
[12] K. Simon, Finding a minimal transitive reduction in a strongly connected digraph withlinear time, manuscript, 1989.[13] K. Simon, Personal communication, March 1990.[14] W. Tutte, Graph theory, Addison-Wesley, 1984.[15] M. Yannakakis, Node- and edge-deletion NP-complete problems, Proc. 10th Ann. ACMSymp. on Theory of Computing, New York, 1978, pp. 253-264.

32

in a dag with �(n1��) sources and sinks. Computing reachability for these pairs, however,requires
(n2�2�) time.References[1] F. Chung, R. Graham, Private communication, 1977; cited in [3].[2] E. Dahlhaus, M. Karpinski, An e�cient algorithm for the 3MIS problem, TechnicalReport TR-89-052, September 1989, ICSI, Berkeley, CA.[3] M. Garey, D. Johnson, Computers and Intractability: a Guide to the Theory of NP-Completeness, Freeman, San Francisco, CA, 1979.[4] P. Gibbons, R. Karp, V. Ramachandran, D. Soroker, R. Tarjan, Transitive compactionin parallel via branchings, J. Algorithms, vol. 12, 1991, pp. 110-125.[5] M. Goldberg, T. Spencer, A new parallel algorithm for the maximal independent setproblem, SIAM J. Computing, vol. 18, 1989, pp.419-427.[6] X. Han, An algorithmic approach to extremal graph problems, draft, Department ofComputer Sciences, Princeton University, NJ, 1991.[7] R. Karp, E. Upfal, A. Wigderson, The complexity of parallel search, J.C.S.S., vol. 36,1988, pp.225-253.[8] P. Kelsen, An e�cient parallel algorithm for �nding a maximal independent set in hy-pergraphs of dimension 3, manuscript, Department of Computer Sciences, University ofTexas, Austin, TX, January 1990.[9] P. Kelsen, V. Ramachandran, On �nding minimal 2-connected subgraphs, Tech. ReportTR-90-16. June 1990, Department of Computer Sciences, University of Texas, Austin,TX 78712; extended abstract in Proceedings of the Second ACM-SIAM Symposium onDiscrete Algorithms, San Francisco, 1991, pp. 178-187.[10] J. Lewis, M. Yannikakis, The node-deletion problem for hereditary properties is NP -complete, J. C. S. S., vol. 20, 1980, pp.219-230.[11] M. Luby, A simple parallel algorithm for the maximal independent set problem, SIAMJ. Computing, vol. 15, 1986, pp. 1036-1053.31

Proof. We prove the lemma by induction on i. It holds for i = 0 since the set containingan incoming (essential) edge for each vertex other than x constitutes a forward branchingin D0. Assume inductively that Di contains a forward branching F rooted at some vertex xand having the properties stated above. Let Di+1 be constructed as decribed above. Use yto denote the root of the branching T (x) spanning the gadget for x (see step (4) of algorithm2'). Let B denote the set containing all redundant edges of Di+1 and containing, for eachvertex of D that is not a source, an arbitrary incoming edge of D. Exactly as in the proofof theorem 4 one shows that there exists a forward branching rooted at y and containing alledges in B.[]Theorem 11 Let G1 be the graph obtained from Di by doubling external essential edges(step (1) of algorithm 2'). The graph G1 is obtained by shrinking all essential componentsin Di+1 and contracting all maximal chains in the resulting graph. Furthermore, Di is of theform T +A where T is an optimal branching in G1 and A is a minimal augmentation for Tin G1. Hence, Di may be obtained from Di+1 by running one iteration of algorithm 1'c.Proof. The essential components in Di+1 are exactly the gadgets for the representatives ofthe external vertices in Di. Let G be the graph obtained by shrinking these gadgets in Di+1.The only essential edges in G are those in D. By the second property of D, the graph G hasno chain of length greater than 2. Hence, contracting chains in G does not change G andG = G1. This proves the �rst part of the theorem.By lemma 15 the graph Di has a forward branching F rooted at some vertex x with theproperty that it contains all the redundant edges in Di and also contains, for each vertex ofD that is not a source, an incoming edge in D. Since the vertices of D other than the sourcesof D are the only nodes in G1 that have an incoming essential edge in G1, the branching Fis an optimal branching in G1. The second statement of the theorem follows.[]We call the sequence of graphs obtained at the end of the while-loop in algorithm 10c atrace for algorithm 1'c. By theorem 11 the graphs Di;Di�1; : : : ;D0 form a possible trace foralgorithm 1'c. Let p, s, and t denote the number of vertices, sources and sinks, respectively,in D. It can be shown that Di has size O(ci(s+ t)+p) for a constant c that does not dependon p. By choosing p = n, s + t = n1��, 0 < � < 1, and i = �(log n), we see that the worstcase running time of algorithm 10c on the graph Di having �(n) vertices and �(n) edges is
(n log n).By examining the family of graphs Di constructed above, it appears that what is neededfor a linear-time algorithm is an operation that reduces dags of essential edges at eachiteration. This seems to require determining the reachability for every (source,sink)-pair30

D
D0

D1

z

(a)

(c)

(b)

Figure 5: D, D0, and D1.29

that is contained in H (the intermediate subgraph of the input graph) at each iteration ofalgorithm 1'c.Fix a dag (directed acyclic graph) D . We assume that D has the the following threeproperties. First, the edges ofD are essential in any strongly connected graph G that satis�esthe following two conditions: G contains D as a subgraph, and no edge of G that is not anedge of D is incident with a vertex of the dag other than a source or a sink. Second, werequire that D has no chain of length greater than 2. Third, each source has exactly oneoutgoing edge and each sink has exactly one incoming edge. One can construct a dag ons sources and t sinks having these 3 properties by taking any dag D0 with s sources and tsinks in which each vertex has indegree or outdegree at least 2, subdividing each edge of D0by a new vertex, and adding edges into the sources form s new vertices and adding edgesfrom the sinks to t new vertices.The graph, D0, the �rst graph in the sequence, is de�ned as follows: the vertices of D0are the vertices of the dag D plus one new vertex x. The edges of D0 are the edges of D(i.e., D is a subgraph of D0) plus an edge from x to every source of D and an edge fromevery sink of D to x. See �gure 5(a) and 5(b) for an example of D and D0.Call an edge of Di external if it is not an edge of D. A vertex of Di is external if it isnot a vertex of D or it is a sink or a source in D. We construct Di from Di�1 by runningalgorithm 20 (see section 2.2) on input Di�1 with several modi�cations. First, we assumethat there is a forward branching F in Di�1 with the property that it contains all redundantedges of Di�1 and contains, for each vertex of D that is not a source, an incoming edge inD. The importance of this assumption will become clear below. In step (1) we only doublethe external essential edges. In step (2), instead of choosing an arbitrary forward branchingT , we choose the branching F described above. Steps (3), (4), and (5) are only performedfor external vertices. For each vertex that is not external, we add a unique copy to G0. Step(6) is only done for external edges. For each edge of D in G1 we proceed as follows: if anendpoint of the edge is neither a source nor a sink in D, then the corresponding endpointin G0 is the copy of that endpoint in G0. If the endpoint is a source or a sink of D (i.e.,an external vertex) the corresponding endpoint in G0 is de�ned as for endpoints of externaledges (based on edge number at that endpoint). These modi�cations ensure that the dagD is a subgraph of essential edges in each Di, a fact that is crucial for the derivation of thelower bound. The graph D1 constructed from graph D0 in �gure 5(b) is depicted in �gure5(c).Lemma 15 In each graph Di there exists a forward branching containing all redundant edgesin Di and containing, for each vertex of D that is not a source, an incoming edge in D.28

