THE GENESIS PAPERS:
VOLUME 1

Don S. Batory
Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712-1188

TR-91-20 June 1991

ABSTRACT
This is a collection of major publications on the Genesis extensible DBMS project. There are six
papers overall. Three explain the Genesis open-system architecture concept, two papers discuss

its implementation, and the last paper is the Genesis Unix User's Manual.

Keywords: Genesis, extensible DBMSs, open system architectures, software reuse.

The Genesis Papers: Volume 1

Genesis is the first software building-blocks technology for constructing database management
systems. The Genesis 2.0 prototype shows that complex and customized DBMSs can be assem-
bled literally in minutes from prefabricated components. As new components can be added to
existing libraries, Genesis is an extensible open-system architecture for DBMSs.

This technical report collects together major publications on Genesis. The first three lay the theo-
retical foundations for a software building-blocks technology. Paper [1] gave the first indication
that differences among commercial DBMSs could be explained by different compositions of
standardized components. Paper [2] formalized these ideas by recognizing the parametric nature
of components, and that DBMSs could be modeled as type expressions. The realization that these
concepts were not limited to DBMSs and could be applied to other domains with large software
systems is presented in Paper [3].

The next two papers discuss implementation issues. The kernel of Genesis, called Jupiter, pre-
sented file structure and database recovery capabilities. The implementation of Jupiter is reviewed
in Paper [4]. Paper [5] presents an overview of the Genesis layout editor, called DaTE. It turns
out that no all compositions of components are meaningful. DaTE embodies sophisticated design
rule checking to ensure that systems specified through DaTE will be operational. The design rule
checking algorithms are presented in [5].

Paper [6] is the Unix User’s Manual for Genesis 2.0. Explanations of how DBMSs are specified
through compositions of components are presented, along with a summary of currently available
features.

[1] D. S. Batory, ‘Modeling the Storage Architectures of Commercial Database
Systems’, ACM Transactions on Database Systems, 10,4 (Dec. 1985).

[2] D.S. Batory, ‘Concepts for a Database System Synthesizer’, ACM PODS 1988.

[3] D.S.Batory and S. W. O’Malley, ‘A Definition of Open Architecture Systems with
Reusable Components: Preliminary Draft’, Proc. Domain Modeling
Workshop, 1991.

[4] D.S. Batory, J. R. Barnett, J. Roy, B. C. Twichell, and J. Garza, ‘Construction of
File Management Systems from Software Components’, Proc. COMPSAC 1989.

[5] D. S. Batory and J. R. Barnett, ‘DaTE: The Genesis DBMS Software Layout
Editor’, Conceptual Modeling, Databases, and CASE, R. Zicari, ed,,
MacGraw-Hill, 1991.

[6] D.S. Batory, ‘The Genesis Unix Users Manual’, University of Texas Tech. Rep.
TR-90-38, 1990.

Modeling the Storage Architectures
of Commercial Database Systems

D. S. BATORY
The University of Texas at Austin

Modeling the storage structures of a DBMS is a prerequisite to understanding and optimizing
databuse performance. Previously, such modeling was very difficult because the fundamental role of
conceptual-to-internal mappings in DBMS implementations went unrecognized.

In this paper we present a model of physical databases, called the transformation model, that
makes conceptual-to-internal mappings explicit. By exposing such mappings, we show that it is
possible to model the storage architectures (i.e., the storage structures and mappings) of many
commercial DBMSs in a precise, systematic, and comprehendible way. Models of the INQUIRE,
ADABAS, and SYSTEM 2000 storage architectures are presented as examples of the model’s utility.

We believe the transformation model helps bridge the gap between physical database theory and
practice. It also reveals the possibility of a technology to automate the development of physical
database software.

Categories and Subject Descriptors: E.5 [Datal: Files-—organization/structure; H.2.2 [Database
Management]: Physical Design—access methods

General Terms: Design Documentation

1. INTRODUCTION

Optimizing the performaree of commercial database systems is a significant and
very difficult problem. Progress toward its solution has come from models of
physical databases (i.e., models of database storage structures and their associated
search and maintenance algorithms). Since 1970 there have been important
advances in file structure and physical database modeling. These advances, as a
rule, have been incorporated into a progression of increasingly more sophisticated
and realistic general-purpose models [6, 29, 41, 55, 67, 68, 88].

In spite of progress, there still is no mode! that can account for the diversity
and complexity of storage structures and algorithms found in commercial DBMSs
in a comprehendible way. Although some models have been used as starting
points, considerable effort is needed to adapt and extend them just to describe a
single DBMS ([15]). In view of these difficulties, it is easy to understand why
there are so few design and performance aids for commercial systems (133, 34]).

This work was supported by the National Science Foundation under grant MCS-8317353 and the
1.8, Department of Energy under contract DE-A505-81BR10977.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

© 1985 ACM 1730-0301/85/1200-0463 $00.75

ACM Transactions on Database Systems, Vol. 10, No.4, December 1985, Pages 463-528.

464 ¢ D. 8. Batory

T'he problems in using current models clearly indicate that some fundamental
principles of database system implementation are not well understood. A careful
examination of several commercial DBMSs reveals that current models presume
conceptual-to-internal mappings are simple. That is, given a set of conceptual
files and links, there is an obvious mapping to their internal counterparts. In
almost all commercial and specialized DBMSs this is definitely not the case.

In this paper we present the transformation model (TM), a model of physical
databases that makes conceptual-to-internal mappings explicit. We identify a set
of primitive mappings, called elementary transformations, and show how com-
positions of these transformations can be used to accurately express the storage
architectures of operational DBMSs. By storage architecture we mean the com-
bination of conceptual-to-internal mappings, file structures, and record-linking
mechanisms that define a physical database. As examples of the TM’s practical-
ity, we show how the diverse and complex storage architectures that underlie
three commercial DBMSs—namely, INQUIRE, ADABAS, and SYSTEM 2000—
can be defined in a precise, systematic, and simple way. Models of other com-
mercial DBMSs-—relational (MRS, INGRES), network (IDMS, DMS-1100), and
statistical (RAPID, ALDS, CREATABASE)—are presented in {7, 8] and {9]. A
preliminary model of IMS has also been developed ([8]).

A primary goal of this paper is to explain conceptual-to-internal mappings of
data. Mappings of operations (e.g., record retrieval, insertion, deletion) are
discussed only briefly, but are considered in more detail in [9] and {86].

We believe our research makes four main contributions: (1) it is a step toward
the development of practical design and tuning aids for operational DBMSs; (2)
it provides a basis for a technology to automate the development of physical
database software; (3) it introduces practical tools to design, communicate, and
understand prototype storage architectures; and (4) it signals the beginning of a
comprehensive reference to the storage architectures of commercial DBMSs.
These and other contributions are discussed in Section 5.

The starting point of our research is the Unifying Model (UM) of Batory and
(otlieb [6]. In the following section we review the basic concepts of the UM and
its subsequent extensions. We explain in Appendix | how these extensions
subsume earlier studies, thereby establishing the UM as a framework in which
most, if not all, contributions to file and physical database research may even-
tually be cast. Special attention is given to show how the UM can be reduced to
DIAM ({29, 67]). In the following section we present an example which clearly
reveals the limitations of the generalized UM (and its predecessors) and motivates
the study of conceptual-to-internal mappings.

2. THE UNIFYING MODEL: A GENERALIZATION

The UM was shown to relate and extend disparate works on file design and
optimization, transposed files, batched searching, index selection, and file reor-
ganization, among others. However, the UM could not account for certain classes
of storage structures (e.g., clustering and hierarchical sequential record linkages)
that are commonly found in commercial DBMSs. Nor did it distinguish between
the logical concepts of files and links and their physical implementations (re.,

simple files and linksets). In the following paragraphs we explain a generalization

ACM Pransactions on Database Systems, Yol. 10, No. 4, December 1985,

Modeling Storage Architectures + 465

of the UM framework that makes these important distinctions and accommodates
these structures. Additional details are presented in Appendix I1.

Physical databases can be decomposed into a collection of internal files and
internal links. An internal file is a set of records that are instances of a single
record type. A relationship between two or more internal files is an internal link.
Internal links can be understood as generalizations of CODASYL sets; each
internal link relates records of one file, called the parent file, to records of other
files, called child files. (We draw a distinction here between conceptual files and
links, which are defined in database schemas, from internal files and internal
links. We will see later that they are quite different.)

The basic structures of a physical database are simple files and linksets. A
simple file is a structure that organizes records of one or more internal files.
Classical simple file structures include hash-based, indexed-sequential, B+ trees,
dynamic hash-based, and unordered files. A linkset is a structure that implements
one or more internal links. Classical linkset structures include pointer arrays,
inverted lists, ring lists, and hierarchical sequential lists. Linksets also deal with
the clustering of child records around their parent records (i.e., sequential
placement or {24] or “store near” [22]). Catalogs of recognized simple files and
linksets are given in Appendix 11.

The structure of a physical database can therefore be specified by (1) decom-
posing the database into its internal files and links and (2) assigning each internal
file to a simple file structure and each internal link to a linkset structure.
Classical examples of decomposition are presented in the next section, along with
the introduction of notation which will be used extensively later.

2.1 Examples: Decomposition of Inverted and Multilist Files

Inverted and multilist files are classical file structures, but they are not simple
file structures. Rather, they are actually networks on interconnected files that
have special implementation connotations.

Consider a file of records of type DATA. Suppose DATA records are stored in
an inverted file where attributes F, and F, are indexed. The first step in defining
the implementation of the inverted file is to decompose it. Decomposition reveals
three internal files and two internal links. One file is the DATA file; the other
two are INDEX, and INDEX,, one file for each of the indexed attributes. Each
INDEX file is connected to the DATA file by precisely one link, where the
INDEX file assumes the role of parent. Relationships between files and links are
shown graphically in a data structure diagram (dsd) where boxes represent files
and arrows denote links. (Arrows are drawn from parent files to their child files).
Figure 1.dsd (abbreviation for the dsd of Figure 1) shows the decomposition of
the inverted file. The remaining parts of Figure 1 are explained in the next
section.

The second step is to assign implementations to the internal files and links. A
common assignment has each INDEX file organized by a distinct B+ tree, and
the DATA file organized by an unordered file structure. Thus, there is a total of
three simple files (i.e., a DATA file structure and two INDEX file structures).
The internal links would be implemented by inverted lists or pointer arrays.

Note that other simple file assignments are possible. For example, one INDEX
file could be implemented by an unordered file, the other by an indexed-sequential

ACM Transactions on Datahase Systems, Vol. 10, No. 4, December 1985,

466 . . S. Batory

INDEX INDEXy
INDEX, INDEX

N

(1] =[]

dsd fdd id

Fig. 1. Decomposition of an inverted file.

DATA DATA
LTl ik
T
[} ik
INDEX, INDEX,
mDEx,l ,moexk
e M4 G
dsd fad id

Fig. 2. Decomposition of a multilist file.

file, and the DATA file might be stored in a hash-based file. Such generalizations
follow naturally from decomposition. (INGRES, incidentally, is based on inverted
files and allows such implementation possibilities [76]).

Now consider another example. Suppose DATA records are stored in a multilist
file, where again fields F, and F, are indexed. Decomposition results in the same
data structure diagram as in the inverted file example (Figure 2.dsd). Further-
more, typical multilist file implementations are guite similar to inverted file
implementations: each INDEX file is organized by a distinct B+ tree, and the
DATA file is organized by an unordered file structure. However, the link imple-
mentations are different: multilist files use multilist (i.e., list) linksets.

It is worth noting that the INDEX files of inverted and multilist files corre-
spond to secondary indices. The term primary index has been used l?y some
researchers to mean the indexing structure that directs the clustering of internal
records on their primary key. We prefer to use the term cluster index instead,
since a cluster index is actually part of a simple file structure, as opposed to
being a distinct file as is the case with secondary indices. In the UM, every simple
file is a combination of a cluster index and an internal record storage structure,
called the data level. Thus, B+ trees, indexed-sequential, dynamic hash-based
structures, ete., all have a clearly identifiable cluster index and data level. This
means in the above examples that a primary index (cluster index) is provided
automatically to each INDEX file and DATA file by virtue of being organized by

AUM Transactions on Database Systems, Vol 10, No. 4, December 1985.

Modeling Storage Architectures . 467

a simple file structure. It is in this way that the UM handles the concept of
primary indices.

Implementations of physical databases can be described in further detail by
introducing additional diagrammatic notations and by extending the conventions
of data structure diagrams to express N:M links. This is done in the following
section.

2.2 Additional Background

Two other diagrams are useful in elaborating implementation details of physical
databases. One is a field definition diagram (fdd), which shows the fields of the
record types that appear in a data structure diagram. Consider again the inverted
file of Figure 1. Figure 1.fdd (abbreviation for the fdd of Figure 1) shows the
DATA record type to consist of fields F, . .. F,. It also shows the INDEX record
type to have two fields: a data field F; and an inverted list:field P;. We refer to
Py as the parent field of linkset I,. The INDEX, type has a format similar to
INDEX,.

The other diagram is an instance diagram (id), which is used to illustrate the
implementation of one or more link occurrences. A link occurrence consists of a
single parent record and the zero or more child records to which it is related.
Instance diagrams serve to further elaborate data structure and field definition
diagrams. To minimize the clutter in instance diagrams, records are not labeled
with their types, Instead the types can be inferred by their positions or contents
relative to the associated fdd or dsd. Figure 1.id (abbreviation for the id of Figure
1) shows the implementation of an I, link occurrence. An INDEX; record is
shown containing data value v, and an inverted list which references all DATA
records {three are shown) that have v; as their F; value. An instance diagram of
an [, link occurrence implementation would be drawn identically to that of Figure
Lid, except for the labeling (v, would be used to denote a Fy, value). In cases such
as this, where instance diagrams would be duplicated, we show only one.

The field definition and instance diagrams for the multilist file are shown in
Figures 2.fdd and 2.id. Note that Figure 2.fdd shows DATA records to have two
additional fields (,‘,/ and C;,. These fields are, respectively, the child fields of
linksets [; and I,. "Their purpose is to contain pointers to the next DATA record
on a list of DATA records. Figure 2.id shows the same link occurrence of Figure
Lid, except that a list structure connects an INDEX; record to its DATA records.

We use the terms parent field and child field as generic names to refer to fields
that must be present in parent and child records, respectively, in order to realize
particular linkset structures. Some parent and child fields have common names,
such as inverted list fields and parent pointer fields. But most do not. Another
reason for their use is that they define semantically meaningful fields whose
contents can be quite complex. The parent field of an inverted list, for example,
not only contains an array of pointers, but also a count subfield which contains
the number of pointers in the array and possibly the length of the array in bytes.
By treating parent and child fields atomically, implementation details of linksets
that are irrelevant to understanding storage architectures can be hidden.

As a general rule, the presence and function of parent and child fields in record
types that are linked is determined solely by the underlying linkset. In the case
of inverted list linksets (Fig. 1), a parent field appears in every parent record.

ACM Transactions on Database Systems, Vol. 10, No. 4, December 1985,

468 . D. S. Batory

For multilists (Fig. 2), both parent and child fields are used. IMS logical parent
pointers are linksets that are implemented solely by parent pointers [24]; only
child fields are used. Sequential linksets do not require either parent or child
fields {i.e., parent and child records are linked by contiguity). Thus, a linkset can
introduce parent fields, child fields, both, or neither.

The pointer structures, count fields, and so on that are present in parent fields
are usually different than those found in child fields. As a consequence, linksets
have a directionality (i.e., parent and child files of a linkset must be distinguished
in order to determine the placement of the parent and child fields of the linkset).
Links, in contrast, express logical relationships which do not have a directionality.
Thus, the directionality of links (arrows) in data structure diagrams serve to
indicate the roles files play in link implementations.

Assigning the directionality of links in data structure diagrams is quite simple,
Most linksets implement 1:N links. In the tradition of the CODASYL model,
1:N links are represented by arrows drawn in the direction of the “N” part of the
relationship; the file at the “1” side is the parent and those at the “N” side are
the children. We follow this tradition. However, links can also express 1:1 and
M:N relationships. Usually, the linksets that implement these links are obvious
generalizations or specializations of LN linksets, so a directionality can be
assigned as in the LN case. We encounter an example of this (M:N multilists)
in our discussion of INQUIRE in Section 4. When neither child or parent fields
are introduced by a linkset or when no distinction between parent and child files
can be made, bidirectional links (A «—> B} which do not force parent and child
distinctions may be used. Examples of bidirectional links arise in our discussions
of transposition and actualization in Section 3, and the couplings of ADABAS
in Appendix 11

In Appendix [we explain how all of the major general-purpose models of
physical databases that predated the UM are subsumed by this framework. Even
s0, this framework is still inadeguate to model the storage architectures of
operational DBMSs. Correcting the problem does not simply involve enlarging
the spectrum of structures and operations the UM describes. It requires much
wmore. The next section illustrates the limitations of this framework.

2.3 Limitations of Current Models

Consider the inverted file of Figure 3, which has a single INDEX file that inverts
field I INDEX records are obviously variable-length. But suppose that the file
structures that underlie the inverted file can only handle fixed-length records.
How can variable-length INDEX records be stored?

A common solution {one of many possible) is to divide INDEX records into
one or more fixed-length fragments. The first fragment, here called a PRIMARY
record, contains the data field F and a number of pointers. The other fragments
are SECONDARY records (sometimes called overflow records), and they contain
the remaining pointers. PRIMARY and SECONDARY records are connected by
link L. L is usually implemented as a list linkset,

Figure 4 illustrates this solution using some notation and relationships that
are explained in a more comprehensive setting in Section 3. In Figure 4.dsd, the
dashed outline of the INDEX file indicates that an INDEX record is mapped to
a4 PRIMARY record and zero or more SECONDARY records connected via

AUM Transactions on Database Systems, Vol. 10, No. 4, December 1985,

Modeling Storage Architectures . 469

" § DATA

own |
L BER
T INDEX

INDEX -
o] [+

dsd tdd id

Fig. 3. An inverted file with one index file.

INDEX
PRIMARY
PRIMARY
HER
L

SECONDARY
l SECONDARY l
C.

to DATA records

dsd fdd id

Fig. 4. Mapping of variable-length INDEX records to fixed-length PRIMARY and SECONDARY

records.

link L. +P, in Figure 4.fdd is the name of the field (in both PRIMARY and
SECONDARY) that contains a {ragment of the contents of field P;. Figure 4.id
shows how the INDEX record of Figure 3.id was divided into four fragments: one
PRIMARY and three SECONDARY. SECONDARY records are connected to
PRIMARY records by a list linkset. In this example both PRIMARY and
SECONDARY records contain pointers (part of P;) to DATA records.

This example reveals that there is a level of abstraction that separates an
INDEX record from its materialization as a PRIMARY and zero or more
SECONDARY records. It is easy to draw data structure, field definition, and
instance diagrams that occur at each level. Figure 3 shows the diagram at the
upper level; Figure 4 shows the lower level. Such levels of abstraction are not
present in the generalized UM or any of its derivatives and predecessors. Unless
levels of abstraction are introduced, one is forced to model the inverted file in a
single (one level of abstraction) data structure diagram. Figure 5 shows the
difficulties that arise when this is tried. It is easy to identify the three internal
files PRIMARY, SECONDARY, and DATA. It is also easy to identify link L
which connects PRIMARY to SECONDARY. But what about link I? Since the
pointers that define the parent field (i.e., inverted list) of link I are strewn over

ACM Transaetions on Database Systems, Vol. 10, No. 4, December 1985,

470 . D. 8. Batory

L
PRIMARY 3| SECONDARY
Fig. 5. The need for muitiple levels 12 9 12
of abstraction.
DATA

PRIMARY and SECONDARY records, how is one to decide the parent record
of a link J occurrence? What is the parent file of link 1?7 Three possible ways are
shown in Figure 5, but it is obvious that none conveys the correct structure or
relationship.

The general problem is clear. Elementary storage structures can be used to
implement other elementary storage structures (e.g., list linksets are used to
implement inverted list linksets). Levels of abstraction are needed to separate
these structures in order to describe them in a meaningful way.

New modeling techniques, quite different from those used previously, are
needed to account for the above implementation possibilities and to predict their
generalizations. Central to these techniques is the idea of conceptual-to-internal
mappings.

3, THE TRANSFORMATION MODEL

A primary function of a DBMS is to map conceptual files and operations to their
internal counterparts. INGRES [76], for example, maps relations and relational
operations onto inverted files. SYSTEM R (24] and RAPID [83] also begin with
relations, but SYSTEM R maps to inverted files with record clustering and
RAPID maps to transposed files.

An intuitive understanding of conceptual-to-internal mappings is gained by
recognizing a mapping as a sequence of database definitions that are progressively
more implementation-oriented. The sequence begins with definitions of the
conceptual files and their links, and ends with definitions of the internal files
and their links. Each intermediate definition contains both conceptual and
internal elements, and thus can be identified with a level of abstraction that lies
between the “pure” conceptual and “pure” internal levels. In this way physical
databases can be modeled at different levels of abstraction.

Distinguishing different levels in a DBMS and mapping from one level to an
adjacent level is usually straightforward. In the DBMSs that the author has
studied, only ten different primitive mappings, henceforth called elementary
transformations, have been utilized. Elementary transformations can be used
singly or in combination to map files and links from one level of abstraction to
a lower level. In principle, this means that the conceptual-to-internal mappings
of 4 software-based DBMS can be modeled by (1) taking the generic conceptual
files and links that the DBMS supports and (2) applying a well-defined sequence
of elementary transformations to produce the internal files and links of the
DBMS. In the case of INGRES, SYSTEM R, and RAPID, all begin with the

ACM Transactions on Database Systems, Yol 10, No. 4, {Jecember 1985

Modeling Storage Architectures . 471

same conceptual files (i.e., relations), but each is distinguished by different
sequences of transformations (and henee different sets ofinternal files and links).
We explain each of the elementary transformations in detail shortly.

Conceptual-to-internal mappings are related to the UM in the following way.
The UM relies on decomposition to identify the internal files and links of a
physical database. In contrast, the TM starts with conceptual files and links that
are supported by a DBMS and shows how their underlying internal files and
links are derived. The TM does not introduce new simple file structures or linkset
structures. Rather, the TM extends the UM by supplanting the intuitive process
of physical database decomposition with conceptual-to-internal mappings. Thus,
the primitives for describing DBMS architectures are (1) simple files, which map
internal files to pages on secondary storage; (2) linksets, which specify how
related records of different files are physically connected; and (3) elementary
transformations, which define how abstract (or higher level) files and links are
mapped to concrete (or lower level) files and links.

It is important to recognize that conceptual-to-internal mappings and elemen-
tary transformations are not artificial concepts. Each elementary transformation
can be realized by a simple layer of software. In turn, the physical database
software of a DBMS can be understood as a sequence of these layers, where the
software of different DBMSs are described by different sequences. The idea of
“level of abstraction” corresponds to the files and links of a DBMS that are
visible at a particular level in its software. Thus, conceptual-to-internal mappings
and elementary transformations are fundamental to the way DBMS software is
actually written or can be written. We explain in Section 5 how the TM is being
used to develop a system whose goal is to automate the development of the
physical database software of DBMSs.

3.1 Elementary Transformations

Elementary transformations are rules for mapping files and links at one (higher)
level of abstraction to those at the next lower (more concrete) level. Ten
elementary transformations are presently recognized. They were discovered as a
consequence of studying the storage architectures of SPIRES [74], DMS-1100
[73], TOTAL [20], MRS {49}, IDMS [22], INGRES [76], IMS [44], ADABAS
[32], INQUIRE {45}, RAPID [83], ALDS [14], CREATABASE [61], and SYS-
TEM 2000 {16]. Models of the storage architectures for most of these systems
have been completed. Table I lists the transformations that are used in each
model, and a reference to the model. Preliminary models of the remaining
systems—IMS, TOTAL, SPIRES, and CREATABASE—are given in [8]. Al-
though there is ample evidence that the transformations identified in this paper
are the most common, there may be other transformations which have not yet
been recognized. We address the completeness issue later in Section &.

The transformations themselves were defined to coincide with familiar phys-
ical database concepts or with their generalizations. For example, there is a
transformation called segmentation which corresponds to the well-known concept
of segmentation [56]. Thus, there is reason to believe that similar sets of
transformations would have been identified if models of conceptual-to-internal
mappings had been developed independently of our research.

ACM Transactions on Database Systems, Volb. 10, No. 4, December 1985,

472 . D. S. Batory

Table . Usage of Elementary Pransformations in Existing Models

Management System
Elementary DMS- SYSTEM
transformation ADABAS ALDS 1100 IDMS INGRES INQUIRE MRS RAPID 2000
Augmentation X b3 X X X X X X
Encoding X X b3 X
Extraction X X X X X b3
Collection X %
Segmentation X X X X X X X X
Division X % X % X X
Actualization b3
Layering X x
Null X X X X X X
Horizontal
partitioning
Model reference Appendix {8] 18} 17 {91 Sect. 4 [7} 9] Appendix
HI v
W W

Fig. 6. Two materializa- L L
tions of abstract file W. ! |

| |

NEal]

| i

{ i

| | .

| S SO §

(@) (b)

To illustrate and explain the effects of each transformation, we again use data
structure, field definition, and instance diagrams. Besides the usual conventions,
there are two additions. First, abstract objects (typically files) are indicated by
dashed outlines in data structure diagrams. Figure 6a shows a data structure
diagram of an abstract file W and its materialization as the files I/ and (7 and
link L. Figure 6b shows another example materialization of W as the files F’ and
1 and link L’, where L’ has opposite directionality.

Second, pointers to abstract records arise naturally in storage architectures. In
order to give such pointers a physical realization (i.e., a physical address or
symbolic key), they must ultimately reference internal records. To define how
pointer references are transformed, we rely on the orientation of record types
within a dsd. The orientation of F and (7 in Figure 6a, for example, shows that
file F is above file . We say that F dominates ;. This means that a pointer to
an abstract record of type W will actually reference its corresponding concrete

ACM Transactions on Database Systems, Yol. 10, No. 4, December 1985,

Modeling Storage Architectures . 473
ABSTRACT
(oo] oI+
dsd fdd id

Fig. 7. An ABSTRACT record type.

ABSTRACT
E % CONCRETE
‘% CONCRETE %I M Fy . Fa m Vi . Vo
| ‘:
L A
dsd fdd id

Fig. 8. Augmentation of metadata field M.

record of type F. For almost all transformations, there is a 1:1 correspondence
between abstract records and their dominant concrete records; the only known
exception that we are aware of is full transposition, which is discussed later in
the segmentation section. The dominance concept is recursive; that is, a pointer
to a W record is the same as the pointer to its F record, which is the same as the
pointer to the dominant record of the F record, and so on. In this way, pointers
to abstract records are mapped to internal records.

Note that dominance has nothing to do with links and their directionality. In
Figure 6a, F' is dominant and is the parent file of link L. In Figure 6b, F' is
dominant and is the child file of link L’. Thus, dominance is indicated only by
being above all other files.

With the aid of these notations and the linkset structures of Appendix II
serving as a basis, nine of the elementary transformations are explained and
illustrated below. A tenth (horizontal partitioning) is briefly discussed in Section
5. Our illustrations of these transformations are only examples; each transfor-
mation ean have many additional uses.

Augmentation {of Metadata). Metadata can be added to an abstract record.
For example, it can be a delete flag or a record type identifier. It may be stored
in a separate field or added to an existing field. A metadata field is given a name
so that it may be referenced later.

Figure 7 shows a data structure, field definition, and instance diagram of a file
of type ABSTRACT. An ABSTRACT record has n fields F, ... F,, with value v,
stored in field F.. Figure 8 shows the result of augmenting metadata field M (with
value m) to an ABSTRACT record. RAPID, INQUIRE, ADABAS, and SYSTEM
2000 use augmentation.

Encoding. Abstract records or selected fields thereof can be encoded for pur-
poses of data compression, data encryption, or searching (e.g., SOUNDEX

ACM Transactions on Database Systems, Vol. 10, No. 4, December 1985,

474 . D. S. Batory

ABSTRACT
| § CONCRETE
i T i — B RN T
% ‘ CONCRETE ‘ | [F; l Fi ‘ vil v
i i - —
{ i
? -
dsd fdd id
Fig. 9. Encoding of individua! fields.
ABSTRACT
s— i CONCRETE
| i
i CONCRETE i v’
| |]
R |
dsd fdd id

Fig. 10. Encoding of an entire record.

encoding [85]). Common data compression algorithms include the elimination of
trailing blanks and leading zeros, storing numeric character strings as binary
integers, digraph encoding schemes (where commonly occurring character pairs
are encoded into single bytes [84]), Huffman encoding [43], and Ziv-Lempel
encoding [89]. Well-known encryption algorithms are block ciphers [52} and the
NBS data encryption standard {60].

Encodings are applied to individual fields or to entire records (viewed just as a
string of bytes). The former allows direct access to compressed fields and
compressed data values, the latter requires record expansion before specific fields
can be located. Figures 9 and 10 illustrate the notation that is used to distinguish
these cases on the ABSTRACT record of Figure 7. Figure 9.fdd shows unencoded
field F, mapped to encoded field F/, and Figure 10.fdd shows the string of fields
B, ... F, mapped to a single encoded field F'. ADABAS compresses fields
separately; IDMS compresses entire records.

Note that some encoding schemes, such as Huffman and Ziv-Lempel encod-
ings, require the use of translation tables. These tables would be maintained by
the system as part of the internal representation of the schema in which the
ABSTRACT record type was defined. Such tables are not shown in the diagrams
of Figures 9 and 10.

Extraction. Creating a secondary index on a field of an abstract record type is
one of several uses of extraction. The basic idea is to extract the set of all distinct
data values that appear in specified fields of abstract records.! Normally, one

! Compound fields may also be extracted. A compound field is an ordered sequence of two or more
elementary fields.

ACM Transuctions on Database Systems, Vol. 10, Nu. 4, December 1985,

Modeling Storage Architectures . 475

ABSTRACT
’ CONCRETE l
L
INDEX;
]
i
dsd
CONCRETE
e[Jole] [bl]
INDEX;
T
fdd id

Fig. 11, Extraction of field F; with duplication.

field per record type is extracted for each application of the transformation.
Abstract records are mapped to concrete records and an “index” record type is
created. Each extracted data value is stored in a distinct index record. Each index
record is related to all concrete records that possess its data value. This relation-
ship is realized by a link that connects the parent index file to the child concrete
file. Figure 11.dsd shows the files and links that result from extracting field F;
from the ABSTRACT record of Figure 7. Note that, as a general rule, index
record types are not dominant.

There are two known variations of extraction. Figures 11.fdd and 11.id illustrate
extraction with duplication where the extracted field F; appears in both the
INDEX; and CONCRETE records. Link L in Figure 11.id is shown as a list
linkset. (Other linkset implementations are possible.) ADABAS, MRS, SYSTEM
2000, and INQUIRE use extraction with duplication to create indices on data
fields.

The other variation is extraction without duplication (i.e., the extracted field
is removed from CONCRETE records). Figure 12 illustrates this transformation.
Extraction without duplication is primarily used to create dictionaries rather
than indices. A dictionary for field Fy is a lexicon of data values that defines the
domain of F,; there are no pointers or linkages that connect a data value of the
dictionary to all of its occurrences in concrete records. (In contrast, an index has

ACM Transactions on Database Systems, Vol. 10, No. 4, December 1985,

01

476 > D. S. Batory

ABSTRACT
CONCRETE
L
DICTIONARY;
)
1
dsd
CONCRETE
Fod oo Fiet] G Fiet] -0 Fa
} 5
DICTIONARY;
F Vi
tdd id

Fig. 12, Extraction of field #, without duplication.

such linkages). Link L in Figure 12.id is implemented solely by parent pointers
(i.e., pointers from child records to parent records). CREATABASE, ALDS, and
RAPID use extraction without duplication to create dictionaries on data fields.

It is usually the case that DBMSs allow most, if not all, fields to have
dictionaries or secondary indices. This can be modeled by repeated applications
of extraction, once for each specified field. To indicate multiple extractions in a
compact way, we use a special notation, In Figure 13.dsd, ()/ is used to indicate
that the INDEX, file and its link I; can be reproduced any number of times, each
time with a different value for j.

When multiple links are generated, multiple child fields (one for each link)
may be introduced to the CONCRETE record. In Figure 13.fdd, the presence of
multiple child fields in the CONCRETE record type is shown by (C;), where,
again, {) is the repeat notation. The repeat notation is also used in Figure
13.£dd to indicate the generation of multiple INDEX, record types. There is, of
course, an implicit coordination between data structure and field definition
diagrams which use the repeat notation (i.e., the values of J used in the dsd are
identical to those used in the fdd).

Some additional points need to be stressed. First, whenever a link is introduced
by a transformation, it may be realized in principle by any linkset structure—

ACM Fransactious on Database Systems, Vol. 10, No. 4, December 1985

Modeling Storage Architectures . A77

ABSTRACT

1 CONCRETE

{
i
1

CONCRETE

Fol.. 1 Fa (C'x)) IRV = I _41

(INDEX,)’
o]e]

Fig. 13, The repeat notation.

list, pointer array, sequential, or relational (see Appendix II). As mgntlon'ed
previously, ADABAS, MRS, SYSTEM 2000, and INQUIRE use extractfon with
duplication. The link that is produced is realized by pomterl arrays (mverte?
lists) in ADABAS, MRS, and SYSTEM 2000; it is realized by lists in INQUIRE‘

Second, we use the term «gxtraction” rather than “indexing” since thxs' trans-
formation is used for purposes other than creating indices (e.g., dictionaries and
phantom files [85]). _ ‘ '

Third, the extraction transformation can be applied to derived fields (i.e., fields
that are not actually present in a record, but whose value(s) can be compute(i by
applying an “extraction” function to the record itself, see {78}, (771, [82], {()‘.%])‘
A simple example of a derived field would be the calculation of me{\t,hly salaries,
given yearly salaries. As a more complicated example, a text field could be
“indexed” by applying a function to the field which returns the set of.ke%y words
that it contains. An index record would then be defined for each dxst,mc.t ke}y
word. As another example, a record could describe an object located on a cxrqnt
diagram. To support window retrieval (i.e., retrieval (?f’ a?l .comp({n.ents gf a
diagram that fall within a specified geometric region), a circuit is partitioned into
subcells. An “extraction” function applied to a record would produce the set of
subcells in which its corresponding object lies. These subcell references could

ACM Transactions on Database Systems, Vol. 10, No. 4, December 1985,

11

478 - D. §. Batory

ABSTRACT
i
i H
! |
E CONCRETE 5
! !
: :
: L !
| |
{ i
b J
dsg
CONCRETE CONCRETE CONCRETE CONCRETE
record 1 ® record 2 ! record 3 B
Fy Ful Co
fdd

Fig. 14. Collection.

then be used to optimize window retrieval [36]. Notions of extraction with and
without duplication are extended accordingly.

Collection. The DBTG concept of a singular set, which links together all
records of a given type, is an example of the collection transformation. The basic
idea is to collect all instances of one or more abstract record types together onto
a single link occurrence. Figure 14 shows the result of collecting the ABSTRACT
record type of Figure 7. Note that the parent record of the lone I occurrence is
maintained as part of the internal representation of the schema in which the
ABSTRACT record type was defined, It is indicated by “*” in Figure 14.dsd.

In all applications of collection known to the author, link L has been realized
by a list linkset (see Fig. 14.id), although other linksets conceivably might be
used. INQUIRE and SYSTEM 2000 use this transformation.®

Segmentation. Abstract records can be partitioned along one or more field
boundaries to produce two or more subrecords. One subrecord is distinguished as
the primary record, the rest are secondary records. A link connects the primary
file to each secondary file. Primary records are differentiated from secondary
records as they are materialized and processed differently. Usually it is the case

* A rather odd implementation of link L would be as 4 sequential linkset. The system record » would
be immediately followed by all CONCRETE record occurrences. Note that the resulting linkset
ocearrence does not define a simple file structure. The « record could be stored in a hash-based,
indexed-sequential, etc., structure and its train of CONCRETE records would then follow. Linksets
connect parent records to their child records; simple fite structures map records into blocks,

T A generalization of collection wus proposed in DIAM [67]. It would collect

all records (of possibly
several tvpes) that satisfy a predicate onto a single link oceurrence.

ACM Transactions on Database Systems, Vol. 10, No. 4, December 1985,

Modeling Storage Architectures . 479

ABSTRACT
g-———~——-—————----—-——-—w% PRIMARY
] | [TR[]
| PRIMARY | N .
| :
| i
{ L i T
i j SECONDARY |
|
| i
(! Vit o0 Vn
i F RUD B A A o k+1
I SECONDARY ‘} Kt
‘=]
i i
l
dsd fdd id
Fig. 15, Segmentation without duplication.
ABSTRACT
PRIMARY
VRV
lpmw\nvl lF{lF,llF p.\ 1 vy l
; 1
SECONDARY |
o S Vg
SECONDARY l F, !Fk+1‘ ‘ Fa l Co l \ Vi ik ‘
dsd fdd id

Pig. 16. Segmentation with duplication.

that the most active fields (i.e., the ones that are retrieved apd‘ update@ ma::
frequently) are placed in the primary record and the remaining are in
sondary [56]. o ‘ N
SE(‘;)(:;meit[atiin can occur with or without duplication of fiatd f;elcli\ngrlIg;J{rzclg
shows the segmentation of fields F; ... F, from F;f“ L FLof t (‘en e oinier
record of Figure 7. No fields are duplicated, and L is)shov:n asa:;es‘:t 1;1) dlar porper

i i i i hild pointer) and'a p .

.e., 4 pointer array with precisely one ¢ : A ! 5
ilame se‘egmentati(m oceurs in Figure 16, except that field F; is duplcn}%agsd.‘gﬁzgu
;md IMS use segmentation with duplication; ADABAS and IN E
mentation without duplication. o 1 .

Pwo forms of segmentation without duplication are sg wel‘l-l}z(l)l\\;t:a(zq;;:;z;
 the ¢ 1 special names. One 18 S s
frequently that they have been given sp one is. sposition,
i i i 3 te subfiles. That is, if there are
which segments each field into separa es. : nhelds in
: tion produces n concr
an abstract record type, then a full transposi (
ti;f]peq t'each containing precisely one field (see Figure 17). Because all fields are

. o 5
ACM Transactions on Database Systems, Vol. 10, No. 4, December 1985.

¢l

480 D. 8. Batory
ABSTRACT
{ 1
! |
! |
! l CONCRETE,] -.. | CONCRETE, | |
i i
H H
| K A-A K |
i i i
]
dsd
jeton
(CONCRETE,)

fad id

Fig. 17. Full transposition.

treated identically, the resulting concrete types are not distinguished as being
either “primary” or “secondary”. Thus, all may be considered as dominant. (That
is, a pointer, to an abstract record can serve as a pointer to any of its transposed
subrecords). Note that link L in Figure 17.dsd, which interconnects the n concrete
types, is drawn as a bidirectional link which does not force “parent” and “child”
distinctions. Link L is implemented as by a transposed linkset, which is described
in Appendix II. Further information on transposed files can be found in [4, 40,
56]. RAPID and ALDS use full transposition.

Full transposition represents one extreme form of segmentation. Another is
the second well-known form, called indirection, where all fields are removed to a
secondary record and only a pointer remains in the primary. An INDIRECTION
record and a CONCRETE record connected by link L is a result (see Figure 18).
The INDIRECTION record contains only the field P;; the CONCRETE record
contains all the fields of the abstract record and (optionally) field C,. Figure
18.id shows L as a singular child pointer and a parent pointer, although there are
other variations. DMS-1100 uses only singular pointers, and ADABAS uses a
cellular singular pointer (a pointer that references the block in which the
CONCRETE record is stored) and a parent pointer.

As mentioned earlier, it is common for pointers to reference abstract records.
The goal of the indirection transformation is to be able to alter the storage
location of a CONCRETE record without having to update pointers to its
corresponding abstract record. This is accomplished by fixing the storage location
of the INDIRECTION record and updating the P, pointer each time its
CONCRETE record moves.

