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ABSTRACT

Modeling the effects of finite-sized light sources has been an
active area of research for many years. Most methods sim-
plify the problem by approximating the area source with
a collection of point sources. The only existing analytic
method works in screen space to compute a single image.
This paper presents an object-space algorithm to model il-
lumination from polygonal light sources. The result is a
collection of smooth-shaded polygonal facets which may be
rendered from any viewing position. Binary Space Parti-
tioning trees are used to compute the umbra and penumbra
boundaries efficiently. Fast analytic techniques are devel-
oped for illumination calculations. Numerical optimization
techniques are used to sample the shading function in un-
shadowed regions finely enough to find all significant illumi-
nation gradations. Ilumination calculations are optimized
to concentrate computational effort on parts of the scene
where they are most needed.

CR Categories and Subject Descriptors: 1.3.3 [Computer
Graphics]: Picture/Image Generation-Display algorithms.
1.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism.

General Terms: Algorithms.

Additional Key Words and Phrases: data structure, dif-
fuse, mesh-generation, optimization, penumbra, sampling,

shadow.

1. INTRODUCTION

Generating photorealistic images of most scene models re-
quires determining the illumination of surface elements by
area light sources. Some of these light sources are the origi-
nal emitters of the light in the environment, and others may
be surface elements which reflect light onto each other. Al-
though light source primitives currently used in generating
photorealistic images are frequently polygonal areas, these
are essentially always treated as collections of point sonrces.
This paper presents an analytic method for determining the
{llumination provided by area light sources of constant in-
tensity in object space without resorting to point sampling

of the sources.

When only Lambertian surface reflectances are used, illu-
mination does not change in a static scene when the view-
ing position is moved. If the illumination is precomputed,
a sequence of highly realistic images from different viewing
positions can be generated at interactive speeds. For most
current graphics hardware, the best results toward these
ends may be achieved by rendering a scene as a smooth-
shaded polygonal mesh. The illumination precomputation
involves subdividing a scene into an appropriate mesh of
surface elements and computing the illumination of each el-
ement. Large numbers of mesh elements are required to ad-
equately sample areas of rapidly varying illumination. Such
areas are most often the penumbras of shadows generated
by area light sources. However, a large number of mesh
elements slows the illumination computation and the final
shading and display of the scene. In order to balance the
requirements of realism and speed, only elements whose il-
lumination cannot be effectively treated as constant should
be subdivided. The technique presented here is effective at
accomplishing this goal for either point or area sources.

The following section reviews the problem of computing
penumbras and describes previous efforts to solve it. Sec-
tion 3 describes our basic approach. In Sections 4 through
6, the elements of our algorithm are discussed in detail. Our
implementation and results are detailed in Section 7. Sec-
tion 8 analyzes the work and suggests possible directions for
further research.

2. PENUMBRA COMPUTATION

The basic problem is simple to describe. Given a scene de-
scription and one or more area light sources, compute the
scene illumination. For either local or global illumination
methods, the result is an image with soft-edged shadows. For
each light source, the surfaces in the scene may be divided
into three illumination classifications: fully lit, partially lit
(penumbra), and fully occluded {umbra). This is shown in
Figure 1.

Determination of soft shadows involves several steps. The
occlusion of the light sources must be computed. This oc-
clusion information must be incorporated into the shading
function. Finally, the shading function must be evaluated
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Figure 1: Soft Shadows

across each surface in the scene frequently enough to sample
the intensity gradations.

The bulk of research in shadow algorithms has been de-
voted to point light sources. A review of this work is beyond
the scope of this paper, but the interested reader should refer
to either the early survey by Crow [8] or the recent overview
by Woo, Poulin, and Fournier [24].

Most existing soft shadow algorithms model an area
source as a finite collection of point sources. Point shadow
algorithms are then applied for each sample point. This has
been done with the depth buffer [11] [12] , ray tracing [7]
[15], and shadow volumes [3]. Unless care is taken, inaccu-
racies in the approximation of the illumination of an area
light source may result, and aliasing may occur.

