[12] K. Simon, Finding a minimal transitive reduction in a strongly connected digraph with

linear time, manuscript, 1989.
[13] K. Simon, Personal communication, March 1990.
[14] W. Tutte, Graph theory, Addison-Wesley, 1984.

[15] M. Yannakakis, Node- and edge-deletion NP-complete problems, Proc. 10th Ann. ACM
Symp. on Theory of Computing, New York, 1978, pp. 253-264.

32

in a dag with ©(n'™¢) sources and sinks. Computing reachability for these pairs, however,

requires (n?*~%) time.
References

[1] F. Chung, R. Graham, Private communication, 1977; cited in [3].

[2] E. Dahlhaus, M. Karpinski, An efficient algorithm for the 3MIS problem, Technical
Report TR-89-052, September 1989, ICSI, Berkeley, CA.

[3] M. Garey, D. Johnson, Computers and Intractability: a Guide to the Theory of NP-
Completeness, Freeman, San Francisco, CA, 1979.

[4] P. Gibbons, R. Karp, V. Ramachandran, D. Soroker, R. Tarjan, Transitive compaction
in parallel via branchings, J. Algorithms, vol. 12, 1991, pp. 110-125.

[5] M. Goldberg, T. Spencer, A new parallel algorithm for the mazximal independent set
problem, STAM J. Computing, vol. 18, 1989, pp.419-427.

[6] X. Han, An algorithmic approach to extremal graph problems, draft, Department of
Computer Sciences, Princeton University, NJ, 1991.

[7] R. Karp, E. Upfal, A. Wigderson, The complexity of parallel search, J.C.S.S., vol. 36,
1988, pp.225-253.

[8] P. Kelsen, An efficient parallel algorithm for finding a mazimal independent set in hy-
pergraphs of dimension 3, manuscript, Department of Computer Sciences, University of
Texas, Austin, TX, January 1990.

[9] P. Kelsen, V. Ramachandran, On finding minimal 2-connected subgraphs, Tech. Report
TR-90-16. June 1990, Department of Computer Sciences, University of Texas, Austin,
TX 78712; extended abstract in Proceedings of the Second ACM-SIAM Symposium on
Discrete Algorithms, San Francisco, 1991, pp. 178-187.

[10] J. Lewis, M. Yannikakis, The node-deletion problem for hereditary properties is NP-
complete, J. C. S. S., vol. 20, 1980, pp.219-230.
[11] M. Luby, A simple parallel algorithm for the mazimal independent set problem, STAM

J. Computing, vol. 15, 1986, pp. 1036-1053.

31

Proof. We prove the lemma by induction on :. It holds for ¢ = 0 since the set containing
an incoming (essential) edge for each vertex other than x constitutes a forward branching
in Dy. Assume inductively that D; contains a forward branching F rooted at some vertex x
and having the properties stated above. Let D,y be constructed as decribed above. Use y
to denote the root of the branching 7'(x) spanning the gadget for x (see step (4) of algorithm
2"). Let B denote the set containing all redundant edges of D,;; and containing, for each
vertex of D that is not a source, an arbitrary incoming edge of D. Exactly as in the proof

of theorem 4 one shows that there exists a forward branching rooted at y and containing all

edges in B.[]

Theorem 11 Let Gy be the graph obtained from D; by doubling external essential edges
(step (1) of algorithm 2°). The graph Gy is obtained by shrinking all essential components
in Diy1 and contracting all mazimal chains in the resulting graph. Furthermore, D; is of the
form T + A where T is an optimal branching in Gy and A is a minimal augmentation for T

in G1. Hence, D; may be obtained from D;yq by running one iteration of algorithm 1’c.

Proof. The essential components in D,y are exactly the gadgets for the representatives of
the external vertices in D;. Let G be the graph obtained by shrinking these gadgets in D, 4.
The only essential edges in G are those in D. By the second property of D, the graph G has
no chain of length greater than 2. Hence, contracting chains in G does not change G and
G = G1. This proves the first part of the theorem.

By lemma 15 the graph D, has a forward branching F rooted at some vertex x with the
property that it contains all the redundant edges in D; and also contains, for each vertex of
D that i1s not a source, an incoming edge in D. Since the vertices of D other than the sources
of D are the only nodes in Gy that have an incoming essential edge in Gy, the branching F
is an optimal branching in G7. The second statement of the theorem follows.|]

We call the sequence of graphs obtained at the end of the while-loop in algorithm 1’c a
trace for algorithm 1’c. By theorem 11 the graphs D;, D;_1,..., Do form a possible trace for
algorithm 1’c. Let p, s, and ¢ denote the number of vertices, sources and sinks, respectively,
in D. It can be shown that D, has size O(ci(s +1)+ p) for a constant ¢ that does not depend
on p. By choosing p=n, s+t =n'""% 0< e <1, and i = O(logn), we see that the worst
case running time of algorithm 1’c on the graph D; having ©(n) vertices and O(n) edges is
Q(nlogn).

By examining the family of graphs D; constructed above, it appears that what is needed
for a linear-time algorithm is an operation that reduces dags of essential edges at each

iteration. This seems to require determining the reachability for every (source,sink)-pair

30

that is contained in H (the intermediate subgraph of the input graph) at each iteration of
algorithm 1’c.

Fix a dag (directed acyclic graph) D . We assume that D has the the following three
properties. First, the edges of D are essential in any strongly connected graph G that satisfies
the following two conditions: G contains D as a subgraph, and no edge of G that is not an
edge of D is incident with a vertex of the dag other than a source or a sink. Second, we
require that D has no chain of length greater than 2. Third, each source has exactly one
outgoing edge and each sink has exactly one incoming edge. One can construct a dag on
s sources and t sinks having these 3 properties by taking any dag D’ with s sources and ¢
sinks in which each vertex has indegree or outdegree at least 2, subdividing each edge of D’
by a new vertex, and adding edges into the sources form s new vertices and adding edges
from the sinks to ¢t new vertices.

The graph, Dy, the first graph in the sequence, is defined as follows: the vertices of Dy
are the vertices of the dag D plus one new vertex x. The edges of Dy are the edges of D
(i.e., D is a subgraph of Dy) plus an edge from x to every source of D and an edge from
every sink of D to x. See figure 5(a) and 5(b) for an example of D and Dj.

Call an edge of D; external if it is not an edge of D. A vertex of D; is external if it is
not a vertex of D or it is a sink or a source in D. We construct D; from D;_; by running
algorithm 2’ (see section 2.2) on input D,;_; with several modifications. First, we assume
that there is a forward branching F in D;_; with the property that it contains all redundant
edges of D;_; and contains, for each vertex of D that is not a source, an incoming edge in
D. The importance of this assumption will become clear below. In step (1) we only double
the external essential edges. In step (2), instead of choosing an arbitrary forward branching
T, we choose the branching F' described above. Steps (3), (4), and (5) are only performed
for external vertices. For each vertex that is not external, we add a unique copy to G'. Step
(6) is only done for external edges. For each edge of D in Gy we proceed as follows: if an
endpoint of the edge is neither a source nor a sink in D, then the corresponding endpoint
in G’ is the copy of that endpoint in G’. If the endpoint is a source or a sink of D (i.e.,
an external vertex) the corresponding endpoint in G’ is defined as for endpoints of external
edges (based on edge number at that endpoint). These modifications ensure that the dag
D is a subgraph of essential edges in each D;, a fact that is crucial for the derivation of the

lower bound. The graph D; constructed from graph Dy in figure 5(b) is depicted in figure

5(c).

Lemma 15 [n each graph D; there exists a forward branching containing all redundant edges

in D; and containing, for each vertex of D that is not a source, an incoming edge in D.

28

Corollary 14 Assume the input graph has n vertices and less than n redundant edges. After

7 iterations of the modified algorithm, the number of vertices in H is less than .82n.

Proof. Let H; be the graph H at the end of the :th iteration of the modified algorithm.
It follows from an earlier result that r(H;y1) < 2/3 - r(H;) for any ¢. We have r(Hy) < n
and hence, r(H;) < (2/3)"n. By theorem 10, n(H;) < 14r(Hz). The claim then follows by
checking that (2/3)7 - 14 < .82.[]

By corollary 14 and the fact that there is a linear-time procedure for finding a minimal
augmentation ([9]), we conclude that the modified algorithm for biconnectivity runs in linear

time.

