THE TELEPHONE
CONNECTION PROBLEM

Vijaya Ramachandran and Li-Chung Wang
Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712-1188

TR-91-16 April 1991

The Telephone Connection Problem:

Vijaya Ramachandran? and Li-Chung Wang®

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712

Abstract

The telephone connection problem (TCP) is the problem of simulating a telephone link of
fixed capacity to assess its ability to serve incoming calls. This simulation is performed on a
large number of sample calls at AT&T Bell Laboratories. In order to speed up the simulation,
it is desirable to obtain good parallel algorithms for the problem.

We first show that a natural decision problem that is related to the TCP is in NC. Then, we
present two parallel algorithms for the telephone connection problem. We give an O(klogn)
time parallel algorithm on an EREW PRAM for the TCP using n processors, where k is the
capacity of the telephone line and n is the number of calls. Then, we improve our algorithm
to run in O(min(y/n, k)logn) time on an EREW PRAM using n processors. Finally, we prove
that the TCP is a CC-complete problem. The CC-completeness result for the TCP does not
automatically imply an O(y/npolylog(n)) time algorithm for the problem, since the reduction
we use results in a quadratic blow-up in size.

1This work was supported in part by NSF grant CCR-89-10707.
2F.mail address: vir@cs.utexas.edu
3F-mail address: lewang@cs.utexas.edu

1 Introduction

In this paper, we consider the telephone connection problem (TCP) [2]. Informally, an instance of the TCP
consists of a link of fixed capacity and a sequence of calls specified by their starting and finishing times.
A call can be served if the link is not full to capacity. A call that cannot be served at its starting time 1s
discarded. The TCP problem is to decide which calls can be served.

The TCP problem has a simple sequential algorithm but not much was known about its parallel
complexity. It is of some importance to obtain good parallel algorithms for the problem since at AT&T
Bell Laboratories TCP inputs of very large size are solved routinely. The researchers there are interested
in speeding up the simulation by running it on a parallel machine [2].

We first show that given an instance of the TCP, to decide if all calls can be served is in NC. Then,
we present two parallel algorithms for the TCP problem. The first algorithm solves the TCP in time
O(klogn) using n processors, where k is the number of available channels on the telephone line and n is
the number of calls. We then improve the algorithm to bound its run time by O(min(k, vn)logn) using n
processors. Finally, we show that the comparator circuit value (C-CV) problem is log space reducible to
the TCP and the TCP is log space reducible to the C-CV. Hence, the TCP is CC-complete [4] [7] when &
is arbitrary. Currently, CC-complete problems are not known to be in NC or to be P-complete.

Our O(min(k,+/n)logn) time parallel algorithm for the problem uses some novel techniques, and
introduces a new prefix sums computation that we call the ‘subrange prefix sums’. The CC-completeness
result for the TCP does not automatically imply an O(y/npolylog(n)) time algorithm for the problem, since
our reduction from the TCP to the C-CV problem results in a quadratic blow-up in size. On the other
hand, our results imply an O(min(k, k', /1) logn) time parallel algorithm using n processors for the C-CV
problem, where k represents the number of inputs for the circuit with value 1, k" represents the number of
inputs for the circuit with value 0, and n is the number of gates. The previous best parallel algorithm for
the C-CV problem runs in O(y/npolylog) time [7].

The parallel computation model we use here is the EREW PRAM. For PRAM models and techniques
for designing efficient parallel algorithms on a PRAM model, see [5].

2 Problem Definition and an Algorithm

Given a telephone line with a fixed capacity, and a sequence of calls, the telephone connection problem
(TCP) is to decide which calls can be served. Formally, let (s1, f1), (82, f2), .-, (n, fn) represent the
sequence of calls, where s; represents the starting time of the ith call and f; represents the finishing tumne
of the ith call. Let & be the capacity of the telephone line, i.e. the total number of available channels. The
ith call can be served if at time s;, the number of calls being served is less than k; otherwise, the 7th call
should be discarded.

Definition 1 Given the sequence (s1, 1), (s2, f2), - - -, (sn, fn) and the integer k as above, the telephone
connection problem (TCP) is to decide which calls can be served. Let i1,4s,...,%; be the indices of
calls which can be served, then {i1,42,...,%;} is the solution set of the problem.

For convenience, we assume s; # s; for all i # j; otherwise we will need a tie-breaking procedure to

decide which call should be served first. For s; = f;, ¢ # j, we assume that the ith call cannot use the same

slot used by call j because slot release and slot allocation require some amount of time. Thus, if s; = f;,
we can simply increase the value of f; by a small amount to avoid conflict. Hence, we assume that s; &£ f;
for all 7,j. We also assume for convenience that 51 < s3 <...<s$n.

There is a simple sequential algorithm to solve the TCP. We can scan the sequence of calls by their
order of starting times, and a call will be served if at its starting time, the telephone line is not full. In
this paper, we consider the parallel complexity of the TCP.

We first consider a natural decision problem that is related to the TCP. The problem is to decide if
all calls can be served. This is equivalent to deciding if there exists a call that cannot be served. To solve
this problem, we assume that all calls can be served and then for each call i we compute the number of
calls that occupy the telephone link at time s;. Given a sequence of n calls specified by their starting times
and finishing times, we first sort the timing values in nondecreasing order to obtain a sorted array .S of
9n values. Then, we create a new array A such that A(7) = 1 if S(¢) contains a starting time value and
A(i) = —1 otherwise, and perform the prefix sums computation on array A. Let B be the resulting array
of the prefix sums. B(#) will contain the number of calls that occupy the telephone link at time ¢, where
S(i) = t, assuming that all calls can be served. Hence, by finding the first entry in B with value greater
than the capacity of the telephone line, we can determine the first call that cannot be served if it exists.
Since all these steps can be done in O(logn) time using n processors, this decision problem is in NC.

By the above result, the TCP problem for those input instances that contain a polylog number of
calls that cannot be served is also in NC. The algorithm runs for a polylog number of iterations and during
each iteration, finds the first call that cannot be served and removes it. Then, at the end of iteration ¢, the
algorithm can identify the first ¢ calls that cannot be served.

In the following, we consider the general case of the TCP problem that could contain a large number
of calls that cannot be served. We present an algorithm for the TCP which runs in time O(k logn) using
n processors, where k is the capacity of the telephone line and n is the number of calls. We have been
informed [3] that a similar algorithm has been obtained independently by D. Nicol, B. Lubachevsky, and

A. Greenberg.

Definition 2 Let (s1, f1), (52, f2), ..., (sn, fa) be the starting and finishing times in an input to the TCP.
Let G = (V, E) be a directed acyclic graph such that V = {1,2,...,n+ 1} ,and if 5;_; < f; < s;, where
Spy1 = 00, then (i,j) € E. Then, we call G the telephone problem graph (TP G) of the original input
to the TCP. Let S be the solution set for an instance of TCP with input capacity &, and let GG be its TPG.

Then, we call S the solution set of G with capacity k.