Radiosity algorithms have also been used to generate soft
shadows. These methods operate by subdividing all surfaces
in a scene into patches, and then computing a geometric
form factor, Fij, between each pair of patches. Computing
each form factor requires determining interpatch visibility.
At this stage, existing methods either assume each patch
is a point source [6] [2] [4] or perform visibility tests for
strategically-chosen pairs of points on the surfaces in ques-
tion [19] [23]. When examined solely in regards to shadow
computations, these methods differ little from the discrete
soft shadow methods mentioned above, and they suffer the
same drawbacks.

Amanatides [1] developed an analytic approach for cir-
cular or spherical light sources. While this is a powerful
technique, it works for no other light source shape.

Nishita and Nakamae [18] [19] have developed an ana-
lytic algorithm for polygonal sources. They use a shadow
volume approach to divide surface polygons into lit, shad-
owed, and penumbra regions. Illumination calculations are
performed in scanline order. For each point in penumbra,
a shadow-clipping algorithm is performed to determine the
unoccluded portion of the light source. Then an analytic
function is evaluated to compute intensity. This approach
does an excellent job of computing penumbras, but it fails to
take advantage of spatial coherence in shadow clipping for

penumbra points during scan conversion, and it fails to take
advantage of frame to frame coherence since the illumination
computations are done in image space. Our approach reme-
dies these deficiencies in a flexible way which allows it to
be employed in conjunction with view independent radiosity
algorithms as well as for simple penumbra calculation.

3. ALGORITHM OVERVIEW

We assume a scene description input consisting of a list
of convex polygons, some of which are designated as light
sources. Light sources are processed in turn. For each light
source, shadow processing is done for all receiving surfaces,
resulting in a data structure which exactly represents the ar-
eas which are fully lit, in total umbra, or in penumbra with
respect to the current light source. Then the illumination
calculations for that light source are performed on the re-
sulting data structure. Regions of receiving polygons in full
umbra can be ignored since they receive no illumination. Re-
gions which are fully lit by the light source can have their
illumination evaluated at any point in the region using an
analytic formula described below. Illumination of points in
penumbra requires determination of the fraction of the light
source not occluded in order to apply the analytic formula
used for totally lit areas to the unoccluded light source frac-
tion. Once the current light source is finished, the algorithm
is repeated for each remaining source.

The heart of the algorithm is the first stage in which a
mesh representing umbra, penumbra, and lit regions is gen-
erated. Receiving polygons are partitioned into distinct re-
gions of visibility classification, as was done in [18]. To ac-
complish this, we use a generalization of the BSP tree based
sharp shadow algorithm described in [5] and [4]. In this
case, separate BSP trees represent the volumes with some
occlusion and those with total occlusion. We refer to these,
respectively, as the shadow volume and the umbra volume.
Each receiving polygon is used to generate planes bounding
both umbras and penumbras. These bounding planes are de-
termined using vertices from the light source and occluding
polygons as described below. We split the receiving polygon
across the planes of the penumbra volume in order to divide
it into regions which are either fully lit or have at least some
occlusion. The areas with occlusion are then split across the
planes of the umbra volume in order to complete the classi-
fication. This process continues for each receiving polygon,
and when complete is repeated for each light source polygon
in turn.

Once the penumbra mesh is generated, further subdivision
may be desirable if the illumination across a lit or penumbra
region varies by too great an amount. Since the illumination
across a lit surface element is continuous and differentiable,
it is possible to use numerical optimization techniques to
determine whether the minimum and maximum intensities
across the surface differ by more than a prescribed tolerance.
If so, the receiving element is subdivided across its largest



For each light source, S:i, do
For each receiver, R;, do
Classify R; into LIT, PENUMBRA, and UMBRA
regions with respect to S;
Nluminate R; with S

Figure 2: Algorithm Overview

dimensjon. The intensity variation test is repeated until the
variations for all surfaces involved are below the threshold.

Figure 2 summarizes the algorithm.

4. VISIBILITY CLASSIFICATION

Receiving polygons are processed to partition them into fully
lit, penumbra, and umbra regions for each light source in
turn. This may be accomplished by building a data struc-
ture which represents all shadows cast by all scene polygons,
and then testing each receiving polygon against the merged
shadow volumes. Separate data structures are maintained
for shadow and umbra volumes. The volume modeling BSP
trees of [22] and [17] can be used for this purpose. Separate
trees are maintained for shadow and umbra volumes. Each
leaf node of these trees has an IN/OUT attribute, indicating
that the associated volume of space is inside or outside the
volume. Trees representing the shadow and umbra volumes
for each polygon are produced as described below, and the
UNION of these volumes is performed to generate merged
shadow volume trees for the umbra and shadow volumes.
These trees represent all shadows cast from a single source.
Receiving polygons are split where they cross the bound-
aries of these merged volumes to determine the boundaries
of regions which are in umbra or penumbra with respect to
a light source.