Corollary 14 Assume the input graph has n vertices and less than n redundant edges. After7 iterations of the modi�ed algorithm, the number of vertices in H is less than :82n.Proof. Let Hi be the graph H at the end of the ith iteration of the modi�ed algorithm.It follows from an earlier result that r(Hi+1) < 2=3 � r(Hi) for any i. We have r(H0) < nand hence, r(H7) < (2=3)7n. By theorem 10, n(H7) < 14r(H7). The claim then follows bychecking that (2=3)7 � 14 < :82.[]By corollary 14 and the fact that there is a linear-time procedure for �nding a minimalaugmentation ([9]), we conclude that the modi�ed algorithm for biconnectivity runs in lineartime.3.3 Finding a Minimal Strongly Connected Spanning SubgraphIn this section we consider the problem of �nding a minimal strongly connected spanningsubgraph in a strongly connected digraph. This problem has withstood all of our attemptsso far to obtain a linear-time solution. We present evidence below that this problem is indeedsigni�cantly harder than the problems for undirected graphs that we have considered earlier.Fix a strongly connected digraph H. Let R(H) denote the set of redundant edges of H.An essential component of H is a strongly connected component of H � R(H). A chain ofH is a path in H all of whose internal vertices have in-degree and out-degree 1 in H. Thus,all edges of a chain are essential in H.The operation of shrinking an essential component in H consists of collapsing the vertexset of an essential component inH. The operation of contracting a chain consists of collapsingthe internal vertices of the chain in H.Consider the following algorithm, referred to as algorithm 1'c: modify algorithm 10 (c.f.section 2.2) by shrinking all essential components in H and contracting all maximal chainsin the resulting graph at the beginning of each iteration of the while-loop. An edge will bein the output graph if it occurs in the input graph and was essential at some iteration ofalgorithm 1'c. It can be shown that the output graph of algorithm 10c is indeed a minimalstrongly connected spanning subgraph of the input graph.Algorithm 10c is the natural analog of algorithm 1c for directed graphs. Unlike thatalgorithm, however, it has a nonlinear lower bound on its worst-case sequential runningtime. We shall construct a sequence of graphs Di, i � 0, such that algorithm 10c requires
(m + n log n) operations in the worst case on a graph in this sequence (as usual, n andm denote the number of vertices and edges, respectively, in the input graph). The key toproving the lower bound is to exhibit an acyclic subgraph of essential edges of size
(n)27

Proof. We refer to the edges in the Bi's as the internal edges of H. Assume that H � S isbiconnected. Fix two adjacent edges e = (u; v) and e0 = (u0; v0) that are not internal in H.Some simple cycle C in H �S contains e and e0. If C does not contain an internal edge, it isalso a simple cycle in H 0 �S containing e and e0. Otherwise, it contains both c1 and c2 andwe get a simple cycle in H 0 � S containing e and e0 by replacing the portion of C consistingof internal edges by the path c1; u; c2 in H 0 � S.Now consider two adjacent edges e and e0 in H �S such that only e is internal. A simplecycle containing e and e0 in H � S gives a simple path in H 0 �S between c1 and c2 and notincluding u. Hence, there is a simple cycle in H 0�S containing both non-internal edges andthe edges (c1; u) and (c2; u). We conclude that H 0 � S is biconnected.The if-part of the theorem is proved similarly.[]Corollary 12 Let H 0 be obtained from H by contracting a block chain in H. Let H 00 be aminimal biconnected spanning subgraph of H 0 and let A denote the set of edges of H not inH 00. Then, H �A is a minimal biconnected spanning subgraph of H.[]Corollary 13 Let H 0 be obtained from H by contracting any number of block chains inH. Let H 00 be a minimal biconnected spanning subgraph of H 0 and let A denote the set ofredundant edges of H not in H 00. Then, H �A is a minimal biconnected spanning subgraphof H.[]Proof. By induction on the number of block chains contracted in H.[]We are now ready to state the main result of this section.Theorem 10 If Q is obtained from H by �rst shrinking all essential blocks of H and thencontracting all maximal block chains in the resulting graph, then n(Q) < 14r(H).Proof. To bound n(Q), we consider blk(Q), the block graph of Q. Let l denote the number ofleaves in blk(Q). From the way Q is constructed, it follows that any proper chain in blk(Q)has length at most 4; thus, an arbitrary chain in blk(Q) has length at most 6. Each leaf ofblk(Q) is incident with at least 2 redundant edges in Q̂; hence, l � r(H). Mark each nodeof blk(Q) that is incident with a redundant edge of H. By applying lemma 14 we see thatblk(Q) has less than 6(2r(H) + 2r(H)) = 24r(H) vertices. Hence, Qe has less than 12 � r(H)cutpoints. Each vertex of Qe is either a cutpoint in Qe or it is incident with a redundantedge of H. Thus, n(Q) < 12r(H) + 2r(H) = 14r(H) as claimed.[]If the graph Q is obtained from H as described in theorem 10, we say that Q is a fullcontraction of H. Consider a variation of algorithm 1 in which we replace H by its fullcontraction at the end of each iteration of the while-loop.26

in H. Now consider the case where H 0 is obtained from H by shrinking k+1 essential blocksof H. The key observation is that H 0 can be obtained by shrinking a single essential blockin a graph Hk that is obtained from H by shrinking k essential blocks in H. Let A0 denotethe set of edges of Hk that are not in H 00. By corollary 10 Hk �A0 is a minimal biconnectedspanning subgraph of Hk. Since Hk contains all redundant edges of H and any edge of Hknot in H 00 is redundant in H, we have A0 = A. Thus, the induction assumption applied to Hand Hk shows that H �A is a minimal biconnected spanning subgraph of H, as required.[]The second operation on biconnected graphs is de�ned on the block structure of He. A blockchain in a biconnected graph H is an alternating sequence c1B1 : : : ckBkck+1 of vertices andessential blocks in H with the following properties: (i) each Bi (1 � i � k) has exactly twocutpoints in He, ci and ci+1; (ii) for 1 < i < k, Bi intersects exactly two blocks, namely Bi�1and Bi+1 in ci and ci+1, respectively; (iii) no vertex on any Bi except possibly c1 and ck+1are incident with a redundant edge of H. A maximal block chain in H is a block chain in Hnot properly contained in any other block chain of H.It is helpful to interpret block chains in an auxiliary graph which we shall now de�ne.The block graph of H ([14]), denoted by blk(H) is a bipartite graph whose vertices are thecutpoints and blocks of H. A block is connected in blk(H) to exactly those cutpoints thatit contains in H. It is known that the block graph of H is a tree for any connected graphH. Now consider a biconnected graph H. De�ne a mapping h from the vertices of H to thevertices of blk(He) as follows: for any vertex v that is a cutpoint in He, h(v) = v; if v is nota cutpoint then h(v) is the block of He containing v. The condensation of H, denoted byĤ, is the graph blk(He) + f(h(u); h(v)) : (u; v) is a redundant edge in Hg.A chain in Ĥ is a path of vertices in Ĥ all of whose internal vertices have degree 2. Achain in Ĥ is proper if its terminal vertices are cutpoints in He. A maximal proper chain isa proper chain of Ĥ not properly contained in another proper chain of Ĥ .Observation 2 The sequence c1B1 : : : ckBkck+1 is a maximal block chain in H i� it is amaximal proper chain in Ĥ.The operation of contracting the block chain c1B1 : : : ckBkck+1 in H consists of deletingin H all vertices in the blocks of this sequence except c1 and ck+1, adding a new vertex uand two new edges (u; c1) and (u; ck+1).Theorem 9 Let H 0 be obtained by contracting the block chain c1B1 : : : ckBkck+1 in the bi-connected graph H. For any subset S of edges of H, H � S is biconnected i� H 0 � S isbiconnected. 25

no internal endpoint of p belongs to B and both endpoints of p are nodes of B. The path pis also a simple path in H 0 � S whose distinct endpoints lie on CB. Using edges of CB wecomplete p into a simple cycle containing both edges of CB and edges not in B. Since alledges of CB lie in a single block of H 0 � S, we conclude that H 0 � S is biconnected.To prove the \if-part", we proceed in a similar fashion. Assume thatH 0�S is biconnected.We �rst consider two adjacent edges e = (u; v) and e0 = (v;w) in H � S that are not inB. Some simple cycle in H 0 � S contains both edges. From this cycle we get a simple pathin H 0 � S containing e and e0 and having the following properties: no internal vertex of pexcept possibly v lies on CB and the endpoints of B either both belong to CB or they areadjacent in H 0�S. The path p is also a simple path in H �S between the same endpoints.If it is not the case that both endpoints of p belong to CB, then they are adjacent in H 0�Sand hence, they are adjacent in H � S. In this case e and e0 lie on a simple cycle in H � S.If both endpoints of p belong to CB, they are nodes of B in H � S. We can join them by apath completely contained in B and avoiding v. Again, we �nd that e and e0 lie on a simplecycle in H � S.Now we take two adjacent edges e = (u; v) and e0 = (v;w) such that e is an edge of CBand e0 is not. Since H 0 � S is biconnected, some simple cycle in H 0 � S contains e and e0.This cycle yields a path p in H � S with the following properties: no edge of p is an edgeof B, the endpoints of p are two distinct nodes of B, and no internal vertex of p belongs toB. Thus, by adding a path completely contained in B between the two endpoints of p, weget a simple cycle containing both edges inB and edge not inB. Thus, H�S is biconnected.[]Corollary 10 Let H 0 be obtained from a biconnected graph H by shrinking an essentialblock in H. If H 00 is a minimal biconnected spanning subgraph of H 0 and A is the subset ofredundant edges of H that are not in H 00, then H � A is a minimal biconnected spanningsubgraph of H.Proof. By construction all edges of H 0 that are not in H are essential in H 0. Thus, H 00 =H 0 �A and theorem 8 implies the lemma.[]Corollary 11 Let H 0 be obtained from H by shrinking any number of essential blocks in H.If H 00 is a minimal biconnected spanning subgraph of H 0 and A is the set of edges of H thatare not in H 00, then H �A is a minimal biconnected spanning subgraph of H.Proof. By induction on the number k of essential blocks shrunk in H. The induction basek = 0 is trivial. Assume that the claim holds if H 0 is obtained by shrinking at most k blocks24