3.3 Finding a Minimal Strongly Connected Spanning Subgraph

In this section we consider the problem of finding a minimal strongly connected spanning
subgraph in a strongly connected digraph. This problem has withstood all of our attempts
so far to obtain a linear-time solution. We present evidence below that this problem is indeed
significantly harder than the problems for undirected graphs that we have considered earlier.

Fix a strongly connected digraph H. Let R(H) denote the set of redundant edges of H.
An essential component of H is a strongly connected component of H — R(H). A chain of
H is a path in H all of whose internal vertices have in-degree and out-degree 1 in H. Thus,
all edges of a chain are essential in H.

The operation of shrinking an essential component in H consists of collapsing the vertex
set of an essential component in H. The operation of contracting a chain consists ot collapsing
the internal vertices of the chain in H.

Consider the following algorithm, referred to as algorithm 1’c: modify algorithm 1’ (c.f.
section 2.2) by shrinking all essential components in H and contracting all maximal chains
in the resulting graph at the beginning of each iteration of the while-loop. An edge will be
in the output graph if it occurs in the input graph and was essential at some iteration of
algorithm 1’c. It can be shown that the output graph of algorithm 1’c is indeed a minimal
strongly connected spanning subgraph of the input graph.

Algorithm 1’c¢ is the natural analog of algorithm 1lc¢ for directed graphs. Unlike that
algorithm, however, it has a nonlinear lower bound on its worst-case sequential running
time. We shall construct a sequence of graphs D;, ¢« > 0, such that algorithm 1’c requires
Q(m + nlogn) operations in the worst case on a graph in this sequence (as usual, n and
m denote the number of vertices and edges, respectively, in the input graph). The key to

proving the lower bound is to exhibit an acyclic subgraph of essential edges of size Q(n)

27

Proof. We refer to the edges in the B;’s as the internal edges of H. Assume that H — S is
biconnected. Fix two adjacent edges e = (u,v) and ¢’ = (v/,v’) that are not internal in H.
Some simple cycle C in H — S contains e and ¢’. If C does not contain an internal edge, it is
also a simple cycle in H' — S containing ¢ and ¢’. Otherwise, it contains both ¢; and ¢, and
we get a simple cycle in H' — S containing ¢ and ¢’ by replacing the portion of C' consisting
of internal edges by the path ¢, u,c; in H — S.

Now consider two adjacent edges e and ¢’ in H — S such that only e is internal. A simple
cycle containing e and ¢’ in H — S gives a simple path in H' — S between ¢; and ¢; and not
including u. Hence, there is a simple cycle in H' — S containing both non-internal edges and
the edges (¢1,u) and (c2,u). We conclude that H' — S is biconnected.

The if-part of the theorem is proved similarly.|]

Corollary 12 Let H' be obtained from H by contracting a block chain in H. Let H" be a
minimal biconnected spanning subgraph of H' and let A denote the set of edges of H not in
H". Then, H — A is a minimal biconnected spanning subgraph of H.[]

Corollary 13 Let H' be obtained from H by contracting any number of block chains in
H. Let H" be a minimal biconnected spanning subgraph of H' and let A denote the set of
redundant edges of H not in H". Then, H — A is a minimal biconnected spanning subgraph

of H.[]

Proof. By induction on the number of block chains contracted in H.[]

We are now ready to state the main result of this section.

Theorem 10 If Q is obtained from H by first shrinking all essential blocks of H and then
contracting all maxzimal block chains in the resulting graph, then n(Q) < 14r(H).

Proof. To bound n(Q), we consider blk(Q), the block graph of Q). Let [denote the number of
leaves in blk(Q). From the way @ is constructed, it follows that any proper chain in blk(Q)
has length at most 4; thus, an arbitrary chain in blk(Q) has length at most 6. Each leaf of
blk(Q) is incident with at least 2 redundant edges in O; hence, | < r(H). Mark each node
of blk(Q) that is incident with a redundant edge of H. By applying lemma 14 we see that
blk(Q) has less than 6(2r(H) + 2r(H)) = 24r(H) vertices. Hence, Q° has less than 12-r(H)
cutpoints. Each vertex of Q° is either a cutpoint in Q° or it is incident with a redundant
edge of H. Thus, n(Q) < 12r(H) + 2r(H) = 14r(H) as claimed.[]

It the graph @ is obtained from H as described in theorem 10, we say that @ is a full
contraction of H. Consider a variation of algorithm 1 in which we replace H by its full

contraction at the end of each iteration of the while-loop.

26

in H. Now consider the case where H' is obtained from H by shrinking k4 1 essential blocks
of H. The key observation is that H' can be obtained by shrinking a single essential block
in a graph Hj, that is obtained from H by shrinking k essential blocks in H. Let A’ denote
the set of edges of Hj that are not in H”. By corollary 10 Hy — A’ is a minimal biconnected
spanning subgraph of Hy. Since Hj contains all redundant edges of H and any edge of Hj,
not in H” is redundant in H, we have A’ = A. Thus, the induction assumption applied to H

and Hj shows that H — A is a minimal biconnected spanning subgraph of H, as required.[]

The second operation on biconnected graphs is defined on the block structure of H¢. A block
chain in a biconnected graph H is an alternating sequence ¢y By ... ¢y Bycgiq of vertices and
essential blocks in H with the following properties: (i) each B; (1 < ¢ < k) has exactly two
cutpoints in H, ¢; and ¢;41; (ii) for 1 < ¢ < k, B, intersects exactly two blocks, namely B;_;
and B;y1 in ¢; and ¢;41, respectively; (iil) no vertex on any B; except possibly ¢; and c¢jqq
are incident with a redundant edge of H. A mazimal block chain in H is a block chain in H
not properly contained in any other block chain of H.

It is helptul to interpret block chains in an auxiliary graph which we shall now define.
The block graph of H ([14]), denoted by blk(H) is a bipartite graph whose vertices are the
cutpoints and blocks of H. A block is connected in blk(H) to exactly those cutpoints that
it contains in H. It is known that the block graph of H is a tree for any connected graph
H. Now consider a biconnected graph H. Define a mapping h from the vertices of H to the
vertices of blk(H®) as follows: for any vertex v that is a cutpoint in H¢, h(v) = v; if v is not
a cutpoint then h(v) is the block of H® containing v. The condensation of H, denoted by
H, is the graph blk(H) + {(h(u), h(v)) : (u,v) is a redundant edge in H}.

A chain in H is a path of vertices in H all of whose internal vertices have degree 2. A
chain in H is proper if its terminal vertices are cutpoints in H°. A maximal proper chain is

a proper chain of H not properly contained in another proper chain of H.

Observation 2 The sequence ¢1 By ...cpBrcprr is a maximal block chain in H iff it is a

maximal proper chain in H.

The operation of contracting the block chain ¢1 By ...ciBrcpir in H consists of deleting
in H all vertices in the blocks of this sequence except ¢; and ¢g11, adding a new vertex u

and two new edges (u,¢1) and (u, cxiq).

Theorem 9 Let H' be obtained by contracting the block chain ¢1 B ...cpBycyyr in the bi-
connected graph H. For any subset S of edges of H, H — S is biconnected iff H — S is

biconnected.

25

no internal endpoint of p belongs to B and both endpoints of p are nodes of B. The path p
is also a simple path in H' — S whose distinct endpoints lie on Cg. Using edges of Cg we
complete p into a simple cycle containing both edges of Cg and edges not in B. Since all
edges of Cp lie in a single block of H' — S, we conclude that H' — S is biconnected.

To prove the “if-part”, we proceed in a similar fashion. Assume that H'—.S is biconnected.
We first consider two adjacent edges e = (u,v) and € = (v,w) in H — S that are not in
B. Some simple cycle in H' — S contains both edges. From this cycle we get a simple path
in H' — S containing ¢ and ¢’ and having the following properties: no internal vertex of p
except possibly v lies on Cp and the endpoints of B either both belong to Cp or they are
adjacent in H' — S. The path p is also a simple path in H — S between the same endpoints.
If it is not the case that both endpoints of p belong to Cp, then they are adjacent in H' — S
and hence, they are adjacent in H — S. In this case ¢ and €’ lie on a simple cycle in H — S.
If both endpoints of p belong to Cp, they are nodes of B in H — S. We can join them by a
path completely contained in B and avoiding v. Again, we find that e¢ and €’ lie on a simple
cyclein H — S.