Efficiency gains may be achieved if the receiving poly-
gons are processed in front-to-back order away from the light
source. Each polygon may then be tested only against the
merged shadow and penumbra volumes generated by the
source polygon and closer polygons. For area sources, a
unique ordering may not always be possible. In the case of
moderately sized light sources, we can use this optimization
by subdividing the source into fragments which each allow
an ordering. After this subdivision has taken place, separate
visibility classification passes are performed for each each
fragment. The result is a mesh which classifies the scene
polygons as to visibility with respect to the entire current
light source.

The visibility algorithm proceeds as follows. All receiving
polygons are initialized to fully lit with respect to the current
light source. Then the source is fragmented as needed to al-
low ordering. For the visibility pass of the first fragment, lit
regions are first tested against the penumbra volume. Areas

Initialize receivers as LIT with respect to S
Subdivide S to allow front to back ordering
For each fragment, Fj;, do
Sort receivers front to back
Initialize shadow volumes
For each receiver, Rj, do
Clip LIT fragments of R; against penumbra volume
Ifi=1 then Clip PENUMBRA fragments of R;
against umbra volume

Else Clip UMBRA fragments of R; against umbra volume

Update shadow volumes
Destroy shadow volumes

Figure 3: Visibility Algorithm

determined to lie within penumbra are then tested against
the umbra volume.

Regions classified to be in penumbra in any pass do not
need further visibility classification. However, we may not
classify a region as fully lit or occluded until all fragment
passes are complete. Regions classified as fully lit by previ-
ous passes must still be tested against penumbra volumes at
each stage to detect possible occlusion. Similarly, a region
must lie within the umbra volumes generated by each pass
in order to be classified as fully occluded.

Pseudocode for this procedure is provided in Figure 3.

4.1. Ordering Receiving Polygons

If receiving surfaces are processed in front-to-back order from
the light source, then during shadow computation receivers
are shadowed only by surfaces preceding them in the list.
For point sources, if a Binary Space Partitioning (BSP) tree
is created to represent the input polygons, then a simple
traversal of the tree taking into account the light source po-
sition can provide this ordering, as was done in [5] and [4].

The reader may recall that a BSP tree can be used to
represent a collection of polygons in a volume of space by
recursively subdividing the volume along planes determined
by the orientations of the polygons within the volume. Poly-
gons may be chosen in any order to determine these parti-
tioning planes, with the most desirable order being one which
results in the fewest polygons being split along plane bound-
aries as the process proceeds. The resulting data structure is
a binary tree, in which each interior node represents a parti-
tioning plane and its defining polygon, along with any other
coplanar polygons that may exist in the input database, and
the leaf nodes represent convex volumes of space determined
by the partitioning. Figure 4(a) shows a two dimensional
example, in which line segments represent polygons. Fig-
ure 4(b) shows the BSP tree for this scene.

As described in [9], BSP trees can be used to determine
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Figure 4: BSP Tree

the visibility priority of a collection of polygons from any
viewing position. This is achieved by an inorder traversal of
the tree. Each node is processed recursively by inserting the
coordinates of the viewing position into the planar equation
of the partitioning plane at that node. The sign of the re-
sult indicates whether the viewing position is in the “front”
halfspace determined by the plane, the “back” halfspace, or
on the plane itself, with “front” and “back” relative to the
plane normal. If the viewing position is in one of the half-
spaces, the subtree representing that halfspace is processed
first. If on the plane, the subtrees can be processing in any
order. Once the first subtree has been processed, the poly-
gons within the current node can be output and the other
subtree processed to terminate the routine for that node.
Thus the exact order of traversal is determined by the view-
ing position, and it is guaranteed that this order will out-
put polygons in front to back order relative to the viewing
position. Further details can be obtained in [9] or [16]. Fig-
ure 4(c) shows the output order using this algorithm on the
viewing position and scene shown in Figure 4(a). For a point
light source, a front-to-back ordering may be generated by
using the light source position as the viewpoint.

