10 will provide even greater insight into the develop-
ment of better solutions for solving these problems. This dissertation has contri-
buted to the advancement of the state-of-the-art in the analysis and synthesis of
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real-time rule-based decision systems. Implemented using our novel analysis

and synthesis techniques, the computer-aided design tools are capable of analyz-

ing realistic real-time rule-based software whose complexity exceeds the com-
putational capability of previously available analysis technology.



Appendix A
EQL: A Rule-Based Language for Programming

Real-Time Decision Systems

Real-time rule-based decision programs must react to events in the
external environment by performing decision-intensive computation sufficiently
fast to meet some specified timing constraints. In this appendix, we describe the
syntax and the semantics of EQL, a rule-based language designed for program-
ming real-time decision systems and used for the investigation of whether and
how performance objectives can be met when rule-based programs are used to
perform safety-critical functions in real time.

A.1. Introduction

An EQL program has a set of rules for updating variables which denote
the state of the physical system under control. The firing of a rule computes a
new value for one or more state variables to reflect changes in the external
environment as detected by sensors. Sensor readings are sampled periodically.
Every time sensor readings are taken, the state variables are recomputed itera-
tively by a number of rule firings until no further change in the variables can
result from the firing of a rule. The equational rule-based program is then said
to have reached a fixed point. Intuitively, rules in an EQL program are used to
express the constraints on a system and also the goals of the controller. If a
fixed point is reached, then the state variables have settled down to a set of
values that are consistent with the constraints and goals as expressed by the
rules.
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EQL differs from the popular expert system languages such as OPSS in
some important ways. These differences reflect the goal of our research, which
is not to invent yet another expert system shell but to investigate whether and
how performance objectives can be met when rule-based programs are used to
perform safety-critical functions in real time. Whereas the interpretation of a
language like OPSS is defined by the recognize-act cycle ([Forgy 81]), the basic
interpretation cycle of EQL is defined by fixed point convergence . It is our
belief that the time it takes to converge to a fixed point is a more pertinent meas-
ure of the response time of a rule-based program than the length of the
recognize-act cycle. More importantly, we do not require the firing of rules that
lead to a fixed point to be implemented sequentially; rules can be fired in paral-
lel if they do not interfere with one another. The definition of response time in
terms of fixed point convergence is architecture independent and is therefore
more robust. The rest of this appendix is organized as follows. Section A.2
describes the syntax of the EQL language. Section A.3 explains the semantics
of the EQL language. Section A.4 gives the syntax diagrams of the EQL
language for ready reference.

A.2. The EQL Language

An EQL program is organized like the model in Figure A.1. It is com-
posed of four major distinct sections: the declaration section, the initialization
section, the rule section, and the output section. The syntax of EQL follows
closely that of the language Pascal. EQL programs are entirely free format,
with no restrictions on columns or spacing. A comment can be indicated by
enclosing it within the character pairs (* *).

+ The fixed point semantics of EQL follows closely that of the language Unity ([Chandy &
Misra 88]). Both Unity and the work described herein are part of a coordinated research effort to
explore the foundation of programming concurrent systems at the University of Texas at Austin.



PROGRAM name;
CONST declaration;
VAR declaration;
INPUTVAR declaration;
INIT
statement,
statement,

statement
RULES
rule
[Jrule

[Irule
END.

Figure A.1. The Organization of an EQL Program.

Identifiers are used in the program to name variables, constants, and the
program name. The rules for forming an identifier are as follows. All alpha-
betic characters used are lowercase. The first character must be a lowercase
alphabetic character: ‘a’..z’. All succeeding characters must be alphabetic,
numeric or the underscore character °_°. No special characters or punctuation
marks are allowed and no embedded blanks are allowed. Identifiers may be as
long as desired subject to the restrictions of the system in which EQL is imple-

mented.
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A.2.1. The Declaration Section

The declaration of an EQL program consists of three different types of
declaration: CONST, VAR and INPUTVAR. Each type of declaration must
appear only once and in the order indicated in Figure A.1.

A.2.1.1. The CONST Declaration

The CONST declaration assigns a name to a scalar constant. There are
no predefined constants in EQL and thus all constants used in the program must
be declared, including the values of the boolean constants true and false. For
example, the following declaration declares four constants.

CONST
false =0;
true =1;
bad =2;
good =3

A.2.1.2. The VAR declaration

All variables used in the program except input variables must be
declared in the VAR section. Input variables are those that do not appear on the
left-hand-side of any assignment statement. They are used to store the values
read from sensors attached to the external environment. For example, the fol-
lowing VAR declaration declares three variables of type BOOLEAN.

VAR
sensor_a_status, sensor_b_status, object_detected : BOOLEAN ;
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A.2.1.3. The INPUTVAR declaration

All input variables used in the program must be declared in the INPUT-
VAR section. For example, the following INPUTVAR declaration declares
three input variables of type INTEGER.

INPUTVAR
sensor_a, sensor_b, sensor_c : INTEGER ;

A.2.2. The Initialization Section INIT

All non-input variables are assigned initial or default values in the ini-
tialization section INIT before the start of the firing of the rules in the RULES
section of the program. For example, the following statements initialize the

variables: sensor_a_status, sensor_b_status, and object_detected.

INIT
sensor_a_status := good,
sensor_b_status := good,
object_detected := false

A.2.3. The RULES Section

The RULES section is composed of a finite set of rules each of which is
of the form:

a,=bylay=by! - a, :=b, IF test

where b; is an arbitrary expression whose value is to be assigned to the variable
a; when the rule fires, m = 1, and test is an arbitrary logical expression. A rule

has three parts:
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(1) LHS: the left-hand-side of the multiple assignment statement,
(2) RHS: the right-hand-side of the multiple assignment statement, and

(3) EC: the enabling condition (also referred to as the test).

We define three sets of variables for an equational rule-based program.

L ={ v |v is a variable appearing in LHS }
R ={ v |v is a variable appearing in RHS }
T ={ v | v is a variable appearing in EC }

Rules are separated by the delimiter characters ‘[]’. For example, six rules are
shown below.

(*1%) object_detected := true IF sensor_a=1 AND sensor_a_status = good
(* 2%) [] object_detected := true IF sensor_b=1 AND sensor_b_status = good
(* 3*) [] object_detected := false IF sensor_a =0 AND sensor_a_status = good
(* 4 *) [] object_detected := false IF sensor_b=0 AND sensor_b_status = good
(* 5*) [] sensor_a_status := bad IF sensor_a <>sensor_c AND sensor_b_status = good

(* 6 *) [] sensor_b_status :=bad IF sensor_b <> sensor_c AND sensor_a_status = good

For this set of rules, the three sets of variables L, R, T are:

L = { object_detected, sensor_a_status, sensor_b_status 1,
R =0, and

T = { sensor_a, sensor_b, sensor_a_status, sensor_b_status, sensor_c 1.

A.2.4. The Output Section

The TRACE statement prints the values of the specified variables fol-
lowing the firing of a rule in each cycle. For example, the following TRACE



statement prints the values of the variables sensor_a_status, sensor_b_status,
and object_detected following the firing of any rule.

TRACE sensor_a_status, sensor_b_status, object_detected

The PRINT statement prints the values of the specified variables only after the
entire program has reached a fixed point. For example, the following PRINT
statement prints the values of the same variables after the program has reached a
fixed point.

PRINT sensor_a_status, sensor_b_status, object_detected

A.2.5. Implementation of EQL

EQL is currently implemented to run under BSD UNIX.T Two transla-
tors (eqtc and eqc) have been implemented for translating EQL programs into
C programs for compilation using the cc C compiler available on the UNIX sys-
tem. This allows the execution of EQL program on sequential UNIX machines.

A.3. Semantics of the EQL Language

An enabling condition (test) is a predicate on the variables in the pro-
gram. A rule is enabled if its test becomes true. A rule firing is the execution of
the multiple assignment statement of an enabled rule. A multiple assignment
statement assigns values to one or more variables in parallel. The expressions
must be side-effect free. The execution of a multiple assignment statement con-
sists of the evaluation of all the RHS expressions, followed by updating the LHS
variables with the values of the corresponding expressions. An invocation of an

 UNIX is a trademark of Bell Laboratories.
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equational rule-based program is a sequence of rule firings (execution of multi-
ple assignment statements whose tests are true). When two or more rules are
enabled, the selection of which rule to fire is up to the implementation, but any
rule that stays enabled must eventually be fired.

An equational rule-based program is said to have reached a fixed point
when either: (1) none of the rules is enabled, or (2) if firing of any enabled rule
will not change the value of any variable in L. Intuitively, when a fixed point is
reached, a rule-based program has arrived at a consistent evaluation of its

environment.

Some variables appearing in an equational rule-based program are input
variables, and their values are determined by sensor readings from the external
environment at the beginning of each invocation of the program. Input vari-
ables do not appear on the left hand side of any assignment statement. The
other variables in a program are called program variables. Although EQL does
not distinguish program variables into different types; for most implementa-
tions, program variables are classified into either decision variables or tem-
porary variables. Decision variables are used to control the physical system and
to communicate with the outside world after a fixed point is reached, e.g., sig-
naling system status, giving helpful advice to human operators, etc. Temporary
variables are used for storing information about the environment and for com-

munication between rules within the program.