Now we take two adjacent edges e = (u,v) and ¢’ = (v, w) such that e is an edge of Cp
and ¢’ is not. Since H' — S is biconnected, some simple cycle in H' — S contains e and ¢’
This cycle yields a path p in H — S with the following properties: no edge of p is an edge
of B, the endpoints of p are two distinct nodes of B, and no internal vertex of p belongs to
B. Thus, by adding a path completely contained in B between the two endpoints of p, we
get a simple cycle containing both edges in B and edge not in B. Thus, H— S is biconnected.]]

Corollary 10 Let H' be obtained from a biconnected graph H by shrinking an essential
block in H. If H" is a minimal biconnected spanning subgraph of H' and A is the subset of
redundant edges of H that are not in H", then H — A is a minimal biconnected spanning

subgraph of H.

Proof. By construction all edges of H' that are not in H are essential in H'. Thus, H" =
H' — A and theorem 8 implies the lemma.|]

Corollary 11 Let H' be obtained from H by shrinking any number of essential blocks in H.
If H" is a minimal biconnected spanning subgraph of H' and A is the set of edges of H that

are not in H", then H — A is a minimal biconnected spanning subgraph of H.

Proof. By induction on the number k of essential blocks shrunk in H. The induction base

k = 0is trivial. Assume that the claim holds if H’ is obtained by shrinking at most & blocks

24

pointed out earlier condition (C3) does not hold for biconnectivity, i.e., by shrinking an es-
sential component in a biconnected graph we may loose some information that is necessary
to compute a minimal biconnected spanning subgraph. The new operation we define for
biconnected graphs is similar, though, to the shrinking of essential components: instead of
collapsing an essential component into a single vertex, it replaces it by a simple cycle. We
now define these two operations formally.

Fix a biconnected graph H for which the subgraph of essential edges, denoted by H*,
is not biconnected. An essential block of H is a block of H°. The graph H® need not be
connected. Thus, an essential block of H is either a single vertex, a single edge, or a maximal
biconnected subgraph of H® (with at least 3 vertices).

Let B be an essential block of H with at least 3 vertices. An internal vertex of B is a
vertex in B that is neither a cutpoint in H® nor is it incident with a redundant edge; we write
I(B) for the set of internal vertices of B. The operation of shrinking the essential block B
in H consists of deleting all edges of B in H as well as all internal vertices of B, connecting
the remaining vertices of B into a simple cycle in arbitrary order, and subdividing each edge
of this cycle with a new vertex. Thus, if uq,...,u; are the non-internal vertices of B, and
V' ={v1,...,v;} is the set of k& new vertices used to subdivide the edges of the cycle, then
the resulting graph has vertex set (V(H) — I(B)) U V' and edge set (E(H) — E(B))U Cp

where Cp = {(uy,v1), (v1,u2), ..., (Uk—1, Vk—1), (Vk—1, Uk), (Ug, Uk), (Vk, u1)}.

Theorem 8 Let H be a biconnected graph and let H' be obtained from H by shrinking an
essential block B in H. Then, for any S C R(H), H — S is biconnected iff H — S s

biconnected.

Proof. Assume that H — S is biconnected. Consider two adjacent edges ¢ = (u,v) and
¢’ = (v,w) in H — S that do not belong to B. There is a simple cycle in H — S containing e
and ¢’. This cycle yields a simple path p in H — S with the following properties: it contains
e and €', no internal endpoint of p except possibly v is a vertex of B, and the endpoints of p
both belong to B or they are adjacent in H — S. The path p is also a simple path in H' — S
and both endpoints are distinct in H' — S. If both endpoints do not belong to B, then they
are adjacent in H — S and e and ¢’ lie on a simple cycle in H' — S. If both endpoints of
p belong to B, then they represent distinct vertices on Cg. Hence, we can make p into a
simple cycle of H' — S by adding a portion of Cg between the endpoints of p that does not
contain v. Thus, any two adjacent edges not in B share a block of H' — S.

Now consider two adjacent edges e = (u,v) and ¢/ = (v,w) in H — S such that e is an
edge of B but ¢ is not. Again, a simple cycle of H — S includes both edges. From this
cycle we get a simple path p in H — S with the following properties: no edge of p is in B,

23

at least [+2p+ 3¢ and n(F’) = I+ p+q, we find that ¢ <1—2 and hence ¢ < I. Since p <r,
we have n(F') < 21 + r. By noting that n(F) < kn(F’), the claim of the lemma follows.]]

Theorem 7 If Q) is obtained from H by shrinking the essential components in H and con-
tracting all maximal chains in the resulting graph, then n(Q) < 8r(H).

Proof. Let Q¢ denote the graph @ — R(Q). The graph Q° is a forest. Each leaf in Q° is
covered by at least two redundant edges of H. Thus, Q¢ has at most r(H) leaves. Mark each
endpoint of a redundant edge of H in . Each unmarked chain in Q€ has length at most 2.
By applying lemma 14 to Q°, we get n(Q°) < 2(2r(H) + 2r(H)) and hence n(Q) < 8r(H)

as claimed.[]

Corollary 8 Assume the input graph has n vertices and less than n redundant edges. After

6 iterations of algorithm 1c, the number of vertices in H is less than .7T1n.

Proof. Let H; be the graph H at the end of the ¢th iteration of algorithm lc. It follows from
an result in [9] that r(H,4y) < 2/3 - r(H;). We have r(Hy) < n and hence r(Hg) < (2/3)°n.
By theorem 7, n(Hs) < 8r(Hg). The claim then follows by verifying that (2/3)¢ -8 < .71.[]

Corollary 9 Algorithm le finds a minimal 2-edge-connected spanning subgraph of any 2-

edge-connected graph on n vertices and m edges in time O(n 4+ m).

Proof. The time required by one iteration of algorithm 1lc¢ is dominated by the time to find
a minimal augmentation for a spanning tree. By a result of [9] this can be done in linear

time. The claim follows.{]

An efficient NC algorithm for this problem is given in [9]. With corollary 9 the work of
this algorithm can be reduced by a factor of ®@(logn) using standard techniques.

3.2 Finding a Minimal Biconnected Spanning Subgraph

The basic ingredients for the linear-time algorithm to find a minimal 2-edge-connected span-
ning subgraph are the two operations of shrinking essential components and contracting
chains. We have shown that an algorithm that performs only one of these operations has
a worst case time complexity of Q(m + nlogn) while the incorporation of both operations
leads to an algorithm that runs in time O(n + m). Here, n and m denote the number of
vertices and edges of the input graph, respectively.

In this section we exhibit a pair of operations on biconnected graphs with similar proper-
ties. One of the operations, the contraction of block chains, is similar to the corresponding

operation on 2-edge-connected graphs. The other operation is more complicated. As we

22

Lemma 13 No 2-edge-connected spanning subgraph of F; has a chain of length greater than
6.

Proof. A proof by induction on ¢ shows that the maximum degree in any F; is 3 (as observed
earlier). Thus, each gadget in F; has at most 6 edges. Let F' be an arbitrary 2-edge-
connected spanning subgraph of F;. The graph F must completely contain every gadget
of F;. Moreover, each gadget is incident with at least two edges connecting it to vertices
outside the gadget. The claim follows.]]

By lemma 13 there is an execution for algorithm 15 in which there are Q(logn) interme-
diate graphs (at the end of the while-loop) each of which has size Q(n), thus implying the
Q(m + nlogn) lower bound for the worst-case sequential time.

The logical next step is to consider a variation of algorithm 1 that shrinks essential
components and contracts essential chains at the beginning of the while-loop. We refer to
the resulting algorithm as algorithm lc. In the next section we show that algorithm le runs

in linear time on any input graph.

3 Linear Time Algorithms for Finding Minimal Sub-
graphs

3.1 Finding a Minimal 2-Edge-Connected Spanning Subgraph

In this section we show that algorithm 1c, defined at the end of the last section, computes
a minimal 2-edge-connected spanning subgraph of an arbitrary graph in linear time.

For any graph H, we denote by n(H) and m(H) the number of vertices and edges in H,
respectively. If H is 2-edge-connected (biconnected, strongly connected), R(H) denotes the
set of redundant edges in H and r(H) the number of these edges. A chain in a graph is a
path whose internal vertices have degree 2. The following lemma is needed for the analysis

of algorithm 1c.

Lemma 14 Let F be a forest on n leaves in which r nodes are marked. If every chain in

F that does not contain a marked node as an internal vertex has length at most k, then

n(F) < k(21 +r).