Figure 1 gives an example of a TCP and its TPG. The following algorithm converts an input to the
TCP into its TPG.

Algorithm A Construction of the telephone problem graph.
Input: (s1, f1),(s2, f2),- -, (Sn, Jn) such that s; < sp <...< 8n.

OQutput: TPG G = (V, E) represented by an array G(1--n+ 1) such that (7,7) € E i G{i) = 5.

2

G 2 3 5 6
5 4] 5 6 65

Figure 1:

An example of a TPG, corresponding to the starting and finishing times:
(Sla jl) = (237 104)5 (327 JF'Z) = (34\ 72) ('53-, f3) = (57' 23)7 (S‘h f4) = (10! 109) (551 jS) = (llg, 22)

1. Sort the timing values s;, f; in nondecreasing order to obtain a sorted array S of 2n values.

[

. Construct the following array L with length 2n.
If S(i) = s; for some 1 < j < nthen L(i) := 1
else L{7) := 0.

3. Compute the prefix sums on L and store the result back in L.

;:C*

Vi, 1 < i< 2n, do in parallel if S(i) = f; for some j then G(j) := L{i) + L.
5. Gn+ 1) =n-+ 1

End.

Step 1 can be implemented in time O(logn) using n processors by parallel merge sort {1]. The
complexity of step 3 is O(log n) using O(n/logn) processors [6]. Thus. algorithm A runs in O(logn) time
using n processors. In what follows, we prove the correctness of algorithm A.

The following observation follows from the definition of TPG.
Observation 1 Let G be a TPG. then for each veriez 1, there is exactly one oulgoing arc.

Lemma 1 Algorithm A correcily converts an input to the TCP wnio its TPG.

Proof. By observation 1, TPG & can be represented by an array Gl -n—+1) Instep 4, Sty = f;. L{i) =
implies that 3s1,52,..., 51, 8141 such that 51 < sz < ... <51 < fi < siz1.s0 Gg)y =1+ 1 and (7.l + 1) s
an arc in 5. .

Lemma 2 Lei G be the TPG for an input to TCP and let (i,7) be an arc an . If the ith call 1s served

then the jih call will be served.

Proof. If (i,j) is an arc in G, then s;_1 < fi < s;. If the ith call is served, this means that at time f;,
there will be a channel released by the ith call and that channel becomes available at time s;. Therefore,

the jth call can use that empty channel and will be served. O

Note that algorithm A provides a mapping from an instance of TCP to an instance of TPG. This
mapping is a many-to-one function. Lemma 2 shows that we may be able to solve the TCP problem by
working on its TPG. That is, if we assign label 1 to node i to mean that it can be served, and (4,7) is an
arc in G, then we should also assign label 1 to node j since it can also be served. Algorithm B is based on
this strategy.

In the following, instead of working on an instance of the TCP problem directly, we will work on a
TPG. Thus, a node ¢ will mean not only the node ¢ in a TPG but also the ith call in the corresponding
instance of the TCP.

Algorithm B Solution of the TCP.
Input: A TPG G = (V, E) and an integer k.
Output: Node i will be labeled 1 iff i € the solution set of GG on k.

count = 0
Repeat the following steps:

0. count := count + 1

1. Assign label 1 to the node with the smallest index. Let this node be v.

2. Assign label 1 to all nodes that are reachable from v, except the last dummy node.

3. V¥ node i, if (¢,j) € E, nodes j,j+1,...,j+ m —1 have been labeled 1 in step 2, and node
j + m has not been labeled 1 in step 2, then remove arc (¢, j) and add arc (2,7 + m) to E.

4. Remove all the nodes that have been labeled 1, and their outgoing arcs to obtain a new

TPG G.

Until either G contains only one vertex or count = k.
End.

Steps 2 and 3 of algorithm B can be implemented using pointer jumping. The remaining steps are
straightforward. Thus, the time complexity for algorithm B is O(klogn) using n processors.

In what follows, we prove the correctness of algorithm B.

Lemma 3 Let G = (V,E) be a TPG. The set S = {i1,92, ..., im} , where s;, < ... <, , is the solution
set of G on k = 1iff (i1,12), (i2,43), ..., (im—1,im) € E, the outgoing arc of iy, goes to the last node, and

i1 was assigned 1 in step 1 of algorithm B in the first iteration.

Proof. (=) Since a call ¢ whose starting time is between s;,_,, and s;; is not served, we know that the
channel is occupied by call 4;_; from time Sigjy tO time ¢, where Siij—1) <1< s By the definition of
the TPG, this implies the arc from 7,1 to i; isin E.

(<) By lemma 2. O

Definition 3 Let G = (V, E) be the TPG for an input to the TCP. Let {4;,42,...,4;} be a set of nodes
in G which are labeled 1. Construct G’ = (V/, E') from G such that V/ =V — {i1, iz, ..., i}, and Vie V|
if (i,)€eEand ,I+1,....l4+m—1€{i,...,i;}butl+m¢ {#1,...,4;}, then (i,/ +m) € £'. We call
G the subproblem graph of G.

Note that the new graph obtained at the end of step 4 of algorithm B is a subproblem graph with

respect to the graph obtained from the previous iteration.

Theorem 1 Algorithm B correctly compute the solution set of a TPG G with capacity k.

Proof. We will prove the following assertion: At the end of the ith iteration of the Repeat loop, a call is
labeled 1 iff it belongs to the solution set of G with capacity i. We will establish the assertion by induction
on t.

Lemma 3 establishes the base case. Assume the assertion holds until i — 1. Consider iteration 1.

Let G’ = (V/,E') be the subproblem graph obtained at the end of iteration ¢ — 1. Let 5 =
{i1,42,...,1;} be the set of nodes that are labeled 1 during iteration 7. We first show that S is contained
in the solution set of G with capacity ¢ by induction on the indices of subscripts of calls in S.

For the base case, consider 7;. Calls 1,2,...,4; — 1 can be served by using ¢ — 1 channels, so channel
i can be used to serve call ;.

Assume the induction hypothesis holds until call é,_;. Consider call 7,. Jig, i, € 5,81, < s,
(ig,ip) € E', and the call i, was labeled 1. By the definition of (', this implies one of the following two

cases:
a). (i,,i,) € E. By the induction hypothesis and lemma 2, i, is in the solution set of G with capacity .
g, tp) € E. By tl duction 1 t1 dl 2, 1p the solut f G with caj \

(b). (ig,l) € Fand LI+ 1,...,4p — 2,1, — 1 were labeled 1 before entering iteration ¢. By the induction
hypothesis the calls [,/ +1,...,i, — 1 can be served using i — 1 channels and call 4, can be served

using ¢ channels, so call ¢, can be served on input G with capacity .