pointed out earlier condition (C3) does not hold for biconnectivity, i.e., by shrinking an es-sential component in a biconnected graph we may loose some information that is necessaryto compute a minimal biconnected spanning subgraph. The new operation we de�ne forbiconnected graphs is similar, though, to the shrinking of essential components: instead ofcollapsing an essential component into a single vertex, it replaces it by a simple cycle. Wenow de�ne these two operations formally.Fix a biconnected graph H for which the subgraph of essential edges, denoted by He,is not biconnected. An essential block of H is a block of He. The graph He need not beconnected. Thus, an essential block of H is either a single vertex, a single edge, or a maximalbiconnected subgraph of He (with at least 3 vertices).Let B be an essential block of H with at least 3 vertices. An internal vertex of B is avertex in B that is neither a cutpoint inHe nor is it incident with a redundant edge; we writeI(B) for the set of internal vertices of B. The operation of shrinking the essential block Bin H consists of deleting all edges of B in H as well as all internal vertices of B, connectingthe remaining vertices of B into a simple cycle in arbitrary order, and subdividing each edgeof this cycle with a new vertex. Thus, if u1; : : : ; uk are the non-internal vertices of B, andV 0 = fv1; : : : ; vkg is the set of k new vertices used to subdivide the edges of the cycle, thenthe resulting graph has vertex set (V (H) � I(B)) [V 0 and edge set (E(H) � E(B)) [CBwhere CB = f(u1; v1); (v1; u2); : : : ; (uk�1; vk�1); (vk�1; uk); (uk; vk); (vk; u1)g.Theorem 8 Let H be a biconnected graph and let H 0 be obtained from H by shrinking anessential block B in H. Then, for any S � R(H), H � S is biconnected i� H 0 � S isbiconnected.Proof. Assume that H � S is biconnected. Consider two adjacent edges e = (u; v) ande0 = (v;w) in H �S that do not belong to B. There is a simple cycle in H �S containing eand e0. This cycle yields a simple path p in H �S with the following properties: it containse and e0, no internal endpoint of p except possibly v is a vertex of B, and the endpoints of pboth belong to B or they are adjacent in H �S. The path p is also a simple path in H 0�Sand both endpoints are distinct in H 0 �S. If both endpoints do not belong to B, then theyare adjacent in H � S and e and e0 lie on a simple cycle in H 0 � S. If both endpoints ofp belong to B, then they represent distinct vertices on CB. Hence, we can make p into asimple cycle of H 0 � S by adding a portion of CB between the endpoints of p that does notcontain v. Thus, any two adjacent edges not in B share a block of H 0 � S.Now consider two adjacent edges e = (u; v) and e0 = (v;w) in H � S such that e is anedge of B but e0 is not. Again, a simple cycle of H � S includes both edges. From thiscycle we get a simple path p in H � S with the following properties: no edge of p is in B,23

at least l+2p+3q and n(F 0) = l+p+ q, we �nd that q � l�2 and hence q < l. Since p � r,we have n(F 0) < 2l + r. By noting that n(F) < kn(F 0), the claim of the lemma follows.[]Theorem 7 If Q is obtained from H by shrinking the essential components in H and con-tracting all maximal chains in the resulting graph, then n(Q) < 8r(H).Proof. Let Qe denote the graph Q � R(Q). The graph Qe is a forest. Each leaf in Qe iscovered by at least two redundant edges of H. Thus, Qe has at most r(H) leaves. Mark eachendpoint of a redundant edge of H in Q. Each unmarked chain in Qe has length at most 2.By applying lemma 14 to Qe, we get n(Qe) < 2(2r(H) + 2r(H)) and hence n(Q) < 8r(H)as claimed.[]Corollary 8 Assume the input graph has n vertices and less than n redundant edges. After6 iterations of algorithm 1c, the number of vertices in H is less than :71n.Proof. Let Hi be the graph H at the end of the ith iteration of algorithm 1c. It follows froman result in [9] that r(Hi+1) < 2=3 � r(Hi). We have r(H0) < n and hence r(H6) < (2=3)6n.By theorem 7, n(H6) < 8r(H6). The claim then follows by verifying that (2=3)6 � 8 < :71.[]Corollary 9 Algorithm 1c �nds a minimal 2-edge-connected spanning subgraph of any 2-edge-connected graph on n vertices and m edges in time O(n+m).Proof. The time required by one iteration of algorithm 1c is dominated by the time to �nda minimal augmentation for a spanning tree. By a result of [9] this can be done in lineartime. The claim follows.[]An e�cient NC algorithm for this problem is given in [9]. With corollary 9 the work ofthis algorithm can be reduced by a factor of �(log n) using standard techniques.3.2 Finding a Minimal Biconnected Spanning SubgraphThe basic ingredients for the linear-time algorithm to �nd a minimal 2-edge-connected span-ning subgraph are the two operations of shrinking essential components and contractingchains. We have shown that an algorithm that performs only one of these operations hasa worst case time complexity of
(m + n log n) while the incorporation of both operationsleads to an algorithm that runs in time O(n + m). Here, n and m denote the number ofvertices and edges of the input graph, respectively.In this section we exhibit a pair of operations on biconnected graphs with similar proper-ties. One of the operations, the contraction of block chains, is similar to the correspondingoperation on 2-edge-connected graphs. The other operation is more complicated. As we22

Lemma 13 No 2-edge-connected spanning subgraph of Fi has a chain of length greater than6.Proof. A proof by induction on i shows that the maximumdegree in any Fi is 3 (as observedearlier). Thus, each gadget in Fi has at most 6 edges. Let F be an arbitrary 2-edge-connected spanning subgraph of Fi. The graph F must completely contain every gadgetof Fi. Moreover, each gadget is incident with at least two edges connecting it to verticesoutside the gadget. The claim follows.[]By lemma 13 there is an execution for algorithm 1b in which there are
(log n) interme-diate graphs (at the end of the while-loop) each of which has size
(n), thus implying the
(m+ n log n) lower bound for the worst-case sequential time.The logical next step is to consider a variation of algorithm 1 that shrinks essentialcomponents and contracts essential chains at the beginning of the while-loop. We refer tothe resulting algorithm as algorithm 1c. In the next section we show that algorithm 1c runsin linear time on any input graph.3 Linear Time Algorithms for Finding Minimal Sub-graphs3.1 Finding a Minimal 2-Edge-Connected Spanning SubgraphIn this section we show that algorithm 1c, de�ned at the end of the last section, computesa minimal 2-edge-connected spanning subgraph of an arbitrary graph in linear time.For any graph H, we denote by n(H) and m(H) the number of vertices and edges in H,respectively. If H is 2-edge-connected (biconnected, strongly connected), R(H) denotes theset of redundant edges in H and r(H) the number of these edges. A chain in a graph is apath whose internal vertices have degree 2. The following lemma is needed for the analysisof algorithm 1c.Lemma 14 Let F be a forest on n leaves in which r nodes are marked. If every chain inF that does not contain a marked node as an internal vertex has length at most k, thenn(F) < k(2l + r).Proof. An unmarked chain in F is a chain that does not contain a marked vertex as aninternal node. Construct F 0 by contracting all maximal unmarked chains of F into singleedges. Let l, p, and q denote the number of nodes of degree 1, degree 2, and degree � 3,respectively, in F 0. We know that Pv2V (F 0) deg(v) � 2n(F 0) � 2. Since the lefthand side is21