Proof. An unmarked chain in F is a chain that does not contain a marked vertex as an
internal node. Construct F’ by contracting all maximal unmarked chains of F' into single
edges. Let [, p, and ¢ denote the number of nodes of degree 1, degree 2, and degree > 3,
respectively, in F'. We know that 3,y () deg(v) < 2n(F') — 2. Since the lefthand side is

21

O

O

O

O

O

Figure 4: Qq, @1, and Q5.

20

O

O

tracting a collection of edge-disjoint chains. Then, H' is 2-edge-connected iff H is 2-edge-
connected.[]

Corollary 6 Assume that H' is constructed by contracting a collection of edge-disjoint
chains in H. If H" is a minimal 2-edge-connected spanning subgraph of H' and S is the
set of redundant edges of H that are not in H", then H — S is a minimal 2-edge-connected
spanning subgraph of H.[]

For a 2-edge-connected graph H let ¢*(H) be the maximum integer k for which there are
graphs Hy ... H; with the following properties: Hy = H, Hj, is a minimal 2-edge-connected
spanning subgraph of H, H; (0 < ¢ < k) is of the form T 4+ A where T is an optimal tree
in H;_; and A is a minimal augmentation for 7' in H; 4, and finally, H; does not contain an

essential cycle for ¢z > 0. The following result is another corollary of lemma 11

Lemma 12 [If H' is obtained from H by contracting (edge-disjoint) chains, then ¢*(H) =
c(H').[]

We construct a sequence of graphs Qq, @1, ... such that ¢*(Q;) > ¢ as follows: @ is the
graph consisting of two parallel edges (actually, any other minimal 2-edge-connected graph
could be chosen instead). @41 is constructed from @; as follows: for each essential edge
e = (u,v) in @Q; we create new vertices uf, uy, us, ug and vy, vs, v§, v§; replace the edge (u,v)
in @Q; with the edges (u,u), (uf,us), (us, us), (us, ug), (v,0]), (v, v5), (vS,v5), (v, vE), and

(ug, vs), (us, v]), (ug,v). We denote the resulting graph by Q.41. Figure 4 shows Qo, Q1,

Theorem 6 For alli >0, ¢*(Q;) > 1.

Proof. By induction on ¢. The claim trivially holds for + = 0. Assume that it holds for any
J <i. We claim that ¢*(Q;41) > ¢ +1. The graph @ obtained by removing, for each essential
edge e = (u,v) in Q;, the edges (u$, v]) and (ug, vs) from Q41 is of the form T+ A where T
is an optimal tree in Q;1; and A is a minimal augmentation for 7" in ;1. We further note
that (); can be obtained from @ by contracting edge-disjoint chains. With lemma 12 and
the induction assumption we find that ¢*(Q) > ¢ and hence ¢*(Q;41) >t + 1.[]

Corollary 7 There exists a function f(n) = Q(logn) such that there is a graph G, on n
vertices with ¢*(Gy,) = f(n) for anyn > 1.[]

Let algorithm 15 be a variant of algorithm 1 in which all maximal chains are contracted
at the beginning of each while loop. The following lemma implies that algorithm 15 may
perform poorly on the sample for 2-edge-connectivity, i.e., it may require Q(m + nlogn)

time.

19

connectivity. We describe a refinement of algorithm 1 that takes into account property (C3)
satisfied by 2-edge-connectivity.

Let H be a 2-edge-connected graph and let R(H) be the set of redundant edges in H.
An essential component of H is a 2-edge-connected component of H — R(H). The operation
of shrinking an essential component in H consists of collapsing in H the vertex set of this

component.

Theorem 5 Assume that H' is constructed by shrinking some essential 2-edge-connected
components in H. If H" is a minimal 2-edge-connected spanning subgraph of H' and S is
the set of redundant edges of H that do not correspond to edges in H”, then H — S is a
minimal 2-edge-connected spanning subgraph of H.[]

Modify algorithm 1 (for finding a minimal spanning 2-edge-connected subgraph) as fol-

lows: at the beginning of the while-loop find the essential components of H and shrink them
into single vertices. The ouput of this algorithm is a spanning subgraph of the input graph
consisting of exactly those edges in the input graph that were essential at some iteration.
We refer to the modified algorithm as algorithm 1la.

With theorem 5 one can show that algorithm la does indeed produce a minimal 2-
edge-connected spanning subgraph of the input graph. Let us examine the running time of
algorithm la on graphs F; of the sample for 2-edge-connectivity. The worst-case analysis
of algorithm 1 on input graphs from the sample hinged on the fact that, by running one
iteration of algorithm 1 on graph F;, we may obtain a graph F' such that F;_; is an essential
contraction of F. Now consider what happens if algorithm la chooses the optimal trees
and the minimal augmentations described in the proot of theorem 2 on input F;. After
shrinking essential components in the resulting graph, algorithm 1la is left with graph F;_;.
It then follows from lemma 3 that for this particular choice of optimal trees and minimal
augmentations algorithm la, although still requiring Q(log n) iterations, computes a minimal
2-edge-connected spanning subgraph of F; in time linear in the size of F}.

The obvious question is: does algorithm la run in linear time on any input graph. We
answer this question negatively by constructing graphs with the property that if we run
algorithm la on them, no cycle of essential edges will be created at any intermediate stage.

A chain in H i1s a path of edges in H all of whose internal vertices have degree 2 in
H. Note that the edges in a chain are essential in H. A chain is mazimal if it cannot be
extended. The length of the chain is the number of edges it contains. The operation of

contracting a chain in H consists of collapsing the set of internal nodes of the chain in H.

Lemma 11 Let H' be obtained from a graph H that need not be 2-edge-connected by con-

18

observation is the following: let H' = T'+ A’ where T” is an optimal branching in H' rooted
at ¥ and A’ is a minimum augmentation for 7" in H'. Let T be an optimal branching in H
obtained by augmenting 7’ with forward branchings for the collapsed subgraphs in H. Then
the set A containing the edges in the collapsed subgraphs in H that are not in T together
with the edges of H that correspond to edges of A’ forms a minimum augmentation for 7' in
H]

Recall that F! denotes a graph in a fixed sample for strong connectivity constructed by

algorithm 2’. Let P denote strong connectivity.
Lemma 10 ¢ép(F)) > i for any i > 0.

Proof. We prove the following stronger statement: for each ¢ > 0 there is a vertex x in F
such that ¢p(H,x) > ¢ and F! is linear with respect to . We show this by induction on .
The base case clearly holds. Assume the statement holds for F/. Let Gy be the graph
constructed in step (1) of algorithm 2’ by doubling the essential edges in F/. By the induction
assumption the graph F/ is of the form T+ A where T is a forward branching in F! rooted
at © and A is a set of essential edges in F/. Since every edge of Gy is redundant, T is an
optimal branching in G;. Furthermore, A is a minimum augmentation for 7" in Gy. To see
this, fix an essential edge e in F/ that is not in T'. Let ¢’ be the edge parallel to e in G;. By
the definition of G; and the fact that e is essential in F/, any minimal augmentation for 7T
in Gy has a nonempty intersection with {e,e’}. Thus, the set of essential edges in F/ that
are not in T constitutes a minimum augmentation for T in Gy. Hence, ép(Gy) > i + 1. By
lemma 9 we have ép(F/,4,y) > ¢ + 1 for any vertex y in the subgraph of F/ , collapsed into
x. Exactly as in the proof of lemma 4 one now shows that there is one such y with respect

to which F/ , is linear. This completes the proof of our claim.[]

Corollary 5 There exists a function f(n) = Q(logn) such that for any n > 1, there is a
graph G on n vertices with ¢p(G) = f(n) (for P = strong connectivity).[]

Corollary 5 resolves the open question posed in [4].

2.3 Avoiding Cycles or Subdivisions

So far we have considered the number of iterations that algorithm 1 requires in the worst
case. In this section we take the analysis one step further by examining the sequential
running time of various natural variants of algorithm 1.

We restrict our attention to 2-edge-connectivity. We first note that algorithm 1 has a

worst-case running time of ©(m + nlogn) on a graph in the sample Fy, Fy, ... for 2-edge-

17

(1) H:=@G;

(2) While H has redundant edges, do:

(2.1) R := set of redundant edges in H;

(2.2) F := R-phobic forward branching in H;
(2.3) I := F-philic inverse branching in H;
(24) H:=FUI

The authors of [4] leave as an open question whether algorithm 3 runs in a constant number
of iterations. Lemma 7 fails to resolve this question because the set of edges in I — F' turns
out to be a minimum augmentation for F' in H, i.e., a minimal augmentation of smallest
cardinality. It can be shown, however, that even though i1t chooses a minimum augmentation
at each step, algorithm 3 may need at least : iterations on input graph F/. Here are the

details of the argument.