In the code segment in section A.2.3, sensor_a, sensor b, and
sensor ¢ are the input variables; object detected, sensor_a_status, and
system_b_status are the program variables. The decision variable is
object _detected .

We now show a complete sample EQL program.

Example A.3.1.
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(* Example EQL Program *)
PROGRAM distributed;
CONST

false =0;

true =1;

a =0

b =1;
VAR

sync_a,

sync_b,
wake_up,
object_detected : BOOLEAN;
arbiter : INTEGER;
INPUTVAR
sensor_a,
sensor_b :INTEGER;
INIT
sync_a = true,
sync_b = true,
wake_up = true,
object_detected := false,
arbiter =a
RULES
(* process A *)
object_detected := true ! sync_a := false
IF (sensor_a = 1) AND (arbiter = a) AND (sync_a = true)
[] object_detected := false ! sync_a := false
IF (sensor_a = 0) AND (arbiter = a) AND (sync_a = true)
[] arbiter := b ! sync_a := true ! wake_up := false
IF (arbiter = a) AND (sync_a = false) AND (wake_up = true)
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(* process B *)
[] object_detected := true ! sync_b := false
IF (sensor_b = 1) AND (arbiter = b) AND (sync_b = true)
AND (wake_up = true)
[1 object_detected := false ! sync_b := false
IF (sensor_b = 0) AND (arbiter = b) AND (sync_b = true)
AND (wake_up = true)
[] arbiter := a ! sync_b := true ! wake_up := false
IF (arbiter = b) AND (sync_b = false) AND (wake_up = true)

TRACE object_detected
PRINT sync_a, sync_b, wake_up, object_detected, arbiter, sensor_a,
sensor_b

END.

In this example, the input variables are: sensor_a and sensor_b, and the program

variables are:

object_detected, sync_a, sync_b, arbiter, and wake_up. The three sets of vari-
ablesL,R,T are:

L = { object_detected, sync_a, sync_b, arbiter, wake_up },
R =@, and
T = { sensor_a, sensor_b, arbiter, sync_a, sync_b, wake_up }.

A.4. Syntax Diagrams of the EQL Language

In this section, we formally define the syntax of the EQL language by
means of syntax diagrams. An ellipse represents EQL reserved words or syn-
tactic entities that are not defined further (e.g., a letter or a digit). A circle
represents an EQL operator. A rectangle represents a syntactic entity that is



defined by another syntax flow diagram.
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Appendix B

Context-Free Grammar for Estella

The top-level commands of the analyzer are:

check command | ‘rp’ /* read program */
| fls? /* load special form */
| 7sf’ /* new special form */
| ‘ps’ /* print special forms */
| 'ds’ /* delete special form */
| “vm’ /* verbose mode? */
| 7ecs’ /* compatible set */
i "be’f /* break condition */
| 7an’ /* analyze */

| fex’ /* exit */

The context-free grammar for Estella are specified in the YACC

language.
estella command : special_ form
| exception
special_ form : special form name special_ form body end mark

special form name : ‘special_ form’ IDENTIFIER ’:'
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special form body : conditions

end mark : ‘end” 7.7

conditions : condition

| conditions ‘;’ condition

condition : specification

| break_condition

exception : compatible set

| break condition

term : var_set
| variable

| function name ’ (* term arg2’)’

elements_list: element

| elements_list 7,7 element

element : IDENTIFIER

| var_set

arg2

| 7,7 term
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atom_formula : predicate name ' (' term arg2 ‘)’

we

specification : atom formula
| *NOT’ ’ (' specification ")’
| 7 (' specification connective specification 7}’
| quantifier rule list ‘{(’ specification 7)’

| quantifier subrule list ’ (' specification 7))’

connective : "OR’

quantifier : 'FORALLS

| FEXIST’

set_variable : 'Lf
[ 'Rf
Loro’
] YL *{’ irule number ’]°
| 'L’ ‘[’ irule number ‘.’ isubrule number ‘]’
| 'R? 7[¢ irule number ‘]’
| 'R’ 7[’ irule number '.’ isubrule number ‘]’

[ ‘T’ 7{’ irule number ‘]’

exp variable : 717 /[’ irule number ‘.’ isubrule number ']’



irule number

isubrule number

inumber :

we

graph variable

pvertex

graph_type

sets :

set

frf ‘[’ irule number .’ isubrule_number ‘1’

st [f irule number 117
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inumber

inumber

e

NUMBER

IDENTIFIER

‘edge’ ‘{’ graph type ‘,’ pvertex ',’ pvertex

| fcycle’ 7 (' graph type ")’

. vertex

| vmvertex

~e

ENABLE_ RULE’
"DISABLE’

'VARIABLE MODIFICATION’

set

sets 7,7 set

r{7 list "}’
I{I I}l

l’)l



list :

set_rule_list

set_rule list:
I

2

rule list :

rule

subrule_list

subrule

compatible set

break condition

break_cond

rule number

set_rule list

rule

rule_ list 7,7

rule number

subrule

7,7 rule_number

rule

| subrule list 7,’ subrule

IDENTIFIER ‘.’ subrule_number

| NUMBER 7.’

s
7

fCOMPATIBLE SET/ ’=' ' (' sets

.
H

' BREAK_CYCLE’

subrule_number
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7 {7 graph_type 7)

7=! break cond

| /BREAK CYCLE’ '’ (‘ graph_type 7,7 cycles list ')7

"=/ break_cond

~a

specification

| simple pascal_expression



cycles_list

cycles

cycle

vertex_list

vertex

vmvertex_list

vmvertex

rule number

subrule number

variable

we

Wy

{7 cycles "}’

cycle

cycles *,7’ cycle

7(’ vertex_ list ")’

{7 vmvertex list )’

vertex

vertex list f,’ vertex

irule_number

e

vmvertex

vmvertex list 7,7 vmvertex

irule number .’ isubrule number

IDENTIFIER

IDENTIFIER

IDENTIFIER
graph_variable

set_variable
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| exp variable

function name : 7 INTERSECT’
| 7UNION’
| ‘RELATIVE_COMPLEMENT'

| ‘VALUE'

predicate_name : 'MEMBER’
| 7IN_CYCLE’
| 7EQUAL’
| "COMPATIBLE’

| "MUTEX'

pascal_ expression : disjunctive expr

| pascal_expression ‘OR’ disjunctive expr

disjunctive expr : conjunctive expr

| disjunctive expr ‘AND’ conjunctive_expr

conjunctive_expr : simple expression
| conjunctive expr ‘=’ simple expression
| conjunctive expr ‘<>’ simple_expression
| conjunctive expr ‘<=’ simple_ expression
| conjunctive expr '>=’ simple expression
| conjunctive _expr ‘<’ simple expression

| conjunctive expr ‘>’ simple_expression



simple expression : terml

terml

factor

| simple expression '+’

| simple expression ‘-’

~a

: factor
| terml ’*’ factor
| terml DIV’ factor

| terml “MOD’ factor

variable

oo

| NUMBER

| 7 (' pascal expression ')’
| ’NOT? factor

| 7+’ terml

| 7=/ terml

simple pascal_expression : ' (’ simple _exp ')’

simple_exp

exp

value

exp

simple exp ‘AND’ exp

IDENTIFIER "=’ value

IDENTIFIER

NUMBER

terml

terml
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Appendix C

The Cryogenic Hydrogen Pressure Malfunction
Procedure of the Space Shuttle Vehicle (SSV)

Pressure control System

This real-time decision system is called the Cryogenic Hydrogen Pres-
sure Malfunction Procedure of the Space Shuttle Vehicle (SSV) Pressure Con-
trol System. It is invoked in every monitor-decide cycle to diagnose the condi-
tion of the Cryogenic Hydrogen Pressure Control System and to give advice for
correcting the diagnosed malfunctions. The complete EQL program for this
malfunction procedure consists of 36 rules, 31 sensor input variables, and 32
program variables. The meaning of most of these sensor input and program
variables requires specialized knowledge of the pressure control system.

Define the following sensor input variables:

v63ala sensor H2 P Normal.

v63alb sensor H2 P High.

v63alc sensor H2 P Low.

v63a3  sensor Press in all tks < 153 psia.

v63a5 sensor Both P and TK P of affected tk low.

v63a8 sensor Received O2 PRESS Alarm and/or S68 CRYO H2 PRES and
S68 CRYO 2 PRES msg lines.

v63all sensor TK3 and/or TK4 the affected tk.

v63al2 sensor TK3 and TK4 depleted, QTY < 10 %.

v63al3 sensoral3.

v63al6 sensor CNTLR cb of affected tk on Pnl ML868 open.
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v63a17 sensor TK3 and TK4 Htrs cycle on when press in both tks = 217-
223 psia.

v63a22 sensor a22.

v63a23 sensor TK3 and/or TK4 the affected tk.

v63a26 sensor TK3 and TK4 htrs were deactivated (all htrs switches

in OFF when the problem occurred).

v63a29 sensor Press in both TK3 and TK4 > 293.8 psia.

v63a31 sensor Both P and TK P of affected tk high.

v63a32 sensor MANF Ps agree with P and TK P of affected TK.

v63a34a sensor P high.

v63a34b sensor TK P high.

v63b7  sensor b7.