Now consider a call j that is not labeled 1 at the end of iteration i. By the induction hypothesis, call
j cannot be served using i — 1 channels. Let s, < s; < s, where p, ¢ are labeled 1 during iteration i and
no other r, s that are labeled 1 during iteration i satisfy s, < s, < s; < 55 < s;. Since the arc (p,¢) is in
the subproblem graph obtained at the end of iteration i — 1, we know that s; < f,. Hence, call 7 cannot
be served on input G with capacity 7. This concludes the proof of the assertion.

The assertion immediately implies the theorem. m

3 A Faster Algorithm for the TCP

In section 1, we presented an O(klogn) time algorithm using a linear number of processors for the TCP
problem. When k is very large, say ©(n), the algorithm becomes very ineflicient. In this section, we give
another algorithm which is similar to algorithm B but is better in the sense that no matter what k is, the
run time is bounded by O(min(k,/n)logn) using n processors.

Recall that in algorithm B, our strategy is to process one channel during one iteration, so during
iteration 7, we are processing channel i. However, we can speed up this process by allocating &k channels to

k calls initially and processing as many calls as we can during each iteration.

In what follows, we use an example to illustrate the ideas behind the faster algorithm.
Consider the following TPG:

Figure 2: Another example of a TPG.

Let k = 3. Then, initially, we assign label 1 to nodes 1,3,6, which are the first three nodes with no
incoming arc, and propagate 1’s along the arcs. After we finish the propagation, the nodes 1,2,3.45,6,7.9
will be labeled 1. Note that node 14 has infinite starting time in the definition of TPG so we can ignore
it. Observe that at time s7, there will be three channels released by calls 4.5,6. One of these channels will
be used by call 7. Since there is an arc (7,9), call 9 can use the same channel as call 7 used. Hence. the
remaining two channels released by calls 4,5,6 can be used to serve calls 8 and 10.

Next, we start a new round of propagation with the initial condition that nodes 8 and 10 have label
1. These are the two calls that should be served by using two of the three channels released by calls 4,5.0.
but did not receive label 1 during the first propagation phase. Notice that there is an arc (8.9), and recall
that call 9 can use the same channel used by call 7, so the channel released by call 8 will become available
at time sio0. However. we have just assigned a channel to call 10 by giving 1t label 1. Hence. call 11 can
use the channel released by call 8. This implies that before we start the second round of propagation, we
should remove all nodes that have been labeled 1 during the first round of propagation together with their
outgoing arcs, and add an arc (8,11). This removal process is same as what we did in step 3 and 4 of
algorithm B. After we finish the propagation in the second round, the nodes 11,12,13 will be labeled 1, and
we can conclude that in this example, all calls can be served.

This example shows that if we initially assign k channels to k calls, then the propagation of I's along
the arcs is not enough to find the solution. In the example shown, after the first propagation phase is
completed, nodes 8 and 10 are not labeled 1, but we noticed that they can actually be served. lowever.
we may need less number of iterations than algorithm B. For instance, we need two rounds to find the
solution set in this example but algorithm B will need three rounds because & = 3.

In order to find the nodes that are not labeled 1 during the propagation process bus can be served,
we can construct an array M (1 .-n) such that A(7) holds the number of incoming arcs to node ¢, which
come from the nodes that have been labeled 1 during the propagation phase. For the example above. after
finishing the first round of propagation we have the following array M. M contains 13 entries since node

14 is the last dummy node in the TPG.

11213141516 71819110}11 112113
011111013160 0,0 1010

ot

[y

Now, for each call we want to compute the number of available channels except the one used by itself at its
starting time. We thus subtract each entry by 1, except entries 1,3,6 that are labeled 1 at the beginning

of the first round of propagation, and get the resulting array NV

1T]2]3l45]6|78]910]11]12]13
olofojojol2f-1}10{-1]-1]-1]-1

In this array, node 7 is the only node that has excess channels at its starting time. This fact is
indicated by the positive value 2 in its corresponding entry in array N above.

Now, if we perform the prefix sums computation on the subrange [7...10], we will get the result

1213456 7]8]9f10]11]12113
ololojojojof2fj1]1joOo[-1]-1]-1

Observe that only entries 8 and 10 change their contents from negative values to nonnegative values.
We may use this property to tell which calls should be set to 1 and become the starting nodes for the next
round of propagation, even if they are not labeled 1 during the current round of propagation.

In general, the array N can be more complicated than the one above. For instance, for a problem

with 19 calls and capacity 6, N may be the following array:

112134567 [8]9f10]11]12 |13} 1415|1617 |18 |19
olololofolol4afofo]l o1t y-1|{-1[-1]-1}2] -1]-1}-1

In this array, we need to compute the prefix sums on the subranges [7...14] and [16...18]. The

result will be the following array.

1721314 51671801011 }12]13]14 (1516171819
clTololololol4a]4l4l 4321 j0}-1]2]1}10]-1

From this array, we deduce that nodes 11,12,13,14,17,18 should be assigned 1 at the start of the
next round of propagation since the contents of their corresponding entries change from negative values to
nonnegative values.

The above example contains two subranges. In general, the array N may contains many subranges.
We formalize this computation by calling it Subrange Prefix Sums. We also use an array (' to indicate which
entry changes its contents from a negative value to a nonnegative value. We call array C the Characteristic

Array of Subrange Prefix Sums.

Definition 4 Let N(1--n) be an array, such that for each N(i), 1 <i < n, N{i)isin the range —1 ... k—1,
k > 0. Let SB(1 - -n) be another array, such that SB(i) = Z;-:, N(j), 1 <i<n, where [<7 and

(a). N(I) > 0.

(b). Vi <h < i, 37, N(j) > 0 and,

(c). AU, 1" <lsuch that N(I') > 1 and I’ satisfies (b)
(d). If no such [satisfies (a),(b),(c), then I =i.

Then, we call array SB the result of subrange prefix sums (SPS) on N. Also we call array SB

the SPS array and call array NV the original array.

Definition 5 Let SB be the result of subrange prefix sums on an array N(1.-n). Let C(1--n) be another
array such that for 1 <i<n

C(i) = 1if SB(i) > 0 and N(i) = —1;
C(%) = 0 otherwise.

Then, we call array C the Characteristic array of subrange prefix sums (CASPS) on N.

We will give an efficient parallel algorithm to compute the SPS and the CASPS at the end of this
section. For now, we assume we have an O(logn) time algorithm using O(n/logn) processors to find the
CASPS on a given array N.

In what follows, we present a faster algorithm for the TCP which uses the algorithm for finding the
CASPS as a subroutine.

Algorithm C A Faster algorithm for the TCP.
Input: TPG G = (V,E), |V |=n+1, and an integer k < n.
Output: Node i will be assigned 1 #ff ¢ € the solution set of Gonk.

1. Assign label 1 to the leftmost k nodes that do not have an incoming arc. If the number of nodes
that do not have an incoming arc is less than or equal to k, then assign label 1 to all nodes and
stop.

Repeat the following steps:

2. Assign label 1 to all nodes that are reachable from any node that has received label 1.

3. Vi, 1 <i<|V]-1, M(i) := number of incoming arcs to node ¢, which come from nodes
that are currently labeled 1.
Vi, 1 <i<|V|—1,if node i was labeled 1 in step 1 or step 8 then N (%) := M(i) else N(i)
= ME) - 1.