Now let us consider an area source. If each point of the
source results in the same traversal sequence of the BSP
tree, we know that an unambiguous sort exists, namely the
order generated. As we can see in Figure 4, the ordering
will change only if the light source crosses the plane of an
internal node, which results in a different order of visiting its
subtrees. Thus the light source must be partitioned at its in-
tersections with each of the planes corresponding to internal
nodes. For each resulting light source fragment, a front-
to-back ordering of the receiving polygons is determined by
traversing the tree with any point of the fragment as the
viewing position.

Bach fragment is treated as a separate light source for the

remainder of the visibility classification algorithm. For most
scenes, the fragmentation level is small.

4.2. Representation of Polygon Subdivision

During the shadowing and illumination steps, the receiver
can be subjected to several stages of subdivision. Since
each subdivision involves splitting the surface by a plane,

the partitioning of a receiver may be represented by a two-
dimensional BSP tree, as in [4]. Let us refer to this as the
partitioning tree.

For each interior node of the partitioning tree, we keep
a 3-D boundary representation of the contour of the input
polygon fragment for each of its halfplanes. For each leaf
node, the boundary representation of the polygon fragment
it represents is maintained. This contour is tested against
the boundary planes of the merged shadow and umbra vol-
umes. If the boundary of an internal node lies entirely on
one side of such a plane, then none its subtrees needs to to
be examined. If an internal node crosses a plane, its subtrees
must be checked against this plane. If a leaf node crosses a
plane, its boundary is split across that plane and the frag-
ments are then associated with two new nodes of the trees,
which become the children of the original node.

At the start of visibility classification, all nodes of every
polygon are marked as fully lit with respect to the current
polygon. Each polygon is then tested for inclusion in both
the shadow and umbra volumes for that light source. In
general, volume BSP trees classify completely unrelated at-
tributes [22], so membership in multiple trees would need to
be represented by a complicated data structure. However,
in this case the physical situation allows us to use a binary
tree structure, with three different inclusion categories: —
SHADOW N = UMBRA = fully lit, SHADOW n - UM-
BRA = penumbra, and SHADOW N UMBRA = umbra.
The fourth case, = SHADOW N UMBRA, never happens.

4.3. Point Shadow Volume

Let us begin with a discussion of shadows cast by point
sources. While point shadows are not used in our algorithm
for visibility determination, they are needed for shading cal-
culations in penumbra regions. This application will be dis-
cussed below.

BSP trees have been used to represent point shadows by
[5] and [4]. Planes formed by the light source and the edges
of the receivers subdivide space into lit and shadowed in-
tervals. When we process a new polygon, it is split along
the planes until each fragment is determined to be in a lit
or unlit region. Then the shadow volumes formed by the lit
portions are added to the merged shadow volume. The in-
sertion process can be done by representing the new shadow
volumes as a BSP tree and performing set UNION opera-
tions between them and the merged shadow volume tree as
defined in [17], although it may be somewhat more efficient
to use the specialized procedure shown in Figure 5, which is
adapted from [5].

The simplicity of this insertion procedure is due to the
fact that any ray emanating from a point light source and
passing into a shadow region will remain in shadow for the
rest of its length, i.e. the shadow volume is convex with
respect to the light source. When this is the case, we may
subdivide an occluding polygon and know that the union



MergeVol(Vol, Src, Rev)
If Vol.Type = IN Return(Vol)
If Vol.Type = OUT

Vol := BuildVol(Src, Rev)
Else

Clip Rev against Vol.Plane, yielding Pos and Neg fragments

1f Pos 5 NIL then Vol.Pos := MergeVol{ Vol.Pos, Src, Pos)

If Neg # NIL then Vol.Neg := MergeVol(Vol.Neg, Src, Neg)

Return(Vol)

Figure 5: Merging Shadow Volumes
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Figure 6: Penumbra and Umbra Shadow Volumes

of the shadow volumes of its fragments equals the shadow
volume of the whole. This is not true in general, as shown

in Figure 6.