Define the following program variables:

v63a2 diagnosis: C/W failure.

v63a4 diagnosis: System leak. Execute ECLS SSR-1(7).

v63a6  diagnosis: Leak between affected TK and check valve.
Leak cannot be isolated.

v63a7  action: Deactivate htrs in affected tk.

v63a9 recovery: Reconfigure htrs per BUS LOSS SSR.

v63al0 temporary variable.

v63al4 if true, then CNTLR cb of affected tk (TK1 and/or TKS)
on Pnl 013 is open.

if false, then CNTLR cb of affected tk (TK1 and/or TK2)

on Pnl 013 is closed.

v63al5 diagnosis: Possible electrical problem.
Do not attempt to reset circuit breaker.

v63al8 diagnosis: P 63axduce failed low.
Continue to operate TK3 and TK4 in AUTO.

v63al9 diagnosis: Possible electrical problem.
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Do not attempt to reset circuit breaker.
v63a20  diagnosis: PWR failure in affected HTR CNTLR.

v63a21 action: deactivate htrs in affected tk(s).
v63a24 diagnosis: P Xducer failed low.
Continue to operate TK1 and TK2 in AUTO.
v63a25 diagnosis: PWR failure in affected htr cntlr.
v63a27 diagnosis: Instrumentation failure. No action required.
v63a28 action: Operate TK1 and TK2 htrs in manual mode.
v63a30 diagnosis: Auto pressure control failure.
v63a33 diagnosis: Line blockage in tk reading high.
v63a35 diagnosis: Auto pressure control or RPC failure.
v63a36 diagnosis: Instrumentation failure.
v63a37 action: Leave affected htrs deactivated until MCC develops
consumables management plan.
v63a38 diagnosis: Instrumentation failure.
v63a39 action: Activate htrs.

PROGRAM cryov63a;
CONST
frue =1;
false =0;
VAR

v63a2, v63ad, v63ab, v63a7, v63a9, v63all, v63ald, v63als, v63als, v63al9, v63a20,
v63a21, v63a24, v63a25, v63a27, v63a28, v63a30, v63a33, v63a3s, v63a36, v63a37,
v63a38, v63a39, v63a42, v63a43, v63add, v63ad7, v63a48, v63as50, v63a52, v63a53
: BOOLEAN;

INPUTVAR
v63ala, v63alb, v63alc, v63al, v63a3, v63as, v63a8, v63all, v63al2, v63al3, v63als,
v63al7, v63a22, v63a23, v63a26, v63a29, v63a31, v63a32, v63a34a, v63a34b, v63a3dbn,



v63a40, v63a41, v63ad5, v63ad6, v63ad9, v63ad9a, v63a49b, v63a51, v63b7, v63b8
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+BOOLEAN;

INIT

v63a2 :=false, v63a4 := false, v63a6 := false, v63aT7 :=false, v63a9 :=false,

v63al4 := false, v63al5 := false, v63al8 := false, v63al9 := false, v63a20 := false,

v63a21 := false, v63al0 := false, v63a24 := false, v63a25 := false, v63a27 := false,

v63a28 := false, v63a30 := false, v63a33 := false, v63a35 := false, v63a36 := false,

v63a37 := false, v63a38 := false, v63a39 := false, v63a42 := false, v63ad3 := false,
v63ad4 ;= false, v63a47 = false, v63a48 := false, v63a50 := false, v63a52 := false,
v63a53 := false

RULES
v63a2 := true IF (v63ala = true)
[Jv63a2 := false IF (v63ala = false)

[Iv63a4 := true IF (v63alc = true) AND (v63a3 = true)
[Iv63a4 = false IF (v63alc = false) OR (v63a3 = false)

[1v63a6 := true IF (v63alc = true) AND (v63a3 = false) AND (v63a5 = true)
[Jv63a6 := false IF (v63alc = false) OR (v63a3 = true) OR (v63a5 = false)

[lv63a7 := true IF (v63a6 = true)
{Iv63a7 = false IF (v63ab = false)

[1v63a9 := true IF (v63alc = true) AND (v63a3 = false) AND (v63a5 = false) AND
{v63a8 = true)

[1v63a9 := false IF (v63alc = false) OR (v63a3 = true) OR (v63a5 = true) OR
(v63a8 = false)

[1v63a10 := true IF (v63a9 = true)
[1v63a10 := false IF (v63a9 = false)

[1v63al4 := true IF ((v63a12 = true) OR ((v63al2 = false) AND (v63al3 = true)))



[Iv63al4

:= false IF ((v63al12 = false) AND ((v63al2 = true) OR (v63al3 = false)))

[Iv63als

[]v63als

[Iv63al8

[]v63al18

[1v63al9

[1v63a19

[Iv63a20

[1v63a20

[1v63a21
{1v63a21

[jv63a24

= true IF (v63alc = true) AND (v63a3 = false) AND (v63a5 = false) AND
(v63a8 = false) AND (v63all = false) AND
(v63a12 = true) AND (v63al4 = true)

:= false IF (v63alc = false) OR (v63a3 = true) OR (v63a5 = true) OR
(v63a8 = true) OR (v63all = false) OR
(v63al2 = false) OR (v63al4 = false)

= true IF (v63alc = rue) AND (v63a3 = false) AND (v63a$5 = false) AND
(v63a8 = false) AND (v63all = true) AND
(v63al16 = true) AND (v63al7 = true)

:= false IF (v63alc = false) OR (v63a3 = true) OR (v63a5 = true) OR
(v63a8 = true) OR (v63all = false) OR
(v63al6 = false) OR (v63al7 = false)

:= true IF (v63alc = orue) AND (v63a3 = false) AND (v63a5 = false) AND
(v63a8 = false) AND (v63all = true) AND (v63al6 = true)

:= false IF (v63alc = false) OR (v63a3 = true) OR (v63a5 = true) OR
(v63a8 = true) OR (v63all = false) OR (v63al6 = false)

:= true IF (v63alc = true) AND (v63a3 = false) AND (v63a5 = false) AND
(v63a8 = false) AND (v63all = true) AND
(v63al16 = true) AND (v63al7 = false)

:= false IF (v63alc = false) OR (v63a3 = true) OR (v63a5 = true) OR
(v63a8 = true) OR (v63all = false) OR
(v63a16 = false) OR (v63al7 = true)

= true IF ((v63al19 = rue) OR (v63220 = true))
«= false IF ((v63a19 = false) AND (v63220 = false})

:= true IF (v63a22 = true) AND (v63al4 = false) AND (v63al2 = true) AND
(v63all = false) AND (v63a8 = false) AND (v63a$5 = false) AND
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[iv63a24

[Iv63a25

[Iv63a25

[1v63a27

{1v63a27

[1v63a28
[Iv63a28

[1v63a30

[Iv63a30

[Iv63a33

[1v63a33

[1v63a35

[1v63a35

(v63a3 = false) AND (v63alc = true)
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:= false TR (v63222 = false) OR (v63ald = trug)y OR (v63al2=false) OR
(v63all = true) OR (v63a8 = true) OR (v63a5 = true) OR
(v63a3 = true) OR (v63alc = false)

= true IF (v63a22 = false) AND (v63al4 = false) AND (v63al2 = true) AND
(v63all = false) AND (v63a8 = false) AND (v63a5 = false) AND
{v63a3 = false) AND (v63alc = true)

:= false IF (v63a22 = true) OR (v63a14 = true) OR (v63al2 = false) OR
(v63all = true) OR (v63a8 = true) OR (v63a5 = true) OR
(v63a3 = true) OR (v63alc = false)

:= true IF (v63a26 = true) AND (((v63a23 = true) AND (v63alb = true)) OR
(v63b7 = true))

:= false IF (v63a26 = false) OR (((v63a23 = false) OR (v63alb = false)) AND
(v63b7 = false))

:= true IF ((v63a25 = true) OR (v63al5 = true))
:= false IF ((v63a25 = false) AND (v63al5 = false))

:= true IF (((v63alb = true) AND (v63a23 = true)) OR (v63b7 = true)) AND
(v63a26 = false) AND (v63a29 = true)

:= false IF ({(v63alb = false) OR (v63a23 = false)) AND (v63b7 = false)) OR
(v63a26 = true) OR (v63a29 = false)

:= true IF (v632a32 = false) AND (v63a31 = true) AND (v63a29 = false) AND
(v63a26 = false) AND (v63a23 = true) AND (v63alb = true)

:= false IF (v63a32 = true) OR (v63a31 = false) OR (v63a29 = true) OR
(v63a26 = true) OR (v63a23 = false) OR (v63alb = false)

:= true IF (v63a32 = true) AND (v63a31 = true) AND (v63a29 = rue) AND
(v63a26 = false) AND (v63a23 = true) AND (v63alb = true)
:= false IF (v63a32 = false) OR (v63a31 = false) OR (v63a29 = false) OR



(v63a26 = true) OR (v63a23 = false) OR (v63alb = false)

[Iv63a36

[Jv63a36

{lv63a37

[Jv63a37

[1v63a38

[Jv63a38

[Iv63a39
[Iv63a39

[Jv63ad2

[Jv63ad2

[Iv63a43

[Iv63a43

[1v63ad4
[1v63ad4

[1v63a47

:= true IF (v63a34b = true) AND (v63a31 = false) AND (v63a29 = false) AND
(v63a26 = false) AND (v63a23 = true) AND (v63alb = true)