Lemma 8 Fiz an iteration of the while-loop of algorithm 3. The edges of I that are not in
F form a minimum augmentation for F in H. Conversely, if A is a minimum augmentation

for an R-phobic forward branching F in H, then F + A s of the form F U I where I ts an
F-philic inverse branching in H.

Proof sketch. The lemma follows from the following two facts: F' + A is strongly connected
iff it contains an inverse branching (rooted at x) and all branchings in H have the same
number of edges.|]

Let P be a digraph property satistying (C1') and (C2'). For a P-graph H a minimum
augmentation trace for H with respect to x is a sequence Hy, Hy, ..., H, such that Hy = H, H},
is a minimal strongly connected spanning subgraph of H, and H; (0 < ¢ < k) is of the form
T+ A where T is an optimal branching in H;_; rooted at x and A is a minimum augmentation
for T in H,;_;. The integer k is the length of the trace. Let ép(H,x) denote the maximum
length of a trace of H with respect to « and let ép(H) stand for max{¢p(H,z): 2 € V(H)}.

Lemma 9 [f P satisfies conditions (C1"), (C2"), (C3') and if H' is an essential contraction
of P-graph H, then é¢p(H',x) < ép(H,y) for any vertex x in H' and any node y of H

collapsed into x.

Proof sketch. The proof is very similar to the proof of lemma 5: one shows that if there
is a minimum augmentation trace t’ for H' with respect to x, then there is a minimum
augmentation trace ¢, at least as long as t/, for H with respect to any vertex collapsed into

x. As in the proof of lemma 5 this can be shown by induction on the length of #'. The key

16

(@) (b)

Figure 3: Fj, F|, and F;.

Proof. The sizes of the graphs F! in a sample for strong connectivity constructed as described
above are the same as those for the graphs F; in a sample for 2-edge-connectivity (see lemma
3). Asin the proof of corollary 1 we obtain a graph on n vertices having the same asymptotic
size bound for arbitrary n by subdividing edges in the graph F/ with the largest number of
vertices that is less than n.|]

Lemma 7 is closely related to an open question posed in [4]. The following definitions
from [4] will be needed. Let G be a directed graph. An inverse branching rooted at w is
a spanning tree of G in which x has out-degree zero and all other vertices have out-degree
one. A branching is either a forward or an inverse branching. We assume that all branchings
are rooted at a fixed vertex x of G. Let H be a subgraph of G. An H-philic (H-phobic)
branching in G is one that has the greatest (smallest) number of edges in common with H
over all branchings (rooted at x) in G.

In [GKRST] the following algorithm is given for finding a minimal strongly connected
spanning subgraph in a graph.

Algorithm 3. Computing a minimal strongly connected spanning subgraph H of G.
Input Strongly connected graph G.
Qutput Minimal strongly connected spanning subgraph H of G

15

Let us call a path in G’ all of whose edges are in BU B’ a good path. We denote the root
of T'(v) by r(v) for any v in Gy (see step (4) of algorithm 2’ for the definition of T'(v)). We
first show that there is a good path from y to the root r(v) of T'(v) in G’ for any v in G;. We
show this by induction on the depth of v in T' (see step (2) of algorithm 27). If depth(v) = 0,
then v = x and r(v) = y; hence, the base case holds. Assume inductively that the claim
holds for any v of depth k. Consider a vertex v of depth k + 1. Let u be the father of v in
T. By the induction assumption there is a good path from y to the root r(u) of T'(u). Let
(w,r(v)) be the edge in G’ corresponding to edge (u,v) of T. From steps (4), (5), and (6) of
algorithm 2’ it follows that there is a good path in T'(u) from r(u) to w. We can assemble
the good paths from y to r(u) and from r(u) to w together with the edge (w,r(v)) into a
good path from y to r(v).

Now consider the case where a vertex w in G’ is contained in the gadget of some vertex v
but is different from the root of T'(v). Vertex w is reachable in T'(v), using only edges of B’,
either from y or from a vertex w’ that has an incoming edge in B. In the former case we are
done. In the latter case let w” be the tail of the edge of B whose head is w’. As above one
argues that w” is reachable from the root of its gadget using only edges of B’. We conclude
that there is a good path from y to w.]]

We now consider an important property of digraphs: strong connectivity.
Lemma 6 Strong connectivity satisfies properties (C1')-(C4’).

Proof. Similar to proof of lemma 2 (use characterization of a strongly connected graph as a

connected graph each of whose edges lies on a directed cycle).]]

To construct a sample for strong connectivity, start with the graph F{ consisting of a
directed cycle of length 2. Construct F; by running algorithm 2’ on input F;_; for: =1,2,...
. In step (1) of algorithm 2’ double each redundant edge in F;_;. Choose as the gadget for
the representatives vq,...,vg of v the directed cycle vy, vy, vq, vh, ... vy, v}, vy consisting of
the representatives of v and a set {v],..., v} of new vertices. Note that at this point many
different samples could be constructed by choosing different numberings in algorithm 2’ but
this will not affect the size of the graphs in the sample. The first three graphs Fj, Fy, and
Fj in a possible sample for strong connectivity are depicted in figure 3. In the remainder
of this paper the sequence Fj, F|,... stands for an arbitrary but fixed sample for strong

connectivity constructed according to the rules we have just described.

Lemma 7 There exists a function f(n) = Q(logn) such that there is a graph on n nodes of

complexity f(n) with respect to strong connectivity for any n > 1.

14

(4) For each v in Gy of degree d, number the representatives of v as follows: fix a forward
branching T'(v) that spans the gadget constructed for v in step (3) and that is rooted
at a representative w for v. Assign numbers 1,2,....d to the representatives of v in

nondecreasing order of their distance from w in T'(v) (hence, w is numbered 1).

(5) For a vertex v in G of indegree p and outdegree ¢, number the p + ¢ edges incident
on v as follows: if v # x, assign number 1 to the unique incoming edge marked in step
(2); the outgoing edges receive numbers 2...2 + ¢ — 1 and the numbers 24 ¢...p+¢
are assigned to the other incoming edges. If v = x, then assign the numbers 1...p to

the outgoing edges and the numbers p+1...p+ ¢ to the incoming edges.

(6) For each edge (u,v) in G1 that is the ith edge incident on u and the jth edge incident
on v, add an edge from the ith representative of u to the jth representative of v in G’

(with respect to the numbering defined in step (4)).

Theorem 4 The graph G' has complexity at least k + 1 with respect to some vertex y and
is linear with respect to y, provided that P satisfies conditions (C1")-(C4').

Proof. Fix a trace t for G with respect to vertex x of length k. Since G is linear with respect
to x, it 1s of the form T+ A where T' is a forward branching rooted at = and A is a set of
essential edges in G. Hence, we can extend trace t to a trace t’ for Gy with respect to x
having length & 4+ 1. Thus, ¢p(Gy,2) > k4 1.

The graph Gy is a contraction of G'. Hence, by condition (C3') the graph G’ is a P-
graph. By condition (C4'), the definition of a gadget, and algorithm 2’, Gy is an essential
contraction of G'. Since ¢(Gy,x) > k+ 1, lemma 5 gives us ¢cp(G’,y) > k 4 1 for any vertex
y collapsed into x. It remains to be shown that G’ is linear with respect to at least one such
vertex y. Let y be the root of forward branching T'(x) spanning the gadget for « in G’ (see
step (4) of algorithm 2’). Let B denote the set of edges in G’ corresponding to edges in Gj.
Note that these edges are exactly the redundant edges in G'. We shall establish that G’ is
linear with respect to y by proving that there exists a forward branching in G’ rooted at y
and containing all edges of B.

For any vertex w # y in G’ belonging to the gadget of some vertex v and having no
incoming edge in B, define e(w) to be the unique edge in T'(v) whose head is w. Let B’ be
the set {e(w) : w € V(G'), w # y and w has no incoming edge in B}. We shall now prove
that every vertex in G’ is reachable from y by edges in BU B’. Since each vertex in G’ other
than y has exactly one incoming edge in B U B’ and y has none, this implies that the edges

in BU B’ form a forward branching in G’ rooted at y; hence, G’ is linear with respect to y.