ACM Transactions on Database Systems, Vol. 10, No. 4, December 1985,

Modeling Storage Architectures g 481

ABSTRACT
INDIRECTION
[INDIRECTION 1
L
CONCRETE
I CONCRETE l [F\l ¥ Fn Co i Vs -Vn\ !
dsd fad id
Fig. 18. Indirection.
ABSTRACT
CONCRETE
CONCRETE l F,
L ' i
SEG_.INDEX;
SEG...INDEX, Bl P
dsd fdd ia

Fig. 19. Segmented secondary indices.

Yet another common use of segmentation is to create files that function as
secondary indices. If a “segmented” secondary index for field F, is to be created,
I«“ is segmented with duplication from ABSTRACT records to produce a
SEG_INDEX, file connected to a CONCRETE file via link L:, as shown in
Figure 19. Link L; is usually implemented by a singular pointer (Figure 19.id).
(Note that the primary SEG_INDEX; file is not dominant; in all previous
examples of segmentation, primary files were dominant.)

By this construction, it follows that the number of SEG_INDEX; records
always equals the number of CONCRETE records. This means that if some value
v; occurred, say, twenty times, there would be twenty SEG_INDEX; records that
contained value v;. Note that this form of indexing is different than the secondary
indices produced by extraction. (In extraction, there would be only one index
record that contained value v;, no matter how many times v, occurred in the
CONCRETE file). Also, the algorithms that support “segmented” secondary
indices would be different than those that support “extracted” indices. INGRES
and RAPID use segmented secondary indices.

ACM Transactions on Database Systems, Vol. 10, No. 4, December 1985,

el

482 . D. S. Batory

ABSTRACT
l PRIMARY
L
SECONDARY
dsd
PRIMARY
+Fy oo Fa P EATERR']
1.
SECONDARY
+Fy o Fy Ce Vg Wy Bl Vg e Vg u—l
fdd id

Fig. 20. Division without duplication.

It is interesting to note that segmented secondary indices and extracted
secondary indices are equifrequent in DBMS implementations. Although it is
believed that segmented secondary indices are easier to implement, it is not
known which of the two methods is more efficient.

In connection with segmented secondary indices, segmentation can also be
applied to derived fields, just as extraction can be applied to derived fields. A list
of possible applications was given earlier in the section on extraction.

Division. Division is the partitioning of an abstract record or of selected fields
into two or more fragments. The first fragment is the primary (and dominant)
fragment, and the remaining are secondary fragments. Unlike segmentation,
partitioning is done without respect to field boundaries. A record or field is
usually divided into fixed-length fragments (e.g., the first hundred bytes define
fragment 1, the next hundred bytes fragment 2, and so on). Division is otherwise
identical to segmentation.

Division may occur with or without duplication of fields. Figure 20 shows the
result of applying division without duplication to the ABSTRACT record of
Figure 7. Figure 21 shows the division of the same ABSTRACT record with the
duplication of field F, in each fragment. (Note that +% . .. F, denotes a fragment

ACM Transactions on Database Systems, Vob. 10, No. 4, December 1985

Modeling Storage Architectures . 483

ABSTRACT

PRIMAR;_J

L

X
SECONDARY

dsd

PRIMARY

1 F, ‘ +Fy - Fy l P ‘ ‘ Vi Vg e e

v l
i
SECONDARY /
Vo H VitV v,

VyE Ve

(] w]a]

fad id

Fig. 21, Division with duplication.

of the string of fields F, ... F,. Each fragment does not overlap with other
fragments. Taken together these fragments can be concatenated to form the
original string.)

INQUIRE and SYSTEM 2000 use list linksets to realize link L which connects
the PRIMARY file to the SECONDARY file (see Fig. 20.id). SYSTEM R uses
pointer arrays to realize L in the implementation of long fields [38} and map
arrays for complex objects [53]. ADABAS uses relational linksets (i.e., records
are related by sharing common keys).

We have already seen an example of division: Figure 4 shows the division of
an INDEX record into fragments connected by a list linkset. Another common
use of division, this time combined with relational linksets, arises when concep-
tual records of a database are much larger than what can be handled by the
DBMS itself. Figure 22 shows how a CONCEPTUAL record with primary key k
is mapped by division with duplication to four concrete records with key k
duplicated in each fragment. The primary key of the jth fragment is the ordered
pair (k, j). The first fragment is a PRIMARY record (with key (k, 1)) and the
remaining fragments are SECONDARY records. The fragment numbers (which,
incidentally, are stored in the parent and child fields of linkset L) specify the

ACM Transactions on Database Systems, Vol. 10, No. 4, December 1985.

A

484 . D. 8. Batory

CONCEPTUAL
.......................... CONCEPTUAL
k| dat
‘ PRIMARY ; K - e
PRIMARY

L
SECONDARY SECONDARY

K |c | +F [i] 2] +cata {kis‘watal []a] +cana |

5

dsd fad id

Fig. 22. Division and relational linksets.

ordering of the fragments.* Thus, to retrieve a “long” CONCEPTUAL record,
one retrieves its corresponding PRIMARY and SECONDARY records and
concatenates the fragments. Figure 22 is a good example of how an implemen-
tation “trick” can be expressed in terms of elementary transformations and
linkset implementations.

Actualization. Actualization maps an abstract link to one or more concrete
links and zero or more concrete files. Perhaps the most common example of
actualization is the materialization of M:N links in DBTG databases. Consider
conceptual files F and G which are related by an M:N link L (see Figure 23a). In
4 DBTG DBMS, link L would be expressed by two 1:N links (i.e., sets) F-FG and
(-FG and a file FG (see Figure 23b). Links F-FG and G-FG and file FG can be
implemented in a variety of ways (see {22, 73]). In this example, note that the
mapping of link L is not accomplished by the DBMS, but rather by the database
administrator when he defines the DBTG schema. Thus database users recognize
Figure 23b as the DBTG implementation of Figure 23a. In principle, however, a
nonDBTG network DBMS could be written which would handle this mapping
automatically.

Actualization can be with or without field duplication. Normally it is without.
With duplication, selected fields of a parent record type can be copied into its
child record types and vice versa. Depending on the cardinality of the parent-
child relationship (i.e., 1:1, LN, and M:N) and the cardinality of the fields
themselves (i.e., scalar or repeating), the fields that are copied may contain single
data values or they may have a variable number of values.” ADABAS uses
actualization without duplication.

 Following the linkset terminology of Appendix 11, L is a relational linkset with child records
maintained in sort-key order.

%1t is worth noting that the idea of actualization was considered some time ago in a rather different
context. Mitoma 58] and Berelian and lrani [12] addressed a DBTG database design problem. Their
approach was to start with binary data model of the database. By iteratively applying what we call
actualization transformations, a DBTG schema was produced.

ACM Transactions on Database Systems, Vol. 10, No. 4, December 1985

Modeling Storage Architectures . 485

F-FG ‘/GVFG

FG
(a) (b)
Fig. 23. Actualization of conceptual links.
DATA_BLOCK
DATA.. BLOCK BLOCK..ADDRESS | BLOCK_CONTENTS
dsd fdd

Fig. 24. Layering.

Layqring. Simple file structures map internal files to blocks (pages). In some
DBMS storage architectures, two types of blocks are recognized: logical and
physical. It is usually the case that several logical blocks can fit into one physical
block. To understand how logical blocks are mapped to physieal blocks, it is
necessary to model storage architectures in layers, where each layer has well-
defined notions of internal records, file structures, and blocks. The upper layer
has logical blocks, and the lower has physical blocks. A block on the upper layer
is treated as an abstract record on the lower layer (Figure 24); the storage address
of the block is the abstract record’s primary key. Thus a block fetch on the upper
;ayer is mapped to a record read on the lower; a block update on the upper layer
is mapped to a record update on the lower. Elementary transformations are used
to map these abstract records to internal files, and simple file structures map
these internal files to physical blocks. It is in this way that “logical blocks” are
mapped to “physical blocks.” IMS and RAPID rely on layering to map virtual
address spaces to a physical address space.

The most common use of layering is found in the file systems of operating
sﬁystems‘ UNIX, for example, provides the abstract. view of a secondary storage
file as a sequence of bytes. In reality, UNIX treats contiguous sequences of 512
bytes as fixed-length records and stores them on disk in usually nonsequential
locations using the standard UNIX file structure [64]. DBMSs that rely on UNIX
files, such as INGRES and MRS, define contiguous sequences of 2048 or 512
bytes as (logical) blocks and use them to build unordered, B+ tree, and indexed-
sequential file structures. Thus a (logical) block fetch at an upper layer (ie.,
DBMS software) becomes one or more record reads at a lower layer (i.e., UNIX
software).

Null. Abstract records are normally subjected to one or more transformations
before their materialization has been specified. Occasionally the application of
these transformations will occur only under certain well-defined conditions. For

ACM Transactions on Database Systems, Vol. 10, No. 4, Decerber 1985.

§1

486 . D. S. Batory

ABSTRACT

CONCRETE

CONCRETE Fy o Fu Vi Ve

[————

asd tdd id

Fig. 25, Null.

example, a flag can be specified in the schema to indicate whether records of a
particular type are to be compressed; the setting of this flag defines the condition
on which an encoding transformation is to be applied. If conditions are not met,
the abstract record is mapped directly to a concrete record without alteration.
The null transformation is used to model these situations. Figure 25 shows the
result of applying null to the ABSTRACT record of Figure 7. Models of the
storage architectures of SYSTEM 2000 and INQUIRE utilize this transforma-
tion.

It is believed that these nine transformations are sufficient to model the storage
architectures of most commercial and specialized database management systems.
Since only a relatively small number of DBMSs have been examined so far, it is
possible that other transformations may exist or that existing transformations
can be generalized. Thus, our model should be considered preliminary.

In the following section we outline a general procedure for modeling the storage
architecture of a DBMS using these transformations.

3.2 A Procedure for Modeling DBMS Storage Architectures

Most DBMSs support a logical or conceptual data model that is record-oriented.
DBTG network-based systems, such as IDMS and DMS-1100, hierarchical
systems, such as SYSTEM 2000 and IMS, and even relational systems, such as
INGRES and SYSTEM R, have record-based models. Future DBMSs are likely
to support semantic data models that are object-oriented, such as DAPLEX {70}
or the Entity-Relationship model [19], in order to capture and utilize the
semantics of database objects more fully [11].

The first step in modeling the storage architecture of a DBMS is to begin with
a generic data structure diagram that captures the different kinds of links that
the DBMS permits among conceptual files. In this paper we are not concerned
with the mapping of semantic {object-oriented) data models to a record-oriented
representation. Again, as almost all conventional DBMSs are record-oriented,
starting with a data structure diagram is not a restrictive requirement. However,
we note that the mapping of semantic data models to record-based models will
eventually become an important step in modeling the storage architecture of
future database systems.

ACM Transactions on Database Systems, Vol. 10, No. 4, December 1985,

Modeling Storage Architectures » 487

c . Cm c
CONCEPTUAL CONCEPTUAL CONCEPTUAL
P, Pa Py P,
@ () ©)

Fig. 26. Generic conceptual data structure diagrams.

Figure 26 shows three generic data structure diagrams that reflect the network,
hierarchical, and single-file data models. Variations of these diagrams may be
used to capture features that are peculiar to specific DBMSs. In a network
DBMS, a CONCEPTUAL file can be a child file for links C; ... C,, and the
parent file for links P, ... P,, for m = 0 and n = 0 {Figure 26a). Note that
instances of such files may have different values for m and n. The generic dsd
for a hierarchical DBMS is shown in Figure 26b. Instances of files in the hierarchy
are the root (m = 0, n = 1), the leaves (m = 1, n =-0), and the intermediates
(m =1, n = 1). Some file management systems, such as ALDS, do not explicitly
support links between conceptual files. In these cases, the generic dsd would be
a single conceptual file (Figure 26¢). Relational DBMSs that realize conceptual
links by joins may also begin with Figure 26¢.

A characteristic of conceptual-to-internal mappings is the generation of many
files that are neither conceptual nor internal. In order to reference them, they
will need to be given names. As a convention, we preface their names by
“ABSTRACT.” so that they can be distinguished from conceptual and internal
files.

The second step in modeling DBMS storage architectures is to specify the
implementation of the conceptual links, perhaps using actualization. This step
introduces parent and child fields into the record types that are related by
linksets. To distinguish CONCEPTUAL records from those that contain parent
and child fields, we refer to the records of the latter type as ABSTRACT.
CONCEPTUAL records, using the convention of the prefix “ABSTRACT.”
mentioned above.

At this point a single CONCEPTUAL or ABSTRACT..CONCEPTUAL file
has been identified. The materialization of this file proceeds in well-defined steps,
where one or more elementary transformations may constitute a single step. A
step is usually identified with all transformations that are applied to a single file.
The sequence of transformations that comprise a derivation follows an intuitively
evident course in which abstract files are made progressively more concrete. This
progression can be seen in any of the derivations presented in this paper. The
process of applying elementary transformations terminates when the record types

ACM Transactions on Database Systems, Vol, 10, No. 4, December 1985,

91

488 . D. S. Batory

of internal files (i.e., the record types of the records that are stored in simple
tiles) have been derived. The result at this stage in the architecture modeling is
a set of internal files and internal links.

The final step is to assign each internal file to a simple file structure and each
internal link to a linkset structure. It is at this step where blocking factors,
primary keys, overflow methods, file placement, and so on are given.

It is worth noting that simple file structures often augment internal records
with delete bytes and pointers, and may introduce list structures (such as overflow
chains) that look quite similar to linkset implementations. Thus the question
arises when to stop applying elementary transformations in modeling a storage
architecture. The solution lies in the definition of the interface to simple files;
all augmented fields, pointers, and so on that are not added below this interface
must be handled by elementary transformations.

Unfortunately, there is much confusion in actual DBMS software in identifying
such an interface. Many DBMSs were not developed in a modular fashion;
“higher level” routines directly manipulate “lower level” details, thereby obscur-
ing the simplicity of a layered implementation. Other DBMSs have clearly
identifiable software layers, but their boundaries differ substantially from those
required by the TM and UM.

We have implemented a file management system, called JUPITER, that is
based on the simple file submodel of the UM [31]. JUPITER is consistent with
the concepts of internal files and simple files used in this paper. With the
JUPITER interface, it is obvious whether functions should be supported by
simple files or by elementary transformations. The storage architecture models
that we present in this paper are consistent with this interface.

One final note concerns the representation of conceptual records. We view a
conceptual record simply as a sequence of values. In reality, it is a string of bytes
which defines the DBMS’s input/output representation of these values. This
might involve the use of ASCII or EBCDIC codes, or the use of special data
structures (e.g., pointers or count bytes) to separate the contents of repeating or
variable length fields {see [57]). The actual encoding that a DBMS uses to input
and output its records is irrelevant to understanding the DBMS’s storage archi-
tecture. For this reason we ignore such encodings.

In the following section, and in the appendices, we apply this procedure to
model the storage architectures of INQUIRE, ADABAS, and SYSTEM 2000.
We have chosen INQUIRE as our main example, for it is representative of the
complexity of most DBMS architectures and is a good illustration of how
implementation “tricks” can be expressed as conceptual-to-internal mappings.
The storage architectures of ADABAS and SYSTEM 2000 are presented in
Appendices 111 and IV. References to other architectures are given in the
Introduction.

In each of the examples, a considerable amount of detail is progressively
revealed. Although many details may seem unimportant and some of the imple-
mentation methods are clearly nonoptimal, it is precisely these detatls and
methods that one must understand in order to comprehend the implementation
of these DBMSs. The purpose of these examples is to demonstrate that the TM
is powerful enough to model practical systems.

ACM Transactions on Database Systems, Yal. 10, No. 4, December 1985

Modeling Storage Architectures . 489

CONCEPTUAL
CONCEPTUAL ‘ Fyt oo Fa]
gsd fad

Fig. 27, Generic CONCEPTUAL record type of INQUIRE.

4. THE STORAGE ARCHITECTURE OF INQUIRE

INQUIRE is a product of Infodata Systems Inc. It is presently used in more than
300 installations in North America and Europe. INQUIRE creates a distinct
physical database for each conceptual file that is defined. Interconnections
between different conceptual files are implicit; they are realized by join operations
rather than by physical structures. The underlying storage architecture of IN-
QUIRE, therefore, can be understood by examining how records of a single
conceptual file are stored.

The generic CONCEPTUAL record type supported by INQUIRE is shown in
Figure 27. It consists of n fields, F, . .. F,, which may be elementary or compound.
The value of n is user-definable. An elementary or compound field may be scalar
or repeating. A scalar field always contains a single data value (possibly null). A
repeating field contains zero or more data values. Data values can have fixed or
variable lengths. Thus CONCEPTUAL records are typically variable-length.

CONCEPTUAL record types are the record types that are defined in INQUIRE
schemas; CONCEPTUAL records are the records that are visible to INQUIRE
users.

The internal files and links of INQUIRE are derived in the following way.
First, INQUIRE augments a delete flag DF to every CONCEPTUAL record. This
flag is used to mark CONCEPTUAL records that have been deleted. Next,
INQUIRE allows scalar and repeating fields to be indexed. Field F; is indexed by
extraction. This produces the ABSTRACT_INDEX; and ABSTRACT_CON-
CEPTUAL files connected by link I, (Figure 28). Thus, for each distinct data
value that appears in field F; in one or more ABSTRACT_CONCEPTUAL
records, there will be a distinct ABSTRACT.INDEX, record that contains this
value.

INQUIRE creates indices for scalar and repeating fields in the same way.
Figure 28.id illustrates the indexing of a repeating field. Three ABSTRACT.
CONCEPTUAL records and two ABSTRACT_INDEX; records are shown.
Although each ABSTRACT_CONCEPTUAL record contains many data fields,
only the contents of repeating field F; are shown; one record contains a value vy,
another contains v, and vy, and a third contains v,. The ABSTRACT_INDEX;
records shown are those for values v, and vy. Note that the ABSTRACT .
CONCEPTUAL record whose F; field contains v, and vy has both ABSTRACT
INDEX, records as its parents. Thus link /; is M:N*

4o that there is no ambiguity about the distinction between LN and M:N links, it is well known
(hat CODASYL sets are 1:N, If M:N sets were supported, a member record could participate in
multiple occurrences of the same set at the same time. Link /, is equivalent to an M:N set.

ACM Transsctions on Database Systems, Vol. 10, No. 4, December 1985

LT

490 . D. S. Batory

CONCEPTUAL

ABSTRACT
CONCEPTUAL

h |
(ABSTRACT_)

INDEX;

dsd

ABSTRACT...CONCEPTUAL

. -
OFL Bl o | B | (@) [v, Vo, V2 '”‘?y ve | b, T

Dy 4
H
ABSTRACT_INDEX,
" L
3

Va

fdd id

Fig. 28. Augmentation and extraction of CONCEPTUAL fields.

The linkset that implements [, is an M:N multilist in which child records are
chained in descending physical address order. N:M multilists are implemented
by assigning a distinet fixed-length binary value, called a binkey, to each list
oceurrence. A binkey is paired with each pointer of its list so that pointers of one
list can be distinguished from those of another. In Figure 28.id, the binkey of the
multilist for data value v, is b, and the binkey for v, is b,.

It is important to note that the child field C; of link [, is repeating. The number
of elements in a () field equals the number of data values that the record has in
field F,. The repeating element is a binkey-pointer pair. Thus the first
ABSTRACT.CONCEPTUAL record of Figure 28id has a ; field with one
binkey-pointer pair (the binkey is b,), the second has two (both b, and b, are
present), and the third has one (its binkey is b.).”

Any number of fields can be indexed. This is shown in Figures 28.dsd and
28.fdd by the use of the repeat notation. As defined in Section 3.1, it means that

“There is also a subfield in each 17y field which contains a count of the number of ABSTRACT .
CONCREPTUAL records on a list. This subfield is not shown in any of our figures, but it is used in
processing queries using multilists.

ACM Transactions on Database Systems, Yol 14, No. 4, December 1985,

Modeling Storage Architectures 491

ABSTRACT INDEX;

PREFIX_INDEX;

PREFIX..INDEX, PREFIX..Fy P!’ Fi=v, | by

oF
SIMPLE.INDEX,
SIMPLE _INDEX, Fy Pi, Vi by
7
dsd fdd id

Fig. 29, Augmentation of null transformation of ABSTRACT _INDEX records.

if m fields are extracted, there will be m ABSTRACT_INDEX files, each
connected to ABSTRACT_CONCEPTUAL by precisely one link. A total of m
child fields would appear in the ABSTRACT_CONCEPTUAL type, one for each
link that is generated.

INQUIRE requires indexed fields to be designated as being either prefix or
simple. The distinction is evident to a user at the query language level where an
equality predicate on a prefix field must be expressed as “field name = value,”
whereas on a simple field it is merely “value.” (Apparently, the distinction was
made in order to allow queries on frequently referenced attributes to be expressed
more compactly.)

As an illustration, consider the retrieval of all records of a CONCEPTUAL
file that have the data value “TOP SECRET” in the SECURITY field. If
SECURITY is prefix, the INQUIRE operation “FIND SECURITY=TOP
SECRET” would accomplish the retrieval. If SECURITY is simple, “FIND
TOP SECRET” would be the operation.

The distinction between prefix and simple fields is also seen in the implemen-
tation of INQUIRE. The ABSTRACT.INDEX; records for field F; are made
concrete by augmenting the characteristic string “F, =" (i.e., the field name
followed by an equal sign) to each F; data value. This is done to prefix fields only
(Figure 29). No augmentation (i.e., null) is performed on simple fields. Figure
29.id shows the results of these transformations on the ABSTRACT. INDEX,
record of Figure 28.id containing value v,.

Again, consider the SECURITY field example. Suppose two possible values of
SECURITY are “TOP SECRET” and “CONFIDENTIAL.” If SECURITY is
prefix, the data value strings “SECURITY=TOP SECRET” and “SECU-
RITY=CONFIDENTIAL” would be stored in distinct PREFIX_INDEX records.
If SECURITY is simple, the strings “TOP SECRET” and “CONFIDENTIAL”
would be stored in separate SIMPLE_INDEX records.

ACM Transactions on Database Systems, Vol. 10, No. 4, December 1985,

81

492 . 0. 8. Batory

ABSTRACT..CONCEPTUAL
ABSTRACT.
SEARCH

ABSTRACT..
DATA

dsd

pointers from ABSTRACT..INDEX records

bl
AESTRACT.SEARCH /

by

By by e be
pFli Pl () ! o f ’L
i b
ABSTRACT_DATA
OF | Co| Fil ... | Fa Vi I Vi, V2 [Ve l
fdd id

Fig. 30. Segmentation of ABSTRACT CONCEPTUAL records.

SIMPLE_INDEX and PREFIX_INDEX are internal files. INQUIRE forces
SIMPLE_INDEX and PREFIX_INDEX records to share an identical format
and fixed length. This is done so that all index records can be stored in a single
file structure rather than having a separate file structure for each indexed field
{as is done in SYSTEM 2000, IMS, and INGRES, among others).

An ABSTRACT_CONCEPTUAL record of Figure 28 is materialized by seg-
menting all child fields (C,)’ from data fields F, ... F, (see Figure 30). The
delete flag DF is duplicated in both segments. This segmentation produces the
ABSTRACT_SEARCH and ABSTRACT_DATA files. Link D, which connects
ABSTRACT_SEARCH to ABSTRACT DATA, is realized by a singular child
pointer and a parent pointer. Figure 30.id shows the result of this segmentation
on the ABSTRACT .CONCEPTUAL records of Figure 28.id.

ABSTRACT.SEARCH records are variable-length because each C, field may

ACM Transactions on Database Systems, Vob. 10, No. 4, December 1985,

Modeling Storage Architectures . 493

ABSTRACT..SEARCH

SEARCH

SEARCH
OVERFLOW

dsd

SEARCH

DF | Po | =G Ps

SEARCH..OVERFLOW \

7

tad id

Fig. 31. Division of ABSTRACT_SEARCH records.

contain a variable number of (binkey, pointer) pairs, one pair for each distinet
value in an indexed repeating field. Rather than storing these records as is,
INQUIRE divides an ABSTRACT_SEARCH record into fixed-length fragments.
The primary fragment, which contains the Pp field of ABSTRACT_SEARCH,
is a SEARCH record; all secondary fragments are SEARCH_OVERFLOW
records (Figure 31). Note that the delete flag DF is duplicated in primary and
secondary fragments. The SEARCH and SEARCH_OVERFLOW files are con-
nected by link S, which is realized by a 1:N list with parent pointers. Records
are maintained in order of ascending physical addresses. Figure 31.id shows an
ABSTRACT.SEARCH record divided into four fragments: one SEARCH and
three SEARCH_OVERFLOW. SEARCH and SEARCH_OVERFLOW are in-
ternal files.

The ABSTRACT_DATA file of Figure 30 is materialized in two steps (see
Figure 32). First, instances of ABSTRACT_DATA are usually variable-length,
as some fields are repeating. INQUIRE divides an ABSTRACT_DATA record

ACM Transactions on Database Systems, Vol. 10, No, 4, December 1985,

61

494 . D. 5. Batory

ABSTRACT. DATA

PRIMARY_.
FRAG
R C
SECONDARY..
i FRAG
i
i
i
i
dsd
PRIMARY_FRAG
o
DF | Ca| Pc| Co| +F:i-- Fa
i
SECONDARY__FRAG
7
Co| +FioFo - "L ikt
fdd id

Fig. 32, Division of ABSTRACT DATA records.

into a primary fragment (PRIMARY .FRAG) and zero or more secondary frag-
ments (SECONDARY.FRAG) connected by link C* C is realized by a I:N
doubly linked list with SECONDARY.FRAG records arranged in ascending
physical address order. Second, all instances of PRIMARY _FRAG are collected
onto a single list. Link R, which realizes the collection, is implemented as a 1:N
list. Records are linked in reverse chronological order. Figure 32.id shows two
ABSTRACT_DATA records; one is in three fragments (one primary, two sec-
ondary), the other is in four. PRIMARY_FRAG and SECONDARY_FRAG are
internal files.

All oceurrences of PRIMARY _FRAG and SECONDARY_FRAG are stored
in a single file structure. A function of link R is to distinguish instances of
these record types; another function is to help retrieve all CONCEPTUAL

* Primary and secondary fragments are variable-length. The length of a primary fragment is fixed at
the time of record insertion; it equals the length of the ABSTRACT DATA record (as it appeared
initially to INQUIRE) plus some extra space. The amount of extra space can be declared as a constant
or a function of the record size. As data values are added to repeating fields of an ABSTRACT
DATA record, its length may expand beyond the size of its primary fragment. 1t is at this point when
division takes place.

ACM Transactions on Database Systems, Vol. 10, No. 4, December 1985,

CONCEPTUAL

Modeling Storage Architectures - 496

ABSTRACT_.CONCEPTUAL

ABSTRACT_SEARCH

SEARCH

S

SEARCH._
OVERFLOW

* D ABSTRACT._DATA

‘ PRIMARY_FRAG l

C

l SECONDARY__FRAG l

PREFIX...INDEX, or SIMPLE _INDEX,;

H
b ABSTRACT.. moex,)

Abstract File

CONCEPTUAL

ABSTRACT_INDEX, (for all)

ABSTRACT. CONCEPTUAL
ABSTRACT..SEARCH

Elementary Transformations internal Fite Simpie File
Augmentation and extraction PREFIX_INDEX, (for afl) INDEX.SF
Augmentation or null SIMPLE _INDEX, {for all j) INDEX .. SF
Segmentation SEARCH SEARCH..SF

Division SEARCH..OVERFLOW SEARCH_.OVRFLW._SF

ABSTRACT.DATA Division and collection PRIMARY_FRAG DATA_SF
SECONDARY..FRAG DATA_.SF
(b) -
©)
Simple File implementation Link Linkset
INDEX . 8F B+ tree or i (for alt §) M N list
indexed-sequential 8 1: N list with parent
SEARCH SF Unordered pointers
SEARCH .OVRFLW._SF Unordered D Singutar pointer with parent
DATA _SF Unordered pointer
- a 1N ist
(a) c 1N doubly tinked fist
()

Fig. 33.

The storage architecture of INQUIRE,

ACM Transactions on Database Systems, Vol, 10, No. 4, December 1985,

0¢

496 . D. S. Batory

(i.e., ABSTRACT.DATA) records. For each PRIMARY _FRAG that is en-
countered in traversing link R, all of its associated SECONDARY_FRAG
records are retrieved via link C. Adjoining the PRIMARY_FRAG record and
its SECONDARY_FRAG records, and removing the delete flag and linkset
tields, materializes a CONCEPTUAL record. By traversing link R in this manner,
INQUIRE realizes a scan of a CONCEPTUAL file.

The internal files of INQUIRE are SIMPLE_INDEX, PREFIX .INDEX,
SEARCH, SEARCH_OVERFLOW, PRIMARY_FRAG, and SECONDARY .
FRAG. SIMPLE_INDEX and PREFIX_.INDEX records are collectively organ-
ized by a single VSAM or ISAM file structure. SEARCH and SEARCH_
OVERFLOW records are organized by separate BDAM or RSDS file structures.”
PRIMARY _FRAG and SECONDARY _FRAG records are collectively organized
by a single BDAM or RSDS file structure. These four file structures are called,
respectively, the INDEX, SEARCH, SEARCH OVERFLOW, and the DATA
files in INQUIRE documentation.

Figure 33 summarizes the storage architecture of INQUIRE. A data structure
diagram that shows the levels of abstraction in INQUIRE and the elementary
transformations that were applied to abstract files are presented in Figures
33a-b. Figure 33c gives the assignment of internal files to simple files, and
Figures 33d-e list how each simple file and link is implemented.

This completes the derivation of INQUIRE’s storage architecture. It is worth
noting that our model of INQUIRE is quite accurate; the internal record types
that were derived explain the presence and purpose of every pointer and every
byte of the stored records that are documented in INQUIRE manuals. Source
materials are [45, 46] and [25].

Finally, INQUIRE has support files, that were not considered in this derivation
(e.g., ACCOUNTING and MACRO LIBRARY). These files could have been
included in our model without much difficulty. Since their presence is optional
and they do not constitute the core of INQUIRE’s storage architecture, we
ignored them for simplicity.

5. PERSPECTIVE, CONTRIBUTIONS, AND FUTURE WORK

There are three immediate contributions of our work: (1) The TM is the first
model of physical databases capable of describing the internal structures of many
operational DBMSs. Our research signals the beginning of a comprehensive
reference to the storage architectures of popular DBMSs. Accurate descriptions
of the architectures of commercially successful DBMSs should be quite valuable
to future DBMS designers. (2) The TM provides a useful medium of communi-
cation. In just a few pages, the storage architecture of an actual or prototype
DBMS can be conveyed in considerable detail and precision. Previously this was
accomplished by reading cryptic (and often confusing) documentation and enor-
mous software manuals. (3) Knowledge of the storage architectures of operational
DBMSs ultimately improves one’s understanding of database implementations
in general.

91y UM terminology, VSAM ix a B+ tree, ISAM is an indexed-sequential structure, BDAM is a one-
tevel unordered file, and RSDS is a multileveled unordered file.

ACM Transactions on Database Systems, Vol 10, No. 4, December 1985

Modeling Storage Architectures < 497

There are two long-term goals of our research: automated development of
physical database software and performance and tuning packages for existing
DBMSs. We address each in turn.

5.1 Automating the Development of Database System Software

Understanding the storage architecture of a DBMS is a necessary precondition
to understanding the DBMS’s behavior and performance. But it is not sufficient.
Operations on files and links must also be considered. Elementary transforma-
tions have been explained in this paper as data mappings. Alternatively, they
also could have been explained in terms of operation mappings (e.g., the mapping
of record retrieval, insertion, deletion, and update operations). Consider, for
example, the division transformation. The retrieval of an abstract record which
has been divided involves a retrieval of the record’s fragments followed by their
concatenation; the insertion of an abstract record involves a division of the
record, an insertion of the fragments, and a linking of the fragments. Materiali-
zations of update and deletion operations on abstract records are just as
straightforward.

A central concept in understanding operation mappings is that the operations
that are performed on abstract files and links are exaetly the same as those that
are performed on concrete files and links. That is, just as one can retrieve, insert,
and delete conceptual records, so can retrievals, insertions, and deletions be
performed on internal records. Thus the number of operations to be mapped is
limited to the number of basic operations that can be performed on individual
files and links, and this number is rather small [6]. It follows that for each basic
operation and each transformation, a mapping is defined.' An attractive conse-
quence of our model is that these mappings are valid for all levels of abstraction.

Elementary transformations describe how instances of an abstract record type,
and operations on this type, are mapped to lower level types and operations. This
is the basic idea of abstract data types [35]. In principle, one can define an
abstract data type that encapsulates data and operation mappings for each
transformation. As each data type supports exactly the same set of operations,
they can be nested in many different ways. In other words, each abstract data
type corresponds to a layer of software. Each layer has exactly the same interface.
Layers can be stacked in different ways, so that the output of one layer becomes
the input to the next.

As an example, consider the extraction and encoding transformations. Suppose
a layer of software (abstract data type) exists for each. By stacking the extraction
software on top of the encoding software, the output of the extraction layer
becomes the input to the encoding layer. This would mean that nonencoded fields
are indexed, and data records (and possibly index records) are later encoded. If
the ordering of the layers were reversed, data records would be encoded first and
then indices on encoded fields would be created.

From these ideas, it is not difficult to see that conceptual-to-internal mappings
and elementary transformations are fundamental to the way DBMS software is

" Operation mappings may not be unique. For example, many different algorithms for searching
trunsposed files have been proposed (see {4]). Each of these algorithms would define alternative
mappings for retrieval operations.

ACM Transactions on Database Systems, Vol 10, No. 4, December 1985,

1¢

498 . D. S. Batory

actually written or can be written. Although it is fairly clear that existing DBMS
software is not written in the highly structured and layered manner described
above, it is nonetheless possible to identify some form of layering in real systems.
We are presently developing a prototype system, called GENESIS, which is based
on the TM approach [10]. The goal of the system is to automate the production
of physical database software by routing the output of one layer of software to
the input of another. In this way we hope to demonstrate that a technology for
quickly developing special-purpose DBMS software is feasible. If the layers of
software that a DBMS needs are already written, it is simply a matter of changing
the routing tables to emulate the storage architecture of the DBMS, This can be
done in a matter of hours; if the DBMS were built from scratch, its software
development time would be measured in years.

We envision that our system can be used to produce DBMSs that emulate
existing DBMSs and to produce DBMSs with hybrid architectures. These gen-
erated DBMSs can be used, for example, in simulation studies to determine what
architectures are best for particular classes of applications.

Finally, we note that the value of abstract data types in database implemen-
tations has long been recognized [3, 87, 65]. However, the methods by which
modular design concepts can be applied at the internal level are not well
understood. We feel that our work can lead to an improvement and clarification
of existing methods. Results on this subject are presented in [9] and {86].

5.2 Performance Prediction and Database Design Tools

Performance and design packages for commercial DBMSs can be developed once
it is known how operations are mapped. The development of such packages will
require the integration of performance prediction techniques with the descriptive
techniques of the TM. Results using the UM and TM to design performance
prediction tools for SYSTEM 2000 databases is forthcoming [17].

Tying performance prediction techniques to the TM does not mean that
database optimization problems will be easier to solve; it simply means that the
results of an optimization will be tailored to the peculiarities of a specific DBMS.
For example, papers on index selection have used optimization models that were
not tied to existing database systems. Thus it may be the case that the results of
index selection for an INGRES database may be different (albeit slightly) from
that of an ADABAS or INQUIRE database.

We believe that the TM provides a fresh perspective on some fundamental
problems of physical database design. After reviewing a number of different
storage architectures, it is natural to ask what is to be gained by using one
transformation sequence rather than another. Clearly, such questions are sig-
nificant, as they raise a fundamental point about what storage architectures (i.e.,
DBMSs) are better than others for given applications. No answer can yet be
given. The present state of our research is to survey as many storage architectures
as possible. Once sufficient knowledge has been collected, it is hoped that the
underlying rules for generating and choosing transformation sequences will
become evident. It is anticipated that the core of this research will center on an
expert system for physical database design; design decisions would rely primarily
on these rules and on results of simple performance calculations, rather than on
the more traditional numerical optimization approaches.

ACM Transictions on Database Systems, Vol 1, No. 4, December 1985

Modeling Storage Architectures - 499

Another reason for the need of additional surveys is that not all transformations
are fully understood. For example, we noted in Section 2 that there is a tenth
tranformation. It is commonly referred to as horizontal partitioning {2]. The basic
idea is to partition a file of records into two or more groups. Differential files,
[1] and [69], for example, partition records into two groups: modified and
unmodified. Database machines [42] and distributed databases [18] also utilize
horizontal partitioning. Unlike other elementary transformations, no explicit
physical structures {e.g., delete flags, linksets) are added to horizontally parti-
tioned files. However, metadata must be introduced in database schemas and
algorithms to make such relationships explicit. Thus there appear to be transfor-
mations that introduce structure only at the schema level, not at the abstract
an'd concrete data record levels. Additional research is needed to clarify these
points.

6. CONCLUSIONS

Modeling the storage architecture of a DBMS is a prerequisite to understanding
and optimizing database performance. Previously, such modeling was difficult
because some fundamental principles of physical database design and implemen-
tation were not well understood. This has been clearly evident to researchers
who have tried to use existing “general” models of physical databases to under-
stand the internals of specific commercial DBMSs.

We have presented a model of conceptual-to-internal mappings, called the
transformation model (TM), as an extension of the unifying model (UM) of
Batory and Gotlieb. To place our work in context, we have shown (in Appendix
D) that earlier models of physical databases are submodels of the UM. The domain
of the UM is the implementation of internal files and links; simple files and
linksets are the basic implementation constructs. The domain of the TM is the
mapping of conceptual files and links to internal files and links; elementary
transformations are the basic mapping constructs.

We have demonstrated that conceptual-to-internal mappings are fundamental
to understanding physical database implementations. Elementary transforma-
tions provide the necessary means to express the complex storage architectures
of operational DBMSs in a precise, systematic, and comprehendible way. We
have outlined a relationship between elementary transformations and abstract
data types, and their possible role in automating the production of internal
DBMS software and in the development of performance packages for commercial
DBMSs. We believe the transformation model is an important step toward tying
physical database theory to practice.

APPENDIX {. Relationship with Earlier Work

We explain in this section how the unifying model (UM) provides a framework
in which earlier models of physical databases can be cast. This explanation also
serves as justification for using the UM as the starting point of our research. A
familiarity with UM teripinology is assumed. We also explain the relationship of
earlier models with the TM.

The UM consists of two distinct submodels: one for simple files, the other for
linksets. Most of the earlier general-purpose models are ancestors of the simple

ACM Transactions on Database Systems, Vol. 10, No. 4, December 1985,

2¢

500 - D. 8. Batory

file submodel; DIAM [67] can be considered an ancestor of the linkset submodel.
Some of our explanations are brief, as more elaborate discussions on historical
lineages can be found in the cited papers.

The models of Hsiao and Harary [70] and Severance [69] were unified and
extended by the access path model of Yao [88)]. The simple file submodel of the
UM is a direct extension of the access path model in that a more extensive
parameterization of file structures was used. It is this parameterization that
enabled different works and analyses on physical database design and perform-
ance to be related.

During the period when the above general-purpose models were being devel-
oped, important models of specific or restricted network databases were indepen-
dently proposed by Das and Teorey [23], Mitoma and Irani [58}, Gambino and
Gerritsen [30], and Berelian and Irani [12], among others. The essential modeling
constructs on which these works are based can be found in {or easily fitted into)
the generalized UM framework, which is described in Section 2 and Appendix 11
As an example, sequential and clustering linksets are discussed in [58] and {30].
Although the original UM did not accommodate these structures, the generalized
framework does. In principle, the addition of more structures to the UM does
not alter its framework; it simply enriches it.