4.4. Polygon Shadow Volumes

For area light sources, a shadow volume is the union of all
points from which only a fraction f < 1 of a light source
is visible. This is equal to the union of the point shadow
volumes emanating from each point on the surface of the
light source. For a convex polygonal light source and occlud-
ing surface, this is equal to the convex hull of the shadow
volumes emanating from each vertex of the light source, as
discussed in [18].

The computation of general three-dimensional convex
hulls is notoriously difficult. Fortunately, the special proper-
ties of polygonal shadow volumes make an efficient special-
purpose algorithm possible. The process proceeds as follows.
First, clip the source polygon across the plane of the occlud-
ing polygon. For the purpose of building penumbra volumes,
the portion of the light on the front halfspace of the occluder
is the effective light source.

Now consider all planes defined by adjacent pairs of ver-
tices on the occluding polygon and any vertex of the light
source. For each edge of the occluding polygon, the plane de-
fined by that edge and the light source vertex with least angle
above the plane of the occluding polygon forms a boundary
of the shadow volume. Call this plane and its associated
light source vertex the extremal plane and extremal vertexr

for that edge. All planes formed by other light source ver-
tices and this edge of the occluding polygon will fall within
the shadow volume, as shown in Figure 1. Thus a first ap-
proximation to the desired shadow volume is obtained by
finding the extremal plane for each edge of the occluding
polygon, and taking the intersection of the shadowed halfs-
paces formed by these planes.

This does not exactly form the shadow volume, although
it does contain it, as shown in Figure 1. The erroneously
included fully lit regions can be removed by computing an
additional set of bounding planes. These are formed by each
vertex of the occluding polygon and the two extremal ver-
tices of the light source for the edges containing that occlud-
ing vertex. These planes again each form a shadowed and
unshadowed halfspace, and these are intersected with the
shadow volume formed by the extremal planes. The result
is the desired convex volume, which forms the shadow vol-
ume, as illustrated in Figure 1. Note that this corresponds
to the construction of the obstruction polyhedron defined in
[16].

There are a few special cases for this latter type of plane.
If the source vertices associated with both edges bounding
a vertex of the occluding polygon are the same, no plane
is defined. In this case, no plane containing this vertex is
needed.

Several source vertices may qualify as the extremal ver-
tices associated with one or both of the edges enclosing ver-
tex B; of the blocking polygon. In this case, the appropriate
vertices are the pair, S; and Sk, which form the greatest an-
gle £5;BiSk. U the vertices of each source and receiving
polygon are ordered so that they appear in counterclockwise
order from their “front” sides, this determination is simple.
Suppose that we want to find the plane passing through
blocker vertex B;. We start with a pair of extremal vertices
for the edges (Bi—1, Bi) and (Bi, Biy1). If we travel coun-
terclockwise about the source from the extremal vertex for
(Bi-1, Bi), and counterclockwise from the extremal vertex
for (Bi, Bi1), until we encounter the last extremal vertices
for their respective edge, these “outermost” vertices are the
ones to use.

Pseudocode for finding penumbra planes is provided in
Figure 7.

Intersections may be performed using the general set in-
tersection operations on BSP trees described in [17]. As we
can see in Figure 6, area shadow volumes are convex with
respect to each point of the light source. Thus the same
technique for merging these shadow volumes employed for
point shadow volumes may be substituted for general set
intersection operations on BSP trees.

4.5, Polygon Umbra Volume

An umbra volume is the union of all points from which none
of the light source is visible. This is the intersection of the



ExtremeVert{Edge, Src, Rec, MoreExtreme)
best := 1
angbest := Angle(Plane(Edge, Spest), Rec)
For each light source vertex, Sj, do
ang := Angle(Plane(Edge, S;), Rec)
If MoreExtreme(ang, angbest)
best = j
angbest = ang
Return(best)

PenumbraPlanes(Szc, Rev)
Initialize planelist to empty
last := ExtremeVert(Edge(Rn, B1), Src, Rec, ‘<’)
For each receiver vertex, R;, do
j := ExtremeVert(Edge(R:, Rit1), Src, Rec, ‘<)
Add plane passing through R:, Riy1, and S
While Siqet is extremal
last ;= last - 1
While S; is extremal
j=j+1
If last # j
Add plane passing through Siase, Ri, and S
last := j
Return(planelist)

UmbraPlanes(Src, Rev)
Initialize planelist to empty
For each receiver vertex, R;, do
j := ExtremeVert(Edge(R:, Rit+1), Src, Rec, >7)
Add plane passing through R;, Ris1, and S;
Return(planelist)

Figure 7: Building Shadow Volumes

point shadow volumes emanating from each point on the sur-
face of the light source. For convex light source and occlud-
ing polygons, this is equal to the intersection of the point
shadow volumes emanating from each vertex of the light
source, as discussed in [18]. Note that if the light source
crosses the plane of the occluder, the umbra volume is guar-
anteed to be empty and need not be computed.