13

branching in H' rooted at x, A’ is a minimal augmentation for 77 in H’, and there is a trace
for T+ A’ with respect to x having length k. Since each collapsed subgraph in H is strongly
connected (condition (C2')), we can combine T” with forward branchings for the collapsed
subgraphs to form a forward branching T in H rooted at an arbitrary vertex y collapsed into
x. Let A be the edges of A’ plus the edges in the collapsed subgraphs of H that are not in
T. The graph T"+ A’ is a contraction of '+ A. By (C3') T+ A is a P-graph and 7"+ A’ is
indeed an essential contraction of T'+ A. By the induction assumption there exists a trace
for T + A with respect to y having length at least k. By condition (C3') an edge of H' is
redundant iff the corresponding edge of H is redundant. Moreover, all edges in the collapsed
subgraphs in H are essential. Therefore, the forward branching T' is an optimal branching
rooted at y and A is a minimal augmentation for 7" in H. Hence, there is a trace for H with

respect to y having length at least k + 1.[]
Corollary 4 If H' is an essential contraction of H, then cp(H') < cp(H).[]

Condition (C4') is identical with condition (C4). Asin the undirected case, we call the
graph Gs a gadget for S. To illustrate the notion of a gadget, consider strong connectivity.
Let | S |=] S’ | and SN S" = 0. The directed cycle alternating between vertices of S and
those of S’ is a gadget for S.

It turns out that conditions (C'1')-(C4’) guarantee the existence of a sample for a digraph
property. Algorithm 2’ below provides a means of constructing such a sample for any digraph
property P satisfying these conditions. It is similar to algorithm 2 although more involved.
A P-graph H is linear with respect to vertex = if its edge set can be partitioned into a
forward branching rooted at = and a set of essential edges.

Algorithm 2’: Increasing the complexity of a digraph.
Input P-graph G of complexity k with repect to = and linear with respect to .
Output P-graph G’ of complexity > k + 1 with respect to some vertex y and linear with

respect to y.

(1) Add edges to G so that all edges in the resulting graph G; are P-redundant (e.g., by
doubling all essential edges).

(2) Let T be a forward branching in G; rooted at x. Mark all edges of Gy that are in 7.

(3) For each v in Gy of degree d, do the following: create d new vertices vy,...,vq4 in G’
which we call the representatives of v. Add to G’ a gadget for the representatives of
v whose vertex set is the set of representatives plus a collection of new vertices (these

collections are disjoint for different vertices of Gy).

12

forward branching Ty rooted at a fixed vertex x of H (and containing a minimum number of
P-redundant edges). We call Ty an optimal branching in H rooted at @ and A (see algorithm
1), as before, a minimal augmentation for Ty in H.

The following result is the analog of theorem 1 for the directed case.

Theorem 3 Algorithm 1' computes a minimal spanning P-subgraph of G for any digraph
property P satisfying (C1') and (C2').

Proof. Similar to proof of theorem 1.]]

Given a digraph property P (satisfying (C1') and (C2')), a trace for P-graph H with
respect to root x is a sequence Hy, ..., H; of subgraphs of H such that Hy = H, Hj is a
minimal spanning P-subgraph of H, and H; (0 < ¢ < k) is of the form T + A where T is

an optimal branching in H;_; rooted at x and A is a minimal augmentation for T in H, ;.
We call k the length of the trace. The P-complexity of H with respect to x is the maximum
length of a trace for H with respect to vertex x; it is denoted by cp(H,x). We define the
P-complexity of H, denoted by cp(H), as max{cp(H,x) : 2 € V(H)}. As in the undirected
case, we denote the P-complexity of H by ¢(H) if the property P is understood, and we call
an infinite sequence Hy, Hy, ... of digraphs such that cp(H;) > ¢ (¢ > 0) a sample for P.

The notions of contraction and essential contraction of a graph H are defined as for
undirected graphs. If H' is a contraction of H, then there is a natural correspondence
between the vertices of H and those of H'; the correspondence is 1-1 for those nodes in
H not belonging to a collapsed subgraph. We say that a node in H is collapsed into the
corresponding node in H'.

Condition (C3') is identical with condition (C3). The following result is reminiscent of

lemma 1.

Lemma 5 If H' is an essential contraction of P-graph H, then the complexity of H' with
respect to a vertexr x is not larger than the complexity of H with respect to any verter y

collapsed into x.

Proof. By condition (C3') digraph H’ has property P and cp(H') is indeed well-defined. We
prove the following: if H' is an essential contraction of H and there is a trace t' for H' with
respect to some root x, then there is a trace ¢ for H at least as long as ¢’ with respect to any
vertex belonging to the set of vertices of H collapsed into . We show this by induction on
the length of ¢

The statement trivially holds if the length of ¢’ is 0. Assume it holds if the length of ' is
k > 0. Suppose that there is a trace ¢’ for H' with respect to @ having length & + 1. Hence,
H’ is of the form T + A’ where T" and A’ have the following properties: T" is an optimal

11

Let us call a graph in which each vertex has degree < 3 a 3 — graph. Let P=%“2-edge-

connectivity” and P’=“biconnectivity”.
Corollary 2 [If a graph H is a 3 — graph, then cp(H) < cpi(H).

Proof. By induction on ¢p(H). The induction base is clear with lemma 4. Assume that
the claim holds for ¢cp(H) < k— 1. Fix an H with ¢p(H) = k. Thus, H = T + A with
cp(T + A) = k — 1 where T is an optimal tree in H with respect to P and A is a minimal
augmentation for T'in H (with respect to P). By lemma 4, an edge in H is P-redundant iff
it is P’-redundant. Hence, T is an optimal tree in H with respect to P’ and A is a minimal
augmentation for T in H with respect to P’. Since T 4+ A is a 3 — graph the induction
hypothesis gives us cp/(T + A) > k — 1 and hence cp/(H) > k.||

Each F; is a 3-graph and hence Fy, Fy,... is a sample for biconnectivity as well. Thus, we

get the following result.

Corollary 3 For biconnectivity, there exists a function f(n) = Q(logn) such that there is a
graph on n vertices with complexity f(n) for any n > 1.

Proof. Similar to proof of corollary 1.[]

Corollaries 1 and 3 establish that Algorithm 1 takes Q(log n) iterations for 2-edge-connectivity

and biconnectivity.

2.2 Properties of Digraphs

Let G be a directed graph. A forward branching ([4]) rooted at x is a spanning tree of G
in which x has in-degree zero and all other vertices have in-degree one. We assume that all
forward branchings are rooted at a fixed vertex x of G.

It turns out that the development carried out above for undirected graph properties
carries over to digraphs with some modifications. We distinguish conditions and algorithms
for the directed case from the corresponding conditions and algorithms for the undirected

case by adding a single quote, e.g., algorithm 1’ computes a minimal spanning subgraph with

property P.

The definitions of digraph property, P-graph, P-subgraph, and P-redundant and P-
essential edges carry over from the undirected case without change. Condition (C1') is
identical with condition (C1). Observation 1 holds for any digraph property satisfying (C'1’).
For condition (C2') we require that the graph be strongly connected.

Algorithm 1’ finds a minimal spanning P-subgraph of digraph G. It has a structure similar

to that of algorithm 1; instead of computing a spanning tree in step (2.1), it computes a

10

in H' containing the same external edge. Therefore, H' is 2-edge-connected. Conversely, if
H'’ is 2-edge-connected any external edge is on a cycle in H and that cycle yields a cycle in H
containing the same external edge. Since each collapsed subgraph is 2-edge-connected, every
edge of H is on a cycle and hence H is 2-edge-connected. For (C4) fix a set S = {vy,...,v,}.

Let vf ...v. be s new vertices. The cycle vjvjvevh ... vsvlv1 is a gadget for S (see also Figure
1))

By theorem 2 and lemma 2, algorithm 2 may be used to construct a sample for 2-edge-
connectivity. We fill in the details for steps (1) and (3) of algorithm 2. We start the
construction of the sample with graph F consisting of two vertices with two parallel edges
between them. The graph Fj is shown in figure 2. Assume inductively that we have con-
structed F;_;. In step (1) of algorithm 2 we double the essential edges in F;_;. In step (3) we
choose as gadget for {vy,...,v4} the cycle vy, v], ve,vh, ... vg, v}, v, where {v], v}, ... v} is
a set of d new vertices. The first three graphs Fy, Fy, and F; in a possible sample are given
in figure 2. Note that we may obtain different samples for different edge numberings (step
(2) of algorithm 2) but this does not affect the the size of the graphs in the sample. In the
sequel F; denotes a graph in a fixed sample for 2-edge-connectivity constructed according to

the above rules.