Q0
Q1

Q2

Figure 4: Q0, Q1, and Q2.
20

tracting a collection of edge-disjoint chains. Then, H 0 is 2-edge-connected i� H is 2-edge-connected.[]Corollary 6 Assume that H 0 is constructed by contracting a collection of edge-disjointchains in H. If H 00 is a minimal 2-edge-connected spanning subgraph of H 0 and S is theset of redundant edges of H that are not in H 00, then H � S is a minimal 2-edge-connectedspanning subgraph of H.[]For a 2-edge-connected graph H let c�(H) be the maximum integer k for which there aregraphs H0 : : :Hk with the following properties: H0 = H, Hk is a minimal 2-edge-connectedspanning subgraph of H, Hi (0 < i � k) is of the form T + A where T is an optimal treein Hi�1 and A is a minimal augmentation for T in Hi�1, and �nally, Hi does not contain anessential cycle for i > 0. The following result is another corollary of lemma 11Lemma 12 If H 0 is obtained from H by contracting (edge-disjoint) chains, then c�(H) =c�(H 0).[]We construct a sequence of graphs Q0; Q1; : : : such that c�(Qi) � i as follows: Q0 is thegraph consisting of two parallel edges (actually, any other minimal 2-edge-connected graphcould be chosen instead). Qi+1 is constructed from Qi as follows: for each essential edgee = (u; v) in Qi we create new vertices ue1; ue2; ue3; ue4 and ve1; ve2; ve3; ve4; replace the edge (u; v)in Qi with the edges (u; ue1); (ue1; ue2); (ue2; ue3); (ue3; ue4), (v; ve1); (ve1; ve2); (ve2; ve3); (ve3; ve4), and(ue4; ve2); (ue2; ve4); (ue4; ve4). We denote the resulting graph by Qi+1. Figure 4 shows Q0; Q1,and Q2.Theorem 6 For all i � 0, c�(Qi) � i.Proof. By induction on i. The claim trivially holds for i = 0. Assume that it holds for anyj � i. We claim that c�(Qi+1) � i+1. The graph Q obtained by removing, for each essentialedge e = (u; v) in Qi, the edges (ue2; ve4) and (ue4; ve2) from Qi+1 is of the form T +A where Tis an optimal tree in Qi+1 and A is a minimal augmentation for T in Qi+1. We further notethat Qi can be obtained from Q by contracting edge-disjoint chains. With lemma 12 andthe induction assumption we �nd that c�(Q) � i and hence c�(Qi+1) � i+ 1.[]Corollary 7 There exists a function f(n) =
(log n) such that there is a graph Gn on nvertices with c�(Gn) = f(n) for any n � 1.[]Let algorithm 1b be a variant of algorithm 1 in which all maximal chains are contractedat the beginning of each while loop. The following lemma implies that algorithm 1b mayperform poorly on the sample for 2-edge-connectivity, i.e., it may require
(m + n log n)time. 19

connectivity. We describe a re�nement of algorithm 1 that takes into account property (C3)satis�ed by 2-edge-connectivity.Let H be a 2-edge-connected graph and let R(H) be the set of redundant edges in H.An essential component of H is a 2-edge-connected component of H �R(H). The operationof shrinking an essential component in H consists of collapsing in H the vertex set of thiscomponent.Theorem 5 Assume that H 0 is constructed by shrinking some essential 2-edge-connectedcomponents in H. If H 00 is a minimal 2-edge-connected spanning subgraph of H 0 and S isthe set of redundant edges of H that do not correspond to edges in H 00, then H � S is aminimal 2-edge-connected spanning subgraph of H.[]Modify algorithm 1 (for �nding a minimal spanning 2-edge-connected subgraph) as fol-lows: at the beginning of the while-loop �nd the essential components of H and shrink theminto single vertices. The ouput of this algorithm is a spanning subgraph of the input graphconsisting of exactly those edges in the input graph that were essential at some iteration.We refer to the modi�ed algorithm as algorithm 1a.With theorem 5 one can show that algorithm 1a does indeed produce a minimal 2-edge-connected spanning subgraph of the input graph. Let us examine the running time ofalgorithm 1a on graphs Fi of the sample for 2-edge-connectivity. The worst-case analysisof algorithm 1 on input graphs from the sample hinged on the fact that, by running oneiteration of algorithm 1 on graph Fi, we may obtain a graph F such that Fi�1 is an essentialcontraction of F . Now consider what happens if algorithm 1a chooses the optimal treesand the minimal augmentations described in the proof of theorem 2 on input Fi. Aftershrinking essential components in the resulting graph, algorithm 1a is left with graph Fi�1.It then follows from lemma 3 that for this particular choice of optimal trees and minimalaugmentations algorithm 1a, although still requiring
(log n) iterations, computes a minimal2-edge-connected spanning subgraph of Fi in time linear in the size of Fi.The obvious question is: does algorithm 1a run in linear time on any input graph. Weanswer this question negatively by constructing graphs with the property that if we runalgorithm 1a on them, no cycle of essential edges will be created at any intermediate stage.A chain in H is a path of edges in H all of whose internal vertices have degree 2 inH. Note that the edges in a chain are essential in H. A chain is maximal if it cannot beextended. The length of the chain is the number of edges it contains. The operation ofcontracting a chain in H consists of collapsing the set of internal nodes of the chain in H.Lemma 11 Let H 0 be obtained from a graph H that need not be 2-edge-connected by con-18

observation is the following: let H 0 = T 0+A0 where T 0 is an optimal branching in H 0 rootedat x and A0 is a minimum augmentation for T 0 in H 0. Let T be an optimal branching in Hobtained by augmenting T 0 with forward branchings for the collapsed subgraphs in H. Thenthe set A containing the edges in the collapsed subgraphs in H that are not in T togetherwith the edges of H that correspond to edges of A0 forms a minimum augmentation for T inH.[]Recall that F 0i denotes a graph in a �xed sample for strong connectivity constructed byalgorithm 2'. Let P denote strong connectivity.Lemma 10 ĉP (F 0i) � i for any i � 0.Proof. We prove the following stronger statement: for each i � 0 there is a vertex x in F 0isuch that ĉP (H;x) � i and F 0i is linear with respect to x. We show this by induction on i.The base case clearly holds. Assume the statement holds for F 0i . Let G1 be the graphconstructed in step (1) of algorithm 20 by doubling the essential edges in F 0i . By the inductionassumption the graph F 0i is of the form T +A where T is a forward branching in F 0i rootedat x and A is a set of essential edges in F 0i . Since every edge of G1 is redundant, T is anoptimal branching in G1. Furthermore, A is a minimum augmentation for T in G1. To seethis, �x an essential edge e in F 0i that is not in T . Let e0 be the edge parallel to e in G1. Bythe de�nition of G1 and the fact that e is essential in F 0i , any minimal augmentation for Tin G1 has a nonempty intersection with fe; e0g. Thus, the set of essential edges in F 0i thatare not in T constitutes a minimum augmentation for T in G1. Hence, ĉP (G1) � i+ 1. Bylemma 9 we have ĉP (F 0i+1; y) � i+ 1 for any vertex y in the subgraph of F 0i+1 collapsed intox. Exactly as in the proof of lemma 4 one now shows that there is one such y with respectto which F 0i+1 is linear. This completes the proof of our claim.[]Corollary 5 There exists a function f(n) =
(log n) such that for any n � 1, there is agraph G on n vertices with ĉP (G) = f(n) (for P = strong connectivity).[]Corollary 5 resolves the open question posed in [4].2.3 Avoiding Cycles or SubdivisionsSo far we have considered the number of iterations that algorithm 1 requires in the worstcase. In this section we take the analysis one step further by examining the sequentialrunning time of various natural variants of algorithm 1.We restrict our attention to 2-edge-connectivity. We �rst note that algorithm 1 has aworst-case running time of �(m + n log n) on a graph in the sample F0; F1; : : : for 2-edge-17