Umbra volumes can be created in a manner analogous
to the creation of shadow volumes above. Instead of those
planes which, defined by the occluding edge and a light
source vertex, form the least angle with the occluding plane,
the extremal planes for umbra volumes are those which form
the greatest angle with the plane of the occluder. Using
these planes in place of those used for penumbra volumes,
umbra volumes can be created with the same method. Merg-
ing of umbra regions can be performed using the general set
UNION operation on BSP trees defined in [17]. Since nmbra
regions are not convex with respect to all points of the light
source, as illustrated in Figure 6, the special case procedure
used for merging point shadows and penumbra shadows will
not work for umbra volumes.

Merging shadow volume trees created for distinct occlud-
ing polygons using generalized set operations can result in
very large BSP trees for complex scenes. We have opted to
maintain the merged volume as a simple linked list of all
shadowing polygons and their umbra volumes, which are in-
dividually represented by BSP trees. This approach controls
storage requirements while maintaining the simplicity of the
implementation.

5. ILLUMINATION CALCULATIONS

Once the visibility classification procedure for each light
source is complete, illumination calculations are performed.
At this stage, each input polygon contains a two-dimensional
BSP tree representing its partitioning into lit, penumbra and
umbra regions. For each polygon, illumination calculations
can be performed as follows. For umbra regions, no illumi-
nation is done. For fully lit regions, the entire light source
is known to be visible from every point in the region. Thus,
an analytic formula based on contour integration similar to
that used in [18] can be used to determine the illumination
provided by an area light source to any point on a lit sur-
face. This formula is developed below. Fully lit regions are
not, in general, regions of constant illumination. If we are to
sample them properly, we must refine them until they meet
a specified tolerance for illumination variation. This effec-
tively allows them to be later treated as constant intensity
area light sources as well as providing the desired illumina-
tion sampling density. For regions in penumbra, it is neces-
sary to determine the fraction of the light source visible at
each point to be illuminated. Once this is done, the analytic
illumination formula can them be applied using the visible
portion of the light source. This is the most time consum-
ing portion of the illumination computation. The details of
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Figure 8: Geometry of Hllumination

mesh refinement and penumbra illumination are described
in the next section.

In the case of many light sources, or for global illumina-~
tion calculations, shading calculations should be performed
for each light source after visibility classification. In the case
of a small number of light sources, there are advantages to
deferring illumination computations until all shadow bound-
aries from all light sources have been computed. Since the
illumination phase finely divides areas of high contrast, the
final size of the output mesh is reduced if these areas with
fine subdivision are not subdivided further by shadow com-
putations. Since the 3 visibility classes for each light source
may be represented with 2 bits, the storage requirements are
not great if we simply keep separate visibility data for each
light source within the partitioning trees of scene polygons.

Figure 8 shows the geometry of illumination. We have two
polygons, A, and A,, which are the light source and receiver,
respectively. They have unit normal vectors N, and N;. A.
is assumed to have uniform intensity, s, throughount. The
diffuse reflection coefficient of the receiver is py. We want to
compute the intensity of a point, Py, on the receiver.

The relation between the emitted intensity, I;, and the
energy, E;, of a differential area dA; is expressed by
E .
I, = 2
77 2nd A &

Let Fgi-a; be the fraction of energy leaving dA; which
reaches dA;. This is known as the geometric form factor.
Let us assume that we have a differential area, dA,, cen-
tered at P,. The energy received at Pr from any differential
area, dA,, on the source, and then reflected back into the
environment, may be expressed by

Eds—}’, = Bas—dr = EdsPers—-dr (2)

Substituting Equation 2 into Equation 1, we get

Eds~dfr (3)