:= false IF (v63a34b = false) OR (v63a31 = true) OR (v63a29 = true) OR
(v63a26 = true) OR (v63a23 = false) OR (v63alb = false)

:= true IF (v63a30 = true) AND (v63a33 = false) AND (v63a35 = false) AND
(v63a38 = true)

:= false IF (v63a30 = false) OR (v63a33 = true) OR (v63a35 = true) OR
(v63a38 = false)

:= true IF (v63a34a = true) AND (v63a31 = false) AND (v63a29 = false) AND
(v63a26 = false) AND (v63a23 = true) AND (v63alb = true)

:= false IF (v63a34a = false) OR (v63a31 = true) OR (v63a29 = true) OR
(v63a26 = true) OR (v632a23 = false) OR (v63alb = false)

= true IF (v63a36 = true)
:= false IF (v63a36 = false)

:= true IF (v63a41 = true) AND (v63a40 = true) AND (v63a23 = false) AND
(v63alb = true)

= false IF (v63a41 = false) OR (v63a40 = false) OR (v63a23 = true) OR
(v63alb = false)

:= true IF (v63a41 = false) AND (v63a40 = true) AND (v63a23 = false) AND
(v63alb = true)

.= false IF (v63a41 = true) OR (v63240 = false) OR (v63a23 = true) OR
{v63alb = false)

.= true IF (v63a42 = true) OR (v63a47 = true)
:= false IF (v63242 = false) AND (v63a47 = false)

= true IF (v63a46 = true) AND (v63a45 = true) AND (v63a40 = false) AND
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(v63a23 = false) AND (v63alb = true)

[1v63a47 := true IF (v63a46 = true) AND (v63a45 = true) AND (v63b8 = rue)
[Iv63a47 := false IF ((v63a46 = false) OR (v63a45 = false) OR (v63a40 = true) OR
(v63a23 = true) OR (v63alb = false)) AND
((v63a46 = false) OR (v63a45 = false) OR (v63b8 = falsc))

[1v63a48 := true IF (v63a46 = false) AND (v63a45 = true) AND (v63a40 = false) AND
(v63a23 = false) AND (v63alb = true)
[Iv63a48 := true IF (v63ad6 = false) AND (v63a45 = true) AND (v63b8 = true)
[Jv63a48 := false IF ((v63a46 = true) OR (v63a45 = false) OR (v63a40 = true) OR
(v63a23 = true) OR (v63alb = false)) AND
((v63246 = true) OR (v63245 = false) OR (v63b8 = falsc))

[Iv63a50 := true IF (v63249b = true) AND (v63a45 = false) AND (v63a40 = false) AND
(v63a23 = false) AND (v63alb = true)
[1v63a50 := true IF (v63a49b = true) AND (v63a45 = false) AND (v63b8 = true)
[Jv63a50 := false IF ((v63249b = false) OR (v63a45 = true) OR (v63a40 = true) OR
(v63a23 = true) OR (v63alb = false)) AND
((v63a49b = false) OR (v63a45 = true) OR (v63b8 = false))

[Jv63a51 := true IF (v63a50 = true)
[Jv63a51 := false IF (v63a50 = false)

[1v63a52 := true IF (v63a49a = true) AND (v63a45 = false) AND (v63a40 = false) AND
(v63a23 = false) AND (v63alb = true)
[1v63a52 := true IF (v63a49a = true) AND (v63a45 = false) AND (v63b8 = true)
[1v63a52 := false IF ((v63a49a = false) OR (v63a45 = true) OR (v63a40 = true) OR
(v63a23 = true) OR (v63alb = false)) AND
((v63a49a = false) OR (v63a45 = true) OR (v63b8 = false))

[Iv63a53 := true IF (v63a52 = true)
[Jv63a53 := false IF (v63a52 = false)
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TRACE

Vbjaz,v63a4,v6336,v63a7,v6339,v63310,v63al4,v63315,v63al8,v63al9,v63320,
v63a21, v63a24, v63a25, v63a27, v63a28, v63a30, v63a33, v63a3s, v63a36, v63a37,
v63a38, v63a39, v63a42, v63a43, v63ad4, v63ad7, v63a48, v63a50, v63a52, v63a53

PRINT
v63a2,v63a4,v63a6,v63a7,v63a9,v63a10,v63a14,v63315,v63818,v63al9,v63a20,

v63a21, v63a24, v63a25, v63a27, v63a28, v63a30, v63a33, v63a35, v63a36, v63al7,
v63a38, v63a39, v63a42, v63a43, v63add, v63a47, v63a48, v63a50, v63aS2, v63a53

END.



Appendix D

The MITRE Integrated Status Assessment (ISA) Expert System

PROGRAM isa;

CONST
true =1;
false =0;
nominal =0;
suspect= 1;
failed =2;
direct =1;
off =
on =1;
bad =0
good =1;

backup_failed = 2; (* try to use backup, but backup device failed *)
no_backup = 3; (* &ry to use backup, but no backup is found *)

VAR
problem1, problem2, problem3, problem4, (* true, false *)
sensorl, sensor2, sensor3, sensord, (* good, bad *)
reconfigl, reconfig?2,
reconfig3, reconfigd, (* true, false *)
switch_backupl, switch_backup2, switch_backup3,
switch_backup4, (* true, false, switch_failed, no_backup *)
find_bad_things (* true, false *)
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: INTEGER;
INPUTVAR
statel, state2, state3, state4, (* nominal, suspect, failed *)
model, mode2, mode3, mode4, (* on, off *)
configl, config2, config3, config4, (* good, bad *)
backup1, backup2, backup3, backup4, (* true, false *)

backupl_state, backup?_state,
backup3_state, backup4_state, (* nominal, suspect, failed *)
rell_state, rel2_state, rel3_staie, (* nominal, suspect, failed *)

rell_type, rel2_type, rel3_type, (* direct *)

rell_mode, rel2_mode, rel3_mode (* on, off *)
: INTEGER;
INIT
problem1 := false, problem? := false,
problem3 := false, problem4 := false,
sensorl := good, sensor2 := good,
sensor3 := good, sensor4 := good,
reconfigl := false, reconfig2 := false,
reconfig3 := false, reconfigd := false,
switch_backupl := false, switch_backup2 := false,
switch_backup3 := false, switch_backup4 := false,
find_bad_things := false
RULES
1%
rell_state := suspect IF (statel = suspect OR statel = failed) AND
rell_state <> suspect AND
rell_mode = on AND rell_type = direct
*2%)

i rel2_state := suspect IF (state2 = suspect OR state2 = failed) AND
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rel2_state <> suspect AND

rel2 mode = on AND rel2_type = direct

*3%

I rel3_state = suspect IF (state3 = suspect OR state3 = failed) AND
rel3_state <> suspect AND
rel3_mode = on AND rel3_type = direct

(+4%)
1 find_bad_things := true IF (statel = suspect OR statel = failed) AND
NOT (rell_state = nominal AND
rell_mode = on AND rell_type = direct)
*5%
g find_bad_things := true IF (state2 = suspect OR state2 = failed) AND
NOT (rel2_state = nominal AND
rel2_mode = on AND rel2_type = direct)
(*6%)
i find_bad_things := true IF (state3 = suspect OR state3 = failed) AND
NOT (rel3_state = nominal AND
rel3_mode = on AND rel3_type = direct) AND
NOT (rell_state = suspect AND
rell_mode = on AND rell_type = direct) AND
NOT (rel2_state = suspect AND
rel2_mode = on AND rel2_type = direct)
7%
§ find_bad_things := true IF (state4 = suspect OR state4 = failed) AND
NOT (rel2_state = suspect AND
rel2_mode = on AND rel2_type = direct)

(*8%)
i statel = failed IF find_bad_things = true AND

statel = suspect
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*9%

1 state? = failed IF find_bad_things = true AND
state? = suspect

(*10%)

1 state3 ;= failed IF find_bad_things = true AND
state3 = suspect AND
NOT (rell_state = suspect AND rell_mode = on AND
rell_type = direct) AND
NOT (rel2_state = suspect AND rel2_mode = on AND
rel2_type = direct)
(*11%)
i stated ;= failed IF find_bad_things = true AND
state4 = suspect AND
NOT (rel3_state = suspect AND rel3_mode = on AND
rel3_type = direct)

(*12%
[ problem1 := true IF state1 = failed AND model <> off AND configl = good
(*13%)
{] problem? := true IF state2 = failed AND mode2 <> off AND config2 = good
(*14%)
il problem3 := true IF state3 = failed AND mode3 <> off AND config3 = good
(*15%)
0 problem4 := true IF state4 = failed AND mode4 <> off AND configd = good

(*16%)
[ state] := nominal ! reconfigl = true
1F state1 = failed AND model <> off AND configl = bad
*17%)
{1 state? ;= nominal ! reconfig? := true

IF state? = failed AND mode2 <> off AND config2 = bad
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(*18%)

1 state3 := nominal ! reconfig3 := true
IF state3 = failed AND mode3 <> off AND config3 =bad

(* 19 %)
0 stated := nominal ! reconfigd := true

IF state4 = failed AND mode4 <> off AND configd = bad
(*20%)

I switch_backup! := true IF problem1 = true
AND backup1 = true AND backupl_state = nominal
AND statel = failed AND model = on

(*21%)

0 switch_backup? := true IF problem2 = true
AND backup2 = true AND backup?2_state = nominal
AND state2 = failed AND mode2 = on