4. Use algorithm D to construct the array C, the CASPS on N. (Algorithm D is given at the
end of this section.)

5.Vi,1<i<|V|-1,if C(i) = 1 then assign label 1 to node . (1’ is a temporary label.)

6. Vi not labeled 1, 1 < i <| V | =1,if (4,7) € E, nodes j,j +1,...,j +m — 1 have been
labeled 1 or 1/, and node j 4+ m has not been labeled 1 or 1’ , remove arc (i,7) and add arc
(i, +m) to E.

-1

_ Remove all nodes that have been labeled 1 and their outgoing arcs, and also remove all nodes
that are not labeled 1 and are before the leftmost node with label 1’ and their outgoing arcs
to obtain a new TPG G

8. Replace label 1/ by label 1 for all nodes with label 1.
Until Vi, 1<i<] V| -1,C3) =0
End.

Definition 6 Let S; = {i1,%2,...,im} , where i > 1, be the set of nodes that were labeled 1 in step 8
during iteration i — 1. We call S; the initial set for iteration i. We let the set of nodes with label 1 at the

end of step 1 be Sy, the initial set for iteration 1.
In what follows, we prove the correctness of algorithm C.

Lemma 4 Let S; = {i1,12,...,15} be the initial set for iteration 1, where k is the capacity of the telephone

line. Then, Vi < iy, the corresponding call i can be served.

Proof. Since Vi < iz, i € S1, node i is reachable from a node i; € 51, call 7 can use the channel that call ;
used. Hence, k channels are sufficient to serve all calls whose starting times are less than or equal to s;, .
0

The next corollary follows from lemma 4.

Corollary 1 If at the beginning of step 1, the number of nodes that do not have an incoming arc is less

than or equal to k, then all calls can be served.

Lemma 5 A node is labeled 1 during the ezecution of algorithm C iff the corresponding call can be served.

Proof. Let G; denote the graph that algorithm C works on during iteration i. Let X; denote the set of
nodes that received label 1 before the start of iteration 7. Also, let k; =| S; | and let ¥; be the solution set
of G; with capacity k;, where we interpret G; as a TPG. We will prove the following claim by induction

on the iteration number 2.

Claim. For each iteration i, X; UY; is the solution set of the TPG G with capacity k, where & and k are

inputs to algorithm C.

For the base case, since X is empty and G1 = G, the claim is trivially true. Assume the induction
hypothesis is true until iteration ¢ — 1. Consider iteration 4.

Let ¢} and 4; be the leftmost nodes in S;_; and S;, respectively. We first show that if a node j
between #) and i1 in G is not labeled 1 at the end of iteration ¢ — 1 then call j cannot be served. Since j
is not labeled 1 at the end of iteration 7 — 1, j is not reachable from any node in S;—; in G;—y. Hence, we
can find k;_; arcs in G;_; such that each one goes from a node before j to a node after j and both nodes
are labeled 1 in step 2 during iteration 7 — 1. This implies there 1s no available channels at time s;, and j
is not in the solution set ¥;_;. By the induction hypothesis, j is not in the solution set of G with capacity
k.

Second, we show that X; is contained in the solution set of G with capacity k. Since by the induction
hypothesis X;_; is contained in the solution set of G with capacity k, it suffices to show that all nodes in
S;_1 and all nodes reachable in G;_; from a node in S;_1 can be served, and all nodes in S; can be served.
By lemma 2, all nodes in S;—; and all nodes reachable in Gy from a node in S;_1 are in ¥;_1 and hence
by the induction hypothesis they can be served.

Let N be the array computed in step 3 during iteration i — 1. By the definition of SPS, for each
j € S;, there exists the nearest entry N(I) to N(j), where N(l) > 0 and ! < j, such that VA, l < 2 <
7, Zi]:h N(g) > 0. By the definition of array N, N(I) is the number of available channels given to node !

during iteration ¢~ 1 minus one that represents the channel used to serve [itself. By the definition of SPS,

one of the channels available for [is still available at time s; and call j can be served. Hence, all nodes 1n
S; can be served.

Third, we show that a node in G; is in Y; ¢ff it is in the solution set of GG with capacity k. To show
this, it suffices to show that the number of available channels for the nodes in G 1s ki, and each arc (j4,0)
in G; maintains the property that if j is served then [is served as stated in lemma 2.

From the construction of G;, an arc is in G; if the arc is in G-y or the arc is created in step
6 during iteration ¢ — 1. If an arc from j to [is in G;—; then by the induction hypothesis this arc
maintains the property that if j is served then [is served. If the arc is not in G then there exist nodes
hh+1,...,01—2,1—1in G;-; such that the arc from j to h is in G;—1 and h, h + 1,...,0—2,1—1 are
labeled 1 or 1’ at the start of step 6 during iteration i — 1. Note that h,h+1,...,{—2,l~ 1 can be served
since they are in X; and we have shown that X; is contained in the solution set of & with capacity k.
From step 7 of algorithm C we know that j is not labeled 1 at the end of iteration i — 1. Hence, if j can
be served, then it must be the case that j uses a channel that none of h,h+1,..., l—~2,1—1 used. From
this, we can conclude that if j can be served then [can use the channel that j uses and hence the arc from
j to ! in G; maintains the property that if j is served then [is served.

We now show that the number of available channels for nodes in G, at the start of iteration 7 is
k;. Since each node in S; holds an available channel at the start of iteration 1, it suffices to show that
| Si—1 | —k; channels are unavailable at the start of iteration i. By the induction hypothesis, it suffices to
consider only the channels available at the start of iteration ¢ — 1. We will prove the result by induction
on k;_1.

When k;_, = 1, let S;_; = {i}}. Hence, S; is empty. The channel that ¢} uses is always occupied by
the calls that received label 1 in step 2 during iteration ¢ — 1. Thus, this channel is not available during
iteration .

Assume the induction hypothesis is true until k;_; = m — 1. Consider the case k;_1 = m. Let N/,
denote the SPS array that is obtained to compute the CASPS in step 4 during iteration i — 1 if the initial
set for iteration i — 1 is the set Si_, = {#},...,4,_,}. Consider the case when the initial set for iteration
i —1is the set Si_1 = {i|,45,...,15,}. Let N;_; denote the SPS array that is obtained to compute the
CASPS in step 4 during iteration ¢ — 1 if the initial set for iteration ¢ — 1 is the set S;_;. Let j be the first
node that lies both on the path starting from i, and on a path starting from a node #; where { <n. This

implies one of the following three cases:

case a. j is the last dummy node. The channel used by ¢, is always occupied by the calls on the path
from i/, to j. Hence this channel is not available at the start of iteration 7. Thus, by the definition
of SPS and by the induction hypothesis made with respect to ki1, k; is the number of available

chanmels for the remaining nodes in G; at the start of iteration <.

case b. j is not the last dummy node and 3 a nearest node ¢ to j such that j < ¢ and N/_,(¢) = —1.
Then, by the definition of SPS, Vr,j < r < ¢, Ni—1(r) = N/_,(r) + 1. Hence, the difference between
the initial set for iteration 4, which is obtained when the initial set for iteration i — 1 1s 5,4 and the
initial set for iteration i, which is obtained when the initial set for iteration i—11is S{_; is {¢}. Since
¥r,j <7 < q,N/_i(r) >0, by the definition of SPS, ¢ can use the channel that j uses. Since j can

use the channel that i/, uses, the channel used by i, is available during iteration 7.