(1) H := G;(2) While H has redundant edges, do:(2.1) R := set of redundant edges in H;(2.2) F := R-phobic forward branching in H;(2.3) I := F -philic inverse branching in H;(2.4) H := F [I.The authors of [4] leave as an open question whether algorithm 3 runs in a constant numberof iterations. Lemma 7 fails to resolve this question because the set of edges in I � F turnsout to be a minimum augmentation for F in H, i.e., a minimal augmentation of smallestcardinality. It can be shown, however, that even though it chooses a minimum augmentationat each step, algorithm 3 may need at least i iterations on input graph F 0i . Here are thedetails of the argument.Lemma 8 Fix an iteration of the while-loop of algorithm 3. The edges of I that are not inF form a minimum augmentation for F in H. Conversely, if A is a minimum augmentationfor an R-phobic forward branching F in H, then F + A is of the form F [I where I is anF -philic inverse branching in H.Proof sketch. The lemma follows from the following two facts: F +A is strongly connectedi� it contains an inverse branching (rooted at x) and all branchings in H have the samenumber of edges.[]Let P be a digraph property satisfying (C10) and (C20). For a P -graph H a minimumaugmentation trace for H with respect to x is a sequenceH0;H1; : : : ;Hk such thatH0 = H,Hkis a minimal strongly connected spanning subgraph of H, and Hi (0 < i � k) is of the formT+A where T is an optimal branching inHi�1 rooted at x and A is aminimum augmentationfor T in Hi�1. The integer k is the length of the trace. Let ĉP (H;x) denote the maximumlength of a trace of H with respect to x and let ĉP (H) stand for maxfĉP (H;x) : x 2 V (H)g.Lemma 9 If P satis�es conditions (C10), (C20), (C30) and if H 0 is an essential contractionof P -graph H, then ĉP (H 0; x) � ĉP (H; y) for any vertex x in H 0 and any node y of Hcollapsed into x.Proof sketch. The proof is very similar to the proof of lemma 5: one shows that if thereis a minimum augmentation trace t0 for H 0 with respect to x, then there is a minimumaugmentation trace t, at least as long as t0, for H with respect to any vertex collapsed intox. As in the proof of lemma 5 this can be shown by induction on the length of t0. The key16

e

e

1

(a)

v4

v3

v2

v1

4

3 2

1

2

3

4

(b)

v

Figure 3: F 00, F 01, and F 02.Proof. The sizes of the graphs F 0i in a sample for strong connectivity constructed as describedabove are the same as those for the graphs Fi in a sample for 2-edge-connectivity (see lemma3). As in the proof of corollary 1 we obtain a graph on n vertices having the same asymptoticsize bound for arbitrary n by subdividing edges in the graph F 0i with the largest number ofvertices that is less than n.[]Lemma 7 is closely related to an open question posed in [4]. The following de�nitionsfrom [4] will be needed. Let G be a directed graph. An inverse branching rooted at x isa spanning tree of G in which x has out-degree zero and all other vertices have out-degreeone. A branching is either a forward or an inverse branching. We assume that all branchingsare rooted at a �xed vertex x of G. Let H be a subgraph of G. An H-philic (H-phobic)branching in G is one that has the greatest (smallest) number of edges in common with Hover all branchings (rooted at x) in G.In [GKRST] the following algorithm is given for �nding a minimal strongly connectedspanning subgraph in a graph.Algorithm 3. Computing a minimal strongly connected spanning subgraph H of G.Input Strongly connected graph G.Output Minimal strongly connected spanning subgraph H of G15

Let us call a path in G0 all of whose edges are in B [B0 a good path. We denote the rootof T (v) by r(v) for any v in G1 (see step (4) of algorithm 20 for the de�nition of T (v)). We�rst show that there is a good path from y to the root r(v) of T (v) in G0 for any v in G1. Weshow this by induction on the depth of v in T (see step (2) of algorithm 2'). If depth(v) = 0,then v = x and r(v) = y; hence, the base case holds. Assume inductively that the claimholds for any v of depth k. Consider a vertex v of depth k + 1. Let u be the father of v inT . By the induction assumption there is a good path from y to the root r(u) of T (u). Let(w; r(v)) be the edge in G0 corresponding to edge (u; v) of T . From steps (4), (5), and (6) ofalgorithm 20 it follows that there is a good path in T (u) from r(u) to w. We can assemblethe good paths from y to r(u) and from r(u) to w together with the edge (w; r(v)) into agood path from y to r(v).Now consider the case where a vertex w in G0 is contained in the gadget of some vertex vbut is di�erent from the root of T (v). Vertex w is reachable in T (v), using only edges of B 0,either from y or from a vertex w0 that has an incoming edge in B. In the former case we aredone. In the latter case let w00 be the tail of the edge of B whose head is w0. As above oneargues that w00 is reachable from the root of its gadget using only edges of B0. We concludethat there is a good path from y to w.[]We now consider an important property of digraphs: strong connectivity.Lemma 6 Strong connectivity satis�es properties (C10)-(C40).Proof. Similar to proof of lemma 2 (use characterization of a strongly connected graph as aconnected graph each of whose edges lies on a directed cycle).[]To construct a sample for strong connectivity, start with the graph F 00 consisting of adirected cycle of length 2. Construct Fi by running algorithm 20 on input Fi�1 for i = 1; 2; : : :. In step (1) of algorithm 20 double each redundant edge in Fi�1. Choose as the gadget forthe representatives v1; : : : ; vd of v the directed cycle v1; v01; v2; v02; : : : ; vd; v0d; v1 consisting ofthe representatives of v and a set fv01; : : : ; v0dg of new vertices. Note that at this point manydi�erent samples could be constructed by choosing di�erent numberings in algorithm 20 butthis will not a�ect the size of the graphs in the sample. The �rst three graphs F 00, F 01, andF 02 in a possible sample for strong connectivity are depicted in �gure 3. In the remainderof this paper the sequence F 00; F 01; : : : stands for an arbitrary but �xed sample for strongconnectivity constructed according to the rules we have just described.Lemma 7 There exists a function f(n) =
(log n) such that there is a graph on n nodes ofcomplexity f(n) with respect to strong connectivity for any n � 1.14

(4) For each v in G1 of degree d, number the representatives of v as follows: �x a forwardbranching T (v) that spans the gadget constructed for v in step (3) and that is rootedat a representative w for v. Assign numbers 1; 2; : : : ; d to the representatives of v innondecreasing order of their distance from w in T (v) (hence, w is numbered 1).(5) For a vertex v in G1 of indegree p and outdegree q, number the p + q edges incidenton v as follows: if v 6= x, assign number 1 to the unique incoming edge marked in step(2); the outgoing edges receive numbers 2 : : : 2 + q � 1 and the numbers 2 + q : : : p+ qare assigned to the other incoming edges. If v = x, then assign the numbers 1 : : : p tothe outgoing edges and the numbers p + 1 : : : p+ q to the incoming edges.(6) For each edge (u; v) in G1 that is the ith edge incident on u and the jth edge incidenton v, add an edge from the ith representative of u to the jth representative of v in G0(with respect to the numbering de�ned in step (4)).Theorem 4 The graph G0 has complexity at least k + 1 with respect to some vertex y andis linear with respect to y, provided that P satis�es conditions (C10)-(C40).Proof. Fix a trace t for G with respect to vertex x of length k. Since G is linear with respectto x, it is of the form T + A where T is a forward branching rooted at x and A is a set ofessential edges in G. Hence, we can extend trace t to a trace t0 for G1 with respect to xhaving length k + 1. Thus, cP (G1; x) � k + 1.The graph G1 is a contraction of G0. Hence, by condition (C30) the graph G0 is a P -graph. By condition (C40), the de�nition of a gadget, and algorithm 2', G1 is an essentialcontraction of G0. Since c(G1; x) � k + 1, lemma 5 gives us cP (G0; y) � k + 1 for any vertexy collapsed into x. It remains to be shown that G0 is linear with respect to at least one suchvertex y. Let y be the root of forward branching T (x) spanning the gadget for x in G0 (seestep (4) of algorithm 2'). Let B denote the set of edges in G0 corresponding to edges in G1.Note that these edges are exactly the redundant edges in G0. We shall establish that G0 islinear with respect to y by proving that there exists a forward branching in G0 rooted at yand containing all edges of B.For any vertex w 6= y in G0 belonging to the gadget of some vertex v and having noincoming edge in B, de�ne e(w) to be the unique edge in T (v) whose head is w. Let B0 bethe set fe(w) : w 2 V (G0), w 6= y and w has no incoming edge in Bg. We shall now provethat every vertex in G0 is reachable from y by edges in B [B 0. Since each vertex in G0 otherthan y has exactly one incoming edge in B [B0 and y has none, this implies that the edgesin B [B0 form a forward branching in G0 rooted at y; hence, G0 is linear with respect to y.13