More recently, March, Severance, and Wilens presented the frame memory
model [55]. The frame was identified as a basic unit of physical database
construction. The concept of a frame is identical to that of the UM concept of a
node. The frame memory model concentrates on the implementation and selec-
tion of node formats while the UM does not. Again, it is not difficult to incorporate
the frame memory model into the UM framework. The addition does not alter
the framework; it simply enriches it.

The data independent accessing model (DIAM) was proposed in 1973 by Senko,
Altman, Astrahan, and Fehder [67], and later extended by Fry, et al. [29]. Unlike
other models, DIAM has not been directly related to subsequent modeling efforts.
It is for the lack of historical connectivities that we devote a disproportionate
part of our discussion to DIAM.

DIAM has “levels of abstraction” that foreshadow the three levels of the ANSI/
SPARC proposal {81]. The only levels relevant to our discussions are the string
and encoding levels."

The basic modeling constructs of the string level are strings and atomic data
values. An atomic data value is either a data value or the name of a string. A
string is a sequence of atomic data values, with the first data value serving as the
name of the string. Strings are used to form higher level constructs. For example,
a string of atomic data values defines the concept of a “record,” and a string of
“records” defines a set of records. Sets of records can be collected onto strings to
define higher level concepts such as indices {(e.g., the cluster index of simple

" Phe device level was used to describe the physical characteristics of secondary storage devices; such
descriptions are independent of the descriptions of the simple {iles and linksets that may be stored
on them. That s, one can model hash-based files, indexed-sequential files, pointer arrays, and so on
without ever having to define specifically their storage medium (e.g., floppy, drum, disk). In fact,
almost all results on database performance since 1977 (in particular, query optimization and database
design} have avoided such details. We concur with this trend,

AUM Transactions on Database Systems, Vol 10, No. 4, December 1985,

Modeling Storage Architectures 4 501

files). We call a set of atomic data values that are of the same type an atomic
value set, and a set of homogeneous strings a string set. (We introduce these
names because there are no corresponding terms in DIAM for their concepts.)

DIAM and the UM have a straightforward correspondence. An atomic data
value in DIAM corresponds to a record {with a single field) in the UM. Strings
are relationships between atomic data values in DIAM,; they are link occurrences
in the UM. DIAM atomic value sets correspond to UM files, and DIAM string
sets correspond to UM links. In this way both DIAM and the UM can use data
structure diagrams to represent relationships among files (atomic value sets).

The implementation of string sets is specified at the encoding level of DIAM,
In the original paper, strings could be implemented by lists or by sequential
linksets. The extension to DIAM by Fry, et al. introduced pointer array linksets.'*
However, there is no provision in DIAM or in its extension that treats simple
file structures as primitive constructs, or accounts for the multitude of variations
that can accompany list, sequential, and pointer array linksets. It is for this
reason that DIAM can be considered an ancestor of the linkset submodel of the
UM. A more detailed connection between DIAM and the UM is given in [8].

In summary, earlier models of physical databases are submodels of the UM.
The UM does not show how simple file structures and linkset structures are
related to conceptual-to-internal mappings or how DBMS software transforms
conceptual records into internal records in a stepwise fashion. These are the
tasks that are handled by the TM. (Note that the TM does not introduce new
simple file and linkset structures; the structures that the TM uses are those
provided by the UM.}

APPENDIX H. Catalogs of Recognized Simple Files and Linksets

Simple Files

Simple files have a common description: they can be modeled as uniform-height
directed trees where the vertices of a tree correspond to the standard notions of
secondary storage nodes or frames. There are, however, fundamental differences
among simple file types. The major differences can be delineated with the aid of
four parameters: CK, GROWTH, ACCESS, and SEQUENCING. In the following
we assume a minimal familiarity with the UM terminology.

Parameter 1. CK (cluster key type). A simple file organizes internal records
according to a single key called the cluster key." Three types of cluster keys are
known: (1) A logical-valued key is a key that is contained in internal records.
B+ trees, sequential, and indexed-sequential structures use logical-valued keys.
(2) A hash key is an algebraic transformation of a logical-valued key. Hash-based

A basic premise of DIAM is that lists are the fundamental string implementation. To explain the
existence of other methods, factoring and embedding were introduced. Factoring {67} is simply a
mapping from lst linksets to sequential linksets. Embedding [29] is a mapping of lists to pointer
arrays. Thus other linkset implementations were to be viewed as derivatives of list linksets. If the
UM approach were taken where several fundamental string implementations are recognized, factoring
and embedding could be eliminated as artificial construets.

¥ Phere are simple files that organize records on several keys. See [62] for an example and survey.

ACM Transactions on Database Systems, Vol. 10, No. 4, December 1985,

502 . D. S Batory

Table 11, A Catalog of Simple Files

Simple file CK Growth Access Sequencing Comments
Indexed-aggregate Logical-valued Overtlow Random Unordered 139}
Indexed-sequential Logical-valued Overflow Random Ordered {134
B+ tree Logical-valued Splitting Random Ordered {21}
Sequential Logical-valued Locational ~ Sequential Ordered {85]
Deferred B+ tree Logical-valued Deferred Random Ordered {59, 88}
Hash-based Hash Overflow Random Unordered {5}
Dynamic hash-based Hash Splitting Random Unordered {26, 51§
Deferred hash-based Hash Deferred Random Unordered {661
Linear hash-based Hash Linear Random Unordered {66]
Unordered Relative Locational Random Unordered {85}
Heap Relative Locational Bequential ~ Unordered {76}
B-list Relative Splitting Random Unordered {78}

and dynamic hash-based structures organize records on hash keys. (3) A relative
key specifies an internal record’s index position relative to the start of the file
{e.g., the ith record of the file). Unordered and heap files use relative keys.

Parameter 2. GROWTH (method of file growth). A simple file can accommo-
date file growth in one of five basic ways. (1) Overflow—new records are placed
on overflow chains. Hash-based and indexed-sequential files use overtlow. (2)
Splitting—nodes are split when they “gverflow.” B+ trees and dynamic hash-
based files [26, 51] use node splitting. (3) Locational—new records are inserted
wherever there is room, usually at the end of a file. Unordered and heap file
structures are examples. (4) Deferred splitting—a generalization of node splitting.
Instead of splitting a node when it is about to overflow, node splitting is triggered
after a certain amount of overflow has occurred [59, 66, 88). (5) Linear splitting—
a generalization of overflow. Nodes are split in a predetermined sequence, and
splitting is triggered in order to maintain a constant loading factor [66].

Parameter 3. ACCESS (random or sequential access). The primary purpose of
the cluster index for most simple files is to facilitate the fast retrieval of internal
records, given their cluster keys. If this is the case, random accessing of records
is possible, otherwise only sequential accessing of internal records can be per-
formed.

Parameter 4. SEQUENCING (ordering of records). Records are either main-
tained in an unordered sequence or they are ordered in ascending or descending
logical-valued key sequence.

A spectrum of simple files is defined by taking combinations of different
parameter values (see Table 1I). Many combinations can be readily identified
with known structures, but not all describe implementations that are meaningful.
However, there are some combinations that cannot be ruled out and cannot be
identified with recognized structures. One is an indexed-sequential file that uses
linear splitting to accommodate file growth. Such a structure would appear to
have the properties of indexed-sequential files, with the important difference
that it, like linear hash-based files, does not require periodic reorganization. This
structure has et to be studied in detail.

ACM Transactions on Datahase Systems, Vol. 10, No. 4, Decernber 1985,

Modeling Storage Architectures = 503

Linksets

A link is a generalization of the CODASYL set. Every link has precisely one
parent file and one or more child files. It is possible for a file to assume the role
of both parent and child in a link. The basic unit of connectivity is the link
oceurrence, which consists of one parent record and the zero or more child records
to which it is related. It is possible for a child record to participate in many
oceurrences of the same link at the same time, and thus have multiple parent
records. Therefore, links can represent 1:1, 1:N, and M:N relationships.

Every parent record and every child record has a link key. A link key can be
an explicit part of a record or it can be inferred. (If it is inferred, the link is said
to be information carrying [80]). A link occurrence consists of a parent record
and all child records that have the same link key as the parent. It is usually the
case that link keys for parent records are identifiers (primary keys) and link keys
for child records are nonidentifiers. Thus most links are 1:N. M:N links arise
when either parent records, child records, or both have repeating groups as link
keys. ADABAS and INQUIRE support M:N links.

Four fundamental types of link implementations have been recognized to date:
serial, list, sequential, and relational. Serial linksets connect parent records to
child records by pointer arrays, list linksets make connections by list structures,
sequential linksets have connections based on physical locality, and relational
linksets rely on file searching (for records that have the same link key). Serial,
list, and relational linksets can be used to implement N:M links. Sequential
linksets can only implement 1:N links. Figure 34 illustrates their basic differences.

An implementation option common to all linkset types is the presence of parent
pointers (i.e., pointers from child records to parent records). List linksets and
serial linksets have a number of additional options. For list linksets, a “list” can
be a linear list or a ring list. It can be doubly-linked. There can also be a pointer
(stored with the parent record) to the last child record of an occurrence. Each
variation has been used in one or more DBMS implementations.™

A pointer array of a serial linkset is a repeating group, where the repeating
unit is the address of (i.e., a pointer to) a child record. Optionally, some of the
data values of a child record in addition to its address can be the repeating unit.
In such cases serial linksets are said to be keyed. Figure 35 shows two keyed
serial linkset occurrences where the repeating unit is data fields B and Canda
pointer. SPIRES {74] uses keyed serial linksets as generalizations of inverted
lists to enhance secondary key retrieval of data records.”

List and serial linksets have two variations in common: clustering and cellular.
When child records are stored near their parent records, the linkset 1s said to be
clustered. Clustering is restricted to 1:N links. IDMS and DMS-1100, for example,
implement CODASYL sets by ring lists or pointer arrays. Child records can be
clustered about their parent records with the LOCATION MODE IS VIA schema
declaration.

List and serial linksets can exploit a partitioning of the child file(s) into
subfiles called cells. A cell contains an integral number of nodes. With respect to
1 Pointers can be either physical addresses or symbolic keys. Physical pointers are preferred if the

storage location of internal records always remains constant,
15 A variant of this approach, where hash values are stored, is described in [47].

ACM Transactions on Database Systems, Vol 10, No. 4, December 1985,

12

- -

P - ~.
’ ’] @) \
’ 7 \

/ \
/ x
: child, child, childa |
VoK K [l /

AN //

~ - - e
(a)
parent parent

T hild, child, childs Ecnim. ﬁ_yi__‘mmg % childy ﬂ_l
K K K K K =

(b) (©

parent
parent | childs child; child, child, childg‘ child,
e ™ ™ I S e
«

) (e)

Fig. 34. The basic linkset types. (a) A link occurrence with link key K. (b) A serial linkset occurrence.

(¢} A list linkset occurrence. (d) A sequential linkset occurrence. (e} A relational linkset occurrence.

Link Keyed
Key Pointer
Field Array

a, | DGy g DGy

ag

bzc,-»-J

MS,,A}

ay &

Dy Ca J a,

b|c‘~--J [a. szt"'J

Fx

Link Data
Key Fields
Freld 8.C -

Fig 35 Two keyed serial linkset oceurrences.

Modeling Storage Architectures . 505

ERgES

KN —
n

(@)

Fig. 36. A tree data structure diagram and a tree occurrence.

a given link oceurrence, a cell is said to be occupied if it contains a child record
of the link occurrence. Otherwise it is unoccupied.

Each pointer of a cellular serial pointer array references a distinct cell that is
occupied; it identifies the starting address of the cell. Thus, to locate child records
requires a scan of the cell. ADABAS uses cellular serial linksets with cells that
contain precisely one block.

Cellular list linksets (sometimes referred to as cellular multilists) also use
pointer arrays. Each pointer identifies the head of a list of child records (of a
iink occurrence) that are stored in the same cell. Thus the number of pointers in
a cellular list pointer array is the number of occupied cells for the corresponding
link occurrence. No commercial DBMS, to the author’s knowledge, uses cellular
multilists, even though this linkset has often been discussed in the literature.

Two major variations of linksets are hierarchical and record sequencing.
Linksets usually implement one link, but they can also realize two or more links.
In these cases the data structure diagrams of the links and their attendant parent
and child files are required to form a tree. Figure 36a shows a tree data structure
diagram. An instance of the tree (which consists of a record of the root file and
all of its descendants) is a tree occurrence. Figure 36b shows a typical tree
oceurrence.

An occurrence of a hierarchical linkset is a tree occurrence which has been
flattened into a two-level hierarchy. The parent—child relationships of the tree
occurrence are preserved by arranging descendant records in hierarchical se-
quence. That is, the tree oecurrence is traversed in preorder traversal (visit the
root, visit in left-to-right order the subtrees headed by each of its child records)
to linearize the descendant records. The root record of a hierarchical linkset
assumes the role of “parent” and its descendant records assume the role of
schildren.” This flattening enables sequential, list, and serial linksets to be used
to implement hierarchical linksets. Figure 37 illustrates their differences. IMS

ACM Transactions on Database Systems, Vol. 10, No. 4, December 1985,

G¢

506 - D. 8. Batory

z
¥

&
=
— ¥

o
i
[l

Fig. 37, Basic hierarchical linkset types.

uses hierarchical, sequential, and hierarchical list linksets. It is not known if any
DBMS uses hierarchical serial linksets.

The second major variation of linksets is the ordering of child records. If a link
has but one child file, the child records of a linkset occurrence can be arranged
in a user-defined order, in a random order, or in an ascending or descending
chronological, physical address, or sortkey order. When a link has two or more
¢hild files, one of three different options must also be specified: sorted, grouped,
or ungrouped.

Consider a linkset that implements a single link that has two or more child
types. If all child types have a sort field in common, then their instances can be
sorted in ascending or descending sortkey order. Alternatively, orderings can be
separately imposed on the records of each child type. Thus, if a link has two
child files, an oceurrence would consist of a parent record and two sequences of
child records, one for each type. If the linkset maintains the concatenation of
both sequences, child records are said to be grouped. (The ordering of the
sequences is determined by the left-to-right appearance of the child files in the
underlying data structure diagram.) Child records are ungrouped if the linkset
just maintains the relative ordering of records within each type, thereby allowing
records of different sequences to be interleaved. Figure 38 illustrates the basic
differences among sorted, grouped, and ungrouped. DMS-1100, SYSTEM 2000,
and IDMS support the ungrouped option. DMS-1100 additionally supports
sorted. IMS uses the grouped option.

ACM Transactions on Datnbase Systems, Vol, 11, No. 4, December 1985,

Modeling Storage Architectures . 507

A
ABC
(e] [|
(a) o)
A
H i} -
“mOLOE LM “rsff o]
©
a
Y.
frrfinl -5 L
"wL e L E L s L

Y.

sl e e e e
(e}

2

Fig. 38, Sorted, grouped, and ungrouped linkset occurrences.

The notions of sorted, grouped, and ungrouped generalize to hierarchical
linksets in a natural way. Sorting and grouping rules are applied to the child
record types of each parent in a tree data structure diagram. Figure 37 illustrates
IMS’s hierarchical sequential and list linksets with the grouped option. It is not
known whether any DBMS uses ungrouped or sorted hierarchical linksets.

It is evident from the above discussions that there is a combinatorial number
of linkset implementations. A provisional naming scheme has been devised that

ACM Transactions on Database Systems, Vol. 10, No. 4, December 1985,

9¢

508 - D. 8. Batory

! ’ e
’;‘q' {h»erarchlcal

= 1
1
information carrying M

[clustering

serial

L;eilular keyed

doubly-tmkedl Lvng

sequential
relational
fnkset | with parent with child records in sorted order
pointers and .
chronotogical
ungrouped” ascending* address
grouped descending | | ¢ ey
user-detined
random
Note means choose 1, — of * means deltault
Fig. 39. A classification of linksets.

Table Il Common Linkset Names and Their Definitions

fist | with last
pointers

Common name

Description

Multilist

inverted hst

Pointer array

DBTG ring tist

Singular pointer

IMS hierarchical pointers

IMS child/twin pointers

IMS logical parent pointers
Transposed

Index encoded

A list linkset that is not information-carrying,
hierarchical, or cellular; child records are
usually kept in chronological or address order.

A serial linkset that is not information-carrying,
hierarchical, or cellular; child records are
usually kept in chronological or address order.

A serial linkset that is not hierarchical.

A ring list linkset that is not hierarchical or
cellular,

A 1:1 serial linkset, usually information-carrying.

A hierarchical list linkset (possibly doubly linked)
with child records grouped.

A list or doubly linked list linkset.

A information-carrying relational linkset with
parent pointers.

A 1:1 sequential inkset with parent and child
records stored in separate unordered files,

An information-carrying relational linkset with
parent pointers. Parent records are stored in an
unordered file.

ACM Transactions on Database Systems, Vol 10, No. 4, December 1985,

Modeling Storage Architectures . 509

enables recognized linkset implementations to be classified. This scheme is given
in Figure 39. Note that not all combinations have been or can be implemented.
Many of the exceptions have already been noted. Furthermore, some linksets are
s0 common they are given special names—they are listed in Table 1L

APPENDIX ill. ADABAS

ADABAS is a product of Software AG, Inc. A typical ADABAS database is
populated with one or more conceptual files which may be related explicitly by
couplings or implicitly by join operations. A representative ADABAS data struc-
ture diagram is shown in Figure 40. Couplings are represented by bidirectional
links that connect two different conceptual files. ADABAS does not allow for a
file to be coupled with itself, or for more than one coupling to exist between two
files at any one time.'®

The generic CONCEPTUAL record type supported by ADABAS consists of n
fields, Fy ... F,, which are elementary or compound. An elementary or compound
field may be scalar or repeating. Data values can have variable lengths. Generally,
CONCEPTUAL records are variable length.

A coupling between records is made by sharing a common value in designated
fields. Because fields may be repeating, couplings can be M:N. Figure 41.id
illustrates an M:N coupling.

The internal files and links of ADABAS are derived in the following way. Each
coupling is actualized by a pair of oppositely-directed internal links; both links
are realized by M:N pointer arrays.'” The pointers of each array are maintained
in order of ascending addresses. Figure 41 shows the actualization of the coupling
between the CONCEPTUAL; and CONCEPTUAL; files. Two ABSTRACT..
CONCEPTUAL files and two internal links are produced in the process. An
actualization of the couplings in the database of Figure 40 would produce a total
of four ABSTRACT_CONCEPTUAL files and eight internal links.

The generic form of an ABSTRACT_CONCEPTUAL record is shown in
Figure 42. An ABSTRACT_CONCEPTUAL record is the parent of m links
L, ... L, which were produced by the actualization of m couplings. A record
consists of data fields F\ . .. F, and m parent fields P, ... P, .

ABSTRACT_CONCEPTUAL records are materialized in two steps (see Figure
43). First, fields P, ... P, are individually segmented from the data fields
F, ... F,. The result is m + 1 files and m links: there is an ABSTRACT_DATA
file (containing only data fields), and for each parent field P, there is an
ABSTRACT_ASSOCIATOR, file connected to ABSTRACT_DATA by link 4;.
A, is realized by a singular pointer.

Second, ADABAS allows scalar and repeating fields to be indexed. Field

¥, is indexed by extracting it from ABSTRACT.DATA. This creates an
" Couplings are used in only 1-2 percent of ADABAS databases because their utility is limited to
processing specialized queries and because they degrade performance significantly for update-inten-
sive files {32]. Couplings are supported in the most recent release of ADABAS, but their use is not
recommended. Join operations are promoted instead.
Yt is also correct to say that a coupling is actualized by a single link whose implementation is an
M:N puinter array with parent pointers. This interpretation, however, forces one record type to be
arbitrarily labeled as the “parent” and the other as the “child.” This results in a more complicated,
but equivalent, derivation.

ACM Transactions on Database Systems, Vol 10, No. 4, December 1983,

L2

510 . D.

CONCEPTUAL; Ly

coupume&

ABSTRACT... CONCEPTUAL,

tdd

Fig. 41.

ABSTRACT
CONCEPTUAL

/1N

Ly

Ly La

Lm

ABSTRACT..CONCEPTUAL

Actualization of a coupling.

CONCEPTUAL,

fdd

S. Batory
COUPLING, CONGEPTUAL,
A
COUPLING, COUPLING,
CONCEPTUALg CONCEPTUALK
dsd
Fig. 40. A representative ADABAS dsd and fdd.
CONCEPTUAL CONCEPTUAL
~ CONGEPTUALL coupungy 2
E« —————————————— »|
ABSTRACT | Gy | | ABSTRACT..
CONGEPTUAL; || 1| CONCEPTUAL;
— | G L
dsd

Fy

Fa | Pu

d

Py

™

fdd

Fig. 42, Generic ABSTRACT_CONCEPTUAL record type.

ACM Transactions on Ditabase Systems, Vol 10, No. 4, December 1985.

Modeling Storage Architectures ° 511

ABSTRACT..CONCEPTUAL

ABSTRACT_
DATA
()’ (Ak)k
ABSTRACT. ABSTRACT...
INDEX, ASSOCIATOR
dsd
ABSTRACT_DATA
I[n] 1 =] [
ABSTRACT... 4
(ASSOCIATOR,)“
Pa | P ~l———]
‘ ¢ l— /I lll
ABSTRACT_INDEX;\ ; /
To another
IR i/ 0 b R) A
CONCEPTUAL
file
fdd - id

Fig. 43, Segmentation and extraction of ABSTRACT_CONCEPTUAL records.

ABSTRACT_INDEY, file. Link I, which connects ABSTRACT..INDEX, to
ABSTRACT _DATA, is realized by an M:N inverted list (i.e,, an M:N pointer
array). The pointers of each inverted list are maintained in order of ascending
addresses. All fields are indexed in this manner.

Note that if a CONCEPTUAL file was uncoupled and had no indexed fields,
it would be mapped directly to an ABSTRACT_DATA record via the null
transform.

Figure 43.id illustrates the relationships among three ABSTRACT_DATA
records, two ABSTRACT_INDEX records, and one ABSTRACT_ASSOCIA-
TOR record. Note that only the contents of a single repeating field of each
ABSTRACT_DATA record is shown; this field contains value v, in one record,
values v, and v, in a second, and value v, in a third.

ACM Transactions on Database Systems, Vol. 10, No. 4, December 1985

8¢

512 . D. S. Batory

ABSTRACT_INDEX,

PRIMARY_INDEX;

IFN L OFf L Py

%;)

) 1...20
SECONDARY . INDEX,

N OFp | Py ity | v i | vy
L | ppLL. /Mj
... 73

21 74 ... 100

fad i

Fiy. 44. Augmentation, encoding, and division of ABSTRACT_INDEX, records.

Pointers to ABSTRACT_DATA records are known as internal sequence num-
bers (18SNs). A distinet 1SN is assigned to each CONCEPTUAL record and is
used to locate the record. lis realization is explained later. Internal file numbers
and internal field numbers, which we collectively call IFNs, are used internally
by ADABAS to reference CONCEPTUAL files and their constitutent fields.
field numbers are distinguishable from file numbers.

An ABSTRACT_INDEX; record is materialized in three steps (see Figure 44).
First, a field containing the [FN of field F; is augmented. Second, the value in
field F; is encoded by an ADABAS compression technique (see {32]). The encoded
field is labeled F/ in Figure 44.fdd. Third, the record may be divided into one or
more fragments with the IFN and F; fields duplicated in each fragment. The
first fragment is of type PRIMARY_INDEX, and the remaining are of type
SRECONDARY _INDEX,. The fragment files are connected by link D,, which is
realized by a relational linkset with link key (IFN, F/). (The conditions under
which division occurs will be explained shortly.) Figure 44.id shows how an

ACM Transactions on Database Systems, Vol. 10, No. 4, December 1985,

Modeling Storage Architectures . 513

ABSTRACT..ASSOCIATOR

PRIMARY._.ASSOCIATORy

=%

SECONDARY_ASSOCIATOR,

dsd

PRIMARY_ASSOCIATOR

IFN | Pa, Py, ifntk)

J/ /w

1.

SECONDARY_ASSOCIATOR

IFN | Py

R itn{i) ifn(ic)
I)

/) =)

74 ... 100

fdd id

Fig. 45. Augmentation and division of ABSTRACT _ABSOCIATOR, records.

A.B.S’I‘RACT-INDEXJ record with an inverted list of 100 pointers might be
(?mded into three fragments. (v/ is an encoded data value and ifn(;) is the IFN
for field F,). PRIMARY _INDEX, and SECONDARY_INDEX, are internal files.

An ABSTRACT_ASSOCIATOR, record is materialized in a similar manner
(see Figure 45). First, a field containing the IFN of the child file of link Ly is
augmented. Second, the record is divided into one or more fragments with the
I‘F‘N and P,, fields duplicated in each fragment. The first fragment is of type
I’RIMARY-ASSOCIATOM and the remaining are of type SECONDARY.
ASSOCIATOR,. The fragment files are connected by link Ej, which is imple-
mented by’a relational linkset with link key (IFN, P,,). Figure 45.id shows how
an ABSTRACT_ASSOCIATOR, record with a pointer array of 100 pointers
xmght be divided into three fragments. PRIMARY_ASSOCIATOR, and
SECONDARY__ASSOCIATOR, are internal files.

ADABAS forces records of all PRIMARY _INDEX, SECONDARY_INDEX
Ifl{I‘MARY-ASS()CIA'l‘OR, and SECONDARY _ASSOCIATOR types to have a;
similar format so that they can all be organized by a single file structure rather
than having a separate file structure for each type. The file structure used is a

ACM Transactions on Database Systems, Vol. 10, No. 4, December 1985,

6¢

514 - D. S. Batory

Variable length INDEX or ASSOCIATOR
records

LI

node before split nodes after split

Fig. 46. ustration of dividing ABSTRACT_INDEX and ABSTRACT _ABSOCIATOR records.

B+ trie, which is similar to B+ trees, in that file growth is accommodated by
node splitting.'® The division of an ABSTRACT.INDEX and ABSTRACT.
ASSOCIATOR record is a result of node splitting. When a node splits, two nodes
are created: both are approximately half full. Although ABSTRACT_INDEX
and ABSTRACT _ASSOCIATOR records are variable length, loading both nodes
equally is not a difficult task if the records are much smaller than the size of a
node. When records are large, however, loading both nodes evenly is not possible
without dividing one record into two and storing them in different nodes.
Figure 46 illustrates the splitting of a node and the division of record R3 into
R3" and R3".

The ABSTRACT.DATA file of Figure 43 is materialized in two steps. First,
all data fields are encoded by an ADABAS compression technigue. Second, the
indirection transformation is applied. What results is an ADDRESS_
CONVERTER file and a COMPRESSED_DATA file connected by link AC. An
ADDRESS_CONVERTER record has a fixed length and contains only the field
P a COMPRESSED _DATA record has a variable length and contains com-
pressed data fields F{ ... F}, and field Cse. Link AC is realized by a pointer to
the block that contains the associated COMPRESSED._DATA record, and the
COMPRESSED_DATA record has a pointer back to its ADDRESS_CON-
VERTER record (Figure 47). This is a cellular singular pointer with a parent
pomter.

Note that the ADDRESS_CONVERTER records maintain the 1:1 correspond-
ence between ISNs and the storage locations of COMPRESSED_DATA records.
Because of this correspondence, a COMPRESSED_DATA record can be
relocated in secondary storage without altering the inverted lists and pointer
arrays of ABSTRACT_INDEX and ABSTRACT_ASSOCIATOR records
that reference it. (The pointers of these lists and arrays are ISNs). Relocations
oceur when there is no room in a block to accommodate an expanded

WA B+ trie is a hybridization of the trie [28, 79] and the B+ tree. The B+ trie used in the most
recent release of ADABAS has from one to six levels. The tap levels partition records on their IFN
and F, or Py, values. The second lowest level partitions records on F, or P, and ISN values. The
bottom level contains the PRIMARY_INDEX, SECONDARY .INDEX, PRIMARY . ASSOCIATOR,
and SECONDARY _ASSOCIATOR records.

ACM Transactions on Database Systers, Vol. 10, No. 4, December 1985,

Modeling Storage .

ABSTRACT.DATA

ADDRESS_CONVERTER

ADDRESS._
CONVERTER Pac

AC

» COMPRESSED_DATA

COMPRESSED...
DATA Cac| Fi | ... R v
vV

dsd tdd

Fig. 47. Segmentation and encoding of ABSTRACT _DATA records.

COMPBESSEP_DATA record. Expansions happen when a CONCEPTUAL
regﬁ)}id is xtnodxtlxe;:i,l suchfas adding a new value to a repeating field.
¢ internal files of ADABAS are PRIMARY_INDEX,

INDEX,, PRIMARY_ASSOCIATOR,, SECONDA%%;ESES%%I}I}B%gg .
(,OMPR.ES'SED*DATA, and ADDRESS_CONVERTER. Every CONCE];-,
TUAIf file is materialized by a collection of these files and each collection is
organized by a separate group of file structures. For each CONCEPTUAL fil
all record occurrences of all PRIMARY .INDEX;, SECONDARY_INDEX Pllif:
MARY_AS_bOCIATORk, and SECONDARY_ASSOCIATOR, files are j(;rgan-
ized by\aj gmgle B+ trie (see [32, 50] and footnote 18 of this Appendix). The
ADD‘REbb‘CONVERTER file is organized by an unordered file structuré and
the (/OMPRESSE’D‘_DATA file is organized by a heap. An ISN is the relati
key of an ADDRESS_CONVERTER record. v

ADABAS places all B+ tries and ADDRESS._.CONVERTER file structures
‘L‘hat bf:l()ng to a single database in an area of secondary storage called th;
' iissoc:nator,”‘ (Th’is’ is not to be confused with the ASSOCIATOR record typée)
} he COMPRESSED..DATA files of the database are placed in another call;a;i
ddi;xt;; storage.” Separate “associator” and “data storage” areas exist for different
atabases,

Figure 48 summarizes the stora i]
: St ge architecture of ADABAS. S i
are [32, 50, 71, 72] and [87]. 5 Source materials

APPENDIX V. SYSTEM 2000

:}()k() ?:M ‘%()09 ls a pmduc} of MRI Systems Corporation (now Intel). SYSTEM
~U00 organizes conceptual files according to a hierarchical data model. A database
is viewed asa collection of disjoint trees that have record occurrences as vertiC(;s
Each tree is referred to as a database tree and consists of one root record and'all.

ACM Transactions on Database Systems, Vol. 11, No. 4, December 1985,

0¢

D. S. Batory

COUPLING,

Abstract Fie

CONCEPTUAL

ABSTRACT CONCEPTUAL
ABSTRACT INDEX, tfor all g}
ABSTRAGYT ASSOCIATOR {tor altk)
ABSTRACY D{\'U\ _

Sinple Frie
DX GF

ADOR CNVIR SF

DATA 5F

()

ACM Transactions on Database Systems, Vol

;

i

t

]

i

!‘

| AC
]

i

]

H

t

i

1

H
.

Encoding and indirection

(b)

CONCEPTUAL

LA—DDRESS., CONVERTER k

rCOMPRESSED DATA j

COUPLING;

Segmentation and extraction
Augmentation, encoding, and dvision
Augrmentation and division

implemsntation
B tne
Unordered
Haap

ABSTRACT..
A ASSOCIATORy

e

Transtomatons

COUPLING.

inernat Fie

PRIMARY . INDEX, {for ait)
SECONDARY INDEX, tfor alt)
PRIMARY ASSOCIATOR tfor ail k)
SECONDARY ASSOCIATOR (for alt k)
ADDRESS CONVERTER
COMPRESSED DATA i

(c)

Link Lnkset

Simple Flle

INDX SF
INDX SF
INDX. SF
INDX &F
ADDR CNVTR &P
DATA SF

) 3, dlor an ;)’ N M pouiter array with child records o
ascending physical address order

Lo tfor ali) NOM ponter aray weith chid records m
ascending physical address ordey

Ay for all k) Smgutar pointer

AC Cetlutar sngudar pointer wath parent
pownter
Dyftor at Retayonal inkset with chid recors i

sortkey order

£, (tor altk) Retationat knkset with chikd reconds w

sortkey order

(e)

Fig. 48, The storage architecture of ADABAS.

1. 10, No. 4, December 1985,

Modeling Storage Architectures . 517

CONCEPTUAL; l
o

CONGEPTUALy

]F,‘..AIF,\

CONCEPTUAL,

‘ CONCEPTUAL,]

Lk

CONCEPTUALy,

dsd 14a

Fig. 49. A representative SYSTEM 2000 dsd and fdd.

of its dependent records. All database trees are instances of a hierarchical

definition tree which specifies the hierarchical relationships among conceptual

files.” A definition tree allows the parent, children, ancestors, and descendents
of a record to be identified in a natural way. A representative SYSTEM 2000
definition tree is shown in Figure 49.

The generic CONCEPTUAL record type supported by SYSTEM 2000 consists
of n data fields, F, ... F,, which are elementary and scalar. Nonnumeric data
values may have variable lengths; numeric values have fixed lengths. Generally,
CONCEPTUAL records are variable-length.

The first step in the materialization of a hierarchical definition tree is to
transform CONCEPTUAL records into ABSTRACT_CONCEPTUAL records
by specifying the implementation of the links in the hierarchical definition tree.
ABSTRACT_CONCEPTUAL records, it turns out, are fairly easy to understand,
but their derivation is rather complicated. To make the derivation compre-
hendible, we first deseribe an ABSTRACT_CONCEPTUAL record.

An ABSTRACT_CONCEPTUAL record differs from its CONCEPTUAL
record counterpart by the addition of three fields (Fig. 49.ffd and Fig. 51.fdd).
One field, labeled IFN, identifies the CONCEPTUAL file. A second, labeled P,
is a parent field which contains a pointer to the first child record of a link D
occurrence. A third, labeled Cj, is a child field which contains a parent pointer
and a pointer to the next child of a link A occurrence. These fields are introduced
as a result of the following four step derivation (see Figure 50).

{1) SYSTEM 2000 distinguishes different CONCEPTUAL files by assigning
them distinct internal file numbers (IFNs). Each CONCEPTUAL record is
augmented with a field containing its respective IFN.

(2) The link between a parent file and all of its immediate child files in a
hierarchical definition tree is realized by a single linkset where the roles of parent
and child are preserved. The linkset is a list with parent pointers. Child records

" Perms such as record type, database tree, and hierarchical definition tree are taken from Tsichritzis
and Lochovsky [80]. Different releases of SYSTEM 2000 have used different sets of terminology.

ACM Transactions on Database Systems, Vol. 10, No. 4, December 1985,

Ie

518 - D.S. Batory

ROOT

ABSTRACT..
CONCEPTUAL,

Ly

ABSTRACT_ ABSTRACT.
CONCEPTUAL, CONCEPTUAL,
Lk
ABSTRACT..
CONCEPTUAL,

dsd

Last Pointer

ABSTRACT_CONCEPTUAL

IFNL P G F - Fa
Note: ! r | is arecord of type
ABSTRACT..CONCEPTUAL,
fdd id

Fig. 50, Augmentation and collection of CONCEPTUAL records.

are arranged in user-defined order. Figure 50.id illustrates a possible arrangement.
All links in a hierarchical definition tree are realized in this manner.

Ohserve that assigning list implementations to each conceptual link introduces
a parent field in the root record type, a child field in leaf record types, and both

ACM Transactions on Datahase Systems, Vol 10, No. 4, December 1985,

Modeling Storage Architectures . 519

Parent Pointer
A Next Siblin
ABSTRACT_CONCEPTUAL 7‘ _— 9
7
ABSTRACT. .
CONCEPTUAL NG Po | Cal Fi] Fr ifn Vyse Vg
5 Y
First Child
Note: All pointers reference other
ABSTRACT..CONCEPTUAL records.
dsd fdd id

Fig.51. Generic ABSTRACT.CONCEPTUAL record type.

parent and child fields in the intermediate record types of a hierarchical definition
tree. In order for all records of all ABSTRACT_CONCEPTUAL files to have
both parent and child fields, some null pointer fields must be introduced. This is
done in the remaining two steps.

(3) So that all instances of the root record type can be assessed efficiently,
root records are collected together by link ROOT. ROOT is implemented as a list
linkset (with precisely one occurrence) with parent pointers and a pointer to the
Jast root record.”® (Note that a parent pointer to the system = record is indistin-
guishable from a null pointer.) Root records are arranged in a user-defined order.

(4) A field containing a single null pointer is augmented to each leaf record
type of a hierarchical definition tree. This field is indistinguishable from a parent
field (labeled Py in Figure 51,fdd) of a list linkset where there are no child
records. These null pointers are shown in the occurrence of record types AB-
STRACT _CONCEPTUAL; and ABSTRACT_CONCEPTUAL, in Figure 50.id.

The generic form of an ABSTRACT_CONCEPTUAL record is shown in
Figure 51, An ABSTRACT_CONCEPTUAL record is a child of link A (A for
ancestor) and is the parent of link D (D for descendent). (Note that a specific
instance of A is ROOT.) An ABSTRACT_CONCEPTUAL record consists of an
IFN field, a parent field Py, a child field C,, and n data fields F, . .. F.

An ABSTRACT_CONCEPTUAL record is materialized in the following way
(see Figure 52). SYSTEM 2000 creates an index for all data fields, unless told
otherwise in the schema definition. Field F; is indexed by extracting it from
ABSTRACT.CONCEPTUAL records, forming an ABSTRACT_INDEX; file.
Link [, which connects ABSTRACT_INDEX, to ABSTRACT_DATA, is imple-
mented by a 1:N inverted list. Pointers of an inverted list are in chronological
order. Other fields are indexed in an identical manner.

Note that if an ABSTRACT_CONCEPTUAL file had no indexed fields, it
would be mapped directly to the ABSTRACT_DATA file via the null transfor-

mation.

2 SYSTEM 2000 actually stores the pointer to the last root record in the parent pointer siot of the
first root record of the ROOT list, (Normally, this slot would otherwise be occupied by a null pointer.}
A slightly more efficient implementation would store the last pointer in the system record as shown
in Figure 50.id.

ACM Transactions on Database Systems, Vol 10, No. 4, December 1985,

520 - D. 8. Batory

ABSTRACT.CONCEPTUAL

T

ABSTRACT .
DATA

I

1
(ABSTRACT.)
INDEX,

dsd
ABSTRACT_DATA
N Pol Cal Fil | Fa S Sy S
t
ABSTRACT_INDEX,
vy
F P f
fdd id

Fig. 52, Extraction of ABSTRACT_CONCEPTUAL data fields.

The data fields F, ... F, and inverted list fields Py of ABSTRACT.INDEX;
and ABSTRACT .DATA records are mapped to their internal counije‘rparts by a
conditional application of elementary transformations. Tlfe conditions under
which a transformation is applied depends on the length of the giata value ;111f1
the length of the field in which it is to be stored. These mappings and their
transformation models are explained in the following paragrapAhs.‘ '

When a CONCEPTUAL record type is defined, each ﬁeld‘ I'.‘, is given a nominal
length len,. If the length of a data value to bo:z stored in F; is sh()rt?r _t’hzm len,
bytes, the data value is stored left-justified with blank ;)a.dgilng, If»ll is l()f}ger{i
the first len, — b bytes are stored in the field and. the remaining bytes ’are storfaw
a single EFT, {extended field table) record. A pomte.r of length b bytes cofme(,t.b
the “overflowed” field to the EFT; record. All data fields are represented in this
manner.”

*As sric data values are fived-length, division actually occurs only for nonnuwmeric data v:xl\fiés.
" mm“x;;i:i;::*;‘\;«zg::(tizx:zz(v‘z:l)i::l l:hl:xg; are divided from t;}mse that are not, BYSTEM 2000 restricts

L flag to be encoded

the set of characters that can appear in a nonnumeric field. This enables a bit
within a character sequence to make the distinction.

ACM Transsctions on Database Systems, Vol 10, Nu. 4, December 1985

Modeling Storage Architectures . 521

This materialization is modeled by two transformations: the null transforma-
tion describes the case where a data value has a length less than or equal to len,
bytes. The division transformation captures the other case where a data value is
divided into two fragments: the first fragment is stored with the original record,
the second is stored as an EFT), record. Both records are connected by a singular
pointer linkset. This materialization is referred to as the overflow transformation.