Tas—p, 2rdAr

EdsPers—dr
2nd Ay 4
ISZWdAsPers—-dr
2nd Ay ()
IedAserds—-dr
A, ©

From [21], we find that

dAy; cos¢cosb

Fasear = 752 (7)

Substituting into Equation 6, we find that

Tas—p, = IsprFar—as (8)
Integrating over A;, we get

Is—-Pr - Ispr[ Fdr—ds = IsPerr—s (9)
As

Now we need an analytic expression for Far—. Hottel [14]
provides a general expression for a form factor between a
differential area and a polygon. Substituting this into Equa-
tion 9, we get the final result:

M

I = 22 S arccos(Vier, - Visgay—p, )(Ns - Di) (10)

2

g=1

where M, is the number of vertices of A;, Vi—p, is the
unit vector from the ith vertex of A, to Pr, & works exactly
like normal addition except that M, @& 1 equals 1, and D; is
the unit vector in the direction of Vi—p, X Vig1)~p,-

6. MESH REFINEMENT

Now that we have an analytic formula for the intensity of
any point, we know that our computed values will be accu-
rate. But in order to sample all the interesting illumination
effects, we must make sure that the difference between the
minimum and maximum intensities of any receiver does not
exceed a threshold. Additional computation must be done
to find any regions which exhibit unacceptable levels of vari-
ation. These regions must be sudivided, and the resultant
pieces recursively tested until all fragments are within a user-
specified tolerance. Note that this is not a problem unique
to area source illumination.

In many cases it is easy to determine when the intensity
variance is too high. Simply computing the vertex intensi-
ties often reveals a need to subdivide. But we need to be
sure when subdivision is not needed. Not only the vertices
must be examined, but also the edges and interior. Since
the number of vertices is finite, it is reasonable to compute
the intensities at each. But the edges and interior have an
infinite number of points.



6.1. Fully Lit Regions

Equation 10 gives the intensity of any fully lit point. It
is continuous and differentiable, so we can compute the in-
tensity gradient. Computing the gradient gives us several
advantages.

First, it can give a quick early termination condition for
variation testing. Since the illumination function is a “nice”
function, we only need to search for a local minimum or
maximum within an edge or interior if the gradients at the
boundary all point inward or outward. If the gradients do
not point consistently, the extremum is on the boundary.

We begin by computing the intensities and intensity gra-
dients at the receiving polygon’s vertices. If the tolerance is
exceeded, we subdivide. If the tolerance is not exceeded but
the gradients do not consistently point in or out, we know
not to subdivide. The process is repeated for edges. At ev-
ery vertex examined in edge minimization, the gradient is
computed. If any two gradients do not point consistently,
subdivision is not needed.

If additional testing must be done, the availability of gra-
dient information allows the use of faster, more reliable op-
timization techniques. For edge optimization, we employ
Brent’s method with derivatives [20], using the two bound-
ing vertices as the initial interval. If the optimization al-
gorithm attempts to make a step outside the boundary, we
know that there is no local minimum on the edge, so the
edge minimum must be at one of the vertices.

For computing interior extrema, we use the Fletcher-
Powell method [20], one of the so-called quasi-Newton meth-
ods. The centroid of the polygon of interest is used as a
starting point. If any step of the algorithm moves outside
the boundary, we know that there is no interior local mini-
mum to be found.

Note that this refinement suffices only for local illumi-
nation. Global illumination functions are not so simple to
treat.

6.2. Penumbra Regions

To compute the intensity of a point in penumbra, we must
first find the unoccluded portion of the light source. Then
Equation 10 may be applied for each visible light source
{fragment.

Point shadow volumes (Section 4.3) may be applied to
this task. A shadow volume, emanating from the receiving
point, may be built from the polygons between the source
and receiver polygons. This volume is then used to clip away
occluded portions of the light source.

This task can be particularly easy if during visibility clas-
sification, penumbra boundaries are maintained separately
for each light source, and these boundaries in the 2-D BSP
tree are tagged with the occluding polygon edge that pro-
duced them. In this case the appropriate shadow volume can

be quickly assembled from the occluding edges bounding the
region in which the point being illuminated is located. Since
we have chosen not to maintain this information in order
to conserve storage, our current implementation employs a
different method.