branching in H 0 rooted at x, A0 is a minimal augmentation for T 0 in H 0, and there is a tracefor T 0+A0 with respect to x having length k. Since each collapsed subgraph in H is stronglyconnected (condition (C20)), we can combine T 0 with forward branchings for the collapsedsubgraphs to form a forward branching T in H rooted at an arbitrary vertex y collapsed intox. Let A be the edges of A0 plus the edges in the collapsed subgraphs of H that are not inT . The graph T 0+A0 is a contraction of T +A. By (C30) T +A is a P -graph and T 0+A0 isindeed an essential contraction of T + A. By the induction assumption there exists a tracefor T + A with respect to y having length at least k. By condition (C30) an edge of H 0 isredundant i� the corresponding edge of H is redundant. Moreover, all edges in the collapsedsubgraphs in H are essential. Therefore, the forward branching T is an optimal branchingrooted at y and A is a minimal augmentation for T in H. Hence, there is a trace for H withrespect to y having length at least k + 1.[]Corollary 4 If H 0 is an essential contraction of H, then cP (H 0) � cP (H).[]Condition (C40) is identical with condition (C4). As in the undirected case, we call thegraph GS a gadget for S. To illustrate the notion of a gadget, consider strong connectivity.Let j S j=j S0 j and S \ S0 = ;. The directed cycle alternating between vertices of S andthose of S0 is a gadget for S.It turns out that conditions (C10)-(C40) guarantee the existence of a sample for a digraphproperty. Algorithm 20 below provides a means of constructing such a sample for any digraphproperty P satisfying these conditions. It is similar to algorithm 2 although more involved.A P -graph H is linear with respect to vertex x if its edge set can be partitioned into aforward branching rooted at x and a set of essential edges.Algorithm 2': Increasing the complexity of a digraph.Input P -graph G of complexity k with repect to x and linear with respect to x.Output P -graph G0 of complexity � k + 1 with respect to some vertex y and linear withrespect to y.(1) Add edges to G so that all edges in the resulting graph G1 are P -redundant (e.g., bydoubling all essential edges).(2) Let T be a forward branching in G1 rooted at x. Mark all edges of G1 that are in T .(3) For each v in G1 of degree d, do the following: create d new vertices v1; : : : ; vd in G0which we call the representatives of v. Add to G0 a gadget for the representatives ofv whose vertex set is the set of representatives plus a collection of new vertices (thesecollections are disjoint for di�erent vertices of G1).12

forward branching TH rooted at a �xed vertex x of H (and containing a minimumnumber ofP -redundant edges). We call TH an optimal branching inH rooted at x and A (see algorithm1), as before, a minimal augmentation for TH in H.The following result is the analog of theorem 1 for the directed case.Theorem 3 Algorithm 10 computes a minimal spanning P -subgraph of G for any digraphproperty P satisfying (C10) and (C20).Proof. Similar to proof of theorem 1.[]Given a digraph property P (satisfying (C10) and (C20)), a trace for P -graph H withrespect to root x is a sequence H0; : : : ;Hk of subgraphs of H such that H0 = H, Hk is aminimal spanning P -subgraph of H, and Hi (0 < i � k) is of the form T + A where T isan optimal branching in Hi�1 rooted at x and A is a minimal augmentation for T in Hi�1.We call k the length of the trace. The P-complexity of H with respect to x is the maximumlength of a trace for H with respect to vertex x; it is denoted by cP (H;x). We de�ne theP-complexity of H, denoted by cP (H), as maxfcP (H;x) : x 2 V (H)g. As in the undirectedcase, we denote the P -complexity of H by c(H) if the property P is understood, and we callan in�nite sequence H0;H1; : : : of digraphs such that cP (Hi) � i (i � 0) a sample for P .The notions of contraction and essential contraction of a graph H are de�ned as forundirected graphs. If H 0 is a contraction of H, then there is a natural correspondencebetween the vertices of H and those of H 0; the correspondence is 1-1 for those nodes inH not belonging to a collapsed subgraph. We say that a node in H is collapsed into thecorresponding node in H 0.Condition (C30) is identical with condition (C3). The following result is reminiscent oflemma 1.Lemma 5 If H 0 is an essential contraction of P -graph H, then the complexity of H 0 withrespect to a vertex x is not larger than the complexity of H with respect to any vertex ycollapsed into x.Proof. By condition (C30) digraph H 0 has property P and cP (H 0) is indeed well-de�ned. Weprove the following: if H 0 is an essential contraction of H and there is a trace t0 for H 0 withrespect to some root x, then there is a trace t for H at least as long as t0 with respect to anyvertex belonging to the set of vertices of H collapsed into x. We show this by induction onthe length of t0.The statement trivially holds if the length of t0 is 0. Assume it holds if the length of t0 isk � 0. Suppose that there is a trace t0 for H 0 with respect to x having length k + 1. Hence,H 0 is of the form T 0 + A0 where T 0 and A0 have the following properties: T 0 is an optimal11

Let us call a graph in which each vertex has degree � 3 a 3 � graph. Let P=\2-edge-connectivity" and P 0=\biconnectivity".Corollary 2 If a graph H is a 3 � graph, then cP (H) � cP 0(H).Proof. By induction on cP (H). The induction base is clear with lemma 4. Assume thatthe claim holds for cP (H) � k � 1. Fix an H with cP (H) = k. Thus, H = T + A withcP (T + A) = k � 1 where T is an optimal tree in H with respect to P and A is a minimalaugmentation for T in H (with respect to P). By lemma 4, an edge in H is P -redundant i�it is P 0-redundant. Hence, T is an optimal tree in H with respect to P 0 and A is a minimalaugmentation for T in H with respect to P 0. Since T + A is a 3 � graph the inductionhypothesis gives us cP 0(T +A) � k � 1 and hence cP 0(H) � k.[]Each Fi is a 3-graph and hence F0; F1; : : : is a sample for biconnectivity as well. Thus, weget the following result.Corollary 3 For biconnectivity, there exists a function f(n) =
(log n) such that there is agraph on n vertices with complexity f(n) for any n � 1.Proof. Similar to proof of corollary 1.[]Corollaries 1 and 3 establish that Algorithm 1 takes
(log n) iterations for 2-edge-connectivityand biconnectivity.2.2 Properties of DigraphsLet G be a directed graph. A forward branching ([4]) rooted at x is a spanning tree of Gin which x has in-degree zero and all other vertices have in-degree one. We assume that allforward branchings are rooted at a �xed vertex x of G.It turns out that the development carried out above for undirected graph propertiescarries over to digraphs with some modi�cations. We distinguish conditions and algorithmsfor the directed case from the corresponding conditions and algorithms for the undirectedcase by adding a single quote, e.g., algorithm 10 computes a minimal spanning subgraph withproperty P .The de�nitions of digraph property, P -graph, P -subgraph, and P -redundant and P -essential edges carry over from the undirected case without change. Condition (C10) isidentical with condition (C1). Observation 1 holds for any digraph property satisfying (C10).For condition (C20) we require that the graph be strongly connected.Algorithm 10 �nds a minimal spanning P -subgraph of digraph G. It has a structure similarto that of algorithm 1; instead of computing a spanning tree in step (2.1), it computes a10

F0

F1

F2

Figure 2: F0, F1, and F2.9

in H 0 containing the same external edge. Therefore, H 0 is 2-edge-connected. Conversely, ifH 0 is 2-edge-connected any external edge is on a cycle inH 0 and that cycle yields a cycle inHcontaining the same external edge. Since each collapsed subgraph is 2-edge-connected, everyedge of H is on a cycle and hence H is 2-edge-connected. For (C4) �x a set S = fv1; : : : ; vsg.Let v01 : : : v0s be s new vertices. The cycle v1v01v2v02 : : : vsv0sv1 is a gadget for S (see also Figure1).[]By theorem 2 and lemma 2, algorithm 2 may be used to construct a sample for 2-edge-connectivity. We �ll in the details for steps (1) and (3) of algorithm 2. We start theconstruction of the sample with graph F0 consisting of two vertices with two parallel edgesbetween them. The graph F0 is shown in �gure 2. Assume inductively that we have con-structed Fi�1. In step (1) of algorithm 2 we double the essential edges in Fi�1. In step (3) wechoose as gadget for fv1; : : : ; vdg the cycle v1; v01; v2; v02; : : : ; vd; v0d; v1, where fv01; v02; : : : ; v0dg isa set of d new vertices. The �rst three graphs F0, F1, and F2 in a possible sample are givenin �gure 2. Note that we may obtain di�erent samples for di�erent edge numberings (step(2) of algorithm 2) but this does not a�ect the the size of the graphs in the sample. In thesequel Fi denotes a graph in a �xed sample for 2-edge-connectivity constructed according tothe above rules.Lemma 3 Let ni,mi, and ei denote the number of vertices, edges, and essential edges, re-spectively, in Fi (i � 0). These quantities satisfy the following recurrence relations:ni+1 = 4(mi + ni);mi+1 = mi + ei + ni+1;ei+1 = ni+1:with initial conditions n0 = m0 = e0 = 2. Thus, ni = 4 � 9i�1 and mi = 5 � 9i�1 for i > 0.[]Corollary 1 For 2-edge-connectivity, there exists a function f(n) =
(log n) such that thereis a graph on n vertices of complexity f(n) for any n � 1.Proof. To construct a graph of complexity
(log n) with exactly n vertices, start with Fiwhere i is the maximum integer such that ni � n and increase the number of vertices in Fiby repeatedly subdividing an essential edge.[]Let us now turn our attention to biconnectivity. Unfortunately, biconnectivity does notsatisfy condition (C3). We do however have the following well-known result.Lemma 4 If G is a graph with at least three vertices in which each vertex has degree � 3,then G is biconnected i� G is 2-edge-connected.[]8