Each ABSTRACT.INDEX, record contains an inverted list field P,. SYSTEM
2000 stores the contents of this field in one of two ways. If there is precisely one
pointer in P, the field is not modified. (This is modeled by the null transfor-
mation.) If there are two or more pointers, Py is divided into variable-length
fragments called MOT; (multiple occurrences table;) records. Link M;, which
connects the index record to its MOT records, is realized as a multilist with last
child pointers. MOT), records are linked in chronological order. This materiali-
zation is referred to as the inverted list iransformation.

An ABSTRACT_INDEX; record is materialized by applying the overflow
transformation to field F; and the inverted list transformation to field P,. A DVT)
(distinct value table;) record is produced as a result. Also, link V; and an EFT,
records are produced if field F; is divided, and link M; and MOT; records are
produced if field Py, is divided. Thus an ABSTRACT-INDEX file is mapped to
one or more (internal) files in one of four different ways. Figure 53 illustrates
each of these ways.”” Note that the Py, and P, fields in Figure 53.fdd occur in
mutually exclusive situations and that both have the same length. Thus, for a
given J, all records of the DVT}” .. DVT}“ files share the same fixed length.
This enables the records of all four DVT]" types to be organized by a single file
structure.

The ABSTRACT.DATA file of Figure 52 is materialized by segmenting the
IFN, Py, C,4 fields from the data fields F, ... F,. This produces an HT (hierar-
chical table) file and an ABSTRACT_DT file connected by link H. H is realized
as a singular pointer (see Figure 54).

An ABSTRACT.DT record is materialized by applying the overflow transfor-
mation to each of its data fields. The resulting data record is referred to as a DT
(data table) record; link E; connects it with at most one EFT, record for each
data field F}. Figure 55.id illustrates a DT record with three data fields that have
overflowed. Owing to the nature of the overflow transformation, DT records have
a fixed length (which equals the sum of the nominal field lengths of the
corresponding fields of the CONCEPTUAL record type). DT records of different
CONCEPTUAL record types will, of course, have different lengths. EFT, records
have variable lengths.

It is worth noting that if a data value overflows its nominal field length and
that it occurs multiple times in a CONCEPTUAL file, there will be an EFT;

#SYSTEM 2000 actually stores the pointer to the last MO, record of an M, link occurrence in the
first MO, record. A slightly more efficient implementation would store the last pointer in the DVT;
as shown in Figure 53.1d.

MOT records are variable-length, When a database is first loaded, all pointers of an inverted list
are placed in a single MOT record. Subsequent pointer insertions are placed in new MOT records,
The length of a new MOT record is a function of the length of the first MOT record.

ACM Transactions on Database Systems, Vol, 10, No. 4, December 1985,

€t

ABSTRACTINDEX,

e e e e e o i

i
|
|
1

S — :
1 DVT !
i
4 |
i
|
|
i
i
!

MOT,

dsd

DVT

Poirtter to ABSTRACT.DATA Record

+Fj Py

Py A \

EFT;
+F, } +Y

Pointer to ABSTRACT_DATA Record

v Last
F P, !) / pointer
+P'x CM; l l > ! 3 l L

Painters to ABSTRACT _DATA Records

EFT;
‘ +F;

MOT,

) L Lt

Pointers to ABSTRACT_DATA Records

fad id

Fig. 53, Overflow and inverted list transformation of ABSTRACT INDEX,.

ABSTRACT_DATA

Modeiing Storage Architectures . 523

Parent Pointer

First Chiid
ABSTRACT.DT

‘ ABSTRACT.DT l

Next Sibling
HT
l IFN | Py | Ca | Py ifn
l Vycoe Y l

DN

dsd fad id
Fig. 54. Segmentation of ABSTRACT_DATA records.
ABSTRACT..DT
‘ pT l
E, En
‘ EFT, l EFT,
dsd
DY
‘,;,ﬁ Ps, +Fa| Pe, Yy VL FV Vg v Vp PV
EFT, i=1...n
+F; { 4V ‘ +V3 +Vn
fdd d

Fig. 55,

Overflow transformation of fields of ABSTRACT_DT records.

ACM Transactions on Database Systems, Vol. 10, No. 4, December 1985.

ve

A
l CONCEPTUAL

ABSTRACT_INDEX;

i
i

’ 5 s Fill

Abstract File Elementary Transtormations Internal File Simple File
HT HY SF

CONCEPTUAL Augmentation and collection : i

ABSTRACT. CONCEPTUAL Extraction

et . T SF
ABSTRACT. INDEX, {for all j) Overflow and inverted list EFT, tfor all 3} EFT

DVT,“’ foraltyp DVT SF

ABSTRACT.DATA Segmentation ; o
ABSTRACT DT Overflow) MOT, (for all) M
b} (c)
Simple File implementation Link Linkset
} Singular pomnter
5 Unordered H
g§ :i Unordered £, (for alty) Singular ponter
¢ Singular pointer
| Unordered v, tfor alt
E(/TT S:F ffor all B+ tree M, {for alt) 1:N list with fast pointer
1l \SF} Unordered i (for a1} 12N mnverted list
Mo O 1N fist with parent pointers
(d) A 11N st with parent pointers

{and last pointer i CONCEPTUAL
file 15 root file of hierarchy}

(e}
Fig. 56. The storage architecture of SYSTEM 2000,

ACM Transactions on Database Systems, Vol 10, No. 4, December 1985,

Modeling Storage Architectures . 525

record for each of its occurrences if the data field itself is not indexed. SYSTEM
2000 eliminates duplicate EFT, records for data fields that are indexed.”

The internal files of SYSTEM 2000 are DVT!', MOT;, HT, DT, and EFT,.
For each J, files DVT}” through DVT;“ are stored in a single B+ tree. (Thus, for
each value of J, there will be a distinct B+ tree). All MOT, files are stored in a
single unordered file. The HT and DT files are stored in separate unordered files,
and all EFT) files are stored in a single unordered file.”

Figure 56 summarizes the storage architecture of SYSTEM 2000. Source
materials are [16, 27, 50] and [80].

ACKNOWLEDGMENTS

I gratefully acknowledge the encouragement, support, and ideas I received from
the following people: Ignacio Casas at the University of Toronto; Jim Desper at
Infodata Systems, Inc.; John McCarthy at Lawrence Berkeley Laboratories; Alex
Buchmann at 1IMAS; Alan Wolfson at Software AG; Paul Butterworth at
Relational Technology; Barbara Foster at Intel; Stan Su, Sham Navathe, and
Jim Parkes at the University of Florida, and Tim Wise at the University of
Texas. I thank the referees for suggesting several important improvements to
the paper. I also thank Arie Shoshani (Lawrence Berkeley Laboratories) for his
considerable assistance and insight in improving the clarity of this paper.

REFERENCES
1. Acming, H., anNp SEVERANCE, D. G. A practical guide to the design of differential files for
recovery of on-line databases. ACM Trans. Database Syst. 7, 4 (Dec. 1982}, 540-565.
ALsBERG, P. A, Space and time savings through large database compression and dynamic
restructuring. Proc. IEEE 63, 8 (Aug. 1975), 1114-1122.
. Baroooy, A. J., anp DEWrrT, D. J. An object-oriented approach to database system imple-
mentation. ACM Trans. Database Syst. 8, 4 (Dec. 1982), 576-601.
. Barory, D). 8. On searching transposed files. ACM Trans. Database Syst., 4, 4 {Dec. 1979),
531-544.
5. Batory, D. 8, Optimal file designs and reorganization points, ACM Trans. Database Syst. 7, 1
(Mar. 1982), 60-81.
5. Barory, D. 8. Conceptual-to-internal mappings in commercial database systems. ACM PODS
1984, 7078,

[

7. Batory, . 8. Unpublished manuscript, 1984,

8. Batory, D. S, Progress toward automating the development of database system software. Query
Processing in Database Systems, W. Kim, D. Reiner, and D. S. Batory, Eds., Springer Verlag,
New York, 1985,

9. Barory, D. 8. GENESIS-—An internal database compiler: Status report. In preparation.

10. Barory, D. 8., anp Goreies, C. C. A unifying model of physical databases. ACM Trans.

Database Syst. 7, 4 {(Dec. 1982), 509-539.

Note that our model does not capture this aspect of EFT records; we model all fields by duplicating
EFT records. 1t is believed that this problem can be rectified by casting the TM in terms of an object-
oriented model. This would allow the contents of a data field to be treated as an object. When a data
field is duplicated (as in extraction with duplication), the object that it contains is not actually
duplicated, but rather a reference to the object is created. When the object is stored, all references
will point the single object instance.

2 A SYSTEM 2000 database has another file called the DEFIN file. It contains metadata, such as
the root nodes of all simple files and the system « record.

ACM Transactions on Database Systems, Vol. 10, No. 4, December 1985,

G¢

526 - D. S. Batory

41

i For
. FREDKIN, B, Trie memory. Commun ACM 3 (1960), 450500,
. Fry, J. P, BT AL, Stored-data deseription and data translation: A model and language. Inf.

CGorues, €. C. Some large questions about very large databas

. Horr

C Batony, D. S, ANp Kiv, W, Modeling concepts for VLSI CAD objects. ACM Trans. Database

Syst. 10,3 (Sept. 1985), 322-346.

2. Bergnian, E, anp lwan, Ko B, Evaluation and optimization. In Proceedings VLDBE 1977,

545).

CBotn, M. Introduction to IBM Direct Aecess Storage Devices. SRA, 1981,
. BURNET

o, K. A, A self-describing data file structure for large data sets. In Computer Science
and Statistics: Proceedings of the 13th Symposium of the Interface, Springer Verlag, New York,
19831, 3569362,

(asas, L R, Analytic modeling of database systems: The design of a System 2000 performance

predicior. M.Sc. thesis, Dept. of Computer Seience, Univ. of Toronto, 1981,

(asas, I R, Technical discussion, Univ. of Toronto, 1982,

C'asas, 1. R Performance prediction of database systems. Ph.D. thesis, Dept. of Computer
Seience, Univ. of Toronto, 1985,

Cert, S, AND PELAGATTL G. Distributed Databases: Principles and Systems, McGraw-Hill, New

York, 1984,

CCuen, P P. S, The entity-relationship model-—Toward a unified view of data. ACM Trans.

Database Svst. 1, 1 {Mar. 1976), 9-36.

CCINCOM SYSTEMS, InC. TOTAL PDP-11 Programmers Reference Manual. Cincinnati, Ohio,

1979,

_Comer, D, The ubiquitous B-tree, ACM Comput. Surv. 11, 2 {June 1979), 121- 138,

CULLINANE DATABASE SysTEMS, INC. IDMS System Overview, Westwood, Mass., 1981.

3. Das, K. 8., anp Trogey, T. J. Detailed specifications for the file design analyzer. Tech. Rep.

87, Systems Engineering Lab,, Univ. of Michigan, Ann Arbor, 1975,

CDate, C. 0. An Introduction to Database Systems, 3rd ed., Addison-Wesley, Reading, Mass,,

182,

C DespeR, J. Technical discussion, Infodata Systems, Inc., 1983.
CFaain, R, NipvErceLT, 4., PispENGER, N., AND STRONG, H. R Extendible hashing—A fast

acc method for dynamic files. ACM Trans. Database Syst. 4, 3 {Sept. 1979}, 315-344.

:i, B, Technical discussion, Intel Corp., 1984,

Syst. 2 {1977y, 95148,

CGaMBiNo, T.J., AND GERRITSEN, R, A database design decision support system. In Proceedings

of the ACM Conference on Very Large Data Bases (1977), ACM, New York, 534-544.

. Garza, 4. F. Design and implementation of JUPITER: A general file management system.

M.Se. thesis, Dept. of Computer Science, Univ. of Texas at Austin, 1985

) GESELLSHAFT FUER MATHEMATIK UND DATENVERARBEITUNG. ADABAS: Database Systems

[nvestigation Report, vol. 2, part 1, Institute fuer Informationssysteme, Bonn, 1976,
s, In Proceedings of the ACM
Conference un Very Large Data Bases (1981), ACM, New York, 3-7.

_Gray, . N, Practical problems in database management—A position paper. ACM SIGMO1L),

1984, 3,

CGUTTAG, . Abstract data types and the development of data structures. Commun. ACM 20, 6

tJune 1977), 1896404,

5 GUTTMAN, A, AND STONEBRAKER, M. Using a relational database management system for

computer-aided design data. Electronics Research Laboratory, UCB/ERL M82/37, Univ. of
California, Berkeley, 1982,

CHaMMER, M. Data abstractions for databases. In Proceedings of the Conference on Data:

Abstractions, Definitions, and Structure. SIGPLAN Not. 11 (1976), 58-59.

. Haskin, R., anp Lorig, R On extending the functions of a relational database system. ACM

SHIMOD 1982), 207212,

CHELD, G. DL AND STONEBRAKER, M. R, B-trees reexamined. Commun. ACM 21,2 (Feb. 1979),

139142,

. . A, A clustering approach to the generation of subfiles for the design of a computer
database. PRD. dissertation, Cornedl Univ,, Tthaca, N.Y., 1975,

Hs1a0, ., anp Harary, F. A formal system for information retrieval from files. Commun.
ACM 13,2 (Feb, 1970y, 67-713.

ACM Pransactions on Database Systems, Vol. 10, No. 4, December 1985,

50.
51
b2,
53.

54.

o
pet

M, SEVERANCE

Modeling Storage Architectures . 527

2. Hsiao, . Bo. Advanced Database Machine Architecture. Prentice-Hall, Englewood Cliffs, N.J.,

1983,

3. Hurrsman, I AL A method for the construction of minimal redundancy codes. In Proceedings

IRE 10 (Sept. 1952), 1098-1101.

CIBM Corp. IMS/VS Version 1: Database Administration (uide. San Jose, Calif., 1981
5. INFODATA SYSTEMS, INC. INQUIRE Basic Training Course. Pittsford, N.Y., 1879.
5. INFODATA S8

eMs, INC. INQUIRE Database Design and Loading Manual. Pittsford, N.Y.

1979

_KinG, R. P, Kowrth, H. F., AND WiLLNER, B. E. Design of a document filing and retrieval

service. ACM SIGMOD, 1983, (Business and Office Databases).
KnutH, D. B, The Art of Computer Programming, vol. 3: Sorting and Searching, Addison-
Wesley, Reading, Mass., 1983

. KORNATOWSKI, J. Z. The MRS User's Manual. Computer Systems Research Group, Univ. of

Toronto, 18979,

KROENKE, D. Database Processing, S.R.A. Inc., Chicago, 1971,

LARSON, P. Dynamic hashing. BIT 18 (1978), 184-201.

LeMPEL, A. Cryptology in transition. ACM Comput. Surv. 11, 4 (Dec, 1979), 285-305.

Lorig, R., ET AL, User interface and access technigues for engineering databases. To appear in
Query Processing in Database Systems, Springer Verlag, New York, 1984 (see [9]).

MagreH, 8. T. Techniques for structuring database records. ACM Comput. Surv. 15, 1 {Mar.
1983), 45-80.

MARCH, S. T', AND SEVERANCE, D. G. The determination of efficient record segmentations and
blocking factors for shared data files. ACM Trans. Database Syst. 2, 3 (Sept. 1977), 279-286.

. MaRCH, 8. T., SEVERANCE, D. G., AND WILENS, M. Frame memory: A storage architecture to

support rapid design and implementation of efficient databases. ACM Trans, Database Syst. 6, 3
(Sept. 1981), 441-463.

. MAXWELL, W. L., AND SEVERANCE, D. G. Comparison of alternatives in an information system.

In Proceedings Wharton Conference on Research on Computers in Organizations {Oct. 1973),
Univ. of Pennsylvania, Philadelphia, 1-16.

. Mitoma, M. F., anp Irant, K. B. Automatic database schema design and optimization. In

Proceedings of the ACM Conference on Very Large Data Bases {1975), 286-321.

. NAKAMURA, T, AND MizocucHt, T. An analysis of storage utilization factor in block split data

structuring scheme. In Proceedings of the ACM Conference on Very Large Data Bases (1878},
489495,

. NATIONAL BUREAU OF STANDARDS Federal Information Processing Standards, Publ. 46, 1977.
. NDX RETRIEVAL SV’
. NIEVERG

Mms, INc. CREATABASE Performance Manual. Houston, Tex., 1981.
. HiNTERBERGER, H., aNp SevCiK, K. C. The grid file: An adaptable, symmetric
structure. ACM Trans. Database Syst. 9, 1 (Mar. 1984), 38-71.

muttikey file

L ONG, 4, Foaa, D, AND STONEBRAKER, M. Implementation of data abstraction in the relational

database system INGRES. ACM SIGMOD Ree. 14, 1 (Mar. 1884), 1-14.

C Rrronte, D. M., anp TrompsoN, F. The UNIX time-sharing system. Commun. ACM 17,7

(July 1974}, 365-375.

. Rowk, L. AL Anp Suoens, KA. Data abstractions, view, and updates in RIGEL. In Proceedings

ACM SIGMOD (1979), T1-81,

Scitonh, M. New file organizations based on dynamic hashing. ACM Trans. Database Syst. 6,

1 {Mar, 1981), 194211

7. SENKO, M. ., ALtMaNn, E. B., ASTRAHAN, M. M., aNp Fruper, P. L. Data structures and

ssing in database systems. IBM Svst. J. 12,1 {1973}, 36-93.
D.G. Some generalized modeling structures for use in design of file organizations.
, Univ. of Michigan, Ann Arbor, 1972.

Ph.D. thes

 SEVERANCE, D. G., AND LouMan, G. M. Ditferential files: Their application to the maintenance

of large databases. ACM Trans. Database Syst. 1, 3 (Sept. 1976), 266-267.

70, Sipman, D, The functional data model and the data language DAPLEX. ACM Trans. Database

Syst. 2,2 Chune 1977), 106-133.
Sorrwake AG oF NORTH AMERICA, INC. ADABAS: Introduction. Reston, Va., 1977

9 SOFTWARE AG OF NORTH AMERICA, INC. ADABAS: Effective Data Base Management for the

Corporate Environment. Reston, Va., 1980,

ACM Transactions on Database Systems, Vol, 10, No. 4, December 1985,

9¢

528 . 0. §. Batory

4. SpErrY-UNIvaC DMS-1100 Schema Definition: Data Administrator Reference. 1975,
4. STANFORD UNIY. Design of SPIRES: Vols. I and 11. Center for Information Processing, Stanford
Univ., 1973,

75, STATISTICS CANADA RAPID Internals Manual. Ottawa, Ont., 1981,

6. STONEBRAKER, M., WONG, E., Kreps, P, anD HELD, (i. The design and implementation of
INGRES, ACM Trans. Database Syst. 1, 3 (Sept. 1976), 189-222.

77, STONEBRAKER, M., RUBENSTEIN, H., AND GUTTMAN, A, Application of abstract data types and
abstract indices to CAD data bases. In Proceedings 1983 ACM Engineering Design Applications,
ACM, New York, 107-114,

78, SVENSSON, P, On search performance for conjunctive queries in compressed, fully transposed
ordered files. In Proceedings of the ACM Conference on Very Large Data Bases {1979), 1565-163.

79, Trorey, T. J., AND FRY, 3. P, Design of Database Structures. Prentice-Hall, Englewood Cliffs,
N.J., 1982

R0, Tstcurerzis, Do C, AND Locnovsky, . Data Base Management Systems. Academic Press,
New York, 1977,

81 Tstcurirzas, D. C., AND KLUG, A., Eps. The ANSI/X3/SPARC DBMS framework report of
the Study Group on Database Management Systems. Inf. Syst. 3, (1978), 173-191.

82, Tsicurirzis, D., anp CHRISTODOULAKIS, S. Message files. ACM Trans. Office Inf. Syst. 1, 1
(Jan. 1983), 88-98.

&3 TuRNER, M. J., HAMMOND, R., AND Cotron, P. A DBMS for large statistical databases. In
Proceedings of the ACM Conference on Very Large Data Bases (1979), 319-327.

%4, WELLS, M. File compression using variable length encodings. Comput. J. 15,4 (1972) 308-313,

ruoLD, G, Database Design, and ed., McGraw-Hill, New York, 1983.

w6, Wise, T. B, A technique to wmodel and design physical database structures. M.Sc. thesis, Dept.
of Computer and Information Seiences, Univ. of Florida, 1983,

87, WOLFSON, A, Technical discussion. Software AG of North Ameriea, Inc., 1983.

88. Ya0, 8. B, An attribute-based model for database cost analysis. ACM Trans. Database Syst. 2,

1 (Mar. 1977}, 45-67.
C7av, J. AND LEMPEL, A, A universal algorithm for sequential data compression. JEEE Trans.
Inf. Theor 1T-23,3 (May 1977), 337-343.

%

Received June 1983; revised July 1984; accepted June 1985

ACM Transactions on Database Systems, Vol. 10, No. 4, December 1985,

Concepts for a Database System Compiler*

D.S. Batory
Department of Computer Sciences
The University of Texas
Austin, Texas 78711

Abstract

We propose a very simple formalism based on parameterized types and a
rule-based algebra to explain the storage sructures and algorithms of data-
base management systems. Implementations of DBMSs are expressed as
equations. If all functions referenced in the equations have been imple-
mented, the software for 2 DBMS can be synthesized in minutes at little
cost, in contrast to current methods where man-years of effort and hundreds
of thousands of dollars are required. Our research aims to develop a DBMS
counterpart 1o today’s compiler-complier technologies.

1. Introduction

A fundamental problem in computer science is the search for a tech-
nology to construct customized software systems rapidly and cheaply. An
important instance of this problem is in the area of database management.
There are many engineering and scientific applications (e.g., Al, CAD.
graphics) that need database supporL, yet current DBMSs cannot accommo-
date these applications easily or efficiently. The reason is that new data
types, novel query processing algorithms, and specialized storage structures
are among their requirements. Modifying existing DBMSs or building new
DBMSs from scratch is an exceedingly costly and difficult undertaking.
What is needed is a technology that can be used to construct customized
DBMSs quickly and cheaply.

Inmitively, such a technology would have the following features.
New algorithms would be encapsulated in standardized units (like today’s
hardware chips) which could be plugged into DBMSs. Different manufac-
wrers would feature different lines of algorithms/units to enable users
upgrade or enhance their systems, much in the same way that hardware sys-
tems can be upgraded today. Technology ransfer times would be measured
in man-months, not man-decades. Database systems would no longer be
monolithic, but synthetic.

In this paper, we explain how such a technology is possible and the
ideas on which it resis. Customizing DBMSs is the domain of extensible
database systems. The ideas that we present here underly the design of
GENESIS [Bat82-88]). Other extensible database systems, such as
EXODUS, STARBURST, POSTGRES, and DASDBS, are based on dif-
ferent ideas or have different goals than those of GENESIS. They are dis-
cussed in dewil in [IEE87].

* This work was supporied by the National Science Foundation under
grant DCR-86-00738.

37

The primary distinctions between GENESIS and other extensible
DBMS projects is the emphasis on reusable building blocks and DBMS
compiler/generators. Most projects, such as POSTGRES and STAR-
BURST. are concentrating on the development of 2 fixed DBMS architec-
tare that can accommodate new features. The EXODUS and GENESIS pro-
jects, in contrast, are aiming at generalized architectures with DBMS
compiler/generators as their goal.

EXODUS provides tools (e.g., the E programming language) and a
few fixed componenis (e.g., object manager and query optimzer) to simplify
the 1ask of DBMS software construction. The design of interfaces, the
semantics of modules, and how modules interact are left up to the Database
Implementor (DBD). Module reusability hinges on the latier design deci-
sions, and is not a promoted feature of EXODUS.

GENESIS is based on a well-defined conceptual framework in which
reusable building-block modules of DBMSs can be identified. Imerfaces,
module semantics, and possible module interactions are standardized. An
open-ended library is provided, along with 2 tool (the compiler) to express
and construct target DBMSs as compositions of modules. The coding of
modules and the fitting of algorithms to standardized interfaces are left up
10 the DBI. We believe that the EXODUS and GENESIS approaches are
complimentary.

We begin our discussions by explaining the approach we are taking 10
develop the GENESIS DBMS compiler. We then formalize these ideas in
terms of an algebra, and illustrate them with simple examples. Insights into
future work and distinctions between our work and recent contributions,
namely those of Freytag [Fre87] and Graefe and Dewitt [Gra87], are
presented as conclusions.

2. The Approach

The fundamental problem in developing a building-blocks technology
for DBMSs is knowing how to decompose DBMSs in a way in which
identified pieces are demonstratably reusable. The solution requires a very
general and very simple framework in which known algorithms, known
structures, and operational systems can be cast and related.

We believe two concepts are fundamental to a building-blocks
framework/iechnology: standardized interfaces and layered DBMSs. How
interfaces and layers are defined is the key to reusability. In this section, we
explain our approach o their definition and overview their formalization.

2.1 Simplest Common Interface

A building-blocks technology requires an open architecture with
standardized interfaces. The key 1o its extensibility lies in how these inter-
faces are designed. It is our belief that declaring an ad hoc interface tobe a
standard is the worst of all possibilities. A better approach is 10 1) identify
a class of algorithms that realize the same function, and 2) design the sim-
plest interface that supports all algorithms of the class. The greater the
number of algorithms, the more likely it is that the interface captures funda-
mental properties of the algorithm class. Such an interface is no longer ad
hoc, but is justified by its demonstratable generality. We call this the sim-
plest common interface (SCI} method for standardized interface design.

The SCI method promotes algorithm interchangability. All algo-
rithms of a class support the same interface. If a particular algorithm
doesn’t provide the desired performance, it can be replaced by another
without altering higher-level modules.

As an example, shadowing, page logging, and db-cache are three
well-known database recovery algorithms. If one were 10 give each algo-
rithm 1o a different implementor, three disparate interfaces would be
designed. Algorithm interchangability would not be present. However, by
defining an interface for all three, interchangeability is guarenteed.

The ingenuity of our colleagues ensures us that no single interface
can always encompass all future algorithms. (Note this is also true for
*extensible’ DBMSs. with ad hoc interfaces). However, a building-blocks
technology can exploit the maturity of a field because ideas and concepts
(e.g. interfaces) do reach a steady state. An SCI exploits known algo-
rithms. If an algorithm class is sufficiently large to begin with, adding a
new algorithm will normally require no changes 10 its SCI. This reflects the
common goal of rescarchers 10 develop new methods for solving recognized
problems.

In our experience, a vast majority of SCls are static. Look at the
research in join algorithms over the last decade; the join operation hasn’t
changed, but there are lots of join algorithms that have been proposed.
Similarly, a sort operation takes a stream of records and a sort criterion as
input. It is unlikely that a sort algorithm will be invented that cannot be cast
in terms of this interface. Of course, there are operations whose generaliza-
tons are not well undersiood. {We will consider some in Section 4.1). This
means that new algorithms will occasionally be proposed that require evo-
lutionary changes to an SCL Radical modifications, which should be
expected for ad hoc interfaces, are less likely.

SCI is a necessary, but not sufficient, requirement for a DBMS
building-blocks technology. As an example, one could build 2 monolithic
file management system that provides an SCI interface to all file structures.
While the interchangeability of different stuctures is an important and
recognized goal in DBMSs, there are lower-level primitives on which all
file structures rely; the implementations of these primitives should not be
duplicated. A betier approach is 1o use a layered architecture, where each
layer provides the primitives on which the next higher layer is defined. To
provide maximum extensibility, each layer should have an SCL How o
slice DBMSs into layers brings us 10 the second concept.

2.2 Lavered DBMSs and Conceptual-to-Internal Mappings

Database systems implement conceptual-to-internal mappings. We
have shown in earlier papers [Bai84-85] that the data mappings of opera-
tional DBMSs can be very complicated, but have simple descriptions as 2
composition of primitive mappings. Storage structures are the end product
of these mappings. An important contribution of our earlier work is that
complicated storage structures are compositions of primitive structures.

Operation mappings accompany every primitive data mapping. The
encapsulation of primitive daia and operation mappings is a layer. Among
known layers are indexing, compression, transposition, and horizontal parti-
tioning. DBMSs are compositions of layers. Some layers are plug-
compatible, so the order in which they can be combined is permutable.
Other layers can be composed only in a certain order. In [Bat86a], we show
how a DBMS was implemented by composing independently defined
layers.

2.3 Overview of Formalization

This paper presents a formalization of the above ideas. It is this for-
malism that we are implementing in GENESIS. We show that the building
blocks of DBMSs are data types (data + operations) and algorithms
(implementations of operations). Each data type corresponds to a layer in
the above discussions, and the interfaces to iis operations are SCIs. Algo-
rithms realize the operation mappings of these types. Reusability is a result
of this formalization: each data type and its algorithms are defined indepen-
dently of any DBMS in which it will be used. For this reason, it can be
combined with other data types 1o form many DBMSs.

The fundamental data types of DBMSs fall into three classes: FILE,
LINK, and MODEL. FILE is the class of data types that correspond to file
implementations {e.g., B+ trees, inverted files, etc.). LINK is the class of
data types that correspond 10 impiementations of relationships among files

38

{e.g., join indices [Val87], CODASYL sets). MODEL is the class of data
models and their corresponding data languages.

Data types that are parameterized (e.g.. STACK_OF[x]) can be com-
posed with other types (e.g. INT) to form more complicaied types {e.g.,
STACK_OF[INT}). Many of the types within the FILE, LINK, and
MODEL classes are parameterized, and combinations of them can be
identified with the architectures of recognized DBMSs. Section 3 explains
this relationship in detail.

Associated with each class is a small set of generic operations that all
members support. It is always possible for every member of the FILE class,
for example, to perform record retrieval and record insertions. By catalog-
ing algorithms that implement the generic operations of each of type in the
FILE, LINK, and MODEL classes, it is possible to codify DBMS

implementation knowledge as rewrite rules and to express and manipulate
DBMS designs as equations. A simple algebra that accomplishes this is
presented in Section 4.

Computations in centralized DBMSs are unified with the distributed
and paralle! computations of database machines and distributed DBMSs in
Section 5. The unification is captured in the algebra by special rewrite rules
and execution site assignments for algorithms.

We explain in Section 6 how the above ideas form a cohesive nucleus
for a database system compiler. We conclude with Section 7 by pointing
out the strengths and weaknesses of our approach, and how our work
extends existing research.

3. Database Systems and Parameterized Types

Generic or parameterized types were proposed many years ago asa
way to simplify software development and o promote software reusability
[Lis77, Gog84l. A classical example of a parameterized type is
STACK_OF{x]. Onecan define and implement stacks and stack operations
independently of the objects that are placed on a stack. Parameterizing the
STACK_OF type and the module/layer that implements the STACK_OF
type auains this independence. So if POLYGON is a wpe,
STACK_OF[POLYGON] defines a type that is a stack of polygons. The
implementation of the composite type is 2 composition of the STACK_OF
and POLYGON modules. Because both types and their modules were
developed independently, they can be recognized as building blocks of
more complicated sysiems.

Implementations of database management sysiems <an also be
viewed as a composition of types. Consider the nonparameterized types
BPLUS, ISAM, and HEAP. Instances of these types are specific B+ wree,
isam, and heap file structures.

Let FILE denote the class of all file implementations, of which the
BPLUS, ISAM, and HEAP types are members. To promoie uniformity and
module interchangability, all members of the FILE class support exactly the
same interface. This is possible, as one can always retrieve records, insert
records, delete records, eic. from a file regardless of how it is implemented.
By imposing a standardized interface, a program that references a file F
whose type was BPLUS will stil] work if F's implementation: is changed 10
HEAP. | (Providing, of course, that a type conversion - e.g., file unload and
reload - takes place).

The FILE class also has parameterized types. Let INDEXI[Af:FILE,
xf-FILE] be the type that specifies a paramets; ized implementation of an
inverted file. The notation df:FILE means that parameter df can be assigned
one or more types belonging to the FILE class. When a file is of type
INDEX, the INDEX module/layer maps the file (henceforth called an
abstract file) to a data file and zero or more index files (henceforth called
concrete files). The key idea behind the parameterization is that the data
and operation mappings of INDEX do not rely on the implementations of
the concrete data file and concrete index §les. For this reason, the file types
of the data and index files are parameters © INDEX.

A common implementation of inveried files has data files imple-
mented as heaps and index files as B+ wrees. This corresponds to the type

! The imposition of a standardized interface is evident concepiually, but it
is VERY rare 1o find DBMSs implemented in this way. The author is not
aware of an exception where the interface to conceptual files maiches that
of internal files.

expression INDEX[HEAP BPLUS]. Assigning different file structures to
the data file and index files yields different inverted file implementations.

Each type encapsulates the daia and operation mappings from an
abstract file to one or more concreie files. As a few examples,
ENCODE[ef:FILE] maps an unencoded/uncompressed file i an
encoded/compressed file whose implementation is ef, XPOSE[sf:FILE]
maps an untransposed file to a transposed file, where s is the subfile imple-
mentation; and HPART[pf:FILE] horizontally partitions an abstract file,
where pf is the implementation of a concreie file partition. The class of
FILE implementations is quite large, having hundreds of members. A
comprehensive list of known file structures (nonparameterized types) and
file mappings (parameterized types) is given in [Bat84-85].

There are two additional building block classes besides FILE that
underly DBMS implementations. One is the LINK class. Databases
traditionally have been described as networks of files and links, where a
link is a relationship between two files. LINK is the class of link imple-
mentations. Members of LINK include relational implementations, such as
JALG (join algorithms) and JINDEX (join indices [Val87}]), and
CODASYL set implementations, such as PARRAY (pointer array) and
RLIST (ring list). ?

MODEL is the other class. A network interface 1o databases is
archaic by today’s standards. DBMSs therefore provide data models and
data languages as their user interfaces. A MODEL type encapsulates the
data and operation mappings that occur between a DBMS’s user interface
and its representation of databases as networks. QUEL[fFILE, niLINK] is
a member of the MODEL class. It represents the data model and data
language of INGRES, and is parameterized by { and n, which are respec-
tively the implementations of the underlying files and links of INGRES
databases [S1076]. Other members of MODEL are SQLIf:FILE, n:LINK],
the data model and data language of System R [Ast76], and DBTGI{'FILE,
nLINK], the primitive data model and data language of CODASYL
[DatB82].

Four comments. First, just as STACK_OF and POLYGON can be
recognized as building blocks of complicated systems, so 00 can the
instances of FILE, LINK, and MODEL classes be recognized as building
blocks of daiabase management systems. INGRES, for example,
corresponds 1o the composition:

QUEL/| INDEX] dfile, ifile], JALG]
where dfile = { HEAP, ISAM, HASH, COMP_ISAM, COMP_HASH]
and ifile = { HEAP, ISAM, HASH, COMP_ISAM, COMP_HASH }

That is, INGRES presents a QUEL front-end, maps relations 10 inverted
files, implements links by join algorithms, and allows data files and index
files 1o be stored in one of five structures: heaps, isam, hash, compressed
isam, and compressed hash. The latier two apply compression techniques
as part of their file structure algorithms. (Each data page of a file structure
is compressed. Note that the type compositions ENCODE[ISAM] and
ENCODE[HASH] correspond to the situation where files are compressed
prior 1o their storage in ISAM and HASH structures. ENCODE[SAM] and
ENCODE[HASH] are not the same as COMP_ISAM and COMP_HASH).
The actual file structure that is used for a given data file or index file is
specified by the physical database directive MODIFY-TO [S1076].

As another example, RAPID, a statistical DBMS built by Statistics
Canada in the mid-70’s to process the Canadian census, has no data model
front-end (i.e., RAPID has only a programming language interface),
encodes input files, creates indices over selected encoded ficlds, stores
index files in B+ trees, transposes the data file, and stores subfiles in heaps
[Tur79]. This corresponds 1o the composition:

ENCODE[INDEX[XPOSE[HEAP], BPLUS]]

2 yinks are typically generated in the abstract-to-concrete mappings of
files [BatBS5]. As a rule, link implementations are implicit parameters o
many FILE types. The inverted files of INDEX, for example, use links
connect index files with data files. To keep things simple, LINK parameters
will remain implicit unless otherwise specified.

39

Taking other combinations of FILE, MODEL, and LINK modules yields
other database systems. See [BatB4-85,87a] for additional examples.

Second, our approach to the description of DBMS implementations is
extensible. New file implementations, link implemeniations, and data
model/data language implementations are constantly being invented. They
are accommodated easily as new FILE, LINK, and MODEL types.

Third, the ANSI/SPARC notions of a conceptual level and an internal
level are present in our composite types [Dat82]. For every type expres-
sion, the most abstract files are conceptual and the most concrete files are

" internal. In the case of INGRES, relations comrespond to the conceptual

files (i.e., the abstract files of QUEL) and the files stored in HEAP, ISAM,
HASH, COMP_ISAM, and COMP_HASH structures are imernal. For
RAPID, unencoded files are conceptual and the files stored in HEAP and
BPLUS structures are internal.

Fourth, we have deliberately simplified owr description of FILE,
LINK, and MODEL types to provide a clean overview of our approach. It
is not the case that standard notions of parameterized types suffices for our
research; something much more sophisticated appears 10 be needed.
Briefly, it is difficult to imagine how the interface (0, say, INGRES could be
defined in a programming language as the interface 10 2 single data type
(which we have called QUEL[{.FILE, n:LINK]). An instance of QUEL[]
would be a database consisting of multiple relations. On a more mundane
level, DBMSs create record types dynamically, and thus require dynamic
type checking and the ability 1o define functions that are type-valued (i.€.,
functions thal return data types as their result). We are not aware of any
existing or proposed programming language that supporis even this latter
feature.

4. Rule-Based Algebras and Type Implementations

A layer is an implemeniation of a data type. We use a rule-based
algebra to specify the implementation of layers and to show how algorithms
compose when data types are composed.

Algorithms of FILE, LINK, and MODEL types are specified as a
composition of functions. Functions represent cither algorithms or opera-
tions, where the distinction is that algorithms implement operations. Gen-
erally, there are many algorithms for a given operation. For example, the
sort operation can be implemented by a bubble sort algorithm, a quicksort
algorithm, a radix sort aigorithm, etc. We express the relationship between
an operation O and the class of algorithms Ay, A, - - - that implement Oas
algebraic identities or catalogs of the form:

O = A ; algorithm #1
A, ; algorithm #2

We distinguish two classes of algorithms: atomic and nonatomic. The most
primitive algorithms, those whose decompositions are not considered
interesting, are stomic. Compositions of atomic algorithms yield more
complicated or nonatomic algorithms. Determining which algorithms are
atomic is subjective; convenience is the best guide.

Catalogs provide us with two important capabilities: algorithm exten-
sibility and algorithm interchangability. If a new algorithmn A, is invented
for operation O, we simply add it 1o the catalog for O. A, can then be used
in the design and specification of a DBMS. This is algorithm extensibility.
Similarly, if algorithm A; does not exhibit desired performance characteris-
tics, we simply replace it with another implementation of O. The DBMS
will still work, but may run faster or slower. Swapping different implemen-
1ations of operations is algorithm interchangability.

If an algorithm can process all instances of its operation, then it is
robust. All popular sorting algorithms are robust. Quite often, certain
instances of operations occur with such frequency that special algorithms
are designed 1o handle them. For example, one can imagine a sorting algo-
rithm that takes advantage of a preordering of its input elernents. Because it
works only under special conditions, and hence cannot process all instances
of a sort operation, it is nonrobust. In general, one can always use robust
algorithms as implementations for an operation. Using a nonrobust algo-
rithm is legal only if restrictions are met.

The interface standardization of both the FILE and LINK classes
requires that a small and fixed set of operations be supporied by each class.
For FILEs, one can retrieve, insert, delete, eic. records. For LINKs, one can

raverse links (i.e., compute joins), connect, and disconnect records. In
contrast, MODEL types do not have siandardized interfaces. This means
that each MODEL type supports a different but fixed set of operations.
Another source of operations arc those that are performed on record
streams. Streams of records arise as the resuit of computations; one can
sort, filter, merge, split, etc. streams. The number of operations on streams
is unrestricted. We explain in Section 473 how new operations on FILEs
and LINKs, beyond those in the fixed set, are admitted.