10

case c. j is not the last dummy node and Ap such that j < p and N;_1(p) = —1. This implies all nodes
after j received label 1 and were removed before the start of iteration i. Hence, the channel used by

i! . cannot be available for the calls processed during iteration 1.

From the above argument, and the fact that the set of the first k; nodes in G;, which do not have an
incoming arc is S;, we can conclude that the solution set of G with capacity k is X; U Yj.

This completes the proof for the claim. Now let algorithm C stop after finishing iteration 4, with
inputs G and k. Since Siy; is empty, Yi1 is empty. Hence, by the claim X; is the solution set of G with
capacity k. O

From lemma 5 , we can conclude the following theorem.
Theorem 2 Algorithm C correctly computes the solution set of an inpul TPG with capacity k.
In what follows, we establish processor and time bounds for algorithm C.

Lemma 6 Let S; and Siy1 be the initial sets for iterations i and i + 1, respectively.
Then | Si [>] Si41 |-

Proof. We prove the lemma by induction on the size of .5;. For | S; |= 1, the result holds immediately.
Assume the induction hypothesis holds until | S; |={ — 1 and consider | S; |= 1.

Consider a path from the leftmost node j in S;. Let p be the first node that lies on this path and
on the path starting from a node in S; which is not j. If we remove the path from j to p but keep p, and
run one iteration of algorithm C on the resulting graph, then by the induction hypothesis the initial set
computed after that iteration will have size less than { — 1.

Consider the case that we add back the path from j to p. Let N/ be the SPS array computed first
to obtain the CASPS result in step 4 during iteration i, without the path. Let N; be the new SPS array
when the path is added back. By the definition of SPS, we can find a nearest position ¢ to the right of p
such that Vr,p < r < ¢, Ni(r) = N/(r) + 1. As a result, at most one more entry in N; will change from
negative values to nonnegative values. This implies the path from j to p will contribute at most one node

to Si41. Thus, the size of S; 4y is less than [. 0

Since algorithm C will terminate after finishing iteration 1 if S;41 is empty, from lemma 6 we know
that if | S; |= [then starting from iteration ¢, the Repeat loop of algorithm will execute no more than /

times. We state this fact in the following coroliary.

Corollary 2 Starting from an ileration i, the Repeat loop of algorithm C will execute at most | Sy | tames.
Lemma 7 Algorithm C runs in time O(klogn) using n processors, assuming the CASPS can be compuled
in O(logn) time using O(n/logn) processors.

Proof. From corollary 2 and from the fact that initially | S |< k, we know that the Repeat loop of
algorithm C executes at most k times. By the assumption that the algorithm of finding CASPS runs in
time O(logn) using O(n/ logn) processors, the only nontrivial step is step 2. Step 2 can be implemented

using pointer jumping or using the Buler Tour Technique [8] in O(logn) time using n processors. O

11

Lemma 8 Algorithm C runs in time O(y/nlogn), assuming the CASPS can be computed in O(logn) time

using O(n/logn) processors.

Proof. Tt suffices to show that the number of iterations of the Repeat loop of algorithm C is O(y/n).
Assume at iteration 7, the initial set is S;, | S; |= O(y/n), and for any j < 4, S; has size at least /n. Since
| Si]+ 1Sz |+...+1Siz1 |<n, we have

(i—-v/n<n
= (i—1)<+/n

By corollary 2, starting from iteration ¢, the Repeat loop will execute no more than | 5; | tumes, so
the total number of iterations is bounded by O(y/n). o
We now give an optimal logarithmic time algorithm to compute the SPS and the CASPS. For this,

we define a new associative binary operation = and convert the SPS problem into a prefix sums problem.

Definition 7 Given two pairs of integers (—a, b), (—c, d), where a,b,¢,d > 0, we define a binary operation
%, such that

if b— ¢ > 0 then (—a,b)x(—¢,d) = (—a,b—c+d)

if b— ¢ < 0 then (—a,b)x(—c,d) = (—a+b—c,d)

Lemma 9 The operation x is associative

Proof. ((—a,b)*(—c,d))x(—e, f), a,b,c,d,e, f >0

b—c>0b—ct+d—e>0 = (—ab—c+d—e+f) (1)
) b—e>0b—ct+d—e<0 = (-atb-ctd—ef) (2)
T) b—c<0,d—e>0 = (~a+b—c,d—e+f) (3)

b~c<0,d—e<0 = (—a+b—ct+d—e,f) (4)
and (—a,b) x ((—c,d) = (—¢, f))

d—e>0,b—-c>0 = (~a,b—c+d—e+ f) (5)
_) d=e>0b—c<0 = (—a+b—c,d—e+f) (6)

d—e<0b—ct+d—e>0 = (—ab—c+d—e+[f) (7)
d—e<0b—c+d—e<0 = (—a+b—c+d—ef) (8)

Note that the precondition part of (5) implies the precondition part of (1), and the precondition part
of (7) also implies the precondition part of (1). Case (2) implies case (8) and case (4) implies case (8).
Finally, case (3) and (6) are equivalent. By these facts, we can conclude that % is associative. O

Given an array N(1--n) of integers in the range [—1...k— 1], we first construct a new array M(1-).
For 1 < i < n, M(i) contains the pair (0,b) if N (i) contains b, b > 0, and M (3) contains the pair (-1,0)
if N(i) contains —1. Then, we compute the prefix sums on M using the operation x defined above. The
result is stored in another array SB/(1--n)so for 1 <1< n, SB'(i) = 22:1 M (4) (where the summation

uses the operation x).
Observation 2 For each i, SB'(i) = (—a,b) witha > 0,0 > 0.

Lemma 10 Let SB'(1--n) be the array described above, and let SB(1--n) be the result of subrange prefiz

sums on N. Then,

12

(—a,b) and a > 0,6>0
(=a,0) ,i>1and SB(i—1)=(~c,1),a,¢>0
(—a,0),a > 0 and M(3) = (0,0)

b if SB'(i)
0 if SB'(i)
0 ifSB(3)

—1 otherwise

SB(i) =

i

Proof. We will prove the lemma by induction on i. For the base case we consider the following cases.
case a. N(1) =b> 0. Then M(1)=(0,b) and SB'(1) = (0,b). Hence, SB(1) = b.

case b. N(1) = —1. Then M(1) = (—1,0) and SB'(1) = (—=1,0). Hence, SB(1) = —1.