(*22%)

[ switch_backup3 := true IF problem3 = true
AND backup3 = true AND backup3_state = nominal
AND state3 = failed AND mode3 = on

(*23%)

i switch_backup4 := true IF problem4 = true
AND backup4 <> 0 AND backup4_state = nominal
AND stated = failed AND mode4 = on

(*247%)

0 switch_backup1 := backup_failed IF problem1 = true
AND backupl = true AND backupl_state = failed
AND statel = failed AND model = on

(*25%)

[ switch_backup? := backup_failed IF problem2 = true
AND backup?2 = true AND backup2_state = failed



AND state? = failed AND mode2 = on
(*26%)
i switch_backup3 := backup_{failed IF problem3 = true

AND backup3 = true AND backup3_state = failed

AND state3 = failed AND mode3 = on
(*27%)
{0 switch_backup4 := backup_failed IF problem4 = true

AND backup4 = true AND backup4_state = failed

AND state4 = failed AND mode4 =on

(*28%)

{1 switch_backupl := no_backup IF problem1 = true AND statel = failed

AND backup! = false
(*29%)

{1 switch_backup2 := no_backup IF problem?2 = true AND state? = failed

AND backup? = false
(*30%)

[ switch_backup3 := no_backup IF problem3 = true AND state3 = failed

AND backup3 = false
(*31%)

{1 switch_backup4 := no_backup IF problem4 = true AND state4 = failed

AND backup4 = false

(*32%)

1 sensorl := bad ! state] := nominal IF statel = suspect AND
rell_mode = on AND rell_type = direct AND
state3 = nominal AND rel3_mode = on AND
rel3_type = direct AND state4 = nominal AND
find_bad_things = true

(*33%)

{1 sensor2 := bad | state2 := nominal IF state? = suspect AND
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rell_mode = on AND rell _type = direct AND
state3 = nominal AND rel3_ mode = on AND
rel3_type = direct AND state4 = nominal AND
find_bad_things = true

(*34%)

0 sensor3 := bad ! state3 := suspect IF statel = suspect AND
rell_mode = on AND rell_type = direct AND
state3 = nominal AND rel3_mode = on AND
rel3_type = direct AND state4 = suspect AND
find_bad_things = true

(*35%)

I sensor3 := bad ! state3 := suspect IF state2 = suspect AND
rel2_mode = on AND rel2_type = direct AND
state3 = nominal AND rel3_mode = on AND
rel3_type = direct AND stated = suspect AND
find_bad_things = true

TRACE

PRINT statel, state2, state3, staied,
problem1, problem2, problem3, problem4,
sensorl, sensor2, sensor3, sensord,
reconfigl, reconfig2, reconfig3, reconfigd,
switch_backupl, switch_backup2,
switch_backup3, switch_backup4,
rell_state, rel2_state, rel3_state

END.



Appendix E

The MITRE-NASA Fuel Cell Expert (FCE) System

PROGRAM fuel_cell_expert_system;

CONST
* )
* Names of modules of rules, initial digitis 1 *)
S )

start_work_rule_base = 100;

fc_exit_t7_3d = 101;

fc_stack_t7_1b = 102;

cool_pump7_la = 103;

fc_amps7_3c = 104,

fc delta v7 4.1 4 =105

fc_ech7 3.1 2 = 106;

fc_purge7_2 = 107;

fc_cool_p7_3e = 108;

fc_h20_vlvt7_3g = 109;

prd_h20_Int7_3f =110;

fc_reacs7_1_1_1 =111;

fc_general = 112;

fc_volts7_3b =113;

bus_tie_rules =114,
* *)
(* Constants *)
* *)
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false =0;
{rue =1
off =0;
on =1;

start_value  =200;

clsd_confirmed = 201;
clsd =202;

high = 203;

highl =204;

high?2 =205;
unverified_high = 206;
high_confirmed = 207;

high_start = 208;
disconnected = 209;

low =210;
lowl =211;
failed_low =212;
ok =213;
ecu_pwr_loss =214;
restarted =215;
cool_pump_loss =216;
internal 1d =217
disconn_v_low =218;
inh =219;
a_auto = 220;
b_auto =221;
start =222;
sw_to_b =223;
decr =224;

fc_failed_dv_hi = 225;
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tied = 226;
untied =227,
tied_short =228;
untied_short = 229;
safed =230;
shutdn =231;
cool_lp_prob =232;
fc_or_sik_t_fail=233;
hi_snsr_fail =234;
snsr_failed =235;
ok_su_htr_inh = 236;
ech_failed_on = 237;
failed_on =238;
overloadedl =239;
overloaded2 =240;
reconnected = 241;
internal_short = 242;
disconn_stop = 243;
lightly_loaded = 244;
shorted = 245;

pripl_short_isolated = 246;

degraded =247,
degraded_bad = 248;
perf_low =249,

orb_freon_lp_prob = 250;

ece_pwr_loss =251;

low2 = 252;
low3 = 253;
incr = 254;

stop =1255;

240



VAR
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open = 256;
£pe =257;
low_confirmed = 258;

work_rule_base, 02_reac_vlv, status, statusl, status2, status3,
fc_mn_dv, load_status, stk_t_status, cool_loop_status, prd_h20_Int,
h20_rif_timer, ss1_dv, ss2_dv, ss3_dv, ph,

bus_tie_statusa, bus_tie_statusb, bus_tie_statusc,
busa_tie_status, busb_tie_status, busc_tie_status,

stack_t, stack_12, stack_t3, fc_mn_conn,

messagel, message2, message3, message4, messages,
message6, message7, message8, message9, messagel0,
messagel1, messagel2, messagel3, messagel4, messagels,
message16, messagel7, messagel8, messagel9, message20,
message21, message22, message23, message24, message2s,

message26, message27, message28, message29, message30 : INTEGER;

INPUTVAR

tce, last_tce,

cool_rtn_t, last_cool_rin_t,
koh_in_congc, last_koh_in_conc,
koh_out_conc, last_koh_out_conc,
last_prd_h20_Int,

cool_rtn_t1, last_cool_rtn_t1,
cool_rtn_i2, last_cool_rin_t2,
cool_rtn_£3, last_cool_rin_t3,
last_fc_mn_dv,

mn_bus, last_mn_bus,

last_fc_mn_conn,



last_status,

su_atr, last_su_atr,

voltage, last_voltage,

voltagel, last_voltagel,

voltage2, last_voltage2,

voltage3, last_voltage3,
last_stk_t_status,

stk_t_status2, last_stk_t_status2,
stk_t_status3, last_stk_t_status3,
last_stack_t,

delta_v, last_delta_v,

stk_t_rate, last_stk_t_rate,
stk_t_disconn2, last_stk_t_disconn2,
stk_t_disconn3, last_stk_t_disconn3,
ampsl, last_ampsl,

amps2, last_amps2,

amps3, last_amps3,

cntlr_pwr, last_cntlr_pwr,
cool_pump_dp, last_cool_pump_dp,
fc_rdy_for_1d, last_fc_rdy_for_ld,

last_load_status,

last_amps,

last_ss1_dv,
last_ss2_dv,
last_ss3_dv,
ss1_dv_rate, last_ss1_dv_rate,
ss2_dv_rate, last_ss2_dv_rate,

ss3_dv_rate, last_ss3_dv_rate,
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end_cell_hwrl, last_end_cell_htrl,
end_cell_ht2, last end_cell_ht?2,

fc_ess_conn, last_fc_ess_conn,

purge_vlv_sw_pos, last_purge_vlv_sw_pos,
auto_purge_seq, last_auto_purge_seq,
h2_flow_rate, last_h2_flow_rate,
02_flow_rate, last_o2_flow_rate,
purge_htr_sw_pos, last_purge_htr_sw_pos,

fc_purge_alarm, last_fc_purge_alarm,

fc_purge_seq_alarm, last_fc_purge_seq_alarm,

fc_purge_t_alarm, last_fc_purge_t_alarm,

cool_p, last_cool_p,

cool_p_rate, last_cool_p_rate,
last_o02_reac_vlv,

h2_reac_vlv, last_h2_reac_vlv,
bus_tie_status, last_bus_tie_status,

cool_ph20_p, last_cool_ph20_p,

h20_rif_vlv_g, last_h20_rif_viv_g,
h20_rlf_t_msg, last_h20_rlf_t msg,
h20_5lf_sw_pos, last_h20_1lf sw_pos,
last_h20_rlf timer,

h20_vlv_t_rate, last_h20_vlv_t_rate,

prt_h20_Int, last_prt_h20_Int, *10%
prd_h20_sw_pos, last_prd_h20_sw_pos,

fc_pripl_conn, last_fc_pripl_conn, (* 13 %)
mn_pripl_conn, last_mn_pripl_conn,

mna_voltage, last_mna_voltage,
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mnb_voliage, last_mnb_voliage,

mnc_voltage, last_mnc_voltage,

mn_id, (* 19 %)
su_htr, (*20%)
stk_t statusl, (*26%)
stk_t_disconnl,
amps, (*27%)
busa_tie, busb_tie, busc_tie,
mn_voltage, fc_id (* 64 *)
: INTEGER;
INIT

work_rule_base = start_work_rule_base,

02_reac_vlv = start_value,

status = start_value,

statusi = start_value,

status2 = start_value,

status3 .= start_value,

fc_mn_dv = start_value,

load_status == start_value,

stk_t_status = start_value,

cool_loop_status:= start_value,

prd_h20_Int = start_value,
h20_slf_timer = start_value,
ssl_dv = start_value,
ss2_dv := start_value,

ss3 dv = start_value,
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ph = start_value,
bus_tie_statusa := start. value,
bus_tie_statusb := start_value,
bus_tie_statusc ;= start_value,
busa_tie_status := start_value,
busb_tie_status := start_value,
busc_tie_status := start_value,
stack_t := start_value,

stack_t2 := start_value,

stack t3 := start_value,

fc_mn_conn = start_value,

messagel := false, message2 := false, message3 := false,
messaged := false, message5 := false, message6 := false,
message7 := false, message8 := false, message9 := false,
messagel0 := false, messagel11 := false, messagel2 := false,
messagel3 := false, message14 := false, messagel5 := false,
messagel6 := false, messagel7 := false, messagel18 := false,
messagel9 := false, message20 := false, message21 := false,
message22 := false, message23 := false, message24 = false,
message25 := false, message26 := false, message27 := false,

message28 := false, message29 := false, message30 := false

RULES

*)