Lemma 3 Let n;,m;, and e; denote the number of vertices, edges, and essential edges, re-

spectively, in F; (1 > 0). These quantities satisfy the following recurrence relations:

nigr = 4(mi +n;),
Mip1 = My + e+ Ny,
€i+1 = TNy41-

with initial conditions ng = my = eo = 2. Thus, n; = 4- 9" and m; =5 -9t fori > 0.[]

Corollary 1 For 2-edge-connectivity, there exists a function f(n) = Q(logn) such that there

is a graph on n vertices of complexity f(n) for any n > 1.

Proof. To construct a graph of complexity Q(logn) with exactly n vertices, start with F;
where ¢ is the maximum integer such that n; < n and increase the number of vertices in F;

by repeatedly subdividing an essential edge.][]

Let us now turn our attention to biconnectivity. Unfortunately, biconnectivity does not

satisfy condition (C3). We do however have the following well-known result.

Lemma 4 If G is a graph with at least three vertices in which each vertex has degree < 3,
then G is biconnected iff G is 2-edge-connected.[]

Algorithm 2 below provides a method to compute a sample for any graph property
P satisfying conditions (C1)-(C4). A linear graph is a P-graph whose edge set can be

partitioned into a spanning tree and a set of essential edges.

Algorithm 2: Increasing the complexity of a graph.
Input Linear graph G of complexity k.
Output Linear graph G’ of complexity > k + 1.

(1) Add edges to G so that all edges in the resulting graph G; are P-redundant (e.g., by
doubling all essential edges).

(2) For each vertex v number the incident edges in Gy as ey, ..., eq (d=degree of v in Gy).

(3) Construct G’ from G as follows: for each v in Gy of degree d create d new vertices
v1,...,0q in G'; we call these vertices the representatives for v. For each edge (u,v)
in Gy that is the ith edge incident on v and the jth edge incident on v (in Gy), add
an edge (u;,v;) to G'. Finally, for each vertex v of Gy, add to G' a gadget for the
representatives of v whose vertex set is the set of representatives plus a collection of

new vertices (these collections are disjoint for different gadgets).

Theorem 2 G’ is a linear graph of complexity at least k+1, provided P satisfies conditions
(C1)-(C4).

Proof. Since input graph G is linear, it is of the form 7'+ A where T is a spanning tree in G
and A is a set of essential edges in G. Since every edge of Gy is redundant, T is an optimal
tree in Gq. Hence ¢(Gy) > k + 1.

Graph Gy is a contraction of G'. Hence, by (C3), G’ is a P-graph. By condition (C4)
and the definition of a gadget, Gy is an essential contraction of G'. Since ¢(Gy) > k + 1,
lemma 1 gives us ¢(G') > k + 1. To see that G’ is linear, note that we obtain a spanning
tree for G’ by combining the edges of G’ corresponding to edges of G; with a subset of the
edges in the gadgets. By (C4) all remaining edges are essential in G'.]]

We shall now apply the above results to a concrete graph property: 2-edge-connectivity.
Lemma 2 2-edge-connectivity satisfies conditions (C1)-(C4).

Proof. Conditions (C1) and (C2) are immediate from the definition of 2-edge-connectivity.
For (C3), let H' be a contraction of H. First, note that H is connected iff H' is connected
(with condition (C2)). Call an edge occurring both in H and H' an external edge. If H is

2-edge-connected, every external edge lies on a cycle in H. This cycle translates into a cycle

Figure 1: A gadget for 2-edge-connectivity

collapsing disjoint subsets of vertices of H whose induced subgraphs in H have property P
(into single vertices); we refer to a subgraph of H induced by a collapsed subset as a collapsed
subgraph. Graph H' is an essential contraction of a P-graph H if H' is a contraction of H
and the edges in the collapsed subgraphs are P-essential in H. Condition (C3) implies that

property P is closed under contractions.

C3) Let H' be a contraction of a graph H. Then, H has property P iff H’
g
has property P.

We note the following important consequence of (C3).
Lemma 1 [f H' is an essential contraction of P-graph H, then cp(H') < cp(H).

Proof. : Fix a P-graph H and an essential contraction H' of H. First, note that (C'3) implies
that H' has property P; therefore the complexity of H' is well-defined. We prove the lemma
by induction on the complexity of H'. If ¢(H') = 0, then certainly ¢(H) > ¢(H').

Let ¢(H') =k > 0. Let 7"+ A’ be a graph of complexity & — 1 where T” is an optimal
tree in H' and A’ is a minimal augmentation for 7" in H'. Since each collapsed subgraph in
H is connected (condition (C2)), we can combine T” with spanning trees for the collapsed
subgraphs to form a spanning tree T' of H; the tree T is an optimal tree in H. Let A be the
edges of A’ plus the collapsed edges of H that are not in T'. The graph T+ A’ is a contraction
of T4+ A. By (C3) T+ Ais a P-graph and 7"+ A’ is indeed an essential contraction of T+ A.
By the induction assumption ¢(T + A) > k — 1. Moreover, by (C3) and the definition of H’,
the edges of A are essential in 7'+ A. We conclude that ¢(H) > k.||

The last constraint is rather technical.

(C4) For any nonempty and finite set S there exists a P-graph Gg = (SUS’, E)
such that the edges of G are essential in any P-graph G' = (V’, E’) with SUS" C
V', E C E’ (i.e., G’ contains Gg as a subgraph), and such that no edge of £/ — F

1s incident with a vertex in S’.

We call the graph Gg a gadget for S. To illustrate the notion of a gadget, consider 2-edge-
connectivity. Let S = {v,...v4} and let S" = {v],...,v}}. The cycle alternating between
the vertices of S and those of S is a gadget for S (see Figure 1). To see this, note that if
G’ is a 2-edge-connected graph containing this cycle as a subgraph and such that no edges
other than those of the cycle are incident with vertices of S/, then the nodes of S’ all have

degree 2 in G’; hence, all edges of the cycle are essential in G’.

Proof. By induction on the number of iterations of the while loop, one shows that H,
as computed in step (2.3), is always a spanning P-subgraph of G. To prove termination,
consider one execution of the while-loop. Since Ty is an optimal tree in H, it does not
contain all redundant edges of G. Therefore, the number of redundant edges decreases by at

least one at each iteration and algorithm 1 terminates properly.[]

By the proof of theorem 1 and observation 1 the number of iterations of algorithm 1
is bounded from above by the number of P-redundant edges in G. In many cases a much
stronger bound holds. In the sequel, n denotes the number of vertices of the input graph G.
In [KR] it is shown that O(log n) iterations of algorithm 1 yield a minimal 2-edge-connected
spanning subgraph of G or a minimal biconnected spanning subgraph of G. Below we show
that these bounds are tight, i.e., the number of iterations of algorithm 1 on a graph with n
nodes is O(log n) in the worst case for the above properties. Instead of deriving lower bounds
specifically for 2-edge-connectivity and biconnectivity, we proceed within the framework of
general graph properties; accordingly, the results we shall derive will be applicable to other
graph properties.

To capture the worst-case behavior of algorithm 1, we introduce the concept of the P-

complexity of a graph : informally, the P-complexity of a P-graph H is the maximum number
P Y grap Y, p y grap

of iterations that algorithm 1 may need in order to compute a minimal spanning P-subgraph
of H. More precisely, we define a trace for P-graph H to be a sequence Hy, Hy, ..., Hy of
subgraphs such that Hy = H, Hy is a minimal spanning P-subgraph of H, and H; (0 <7 < k)

is of the form T+ A where T is an optimal tree in H;_; and A is a minimal augmentation for

T in H;_y. The integer k is the length of the trace. The P-complexity of H is the maximum
length of a trace for H. If the property P is clear, we shall use the term “complexity” instead
of “P-complexity”. We denote the P-complexity of graph H by cp(H), or ¢(H) if property
P is understood. We call an infinite sequence of graphs Hy, Hy, Hs, ... such that ep(H;) > ¢
for all 2 > 0 a sample for P.