Thus, we can conclude that

,0yand b >0

(0,b
SB(1)=4{ 0 if SB'(1)=(0,0), and M(1) = (0,0)

—1 otherwise

{ b ifSB(1) =

Assume the result holds until i — 1 and consider SB(3).
case a. M(i) = (0,b),b> 0. By the induction hypothesis, we have one of the following three cases.

1. SB'(i—1) = (—c,d), and SB(i—~1) = d > 0. Then, (—c¢, d)x(0,b) = (—¢, b+d) and SB(i) = b+d.
2. SB'(i—1) = (—¢,0), and SB(i — 1) = 0. Then, (—c,0)%(0,b) = (—c, b) and SB(1) = b.
3. SB'(i—1) = (—¢,0), and SB(i — 1) = —1. Then, (=¢,0) % (0,0) = (—c,b) and SB(:) = b.

case b. M(i) = (—1,0). By the induction hypothesis, we have one of the following three cases.

1. SB'(i — 1) = (—¢,d) and SB(i — 1) = d > 1. Then, (=c,d) % (—=1,0) = (—¢,d — 1) and
SB(i) =d - 1.

2. SB'(i — 1) = (—c¢,d) and SB(i — 1) = 1. Then, (—¢, 1) % (=1,0) = (—¢,0) and SB(:) = 0.

3. SB'(i —1) = (—¢,0) and SB(i ~ 1) =d <0.
Then, (—¢,0) % (~1,0) = (=¢ — 1,0) and SB(i) = —1. O

By lemma 10, we have the following algorithm to compute the CASPS.
Algorithm D Finding the characteristic array.
Input: Array A(1--n) of elements from {~1,0,1,...k —1}.
Output: Array C(1--n), the CASPS of A.

1. Construct the array B from A as follow:
If A(i) contains b and b > 0, then B(3) := (0,b).
If A(i) contains —1, then B(i) := (~1,0).

2. Compute the prefix sums on B using * as the binary operation, and store the result in SB'(1--n).

13

3. For 1 < i < n in parallel do
Let SB'(i) = (—a,b) and SB'(i — 1) = (—¢,d),a,b,¢c,d > 0.
If 6 > 0 and A(4) = —1 then C(3) 1= 1
else if b= 0 and d = 1 and A(¢) = —1 then C(i) := 1
else C(i) := 0.

End.
The following lemma is straightforward.

Lemma 11 Algorithm D compute the CASPS on a given array N(1--n) in O(logn) time using O(n/logn)
processors on a EREW PRAM.

Theorem 3 Algorithm C runs in time O(min(k,/n)logn) with n processors no matler what the capacity
k 1s.

Proof. By lemmas 7, 8, and 11. O

4 Reductions Between the TCP and the Comparator Circuit
Value Problem

In this section, we present a log space reduction from the Comparator Circuit Value Problem (C-CV) to
the TCP problem and a log space reduction from the TCP problem to the C-CV problem. Since the C-CV
problem is CC-complete [7], we can conclude that the TCP problem is CC-Complete.

Definition 8 A comparator gate has two Boolean inputs u,v, and two outputs uv, u + v. Given a com-

parator circuit with m inputs, the C-CV problem is to decide the values of the circuit’s m outputs.
The following algorithm converts an input to the C-CV problem to an input to the TCP problem.

Algorithm E Reduction from C-CV to TCP.

Input: A comparator circuit with k+ & inputs and k -+’ outputs such that % is the number of ones in the
inputs and k' is the number of zeros in the inputs. The inputs with value 1 are labeled 1,... & and

the inputs with value 0 are labeled 1,...,k’. The gates are topologically ordered as ¢1,¢2,..., 9n-

Output: An instance of the TCP problem that has k + k' + 2n calls, with capacity k.

1. Create calls I = {i1,...,ix} and calls I’ = {#}, ..., #},} such that for each pair 7;, 7, the starting
time of i; is earlier than the starting time of ij. The relative order of the starting times among
all calls in I is arbitrary. The relative order of the starting times among all calls in I” is also

arbitrary.

2. V gate g;, create two calls ¢,7. The starting times of these calls are later than the starting times

of all callsin 7 and I’. Also let 51 < 851/ < 8§59 < s < ... < 8 < Spr.

3. V pair of calls 7,7 that correspond to gate g;,

14

End.

(a)

if one of the inputs of g; comes from the AND output of gate gj, then let f; {the finishing
time of call j/) occur immediately before s; (the starting time of call 1).

if one of the inputs of g; comes from the OR output of gate g;, then put f; inunediately
before s;. The relative order between two finishing times put immediately before s; can be
arbitrary.

if one of the inputs of ¢; has value 1 with label j, then let the finishing time of call 4; €
occur immediately before s;.

if one of the inputs of g; has value 0 with label {, then let the finishing time of call i & I’

occur immediately before s;.

We observe that for the instance of the TCP problem obtained from a comparator circuit by algo-

rithm E, during any interval (s}, si41), 1 <@ < n— 1, there are two calls finishing that correspond to the

two inputs to

gate ¢;+1, and during any interval (s;, s;/), there is no call finishing. Thus, we use two calls

i i to simulate a gate g; such that call i is used to simulate the OR output of g; and call ¢ is used to

simulate the AND output of g;. Suppose we have a gate g; whose inputs come from the AND output of gate

g; and the OR output of gate g:. Then, we should have the resulting timing values in nondecreasing order as:

CSicaStiory i finosiose

Here the relative order of f; and f;/ is unimportant. This example 1s illustrated in figure 3.

AND output of OR output of

gate gf gate gi
u v U4y
(i
_;‘ v
U+ uv
A comparator gaie | Calis i.i" to simulate gate i

Figure 3: Transformation of a gate ¢ to two calls 4. ¢".

Lemma 12 Algorithm E converts an input to the C-CV problem to an input to the TCP problem swuch
that for alli, call i is served if f the OR output of g; has value I, and call i is served if f the AND output
of g; has value 1.

Proof. By construction all calls in I = {1,...,ix} can be served and all calls in I = {#,...,i},} cannot
be served.

We prove the lemma by induction on the gate number. For the base case, consider g1 .

If the OR output of g; has value 1, then one of its inputs has value 1. Hence there is an incoming arc
to node 1, which comes from a node in I. Thus, call 1 can be served. If the AND output of g1 has value 1,
then both its inputs have value 1. Hence, there are two incoming arcs to node 1, which comes from nodes
in I. Thus, at time sy, there are two available channels released by two calls in I. This implies call 1’ can
be served.

Conversely, if call 1 can be served, then one of its incoming arcs should come from a node that can
be served. This node is in I. Hence, one of the inputs to g; has value 1 and its OR output has value 1.
If call 1/ can be served, then both incoming arcs to node 1 should come from nodes that can be served.
These nodes are in I. Hence, both inputs to g; have value 1 and its AND output has value 1.