Metarules

*)

work_mile_base := fc_exit_t7_3d

*)

IF NOT (ice = last_tce AND cool_rtn_t = last_cool_rtn_t AND
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koh_in_conc = last_koh_in_conc AND
koh_out_conc = last_koh_out_conc AND
prd_h20_Int = last_prd_h20_Int)
*2%)
(] work_rule_base := fc_stack_t7_1b
IF NOT (cool_rtn_t1 = last_cool_rtn_tl AND

cool_rtn_t2 = last_cool_rtn_t2 AND
cool_rin_t3 = last_cool_rtn_t3 AND
fc_mn_dv = last_fc_mn_dv AND
mn_bus = last_mn_bus AND
fc_mn_conn = last_fc_mn_conn AND
status = last_status AND
su_atr = last_su_atr AND
voliage = last_voltage AND
voltagel = last_voltagel AND
voltage2 = last_voltage2 AND
voliage3 = last_voltage3 AND
stk_t_status = last_stk_t_status AND
stk_t status2 = last_stk_t_status2 AND
stk_t_status3 = last_stk_t_status3 AND
stack_t = last_stack_t AND
delta_v = last_delta v AND
stk_t_rate = last_stk_t rate AND
cool_rtn_t = last_cool_rtn_t AND
stk_t_disconn2 = last_stk_t_disconn2 AND
stk_t_disconn3 = last_stk_t_disconn3 AND
amps! = last_ampsl AND
amps? = last_amps2 AND
amps3 = last_amps3)

*3%



[] work_rule_base := cool_pump7_1a
IF NOT (cntlr_pwr = last_catlr_pwr AND
cool_pump_dp = last_cool_pump_dp AND
fc_rdy_for_ld = last_fc_rdy_for_ld AND
status = last_status AND
ce = last_tce)
(*4%)
[1 work_rule_base := fc_amps7_3c
IF NOT (status = last_status AND
mn_bus = last_mn_bus AND
load_status = last_load_status AND
voliage = last_voltage AND
amps = last_amps AND
fc_mn_conn = last_fc_mn_conn)
*5%
(] work_rule_base := fc_delta_v7_4_1_4
IF NOT (ss1_dv = last_ss1_dv AND
ss2_dv =last_ss2_dv AND
ss3_dv = last_ss3_dv AND
ss1_dv_rate = last_ss1_dv_rate AND
ss2_dv_rate = last_ss2_dv_rate AND
ss3_dv_rate = last_ss3_dv_rate)
*6%)
[1 work_rule_base :=fc_ech7_3_1_2
IF NOT (fc_rdy_for_ld = last_fc_rdy_for_ld AND
end_cell_htrl = last_end_cell_htrl AND
end_cell_htr2 = lasi_end_cell_htr2 AND
fc_mn_conn = last_fc_mn_conn AND
fc_ess_conn = last_fc_ess_conn)

*7%)
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(*8%)

*9%
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[] work_rule_base := fc_purge7_2
IF NOT (purge_vlv_sw_pos = last_purge_vlv_sw_pos AND

auto_purge_seq = last_auto_purge_seq AND
h2_flow_rate = last_h2_flow_rate AND

02_flow_rate = last_o2_flow_rate AND
purge_htr_sw_pos = last_purge_htr_sw_pos AND
fc_purge_alarm = last_fc_purge_alarm AND
fc_purge_seq_alarm = last_fc_purge_seq_alarm AND

fc_purge_t_alarm = last_fc_purge_t_alarm)

[1 work_rule_base := fc_cool_p7_3e
IF NOT (cool_p = last_cool_p AND

cool_p_rate = last_cool_p_rate AND
h2_flow_rate = last_h2_flow_rate AND
02_flow_rate = last_o2_flow_rate AND
cool_pump_dp = last_cool_pump_dp AND
purge_vlv_sw_pos = last_purge_vlv_sw_pos AND
auto_purge_seq = last_auto_purge_seq AND
02_reac_vlv = last_02_reac_vlv AND
h2_reac_vlv = last_h2_reac_vlv AND
fc_mn_conn = last_fc_mn_conn AND
bus_tie_status = last_bus_tie_status AND
delta_v = last_delta_v AND

status = last_status AND

cool_ph20_p = last_cool_ph20_p)

[] work_rule_base := fc_h20_vivt7_3g
IF NOT (h20_rif_vlv_t =1last_h20_rif viv_t AND

h20_rlf_t msg = last_h20_rlf_t_msg AND
h20_sif_sw_pos = last_h20_rlf_sw_pos AND



h20_rlf_timer = last_h20_rlf_timer AND
h20_vlv_t rate =last._h20_viv_t rate)
(*107%)
[] work_rule_base := prd_h20_Int7_3f
IF NOT (prt_h20_Int = last_prt_h20_Int AND
prd_h20_sw_pos = last_prd_h20_sw_pos AND
fc_mn_conn = last_fc_mn_conn AND
amps = last_amps)
(*117%)
{1 work_rule_base := fc_reacs7_1_1_1
IF NOT (fc_rdy_for_ld = last_fc_rdy_for_ld AND
02_reac_vlv = last_o02_reac_viv AND
h2_reac_vlv = last_h2 _reac_vlv AND
02_flow_rate = last_o2_flow_rate AND
h2_flow_rate = last_h2_flow_rate AND
cool_p = last_cool_p)
(*12%)
11 work_rule_base := fc_general
IF NOT (cool_p = last_cool_p AND
cool_pump_dp = last_cool_pump_dp AND
h2_reac_vlv = last_h2 _reac_viv AND
02_reac_vlv = last_o2_reac_vlv AND
fc_rdy_for_ld = last_fc_rdy_for_ld AND
fc_mn_conn = last_fc_mn_conn AND
fc_ess_conn = last_fc_ess_conn AND
status = last_status AND
cntlr_pwr = last_cntlr_pwr)
(*13%)
[} work_rule_base := fc_volis7_3b
IF NOT (status = last_status AND
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delta_v =last_delta_v AND

fc_mn_conn = last_fc_mn_conn AND
fc_pripl_conn = last_fc_pripl conn AND
mn_pripl_conn = last_mn_pripl_conn AND
bus_tie_status = last_bus_tie_status AND
amps = last_amps AND

voltage = last_voltage AND

load_status = last_load_status AND
cntlr_pwr = last_cntlr_pwr AND
mna_voltage = last_mna_voltage AND
mnb_voltage = last_mnb_voltage AND

mnc_voltage = last_mnc_voltage)

* *)
(* rule class fc_reacs7_1_1_1 *)

* *)
(*14%)

[1 02_reac_vlv := clsd_confirmed (* *)
IF fc_rdy_for_ld =on AND
{02_reac_vlv = clsd OR h2_reac_vlv = cisd) AND
(02_flow_rate = low1 OR o2_flow_rate = lowl OR cool_p = low1)

AND work_rule base = fc_reacs7_1_1_1

* )

(* rule class cool_pump7_la *)
* *)
(*15%)

] status := ecu_pwr_loss (* *)
1F cntlr_pwr = off AND
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cool_pump_dp = low AND
fc_rdy_for_id = off AND
status = ok
AND work_rule_base = cool_pump7_la
*16%)
{] status := cool_pump_loss
IF cntlr_pwr = on AND
cool_pump_dp = low AND
tce = high
AND work_rule_base = cool_pump7_la
*17%
[] status := restarted
IF (status = ece_pwr_loss OR status = cool_pump_loss) AND
cntlr_pwr = on AND
cool_pump_dp = ok AND
fc_rdy for_id =on AND
tce = ok

AND work_rule_base = cool_pump7_la

- )

(* rule class fc_stack t7_1b *)
* *)
(*18%)