In the previous section, we introduced type expressions as composi-
tions of FILE, LINK, and MODEL types. In the following sections, we
introduce a different class of expressions, called algorithm expressions,
which are compositions of atomic algorithms. We illustrate algorithm
expressions.and. the above ideas by cataloging implementations of opera-
tions in selecied MODEL and FILE types. More compleie catalogs are
given in [Bat87a].

4.1 MODEL Implementations

Recall that MODEL is the class of types that represent different
DBMS data models and data languages. Each MODEL type accomplishes
the data mappings of user-defined objects and relationships to conceptual
files and conceptual links, as well as the operation mappings from data
language expressions 10 sequences of operations on these files and links.

In general, data mappings are simple. In relational DBMSs, for
example, relations are mapped directly to conceptual files. Conceptual
tinks, which are not explicit in relational models, map 10 join operations.
The mapping of data language expressions 1o operations on conceptual files
and conceptual links is much more complicated. Consider the subclass of
MODULE types that implement relational data models and data languages.

Let R be a simple relational query that does not involve aggregations
or the equivalent of nested SELECTs. (As readers will soon see, the partic-
ular relational language used to express R doesn’t matter). The most
abstract description of query processing in a relational DBMS is captured
by the following expression:

EVAL{QOPT(R))

Q_OPT is the query optimization operation which maps R to an execut-
able expression E. EVAL(E) execuies expression E. Different relational
DBMSs implement Q_OPT in different ways. To catalog recognized
implementations, we note that Q_OPT is a well-known composition of
three lower-level operations:

QOPT(R) => @
JOINING_PHASE(REDUCING_PHASE(Q_GRAPH(R)))

Q_GRAPH:R->G maps a relational query R 1 2 query graph [Ber8la,
Yu84a-b], REDUCING_PHASE:G—G maps query graphs with unreduced
files to graphs with reduced files, and JOINING_PHASE:G—E maps query
graphs to executable expressions.

The Q_GRAPH operation has a large catalog of implementations;
there is one implementation for each relational data language:

Q_GRAPH(R) => SQL_GRAPH(R) ; [Cha76]
QUEL_GRAPH(R) ; [S1076]
; [Zan83]

GEM_GRAPH(R)

The actual implementation of Q_GRAPH depends on the specific MODEL
type (e.g., SOL_GRAPHR) is used for the SQL type).

REDUCING_PHASE and JOINING_PHASE algorithms are data
language and data model independent. A partial catalog of algorithms for
each operation is shown below; more complete catalogs are given in

[Ba872):

40

REDUCING_PHASE(G) =>

G ; identity
SDDI(G) ; [Ber8ib]
BC(G) : [Ber81a]
YOLLG) ; [YuB4b)
JOINING_PHASE(G) =>
SYS_R(G) ; [8el79]
U_INGRES(G) ; [Won76]

EXODUS(G,RS) ; [Gra87] - RS is the rule set

It is important 10 note that the above algorithms do not rely on specific
implementations of conceptual operations; tather, they are optmization
strategies which enumerate or heuristically select orderings of operations on
conceptual files and conceptual links. The details of how file operations are
implemented is specified in the implementation of FILE modules, the sub-
ject of the next section.

A class of relational database query optimization algorithms follows
from equation (1) as the cross product of the classes of algorithms that
implement the Q_GRAPH, REDUCING_PHASE, and JOINING_PHASE
operations. Specific compositions correspond to query algorithms of exist-
ing DBMSs. For example, the query optimization algorithm of SYSTEMR
has the following definition:

Q_OPT(R) => SYS_R(SQL_GRAPH(R))

That is, SYSTEM R uses 1) SQL_GRAPH to map SQL queries o query
graphs, 2) the identity function G for its reducing phase algorithm, and 3)
the SYS_R algorithm [Sel79] to map query graphs to executable expres-
sions.

In principle, there are many other Q_OPT implementations that might
have been used for SYSTEM R. For example, a DBMS with a SQL front-
end that uses the University INGRES joining phase algorithm and the
SDD1 reducing phase algorithm is:

Q_OPT(R) => U_INGRES(SDDI(SQL_GRAPH(R))

Another possibility would be to develop a DBMS with an SQL front-end
that uses the rule-based EXODUS joining phase algorithm with the SDD1
reducing phase algorithm:

Q_OPT(R) => EXODUS(SDD1{ SQL_GRAPH(R)),RS)

Many other combinations are possible. It is worth noting that most reduc-
ing phase algorithms are nonrobust (i.e., only tree graphs are handled by
some algorithms). As a rule, nonrobust algorithms can be paired with exist-
ing robust algorithms to form new robust algorithms. For example, & new
reducing phase algorithm NEW_REDUCE(G) is a composition of the BC
algorithm (which works only on tree graphs) and the identity algorithm
(which works on any graph):

;ifGisawee
; otherwise

BC(G)
NEW_REDUCE(G) => { G

In this manner, the class of Q_OPT algorithms is actually much larger than
the cross product of the Q_GRAPH, REDUCING_PHASE, and
JOINING_PHASE classes.

Before proceeding, it is imporiant o understand the behind-the-
scenes tole of the SCI method in the above catalogs. Q_GRAPH,
REDUCING_PHASE, and JOINING_PHASE algorithms communicaie
through a standard definition of query graphs. Two comments. First, it is
possible that the most efficient data structure {(internal representation) for a
query graph will vary among REDUCING_PHASE and JOTNING_PHASE
algorithms. To circumvent this problem, we CXpress all
REDUCING_PHASE and JOINING_PHASE algorithms in 8 query-graph-

data-structure independent manner. All algorithms are expressed in terms
of a standard set of operations on query graphs. One can then select the
underlying data structure for query graphs that is jointly optimal for the
REDUCING_PHASE and JOINING_PHASE algorithm pair. (Alerna-
tively, one can choose the less optimal straiegy of forcing all
REDUCING_PHASE and JOINING_PHASE algorithms 10 use exactly the
same data structure for query graphs. in either case, plug-compatibility
among REDUCING_PHASE and JOINING_PHASE algorithms is
achieved). This approach is examined in detail in [Bat88].

Second, query graphs may not be the best means for interalgorithm
communication, in general. For simple relational queries, they work well.
Difficulties arise when querics contain aggregation operations (e.g., aver-
age) or unusual operators {e.g., random sampling [OIk86)) are introduced.
In addition, new REDUCING_PHASE or JOINING_PHASE algorithms are
occasionally proposed that require new features 1o be added to query graphs
that are not part of the *standardized’ definition.

Instead of generalizing query graphs, a more universal representation
of a query is an expression that is formed by 2 composition of FILE and
LINK operations (e.g., joins, semijoins, and file retrievais). An alternative
1o equation (1) would be the function composition:

Q OPT(R) => (1)

JOINING_PHASE_EXPR(
REDUCING_PHASE_EXPR(
Q EXPR(R)))

Q_EXPR would map retrieval statements to unoptimized expressions,
REDUCING_PHASE_EXPR would map expressions on unreduced files t0
expressions on reduced files, and JOINING_PHASE_EXPR optimizes its
input expression. (We note that exactly this approach - that of using
expressions rather than query graphs - is being used in the EXODUS optim-
izer [Gra87}). The moral of this example is that finding the 'best’ generali-
zation may be a difficult research problem; but finding
temporary/provisional solutions is fairly easy.

4.2 FILE Implementations

in this Section, we catalog the implementation of retrieval and inser-
tion operations in three FILE types: HC, BXPOSE, and ENCODE. Each of
these types has been shown 0 be important in effectively supporting
scientific database applications [Sho85]. We will reconsider these types
fater in Section 6.

The file and stream operations that we will examine are INS, RET,
and SORT. Let INS(F,r) be the operation that inserts record r into file F.
Let RET(F,Q.0) be the retrieval operation that generates the stream of
records from file F in O order that satisfy predicate Q, and let SORT(S,0)
be the stream operation that sors record stream § into O order.

The HC type is the header-compression file structure of Eggers, et al.
{Egg81]. Basically, itisa variant of a B+ tree which has been tailored w0
the storage of simple, single-field, records. Run-length encoding is built
into the structure, so that sequences of identical-valued records can be
stored efficiently.

HC maps an abstract file AF to a header compression file structure F.
Let INS_HC(Fr) be algorithm that inserts record r into a header-
compression file F. Let RET_HC(F.Q) be the header-compression retrieval
algorithm. It retrieves records from file structure F that satisfy predicate Q.
Records are returned in the order in which they are stored. To retrieve
recards in a different order requires a sort. Thus the abstract retrieve and
insertion operations have a single catalog entry:

RET(AF.Q0) => SORT(RET_HC(F.Q).0) 2)
INS(AFr) => INS_HCEFD) 3

Note that equation (2) is 2 template for generating a class of algorithms to
implement RET(AF,Q,0). By substituting a different algorithm for the
SORT operation in (2) yields a different implementation of RET(AF.Q,0).

ENCODE[ef:FILE] maps an abstract {or uncompressed) fle 0 an
encoded {or compressed) concreie file. There are many possible ways ©

41

encode files. The one we will examine is that of Wong, et al. [Won86].
The idea is 10 replace data values with binary codes {e.g., data value "g’ is
replaced by the 4.bit code "0110°). How binary codes are associated to data
values depends on the encoding algorithm; typical algorithms are binary,
k-of-n, unary, superimposed, and order preserving codes [Bat83, Won86].

Selection predicates for retrievals are also mapped by ENCODE. For
example, if field A is mapped 10 encoded field EA, then the predicate A="a’
is mapped to EA=code(’a’). Mappings of more complicated predicaies
(e.g., inequalities) are defined differently for each encoding. These details
are not televant to our discussions, but are discussed in [Bat83, Won86].
For our purposes, we simply note that ENCODE maps selection predicate Q
on abstract files to predicate Q' on concrete {encoded) files.

Two entries in the RET catatog for ENCODE are:

RET(AFQ.O) =>
SORT(DECODE(RETF.Q*). O)
SORT(FILTER(DECODE(RET(F rue,*)), Q), O} &)

That is, to retrieve records from abstract file AF in O order that satisfy
predicate Q, one can either retrieve all encoded records that satisfy the
encoded query, decode the selected records, and sort them in O order {(eqn.
(4)), or) read the entire encoded file, decode each record and apply the
unencoded selection predicate Q, and sort the qualified records in O order
(eqn. (5)). Other catalog entries, such as sorting records prior to decoding
[Bat83], could also be listed.

Let COMP(r) be the algorithm that outputs the compressed version of
record 1. Inserting an abstract record is mapped 10 an insertion of its
compressed counterpart:

INS(AF) => INS(F,COMP()) 6)

BXPOSE[bf:FILE] maps an abstract fle o a bit transposed file
[Won86]. The idea of BXPOSE is to transpose fixed-length records into n
column files, where each column record is one-bit wide. Bit ransposition is
an extreme case of ransposition.

Let F, - -+ F, be the column files to which AF is mapped. Also, let
& E, be a notation for the expression list By, By, - -+, where E, is an expres-
1

sion. One entry in the RET catalog for BXPOSE is:

RET(AFQ.0) =>
SORT(FILTER(GLUE(. Q%(Q) RET(F,rue,*)). Q), O) g

The RET(F..true,*) operation retrieves a1t bit records from F; in their stored
order. The column files that are read is given by QC(Q). (These are the
columns that are nesded for query selection and airibute projection).
GLUE is the function that concatenates_corresponding bit records of its
input streams and forms a stream of abstract record fragments. Fragment
records are then filiered and sorted into the desired order. Once again, this
is one algorithm for implementing RET(AF,Q,0). Others are possible. 3

n
Let BITS(r, & 1) be the algorithm which transposes a recordrton

=1

bit-records 1, - * T, Inserting an abstract record is accomplished by tran-
sposing the record and inserting each of its bit-records:

n n
INS(AFy) => BITSG §)i § NSt ®

3 Storing records whose size is a single bit can be very inefficient. A vari-
ation of BXPOSE algorithms is 1o pack many bit records into a larger
record, possibly hundreds of bytes long, which is easier to store. Thus,
when a RET from column file occurs, 2 small number of large records are
cewurned. A different GLUE algorithm would unpackage sweams of these
larger records and produce the desired record fragments ready for FILTER
1o evaluate. This variagion, among many others, can be captured in our
model.

Cataloging algorithms for other operations, such as record
modification and deletion, and for other FILE, LINK, and MODEL types is
accomplished in an analogous way.

4.3 New Operations

As mentioned earlier, GEMESIS admits only a small and fixed
number of operations on FILEs and LINKs. This is essential for the plug-
compatibility of FILE and LINK types. In nontraditional database applica-
tions, special-purpose operations on files and links are needed. These seem-
ingly contradictory positons are resolved by recognizing that an unres-
tricted number of operations can be introduced on record streams, and that
our catalogs can be generalized to allow a composition of operations 0
appear to the left of the =>. Consider the following example.

Suppose the aggregation operation COUNT(S) is to be introduced; it
counis the number of records in stream S. The catalog for COUNT con-
tains the simple algorithm count_alg(S) which increments a counter and
outputs the contents of the counter when an end-of-stream marker is
reached:

COUNT(S) => count_alg(S)

One can invent an algorithm for, say, B+ trees which searches a B+ tree F
and returns the number of records that satisfy a query Q. Call it
bplus_count(F,Q). It would be cataloged for the BPLUS type as:

COUNT(RET(F.Q)) => bplus_count(F,Q)

For a different FILE type, say INDEX, another algorithm would find the
answer by taking the inlersection and union of inverted lists:

COUNT(RETF.Q)) => inv_couniFQ....)

where ... are the operations thai retrieve index records. For other FILE
types, there are efficient algorithms that implement the composition
COUNTRETF.Q)).

The advantage of not introducing a new FILE operation can be seen
in the following. Suppose one wants o construct a DBMS that has an
ISAM fle rather than a B+ tree. Also, suppose there is no single algorithm
in the GENESIS library/catalog that implements COUNTRET(F.Q)) for
ISAM fles. In such a case, GENESIS will compose the count_alg with the
isam_retrieval algorithm to implement COUNTRET(F,Q)). The target
DBMS will still work, but it won’t run as fast as a tailored algorithm that

implements the composition COUNT®RET{F,Q)). Thus, the advantage of
staying with a fixed set of FILE operators rather than allowing an infinitely
expandable set is that it is unreasonable to introduce algorithms for every
FILE type each time a new operator is introduced. Only for certain FILE
types will such algorithms arise or make sense.

In this manner, an unlimited number of operations and algorithms on
files (and links) can be admitted without sacrificing the simplicity of our
framework.

5, Distributed DBMSs and Database Machines

The algebra that we have outlined in the previous sections can be
generalized to describe the computations in distributed database sysiems
and database machines. To express distributed computations, we adorn
each function of an expression with a superscript to indicate the site at
which it is 10 be executed. For example, the expression
JOIN®{ SEMIJOIN%(ABJ1),C.J2) performs a semijoin of files A and B
over join predicate J1, and this result is JOINed with file C on join predicate
J2. The semijoin is execuied at site d and its result is shipped to site ¢
where the join is performed. The shipping of files to different sites is thus
implicit in the notation. (For example, files A, B, and C may need o have
been shipped in order for the join and semijoin to have been processed at
their specific sites).

Assigning different processors to execute functions or compositions
of functions is sufficient to describe the algorithms used in distributed
DBMSs, but is insufficient for database machines. Database machines
exploit parallelism by distributing the computations of one or more opera-
tions over several concurrently-executing processors. The basic design
principles at work can be expressed in terms of stream rewrite rules. Figure
5.1a shows a function G which consumes stream A and produces stream
G(A). A rewrite of this expression that introduces parallelism into G's
computation is accomplished by spliting stream A into substreams
X, - -+ X,, performing function G on each substream, and assembling the
results G(X,) - - - GCX,) to reconstruct G(A). As an example, let G be the
SORT operation. Sorting stream A can be accomplished by splitting A into
substreams, sorting each substream in parallel, and merging the substreams,

An algebraic expression of Figure 5.1 is:

G(A) => SPLIT(A, ‘g“x X;) ASSEMBLE(;‘:} GX)) ®
¥ F

n
The ‘&"1 X, term of SPLIT is a list generaling notation for X, - - - X, its pur-
i

pose is to assign labels to each of the n substreams gencrated by the split.
ASSEMBLE merges n different streams into a single stream.

2 G(A)

GXy)

ASSEMBLE

i (A

(a) A s
X,

®) A ———2= SPLIT
X

G

Figure 5.1 A Rewrite Rule for Database Machines

42

Rewrites such as (9) can be used 10 generale new algorithms from
those given in existing catalogs. Consider equation (4), a catalog entry of
the RET operation for ENCODE. Suppose it is observed that the DECODE
algorithm takes so much CPU time that it is the performance bottleneck. To
improve throughput, one could split DECODE’s input stream into n sub-
streams, DECODE n records in parallel, and merge the resulis. Applying
rewrite (9) 10 equation (4) with G = DECODE, we obtain the desired paral-
lel algorithm:

=> SPLIT(RETFQ"). § X}

SORT(ASSEMBLE(_2} DECODE(X))), O) {4}
=

With such rewrites, it is possible to specify various DBMS implemen-
tations for a parallel, multiprocessor setting. A catalog of rules that have
been used in database machines and examples of retrieval algorithms used
in a disiributed DBMS and a database machine are given in [Bat87a.

6. Mechanics of a Database System Compiler

Our framework covers centralized DBMSs, distributed DBMSs, and
database machines. In the following, we explain how a database sysiem
compiler would produce 2 centralized DBMS. Further research is needed 10
understand how distributed DBMSs and database machines can be ‘com-
piled’.

An implementation of a centralized DBMS is specified in two steps.
The first is to declare the architecture of the DBMS as a composition of
MODEL, FILE, and LINK types. The second is to select the algorithms
that implement each type’s abstract-to-concrete operation mappings. Both
steps are straightforward, and can be menu driven (e.g., select from a cata-
log of implementations). Once the specification is completed, a DBMS
compiler composes the selected algorithms and simplifies using algebraic
identities. The result are algorithm expressions that implement the target
DBMS.

A classical example of a nontraditional database application is the
storage and retrieval of scientific data [IEE84]. Scientific databases and
their operations are quite different than those found in common business
applications. Records typically have tens or hundreds of attributes, pri-
marily containing numerical measurements or predefined codes (e.g..
STATE has the domain {Alaska, Algbama, ..., Wyoming}). Retrieval
operations generally reference all records of a file, but access only a few
fields.

A customized DBMS for supporting such databases was proposed by
Wong, et al. [Won86]. The architecture calls for the encoding of concep-
tual files so that the width of each field is reduced to a few bits. The
encoded records are then mapped to a bit ransposed file, where each subfile
is stored in a header compression file structure, This architecture
corresponds 1o the following composite type:

ENCODE[BXPOSE[HC 1] 16

No data model/data language was specified in [Won86].

The next siep is selecting the algorithms t© implement the abstract-
to-concrete mappings of operations in each type, For the abstract retrieval
operation, Suppose we choose equation (4) for the ENCODE type, equation
(7) for the BXPOSE 1ype, and (2) for the HC type. Forthe insertion opera-
tion, equations (6), (8), and (3) are used.

At this point, the DBMS compiler takes cver. The order in which
algorithms are composed is specified by the composite type (10). That is,
the concrete files of ENCODE are the abstract files of BXPOSE, and the
concrete files of BXPOSE are the abstract files of HC. Note that the con-
ceptual files of the target DBMS are the abstract files of ENCODE and the
internal files are the concrete files of HC.

The algorithm to retrieve records from a conceptual file for this
DBMS is obtained by composing equations (2), (4), and (7) as described
above and eliminating unnecessary soris. The latier is accomplished using
the identity SORT(S,*) = §, ie., sorting a sequence S in any order is identi-
cal 1o not sorting. The same holds for the insertion algorithm and the com-

43

position of equations (3), (6}, and (8). Let O be an order. let F,Q,andr
denote 2 file, a query, and a record at the conceptual level, and let C,, Q°,
and 1, be their internal counterparts (as prescribed in the mappings of (1o

We obtain:
RET(FQO) => SORT(DECODE(FILTER(an
GLUE RET_HC(Crue)), Q)
(kQ‘E(Q) _HC(Crue)), Q0. O)
INS(Eg) => BITS(COMP(®), &1 LY _E} INS_HC(Cor) (12)

That is, retrieving. concepiual records involves retrieving bit records from
selected HC file structures, gluing corresponding bit records together, filier-
ing the resultant record fragments using the encoded query, decoding the
selected records, and sorting. Inserting a conceptual record involves
compressing it, ransposing it into bits, and inserting each of the bit records.
The implementation of other conceptual operations, such as record
modification and deletion, would be realized in a similar manner.

1f all referenced algorithms are present in the library, it is a simple
matter 1o link them together. (If they are not present, they will need 1o be
coded and added to the library. Once coded, they can be reused). In this
way, the construction of customized DBMSs can be rapid and inexpensive.

7. Coniributions, Perspectives, and Curreat Limitations

in December 1985, we produced a working proiotype which showed
how a DBMS could be composed from independently defined layers. This
work is described in [Bat86a]. The ideas on which our prototype was based
were conceptually crude. This research arose from the need to formalize
and refine these ideas in order to better understand and convey their capa-
bilities and generality. Relating polymorphic types and rule-based algebras
10 our earlier work is a major step forward in our research. We are now in
the process of upgrading the prototype 1o more clearly refiect the formalism
we have presented in this paper.

Prior to and independent of our work, recent contributions have
related rule-based algebras to query processing. The work of Graefe and
DeWitt consider the problems of building efficient rule-based query optim-
izers [Gra87]. We are not concerned with implementing rule-based opum-
izers. Rather, our work is directed 10 the development of rule sets which
may be used by such optimizers. We see our work complementing their
research.

A second paper, by Freytag, presents a rule set for query optimization
[Fre87). His approach is to divide query optimization into phases, where
each phase has its own rule set. Freytag’s approach is quite similar to our
own. However, there is a basic difference. We are not dealing with query
optimization. Rather, we are expressing DBMS implerneniations (e.g..
retrieval and insertion algorithms) in terms of rule-Based algebras.
Freytag's phases of query optimization are the mappings of retrieval opera-
tions through our layers (polymorphic types). Our research shows how
Freytag's ideas can be understood in 2 much broader context. An imporant
result of this generalization is a comprehensive framework to identify rens-
able building blocks (i.c., storage structures and algorithms) of DBMSs.

The immediate utility of our work is a formal means 10 specify the
implementation of DBMSs. However, our goal is aimed at developing 2
DBMS compiler. There are still problems that need to be addressed in this
framework; the more important ones are listed below. We believe all are
solvable, and we indicate where the outlines of their solution can be found.

Concurrency Conmtrol. We describe DBMSs as compositions of
layers. We need a theory of concurrency control for mult-layered software
sysiems. Theories on multi-layered concurrency control aliready exist, but
they presume that the software layers have already been identified. A mar-
riage of our respective theories seems appropriate [Bai86a].

Performance Models. Performance models are needed by query
optimizers to identify the most efficient strategy 1o process a query. Just as
DBMS software can be constructed from standardized cOmMponents, 50 0o
can performance models be constructed from components. The only differ-
ence is that one deals with atomic cost functions instead of atomic aigo-
rithms. [Bat87¢] explains these ideas in more detail.

File Management Issues. The unparameterized FILE iypes in our
¢ramework, namely BPLUS, ISAM, eic., are implemented by the GE}»IESIS
file management System, named JUPITER. JUPITER is a composition of
layers, much like our gdescriptions of DBMSs. However, JUPITER is com-
posed of a fixed and preordered set of layers, among them arc layers _for
buffer management, page-based recovery management, transaction
management, and file management. A paper on JUPITER is forthcoming,
and we aim 10 release JUPITER in early 1988.

New Data Types and Operators. Adding new data types and opera-
tors to the data model of a DBMS is an essential requirement of a DBMS
compiler technology. We have developed a functional data model and data
language as the basis for data type and operator extensibility in GENESIS.
All computations in this-model are expressed as compositions of functions,
identical to the way in which we have specified the implementation of
DBMSs in this paper. How these different aspects of our research relate is
described in [Bat86b].

Hints to Lower Layers. Passing hints from upper layers to lower
layers is often done to optimize performance. All of the examples of hint
passing that are not already part of our model involves communications of
higher level routines with the buffer manager. In general, passing hints is
optional, and their inclusion is a DBMS design decision. We believe that
there is nothing in our framework which precludes the addition of hint pass-
ing. We are currenty studying examples understand the general prob-
lem, and 10 see how it's solution fits into our framework.

8. Conclusions

Among the most important problems in computer science are
software reusability and a means to construct customized software systems
rapidly. Both problems are related. Software reusability hinges on recog-
nizing building blocks of target systems, standardizing interfaces, and
implementing modules independently of any system in which they can be
used. Software systems can be constructed quickly by composing building
blocks.

There are many examples of software reusability today. Database
management systems are themselves reusable. DBMSs can be purchased
*off-the-shelf” and used in a variety of disparate applications. However,
this granularity of reusability is 100 large to show how differens DBMSs can
be constructed from reusable components. Itis this problem which we have
addressed in this paper.

Our approach is 1o exploit the maturity of database research. We
have presented simple methods for defining standardized interfaces/generic
operations, and have reviewed how layered descriptions of DBMSs lead 1o
the identification of reusable algorithms in DBMSs. We have formalized
these ideas in terms of polymorphic types and rule-based algebras. Our
work makes three potentially significant contributions. 1) It brings us a step
closer 10 understanding the principles of how DBMSs can be constructed
rapidly and cheaply from libraries of prewritien components, 2} it shows
how DBMS designs can be formalized as an algebra, which is in contrast 1o
the ad hoc ways system designs are expressed ioday, and 3) cataloging
types and their algorithms is an imporiant step in codifying and unifying
knowledge of database sysiem implementation.

Acknowledgementis. 1 thank Arie Shoshani, Krzysziof Apt, and Jim Bamnett
for their helpful comments on an earlier draft of this paper.

References

M.M. Astrahan, et al., "System R: Relational Approach i
Database Management’, ACM Trans. Database Syst., 1,2
(June 1976}, 97-137.

D.S. Batory and C.C. Gotlieb, "A Unifying Model of Physical
Databases’, ACM Trans. Database Syst., 7.4 (Dec. 1982),
509-538.

D.S. Batory, ‘Index Encoding: A Compression Technique for
Large Statistical Databases’, Proc. Workshop on Statistical
Database Management, (1983), 306-314.

D.S. Batory, "Conceptual-To-Internal Mappings in Commercial
Database Sysiems’, ACM PODS 1984, 70-78.

[Ast76]

[Bat82]

[Bat83]

[Bat84]

44

[Bai85]

[Bat86a)

[Bat86b]

[Bai87a]}

[Bat87b]

[Bat87c]

[Bat88]
[Ber81a]

[Ber81b]

[Cha76]

[Dat82]

[Egg81]

[Fre87}
[Gra87]
[{Gog84]
[Gu77)
[IEE84]
[IEE87]
[Lis77)
[O1k86]
[Se179)

{Sho85]

{S1076]

[Tur79]

[Vai87]

D.S. Batory, '"Modeling the Storage Architectures of Commer-
cial Database Systems’, ACM Trans. Database Syst., 104
(Dec. 1985), 463-528.

D.S. Batory, 1.R. Barnett, 1.F. Garza, KP. Smith, K Tsukuda,
RB.C. Twichell, and T.E. Wise, "GENESIS: An Extensible Data-
base Management System’, to appear in IEEE Trans.
Software Engineering.

D.S. Batory, T.Y. Leung, and T.E. Wise, "Implementation Con-
cepts for an Extensible Data Model and Data Language’, sub-
mitted, Also TR-86-24, Dept. Computer Sciences, University
of Texas at Austin, 1986,

D.'SA Batory, 'A Molecular Database System Technology’, sub-
mitted. Also TR-87-23, Dept. Computer Sciences, University
of Texas, Austin, 1987.

D.S. Batory, ’Principles of Database Management System
Extensibility’, in [IEE87], 40-46.

D.S. Batory, 'Extensible Cost Models and Query Optimization
in GENESIS’, to appear in IEEE Database Engineering,
1987.

D.S. Batory, *On the Reusability of Query Optimization Algo-
rithms’, to appear in Information Sciences, 1988.

P.A. Bernsiein and D.M. Chiu, 'Using Semi-Joins to Solve
Relational Queries’, Jour. ACM, 28,1 (Jan. 1981), 2540.

P.A. Bernstein, et al., "Query Processing in a System for Distri-
buted Databases (SDD-1)’, ACM Trans. Database Syst., 6,4
(Dec. 1981), 602-625.

D.D. Chamberlin, et al., 'SEQUEL 2: A Unified Approach 10
Data Definition, Manipulation, and Control’, IBM Jour. Res.
and Dev., 20,6 (Nov. 1976), 560-575.

C.J. Date, An Introduction to Database Systems, Addison-
Wesley, 1982.

S. Eggers, F. Olken, and A. Shoshani, 'A Compression Tech-
nique for Large Statistical Databases’, Proc. VLDB, (1981),
424-434,

J.C. Freyiag, 'A Rule-Based View of Query Optimization’,
ACM SIGMOD 1987, 173-180.

G. Graefe and DJ. DeWitt, *The EXODUS Optimizer Genera-
tor’, ACM SIGMOD 1987, 160-172.

1. Goguen, ’'Parameterized Programming’, IEEE Trans.
Software Engr., SE-10,5 (September 1984), 528-543.
J. Gutiag, *Abstract Data Types and the Development of Data
Structures’, Comm. ACM, 20,6 (June 1977), 396-404.

Database Engineering, Statistical Database Systems, 7.1
(March 84), D.S. Batory, ed.

Database Engineering, 10,2 (June 1987), M. Carey, ed.

B. Liskov, A. Snyder, R. Atkinson, and C. Schaffert, 'Abstrac-
tion Mechanisms in CLU’, Comm. ACM, 20,8 (Aug. 1977),
564-576.

E. Olken and D. Rotem, ’Simple Random Sampling from Rela-
tional Databases’, VLDB 1986, 160-169.

P.G. Selinger, et al., *Access Path Selection in a Relational
Database Management System’, ACM SIGMOD 1979, 23-34.

A. Shoshani and H.K.T. Wong, *Statistical and Scientific Data-
base Issues’, IEEE Trans. Software Engr., SE-11,10 (October
1985), 1040-1047.

M. Stonebraker, E. Wong, P. Kreps, and G. Held, "The Design

and Implementation of INGRES’, ACM Trans. Database
Syst., 1,3 (Sept. 1976), 189-222.

M.J. Tumer, R. Hammond, and P. Cotton, "A DBMS for Large
Statistical Databases’, VLDB 1879, 319-327.

P. Valduriez, ‘Join Indices’, ACM Trans. Database Syst.,
12,2 (June 1987), 218-246.

[Won76]

[Wong6]

[Yu84a)

[Yu84bj

[Zan83]

E. Wong and K. Youseffi, "Decomposition - A Strategy for
Query Processing’, ACM Trans. Database Syst., 1,3 (Sept.
1976), 233-241.

H.K.T. Wong, J.Z. Li, F. Olken, D. Rotem, and L. Wong, 'Bit
Transposition for Very Large Scientific and Statistical Data-
bases’, Algorithmica, 1 (1986), 289-309.

C.T. Yu, Z.M. Ozsoyoglu, and K. Lam, *Optimization of Tree
Queries’, Jour. Comp. and Syst. Sci., 29,3 (Dec. 1984), 409-
445.

CT. Yu and C.C. Chang, 'Distributed Query Processing’,
Computing Surveys, (Dec. 1984), 399-433.

C. Zaniolo, *The Database Language GEM’, ACM SIGMOD
1983, 207-218.

45

A Definition of Open Architecture Systems

with Reusable Components: Preliminary Draft

D.S. Batory and S.W. O’Malley
Department of Computer Sciences
The University of Texas
Austin, Texas 78712

1. Introduction

The issues of domain modeling, defining open system architectures, and large scale
software reuse converge when the goal is to create software systems from libraries of inter-
changeable components.

Genesis [Bat88-90], Avoca [Hut89, Oma90], and Choices [Cam90] are three indepen-
dently conceived projects whose goal was to build complex software systems in the domains
of database systems, communication networks, and operating systems by composing prefa-
bricated components. All three projects exhibit strong similarities in terms of their concep-
tual design, organization, and implementation. These similarities are not accidental; we
believe they are fundamental to interchangeable software component technologies.

In this paper, we outline a provisional model of open system architectures. The contri-
bution of the model is a simple domain-independent formalism in which the results of a
domain analysis can be expressed. As there is no currently accepted formalism, defining
such models is an important research problem. What gives our particular model credibility is
that it is based upon and unifies significant aspects of the designs of Genesis and Avoca (and
possibly also Choices), which are among the largest known examples of domain modeling
yet achieved. By modeling a domain in this formalism, one will have explicitly defined a
software architecture for that domain which is inherently open, in addition to understanding
how large-scale reuse within the domain can be achieved.

2. The Structure of Large Scale Software Systems

The structure of large scale software systems can be modeled by an elementary formal-
ism that reflects the obvious fact that systems are designed as assemblies of components and
that components fit together in very specific ways. The model postulates that components
are instances of types and components themselves may be parameterized. The ways in which
components fit together to form systems is captured elegantly through the use of typed
parameters and typed expressions.

2.1 The Model Framework Framework and Notation

Components. The fundamental unit of software system construction is the component.
Every component has an interface and an implementation. Following the lead of Parnas
[Par79], the interface of a component is anything that is visible externally to the component.
Everything else belongs to its implementation. In an object-oriented setting, a component
may correspond to a single class or to clusters of closely-knit classes that act as a unit.

A fundamental concept of our model is that every component is an instance of some
type AT, where all instances of AT present exactly the same interface, and each instance
represents a different implementation. The interface of a component can be factored into
type-specific and component-specific information. Type-specific information follows

47

directly from an object-oriented design: it is the set of classes (their objects, operations, and
interrelationships) that are visible. Component-specific information is descriptive, such as
the components name, performance characteristics, source and object files, etc. Thus, when
we say two components share the same interface or are plug-compatible, we are referring to
the type-specific portion of their interface that they have in common.

Enumerated Types and Parameterized Components. The set of all instances of a
type AT is a realm. As a practical matter, most instances (components) of a realm are never
implemented; few ever get beyond the paper-design stage. Those that are implemented
define a library. We use an enumerated type notation:

AT =1{al,a2,a3 }

to mean that type AT has al, a2, and a3 as library instances. Libraries are inherently extensi-
ble, since it is always possible to implement yet another instance of a realm.

Instances generally reference other components as parameters. Let the notation "t:T"
mean that component t is of type T and "t:{ T }" means tis a set of one or more instances of
T. Consider component ¢[x:R1, y:{ R2 }]. ¢ has two parameters x and y, where x must be
a component of type R1 and y must be a set of components of type R2.

A component can intuitively be thought of as a layer, where a software system is a
stacking of different layers (i.e., composition of different components). It is normally the
case that components can only be composed/stacked in a predefined order. Figure la shows
the stacking of layers 1 - 3, where layerl is on top and layer3 is on the bottom. (This stack-
ing means layerl calls layer2 for its lower-level services, and layer2 calls layer3 for its
lower-level services. Layer3 is self-contained and requires services from no other com-
ponent). Note that if the types for these layers (TOP, MIDDLE, and BOTTOM) are dif-
ferent, then only one composition of these layers is possible (Fig. 1b).

@ layerl (b) TOP = { layerl[x : MIDDLE] }
a
calls
5 MIDDLE = { layer2[y : BOTTOM | }
layer2
calls BOTTOM = { layer3 }
layer3

composition = layer1[layer2[layer3]]]

Figure 1. Nonpermutable Stacking of Layers

Reflexive Components. A distinctive and fundamental concept of our model is the
possibility of reflexive components; components that can be composed (stacked) in arbitrary
orders. More specifically, a component of type T is reflexive iff it has at least one parameter
whose type is T. Components d[z:R] and e[z:R] of type R are reflexive as both have a
parameter z which is of type R. Thus, compositions d[e[z:R]] and e[d[z:R]] are possible.

Unix filters are the prototypical examples of reflexive components. Piping the output of
one filter to another is filter composition; because filters have the same interface, they can be
composed in different orders. Usually, the order in which components are composed can
make a substantial difference in performance and semantics.

48

UFilters = { dtbl[x:UFilter] , deqn[x:UFilter |, ... }

Note that pipe expressions like dtbl | degn correspond to deqn[dtbl] in our notation.

Without reflexive components, realms become exponentially larger than necessary. For
example, distinct components representing every possible combination (e.g., de[z:R] for
d[e[z:R]] and ed[z:R] for e[d[z:R]]) would have to be defined. Reflexive components are the
"true” building-blocks of a realm; representing only their compositions avoids a significant
opportunity for achieving component reuse on a very large scale.

Composition, Systems, and Domains. Composition is the rules and operations of
component parameter instantiation; i.e., the guidelines by which components can be glued
together. A software system is a composition of components that corresponds to a type
expression where no component has an unbound parameter. The set of all software systems
of type T is called the domain of T, denoted Domain(T).

A software tool that implements the rules of composition is a component layout editor,
it provides a language in which type expressions can be written. The set of all systems of
type T that can be specified by a layout editor from compositions of library components is
called the family of T, denoted Family(T). Family(T) is always a subset of Domain(T). Fig-
ure 2 summarizes these concepts.

realm-1
Q
AY
3
A}

> composition

Figure 2. Realms, Libraries, Composition, Layout Editors, Families of Systems, and Domains

Component Reuse, Mega-Programming, and Open Architectures. Recognizing and
achieving software reuse are fundamental problems in software engineering. An important
form of reuse is component reuse, which in our model occurs when two or more expressions
use the same component. Thus, if a[b[c]] and d[b[q]] are expressions (software systems),
component b is being reused.

Mega-programming is the writing of type expressions (software systems). Each com-
ponent is a fundamental unit of domain programming. The decomposition of a domain into
realms defines an open architecture for that domain. It is open because each of its realms are

49

extensible.

2. Examples from Genesis

A storage system is reponsible for mapping conceptual relations to disk. There are two
realms from which storage systems are created: FMAP and AMETHOD.

FMAP is the realm of file mapping components. Each transforms a conceptual file to
one or more internal files. What is "concrete” to one component, may be "abstract” to
another, and hence most FMAP components are reflexive. Among the members of FMAP
are components that accomplish secondary indexing (i.e., an abstract file is mapped to an
inverted file), encoding (mapping an unencoded file to an encoded file), fragmentation (frag-
menting long records into short records), and internal (mapping a relational-like file interface
to a file structure/access method interface):

FMAP = {index[d,:FMAP], encode[d:FMAP],
frag[s:FMAP], internal[d:AMETHOD], ... }

AMETHOD is the realm of access methods. Among its members are nonkeyed access
methods (heap, unord), single-keyed methods (hash, bplus, isam), and multi-keyed methods

(grid).

AMETHOD = { heap, unord, bplus, isam, hash, grid }

A storage system is an expression of type FMAP. Storage system ss1, which maps con-
ceptual relations to inverted files, where data files encoded prior to being stored in a heap
structure, and index files stored in Bplus trees, is expressed by:

ss1 = index[encode[internal[heap]], internal[bplus]]

Storage system ss2, which encodes long records, fragments them, and stores record frag-
ments in unordered file structures, is expressed by:

ss2 = frag[encode[internal[unord]]]

3. Examples from Avoca

An asynchronous protocol suite is a software system that sends and delivers messages
asynchronously. There is a single realm from which asynchronous protocol suites are assem-
bled: ASYNC.