Algorithm 2 below provides a method to compute a sample for any graph propertyP satisfying conditions (C1)-(C4). A linear graph is a P -graph whose edge set can bepartitioned into a spanning tree and a set of essential edges.Algorithm 2: Increasing the complexity of a graph.Input Linear graph G of complexity k.Output Linear graph G0 of complexity � k + 1.(1) Add edges to G so that all edges in the resulting graph G1 are P -redundant (e.g., bydoubling all essential edges).(2) For each vertex v number the incident edges in G1 as e1; : : : ; ed (d=degree of v in G1).(3) Construct G0 from G1 as follows: for each v in G1 of degree d create d new verticesv1; : : : ; vd in G0; we call these vertices the representatives for v. For each edge (u; v)in G1 that is the ith edge incident on u and the jth edge incident on v (in G1), addan edge (ui; vj) to G0. Finally, for each vertex v of G1, add to G0 a gadget for therepresentatives of v whose vertex set is the set of representatives plus a collection ofnew vertices (these collections are disjoint for di�erent gadgets).Theorem 2 G0 is a linear graph of complexity at least k+1, provided P satis�es conditions(C1)-(C4).Proof. Since input graph G is linear, it is of the form T +A where T is a spanning tree in Gand A is a set of essential edges in G. Since every edge of G1 is redundant, T is an optimaltree in G1. Hence c(G1) � k + 1.Graph G1 is a contraction of G0. Hence, by (C3), G0 is a P -graph. By condition (C4)and the de�nition of a gadget, G1 is an essential contraction of G0. Since c(G1) � k + 1,lemma 1 gives us c(G0) � k + 1. To see that G0 is linear, note that we obtain a spanningtree for G0 by combining the edges of G0 corresponding to edges of G1 with a subset of theedges in the gadgets. By (C4) all remaining edges are essential in G0.[]We shall now apply the above results to a concrete graph property: 2-edge-connectivity.Lemma 2 2-edge-connectivity satis�es conditions (C1)-(C4).Proof. Conditions (C1) and (C2) are immediate from the de�nition of 2-edge-connectivity.For (C3), let H 0 be a contraction of H. First, note that H is connected i� H 0 is connected(with condition (C2)). Call an edge occurring both in H and H 0 an external edge. If H is2-edge-connected, every external edge lies on a cycle in H. This cycle translates into a cycle7

vd

vd-1

v2

v1

v’d-1

v’d

v’2

v’1

Figure 1: A gadget for 2-edge-connectivity
6

collapsing disjoint subsets of vertices of H whose induced subgraphs in H have property P(into single vertices); we refer to a subgraph of H induced by a collapsed subset as a collapsedsubgraph. Graph H 0 is an essential contraction of a P -graph H if H 0 is a contraction of Hand the edges in the collapsed subgraphs are P -essential in H. Condition (C3) implies thatproperty P is closed under contractions.(C3) Let H 0 be a contraction of a graph H. Then, H has property P i� H 0has property P .We note the following important consequence of (C3).Lemma 1 If H 0 is an essential contraction of P -graph H, then cP (H 0) � cP (H).Proof. : Fix a P -graph H and an essential contraction H 0 of H. First, note that (C3) impliesthat H 0 has property P ; therefore the complexity of H 0 is well-de�ned. We prove the lemmaby induction on the complexity of H 0. If c(H 0) = 0, then certainly c(H) � c(H 0).Let c(H 0) = k > 0. Let T 0 + A0 be a graph of complexity k � 1 where T 0 is an optimaltree in H 0 and A0 is a minimal augmentation for T 0 in H 0. Since each collapsed subgraph inH is connected (condition (C2)), we can combine T 0 with spanning trees for the collapsedsubgraphs to form a spanning tree T of H; the tree T is an optimal tree in H. Let A be theedges of A0 plus the collapsed edges of H that are not in T . The graph T 0+A0 is a contractionof T +A. By (C3) T +A is a P -graph and T 0+A0 is indeed an essential contraction of T +A.By the induction assumption c(T +A) � k� 1. Moreover, by (C3) and the de�nition of H 0,the edges of A are essential in T +A. We conclude that c(H) � k.[]The last constraint is rather technical.(C4) For any nonempty and �nite set S there exists a P-graph GS = (S[S0; E)such that the edges of GS are essential in any P -graph G0 = (V 0; E 0) with S[S 0 �V 0, E � E 0 (i.e., G0 contains GS as a subgraph), and such that no edge of E0�Eis incident with a vertex in S 0.We call the graph GS a gadget for S. To illustrate the notion of a gadget, consider 2-edge-connectivity. Let S = fv1; : : : vdg and let S0 = fv01; : : : ; v0dg. The cycle alternating betweenthe vertices of S and those of S0 is a gadget for S (see Figure 1). To see this, note that ifG0 is a 2-edge-connected graph containing this cycle as a subgraph and such that no edgesother than those of the cycle are incident with vertices of S0, then the nodes of S0 all havedegree 2 in G0; hence, all edges of the cycle are essential in G0.5

Proof. By induction on the number of iterations of the while loop, one shows that H,as computed in step (2.3), is always a spanning P -subgraph of G. To prove termination,consider one execution of the while-loop. Since TH is an optimal tree in H, it does notcontain all redundant edges of G. Therefore, the number of redundant edges decreases by atleast one at each iteration and algorithm 1 terminates properly.[]By the proof of theorem 1 and observation 1 the number of iterations of algorithm 1is bounded from above by the number of P -redundant edges in G. In many cases a muchstronger bound holds. In the sequel, n denotes the number of vertices of the input graph G.In [KR] it is shown that O(log n) iterations of algorithm 1 yield a minimal 2-edge-connectedspanning subgraph of G or a minimal biconnected spanning subgraph of G. Below we showthat these bounds are tight, i.e., the number of iterations of algorithm 1 on a graph with nnodes is �(log n) in the worst case for the above properties. Instead of deriving lower boundsspeci�cally for 2-edge-connectivity and biconnectivity, we proceed within the framework ofgeneral graph properties; accordingly, the results we shall derive will be applicable to othergraph properties.To capture the worst-case behavior of algorithm 1, we introduce the concept of the P-complexity of a graph : informally, the P -complexity of a P -graph H is the maximumnumberof iterations that algorithm 1 may need in order to compute a minimal spanning P -subgraphof H. More precisely, we de�ne a trace for P -graph H to be a sequence H0;H1; : : : ;Hk ofsubgraphs such thatH0 = H,Hk is a minimal spanning P -subgraph ofH, andHi (0 < i � k)is of the form T +A where T is an optimal tree in Hi�1 and A is a minimal augmentation forT in Hi�1. The integer k is the length of the trace. The P -complexity of H is the maximumlength of a trace for H. If the property P is clear, we shall use the term \complexity" insteadof \P-complexity". We denote the P -complexity of graph H by cP (H), or c(H) if propertyP is understood. We call an in�nite sequence of graphs H0;H1;H2; : : : such that cP (Hi) � ifor all i � 0 a sample for P .If we do not impose any additional restrictions on P , there may be no sample. Forinstance, let P denote connectedness (which satis�es (C1) and (C2)). In this case everygraph has complexity 1. We specify two more constraints on P that will guarantee theexistence of a sample for P . By analyzing how fast the size of the graphs in the sample growsas a function of the complexity, we shall derive lower bounds on the number of iterationsrequired by algorithm 1 for 2-edge-connectivity. Although biconnectivity does not satisfyboth constraints, we shall prove that a special property of the sample constructed for 2-edge-connectivity guarantees that it is a sample for biconnectivity as well.A contraction of a graph H (that may not have property P) is obtained from H by4