{] statusl := orb_freon_lp_prob !
status? := orb_freon_lp_prob !
status3 := orb_freon_lp_prob
IF cool_rtn_t1 = high AND
cool_rin_{2 = high AND
cool_rin_t3 = high
AND work_rule_base = fc_stack t7_1b
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(*19%)
I1fc_mn_dv := high
IF fc_mn_dv = high AND
mn_bus = mn_id AND
fc_mn_conn = on
AND work_rule_base = fc_stack_(7_1b
(*20%)
{1 load_status ;= internal_Id
IF status = disconn_v_low AND
su_htr = inh AND
(voltage = ok OR voltage = low1)
AND work_rule_base = fc_stack_t7_1b
(*21%)
[] status := disconn_v_low
IF status = disconnected AND
stk_t_status = high AND
voltage <> highl AND
voltage <> high2
AND work_rule_base = fc_stack_t7_1b
(*227%)
[1load_status := internal_ld
IF stack_t = high AND
delta_v=lowl
AND work_rule_base = fc_stack_t7_1b
(*23%)
[1stk_t_status := high
IF stack_t = highl AND
cool_rtn_t = ok AND
stk_t_rate = ok
AND work_rule_base = fc_stack _t7_1b



(*24%)
] stk_t_status = low
IF stack_t=lowl AND
cool_rtn_t = ok AND
stk_t_rate = ok
AND work_rule_base = fc_stack_t7_1b
(*25%)
{1 cool_loop_status := failed_low
IF stack_t=lowl AND
(delta_v = low OR delta_v = lowl)
AND work_rule_base = fc_stack_t7_1b
(*26%)
{] status] := cool_Ip_prob
IF stk_t_statusl = high_start AND
stk_t_disconnl = ok
AND work_rule_base = fc_stack_i7_1b

* *)

(* rule class fc_cool_p7_3e *3
* *)
(*27%)

[] messagel := true
IF cool_p = highl AND
(purge_vlv_sw_pos = open OR auto_purge_seq = on)
AND work_rule_base = fc_cool_p7_3e
(* 28 *) (* Missing condition *)
[} message? := true
iF
(h2_flow_rate = highl OR 02_flow_rate = high1)
AND work_rule_base = fc_cool_p7_3e
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*29%)
[1 message3 := rue
1F cool_p =1lowl AND
cool_p_rate = decr AND
h2_reac_vlv = open AND
02_reac_vlv = open AND
fc_mn_conn = on
AND work_rule_base = fc_cool_p7_3e
(*30%)
[1 messaged := true
IF cool_p = lowl AND
h2_reac_vlv = open AND
02_reac_vlv = open AND
fc_mn_conn = on AND
mn_bus = mn_id AND
bus_tie_status = untied
AND work_rule_base = fc_cool_p7_3e
(*317%)
[] message5 := true
IF cool_p_rate = ok AND
cool_p =low2 AND
delta_v = ok AND
fc_mn_conn = on AND
h2_reac_vlv = open AND
02_reac_viv = open
AND work_rule_base = fc_cool_p7_3e
(*32%)
[1 messageb = true
IF cool_p =lowl AND

status = disconnected AND
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cool_p_rate = decr
AND work_rule_base = fc_cool_p7_3e
(*33%)
[} message7 := true
IF cool_p_rate = ok AND
cool_p =lowl AND
h2_reac_vlv = open AND
02_reac_vlv = open AND
cool_ph20_p = low
AND work_rule_base = fc_cool_p7_3e
(*347%)
[1 message8 := true
IF cool_p =lowl AND
status = disconnected AND
cool_p_rate = incr
AND work_rule_base = fc_cool_p7_3e
(*35%)
[] message9 ;= true
1F cool_p_rate = ok AND
delta_v =low AND
h2_reac_viv = open AND
02_reac_vlv = open
AND work_rule_base = fc_cool_p7_3e
(*36%)
[1 messagel0 := true
IF cool_p_rate = ok AND
cool_p =lowl AND
cool_ph20_p = ok AND
delta v =0k AND
h2_reac_vlv = open AND



mn_bus = mn_id AND
bus_tie_status = tied AND
fc_mn_conn = on
AND work_rule_base = fc_cool_p7_3e
(*37%)
[1 messagell := true
IF cool_p = lowl AND
status = disconnected AND
cool_p_rate = ok
AND work_rule_base = fc_cool_p7_3e¢
(*38%)
{1 messagel2 := true
IF cool_p_rate = ok AND
cool_p = lowl AND
cool_ph20_p = ok AND
delta_v=low AND
h2_reac_vlv = open AND
02_reac_viv = open
AND work_rule_base = fc_cool_p7_3e

* *)
(* rule class prd_h20_Int7_3f

* *)
(*39%)

{] messagel3 :=true
IF prd_h20_Int = highl AND
prd_h20_sw_pos = off
AND work_rule_base = prd_h20_int7_3f
(*40%)

*)
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[1 messageld = true
IF prd_h20_Int = lowl AND
fc_mn_conn = on AND
(amps = ok OR amps = high1)
AND work_rule_base = prd_h20_int7_3f
(*41-27%)
[} prd_h20_Int := lowl
IF prd_h20_Int=lowl AND
(fc_mn_conn = off OR amps = low2 OR amps = low3) AND
(prd_h20_sw_pos = a_auto OR prd_h20_sw_pos = b_auto)
AND work_rule_base = prd_h20_Int7_3f
(*42-28 %)
[ prd_h20_Int :=lowl
IF prd_h20_Int =lowl AND
(fc_mn_conn = off OR amps = low2 OR amps = low3) AND
prd_h20_sw_pos = off
AND work_rule_base = prd_h20_Int7_3f
(* 43-29 %)
{] prd_h20_Int := highl
IF prd_h20_Int = highl AND
(prd_h20_sw_pos = a_auto OR prd_h20_sw_pos = b_auto)
AND work_rule_base = prd_h20_Int7_3f

¢ *)
(* rule class fc_h20_vivt7_3g *)

* )
(* 44-30 %)

{1h20_rIf timer := start
IF h20_slf_viv_t = high AND
h20_rlf t msg=sw_to_b AND
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h20_rlf_sw_pos = b_auto
AND work_rule_base = fc_h20_vlvt7_3g
(*45-31 %)
[1 h20_rif_timer := stop
IF h20_slf_timer = start AND
h20_vlv_t rate <> decr
AND work_rule_base = fc_h20_vivt7_3g

* *)
(* rule class fc_delta_v7_4_1 4 *)
* *)
(*46-32 %)

[1ssi_dv := unverified_high
IF ss1_dv = high AND
ssl_dv_rate = ok AND
ph=o0k
AND work_rule_base = fc_delta_v7 4_1_4
(*47-33 %)
[1ss2_dv = unverified_high
IF ss2_dv = high AND
ss2_dv_rate = ok AND
ph=ok
AND work_rule_base = fc_delta_v7_4_1 4
(*48-34 %)
[1ss3_dv := unverified_high
IF ss3_dv = high AND
ss3_dv_rate = ok AND
ph=ok
AND work_rule_base = fc_delta_v7 4_1 4
(* 49-35 %)



1] status := fc_failed_dv_hi
IFph=ok AND
((ss1_dv = high AND ssl_dv_rate = incr) OR
(ss2_dv = high AND ss2_dv_rate = incr) OR
(ss3_dv = high AND ss3_dv_rate = incr))
AND work_rule_base = fc_delta_v7_4_1 4
(* 50-36 *)
{1 ph := high_confirmed
IF ph = high AND
(ss1_dv_rate = incr OR
ss2_dv_rate = incr OR
ss3_dv_rate = incr OR
ss1_dv =high OR
ss2_dv = high OR
ss3_dv = high)
AND work_rule_base = fc_delta_v7_4_1_4

* *)

(* rule class bus_tie_rules *)
- “
(*51-37 %)

[] bus_tie_statusa := tied ! bus_tie_statusb := tied
IF busa_tie = on AND
busb_tie = on
AND work_rule_base = bus_tie_rules
(* 52-38 %)
{1 bus_tie_statusa := tied ! bus_tie_statusc := tied
IF busa_tie = on AND
busc_tie = on

AND work_rule_base = bus_tie_rules
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[T busa. tie_status = untied

IF (busa_tie = off OR
(busb_tie = off AND busc_tie = off))
AND work_rule_base = bus_tie_rules

[] bus_tie_statusb := tied

IF busb_tie = on AND
busc_tie = on

AND work_rule_base = bus_tie_rules

[] busb_tie_status := untied

IF (busb_tie = off OR
(busa_tie = off AND busc_tie = off))

AND work_rule_base = bus_tie_rules

{] busc_tie_status := untied

IF busa_tie = off AND
busb_tie = off

AND work_rule_base = bus_tie_rules

)

rule class fc_general *)

)

[] status := safed

IF cool_p =low AND
cool_pump_dp = low AND
NOT (h2_reac_vlv = open AND 02_reac_viv = open)
AND work_rule_base = fc_general
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(* 58-44 *)
[] status := shutdn
IF fc_rdy_for_ld = off AND
cool_pump_dp =low AND
( (02_reac_vlv <> open) OR (h2_reac_vlv <> open))
AND work_rule_base = fc_general
(* 59-45 %)
{1 status := disconnected
IF fc_mn_conn = off AND
fc_ess_conn = off
AND work_rule_base = fc_general
(* 60-46 *)
[1 status := disconn_stop
IF status = disconnected AND
fc_rdy_for_ld = off AND
cool_pump_dp = low

AND work_rule_base = fc_general

(*ommmes ")

* rule class fc_stack_t7_1b *)
* )
(*61-47%)