ASYNC is the realm of primitive asynchronous protocols. Each protocol (component)
transforms abstract messages to concrete messages, and vice versa. As a general rule,
ASYNC protocols are reflexive. Among the members of ASYNC are AMD and Intel Ether-
net drivers, the internet protocol (ip), user datagram protocol (udp), message fragmentation
protocols (blast), and virtual protocols (vaddr - which routes messages according to whether
the destination address is local or remote, and vsize - which routes messages according to the
message size):

ASYNC = { amd_eth, intel_eth, ip[x: ASYNC], udp[x:ASYNC], blast[x:tASYNC],
vaddr] local,remote: ASYNC], vsize[small,bigiASYNC], ...}

50

An asynchronous protocol suite is an expression of type ASYNC. Suite (s1) is the stan-
dard implementation of the udp protocol suite: upd calls ip, which sits atop of an ethernet
driver:

sl = upd[ip[amd_eth]]

Common practice is to send messages through ip, even if messages are being delivered
to machines on a local network. Suite (s2) eliminates this overhead by using vaddr to bypass
ip and to place messages with local destinations directly on the ethernet:

s2 = upd[vaddr[amd_eth, ip[amd_eth]]]

4. Conclusions and Future Work

Developing formalisms to express the result of a domain analysis is an important
research problem. The formalism we have presented is not only intuitively appealing and
domain-independent, it also unifies important concepts in Unix, Genesis, and Avoca, three
different systems that have realized large scale reuse. Although our model is provisional, we
believe there are many domains that can be expressed in its formalism. If this is the case, a
standard representation for domain analysis is within reach, and fundamental concepts under-
lying large scale reuse will have been identified.

5. References

[Bat88] D.S. Batory, "Concepts for a Database System Compiler”, ACM PODS 1988.

[Bat90] D.S. Batory, "The Genesis Database System Compiler: User Manual”, U. of
Texas Tech. Rep. TR-90-27, 1990.

[Cam90] R.H. Campbell, "Considerations of Persistence and Security in Choices, an
Object-Oriented Operating System”, U. of Bremen Tech. Rep. 1990.

[Hut89] N.C. Hutchinson, S. Mishra, L.L. Peterson, and V.T. Thomas, "Tools for imple-
menting Network Protocols", Software-Practice and Experience, Sept. 1989.

[OMa90a] S.W.O’Malley and L.L. Peterson, "A New Methodology for Designing Network
Software", submitted for publication.

[Par79] D.L. Parnas, "Designing Software for Ease of Extension and Contraction”, IEEE
TOSE, March 1979.

51

Construction of File Management Systems From Software Components

D.S. Batory, I.R. Barnett, J. Roy, B.C. Twichell, and J. Garza

Department of Computer Sciences
The University of Texas
Austin, Texas 78711

Abstract

Domain analysis is a classical approach in software engineer-
ing to the identification of reusable software modules. It relies
on indepth studies of existing systems, published algorithms
and structures to descern generic architectures for large classes
of systems. An architecture is a template in which building-
block modules can be plugged. Interfaces are standardized to
make blocks interchangable.

In this paper, we explain how domain analysis has lead us to a
building-blocks technology for file management systems
(FMSs) and we describe our most recent prototype, an FMS
synthesizer. The synthesizer enables a customized FMS to be
assembled from prewritten components in minutes at virtually
no cost. Producing a comparable FMS from scraich would
require man-years of effort and hundreds of thousands of dol-

lars.

Keywords: domain analysis, software building blocks,
software reusability, database systems

1. Introduction

It is well-known that existing relational database systems
are inadequate for managing databases of CASE, VLSI CAD,
and Al applications. Rather than building application-specific
DBMSs from scratch, which is a cost-ineffective means of cus-
tomization, current research has been directed to the develop-
ment of extensible database systems, i.e., DBMSs that can be
easily customized. Extensibility research embraces advances in
both databases and software engineering.

Different notions of extensibility are being explored.
POSTGRES uses a fixed architecture that accommodates a
wide range of new features {Sto86]. EXODUS, in contrast,
provides an open architecture with a few fixed components (2
rule-based query optimizer and a storage manager) and tools
(e.g., the E programming language) to simplify the burden of
writing specialized DBMS software [Car86]. STARBURST
stresses a building-blocks approach to query processing
[Lee88]. Rule-sets more elaborate than those of EXODUS are
used to identify and relate primitive query processing algo-
rithms, and to specify legal transformations of access path
expressions. GENESIS, our project, also relies on building-
blocks. We differ from STARBURST in that we consider
building-blocks for all jons - update, insertion, deletion,
etc. - not just retrievals [Bai88a-b].

The goal of GENESIS is to demonstrate that customized
DBMSs can be synthesized quicky from prewritten Comm-
ponents. Enormous increases in software productivity are
achieved by exploiting reusable and plug-compatible modules.
The popularized - but mythical - concept of “software ICs’ is
acmally a reasonably accurate description of our technology.

* This work was supporied by the National Science Foundation under
grant DCR-86-00738.

53

Our rescarch was conceived and developed independently
of results in software engineering. As we have recently
learned, our approach is an example of domain analysis (DA),
a classical method in software engineering to identify reusable
software modules ([Tra87, Pri87, Nei84]). DA relies on
indepth studies of existing systems, published algorithms and
structures to descern generic architectures for large classes of
systems. A generic architecture is 2 template in which
building-block modules can be plugged. Standardized inter-
faces are required to make blocks interchangable.

The primary difficulty with DA is the investment required
to understand a domain in order to recognize building blocks.
(Our research, for example, has been evolving for years). Not
surprisingly, successful examples of DA are rather isolated.

In this paper, we explain our particular approach to
domain analysis and how we have transformed our generic
architecture of file management systems (FMSs) into a work-
ing prototype, an FMS synthesizer. The synthesizer enables a
customized FMS to be assembled from prewritien components
in minutes at virtually no cost. Producing a comparable FMS
from scratch would require man-years of effort and hundreds
of thousands of dollars. We have demonstrated the synthesizer
at the 1988 ACM SIGMOD Conference and the 1989 Interna-
tional Conference on Software Engineering.

We begin with an overview of our approach, followed by
a description and implementation of the FMS synthesizer. An
earlier GENESIS prototype is described in [Bat88b].

2. The Approach

The most successful example of an existing building-
blocks technology is the software libraries of scientific com-
puting [Big87]. The main reasons for their success are: 1) the
domain of numerical analysis is well-understood and its tech-
nology is reasonably static. These are the prime ingredients for
standardization. 2) Standardization was possible because the
domain was well-defined and small enough for experts to iden-
tify and agree upon the fundamental primitives.

We believe that mature software technologies are ripe for
standardization. Using the semantics of a domain as a guide, it
is possible for experts to define generic architectures for large
classes of software systems. An architecture represenis a
standardized way to decompose different systems into primi-
tive and reusable components. Our approach for standardiza-
tion, both for architectures and component interfaces, is to
study a large collection of systems, algorithms, and structures,
to discern the simplest architecture and simplest interface that
covers that class. The result is a blueprint for a building-
blocks technology for software system construction.

This approach is outlined below. Validating examples are
presented in Section 3 and [Bar88bl.

2.1 Step 1: Defining a Generic Architecture

An architecture expresses a standardized way to modu-
larly decompose SySiems into reusable components; it is a tem-
plate that is common 10 all systems belonging 10 2 particular
class. Different systems share the same architecture, but are
described by different components of different compositions of
components.

We define an architecture as & collection of
independently-definable objects and their interrelationships.
An independenriy‘deﬁnable object (IDO) is an object whose
implementation has no impact on the implementation of other
objects. A building-block is an implementation of an 1DO.

Very few decompositions of sysiems can serve as an
architecture for a building-blocks technology. As an example,
database text books explain the functionality of a DBMS by
presenting a generic architecrure. A common decomposition
offers a storage rmanager and a query optirnizer among the pri-
mary components of 2 DBMS (Fig. 2.1a). The storage

manager is responsible for storing and retrieving data, and the
query optimizer is responsible for rearranging compositions of
storage manager operatons in order to minimize their com-

bined expected costs (i.e., the costs of processing a query).

N)
(s Query Starage ’

Optimize~

Structure & note

PManege”

Structure B
means object &

Structure zells object B

Figure 2.1 Independently Definable Objects

This is an obvious modularization as a storage manager and
guery optimizer are easily identifiable in virtually every
DBMS. Unformnately, they are implementation dependent
objects. It is well-known that adding or removing storage
suctures in a storage [anager fmust be accompanied by
changes to the query optimizer. Similarly, one cannot replace
the query optimizer of one DBMS with that of another because
of an optimizer’s dependency on the algorithms of its storage
manager.

For an object to be implementation-independent, it must
encapsulate an implementation detail and all algorithms that
reference or maintain the consistency of that detail. The above
example suggests that a SWOTage structure, not a storage
manager or query optimizer, would be an IDO. A storage
structure object encapsulates all record retrieval, inserton,
deletion, etc. algorithms associated with the structure as well
as query optirization algorithms specific to that structure. A
decomposition of a DBMS based on this abstraction 1s not
intuitive, and is quite different than traditional views (Fig.
2.1b). The modules of Figures 2.1a-b cover exactly the same
code; only the module interface boundaries are drawn dif-
ferently. Storage structures are in fact IDOs [Bat88a].

Recognizing IDOs is difficut because it requires
domain-specific expertse. A relizble method of IDO
identification is to study 2 large class of existing systems, pub-
lished algorithms, and structures to discern a generic system
organizaton. By seeing enough examples, a steady-state
architecture begins to emerge. (It is possible that there may be
several distinct architectures, each describing 2 different class
of systems). Assimilating quantities of knowledge for this pur-
posecan bea formidable task.

54

Every object of an architecture is associated with a dis-
tinct class of modules. All modules are plug-compatibie {(for
interchangeability), and each module is a different implemen-
sation of the object. Defining module interfaces is the next
critical step in an architecture design.

2.2 Step 2: Defining Standardized Interfaces to Objects

Declaring an ad hoc interface to be a standard is the worst
of all possibilides. A betier way is to 1) identify the class of
implementations that are to be supported, and 2) design the
simplest interface that supports all implementations of the
class. The greater the number of implernentations, the more
likely it is that the interface caprures fundamenial properties of
the class. Such an interface is no longer ad hoc because it is
justified by its demonstratable generality. We call this the sim-
plest common interface (SCI) method of standardized interface
design.

The internal data structures and data types that are
required by the target class are standardized in the same way.
All modules use a common set of variables and tables. Some
modules require variables and columns in addition to the
minimal set. As these variables are local 1o an implementation
and are not visible to others, the required encapsulation of IDO
modules is straightforward.

As an example, shadowing, page logging, and db-cache
are three well-known page-based recovery algorithms. If one
were to give each algorithm to 2 different implementor, three
disparate interfaces would be designed even if all three used
the same internal data structures. Algorithm interchangability
would not be present. However, by defining a common inter-
face for all three, interchangeability is guarenteed.

3.3 Principles and Techniques

Determining the underlying architectures and common
interfaces of a collection of systems, algorithms, and structures
involves traditional ER database design and modeling tech-
niques [Teo86]. Hiding the implementation details of IDOs
requires the encapsulation principles of object-oriented pro-
gramming [Gol83]. Composing modules and defining modules
with module parameters is the concept of polymorphic types
[Lis77, Gog84, Vol85].

3. Building Blocks of File Management Systems

An integral component of & DBMS is a file management
system (FMS). An FMS supports the storage and retrieval of
data fles and is responsible for database recovery in the event
of crashes. An FMS is more primitive than a DBMS in that
there is no query language (only 2 programming interface is
provided), no query optimization, and no higher-level access
structures (e.g., indices, transposition, etc.). An FMS provides
the most primitive data storage and retrieval facilines of a
DBMS.

Sections 3.1 and 3.2 explain FMS architecture schemes
that we have developed and their building blocks. Readers
who are familiar with FMS constructions should have no wou-
ble following our discussions. (The nature of our work gives
these discussions a tutorial flavor. Remember that the concepts
are old; their packaging is new). Readers who are no!
interested in domain-specific details can skip to Secton 3.3
where domain-independent techniques for implementing
building-blocks are presented.

3.1 An Interface for FMSs

The objects that populate the interfaces of FMSs are
records, files, volumes, primary keys, access keys, transactions,
and buffer pools. Given the relationships below, basic opera-
tions on these objects are straightforward.

An FMS database is a set of files and volumes. A volume
is a contiguous region on disk. A file is a collection of fixed-
length or variable-length records. Multiple files can be stored
in a single volume.

A fle can be unkeved, single-keyed, or multi-keyed. A
multikeyed file has a single primary key which has been subdi-
vided into distinct and nonoverlapping subkeys. Every record
of a fle has an access key, which is the FMS-defined storage
location for the record. An access key could be a physical
address or a primary key, depending on the underlying file
structure. Records can be retrieved via file searching (using
selection predicates) or by following pointers (access keys).

Users control buffer replacement and buffer allocation
algorithms through the us¢ of buffer pools. At first glance, it
may seem surprising to find buffer pools at the FMS interface,
especially when buffers themselves are not visible. However,
the management of buffers within pools has a strong impact on
FMS execution efficiency. Just as PROLOG needs cut sym-
bols as hints to improve performance, buffer pools play a
corresponding role in FMSs.

3.2 Single-User FMS Architectures and Their Building-
Blocks

Different FMS architecture schemes arise as a result of a
few major design decisions: whether or not o support database
recovery from transaction, system, and media failures; whether
or not to support concurrency, and choosing the size of the
smallest lock granule (e.g., record, page, or file). Two archi-
tecture schemes for single-user FMSs are shown in Figure 3.1;
they differ in the support or absense of database recovery facil-
ities for transaction failures. We have implemented both. We
describe each module class below, and list in Figure 3.2 the
members that are presently available in our building-blocks
library.

BLOCK is the class of modules that pack and unpack
records in physical blocks. Records can be fixed-length or
variable-length, and can be anchored (i.e., have a fixed physi-
cal address) or unanchored. A node or logical block is a
sequence of records. NODE is the class of modules that map
logical blocks to physical blocks. Among the classical node
structures are; primary block only, primary block with
unshared overflow, pri block with shared overflow,
overflow only [Mar81], and a contiguous primary block strac-
ture [Lom89]. The records of a node can be unordered or
maintained in primary key order.

The FILE class is a collection of file structure modules
that map files to nodes. Among the classical file structures are
B+ trees, isam, grid, heap, hash, and R-trees. The primary
keys of files are implemented by modules of the KEY class.
Among the primitive key types are integers and fixed-length
strings.

VOLUME is the class of modules that provide for the
creation, opening, closing, and deletion of individual volumes,
and are responsible for physical space allocation within
volumes. Blocks and space for individual records can be allo-
cated sequentially or near a given location (to support block or
record clustering).

BUFFER is the class of modules that manage pools of
buffers as FMS resources and initiate physical block i/o. FMS
users can create pools dynamically, and can select buffer allo-
cation and replacement algorithms at run-time. Among the
common allocation algorithms are global, volume-oriented,

55

volume e suffer poot transaction vohsme file

aper ations operations sperastiens aperations

{ XACT |

buffer poet

oper atiens eperations

FILE

operations

BUFFER

(®) with recevery

{a) without recsvery

Figure 3.1 FMS Architectures

EILE HODE BLOCK KEY RECOVERY
B+ trees PrimeryOnly ® Fixed Unanchored Cstring nyll
Hash Primery Unshered ¥ Fixed Anchored Genesis String Page Shedowing
tsam Primery Shared ¢ Yarigble Unanchored tnteger Pege Logging
Heep Overflow Only # ¥erieble Anchored Leng Integer
Unerdered
Sequential ¢ ynordered & ordered
Grid
2ACT BUFFER YOLUME 10
Hact Buffer Yolume Unix
tacintosh

Figure 3.2 Members of Module Classes Currently in our
Library

file-oriented, and process-oriented (e.g., Hot Set {Sac86]).
Among common replacement algorithms are LRU, LRU-
UNFIX [Eff84], least reference density [Sof80], and CLOCK
[Eff84]. Physical block i/o (to raw disks or through operation
system calls) is accomplished by the /O module class.

RECOVERY is the class of modules that affect the
recovery of individual volumes after a transaction failure.
Standard recovery algorithms are shadowing, db-cache, and
page-logging [Ber87)]. Since a transaction may modify several
volumes, the atomicity of a transaction must be realized by a
two-phase commit. The modules of the XACT class accom-
plish this task. (Ignoring simple variations of two-phase com-
mits, the XACT class effectively contains a single module).

Compositions of the above building-blocks yields file
structures and file management systems. A file structure is a
composition of a FILE module, the NODE modules which it
references, and the BLOCK modules that the NODE modules
reference. A file management system is a set of one or more
file structures, a set of primitive KEY modules (referencable
by all file structures), a VOLUME and BUFFER module, and 2
RECOVERY and XACT module (if recovery from transaction
failures is supported).

3.3 Implementation

There are four different aspects to our implementation
that make it novel: the software organization, debugging 00ls,
software customization, and the FMS editor.

Software Organization. Given the fact that a class of
modules share the same interface and the same internal data
structures, it is pot surprising that there is a considerable
number of internal routines that are shared among modules.

As a first step, we carefully designed the modules of each class
to maximize the number of common routines, thereby minim-
izing the total volume of code that needed to be written.

Another factor in software organization is whether or not
an FMS will contain exactly one module of a class. For exam-
ple, a FMS always has precisely one BUFFER module, one
VOLUME module, and a single XACT and RECOVERY
module (f transaction recovery is supported). Muldple FILE,
NODE, BLOCK, and KEY modules will typically appear in
every FMS. Different organizations are dictated for each case.

Source files of unreferenced modules are excluded. Figure 3.3
shows a configuration file.

FMS Configuration File -

JE A e e R R AP RR PRI RAN IR AR RN RII IR A S IR ST RS R AR AR I AR v T o

Our organizational concept is 2 manager, which is the
packaging of common routines 2cToss one or more modules. A
manager presents the interface of the module class. Thus,
there is 2 BLOCK manager, 2 NODE manager, eic. Each
operation of a manager is realized by a switch statement, where
cases are algorithms that implement module-specific acdons.
For example, the ADVANCE operation in the FILE manager
has the following organization:

ADVANCE(F)

{ /* common entry code */
switch (file_type_of (F)) {
case BPLUS: BPLUS_ADVANCE(F);
case ISAM: ISAM_ADVANCE(F };

case GRID:
h

/* common exit code */

GRID_ADVANCE(F);

h

That is, entry code that is shared by all ADVANCE routines
preceeds module-specific routines, which are followed by com-
mon exit routines. When ADVANCE is executed, the struc-
ture of the file determines the module-specific routine to call
(e.g., if F is a BPLUS tree, then the BPLUS_ADVANCE algo-
rithm is called). This same organization applies to all other
operations of a manager’s interface.

The organization of a manager is slightly different in the
case that only a single module of a class will ever appear in a
FMS. No switch statements are used. If there are n modules,
n+1 source files are created. One contains source code that are
common to all modules, and the remaining have source code
specific to a module.

Software Development. A nontrivial fraction of the time
it 1akes to develop modules is spent writing drivers to test
module correctness. An imporant advantage to having a com-
mon interface for a class of modules is the ability to define a
single driver for the entire class. Not only does this reduce
development time, but also provides a clean way to develop 2
standard battery of tests to evaluate new modules that may be
added later.

Software Customization. FMS customization is
achieved solely through the use of the C precompiler. A single
file of #defines, called a configuration file, specifies the target
EMS. A boolean #define is declared for each module to indi-
cate its inclusion/exclusion in the target system. In the case of
managers with switch statements, €ases of switches are elim-
inated or retained depending on their inclusion 1n the target
system. Routines that are unreferenced by selected modules
_ are also trimmed. As a last bit of optimization, we eliminate
the switch statement (i.e., the 'switch () { case : }’ source
code) if only a single module is to be retained. This too is
accomplished through the declaration of a boolean #define.

In the case of managers that contain precisely one
module, the common source file contains #includes for each of
the module-specific files. At compile time, the common source
file and the designated module-specific source file are merged.

56

1
1
¢
¢
1
¢
r
~
-
G
-
¢
s
¢
o
o]
i
1
¢
¢
¢
/® Reccvery Types
#define ¢
§gefne e}
#define DB_CACEE ¢
f#define BFIM 10C 1
frevvaza srrmwessvenvrs END FMS CONFIGURATION *xrsesssszsmsssx,

Figure 3.3 An Example Configuration File

Customization Package. We developed a FMS editor
running on Macintoshes 10 graphically demonstrate module
(i.e., parameterized type) compositions and to generate
configuration files. Figures 3.4 and 3.5 show the windows used
for specifying file structures and file management systems.

A file structure is specified by linking together boxes that
represent FILE modules, NODE modules, and BLOCK
modules. An oval represents a choice to be made, and its label
specifies the module class. Users are presented with the win-
dow shown in Figure 3.4a. Clicking the mouse causes a pop-
up menu to appear listing all FILE modules that can be
selected (Fig 3.4b). By choosing a particular module, the oval
converts into a box labeled with the name of the selected
module, plus additional ovals hanging from it indicating the
NODE parameters of that FILE module (Fig. 3.4c). The same
procedure is repeated to fill in the NODE parameters, and in
nun, their BLOCK parameters. Figure 3.4d shows a fully
§pecﬁcd i file structure which has been given the name
my.isam’.

An FMS is specified by selecting a set of file structures
(created above), a set of primitive KEY types, a RECOVERY
module, and 2 BUFFER module. Users are presented with the
window shown in Figure 3.52. The two scrollable subwindows
contain the sets of file structures and KEY fypes already
selected. By clicking the ADD button, a scrollable dialog box
g};pgarfh containing either a£ KEY s or all file structure

s that are present in the GENESIS library (see Figure
+3.5b). Entries are placed into subwindows by selecting mg:rm

Untitied F$ ¢ | BREne 1

=

untitled FS ®1 E

indexed Unordered
Ynordered

Hosh Based

Heap

mutti-keyed Hash Based
K08 Tree
B Ieg

Bounded Disotder
fynami: Hash
Linpar Hash

ord Erimaré 0m§

{Fivad Unsnchaored |

@ (b)

= [ooraae =

s RBARE R

15RM

Ord Prim/Shared

hdes Noge Bra Primary Doty
ine Frimery nty
org Primary w/Unshareg

"no Primary w/tnshared

[¥ined Unanchoreg | [Fined Rnchorad | -

H#no Frimary w/Shered
frg Shared Ouf Bniy
ine Shared Buf 8nly
Brd 1 amel Node

(© @

Figure 3.4 File Structure Design Sequence

untitied FMS #1

! % Yntitled Fms #1 ﬁ

File Structure Types Key Types _

} & = ohet &
0 my.hash }

& myisam o
Ei

i %3 %3 . .

fOpsn |

X

1

Nl l

Recovery Manager
Butffer g Fined Length]

Recovery g

Buffer Mensger

(a)

(b)

()

my.fms
Fue Structure Types Key Types Fite Structure Types Key Types
my.bplus KA € String g my.bpius € §tring
my.hesh Compien Number my.hesh Complen Mumber
my.isam wmy.isam
i]
Emtract | Fatract Eutract
L]
page Shadowing [
fieconery Manager P8 [nche Recovery Manager
Buffer Manager w;ﬂ- Buffer Maneger

(d)

Figure 3.5 FMS Design Sequence

57

from the dialog boxes and are removed via the EXTRACT but-
ton. RECOVERY modules and BUFFER modules are chosen
by clicking the RECOVERY or BUFFER boxes to obtain the
menu of RECOVERY or BUFFER modules that are supported
(Fig. 3.5c). Changes are made by overriding previous selec-
tions. Figure 3.5d shows a fully specified FMS named
‘my.fms’.

Other features of the FMS Editor are: pull-down help
menus describing each module, a statistics window which
shows the size of each module class in lines of code, and the
sumber of lines currently: selected by a target FMS, and com-

Misconceptions

° Developing a building-blocks technology is not a mater
of listing algorithms and structures and just choosing
what you want. The intellectual challenge is understand-
ing the domain well enough to scparaie implementation
issues into orthogonal units (IDOs). For systems as com-
plicated as DBMSs, i can easily take an experr several
years to design and verify building-block architectures.
We foresee no quick and easy solutions.

° Our technology cannot easily assemble any system, but
onlv svsterns in family for which it was designed. Enlarg-

mands to generate configuration files, save, recall, and rename
fle squcture definitons and FMS defininons.

It takes approximately fifieen minutes to define a FMS
using the Editor and to produce its object code via compilation.
In contrast, building an identical FMS from scratch would take
several man years of work.

3.4 Performance and Future Work

Future work remains in three areas. 1) We are now
extending our FMS architectures to handle concurrency con-
ol, recovery from system and media failures, and the storage
and retrieval of of long records [Barg9]. 2) The primary goal of
GENESIS is to demonstrate a building-blocks technology for
both FMSs and DBMSs. We are now in the process of build-
ing (again) a DBMS synthesizer [Bat88b] and expect the proto-
type to be completed in Fall 1989. 3) A thorough performance
evaluation and tuning of our software is 2 major task that
remains. Preliminary performance measurements on untuned
B+ trees show that records can be bulk loaded at a rate of 1.6
million per hour, rewrieved at 2.5 million records per hour, and
randomly inserted at 225 thousand records per hour on a dedi-
cated Sun 3/160.

4. Lessons and Experience

Our research confirmed two facts that we anticipated from
the beginning: 1) a FMS synthesizer is a great prototyping 100l
for generatng alternative FMSs, and 2) module reusability
enormously reduces technology reinvention. We did not forsee
problems in design standardizations and, more importantly, the
misconceptions people have about our work.

Design Issues

. Standardized interfaces and architectures work if they are
general enough. Unforranately, *general enough’ can not
always be precisely defined. Undergeneralizing occurs
when one considers a class of algorithms or structures that
are too reswictive. The introduction of new algorithms
and new structures may cause *standard interfaces’ to
evolve, thereby triggenng potentally costly module revi-
sions. Overgeneralizing also has drawbacks. By mistak-
enly grouping algorithms and structures that really per-
form very different functons, designing SCI interfaces
for such classes leads to untenable situations (e.g., Opera-
tion semantics become module-dependent). Finding a
balance required more design iteradons than we had
expected.

. The time and funds needed to develop & FMS synthesizer
is several times that required to build a single FMS from
scratch. The design phase is more involved and a longer
implementation phase is needed to produce a library of
critical mass [Big87]. We had anticipated a much shorter
development time.

58

ing the family has various degrees of difficulty. Adding a
new module to a class is not difficult. Adding a new
operation to a class involves upgrades to many modules.
(This can be simple or hard; it depends on the operation.
Usually, such extensions are trivial). Adding a new class
is a significant change and usually requires. a major
rewrite. In such a case, we doubt if available building-
blocks will help. As a rule, however, adding fundamen-
tally new classes is unusual.

« Our building-blocks do not simplify difficult technical
problems or provide new solutions to problems. Adding
random sampling capability to an FMS is a classical
example. How this is to be done in any FMS is the sub-
ject of much research and speculaton. What algorithms
should be used isn’t yet clear [Olk88]. Our technology
only offers a framework in which to explore solutions to a
problem in a general serting. The framework itself is not
a solution; it is only a platform on which to implemeni a
class of previously identified solutions.

§. Conclusions

We have explained an approach to domain analysis that
we have followed in the development of a building-blocks
technology for FMSs and DBMSs. We validated the approach
through prototyping, and we are working toward a more pre-
cise definition of the principles and design processes which
have implicitly guided our work. We believe that mature
software technologies are ripe for standardizaton, and that
building-block technologies are possible using the technigues
that we have referenced and outlined.

Recognizing building-blocks is very difficult for systems
as complicated as DBMSs. The intellectual challenge is ident-
fying IDOs, and showing how known algorithms and structures
can be explained as combination of IDO implementations. The
FMS synthesizer we have presented has taken at least three
man-years of work to design and build, but it also presents a
FMS prototyping technology that is unequalled in DBMSs
today. We believe our work provides yet another step toward
making sofrware reusability a reality.

Acknowledgements. We thank John Werth for his helpful com-
ments on an earlier draft.

6. References

[Bat88a] D.S. Batory, 'Concepts for a Database System
Synthesizer’, ACM PODS 1988, 184-192.
[Ba188b] D.S. Batory, J.R. Barnett, J.F. Garza, K.P. Smith,

K. Tsukoda, B.C. Twichell, T.E. Wise,
*GENESIS: An Extensible Database Management
System’, JEEE Trans. Software Engr., November
1988,

[Barg9]

[Ber87]

[Big87]

{Car86]

[Eff84]

[Gog84]

[Gol83]

[Lee88]

[Lis77]

[Lom89]

JR. Barnett and D.S. Batory, 'A Uniform
Mechanism to Support Long Fields and Nested
Relations in DBMSs’, to appear in Proc. Hawaii
Int. Conf. System Sciences, 1989.

P.A. Bernstein, V. Hadzilacos, and N. Goodman,
Concurrency Control and Recovery in Database
Systems, Addison-Wesley, 1987.

T. Biggerstaff and C. Richter, 'Reusability Frame-
work, Assessment, and Directions’, JEEE

~Software; 4.2 -(March-1987), 41 =49

Mar81]

[Nei84]

[O1k88]

S.T. March, D.G. Severance, and M. Wilens,
"Frame Memory: A Storage Architecture to Sup-
port Rapid Design and Implementation of Efficient
Databases’, ACM Trans. Database Syst. 6,3 (Sept.
1981), 441-463.

IM. Neighbors, "The Draco Approach to Con-
structing Software from Reusable Components’,
IEEE Trans. Sofrware Engineering, Sept. 1984,
564-574.

F. Olken, private correspondence.

M.J. Carey, D.J. DeWiu, D. Frank, G. Graefe, M.
Muralikrishna, J.E. Richardson, and E.J. Shekita,
*The Architecture of the EXODUS Extensible
DBMS’, Workshop on Object-Oriented Darabase
Syst., 1986, 52-65.

W. Effelsburg and T. Haerder, "Principles of Data-
base Buffer Management’, ACM Trans. Database
Syst., 9,4 (Dec. 1984), 560-595.

J. Goguen, 'Parameterized Programming’, IEEE
Trans. Software Engr., SE-10,5 (September 1984),
528-543.

A. Goldberg and D. Robson, Smalltalk-80: The
Language and Its Implementation, Addison-
Wesley, 1983.

MXK. Lee, J.C. Freytag, and G.M. Lohman,
*Implementing an Interpreter for Functional Rules
in a Query Optimizer’, VLDB 1988, 218-229.

B. Liskov, A. Snyder, R. Atkinson, and C. Schaf-
fert, 'Abstraction Mechanisms in CLU’, Comm.
ACM, 20,8 (Aug. 1977), 564-576.

D. Lomet, A Simple Bounded Disorder File
Organization with Good Performance’, to appear
ACM Trans. Database Syst.

59

[Pri&7]

{Sac86]

{Sof80]

[Sto86]

[Teo86]

[Tra87]

[Vol85]

R. Prieto-Diaz, 'Domain Analysis for Reusability’,
Proc. COMPSAC 1987, 23-29.

G.M. Sacco and M. Schkolnick, "Buffer Manage-
ment in Relational Database Systems’, ACM
Trans. Database Syst. 11,4 (Dec. 1986), 473-498.

Software AG of North America, Inc., ADABAS:
Effective Data Base Management for the Cor-
porate Environment, Reston, Va., 1980.

M. Stonebraker and L. Rowe, "The Design of
POSTGRES’, ACM SIGMOD 1986, 340-355.

T.J. Teorey, D. Yang, and J.P. Fry, "A Logical
Design Methodology for Relational Databases
Using the Extended Entity-Relationship Model’,
ACM Comp. Surv., 18,2 (June 1986), 197-222.

W. Tracz, 'RMISE Workshop on Software Reuse
Meeting Summary’, in Software Reuse: Emerging
Technology, W. Tracz, ed., IEEE Computer
Society Press, 1988.

D.M. Volpano and R.B. Kieburtz, *Software Tem-
plates’, Int. Conf. Software Engineering 1985,
55-60.

DaTE: The Genesis DBMS Software Layout Editor”

D.S. Batory and J.R. Bamnett
Department of Computer Sciences
The University of Texas
Austin, Texas 78711

1. Introduction

DBMSs are complex software systems that are notoriously difficult to build. Extensible
database systems were conceived to ease the burden of DBMS construction. A number of
different approaches to extensibility have been proposed and prototyped [Car88, Haag9,
Sto86]. Among them, the Genesis approach is distinguished as a software building-blocks
technology [Bat85-91]. Its premise is that complex software systems can be constructed
from prefabricated components in minutes at virtually no cost.

Genesis 2.0 became operational in November 1989. Our objectives were achieved: cus-
tomized relational DBMSs in excess of 50K lines of C could be specified and their execut-
ables produced within a half hour. In this paper, we examine an integral tool of this con-
struction process: the Genesis software layout editor (DaTE). !

DaTE is a graphical design tool used by database system implementors to specify the
construction of customized DBMSs and FMSs (file management systems) as compositions of
available software components. DaTE embodies a stratified top-down design methodology,
where implementation details, ranging from the selection of nonprocedural data languages to
the packaging of records into physical blocks, are captured through component assemblies.
File structures, storage systems, network DBMSs, and relational DBMSs are contiguous
regions of the design space encompassed by DaTE. Transcripts of a DBMS or FMS design
can be output which, when compiled with the Genesis library, yields the executables of the
target system. 2

In this paper, we examine the features of DaTE. We explain its graphics, how it cap-
tures the domain model of Genesis, and how sophisticated DBMSs can be defined in minutes
as compositions of components. Similar to problems encountered in hardware layout editors,
indescriminate combinations of components may yield systems that cannot possibly work.

* This work was supported by the National Science Foundation under grant DCR-86-00738.

1 DaTE is an abbreviation for Database Type Editor.

2 As of mid-1991, DaTE is 22K lines of C that runs on a MacIntosh Il. We are in the process of
rewriting DaTE to run in X-window environments.

61

Design rule checking, an integral (but effectively unseen) feature of DaTE, ensures that all
systems that can be specified are technically correct. We will study incorrect DBMS
designs, define design rules that prohibit such designs from arising, and present efficient
algorithms that are used in DaTE to enforce design rules.

To understand DaTE and the algorithms that we develop, it is important for readers to
be familiar with the conceptual abstractions on which Genesis is based. We begin our dis-
cussions with a brief overview of these ideas.

3. An Overview of Genesis

Software systems, and DBMSs in particular, are becoming progressively more complex
and more costly to build. While it was possible in the past to build new systems from
scratch, this is a luxury that the software industry (and again, the database industry in partic-
ular) will soon no longer be able to afford.

Genesis is a project whose goal was to demonstrate that mature and well-understood
software technologies could be standardized as libraries of prefabricated and reusable com-
ponents, and that customized software systems of considerable complexity could be assem-
bled in minutes by gluing available components together. A general model of large scale
software was conceived, and the domain of relational database technology was expressed in
its terms [Bat85-91]. The distinction between the Genesis approach to extensibility and the
Exodus and Starburst approaches, for example, is the building-block/component approach to
system construction.

The Genesis model of software development is straightforward. A domain (e.g., rela-
tional technology) is expressed as a set of components organized into realms. A realm R is
associated with a particular interface. All components of a realm share the same interface,
which means all components are plug-compatible and interchangeable. Realms R and S
shown below each have three components each.

R = {a b c}
S = {d[xR], e[xR], fIxR] }

A component may have parameters, meaning that it needs services from lower-level com-
ponents. How lower-level services are implemented is specified via component parameter
instantiation. As an example, each of the components of realm S has a single parameter of
type R. (The notation x:R means x must belong to realm R). In principle, any component in
R could provide services for any component in S.

A software system is a type expression. Three systems constructed from the above
realms are shown below:

systeml = d[a]
system2 = dfc]
system3 = f[c]

Each of these systems provide the same functionality, but because they are composed from
different components, they may exhibit different performance characteristics.

Quantification of software reuse has traditionally been difficult [Big89]. In the Genesis
model, recognizing reuse is simple. Whenever two or more systems (type expressions) refer-
ence the same component, that component is being reused. In the above systems, com-
ponents d and ¢ are being reused.

A fundamental feature of the model is the concept of reflexive components. Reflexive
components are unusual in that they can be composed in virtually arbitary ways. In the

62

Genesis formalism, this means that components of some reaim T have parameters of type T:

T = {m{xT], n[xT], ... }

Thus, compositions m[n[]] and n[m[]] are possible. Unix file filters are classical exam-
ples of reflexive components.

Extensibility is achieved through the addition of new components in realms, and (less
frequently) through the addition of new realms. In principle, if realm libraries are well-
stocked, all components needed for a target system are present. It should then be possible to
specify the target system and have it assembled (given its specification) in minutes. In the
case that one or more needed components are not present in the realm libraries, they must be
written. However, since one relies on the availability of prewritten components, the over-
head for system development is considerably reduced. From our experience, an individual
component takes somewhere between two weeks to three months to implement, depending
on its complexity. In general, component reuse reduces the time for system construction by
approximately an order of magnitude.

Two basic problems arise in developing software system in this manner. First, complex
systems often correspond to complicated type expressions that are difficult to read and inter-
pret. For this reason, a graphical representation of designs is needed. Second, not all combi-
nations of components are semantically meaningful. Design rules, which preclude certain
compositions of components and guarentee the design of correct (i.e., operational - not
necessarily efficient) systems, must be specified and enforced. DaTE is the first attempt to
develop a graphical layout editor that is based on the above model and that enforces design
rules. The rest of this paper explains the mechanics and operation of DaTE.

3. The Genesis Software Layout Editor (DaTE)

Version 2.0 of Genesis supports twelve distinct realms, each with different numbers of
components. The table below briefly explains each.

Class Description

model data languages (e.g., sql and quel)

link join algorithms and linkset implementations (e.g., nested loop , ring list)
file mapping abstract-to-concrete file mappings (e.g., indexing, compression)

file storage primitive file structure algorithms (e.g., B+ trees, heaps)

logical block logical-to-physical block mappings (e.g., overflow only, shared overflow)
physical block fixed-length and variable-length record blocking algorithms

special operation operations used in query processing (e.g., cross product, sort)

data type primitive data types that are referenced in schemas (e.g., float)
recovery volume recovery algorithms (e.g., before image logging, shadowing)
transaction multivolume commitment protocols (e.g., two-phase commit)

buffer buffer management algorithms

input/output Genesis-to-operating-system mappings (e.g., Unix)

The graphics of DaTE reinforces the building-blocks paradigm of Genesis. DaTE dep-
icts components as boxes and parameters as ovals. Components M and N are shown in Fig-
ures 3.1a-b. M is unparameterized; N has parameters X and Y.

DaTE distinguishes two different types of component compositions: systems and sub-
systems. A system is a stand-alone application. DaTE supports the definition of two types of
systems: DBMSs and FMSs. We explain their difference in Section 3.4. A subsystem, in
contrast, is a coherent portion of a system that is not stand-alone. Four progressively more

63

~1 [~] IIBJIDJ

R ¥ c £ | ¢r |

s

(a) () (c)

Figure 3.1 DaTE Graphics

complex types of subsystems are definable by DaTE: file structure, storage, network, and
relational. Their differences are explained in Section 3.3.

A subsystem is depicted as a rooted graph whose vertices represent either components
or complete systems. A subsystem is complete if it has no unbound parameters (i.e., ovals).
The subsystem in Figure 3.1c is an example. Complete subsystems are treated as
unparameterized components by DaTE.

A central concept in Genesis is conceptual-to-internal mappings of files. Every concep-
tual file can be mapped to one or more internal files. Precisely one internal file is dominant;
the remaining are subordinate. The critical properties of dominance, as prescribed in
[Bat85], is that records of a dominant file are always in 1-to-1 correspondence with concep-
tual records; this need not be the case for subordinate files. Moreover, the address of an
abstract record is always the same as the address of its dominant concrete record.