To build the shadow volume properly, we need a list of
intervening polygons, as well as an ordering away from the
receiver. A back-to-front ordering of all scene polygons may
be generated by a traversal of the scene BSP tree, using
the receiver point as the viewpoint. Clearly the occluding
polygons appear in this list in the proper order. But we
need to determine the subset of this list which actually lies
between the light source and receiver.

This may be achieved by computing a bounding volume
enclosing the light source and receiving polygon. All scene
polygons may be tested for inclusion in this volume, and
those found to be completely outside it are removed from
consideration. We use a volume bounded by the light source
plane, the receiver plane, and the planes which form the con-
vex enclosure of the two polygons. The method described
above for computing the bounds of umbra volumes (Sec-
tion 4.5) may be employed to compute these planes.

The illumination function for the interior of a penumbra
region is not well-behaved even for local illumination. The
optimization methods for lit regions cannot be used here.
However, we still desire to avoid the very expensive exact
illumination calculations described above for every pixel on
the screen. Currently we generate a uniformly spaced set
of sample locations in the penumbra region, and these are
checked to see if they exceed the tolerance. If so, the region
is split along its long axis, and each side is sampled. This
occurs recursively until the tolerance is not exceeded.

6.3. T-Vertices

After the mesh has been refined and vertex intensities com-
puted, an image can be displayed by Gouraud shading the
receiving elements. If this rendering technique is used, how-
ever, care must be taken to ensure that the T-vertices created
by our algorithm do not cause shading anomalies. One way
to handle this problem is to make a T-vertex a three-way
vertex, with two collinear edges instead of a single edge or-
thogonal to the remaining edge. The element with the two
collinear edges is then triangulated before shading is done.

7. RESULTS

We have implemented our algorithm in the C programming
language.

Mesh generation and illumination computation is per-
formed on a SUN 4/260, which is rated at ten VAX 11/780
mips. Polygon scan-conversion and smooth shading are done
separately on an HP 9000 series 300. All timing figures are
given for the SUN machine. Rendering time on the HP is



Figure 9: Rendered Boxes

Figure 10: Mesh for Boxes

only a few seconds. Times were measured using the UNIX
time facility.

Figures 9 through 12 show two rendered images, along
with their meshes. Timing data is given in Figure 13. All
images were created with the small light source optimiza-
tions mentioned in Section 4.

8. CONCLUSIONS AND FURTHER WORK

We have presented an algorithm for analytic computation
of soft shadows in object space. It operates by subdividing
light-receiving polygons into homogeneous regions of three
types: fully lit, penumbra, and umbra. A BSP tree data
structure aids in the shadow computations. Intensities of
illuminated points are then computed analytically. Tech-
niques from numerical optimization are employed to ensure
that the illumination function is sampled with sufficient fre-
quency.

Techniques presented here can easily be used to improve
existing point-source renderers. Since the shading function
for point sources is easy to compute, smooth, and differen-
tiable, our mesh-refinement approach can easily be applied
to improve image quality. Additionally, our area source tech-
niques were designed to be simple and efficient enough that
area illumination effects could be easily added to existing

renderers.

There are several areas ripe for future work. A thorough
examination of the space/time tradeoff involved in maintain-

Figure 11: Rendered Chair

Figure 12: Mesh for Chair

Statistic Figure
Name Boxes Chair
Input Polygons 20 33
Output Polygons 1539 1360
Scene BSP Build (sec) 0.22 0.47
Source Splitting (sec) 0.20 0.20
Shadow Volume Build (sec) 9.32 8.47
Shadow Testing (sec) 0.68 2.98
Occluding Polygon Culling (sec) 0.07 0.23
Source Visibility Clipping (sec) 1129.68 971.65
Hlumination Calculation (sec) 308.31  131.15
T Vertex Insertion (sec) 59.00 45.33
Total Time (sec) 1507.48  1150.48

Figure 13: Timing Statistics

ing separate penumbra regions for each light source versus
determining this on the fly when illuminating penumbras re-
mains to be done. This also needs to be done to determine
whether back-to-front ordering of the shadow testing and the
concomitant light source splitting is actually more efficient
than the basic set operation method for all scenes. The op-
timization techniques used by our algorithm could probably
be improved by taking more advantage of the special prop-
erties of the problem, and better techniques for penumbra
regions and global illumination functions need to be devel-
oped.
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