In this paper we concern ourselves with the problem of �nding a minimal spanning P -subgraph of a P -graph G, i.e. a spanning P -subgraph in which every edge is P -essential.We restrict our attention to properties that satisfy conditions (C1) and (C2) below:(C1) P is monotone, i.e., the addition of an edge to a P -graph results in P -graph;(C2) any P -graph is connected.As an immediate consequence of condition (C1) we note the following observation.Observation 1 Let G be a P -graph and let H be a spanning P -subgraph of G. Any edgethat is P -redundant in H is P -redundant in G.There is an obvious (sequential) algorithm for computing a minimal spanning P -subgraph ofG: examine the edges one at a time; remove an edge if it is redundant in the current graph.By observation 1 the resulting subgraph is minimal.The following algorithm is a generalization of algorithms given in [9] and [4] (for �nd-ing a minimal 2-edge-connected, a minimal biconnected, and a minimal strongly connectedspanning subgraph of a graph) to graph properties satisfying (C1) and (C2). This algorithmhas been shown to outperform the obvious algorithm for 2-edge-connectivity and biconnec-tivity, and we believe that this is true for a number of other properties of undirected graphs.Moreover, it is inherently easier to parallelize.Algorithm 1: Computing a minimal spanning P -subgraph of G.Input P -graph G.Output Minimal spanning P -subgraph H of G.(1) H := G;(2) While H has P -redundant edges, do:(2.1) Compute a spanning tree TH inH with a minimumnumber of P -redundant edges;(2.2) Compute a minimal subset A of edges in H such that TH +A has property P ;(2.3) H := TH +A.A spanning tree TH as constructed in step (2.1) is called an optimal tree in H and theset A constructed in step (2.2) is called a minimal augmentation for TH (in H).Theorem 1 Algorithm 1 computes a minimal spanning P -subgraph of G for any propertyP satisfying (C1) and (C2). 3

linear-time algorithm for �nding a minimal spanning strongly connected subgraph is givenin [12]; however, this algorithm is incorrect ([13]).In this paper we generalize the high-level algorithm of ([4], [9]) into a general algorithmfor �nding a minimal spanning subgraph with a given property and analyze its worst-casecomplexity. In section 2 we give a tight lower bound of
(log n) on the worst-case number ofiterations of the algorithm for 2-edge-connectivity, biconnectivity, and strong connectivity;this leads to an
(m+n log n) lower bound on the sequential running time of these algorithms.We strengthen this bound by showing that the lower bound on the running time holds ifwe allow various types of graph contractions. The method we describe for constructingworst-case graphs is fairly general and may be applicable to other graph properties.In section 3 we describe re�nements of the basic algorithms for 2-edge-connectivity andbiconnectivity and obtain the �rst linear time algorithms for these properties. These algo-rithms still need a logarithmic number of iterations but we perform certain contractions andtransformations on the current graph so that its size goes down by a constant factor witheach iteration. This result also reduces the work performed by the parallel algorithms forthese problems by a logarithmic factor. Finally, we provide some strong evidence that asimilar strategy will not lead to a linear-time algorithm for the strong connectivity property.Note: We have recently learned that Han and Tarjan ([6]) have independently discoveredlinear time algorithms for �nding a minimal 2-edge-connected spanning subgraph and for�nding a minimal 2-connected spanning subgraph (see section 3).2 Worst-Case Behavior of Algorithms for Finding Min-imal Subgraphs2.1 Properties of Undirected GraphsIn this section we describe an algorithm for �nding a minimal spanning subgraph of a graphfor various properties of undirected graphs. We examine the number of iterations the al-gorithm requires in the worst case. We describe a fairly general technique for constructingworst-case graphs. We apply the technique to 2-edge-connectivity and show that it works forbiconnectivity as well. In the next section we generalize the development to directed graphs.We allow self-loops and multiple edges in our graphs. A graph property P is a Boolean-valued function on graphs. If P (G) is true for some graph G, we say that G has property Por G is a P -graph. A P -subgraph of G is a subgraph of G that has property P . An edge eof a P -graph G is P -redundant in G if G � e has property P , otherwise e is P -essential inG. We may not mention G or P if the graph or the property is clear from the context.2

1 IntroductionLet P be a monotone graph property. In this paper we consider the following problem: givena graph G having property P , �nd a minimal spanning subgraph of G with property P , i.e.,a spanning subgraph of G with property P in which the deletion of any edge destroys theproperty.The corresponding problem of �nding a minimum spanning subgraph having a givenproperty has been widely studied. We mention two results: Chung and Graham ([1], [3])proved that the problems of �nding a minimum k-vertex-connected and k-edge-connectedspanning subgraph are NP -hard for any �xed k � 2. Yannakakis ([15]; see also [10]) showedthat the related problem of deleting a minimumset of edges so that the resulting graph has agiven property is NP -hard for several graph properties (e.g., planar, outerplanar, transitivedigraph).There is a natural sequential algorithm for �nding a minimal spanning subgraph withproperty P : examine the edges of G one at a time; remove an edge if the resulting graph hasproperty P . This gives a polynomial time algorithm for the problem if the property P canbe veri�ed in polynomial time. However, for most nontrivial properties the running time ofthe algorithm is at least quadratic in the input size. Further, this algorithm seems hard toparallelize. Our goal is to obtain e�cient sequential and parallel algorithms for the problem.The problem at hand may be phrased in the very general framework of independencesystems described by Karp, Upfal, and Wigderson ([7]): an independence system is a �niteset together with a collection of subsets, called independent sets, with the property thatany subset of an independent set is independent. De�ne a subset S of edges in G to beindependent if the graph G � S has property P . Finding a minimal spanning subgraphwith property P amounts to �nding a maximal independent set in the independence systemwe just de�ned. E�cient parallel algorithms for �nding a maximal independent set in anindependence system are known for the special case where the size of a minimal dependentset is 2 or 3 ([11], [5], [2], [8]). For the problems that are of interest to us minimal dependentsets may have nonconstant size and hence, a di�erent approach is needed.The minimal spanning subgraph problem has been studied earlier for the property ofstrong connectivity (or transitive compaction [4]) and for 2-edge-connectivity and biconnec-tivity ([9]). For these problems algorithms are given in ([4], [9]) that run in O(m+ n log n)sequential time and can be implemented as NC algorithms; here n and m represent thenumber of vertices and edges in the input graph. Both papers have the same high-levelalgorithm that is shown to terminate in O(log n) stages for the properties considered, andboth papers leave open the question of whether this bound is tight. We also note that a1

The Complexity of Finding Minimal SpanningSubgraphs �Pierre Kelsen�Vijaya Ramachandran�Department of Computer SciencesUniversity of Texas, Austin, TX 78712February 6, 1991AbstractLet P be a property of graphs (directed or undirected). We consider the followingproblem: given a graph G that has property P , �nd a minimal spanning subgraph ofG with property P . We describe an algorithm for this problem and prove that it iscorrect under some rather weak assumptions about P . We then analyze the number ofiterations of this algorithm. By suitably restricting the graph properties, we devise ageneral technique to construct graphs for which the algorithm requires a large numberof iterations.We apply the above technique to three concrete graph properties: 2-edge-connectivity,biconnectivity, and strong connectivity. We obtain a tight lower bound of
(logn) onthe number of iterations of the algorithm for �nding minimal spanning subgraphs withthese properties; this resolves open questions posed earlier with regard to these proper-ties. This also implies that the worst case sequential running time of the algorithm forthese three properties is
(m+n logn). We then give re�nements of the basic algorithmthat yield the �rst linear-time algorithms for �nding a minimal 2-edge-connected and aminimal biconnected spanning subgraph of a graph. Finally, we provide evidence thatthe problem of re�ning the algorithm to �nd a minimal strongly connected spanningsubgraph in linear time is more di�cult.
o �This work was supported in part by NSF grant CCR89-10707.E-mail addresses for the authors: kelsen@cs.utexas.edu (Pierre Kelsen) and vlr@cs.utexas.edu (VijayaRamachandran). 1