Assume the induction hypothesis holds until ¢ — 1 and consider g;.

If the OR output of g; has value 1, then one of its inputs has value 1. Hence by the induction
hypothesis there is an incoming arc to node 4, which comes from a node that can be served. Thus, call
i can be served. If the AND output of g; has value 1, then both its inputs have value 1. Hence, by the
induction hypothesis there are two incoming arcs to node ¢, which come from nodes that can be served.
Thus, at time s;, there are two available channels released by two calls that can be served. This implies
call ¢/ can be served.

Conversely, if call 7 can be served, then one of its incoming arcs should come from a node that can
be served. Hence, by the induction hypothesis one of the inputs to g; has value 1 and its OR output has
value 1. If call #/ can be served, then both incoming arcs to i should come from nodes that can be served.
Hence, by the induction hypothesis both inputs to g; have value 1 and its AND output has value 1. O

Algorithm E can be implemented in log space on a deterministic Turing machine. By lernma 12, we

have the following theorem.
Theorem 4 The C-CV problem is log space reducible to the TCP problem.

From theorem 4, we conclude that the TCP problem is CC-hard. Next, we give a log space reduction
from the C-CV problem to the TCP problem. This establishes the result that the TCP problem is CC-
complete.

Let k be the capacity of the telephone line. From lemma 4, we know that any call before 1, the
kth node that does not have an incoming arc, can be served. Hence, if we change the starting time of i
to be earlier than the starting times of the calls that have incoming arcs, this change will not affect the
contents of the solution set. In fact, we may change the starting time of ;, the jth node that does not
have an incoming arc, to be earlier than the starting time of the calls that have incoming arcs, for each 7,
1 < j < k, and this change will not affect the contents of the solution set either since a call before ¢; can

be served using only j — 1 channels. We state this property as the following observation.

16

Observation 3 Let T be an instance of the TCP with capacity k and let Sy be the solution set for Ti.

Let Ty be obtained from Ty by changing the starting times of the first k nodes that do not have an incomaing

arc in the TPG 1o be earlier than the starting times of any other calls and let Sy be the solution set for 1.
Then, Sl == Sg

From the above observation, we may assume that given an instance of the TCP with capacity k, the
first k nodes do not have an incoming arc in the TPG. Next, we show how to reduce the TCP to C-CV

based on this assumption. Figure 4 illustrates the construction in algorithm F.

Algorithm F Reduction from TCP to C-CV.

Input: An input to the TCP problem with capacity k such that the first & nodes do not have an incoming

arc in the TPG. The calls are ordered from 1 to n.

Output: A comparator circuit with k inputs with value 1 and size O(n?).

1.

Convert the given instance of the TCP problem to its TPG G. Assign label served to the k

leftmost nodes that do not have an incoming arc.

Compute the number of incoming arcs to each node. Store the result in an array N(1 - -n).
For each node i, assign labels 1,..., N (i) to its incoming arcs. This assignment can be done in

arbitrary order. Also assign label original to the outgoing arc of node i.

Vi, 1<i<n, N'(i) = N(i) - L.

Compute subrange prefix sums on N’ using algorithm D. Store the result in another array N’.
(For all i > k, N'(i) + 1 is the number of available channels at time s; if all calls before 2 are
served. We have N'(i) = N'(i — 1)+ N(i) — 1 when N'(i — 1) > 0, and N'(i) = N(i) — 1 when
N'(i— 1) < 0. N'(i) is in the range —1...n — 2.)

Vi, k+1<i<nlet N(i)=M—1, N'(i—1) = m', and N(i) = m. If M > 1, then create

M — 1 arcs from node i to node 7 + 1 and call the resulting graph the modified graph. (Note

that M = m +m’ when m’ > 0 and M = m otherwise.)
For each i, 1 < i < n, perform steps (a)-(e):
(a) If M > 1, then create gates: i1,1%2,13,. e IAM -1
i. The right input to each gate i; comes from the OR output of gate ;_y, where 2 < j <
M—1.
ii. Let ¢ be a node in G whose outgoing arc with label original goes to node i and let [
represent the number of outgoing arcs from node i’ in the modified graph. Let h=1-1
if 1 > 2 and let h = 1 otherwise. Let j be the label given to the arc from 7 to i in step

2. If j > 1, let the left input of gate i;; come from the OR output of gate i g =1,
let the right input of gate iy come from the OR output of gate i,

iii. The left input to gate imyj_1 comes from the AND output of gate (i — 1);, where
1<j<ml.

17

original

priging}

nodes | and i+1 in original b«

Transformation 10 & new graph
with equal number of incoming
and outgoing arcs by steps 2-5

original i arcs in origingl TPG \
)

A call i with msm' incoming mem-1 arcs

7 arcs coming from arcs in the modified graph

node i-1
m+m'
Translormation by part {(a} in step & M=mem' ; L=h+M.

Circuit to simulate node i+1

Circuit to simulate node |

3rd input AND

ist input

l

!

1{ i+
e
3 AND
|
i
I
i
%
i
|
l

o

1
OR
3rd input X AND
'z

10 the circuit that simulates node i+2

5 !+1h

-
i
i
i
i 2nd input AND
1
l
l
i
|
i
1
l
l
|

>
>
z
o
SN SRS P

[
|
I
|
|
|

4: Tustration of the reduction in algorithm F.

[y
(o5}

(b) If m = 1,m' = 0, let the unique incoming arc to node ¢ come from node i'. Create gate
i1. Let I represent the number of outgoing arcs from node i’ in the modified graph. Let
h=1-1ifl>2and let h = 1 otherwise. The right input to gate i; has value zero. The
left input to gate 4; comes from the OR output of gate #,.

(¢) If m = 0,m’ = 1, then create gate i;. The right input to gate iy has value zero. The left
input to gate i; comes from the AND output of gate (i — 1)1, where node 7 — 1 has two
outgoing arcs in the modified graph.

(d) If m+m’ =0, and node ¢ was labeled served, then create gate i;. The left input to gate 4
has value 1. The right input to gate #; has value 0.

(e) If m+ m' = 0, and node i was not label served, then create gate ;. Both inputs to gate 4

have value 0.

End.

The above reduction from the TCP to C-CV could result in a quadratic blow-up in size since a call
in an instance of the TCP may result in 6(n) comparator gates and an instance of the TCP may contain
f(n) such calls.

In what follows, we prove the correctness of algorithm F. We first make an observation that for any
comparator gate circuit, the number of inputs with value 1 is equal to the number of outputs with value 1.
Observe that each comparator gate has two inputs and two outputs and the number of inputs with value
1 to a gate is equal to the number of outputs with value 1 from that gate. A simple proof by induction on

the number of gates in the circuit establishes the following observation.

Observation 4 For any comparator gate circuit, the number of inputs with value 1 is equal 1o the number

of outputs with value 1.