As an example, consider the component that provides secondary indexing. It maps a
relation to an inverted file, which consists of a data file plus zero or more index files. The
data file is the dominant concrete file of this mapping, as each data file record is in 1-to-1
correspondence with tuples of the relation. Moreover, the identifier of a tuple is indistin-
guishable from the address of the tple’s dominant concrete record. Index files and index
records are not dominant.

DaTE captures the notion of dominance in its vertical-column arrangement of nodes of
a subsystem. The left-most column of every subsystem, starting at the top node and moving
downward, defines the sequence of components through which a conceptual file is mapped to
its dominant internal counterpart. The remaining vertical columns define sequences of com-
ponents through which subordinate files are mapped. As an example, the subsystem in Fig-
ure 3.1c has three columns (#1: A,B,C; #2: D,E; #3: F). Component A maps an abstract file
to a single dominant concrete file and zero or more subordinate concrete files. The dominant
concrete file is mapped by the vertical column of components beginning with B; subordinate
concrete files are mapped beginning with component D.

The most powerful concept in DaTE is the software bus. It is an abstract construct that
allows multiple components to occupy the same position in a subsystem. Software busses
arise in two rather different circumstances. An implementation bus is used to list alternative
methods of implementing an object. A file bus that lists grid and bplus, for example,
enables a file to be implemented by either a grid structure or a B+ tree. On the other hand, a
feature bus lists disparate attributes that a target subsystem is to exhibit. For instance, a data
type bus lists the data types that a target DBMS or FMS is to support. Whether a bus is
implementation-oriented or feature-oriented is evident from the context.

A software bus is depicted as a scrollable window. The bus in Figure 3.2a lists the
components (or subsystems) bplus and isam: Clicking the Add button admits new entries
onto a bus. An entry (such as isam) is deleted by clicking it and choosing the Remove
option from the displayed popup menu (Fig. 3.2b).

64

A bplus O fl bplus >
d| isam d| information
d 5! d (Eustomize 53

{a) {b)

Figure 3.2 A Software Bus

Systems are classified according to their type (since they are type expressions). That is,
there is the class of file structure subsystems, storage subsystems, relational subsystems, and
so on. For simplicity, DaTE restricts entries of a software bus to belong to a single
type/realm. Thus, all entries of a bus are storage subsystems, or all are link components, etc.

3.1 Parameter Instantiation and Editing Rules
Parameter instantiation in DaTE is accomplished by clicking an oval. The standard
response is the display of a popup menu, like the one below:

Information
Customize

File Module

File Struct Bus
Storage System
Storage Sys Bus

Selecting Information displays a help window associated with the selected item. Custom-
ize lists the customizable options of a component, and allows options to be enabled or dis-
abled. (For example, if the Index component supports several algorithms for processing
queries using inverted lists, customization would allow an implementor to select only the
algorithms that need to be included in a target system).

Selecting an entry below the dotted line causes a scrollable library window to be
displayed. The members of the library are legal components or subsystems that can instan-
tiate the selected parameter. How such components or subsystems are determined is the sub-
ject of Design Rule Checking, the topic of Section 4. A library window for File components

is shown below:

File Layer Library

Det Flag

inden

Lempel 2iv Encode
RBun Length Encode
Surrogate
Transposition

l Open ﬂ Done

65

Clicking the desired entry in the window triggers parameter instantiation.

Occasionally, parameters are bound incorrectly (or better choices are later discovered).
Rebinding is accomplished by clicking the component to change and by choosing a substi-
tute from the displayed library window. As DaTE imposes a top-down design methodology.,
all hierarchical bindings of the original component may be erased as they no longer apply to
the new selection. DaTE tries to save such bindings whenever possible.

3.2 Subsystems ,

As mentioned earlier, a subsystem is a rooted graph of primitive components and com-
plete subsystems. Each subsystem (recall the four types: file structure, storage, network, and
relational) is defined within a special window that can be named and saved for later refer-
ence. In the following sections, we show how each of these subsystems can be created. We
begin with the simplest of DaTE subsystems: file structures.

3.2.1 Creating a File Structure Subsystem

A file structure is a composition of components that provide the most elementary file
storage and retrieval capabilities needed for DBMS operation. A file structure is a composi-
tion of three distinct types of components: FS (file storage), logical block (or node), and phy-

sical block.
A file structure is created in DaTE by pulling down the File menu from the menu bar,
selecting New, and then File Structure. An empty window is then displayed (Fig. 3.3a):

EO=—= untitled =—— == Untitled == [EO== Myhssh =——

[rosr]

@ rllnord_.Prim_.Unshmj

l Fined_ fAnch ‘ rl’med!_ﬂnchJ

{a) (b) {c)

Figure 3.3 Building a File Structure Subsystem

The window contains a single FS oval, indicating that a file storage component must be
specified. Clicking the oval causes a library window to appear that lists all FS components
xnown to DaTE. Once an FS component is chosen, its box is displayed in the window, along
with its logical block parameters (Fig. 3.3b). (Note that an FS component maps a file of
records to logical blocks. The first or left-most parameter of the component specifies how
data records are to be stored; a second, if present, specifies how index records are stored. In
the above example, the Hash component does not generate index records).

Logical block parameters are instantiated in the same way, i.e., by clicking and select-
ing components from library windows. Each logical block component has one or more phy-
sical block parameters. (The left-most parameter specifies how records are packaged in a
primary block; a second, if present, specifies the packaging of records in overflow blocks).

Figure 3.3c shows a three-level graph that defines the Myhash subsystem. A Hash file
storage algorithm is used, whose logical blocks are implemented by the
Unord__Prim_Unshared component (i.e., unordered records stored in a primary block with

66

unshared overflow), and primary and overflow blocks are Fixed_Anch (i.e., fixed-length
records with anchored physical addresses).

Table 1 lists the file storage, logical block, and physical block components presently
available in the Genesis library. Over sixty distinct file structure subsystems can be created
with them.

Fite Storage Components——Logical Block Components 3 Physical Block Components 4

bplus unordered primary block only fixed anchored
grid unordered shared overflow fixed unanchored
hash unordered unshared overflow variable anchored
heap unordered overflow only variable unanchored
indexed unordered ordered primary block only
isam ordered shared overflow
sequential unordered ordered unshared overflow

ordered overflow only

Table 1. Primitive Components of File Structure Subsystems

3.2.2 Creating a Storage Subsystem

A file mapping component maps an abstract file to precisely one dominant concrete file
and zero or more subordinate concrete files. A storage subsystem is a composition of file
mapping components that terminate with references to complete file structure subsystems.

A storage subsystem begins with the creation of an empty storage subsystem window.
As classical examples of file mapping modules, the windows in Figures 3.4a-b show the
result of selecting the indexing and transposition components. Index maps an abstract file to
a dominant data file and zero or more subordinate index files. The data file implementation
is specified by parameter data and the index file implementation by parameter index. Simi-
larly, Transposition maps a file to a series of concrete subfiles, one dominant subfile and
zero or more subordinant subfiles. Their implementations are given by parameters dom and
sub. The file mapping components currently available in the Genesis library are listed in
Table 2.

3 A logical block is a sequence of records, which can be unordered or be maintained in primary
key order. If logical blocks have a bounded record capacity, the records can be stored in a single
physical block (primary block only). If capacity is unbounded, overflow records can be stored in
physical blocks dedicated to the logical block (unshared overflow) or in physical blocks that are
shared among different logical blocks (shared overflow). Overflow only is a logical block imple-
mentation that is simply a chain of overflow records. The combinations of ordering and packag-
ing yields eight distinct implementations of logical blocks.

4 Records are either fixed length or variable length. They can be assigned permanent physical
addresses {(anchored) or not (unanchored).

67

E)=———= Untitled ARCH #1 =7 S J==————— Unlitied ARCH #1 =—==oTF

| index i | Transposition |
1 |
&
(a) secondery indices (b} transposition

Figure 3.4 File Mapping Components

file mapping components link components data model components

delete flag (block) nested Ioop quel
(secondary) index pointer array sql
run-length encoding ring list

surrogate sort merge

transposition

ziv-lempel encoding
Table 2. Primitive Components of Non-File Structure Subsystems

Consider a storage subsystem that approximates Rapid, a statistical DBMS [Tur79].
Rapid mapped schema-defined files to transposed files, where each column was run-length
compressed before being stored in a sequential-unordered file structure. This subsystem is

defined in two windows: rapid.ss and subfile.arch. rapid.ss maps a schema-defined file to
its dominant internal counterpart. subfile.arch maps subordinate files to their internal coun-

terparts.

EE=—=—————= rapid.ss

B == subfile.arch ==0=

| Trensposition | {Run Length En... |
l

[1
[Run Length En...| | subfile.arch | |__seq_unord |

| seq_unord |

()

While it may seem odd not to have Transposition call subfile.arch twice (as imple-
mentations of both dominant and subordinate files are identical), DaTE permits only one sub-
system reference per dominant (vertical) mapping. (It turns out that permitting multiple sub-

system references significantly increases DaTE’s complexity without providing greater
expressibility. We chose simplicity).

68

[Transposition |
|

i i
[subfitearch | [_subfile.arch |

f composition that cannot be defined directly
in DaTE....

As another example, consider the storage subsystem of University Ingres [Sto76]: it ma
sphemz}—deﬁned files/relations to inverted files, where data files and index files can] be selelc):?
tively implemented by hash, heap, or isam structures. The multiplicity of implementation
choices is captured by a pair of file structure busses. 3

E=———==———= ingres.ss

[index |
i
I 1
Al isam > [} heap O
d| heap dlisam
¢l hash 5] La] hash 5
o

3.2.3 Creating Network and Relational Subsystems

A nerwork subsystem is rooted by a link component or link bus. This component or bus
specifies how links - ie., relationships between files - are to be implemented. The sole
parameter of a link component or link bus specifies how files are implemented, which may
be expressed by a single file structure or storage subsystem, or a bus of file structure or
storage subsystems.

A relational subsystem is rooted by a data model component or data model bus. Data
model components map a nonprocedural data language interface to a procedural network
database interface. The sole parameter of a data model component or bus is the implementa-
tion of the links of the network database.

The figures below show a network subsystem used in the Total DBMS (i.e., no high-
level data model; links are implemented by ring-lists and files are stored in hash structures)
and the relational subsystem of University Ingres (i.e., Quel is the data language, nested loop’
implementations of links, and files are stored in the ingres storage subsystem).

5 The last entry on a software bus is the defanit mapping. Thus, data files in ingres.ss default to
hash-based structures if no storage structure directive is provided. (Such directives are part of
Genesis database schemas). No other significance is attributed to the ordering of entries on a im-

plementation bus.

69

EO=—== totel === § === Ingres.arch B

| Quel |
| Ringlist | |
l | Nested Loop |
| hash | |
| ingres.ss |
2l =l

(a) A model of Total (b) A model of ingres

The link and data model components currently available in the Genesis library are listed
in Table 2.

3.3 Systems

A system is a composition of one or more subsystems with software busses listing sup-
porting primitive components, such as data types, recovery, and special operations. FMSs
and DBMSs are systems that can be defined and generated by DaTE. In the following sec-
tions, we illustrate how complicated FMSs and DBMSs are specified and generated.

3.3.1 Creating a File Management System

A file management system (FMS) is the kernel of a DBMS. It provides elementary
access methods, buffer management, and recovery capabilities necessary for DBMS opera-
tion. DaTE factors the design of an FMS into the selection of file structures, special opera-
tions, data types, and a recovery component.

An FMS is created in DaTE by pulling down the File menu, selecting New, and then
FMS. An empty FMS window is then displayed (Fig. 3.5a). The above mentioned design
decisions are entered onto three busses and a field. Each is labeled in smail fone as a prompt to
the FMS implementor. Note that Before Image page logging is the default implementation
of recovery. Also note that the Transaction, Buffer, and Input/Output classes are not cus-
tomizable, as Genesis provides only a single component for each. This will change as other
components become available.

Observe that the graphics of an FMS window documents the routing (via dotted lines)
of user-issued operations. Volume and transaction operations are serviced by the Transac-
tion components; buffer pool operations are handled by the Buffer components. File opera-
tions are processed by either file structures or special operations. Also note that an FMS is
not a strict hierarchy of components (unlike subsystems), where all operations are
transformed by components in a top-down manner.

A possible FMS for a census database is shown in Figure 3.5b. It provides My_grid
and My_unord as primitive file structures. The Sort operation is included, along with the
data types Int, Cstring, and Float. Page Shadowing is used for volume recovery. Table 3
lists the recovery, data type, and special operation components that are currently available.

70

e intitled IMS ¥ |

ED

Census..FMS

Buffer Pool

i . Buffer Pool T ti % . .
u:rufaocp':::{t:m File Ooerations o‘;«.:u::s UOE‘J‘.’“&Jpﬁm Fite W‘:'W et ons
File Structure Bus E i Oparation Bus File Structure Bus | i Operation Bus
A =i = a] My—grid 5] [Tsort]
d d d My..unord d
d g d a
51 > RN G
] Data]’ripe Bus | l ngh\é?‘ Bus
[Transaction J f & [Yransaction J a ::Mm O
SN
| Recovery d | Recovery g Float °
rBefore Imnge_] d 5 Shadowing] 5y
] i
[Butter | [Butrer |
i]
lnput/ﬂutputAl [Input/Output l
(@))
Figure 3.5 Empty and Completed FMS Windows
Recovery Data Type __Special Operations
db cache byte cross product
before image logging char Ifilter
null (no recovery) cstring cross product
page shadowing double
int
fioat
short
vstring

Table 3. Primitive Components of File Structure Subsystems

3.3.2 Creating a Database Management System

A DBMS is defined in the same manner as FMSs: subsystems, special operations, data
types, and a recovery component must be specified. The only difference is that relational,

network, and storage subsystems are referenced instead of file structures.

A DBMS window for our approximation of University Ingres is shown below: the sub-
system is Ingres.arch; special operations are Sort, Lfilter, and Cross_Prod; data types are

Int, Cstring, and Float; and recovery is handled by Before Image logging.

71

ERE——————— ingres -

Transactions & Database Buffer Pool
Yolume Operations Operatiens Operations
; Architecture Bus i L Operation Bus
ingres.arch &3 Sort &
i R f
: d d Liiiter
d d Cross_prod
§ 2 <
|] Data{Type Bus
l Transaction I gl Int 0
Cstring
i Recovery d Fioat
[ger : 114 o
i Befarrel image | 5
l Buffer if
]
l input/Qutput]

Statistics about the size of the generated DBMS can be obtained by pulling down the
Mise menu and selecting Statistics. A screen similar to the one below will be displayed:

Database Management System Statlistics
Lines of Code
Mansager/Layer Total Selected % of Library
System Managers 6435 6435 100%
System Layers 4863 4863 100%
System Utilities 1427 1427 100%
File Manager 42463 21485 50%
File Layers 6581 1389 21%
Link Layers 7456 982 13%
Model Layers 2468 1234 50%
Totals 71693 37815 52%
e ——————e

Of the 71K+ lines of code in the Genesis libraries, approximately 52 percent is referenced in
our approximation to Ingres. (Lines that are unreferenced are not included when Ingres is
compiled). A similar screen exists for FMSs. 6

A DBMS typically supports only one subsystem. However, if one wants the union of
several different subsystems (i.e., to have the capabilities of several individual DBMSs rolled
up into a single DBMS), one can click multiple subsystems onto the System Bus. A compo-
site subsystem is formed by collecting all distinct data models, links, and storage subsystems
and placing them on their corresponding software busses. (Thus, it is possible for a
Genesis-produced DBMS to support multiple data languages). A composite subsystem of a
target DBMS can be viewed by pulling down the Misc menu and selecting DBMS Overview
when the DBMS window is active. The union of Ingres.arch and rapid.ss is shown below:

6 System Managers and System Utilities refer to a standard package of ADTs (queries, into-
lists, etc.) that are referenced by virtually all file mapping, link, and model components. System
Components is a generic name given o COmMponents listed on the DBMS’s operation bus. File
Manager refers to FMS code that is generated. File Layers, Link Layers, and Model Layers
refer to file mapping, link, and data model components that are referenced.

72

= system Overview EHE

| Quel l

| Nested Loop |

ingres.ss O
rapid.ss

o e B

!

Note that the ease with which DBMSs with multiple DMLs can be created is a novel feature
of Genesis. It is a capability that we intend to explore in future research. In particular, it is
well-known that there is no standard for object-oriented DMLs; every OODBMS seems to
have its own unique data language. We are now in the process of adding components to the
Genesis library that will enable us to build OODBMSs as component assemblies, just as we
are doing with relational DBMSs here. Multiple DMLs will give us the ability to experiment
and evaluate different language syntaxes and features easily.

3.4.3 System Generation

A transcript of the design in an FMS or DBMS window is generated by pulling down
the File menu and selecting generate. In the case of Ingres, the following screen is
displayed:

Definition Generation Successful
Click Mouse To Continue

FMS Header ingres..fms.h
DBMS Header Ingres.dbms.h
File Struc. Tabie Ingres.FIT
Path Table Ingres .PT

Path Entry Table Ingres.ET
Schema Options ingres . OPT
Driver Definition

| ngras . DEF

The objects that are generated are configuration files. The FMS Header and DBMS Header
files are C-preprocessor include files that are compiled with the Genesis library to produce
Ingres. The File Struc. Table, Path Table, Path Entry Table, and Schema Options Table
encode components interconnections and are read by DBMS executables to process dml
operations. The Driver Definition is a DaTE readable document that is a copy of the DBMS
window that defines Ingres. A similar screen is displayed for FMS generation.

73

Examining the contents of the configuration files is beyond the scope of this paper.
This topic is considered in [Bat90].

3.4 Recap
Defining a target DBMS or FMS with DaTE takes about ten to fifteen minutes; the gen-
eration of configuration files takes seconds. To produce executables of the target system

requires the compilation of the configuation files with the entire Genesis library. On a Mac
Tlcx using a Think C environment, this takes about fifteen minutes. On a SparcStation, com-
pilation takes about twenty minutes. Details on the implementation of Genesis and the role
of configuration files are discussed in [Bat90].

Beneath the graphical exterior of DaTE and hidden from DaTE users are sophisticated
algorithms that ensure all DBMSs and FMSs that are designed are correct. How this is
accomplished is the subject of the next section.

4. Design Rule Checking: The Validation of Compositions

Not all combinations of components are correct or meaningful. A major objective in
our design of DaTE was to prevent DBMS implementors from making design errors; DaTE
should permit only correct designs to be specified. Correctness is not the same execution
speed; correctness means that the target system will always work.

The major questions that we faced were: (1) what are incorrect and meaningless DBMS
designs? (2) What are design rules that prohibit the creation of such designs? And (3) what
are efficient algorithms that enforce these rules? Solutions to these questions are presented
in this section.

4.1 Examples of Incorrect Subsystems

As mentioned earlier, a component is akin to a parameterized type. Every parameter is
identified with a realm of components or subsystems that can instantiate it. Consider the
data parameter of the file mapping components Index and RLE (run-length encoding). It
can be instantiated by a file mapping component or by a file structure. (That is, the concrete
data files output by Index or RLE can either be transformed by a file mapping component, or
can be stored directly in a file structure).

™ index | [Run Length En... |
{

In the following discussions, it is important to remember that a compressed record, output by
RLE, is just a string of bytes; values of the original fields can be reconstituted only by
decompressing the entire record. This implies that uncompressed records may have primary
keys, while compressed records do not. 7

Consider the following compositions: (Fig. 4.1a) Index with RLE and (Fig. 4.1b) RLE
with Index. Composition (4.1a) means that secondary indices over uncompressed fields are
created, and then the data file is compressed. Composition (4.1b) is meaningless: once a file

7 1t could be argued that the entire compressed record is its own primary key. The problem here
is that such a primary key is meaningless; B+ trees order records on primary keys, hash structures
hash primary keys for storage, etc. All qualified searches of compressed files resort to scanning,
which is equivalent to having no primary key at all.

74

is compressed, there are no fields to index. (Or rather, the fields that were designated for
indexing are no longer present). Situation (4.1b) is avoided by a design rule that requires
indexing to occur prior to compression.

| Index |
i index | { Run Length En.. | { ? |
| Run Length En... | | index | | Run Length En... |

CED

{(a) (b) (c)
Figure 4.1 Compositions of Index and Run-Length Encoding Components

The difficulties of design-rule checking are amplified because offending components
need not be adjacent in a composition. For example, the error of Figure 4.1b remains even if
intermediate component(s) separate RLE and Index (see Fig. 4.1c)). In this example, the
loss of a data file’s primary key is permanent; intervening components cannot alter this fact.

Incorrect compositions of components with subsystems is another source of errors. Let
heap and bplus be heap and B+ tree file structures. Figure 4.2a shows RLE composed with
heap and Figure 4.2b shows RLE composed with bplus. Composition (4.2a) means that
compressed files are stored in heaps. Composition (4.2b) is incorrect. Files must have a pri-
mary key in order to be stored in bplus trees; recall that compressed files have no such keys.
A design rule for this situation is that the set of file structures that can instantiate the RLE

data parameter must not require primary keys.

{ Run Length En... | {Bun Length En... |

| heap | [oplus |
(&) 16

Figure 4.2 Compositions of Run-Length Encoding with File Structures

As a last example, consider the Transposition file mapping component which tran-
sposes a file into subfiles, and seq_unord which is an unordered file structure. (Unordered
files differ from heaps in that internal pointers to records are record numbers (i.e., the ith
record) whereas heaps return physical addresses). Transposition requires that the concatena-
tion of the ith subrecord in each subfile reconstructs the ith record in the untransposed file.
Composition (4.3a) is correct; each subfile is stored in an unordered file. Composition (4.3b)
is incorrect. Corresponding subrecords in different subfiles will be assigned different inter-
nal pointers by heap algorithms. Composition (4.3¢) is also incorrect, as subfiles don’t have
primary keys.

The above examples are representative of the errors that can arise when components are
composed indescriminately. As we show in subsequent sections, error avoidance involves
the enforcement of design rules.

75

Transposition ' Trnnspositon Transposition
1

I | [] —
[sequnora | [sea_unord | [heap | | neap 1 [opiws__ | [_vows__|

{8) {b) {c)

Figure 4.3 Compositions of Transposition with File Structures

4.2 A Model of Component Attributes and Restrictions

We use a model of boolean attributes and restrictions to eliminate DBMS design errors.
An attribute is a boolean variable that specifies whether or not a component satisfies a given
property. A restriction or design rule is a boolean variable that is associated with parame-
ters of a component. It specifies the value an attribute must have if a component or subsys-
tem can be used to instantiate a parameter.

Let 1 be an attribute and A, denote its value. Every attribute 1 has a corresponding pair
of restrictions: R, and R;. R, = 1 means that all components that can instantiate a parameter
must have A, = 1. Conversely, R; = 1 requires components to have attribute A, = 0. The don’t
care or not relevant condition is the assignment R, = 0 and R;=0.

Each realm (or actually the components within the realm) is described by a set of attri-
butes, called realm attributes. Every component, however, can impose restrictions on attri-
butes from any realm. This means that higher components can dictate properties of com-
ponents (potentially very far) below them. ®.

More specifically, let A be the boolean vector of all attributes and R be the vector of all
restrictions. Every component L has a vector AL, a subvector of A, which lists the values of
the realm attributes of L. Every parameter P of L has a restriction vector R™F which lists the
restrictions imposed on components or subsystems that can instantiate P.

Examples. An attribute of file mapping components is {requires semantics} and attri-
butes for file structures are {requires semantics, relative location key}. These attributes are

defined below:

requires semantics Does component require field definitions and annotations
of the file declared at conceptual level to be visible?

relative location key Are records assigned relative location keys (i.e., the ith
record in a file) as internal identifiers by the component?

The values of these attributes for the components and subsystems referenced in Section 4.1
are:

8 We have already seen an example of this. Transposition requires data files to be stored in
unordered file structures (e.g., seq_unord). There can be any number of file mapping components
that lie in between Transposition and seq_unord.

76

Attribute Index RLE Transposition bplus heap seq unord

1 0 1 1 0 0
% %

Arcqui:cs semantics . 0 0 1

A elative location key

#* pot applicable

The restrictions imposed on the parameters of the Index, RLE, and Transposition file
mapping components are defined in the following table:

LAYER-parameter
Restriction Index-data Index-index @ RLE-data Transposition-dom Transposition-sub
R requires seman 0 0 0 0 0
R 0 0 1 1 1
s 0 0 0 1 1
§m1mvelouuon key 0 0 0 0 0

relative location key

Attribute and restriction data, among other information, is entered at the time when a cdrp—
ponent is registered with DaTE. By choosing the Component Def option from the File
menu, a window for component (layer) definition is displayed:

[(EBE==———=———""== Trensposition = =
Layer Class Layer Rtiributes Customizations

O Recovery @ Retains Semantics &
O Block ® Requires Semantics u
<
O Node O Rewrites Tree
fidd (Del
O Flle Structure (M ¢ eie][Edit)
: Children
File Mappin
@ PRing dom ny
O Link sub -
C model =
Special 0 ti
Ose peration (#ad)(vetete) fdit)
C Data Type
Constant |HPOSE
oue [‘
Dispiay Help 0p Suffin lnpose }

The realm of the component is selected by clicking the appropriate button under Component
Realm (Layer Class). Realm attributes are then displayed under Component Attributes

(Layer Attributes): »
A component can have any number of parameters. A parameter is entered by clicking
the Add button under the Children scrollable window. Doing so causes a child specification

window to appear:

77

EDIT CHILD SPECIFICATIONS

Child's Name Child's Restrictions

iﬁ_i @ Rel Loc Access Key

O No Rel Loc fcc Key

Chitd's Class

O Block

O Nede

O File Structure
@ File Mapping
O Link

O Model

[beaerats Bus Gption

The realm of the child parameter must be specified, along with the restrictions that are
imposed on that parameter. '

The current version of DaTE deals with eight attributes. ° The maximum number of
attributes per realm is three; the maximum number of restrictions is eight.

The total number of attributes (and restrictions) is open-ended. In principle, each time a
new component is registered with DaTE, there may be additional attributes and restrictions
that need to be introduced in order to avoid certain combinations of components. Such
changes, at present, must be hard-coded into DaTE, and this can only be accomplished by a
sophisticated user. In choosing the current set of attributes, we have surveyed a large spec-
trum of components (much greater than the current number that are presently available) to
minimize the likelyhood that DaTE will need to be altered.

As an aside, other information that is collected at component definition time is a help
picture, the size of the component in lines of C code, labels for C preprocessor constant gen-
eration, and a list of customizations.

4.3 Design Rule Checking Algorithms

The legality of compositions is checked at the time when parameters are instantiated.
When a parameter is clicked, DaTE displays a library window containing only those com-
ponents or subsystems that satisfy the restrictions imposed on that parameter. The algo-
rithms used to determine legal components and subsystems are explained below.

The graphics of DaTE reflect the abstract-to-concrete mapping of files; restrictions are
inherited vertically, from top downwards. Let Py--- be the sequence of parameters whose
instantiation defines a vertical (conceptual-to-dominant-internal) path of components. Let L;
be the component that instantiates P;. The restrictions F ,j and F; that are imposed on com-
ponent L; are the boolean disjunctions of the restrictions on A, imposed by each of L;’s ances-
tors:

9 Technically, there are 8+n atiributes, where n is the number of file mapping componenis. No
file mapping component can appear twice in a vertcal column of an subsystem (i.e., abstraci-to-
concrete mapping of the dominant file). Thus, RLE composed with RLE or Index composed
with Index are avoided. Generally, compositions of the same component with itself are not mean-
ingful. A technical reason, concerning the implementation of Genesis, also forces this restriction.

78

1
— LaP)
Fuy = k\.—-/O R
1
- = L Px
F‘»J = VY R

That is, once a restriction is imposed by an ancestor component, it cannot be removed.

To simplify notation, let F, and F; denote the restrictions on attribute 1 that a com-
ponent or subsystem must satisfy. Let M, =1 if a specific value is required for A,, 0 other-
wise. Let the specific value be V,. The following identities are evident:

M =F, VYV Fy
V., =F

It is possible that restrictions can be imposed on attributes that are not among the realm
attributes of the component to be selected. For example, requiring that relative location keys
be used is a restriction on the choice of legal file structures, not file mapping components.
We are interested in examining only those realm attributes for which restrictions are
imposed. Let K be a realm of components, and let C, = 1 if 1 belongs to K’s realm attributes,
0 otherwise. Let E, be the boolean variable that indicates whether or not A, should be exam-
ined:

E,=C A M

Let L be a component of realm K, and A" be the value of 1 for L. L satisfies the restric-
tions on t iff Qual(L,1) is true:

QualL,) = (=E) V E A (V,=A")

It follows that L is qualified to instantiate a parameter iff it is qualified on all realm attri-
butes:

Qualified(L) = A Qual(L.1)

1 in set of all attributes

The components or subsystems of a realm that satisfy the Qualified() function are precisely
those that can instantiate the selected parameter without violating design rules. These com-
ponents or subsystems are the building blocks that are listed in library windows displayed by
DaTE. By limiting the selections to legal choices, incorrect subsystems cannot be specified.

The algorithm for evaluating Qualified() follows directly from the above definition.
The algorithm has O(n*m) complexity, where n is the path length and m is the number of
attributes. An improvement is to use integers to encode (short) boolean vectors, so that vec-
tor manipulation complexity is approximately O(1) instead of O(m). Further improvements
are attained by remembering the restrictions that have accumulated after each instantiation,
so that only the parent of a component, not all ancestors of a component, needs to be exam-
ined. With these improvements, the complexity of design rule checking is approximately
O(1).

It is worth noting that it is possible for file structures and component definitions to be
modified once they are created. DaTE currently does not revalidate existing compositions
when such modifications occur. We are presently exploring ways to solve this problem. The
simplest solution is to disallow updates to subsystems once they are complete and have been
saved. Anything more sophisticated requires version control.

79

3.4 Attributes of Subsystems

In our design rule checking algorithins, attribute values for components and subsystems
were assumed to be readily available. Values for components are specified manually; for
subsystems, they are computed. How values are computed is the subject of this section.
Since subsystems are treated as primitive and nonparameterized components in DaTE, sub-

systems impose no restrictions.

~ Recall the storage subsystem subfile.arch for subordinate files of transposed files. Each
subfile is run-length compressed before being stored in an unordered file. The attributes of
this subsystem are Arequires semantics = 0 and A auiveiocationkey = 1. (That is, subfile.arch does not
require records to have their original field semantics and it assigns relative location keys to

records).

B == subfile.arch ===F12

TRun Length En... |

| seq_unord |

Because this subsystem encapsulates both file mapping and file structure concepts, it
must exhibit attributes of both. The attribute Arquires semantics = 0 18 inherited directly from the
RLE component. (Reason: no matter what components lie beneath RLE, the value of this
attribute cannot change). Aaive jocationkey = 1 18 inherited from the seq_unord file structure

subsystem.

In general, the realm attributes of an subsystem are the union of the realm attributes of
each component along its dominant (left-most vertical) path. The values of these attributes
are inherited from these components. A complication that arises is that some components
along a path share the same attributes and possibly assign them different values. In such
cases, priority is given to the component that is closest to the subsystem’s root. That is, if
attribute 1 is shared by many components, and L is the component closest to the root that has
1, then A, is taken from L. The justification for this priority is encapsulation; once an attri-
bute (and its value) is exposed, it becomes part of the subsystem’s interface. An implemen-
tation of this interface may ultimately alter this value at lower components, but encapsulation
means that such changes are invisible.

Subsystem_Attributes(Arch) is the algorithm used in DaTE for computing the attribute
values of a complete subsystem Arch that does not have software busses. (Extensions for
software busses are considered in the next section). In the following, let L be a component
or subsystem. Let dominant(L) return the root node of L (if L is an subsystem), the dominant
child node of L (if L is a component and if children exist), or null (otherwise). Let
attributes(L) return the set of realm attributes of L.

80

Subsystem_Attributes(Arch)
{initialize vector of subsystem attributes} foreacht { AACE=01].
{initialize attribute set to empty set} AS = .
{getrootnode} L = dominant{ Arch }.
{1oop on nonnuil node} while (L !=null) {

{extra is set of attributes whose values are 10 be assigned}
extra = set_difference(attributes(L),AS).

{assign attribute values} foreach 1 in extra { AATE = ALY

{add extra attributes to AS} AS= union(AS, extra).

{get node of dominant child} L= dominant(L).

}

{retum attribute vector as result} retum(AATRY,

DaTE executes Subsystem_Attributes() at the time an subsystem is saved.

3.5 Handling Software Busses

A software bus lists two or more components or subsystems that satisfy the same res-
trictions and belong to the same realm. Bus members may have any number of attributes on
which no restrictions are placed. It is quite common for different members to assign dif-
ferent values to unrestricted attributes. Since a software bus acts as a single primitive com-
ponent that has the same realm attributes as its members, the question arises how does one

assign values to its nonrestricted attributes?

The solution we have adopted is to take the boolean conjunction of the realm attributes
of each object on a bus. Our reasoning is that if a bus has A, = 1, then all members of the bus
must exhibit A; = 1. This provides a practical solution to the following problem. Two
storage subsystem are shown below. System_A stores concrete files in different types of
unordered file structures. System_B uses unordered and B+ tree file structures. System_A
could be used to store subordinate subfiles of transposed files, as any of its file structures
satisfies the relative location key requirement. System_B cannot be used, since B+ trees
might be selected for file storage, which would be wrong.

l ?! i L |
a] index_unord > f| index._unord a
dl seq..unord ¢| bplus
d 5 d G

System..A System..B

Note that we could have chosen the interpretation of setting A; = 1 if any member of a
bus has A; = 1. This would lead to incorrect designs, as the above example illustrates. How-
ever, it would seem possible that an subsystem with A; = 0 might have some - not all -
components/subsystems with A; = 1. Thus, incorrect subsystems might arise when the
absense of an attribute is required (i.e., Ry=1).

We have circumvented this difficulty in DaTE with a provisional solution. DaTE
insists that (a) the root of every storage system subsystem is a single component, not a
software bus, and (b) requirements imposed on inherited attributes of nonrcot components
are affirmative (i.e., R; = 1). Condition () implies that the top component of a storage system

81

determines almost all attribute values of the subsystem. The only attribute (currently) whose
value remains to be assigned is relative_location_key. The restrictions that can be imposed
on this attribute are Ryeiaive Jocation key = 0 0F 1 and R aioniey = 0, which satisfies condi-
tion (b). Removing these limitations will require a more general model of attributes and res-
trictions than we are presently using.

4, Conclusions .

Software systems are becoming progressively more complex and difficult to construct.
Building-block technologies will become increasingly important as the reinvention and
recoding of known technologies becomes economically unattractive. Genesis is one of the
first software building block technologies that embodies large-scale reuse; it is a proof-of-
concept system. DaTE, our software layout editor, enables DBMS implementors to design
entire database systems or portions thereof that are customized for a target application. (For
example, DaTE could help generate a relational engine that is a component of object-
oriented database system). If all software components are available, system assembly can
take minutes and yield enormous increases in software productivity.

We have explained some of the features of DaTE. Its expressibility is limited primarily
by the components that are available. Extending DaTE to capture object-oriented DBMSs,
concurrency control and recovery for multi-client DBMSs, distributed DBMSs, and large-
grain parallelism that is inherent in internal DBMS algorithms is indeed possible [Bat88];
however, more work needs to be done.

We also presented the mechanism we are currently using for design rule checking. We
have explained how DaTE makes it impossible to specify DBMS and FMS designs that can-
not possibly work. Additional research is needed to generalize our design rule checking
algorithms and attribute-restriction model in the handling of software busses.

References

[Bat85] D.S. Batory, ‘Modeling the Storage Architectures of Commercial Database Sys-
tems’, ACM Trans. Database Syst., 10,4 (Dec. 1985), 463-528.

[Bat88a] D.S. Batory, ‘Concepts for a Database System Synthesizer’, ACM PODS 1988.

[Bat88b] D.S. Batory, J.R. Barnett, 1.F. Garza, K.P. Smith, K. Tsukuda, B.C. Twichell,
T.E. Wise, ‘GENESIS: An Extensible Database Management System’, IEEE
Trans. Software Engr., 1711-1730.

[Bat89a] D.S. Batory, J.R. Barnett, J. Roy, B.C. Twichell, and J. Garza, ‘Construction of
File Management Systems From Software Components’, COMPSAC 1989.

[Bat89b] D.S. Batory, ‘On the Reusability of Query Optimization Algorithms’, Informa-
tion Systems, 1989.

[Bat90] D.S. Batory, et. al, “The Design and Implementation of Genesis 2.0°, 1990.

[Bat91] D.S. Batory and S.W. O‘Malley, ‘On the Design and Implementation of
Hierarchical Systems from Reusable Components’, 1991.

[Big89] T.J. Biggerstaff and A.J. Perlis, Software Reusability, ACM Press, 1989.

[Car88] M. Carey, et al., ‘A Data Model and Query Language for EXODUS’, ACM
SIGMOD, 1988.

[Haa89] L.M. Haas, J.C. Freytag, G.M. Lohman, and H. Pirahesh, ‘Extensible Query
Processing in Starburst’, ACM SIGMOD, 1989.

[Sto76] M. Stonebraker, E. Wong, P. Kreps, and G. Held, ‘The Design and Implementa-
tion of INGRES’, ACM Trans. Database Syst., 1,3 (Sept. 1976), 189-222.

82

[Sto86] M. Stonebraker and L. Rowe, ‘The Design of POSTGRES’, ACM SIG-
MOD,1986.

[Tur79] M.J. Turner, R. Hammond, and P. Cotton, ‘A DBMS for Large Statistical Data-
bases’, VLDB 1979, 319-327.

83

@ . - . . - -
.emeuswuw ()

Department of Computer Sciences
The University of Texas at Austin

i

The Genesis Database
System Compiler:

User Manual

®DSBatory

Don Batory
Department of Computer Sciences
The University of Texas
Austin, Texas 78712

August 1990

85

intro - 2

iniroduction

Genesis is the first software building-blocks technology for database management sysiems.
It is also one of the first examples of large scale software reuse. This paper describes how 10
assemble DBMSs using Genesis. The design and implementation techniques utilized in Genesis are
described elsewhere. Instructions on how 10 install Genesis on a Mac 1l are given in the Appendix
along with a list of known bugs.

‘ Getting Started

Genesis consists of a configuration editor (DaTE) and prewritten software modules called
layers. On Macintoshes, the Genesis folder contains all Genesis software. The DaTE folder
contains DaTE and its files; the Genesis 2 folder contains building-block source code:

I
|

E]

O Genesis
2 items 44 ,217K in disk

1t

5

DaTE Genesis 2

l 5

1<

There are three phases in the life-cycle of a Genesis DBMS: specification, assembly, and
usage. The specification phase involves using DaTE to define a target database management
system. The output of DaTE is a set of configuration files that specify the interconnections
between layers of the target system. The assembly phase is the actual creation of DBMS
executables. This is accomplished by compiling the generated configuration files with the Genesis
library. The usage phase deals with assembly validation, schema creation, compilation, database
loading, and database processing.

The following chapters will explain each of these phases in more detail. As a running
example, we will show how an approximation to University Ingres can be generated.

©DSBatory
86

Phase 1 - 1

Phase |: DBMS Specification

The most complicated and most interesting phase of DBMS generation is that of
specification. DaTE (or Database system Type Editor) is a graphical language for composing
software building-blocks. The DaTE folder contains the DaTE and Convert Refs applications and
three folders: DaTE Lib, Arch Lib, and Sys Lib. DaTE Lib has definitions of all primitive Genesis
building blocks. Arch Lib and Sys Lib respectively contain the architectures and systems
generated by DaTE.

=l DaTE HIE

8 items 52,580K in disk 26,157K available
<>
_.'g T

s S N
CENESIS

DaTE DaTE Lib Sys Lib Arch Lib Convert Refs -{-}—
| =

Clicking DaTE begins its execution, which starts by reading primitives from the DaTE library.
Convert Refs is needed only to transport architecture designs from one disk to the next. We'll
consider its use at the end of this Phase.

(Note: as of this writing, the Sys Lib and Arch Lib folders are a convention which we
strongly recommend readers 1o follow: they are not required by DaTE. The DaTE Lib folder is
required).