If we do not impose any additional restrictions on P, there may be no sample. For
instance, let P denote connectedness (which satisfies (C1) and (C2)). In this case every
graph has complexity 1. We specity two more constraints on P that will guarantee the
existence of a sample for P. By analyzing how fast the size of the graphs in the sample grows
as a function of the complexity, we shall derive lower bounds on the number of iterations
required by algorithm 1 for 2-edge-connectivity. Although biconnectivity does not satisfy
both constraints, we shall prove that a special property of the sample constructed for 2-edge-
connectivity guarantees that it is a sample for biconnectivity as well.

A contraction of a graph H (that may not have property P) is obtained from H by

In this paper we concern ourselves with the problem of finding a minimal spanning P-
subgraph of a P-graph G, i.e. a spanning P-subgraph in which every edge is P-essential.
We restrict our attention to properties that satisfy conditions (C1) and (C2) below:

C1) P is monotone, i.e., the addition of an edge to a P-graph results in P-graph;
g g g
C2) any P-graph is connected.
grap

As an immediate consequence of condition (C1) we note the following observation.

Observation 1 Let G be a P-graph and let H be a spanning P-subgraph of G. Any edge
that is P-redundant in H is P-redundant in G.

There is an obvious (sequential) algorithm for computing a minimal spanning P-subgraph of

G: examine the edges one at a time; remove an edge if it is redundant in the current graph.
By observation 1 the resulting subgraph is minimal.

The following algorithm is a generalization of algorithms given in [9] and [4] (for find-
ing a minimal 2-edge-connected, a minimal biconnected, and a minimal strongly connected
spanning subgraph of a graph) to graph properties satisfying (C1) and (C2). This algorithm
has been shown to outperform the obvious algorithm for 2-edge-connectivity and biconnec-
tivity, and we believe that this is true for a number of other properties of undirected graphs.

Moreover, it is inherently easier to parallelize.

Algorithm 1: Computing a minimal spanning P-subgraph of G.
Input P-graph G.
Output Minimal spanning P-subgraph H of G.

(1) H:=@G;
(2) While H has P-redundant edges, do:

2.1) Compute a spanning tree Ty in H with a minimum number of P-redundant edges;

g g
(2.2) Compute a minimal subset A of edges in H such that Ty + A has property P;
(2.3) H:=Ty + A.

A spanning tree Ty as constructed in step (2.1) is called an optimal tree in H and the

set A constructed in step (2.2) is called a minimal augmentation for Ty (in H).

Theorem 1 Algorithm 1 computes a minimal spanning P-subgraph of G for any property
P satisfying (C1) and (C2).

linear-time algorithm for finding a minimal spanning strongly connected subgraph is given

n [12]; however, this algorithm is incorrect ([13]).
In this paper we generalize the high-level algorithm of ([4], [9]) into a general algorithm

for finding a minimal spanning subgraph with a given property and analyze its worst-case
complexity. In section 2 we give a tight lower bound of Q(log n) on the worst-case number of
iterations of the algorithm for 2-edge-connectivity, biconnectivity, and strong connectivity;
this leads to an Q(m+nlog n) lower bound on the sequential running time of these algorithms.
We strengthen this bound by showing that the lower bound on the running time holds if
we allow various types of graph contractions. The method we describe for constructing
worst-case graphs is fairly general and may be applicable to other graph properties.

In section 3 we describe refinements of the basic algorithms for 2-edge-connectivity and
biconnectivity and obtain the first linear time algorithms for these properties. These algo-
rithms still need a logarithmic number of iterations but we perform certain contractions and
transformations on the current graph so that its size goes down by a constant factor with
each iteration. This result also reduces the work performed by the parallel algorithms for
these problems by a logarithmic factor. Finally, we provide some strong evidence that a
similar strategy will not lead to a linear-time algorithm for the strong connectivity property.

Note: We have recently learned that Han and Tarjan ([6]) have independently discovered
linear time algorithms for finding a minimal 2-edge-connected spanning subgraph and for

finding a minimal 2-connected spanning subgraph (see section 3).

2 Worst-Case Behavior of Algorithms for Finding Min-
imal Subgraphs

2.1 Properties of Undirected Graphs

In this section we describe an algorithm for finding a minimal spanning subgraph of a graph
for various properties of undirected graphs. We examine the number of iterations the al-
gorithm requires in the worst case. We describe a fairly general technique for constructing
worst-case graphs. We apply the technique to 2-edge-connectivity and show that it works for
biconnectivity as well. In the next section we generalize the development to directed graphs.

We allow self-loops and multiple edges in our graphs. A graph property P is a Boolean-
valued function on graphs. If P(G) is true for some graph G, we say that G has property P
or G is a P-graph. A P-subgraph of G is a subgraph of G that has property P. An edge e
of a P-graph G is P-redundant in G if G — e has property P, otherwise e is P-essential in
G. We may not mention G or P if the graph or the property is clear from the context.

1 Introduction

Let P be a monotone graph property. In this paper we consider the following problem: given

a graph G having property P, find a minimal spanning subgraph of G with property P, i.e.,

a spanning subgraph of G with property P in which the deletion of any edge destroys the
property.

The corresponding problem of finding a minimum spanning subgraph having a given
property has been widely studied. We mention two results: Chung and Graham ([1], [3])
proved that the problems of finding a minimum k-vertex-connected and k-edge-connected
spanning subgraph are N P-hard for any fixed £ > 2. Yannakakis ([15]; see also [10]) showed
that the related problem of deleting a minimum set of edges so that the resulting graph has a
given property is N P-hard for several graph properties (e.g., planar, outerplanar, transitive
digraph).

There i1s a natural sequential algorithm for finding a minimal spanning subgraph with
property P: examine the edges of G one at a time; remove an edge if the resulting graph has
property P. This gives a polynomial time algorithm for the problem if the property P can
be verified in polynomial time. However, for most nontrivial properties the running time of
the algorithm is at least quadratic in the input size. Further, this algorithm seems hard to
parallelize. Our goal is to obtain efficient sequential and parallel algorithms for the problem.

The problem at hand may be phrased in the very general framework of independence
systems described by Karp, Upfal, and Wigderson ([7]): an independence system is a finite
set together with a collection of subsets, called independent sets, with the property that

any subset of an independent set is independent. Define a subset S of edges in G to be

independent if the graph G — S has property P. Finding a minimal spanning subgraph
with property P amounts to finding a maximal independent set in the independence system
we just defined. Efficient parallel algorithms for finding a maximal independent set in an
independence system are known for the special case where the size of a minimal dependent
set is 2 or 3 ([11], [3], [2], [8]). For the problems that are of interest to us minimal dependent
sets may have nonconstant size and hence, a different approach is needed.

The minimal spanning subgraph problem has been studied earlier for the property of

strong connectivity (or transitive compaction [4]) and for 2-edge-connectivity and biconnec-
tivity ([9]). For these problems algorithms are given in ([4], [9]) that run in O(m + nlogn)
sequential time and can be implemented as NC algorithms; here n and m represent the
number of vertices and edges in the input graph. Both papers have the same high-level
algorithm that is shown to terminate in O(logn) stages for the properties considered, and

both papers leave open the question of whether this bound is tight. We also note that a

The Complexity of Finding Minimal Spanning
Subgraphs -

Pierre Kelsen*

Vijaya Ramachandran*

Department of Computer Sciences

University of Texas, Austin, TX 78712

February 6, 1991

Abstract

Let P be a property of graphs (directed or undirected). We consider the following
problem: given a graph G that has property P, find a minimal spanning subgraph of
G with property P. We describe an algorithm for this problem and prove that it is
correct under some rather weak assumptions about P. We then analyze the number of
iterations of this algorithm. By suitably restricting the graph properties, we devise a
general technique to construct graphs for which the algorithm requires a large number
of iterations.

We apply the above technique to three concrete graph properties: 2-edge-connectivity,
biconnectivity, and strong connectivity. We obtain a tight lower bound of Q(logn) on
the number of iterations of the algorithm for finding minimal spanning subgraphs with
these properties; this resolves open questions posed earlier with regard to these proper-
ties. This also implies that the worst case sequential running time of the algorithm for
these three properties is Q(m+nlogn). We then give refinements of the basic algorithm
that yield the first linear-time algorithms for finding a minimal 2-edge-connected and a
minimal biconnected spanning subgraph of a graph. Finally, we provide evidence that
the problem of refining the algorithm to find a minimal strongly connected spanning

subgraph in linear time is more difficult.

*This work was supported in part by NSF grant CCR89-10707.
E-mail addresses for the authors: kelsen@cs.utexas.edu (Pierre Kelsen) and vlr@cs.utexas.edu (Vijaya

Ramachandran).