[] statusi := cool_lp_prob
IF stk_t_status2 = high_start AND
stk_t_disconnZ = ok
AND work_rule_base = fc_stack_t7_1b
(* 62-48 %)
[] status] := cool_ip_prob
IF stk_t_status3 = high_start AND

stk_t_disconn3 = ok
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AND work_rule_base = fc_stack_t7_1b
(* 63-49 %)
[] status1 := fc_or_stk_t_fail
IF status] = disconnected AND
stk_t_statusl = high AND
(voltagel = high1 OR voltagel = high2) AND
amps] = low2
AND work_rule_base = fc_stack_t7_1b
(* 64-50 %)
(1 status3 := fc_or_stk_t_fail
IF status3 = disconnected AND
stk_t status3 = high AND
(voltage3 = high1 OR voltage3 = high2) AND
amps3 = low2
AND work_rule_base = fc_stack_t7_1b
(* 65-51%)
[] status2 := fc_or_stk_t_fail
IF status2 = disconnected AND
stk_t_status2 = high AND
(voltage2 = highl OR voltage2 = high2) AND
amps? = low2
AND work_rule_base = fc_stack_t7_1b
(* 66-52 %)
[1 stack_t2 := hi_snsr_fail
IF stk_t_status2 = high_start AND
stk_t_disconn2 <> ok
AND work_rule_base = fc_stack_t7_1b
(* 67-53™)
[1 stack_t3 := hi_snsr_fail
IF stk_t_status3 = high_start AND

262



stk_t_disconn3 <> ok
AND work_rule_base = fc_stack_t7_1b
(* 68-54 %)
{1 stack_t ;= snsr_failed
IF stk_t_rate = high AND
stack_t = high2 AND
stack_t = low2
AND work_rule_base = fc_stack _t7_1b
(* 69-55 %)
{] status := ok_su_hir_inh
1F status = disconn_v_low AND
su_htr = inh AND
(voltage = highl OR voltage = high2)
AND work_rule_base = fc_stack_t7_1b

* *)
(* rule class fc_purge7 2 *)

¢ *)
(*70%)

1 message15 := true
IF purge_vlv_sw_pos = gpc AND
auto_purge_seq = on AND
(h2_flow_rate = highl OR 02_flow_rate = highl)
AND work_rule_base = fc_purge7_2
*71%)
{1 messagel6 := true
IF purge_htr_sw_pos = gpc AND
aulo_purge_seq = on
AND work_rule_base = fc_purge7_2
(*72%)
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[1 messagel7 := true

*73%)

IF purge_vlv_sw_pos = open AND
(h2_flow_rate = highl OR o02_flow_rate = highl)
AND work_rule_base = fc_purge7_2

[1 messagel8 := true

(*74%)

IF auto_purge_seq = on AND
fc_purge_alarm = on
AND work_rule_base = fc_purge7_2

[1 messagel9 = true

(*75%)

IF fc_purge_seq_alarm = on AND
auto_purge_seq = off
AND work_rule_base = fc_purge7_2

[} message20 = true

IF fc_purge_t_alarm = on
AND work_rule_base = fc_purge7_2

(* *)

* rule class fc_ech7 3.1 2 *)
(* *)
(*76*)

{} message21 = true

(* 77-56 %)

IF fc_rdy_for_ld = on AND
(end_cell_hirl = failed_on OR end_cell_htr2 = failed_on) AND
fc_mn_conn = off AND
fc_ess_conn = off
AND work_rule_base = fc_ech7 3.1 2
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[1 status = ech_failed_on

mn_bus = mn_id

AND work_rule_base =fc_ech7_3_1 2

(*

{* rule class fc_volts7_3b

(*

(* 78-57%)

{1 load_status := overloaded1

(* 79-58 %)

IF fc_mn_conn = on AND

mn_bus = mn_id AND
mn_pripl_conn = off AND
bus_tie_status = untied AND

amps = highl AND

voltage = lowl AND

load_status <> tied_short

AND work_rule_base = fc_volts7_3b

[] status := reconnected

(* 80-59 %)

IF status = disconnected AND

cntlr_pwr = on AND

voltage = ok AND
load_status <> perf_low AND
fc_mn_conn = on

AND work_rule_base = fc_volts7_3b

{1 status := internal_short

IF mn_bus = mn_id AND

load_status = overloadedl AND

)

)

IF (end_cell_htrl = failed_on OR end_cell_htr2 = failed_on) AND

*)

265



status = disconn_stop AND
(voltage = low1 OR voliage = ok)
AND work_rule_base = fc_volts7_3b
(* 81-60 *)
[1 fc_mn_conn := off
IF voltage = highl AND
status = ok AND
(amps = low2 OR fc_mn_conn = off)
AND work_rule_base = fc_volis7_3b
(* 82-61%)
{1 load_status := lightly_loaded
IF voltage = highl AND
amps = low3 AND
fc_mn_conn=on
AND work_rule_base = fc_volts7_3b
(* 83-62 %)
[] status := shorted
IF load_status = overloaded]l AND
mn_bus = mn_id AND
status = disconn_stop AND
voltage = highl
AND work_rule_base = fc_volts7_3b
(* 84-63 %)
[1 load_status := overloaded2
IF fc_id = mn_id AND
bus_tie_status = untied AND
voltage = lowl AND
amps = highl AND

(fc_pripl_conn = on OR mn_pripl_conn = on)

AND work_rule_base = fc_volts7_3b
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(* 85-64 %)
[1 load_status = pripl_short_isolated
IF mn_bus = mn_id AND
load_status = overloaded2 AND
mn_voltage = ok AND
amps = ok AND
fc_pripl_conn = off AND
mn_pripl_conn = off
AND work_rule_base = fc_volts7_3b
(*86™)
[} message22 := true
IF mn_bus = mn_id AND
load_status = tied_short AND
bus_tie_status = untied AND
voltage = ok AND
amps =0k
AND work_rule_base = fc_volts7_3b
(* 87-65 %)
(1 load_status := tied_short
IF fc_id = mn_id AND
bus_tie_status = tied AND
amps = highl AND
voltage = low1
AND work_rule_base = fc_volts7_3b
(* 88-66 *)
[1 load_status := untied_short
IF mn_bus = mn_id AND
load_status = tied_short AND
bus_tie_status = untied AND
voltage = lowl AND



amps = highl AND
(mna_voltage = lowl OR
mnb_voltage = lowl OR
mnc_voltage = low1l)
AND work_rule_base = fc_volis7_3b

(* 89-67 %)
[1 load_status := untied_short
IF load_status = tied_short AND

mn_bus = mn_id AND
bus_tie_status = untied AND
voltage = lowl AND

amps = highl
AND work_rule_base = fc_volts7_3b

(* *)
* rule class fc_amps7_3c *

¢ *)
(* 90-68 *)

[] status := degraded
IF mn_bus = mn_id AND
status = disconnected AND
load_status = perf_low AND
voltage = highl
AND work_rule_base = fc_amps7_3c
(* 91-69 *)
[] status := degraded_bad
IF mn_bus = mn_id AND
status = disconnected AND
load_status = perf_low AND
voltage <> highl
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AND work_rule_base = fc_amps7_3¢
(*92-70 %)
{1 load_status := perf_low
IF voltage = ok AND
amps = low3 AND
fc_mn_conn = on
AND work_rule_base = fc_amps7_3c
(*93-71 %)
{1 load_status := lightly_loaded
IF voltage = highl AND
amps = low3 AND
fc_mn_conn = on
AND (work_rule_base = fc_amps7_3c OR
work_rule_base = fc_volts7_3b)
(*94%)
[1 message23 := true
IF tce = high AND
cool_rtn_t = highl
(*95%)
[1 message24 = true
IF (tce = low OR ice = low_confirmed) AND
(koh_in_conc = high OR koh_out_conc = high)
(*967%)
{] message25 1= true
IF tce = high AND
(prd_h20_int = high OR
koh_in_conc = low OR
koh_out_conc = low)
*97%)
[] message?6 ;= true
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IF tce = low AND
prd. b20_Int = low
(*98%)
[1 message27 ;= true
IF (cool_p = high1 OR cool_p = high2) AND
(h2_flow_rate = high2 OR 02_flow_rate = high2)
(*99™)
{1 message28 := true
IF (cool_p = high2 OR cool_p_rate = incr) AND
cool_pump_dp = low
(* 100 *) (* Missing condition *)
[] message29 := true
IF (cool_p = high1 OR h2_flow_rate = highl)
*101 %)
[1 message30 = true
IF (cool_p = highl OR cool_p = high2) AND
h2_flow_rate = ok AND
02_flow_rate = ok AND

cool_p_rate = ok

TRACE
PRINT work_rule_base, 02_reac_vlv, status, statusl, status2, status3,
fc_mn_dv, load_status, stk_t_status, cool_loop_status, prd_h20_Int,
h20_rif_timer, ss1_dv, ss2_dv, ss3_dv, ph,
bus_tie_statusa, bus_tie_statusb, bus_tie_statusc,
busa_tie_status, busb_tie_status, busc_tie_status,
stack_t, stack_12, stack_t3, fc_mn_conn,
messagel, message2, message3, message4, messages,
message6, message7, message8, message9, messagel0,

messagel1, message12, messagel3, messagel4, messagels,
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messagel6, messagel7, messagel8, messagel9, message20,
message21, message22, message23; message24, message25,

message26, message27, message28, message29, message30

END. (* fuel_cell_expert_system *)
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