Historical note: Primitives in the DaTE/Genesis library were considered, at one time or another,
io be software ICs. The Genesis icon - & wire wrapper or soldering iron - was chosen 1o
symbolize the interconnection of ICs into software systems. The permanence of this fcen
remains ic be seen.

The name DaTE - Database system Type Editor - was chosen at a time when the distinction
between layers and parameterized types was not recognized. The permanence of *DaTk" as a
name also remains 1o be seen.

DaTE Diagrams

Building-blocks of Genesis are parameterized layers, a concept akin o a parameterized
type. DaTE depicts layers as boxes and parametlers as ovals. Layers M and N are shown below; Mis
unparameterized and N has two parameters, XandY:

M N
Ol
unparameterized parameterized
layer M tayer N(X, Y)

© DSBatory

87

Phase 1 - 2

An archilecture is a rooted graph. DaTE supports the definition of four progressively
more complex types of architectures: file structure, storage system, network, and relational. An
architecture is complete if it has no unbound parameters (i.e., no ovals). Complete
architectures are treated as primitive, unparameterized layers by DaTE.

A fundamental concept in DaTE is the software bus. It is an abstract construct that
allows multiple layers 1o occupy the same position in an architecture. Software busses are
depicted as a scrollable window. The bus below lisis the layers (or architectures) BPLUS and
ISAM:

BPLUS o2

ISAM

The Add button admits new entries to a bus. An entry is deleted by clicking it and choosing the
Remove option from the displayed popup menu.

Layers and architectures belong to classes. There are the classes of file mapping layers,
link layers, etc., as well as the class of file structure architectures, the class of storage system
architectures, and so on. If you open the DaTE Lib folder, you'll see the classes presently available
in Genesis. File Struc, for example, is a folder containing different file structure layers.
Recovery is a folder containing different page-based recovery layers.

=il DaTE Lib HIE
2 items 52,615K in disk 26,118K available
ik
PN oS V' j
Model Link File Mapping Operations
] 1
File Struc Node Block Recovery Types ||
o
K] A

Getting back to software busses, DaTE restricts entries of a software bus to belong 1o a
single class. Thus, all entries of a bus are storage systems, or all are link layers, elc. In
principle, it may be possible (and useful) to have polymorphic software busses; this is a concept
that needs to be explored in the future.

© DSBatory

88

Phase 1 - 3

A bus can be extended by an operation bus, which permits the entries of a bus to
reference special operations. An operation bus is attached to the software bus it is 10 complement:

Bus - Operation Bus

[

The semantics are straightforward: any entry in the primary bus may reference any entry in the
operation bus. The above figure shows entries X and Y in the primary bus, and they may reference
entry Z of the operation bus. Operation busses arise only in FMS and DBMS specifications.

Instantiating Parameters and General Editing Rules

Parameter instantiation in DaTE is accomplished by clicking an oval. The standarg
response of DaTE is to display a menu, iike the one below:

Information
Customize

File Module

File Structure
File Struct Bus
Storage System
Storage Sys Bus

Selecting Information displays a help window on the selected item. Customize lists the
customizable options of a layer, and allows options to be enabled or disabled. Selecting an entry
below the dotted line causes a scrollable library window o be displayed. The members of the
library are legal layers or architectures that can instantiate the selected parameter. A library
window for File Layers is shown on the top of the next page.

© DSBatory

89

Phase 1 - 4

File Layer Library

Del Flag <
Index

Lempel Ziv Encode
Run Length Encode

Surrogate
Transposition

]

'] Open }' (Done }

Occasionally, parameters are bound incorrectly (or better choices are later discovered).
Rebinding a parameter is accomplished by clicking the box that is presently bound to the
parameter. Choosing an alternative binding causes the previous selection to be overridden.
Because DaTE imposes a top-down design methodology, all hierarchical bindings of the earlier
layer may need to be erased as they might no longer apply to the new module. DaTEk tries to save
such bindings whenever possible.

Architectures and Sysiems

As mentioned earlier, an architecture is a rooted graph of primitive layers. There are file
structure, storage system, network, and relational architectures. A System is a composition of
one or more architectures and supporting primitive layers, such as data types, recovery, and
special operations. File Management Systems (FMSs) and Database Management Systems (DBMSs)
can be defined by DaTE. Configuration files, which are used in Phase 2 fo assemble target sysiems,
can be generated for FMSs and DBMSs.

In the following sections, we explain how architectures and system are specified, starting
with simplest and progressing to the most complicated.

Note: Each architecture and each system is stored by DaTE in its own file. Architectures,
systems, and configuration files quickly become numerous, and placing them in a single folder is

not a good idea. We strongly recommend that architectures be stored in the Arch Lib folder and
systems and their configuration files be stored in the Sys Lib folder provided with DaTE.

© DSBatory

90

Phase1- 5
Creating a File Structure Architecture
A file structure is a composition of layers that provide the most primitive file storage and
retrieval capabilities needed for DBMS operation. Genesis decomposes file structures into three

distinct layers: FS (file storage), logical block (or nodes), and physical block.

A file structure is created in DaTE by pulling down the File menu, selecting New, and
then File Structure. An empty window is then displayed (a):

Untitled == EL=—=

B MYHRASH

HASH

@ UNORD_PRIM_UNSHAR

1
FIHED_ANCH FIHED_ANCH

(&) (b)

The window contains a single FS oval, indicating that a file storage layer must be specified.
Clicking the oval causes a library window to appear that lists all FS layers known 10 Genesis.
Clicking a layer selects it, and its box is displayed in the window. Depending on the layer, one or
more Node ovals will hang from the layer box. Clicking these ovals in the same way aliows Node
implementations 1o be selected. Nodes have Blocks as parameters, thereby producing a tree of
three levels, as shown above in (b). This particular window shows a HASH file structure whose
data nodes are implemented by the UNORD_PRIM_UNSHAR layer (i.e., unordered records stored in
a primary block with unshared overflow), and primary and overflow physical blocks are
implemented by the FIXED_ANCH layer (i.e., fixed-length records with anchored physical
addresses).

For a file structure architecture to be referenced later, it must be named and saved. This

is accomplished by pulling down the File menu and selecting Save or Save As.... The above
architecture was saved with the name "MYHASH".

© DSBatory

91

Phase 1 - O

Creating a FMS

A file management system (FMS) is the kernel of a DBMS. It provides basic access
methods, buffer management, and recovery capabilities necessary for DBMS operation. Genesis
provides a standardized architecture for FMSs, where the design customization decisions have been
tactored into the selection of file structures, special operations, data types, and a recovery layer.

An FMS is created in DaTE by pulling down the File menu, selecting New, and then FMS.

untitled FMS #1

O

Transactions &
Uolume Operations

i

Buffer Pool

File Operations .
\ . Operations

File Structure Bus i] % Operation Bus
12 <>
R M
d
d |
2 <
H Data | Type Bus
Transaction ks
Recovery
Before Image o
| :
Buffer o ecreeemsimae s RS H
|
Input/0Output

The above mentioned design decisions are entered in three busses and a field. Each labeled in small
font as a prompt to an FMS designer. Before Image (Page) logging is assumed as the default
implementation of recovery.

Note: Transaction, Buffer, and Input/Output classes in an FMS architecture are not
customizable in this version of DaTE, as Genesis provides only a single implementation (i.e.
layer) for each. When multiple layers are available, they too will be customizable.

Also note that an FMS window documents the routing (via dotted lines) of user-issued
operations. Volume and transaction operations are serviced by the Transaction layer; buffer pool
operations are handled by the Buffer layer. File operations are processed by either file structures
or special operations. Observe that an FMS is not a strict hierarchy of layers, where all
operations are transformed by layers in a top-down manner.

© DSBatory

92

Phase 1 - 7

A possible EMS for a census database is shown below. It provides MY_GRID and
MY _UNORD as primitive file structures. The SORT operation is included, along with the data
types INT, CSTRING, and FLOAT. Shadowing is used for volume recovery.

=l Census_FMS$
Transactions. & File Operations Buffer Poo&
Uo lume Operations .) Operations
) File Structure Bus *) Operation Bus :
a | MY-GRID < [o] SORT s
d MY_UNORD d
d d L

Data | Type Bus

Transaction INT s
CSTRING
Recovery FLOAT
Shadowing s
! H
Buffer oo ,
|
Input/Output

To generate the configuration file of an FMS, pull down the File menu and select
generate.

Note: Again, we recommend that FMSs and their configuration files be placed in the Sys Lib
folder, so that they are separated from their architecture components. The files that are
generated are text files that contain C precompiler directives and macro definitions. As we'll
see in a later section, these are the files that are compiled with Genesis source to produce DBMS

executables.

Note: As a general rule, one probably doesn't want to generate only an FMS. When a DBMS is
generated, its underlying FMS is also generated. In fact, generating an FMS produces 2
_fms.h file, while generating a DBMS produces both 2 _fms.h file and a g_dbms.h file. For now. it
s instructive to see what is going on internally with DaTE, although the generation of an FMS s

likely to be a rare event for most Genesis users.

© DSBatory
93

Phase 1 - 8
Creating a Storage System Architecture

A file mapping layer maps an abstract file to one or more concrete files. Examples
include mapping a file 1o an inverted file (i.e., indexing), and mapping an uncompressed file 10 a
compressed file (i.e., compression). parameters of a file mapping layer are implementations of
the concrete files that it generates. A stiorage sysiem architecture is 2 composition of file
mapping layers that terminate with file structure architectures.

A storage system is created in DaTE by pulling down the File menu, selecting New, and

then Storage System. An empty storage system window is then displayed As examples of file
mapping modules, the following two windows show the selection of indexing and transposition
layers. Index maps an abstract file to a data file and zero or more index files. The data file
implementation is specified by parameter data and the index file implementation by parameter
index. Similarly, Transposition maps a file to a series of concrete subfiles, one dominant
subfile and zero or more subordinate subfiles. Their implementations are specified via

parameters dom and sub.

=0 Untitied ARCH #1 HIE
inden

< data__> < naen >
&
=] Untitled ARCH #1 EIE

Transpositon
]

< dom > s 2

o

Note: The concept of dominance is fundamental to conceptual-to-internal mappings. Basically the
idea is that a conceptual file is mapped by DBMS software to multiple internal files. Cne of the
internal files is distinguishable as its records are in 1-to-1 correspondence with conceptual
tuples. This is the dominant file. Other internal files, called subordinate, do not have this
property.

© DSBatory
94

Phase1- 9

Consider the storage system used by Rapid, a statistical DBMS. Rapid mapped
schema-defined files to transposed files, where each column was run-length compressed before
being stored in a sequential-unordered file structure. This storage system is defined in two
storage system windows: rapid.ss and subfile.arch. Rapid.ss maps a schema-defined file 1o ils
dominant internal counterpart. Subfile.arch maps subordinate subfiles to their internal

counterparts.

Sl rapid.ss o=
Transposition
1
Run Length En... subfile.arch
seg_unord
]
=[J=== subfile.arch &==FHE

Bun Length En...

seqg_unord

&

While it seems odd not to have Transposition call subfile.arch twice (as implementations
of both dominant and subordinate files are the same), DaTE permits only one architecture
reference per dominant mapping. (It turns out that permitting multiple storage sysiem
references significantly increases DaTE's complexity without providing greater expressibility.
Otherwise, there is no apriori reason why it cannot be handied).

© DSBatory

95

Phase1- 10

Al
L]

rapid.ss =]

Hi

Transposition

i
subfile.arch subfile.arch

&

f composition that cannot be defined directly
in DaTE....

As another example, consider the storage system of Ingres: it maps schema-defined files
to inverted files, where data files and index files can be selectively implemented by hash, heap, or
isam structures. The multiplicity of implementation choices is captured by a pair of file
structure busses.

] ingres.ss =]

1

Inden

'heap
isam_ingres
hash_ingres

Al isam_ingres
heap
d| hash_ingres

|

=Y

l

|

Note: The last entry on a software bus is the default mapping. Thus, data files in ingres.ss
default to hash-based structures if no storage structure directive is provided. (These directives
are specified in schemas, which is discussed in Phase 3). No other significance is attributed to
the ordering of entries on a bus.

© DSBatory

96

BPhase 1 - 11

Creating a Network and Relational Architecture

A network architecture is rooted by a link layer (or link bus). This layer (or bus)
specifies how links - i.e. relationships between files - aré to be implemented. The sole
parameter of a link layer (or bus) is the implementation of the referenced files, which may be
expressed as a file structure or storage system architecture.

A relational architecture is rooted by a data model layer (or data model bus). Such
layers-map nonprocedural data model/data language interface 1o a procedural network database

interface. The sole parameter of a data model layer is the impiementation of the finks—of-the
network database.

The windows at the top of the next page show a network architecture used in ithe Total
DBMS (i.e., no high-level data model; links are implemented by ring-lists,and files are stored in
hash-based structures), and the relational architecture of Ingres (i.e., QUEL as the data
model/language, nested loop implementations of links, and files stored in the Ingres storage
system).

=0 total 7Z [ECO=== ingres.arch =—=CE
Quel
Ring List
Nested Loop
hash
ingres.ss
0 3
© DSBatory

97

Phase1- 12

Creating a DBMS

A DBMS is defined in a manner identical to that of FMSs: architectures, special operations,
data types, and a recovery layer must be specified. The only significant difference is that
relational, network, and storageé system architectures are referenced instead of file structure

architectures.

A DBMS window for our approximation of ingres is shown below: the architecture is
ingres.arch;, specia operations are SORT, LFILTER, and CROSS_PROD; data types are INT,

CSTRING, and FLOAT; and recovery is handled by Before Image logging.

Note: LFILTER is a layer required for processing cyclic queries. For further details,
see the DaTE help menu.

=l Ingres
Transactions & Database Buffer Pool
Uolume Operations Operations Operatiomns
: Architecture Bus ' Operation Bus :
ingres.arch > a| SORT s
d LFILTER
d CROSS_PROD
14 >
H Data | Type Bus
Transaction A INT i
CSTRING
Recovery d FLOHT
Before image d s
]
Buffer oo e RS
|
input/Output

©DSBatory
98

Phase 1 - 13

Statistics about the size of the generated DBMS can be obtained by pulling down the Misc
menu and selecting Statistics. A window similar 1o the one shown at the top of the next page will

be displayed:

Database Management System Statistics
Lines of Code
Manager/Layer Total Sselected % of Library
system Managers 6435 6435 100%
System Layers 4863 4863 100%
System Utilities 1427 1427 100%
File Manager 42463 21485 50%
File Layers 6581 1389 21%
Link Layers 7456 982 13%
Model Layers 2468 1234 50%
Totals 71693 37815 527

Of the 71K+ lines of code in the Genesis libraries, approximately 52% is referenced in the Ingres
DBMS. (Lines that are unreferenced are not included when the Ingres DBMS is assembled). A
similar window exists for FMSs.

Note: System Managers and System Utilitles refer to a standard package of ADTs
(queries, into-lists, efc). that are referenced by virtually all DBMS layers. System Layers is
a generic name given o layers listed on the DBMS's operation bus. File Manager refers to FMS
code that is generated. File Layers, Link Layers, and Mode! Layers refer to file mapping.
link, and data model layers that are referenced.

A DBMS typically supports only one architecture. However, if one wants the 'union’ of
several different architectures (to have the capabilities of several individual DBMSs), one can
click multiple architectures onto the Architecture Bus. A composite architecture is formed by
taking the union of all data models referenced and placing them on a data model bus, the union of all
referenced link layers is placed on a link bus, and the union of all storage systems is placed on a
storage system bus. The composite architecture of a DBMS can be viewed by pulling down the
Misc menu and selecting DBMS Overview when the DBMS window is active. The union of
Ingres.arch and rapid.ss is show in the figure at the top of the next page.

©DSBatory
99

Phase 1 - 14

T
LJ
it

system Overview EHE

Quel

Nested Loop

fplingres.ss
rapid.ss

|

=¥

To generate the configuration files of a DBMS, pull down the File menu and select
generate. The following window will be displayed:

Definition Generation successful
Click Mouse To Continue

FMS Header ingres_fms.h
DBMS Header ingres_dbms.h
File Struc. Table ingres.FIT
Path Table ingres.PT

Path Entry Table ingres.ET
Schema Options ingres.OPT
Driver Definition ingres.DEF

The FMS Header and DBMS Header files are compiled with the Genesis library 10 produce
ingres. The File Structure Table, Path Table, Path Entry Table, and Schema Options
Table are read by DBMS executables to process dml operations. The Driver Definition is a
DaTE readable document that is a copy of the DBMS window that defines ingres. Provided the Sys
Lib folder is empty, the resulis of this generation are shown at the top of the next page.

©DSBatory

100

Phase1- 15

£ Sys Lib 0
7 items 44 675K in disk 34 ,062K available
o5 [
2 B OB OBEE
ingres .DEF ingres .ET ingres.FIT ingres.OPT ingres PT
. """" %
ingr_dbms.h ingrslh
Y
<3| [

Note: Again, we recommend that DBMS designs and configuration files be placed in the Sys Lib
of the DaTE folder.

Window Management and Complex Architectures

Architectures quickly become too large 10 fit on single windows. This is one reason why
DaTE has different windows for different architectures and different systems. DaTE provides a
convenient mechanism to navigate among interrelated windows/architectures. The figure below
shows relationships between different windows and different parts of a DBMS design:

ingres DBMS
window

ingres.arch
E window

ingres .ss

AR
e

isam windew heap window hash window

©DSBatory

101

Phasei- 16

Recall that complete architectures are ireaied as unparameterized layers. When one
clicks on the box of an architecture and selects information, the window for that architecture is
opened. Since architectures can be nested, navigational paths may become long. To retrace to the
parent window, pull down the Windows menu and select Back. Thus, one can navigate the tree of
windows of the Ingres DBMS through menu selections.

Note: At present, we recommend that at least one relational architecture be included in a
OBMS-specification ¥ a relational architecture is not included, the system that is generated has

only a programming language interface. There is no convenient—driver—that--is iahble
currently, to allow users to explore such systems and issue basic database calls without &
considerable amount of programming. ¥ a relational architecture is included, then either SQL or
QUEL - a high level query language is made available for issuing basic calls.

Convert Refs

When an architecture is created, there are references 10 primitive layers and possibly
other architectures. DaTE saves these references using the Macintosh equivalent of absolute
pathnames. Thus, if you decide to copy you architectures onto another disk, or simply o move
them from one foider 10 another, you've changed the pathnames of your architectures. DaTE will
choke when it tries 10 read such files again. As a partial fix to the problem, the Convert Refs
utility is used. Drag it into the folder whose architecture files have been moved. Double-click it
1o start it to execute. If all pathnames can be converted properly, it will report success. If some
pathnames can't be converted, the count of the number of errors is reported. Not exactly useful,
but when you run DaTE, it will become obvious which architecture files haven't been properly
iransiated.

©DS8Batory
10z

Phase 2 - 1

Phase 2 - Assembly

A Genesis-produced DBMS has two executables: Gdefine and Gdml. Gdefine compiles
schemas and creates files for loading. Gdml loads empty databases and supports database
processing via nonprocedural query languages. In the following, we will use ingres to iliustrate the
production of Genesis executables.

Note: Ultimately, Gdefine and Gdm! will be merged; it is only for historical reasons that beth
were developed independently. The compilation of Gdefine and Gdml takes about 10 minutes. As
we'll explore Iater, Universals can eliminate the need for-compiation-altogether.

There are two ways to produce executables. Either you build versions of Gdefine or Gdm!|
that containly only the layers that are required for your target system, Or you can build a
universal Gdefine and Gdml. Universals, as we will call them, are executables that contain
virtually every building-block in the Genesis Library. Module interconnections are realized at
run-time via dispatch tables. Thus, using Universals, it is possible to go directly from a DaTE
specification to DBMS execution, eliminating the need for compilation. Of course, a penalty to be
paid for Universals is slightly slower speeds and the inability to implement certain functions. We
will explain more about Universals at the end of this chapter.

In the following sections, we'll explain how to compile versions (Universal or otherwise) of
Gdefine and Gdm!. Producing Gdefine and Gdm! executables is a 3-step process.

Step 1 - Renaming Configuration Files

Among the header files that are referenced by Genesis source are genesis_config.h and
jupiter_config.h. Both are transcripts of a DBMS design which partially specify the
interconnections between Genesis layers. (genesis_config.h deals with DBMS layers;
jupiter_config.h deals with FMS layers). DaTE distinguishes different config.h files by
prepending the name of the DBMS. The first step in compilation is to rename ingres_dbms.h 10
genesis_config.h and ingres_fms.h to jupiter_config.h. Here what the Sys Lib folder should look
like after the renaming: '

=l Sys Lib HIE
7 itemns 44 675K in disk 34 ,062K available
’ AN i N
ingres.DEF ingres ET ingres FIT ingres.OPT ingres.PT
‘ ‘
genesiﬁg h jupitnﬁg.h
! o
= |

103

Phase 2 - 2

Step 2 - Uploading Configuration Files

The UNIX directory for Genesis has the following contents:

GenConfig/ bin/ adal/ aml/ drivers/
expanders/ headers/ jupiter3.1/ make/ nubs/
obij/ systemn/ transformers/ utilities/ BigConfig/

As a quick overview, the GenConfig/ directory will contain some of the DaTE producec

_configuration files. The op37/ directory contains the obiect files of Genesis, bin/ contains Genesi
executables, and the rest are directories containing source files. The directory structure of r i/
is:

GenConfig/ demo.test™ gdml* gdefinex*
1inkl.test* link2.test* 1link3.test* paces/
emp/ remdb* ut/ valid/

For uploading configuration files, the GenConf ig/ and the bin/GenConfig/ directories
are relevant. The _config.h files should be placed in the GenConfig/ directory. The other files
(not including the .DEF file) should be placed in the bin/GenCont ig/ directory. The .DEF file is
not really needed, and can be discarded.

The reason for having two GenConfig directories is that Genesis executables reqguire
certain configuration files to run, while other configuration files are needed only for compilation.
The files in GenConfig/ are for compilation. The files needed by Gdefine and Gdml are in
Lin/GenConfig/. As a rule, if Gdefine and Gdm! are moved to a different directory, the
bin/GenConfig/ directory must also be in that directory.

Step 3 - Building Gdefine and Gdml
The contents of the make/ directory are:

Dml.make Gdefine .make README Grun.make
Gen.make.h Target.make.h Target .make.h.sample

As a quick overview, Gdefine.make is the Makefile for Gdefine, and Dml.make is the Makefile for
Gdml. The README file explains how to add new software building blocks to Genesis and to include
them in the Makefiles. Explanations of the other files are also found in README. To produce
Gdefine and Gdml, enter to the make/ directory and type:

make -f gdefine.make
make -f gdml.make

The Gdefine and Gdml executables will be deposited in bin/.

Phase?2 - 3

Universals

it is possible 1o build versions of Gdefine and Gdmi that contain virtually all layers of
Genesis. The configuration files for Universals are found in the BigConfig/ directory of the
Genesis directory. If you list BigConfig/, you'll see the Universal genesis_config.h and
jupiter_conﬁg.h files.

Virtually all layers can be included in Universals, but there are exceptions. Universals
can only have one recovery layer. So if you want 10 differentiate Universals that rely on shadowing
e

from those that rely on before-image page 10gging, you'lt have to-create multiple versions of th
Universals.

Open the jupiter_config.h file and scroll to the bottom. That's where you'll see constants
like:

/*t*tt*i****tﬁt'k! RECOVERY TYPES *ii*i*i*iﬁ***ﬁii’ﬁtt/

#define BFIM_RECOV 1
#define NULL_RECOV 0
#define SHADOW_RECOV 0
#define DBCACHE 0

These commands will define Universals that rely on before-image logging. Altering the use (1)
and nonuse (0) values, one can select different recovery implementations. Remember: only one
entry should be set 1o 1: the rest must be zeros.

When you are compiling Universals, discard the genesis_config.h and jupiter_config.h
files generated by DaTE and use those in BigConfig. Rename all other configuration files to "demo”,
as this is the name given in the BigConfig universals. (Actually, to change the name to something
other than demo, open up genesis_config.h in BigConfig and edit the #define DB_NAME 1o
whatever name you'd like). Other than this, building Universals is no different than building any
other DBMS.

105

Phase 3 - 1

Phase 3 - Usage

The usage phase deals with the customization of DDL directives, creation of schemas,
database loading, and database processing. To gel started, recall the contents of the bin/ directory:

GenConfig/ demo.test™ gdml~* gdefine*
1inkl.test* linkZ.test” 1ink3.test* paces/
emp/ remdb™ ut/ valid/

W

As a tour, we created Gdefine and Gdml in Phase 2: they are the executables of our targel
DBMS. The directories paces/ and valid/, and the .test files are used 1o validate Gdefine and
Gdml. (More on this later). The emp/ and ut/ directories are two small databases provided with
Genesis. The emp database consists of a single relation; the ut database has three highly
interconnected relations.

Phase 3 begins by customizing DDL directives.

Customizing DDL Directives

The .OPT file generated by DaTE lists DBMS-specific directives on how to store different
relations and links. DaTE assigns a name for each directive, but the name itself may not be
syntactically correct or easily rememberable. Customizing DDL directives is, in effect, providing
alternate names.

The names DaTE generates reference labels given to layer parameters or user-defined
architectures. Any sequence of characters can serve as a name for DaTE. However, the current
Genesis DDL only allows names to begin with a letter, followed by a sequence of letters, digits, or
underscores (). lllegal names must be repaired by editing.

As an example, open ingres.OPT, which is in the bin/GenConfig/ directory. You'll see
the following text:

Row Tag Next Type Path Fit Name

#
¢ 1 -1 1 0 -1 ingres.ss
1 P 2 ¢ -1 1 hash_index
2 4 3 0 -1 2 heap_index
3 8 -1 0 -1 0 isam_index
4 10 5 0 -1 0 isam _internal
5 20 6 0 -1 1 hash_internal
& 40 -1 0 -1 2 heap_internail

The only column of interest 10 us is name. (Don't change any other entries!!). The label

ingres.ss should be familiar; it is the name of the ingres slorage sysiem that we defined in Phase
1. We need 1o rename this label, to say 'ingres’, because it has an illegal character (i.e., the dot):

0 1 -1 1 0 -1 ingres

106

Phase 3 - 2

All other names are acceptable as is.

Once the Name column contains legal names, further renaming can be motivated by
examining the semantics of each label. Schema-defined relations that are to be stored via the
ingres storage structure must be tagged with the option 'ingres'. When there is only one sforage
system - as in our case - using explicit storage system tags is unnecessary. Tags are needed if
relations could be mapped by several storage systems. (Recall that multiple storage systems are
possible when a DBMS has supports multiple architectures). We'll illustrate tagging shortly.

The next three options - hash_index, heap_index, and isam_index - are directives 10
store index files in hash, heap, or isam structures. The last three options - isam_internzal,

hash_internal, and heap_internal - are directives to store data files in isam, hash, or heap
structures. Again, we'll explain how they are used in schemas shortly.

We'll shorten the labels in rows 1-6 by dropping _internal suffixes and replacing
_index suffixes with 'x', yielding:

RowW Tag Next Type Path Fit Name

#
0 1 -1 1 0 -1 ingres
1 2 2 0 -1 1 hashx
2 4 3 4 -1 2 heapx
3 8 -1 0 -1 0 isamx
4 10 5 0 -1 0 isam
5 20 6 0 -1 1 hash
6 40 ~1 0 -1 2 heap

in general, any name for a label can be used as long as it is unique within the table and does not
conflict with Genesis DDL reserved words. These words are listed below:

int files index

cstring links primary_key
vsiring database ring_list
float pg ptr_array
double set

byte char

107

Phase 3 - 3

Defining Schemas

Open the file ut.schema in the ut/ directory. It is shown below with labels in bold:

DATABASE ut {

FILES
employees
empno INT primary_key;
age INT H
dept_name CSTRING (20) ;
name CSTRING (22) primary_key indexed isamx;
} heap ingres;
dept |
deptno INT primary key;
dept_name CSTRING (20) indexed hashx;
chairman CSTRING { 22) ;
} isam;
prof {
profno INT primary_ key;
prof name CSTRING (22) ;
department INT ;
} hash;
LINKS
/* 1:n links */
P_worksin . dept.deptno = prof.department /* ring list */;
E worksin : dept.dept_name = employees.dept _name /* ring list */;

/* 1:1 or 1:0 link */

p_empdata : prof.prof_name = employees.name /* ring_ list */;
P _chairdata : prof.prof name = dept .chairman /* ring_list */;
E_chairdata : employees.name = dept.chairman /* ring_ list */;

Three relations are defined plus five links. The syntax for relations is siraightforward. Link
syntax is <name> <colon> <join-predicate> <options>. Join predicates must be equality-based with
no disjunctions. Links interrelate a pair of different relations. One is the parent and the other is
ihe child. Parentage is conveyed by phrasing of the join predicate; the first relation referenced is

the parent. Thus, in P_worksin, the dept relation is the parent and prof relation is the child.

DDL directives are options that can adorn relations, individual fields, and links. In
addition to those in ingres.OPT, there are a few options that are reserved: indexed, ring_list,
primary_key, and ptr_array. indexed is used to tag fields that are to indexed;
primary_key tags fields that define the primary key of a relation; ring_list and ptr_array
tag links to specify that their implementations are to be ring lists or pointer arrays. Note that
only primary_key is provided to all Genesis-produced DBMSs. index, ring_list, and
ptr_array are available only if their corresponding layers are present in the DBMS.

108

Phase3 - 4

To see how these directives are used, look at the employees relation:

employees |

empno INT primary key;

age INT ;

dept_name CSTRING (20) ;

name CSTRING (22) primary key indexed isamx;

TYTTTheéap ingres’

The field pair (empno, name) is declared to be the primary_key of employees. The name field is 10
be indexed, and its index file is to be stored in an isam structure. The employees relation is to be
stored in a heap. The option 'ingres’ adorns employees to tell Gdefine that employees is 1o be
stored via the ingres storage system. (As mentioned earlier, the use of the 'ingres’ tag in this
example is not necessary). Normally, when one specifies a field to be indexed, one also must
specify how the correponding index file is to be stored. If multiple options are available, but no
option is given, Gdefine will make a choice and will report its choice during schema compilation.

Now look at the P_worksin link:

P worksin : dept.deptnc = prof.department /* ring_list */;

If the ingres DBMS supported ring lists, the ring_list tag would be placed as shown, but not
within comment markers. The P_worksin declaration above is untagged. An untagged link tells
Gdefine that the link must be implemented by a join algorithm.

Note: If there are no link layers, the current version of Gdefine will still recognize links. It is
only during Gdml execution that references to the link will be recognized asg an error.

109

Phase 3 - 5

Defining Databases

All information about a database is stored in a directory of the same name. It must be in
the same directory as Gdefine and Gdmi. As an example, list the uV directory:

"UT.SCHEMA ut .dept .data ut .prof.data ut .employees.data

The schema is present along with three other files. rhese files, respectively, contain the raw data
that is to be used to load the dept, prof, and employees relations. Their format is straightforward.
Each line contains data for a record. Column values are separaied by commas with no embedded
blanks: strings are enclosed within quotes. The naming of raw data files is important. If s is the
name of a schema and r is the name of a relation in a schema, then the name of the raw data file is
's.r.data. Thus, ut.dept.data is the raw data file for the dept relation in the ut database.

When Gdefine is run, the following output is generated:

* ok ok kK Creatinc \«’Olumes %k kR K EK K KK
.ut:ut created
* %k kA K Creating Files ok ok ok ok k ok ok k kX

employees created
Semp'name created

dept created
$dep'!dept_name created
prof created

The names of each volume, conceptual file, and internal file that is created is listed. Internally
generated files have names prefaced by $. Index file names, for example, take the first three
characters of the conceptual file, followed by bang (!}, followed by the name of the field. Thus
$emplname is the name given to the name index file of the employees relation.

Gdefine produces a large number of additional files that will appear in a database
directory. These files are used by Gdmi to know how 10 perform conceptual-to-internal mappings
of relations and links in the database. When Gdml is run for the first time on & newly compiled
schema, it will look for a raw data file for each reiation, and will load that relation. Hell breaks
loose if the file isn't found. Subsequent runs of Gdml will not invoke database loading.

Note: To dump =a database, one simply has to execule 2 "select * from relation” and route the
output to a text file. The format used in Gdml to output tuples is the same format it uses for

raw data file loading.

110

Phase 3 - 7

validation

A set of SQL scripts has been developed to validate Genesis produced DBMSs against the emp
and ut databases. For the emp database, the script is sfile.test. For the ut database, three
scripts are available: link1.test tests multifile retrievals, link2.test tests multifile updates,
and link3.iest tests cyclic queries. These files are in the bin/ directory along with Gdefine and
Gdml.

- As an example, suppose the UT database has been joaded (and has not been modified). To
run link1.test, just type:

linkl.test
If nothing is output, then the SQL tests in link1.test all succeeded. This should always be the case.
If something is printed, make sure that the UT database has not been modified prior to running the
test. I link1.test still fails, there is a bug in Genesis. Please report such bugs immediately along
with documentation and scripts to reproduce the bug.

All other tests are conducted in the same way.

112

Installation

Genesis comes in two parts: DaTE, the Genesis DBMS Lavout Editor, and the Genesis
Source. The Source comes on a 45MB Sun-readable tape cartridge, while DaTE comes on a
| 4MB disk. Mac Ilc series can read this disk: Mac II’s cannot. So if you are getting
"unreadable disk’ errors, then most likely your drive can’t read 1.4MB disks.

The installation of DaTE is accomplished just by copying the disk onto a hard disk.
Genesis Source will require a bit more work. You’ll need to create a special directory, we’ll

Pt I

call it GENESIS/ here for discussions; and type:

cd GENESIS/
tar xvf <tape-drive>

to extract the contents of the tape.

Once GENESIS/ is in place, you'll have to go and change three (3) make files in
GENESIS/make. Let’s look at the contents of this directory:

Gdefine.make Gdml.make Gen.make
Grun.make README Target.make.h
Target.make.h.sample

Gdefine.make creates Gdefine and Gdml.make creates Gdml. Target.make.h is a file
that is #included in both Gdefine.make and Gdml.make. It contains the absolute pathname of
directory in which Gdefine and Gdml is to be placed.

You must modify Gdefine.make and Gdml.make by changing ROOT_DIR from
/v/yog/v1i/genesis/G2 to GENESIS/:

ROOT_DIR = GENESIS/

Again, this must be done in both Gdefine. make and Gdml.make. The other modification is to
set TARGET _DIR in Target.make.h from fv/yog/v1l/genesis/G2 to GENESIS/:

TARGET_DIR = GENESIS/

This will place the Gdefine and Gdml executables in GENESIS/bin.

What are all the other files? Should you wish to experiment with existing layers by
changing them, or by adding your own layers, you do this by modifying Target.make.h
according to the instructions in file README. An example is given 1in
Target.make.h.sample.

Gen.make.h is one of three make-include files that define how to compile Genesis
source. The other include files are GENESIS/system/make/Sys.make.h and
GENESIS/jupiter3.1/make/Jup.make.h. The Sys.make.h file deals with generic system utili-
ties, such as available list routines (which handle dynamic memory allocation), avl_tree rou-
tines (used in grid file retrievals), etc. Jup.make.h deals with file management related source,
like shadow recovery algorithms (shadow.h), file structure algorithms (filemgrl.c,
filemgr2.c), and so on. Gen.make.h deals with the layers of Genesis that lie above file
management, like secondary indexing (seg_index.c, and so on). Unless you are modifying
Genesis source, you need not ever have to change these make files.

Finally, Grun.make is a procedural interface to Genesis that, quite frankly, we no longer
use. It was used for debugging and running Genesis operations (cursor creation, inidaliza-
tion, etc.) one at a time. However, we’ve found a more effective way to debug Genesis was
through an SQL or QUEL interface. So Grun.make may disappear altogether in subsequent

113

Phase 3 - 6

Database Processing

A Genesis-produced DBMS can run subsets of SQL, QUEL, or both. The Gdm! prompt 'SQLY
requests a SQL command: 'QUEL: prompts for a QUEL command. Typing SQL will switch the DBMS
to accept SQL commands; typing QUEL switches 10 QUEL commands. (Swiiching is possible only if a
DBMS supporis both interfaces).

A subset of SOL and QUEL is supported. This doesn't include, unfortunately, nested selects

and aggregations. S0 100 are join predicates within-update and delete statements. (That is, update

and deletion predicates are restricted to reference a single relation).

Note: these restrictions were imposed simply to keep this version of Genesis tractable. There is
no apriori reason that prevents full-blown SQL and QUEL to be supported.

Link names can appear in SQL predicates in place of their schema-defined join predicate.
Thus, the following queries are identical:

select * select *
from dept, prof from dept, prof
where dept.deptne = prof.department where P _worksin

If aliases are used in an SQL select, link names cannot be used. (The reason is that link names are
bound to schema-defined names of relations, not aliased names). This means that link names
cannot be used in QUEL retrieves, because of the standard use of aliasing relations via RANGE-OF
commands.

If a dml statement becomes too long to fit on 2 single line, lines can be continued by a
backslash (\) carriage return. Although not shown, the first two lines of both of the above select
statements were terminated by a \.

QUEL has been extended to support ORDER_BY clauses to order the output of retrieval

statements. The syntax is the same as that for SQL. Another simple extension is the * feature for
retrieval:

retrieve (E.*) where...

where 'E.* is a shorthand for all fields of relation E.

To exit from Gdml, type 'exit’ or 'quit’.

111

[

releases.
To summarize. changing three lines in three different files is all that should be needed

10 get Genesis up and running.

114

bugs - 1

Features and Known Bugs

DaTE. Not everything is perfect. DaTE has bugs that trash memory or make illegal
memory references. Unfortunately, some of these bugs are very difficult to track down and fix,
due to the memory management scheme of the Macintosh. Simply put, the errors aren't always
reproducable. You'l discover the do's and don'ts on your own; it isn't difficult to make DaTE work
for you. At least with a bit of alchemy. | highly recommend that you install a version of MacsBug

io trap these errors.

DaTE ftries to check for design errors. Most of the time, it catches mistakes and reports
them to you. However, if you create a storage system which references itself, don't expect things
to work.

We've already alerted you 1o DaTE's other quirk - the need for the Convert Refs
application. See the end of Phase 1 for an explanation.

The size (in terms of number of lines) of each layer, as registered in DaTE is not accurate.
We are in the process of determining how to count line numbers (should comments be included,
etc.) and will be updating these numbers shortly. Yes, there are 70,000+ lines of Genesis source,
but removing headers and comments (which are essential to understand what's going on) will
reduce this number.

Finally, don't mess with trying to define new layers or altering existing layer definitions,
unless you know what you are doing. Technical reports exist which explain the basic ideas. Once
you know what each button, etc. means, then you can proceed to experiment.

Genesis Source. You may have noticed that there is source code or references 1o a
db_cache recovery, grid file structure, and references to Ziv-Lempel encoding. Right now,
db_cache and grid have some bugs which we are trying to track down. Ziv-Lempel encoding does
work on Sun3s, but does not work on Mac lis. A port revealed that the Ziv-Lempel algorithms we
are using require enormous byte arrays, larger than Think C can handle. So we eliminated it.

Also, B+ trees are known not to work when at most two records fit per node/block.
Debugging B+ tree code is painful, and this is still on our o do list.

Gdefine & Gdml. Again, nothing is perfect. Gdml somehow leaks memory. A
consequence of this is that very long scripts will not execute 10 completion before Gdml blows up.
You can go quite some time before something happens, but something will happen eventually.

Another problem is that presenily, all genesis databases are siuffed into individual
volumes of a single, predefined size. For Mac lls, the size is 2000 blocks of 512 bytes. To change
this, you'll need to edit genesis_tun.h, which is subfolder headers in the GenSource folder. As a
general rule, and header file (genesis, jupiter, or system) _tun.h contain constants that you can
change. Just be careful.

©DSBatory

115