Lemma 13 Let the comparator circuit C with m~+m' = M, M > 1, inputs be oblained by part {a) in step
6 of algorithm F for a node 1. Then,

(1). The OR output of gate ipnr—1 has value 1 iff there is an input to circuit C with value I.

(2). If none of the AND outputs from circuil C has value 1 then the number of inputs to circwt O walh

value 1 s etther 1 or 0.

(3). For j > 0, ezactly j AND outputs from gates i1, 49, ..., 4ar—1 have value 1 ¢ff there are exactly j -+ 1
inputs to circuit C with value 1.

Proof. Let an input to a gate i; have value 1. Then, the OR outputs from gates i;,4j41,...,%a-1 have

value 1. Conversely, if the OR output of gate ipr—1 has value 1, then we can always find a gate i; such

that one of its inputs has value 1, the OR outputs from gates 7;, %41, - - .,ia—1 have value 1, and the OR

outputs from gates i1, 42, ...,4;—1 have value 0. Hence, (1) is true. It is clear that all inputs to C' have

value 0 iff all outputs from C have value 0. Then, (2) and (3) are true by (1) and observation 4. O

Lemma 14 Algorithm F converts an inpul to the TCP problem to an input to the C-CV problem swuch
that for all i, call i is served if f the OR oulput of gate ig has value 1, where L = M — 1 of M > 2 and
L = 1 otherwise, and M is as stated in step 5 of algorithm F.

19

Proof. Let k be the capacity of the telephone line. From lemma 4, we know that the first & calls whose
corresponding nodes in the TPG do not have an incoming arc can be served. Thus, for each gate {; created
in part (d) of step 6, where ¢ <k, its OR output has value 1 and call 7 can be served.

Let n be the number of calls. For the remaining calls k + 1,...,n, we prove the following claim by

induction on the call number.

Claim The number of inputs with value 1 to the circuit that simulates a node i is the number of available

channels at time s;.

Before we prove the claim, first notice that a node without any incoming arc in the modified graph
constructed in step 5 corresponds to a call that cannot be served and the circuit constructed in part (e)
of step 6 to simulate this node has two zero inputs. Hence, the claim holds for the node. In the proof
below, we eliminate this case and consider only the case when a node has at least one incoming arc in the
modified graph constructed in step 5.

Consider the leftmost node that was not labeled served in step 1 of algorithm F. It should be the
(k 4 1)th node by the assumption made about the input to algorithm F. Let Cj41 be the circuit that
simulates node k + 1. All inputs to Cg4y should have value 1. The OR output of gate ji, where 1 <j < k
and j; is created in part (d) of step 6 of algorithm F to simulate node j, is an input to Cir4q ¢f f there
is an arc from node j to node k + 1 in the TPG. Hence, the number of inputs with value 1 to C is the
number of available channels at time sp41-

Assume the induction hypothesis holds until call i — 1. For call i, assume N (1) = m, NG@—1)=m'
and assume C; is the circuit with M = m + m/ inputs that simulates call 7. In the proof below, let node j
have M’ outgoing arcs in the modified graph and let L' = M’ — 1 if M’ > 2 and let L' = 1 otherwise.

(1). Consider a fixed input to one of the gates i1,.. ., im—1 in Ci. Let this input come from the OR output
of gate jr/, where 1 < j <. By part (1) of lemma 13, this input has value 1 iff at least one of the
inputs to gates ji,...,jr+ has value 1, and by the induction hypothesis iff the number of available
channels at time s; is at least one, and hence if f call j can be served. Since call j can be served ¢ f f
an available channel is released by call j in the interval (s;_1,s;), the number of inputs with value 1

to gates i1, ..., %m~1 is the number of available channels released in the interval (s;—1, ;).

(2). Suppose m’ > 0. Consider the inputs to gates by I s - - o5 tmami—1 0 Cy. For p > 0, from part
(3) of lemma 13, the number of inputs with value 1 to gates i, im41, -, Imtm/—1 110 Ciispiff
the number of inputs with value 1 to the circuit that simulates i — 1 is p + 1, and by the induction
hypothesis, iff the number of available channels at time s;_; is p+ 1. Among these channels, p

channels are still available at time s;.

From part (2) of lemma 13, all inputs to gates by Sl -« s Imam—1 i Cy have value 0 ¢ff the
number of inputs with value 1 to the circuit that simulates i —1 is either 1 or 0, and by the induction
hypothesis, i f f the number of available channels at time s;_; is either 1 or 0. In this case, no available
channel at time s;_; is still available at time s;. Hence, the number of inputs with value 1 to gates

Gms - imam/—1 1s the number of available channels at time s;, which are released before time s;_1.

By (1) and (2), the number of inputs with value 1 to C is equal to the number of available channels

at time s;. This establishes the induction step and the claim is proved. Then, by the definition of the TCP,

20

the above claim, and part (1) of lemma 13, we conclude that call ¢ can be served iff there is an available

1. Hence, the lemma holds for calls k+1,...,n. O

Algorithm F can be implemented in log space on a deterministic Turing machine. Thus, by lemma

14, we have the following theorem.
Theorem 5 TCP is log space reducible to the C-CV problem.

Corollary 3 TCP is CC-complete.
Proof. by theorem 4 and theorem 5.]

From algorithm E and lemma 12, we know that every input of size n to the C-CV problem can be
converted to an instance of the TCP problem of size O(n), and thus to a TPG such that each node has
at most 2 incoming arcs. Also, for an input to the C-CV problem, if the number of inputs with value
1 is k, then algorithm C can be used to solve the C-CV problem in time O(min(#, Vn)logn) using n
processors. By the symmetric property of the comparator gate, if the number of inputs with value O 1s
k', then algorithm C can also be used to solve the C-CV problem in time O(min(k’, /n)logn) using n
processors. Hence, algorithms C and E can solve the C-CV problem in time O(min(k, k', /n) logn) using
n processors. The previous best algorithm for this problem [7] runs in O(y/npolylog) time.

References

[1] R. Cole. Parallel merge sort, SIAM J. on Computing, Vol 17, No. 4, August 1988, pp 770-785.
[2] A. Greenberg. Private communication, June 1990.

[3] A. Greenberg. Private communication, August 1990.

[4] D. S. Johnson. A catalog of complezily classes, Handbook of Theoretical Computer Science, Vol 1,
Elsevier Press, 1990, pp 67-161.

[5] R. Karp and V. Ramachandran. Parallel algorithms for shared-memory machine, Handbook of Theo-
retical Computer Science, Vol 1, Elsevier Press, 1990, pp 869-941.

[6] R. Ladner and M. Fischer. Parallel prefiz sum, JACM, Vol 27, 1980, pp 831-838.

[7] E. Mayr and A. Subramanian. The complezity of circuil value and network stability, Proc. 4th Annual
Conf. on Structure in Complexity Theory, 1989, pp 114-123.

[8] R.Tarjan and U. Vishkin. Finding biconnecied components and compuling tree functions in logaridhmac
parallel time, SIAM J. on Computing, Vol 14, 1985, pp 862-874.

21

